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Abstract 
Dendritic cells (DCs) are professional antigen presenting cells of the mammalian 

immune system, and constitute a vital link between the adaptive and the innate 

immune systems. These cells are phenotypically and functionally highly 

heterogeneous, comprising at least 3 subsets in human: classical/conventional DC 

types 1 and 2 (cDC1, cDC2), and plasmacytoid DC (pDC). Additional heterogeneity 

has been described within the cDC2 compartment which can be divided into two 

populations, termed DC2 and DC3, more closely related to cDC1s or monocytes, 

respectively. DCs develop in the bone marrow (BM) under the control of lineage-

specific transcription factors (TFs). However, the cellular pathways and genetic 

factors that govern the development of human DC subpopulations from 

haematopoietic stem cells are not well known, in part due to their rarity in vivo.  

 

First, this work addressed the rarity of DCs via a novel in vitro culture system that 

favoured the production of large numbers of DCs from primary human CD34+ 

stem/progenitor cells. Two transcriptomic approaches were employed to verify the 

culture output: the NanoString assay and bulk RNA-Seq. The transcriptomic analyses 

confirmed that all DC subsets produced in culture exhibited appropriate transcription 

profiles and bore close resemblance their ex vivo-derived counterparts. 

Furthermore, these methods attested that Notch stimulation predisposed the culture 

output toward the production of cDC1, the rarest of the DC subsets.  

  

The culture system, confirmed to produce bona fide DC subsets, facilitated the 

interrogation of DC haematopoiesis to establish the phenotypic identities of putative 

progenitor and precursor populations. These early populations, derived from human 

BM, along with mature DCs, were subjected to single cell transcriptomics. Pseudo-

temporal ordering and lineage branching reconstruction analyses revealed two 

pathways of DC development, marked by differential expression of the TF IRF8 and 

explaining the origin of cDC2 heterogeneity. The IRF8high pathway generated pDC, 

cDC1 and DC2, while DC3 and monocytes developed along an IRF8low trajectory.  

Mass cytometry analysis validated the link between the two pathways in BM and DC 

populations found in peripheral blood. 
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Finally, the project focused on determining the role of IRF8 in the homeostasis of 

human cDC1s and pDCs, both of which develop through the IRF8high pathway and 

retain IRF8 expression as they mature. The previously established in vitro culture 

techniques were employed to generate sufficient DCs for low-input IRF8 chromatin 

immunoprecipitation, followed by high-throughput DNA sequencing (ChIP-Seq). The 

analysis of the ChIP-Seq data revealed that IRF8 maintains both the function and 

surface phenotype of cDC1s, while in pDCs it controls important functional modules.  

 

During this work, a wide variety of transcriptomic and genomic bioinformatic 

techniques and analyses enabled the verification of a novel human DC culture 

system (Kirkling and Cytlak et al., 2018), the identification of two pathways of human 

DC development (Cytlak and Resteu et al., 2020), and have generated new insights 

into the role of IRF8 in human DCs. 
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Chapter 1. Introduction 
1.1 The roles of DCs in immunity 
Dendritic cells (DCs) are professional antigen-processing and presenting cells with 

critical roles in the regulation of immunity and inducing tolerance (Banchereau et al., 

2001; Steinman et al., 2003). The role of DCs in immunity can be summarised with 

two terms: (1) DCs act as sentinels, able to capture, process and present antigens 

and to migrate to lymphoid tissues to select rare, antigen-reactive T cell clones, and 

(2) DCs are sensors, responding to a variety of environmental stimuli by extensive 

differentiation and maturation (Steinman, 2006). The type of DC and the specific 

response induced by different stimuli shape the immunological outcome, e.g. by 

driving naïve T cell polarisation to T helper subsets, such as TH1, TH 2, TH 17, and TH 

22, or inducing tolerance (reviewed by Geissmann et al., 2010). Together with 

monocytes and macrophages, DCs form the mononuclear phagocyte system, which 

encompasses leukocytes with specialised antigen processing and presentation 

function (Haniffa et al., 2015). 

 

DCs reside in tissue in an immature state, continuously sampling their environment 

by endocytosis, macropinocytosis, and phagocytosis (British Society for Immunology, 

https://www.immunology.org). During pathogen invasion, DCs sense microbial 

products using a variety of pattern recognition receptors (PRRs) such as the toll-like 

receptors (TLRs), nucleotide-binding oligomerization domain-like receptors (NOD-like 

receptors), retinoic acid inducible gene 1-like receptors (RIG-I-like receptors) and C-

type lectins (CLEC) (Kassianos et al., 2012). Upon interaction with pathogens, DCs 

undergo complex cellular processes resulting in their activation (reviewed by Tibúrcio 

et al., 2019). DCs then migrate from tissue to draining lymph nodes, where they can 

induce an adaptive immune response (Banchereau and Steinman, 1998). In order to 

present the antigen to lymphocytes and induce their clonal selection, the internalised 

pathogen-derived peptides are processed and loaded onto major histocompatibility 

complex (MHC) molecules (reviewed by Mantegazza et al., 2013).  

 

1.1.1 Antigen presentation 
Most of the proteins involved in antigen processing and presentation are encoded by 

MHC genes. Only antigens presented within MHC complexes are able to trigger an 

immune response, a property called MHC restriction (Zinkernagel and Doherty, 
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1997). Peptides loaded onto MHC I molecules are recognised by CD8+ T cells, while 

peptides loaded onto MHC II molecules are presented to CD4+ helper T cells. 

However, the pathways that regulate the presentation in the context of MHC I and 

MHC II are very diverse. 

 

MHC I molecules are expressed ubiquitously on all human cell types, with the 

exception of erythrocytes (Lu et al., 2010). Their primary function is to display 

fragments from within the cell to CD8+ T cells as part of the cytosolic or endogenous 

pathway. Certain subsets of dendritic cells are also able to capture exogenous 

proteins and load peptides derived from them onto MHC Class I molecules (reviewed 

by Murphy and Weaver, 2017). The process of taking up exogenous antigens and 

their presentation on MHC Class I by APCs is known as cross-presentation (Bevan, 

1976). Cross-presentation allows DCs to activate cytotoxic CD8+ T cells for immune 

defence against viruses that do not infect DCs and tumours that originate from non-

DCs (reviewed by Kurts et al, 2010). The T cell activation in this context is referred to 

as cross-priming. Several pathways of cross presentation have been described. They 

include the endosome-to-cytosol pathway (illustrated in Figure 1.1 A) and the 

vacuolar pathway, involving the direct transport of antigens from the phagolysosome 

into a vesicular loading compartment, where peptides are allowed to be bound to 

mature MHC Class I molecules (reviewed by Murphy and Weaver, 2017).  

 

MHC II proteins are expressed primarily by APCs, including DCs, macrophages, and 

B cells (Ting and Trowsdale, 2002). Antigens are captured via endocytic vesicles and 

cell-surface receptors. The source of the peptide antigen may also be pathogens that 

have invaded the cell to replicate in intracellular vesicles (reviewed by Murphy and 

Weaver, 2017). The low pH of the vesicles activates the proteases and causes 

degradation of the captured antigen (Silberstein et al., 2018). On their way to the cell 

surface, the MHC II molecules assembled in the endoplasmic reticulum pass through 

the vesicles and bind the peptides, transporting them to the cell surface (Figure 1.1 

B). In DCs, antigen presentation by this pathway results in CD4+ T cell activation and 

polarisation. In addition, MHC II can be loaded with fragments derived from within the 

cells, generated via the autophagy pathway. This plays a role in the induction of 

tolerance to self-antigens, as well as a means of presentation of antigens derived 

from intracellular pathogens (reviewed by Murphy and Weaver, 2017).  
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Figure 1.1. Schematic of antigen presentation via MHC I (A) and MHC II (B) 
(Kobayashi and van den Elsen, 2012). 
A. Antigens are processed into peptides by the immunoproteasome, which is 

composed of multiple subunits, including LMP2. Peptides are transported into the 

endoplasmic reticulum (ER), where they are loaded into the groove of the MHC Class 

I complex, which is composed of a heavy chain and β2-microglobulin (β2m). MHC 

Class I complexes present antigens on the cell surface to CD8+ T cells.   

B. Antigens from extracellular sources, such as bacteria, are processed by 

endolysosomal enzymes into peptides. These peptides bind to the groove of the 

MHC Class II complex by displacing the class II-associated invariant chain peptide 

(CLIP), which is derived from the MHC Class II-associated invariant chain (Ii). HLA-

DO and HLA-DM regulate the antigen-loading process. The MHC Class II complex 

presents antigens to CD4+ T cells. MIIC, MHC Class II compartment; TAP, 

transporter associated with antigen processing; TCR, T cell receptor.  

A B 
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1.1.2 T cell polarisation  
A “three-signal model” (Kapsenberg, 2003), has been proposed to describe T cell 

polarisation by DCs (Figure 1.2). According to the model, the first step is the 

recognition of the antigen displayed in the context of MHC Class II by the DC and 

recognised by its cognate T cell receptor (TCR). As part of the second signal, also 

referred to as the co-stimulatory signal, the activated DC upregulates costimulatory 

molecules which recognise costimulatory molecules on the T cell surface. The third 

and final signal is the polarising signal - through pattern recognition receptor 

signalling, pathogens induce the DC to produce cytokines which drive T cell 

polarisation (e.g. IL-12 for TH1). 

 

 
Figure 1.2. Schematic of the three-signal model for T cell polarisation. 
First, the antigen in the context of MHC Class II displayed the DC and recognised by 

its cognate T cell receptor. Second, the activated DC upregulates costimulatory 

molecules (such as CD80, CD86) which recognise costimulatory molecules on the T 

cell surface (e.g. CD28). The third signal is the production of cytokines which drive T 

cell polarisation. Naïve T helper cells are able to differentiate into TH1 cells, which 

promote cytotoxic CD8+ T cells and cell-mediated immunity, and TH2 cells, which 

promote B cells and humoral immunity (Alberts et al., 2002). PAMP, pathogen-

associated molecular pattern; PRR, pattern recognition receptor, TCR, T cell 

receptor. 
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1.1.3 Induction of tolerance 
An alternative outcome from a DC-T cell interaction is the induction of tolerance 

(Steinman et al., 2003). The mechanisms of DC-induced immune tolerance include: 

T cell anergy, clonal deletion, and induction of Tregs (reviewed by Hasegawa et al., 

2018). This interplay occurs under steady-state conditions, when a DC has 

undergone homeostatic “tolerogenic” maturation, as opposed to TLR-induced 

“immunogenic” maturation. The transcriptomic changes occurring during both types 

of maturation are similar in complexity and largely overlapping, the expression of 

interferon-stimulated genes being among the few discriminators of immunogenic and 

tolerogenic murine DCs (Dalod et al., 2014; Ardouin et al., 2016). Several signaling 

networks, involving NF-κB, β-catenin, and IRF4, are thought to regulate tolerogenic 

maturation in response to cues from the tissue microenvironment (Baratin et al., 

2015; Manicassamy et al., 2010; Vander Lugt et al., 2017).  

 

1.2 Peripheral blood dendritic cell subsets 
The DC pool in peripheral organs is constantly replenished by bone marrow-derived 

cells, traveling through blood (Collin and Bigley, 2018). At least three human DC 

subsets, which differentiate under the control of specific transcription factors and 

perform specialised functions, have been identified in steady-state blood: 2 subsets 

of myeloid/classical DC (cDC1 and cDC2), and plasmacytoid DC (pDC) (Guilliams et 

al., 2014; Bigley et al., 2016). All human DC subsets express MHC Class II 

molecules (HLA-DR) and lack lineage markers characteristic for T cells, B cells, and 

natural killer cells (CD3, 19, 20, 56) – (Collin et al., 2013). Classical dendritic cells 

(cDC) show a similar gene expression pattern in both blood and peripheral tissues, 

the blood subsets appearing less mature (Breton et al., 2015). 

 

1.2.1 Classical dendritic cells 
Classical dendritic cells were discovered in splenic tissue by Ralph Steinman and 

Zanvil Cohn in 1973. The extensively branched, motile, and mitochondria-rich cells 

were dubbed “dendritic cells” due to their distinct morphology (Katsnelson, 2006). At 

first, the cells seemed too rare to be relevant. However, it was later shown that DCs 

are extremely potent at stimulating T cell cytotoxicity and antibody responses 

(Nussenzweig et al., 1980; Inaba et al., 1983). All human cDCs express typical 

myeloid antigens CD11c, CD13, CD33 and CD11b. Both monocytes and cDCs 
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express CD11c, however DC can be distinguished by the lack of high CD14 

expression and the absence of marker CD88 (Collin et al., 2013).  

 

1.2.1.1 Classical dendritic cell type 1 

cDC1s are present in blood in small numbers, constituting 0.1% of mononuclear cells 

and 10% of human cDCs (Collin et al., 2013). They express characteristic surface 

antigens including BDCA3/CD141/THBD, CLEC9A, XCR1, FLT3, NECL2/CADM1, 

and TLR3 (Table 1.1; Guilliams et al., 2014). cDC1s and are specialised for the 

uptake and processing of material from late-apoptotic and necrotic cells due to the 

expression of the damaged cell-recognition molecule CLEC9A (Zhang et al., 2012). 

cDC1s are thought to be the most potent cross-presenting DCs in vivo 

(Embgenbroich and Burgdorf, 2018), specialised in taking up exogenous antigen and 

presenting it in the context of MHC Class I to CD8+ T cells (reviewed by Theisen and 

Murphy, 2017). An important feature of cDC1s is the sensing of viral nucleic acids 

with TLR3 (which recognises double-stranded RNA), as well as with TLR8 (which 

recognises foreign single-stranded RNA and short double-stranded RNA) (Gauzzi et 

al., 2010; Blasius and Beutler, 2010). The TLRs expressed by cDC1s also include 

TLR1, -2, -6 and -10 (Hemont et al., 2013).  

 

1.2.1.2 Classical dendritic cell type 2  

cDC2s comprise 1% of mononuclear cells in peripheral blood (Collin et al., 2013). 

The mature cells are known to express CD11c, BDCA1/CD1c, CD172/SIRPA, and 

ZBTB46 (Table 1.1; Guilliams et al., 2014). Additionally, cDC2s express a wide array 

of TLRs (TLR1-8 and -10) (Hemont et al., 2013). cDC2s determine the T helper cell 

response to an antigen by polarising naïve CD4+ T cells to drive TH1, TH2 or TH17 

responses (reviewed by Bigley et al., 2016). cDC2s have inferior cross presentation 

capacity compared to cDC1s (reviewed by Collin et al., 2013).  

 

A number of studies have identified heterogeneity among blood and tissue cDC2, 

defined by CD1c+ expression. Yin et al. (2017) split cDC2s by phenotype – 

specifically CD5 expression, CD5hi cells being more “DC-like”, and displaying higher 

levels of cDC2-specific genes, stronger migration, along with overrepresentation in 

lymph nodes, and CD5low cDC2s showing greater expression of monocyte-related 

genes. Villani et al. (2017) analysed cDC2 from human peripheral blood using single 
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cell transcriptomics and revealed the presence of two subsets distinct from 

monocytes in this compartment. Mass cytometry analyses helped identify similar 

heterogeneity in blood, along with different cDC2 phenotypes in skin (Alcántara-

Hernández et al., 2017). Additional cDC2 heterogeneity has recently been identified 

in human spleen via single cell transcriptomics (Brown et al., 2019). 

 

1.2.2 Plasmacytoid dendritic cell 
Plasmacytoid DCs were initially an enigmatic cell type observed in secondary 

lymphoid tissue (reviewed by Manz, 2018). Originally called “plasmacytoid T cells” or 

“plasmacytoid monocytes”, they were later re-classified as DCs (Grouard et al., 

1997). These cells are specialised to sense viral infection and bacterial components 

via TLR7 or TLR9 and respond with a massive production of type I interferons (IFNs) 

α, β, or ω. Due to this specialised function, pDCs are also called “natural interferon-

producing cells” (Colonna et al., 2004). Through IFN secretion, pDCs also support 

the function of other immune cells, including B cells and NK cells (Gowder, 2012). 

Recent studies identified heterogeneity in the phenotypic space formerly thought to 

be occupied exclusively by pDC. The classical pDC markers CD123, CD303, and 

CD304 were found on a pre-DC population, distinguished from pDC via the 

expression of CD33, CX3CR1, CD2, CD5, and CD327 (See el al., 2017). Pre-DCs 

(also termed AS DC in several studies) are phenotypically and functionally distinct 

from pDCs and display the ability to induce T cell proliferation and produce IL-12, 

while “pure” pDCs specialise in IFN α secretion (Villani et al., 2017). The 

contamination of the traditionally defined pDC gate with pre-DC/AS DC is therefore 

thought to be responsible for the T cell stimulation capabilities previously attributed to 

pDC (reviewed by Geissmann et al., 2010; Merad et al., 2013).  

 

1.2.3 Tissue dendritic cells 
 “Migratory” cDC1s and cDC2s are present in most non-lymphoid tissue 

compartments (Haniffa et al., 2015). Their main function is to acquire antigen and 

migrate to lymph nodes in order to present it to lymphocytes (reviewed by Collin et 

al., 2013). During homeostasis, pDCs are present in most peripheral tissues in low 

numbers. However, the size of the pDC population increases in skin and mucosa 

during inflammation (Sisirak et al., 2011). Peripheral tissue contains other members 
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of the mononuclear phagocyte family, including monocyte-derived cells, tissue 

resident macrophages, and Langerhans cells (Haniffa et al., 2015).   

 

In steady state, lymphoid tissue contains non-migratory “resident” cDCs and pDCs 

that are likely derived from blood precursors, along with “migratory” tissue-derived 

DC (Segura et al., 2012). The number of both the “resident” and “migratory” DCs in 

lymph nodes increases in inflammation (reviewed by Collin et al., 2013).  

 

1.2.3.1 Langerhans cells 
Langerhans cells (LCs) were the first DC subset to be identified. They were 

described in 1868 by Paul Langerhans, who thought they were cutaneous nerve cells 

due to their dendritic morphology (British Society for Immunology, 

https://www.immunology.org). LCs were subsequently re-classified as DC, when over 

a century later, classical dendritic cells were discovered, and their role in antigen 

presentation was demonstrated (Steinman and Cohn, 1973). LC are thought to 

originate prenatally from yolk sac-derived primitive myeloid progenitors and reside in 

epidermal tissue, where they self-renew (Hoeffel et al., 2012). Severe inflammation 

has been shown to recruit de novo bone marrow progenitors, in waves of transient 

classical monocytes and likely cDC2s (reviewed by Collin and Milne, 2016). LCs are 

marked by Langerin expression (CD207), epithelial cell adhesion molecule (EPCAM) 

and higher CD1a expression than cDC2s (Table 1.1; Collin et al., 2013). Due to their 

“strategic” location within the skin barrier, LCs play crucial functions as immune 

sentinels. Their skin-resident functions include the sampling of tight junctions 

between keratinocytes and uptake and recognition of apoptotic cells. As migratory 

cells, LCs are also able to travel to lymph nodes and present antigen to promote 

immunity or induce tolerance (reviewed by West and Bennett, 2017).  

 

1.2.3.2 Inflammatory dendritic cells 
Monocyte-derived DC (moDC) have been shown to arise from classical monocytes 

and expand in inflammation (Qu et al., 2014). However, the contribution of the newly 

recruited moDC to the initiation of immunity is an unresolved problem in humans 

(Collin et al, 2013). Recent murine studies showed that the priming by moDCs 

enhanced the memory CD8+ T cell differentiation during acute infection, more than 

priming by conventional DC, revealing an important role for moDC in immunity (Shin, 
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et al., 2019).  More recently in humans, Dutertre and colleagues (2019) defined 

CD14+ cDC2s as an inflammatory population distinct from monocytes, dependent on 

FLT3L (unlike monocytes), and expressing high IRF4 (unlike moDC).  

 

 
Table 1.1. Characteristics of human dendritic cell subsets. 
Dendritic cells can be divided into multiple subpopulations, based on surface 

markers, major transcription factors (TF) involved in their development and 

homeostasis, Toll-like receptors (TLR), secreted cytokines, and location (Bigley, et 

al., 2016; Collin & Bigley, 2018; Schlitzer et al., 2018). 
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1.3 Monocyte subsets 
Like DCs, monocytes develop in the bone marrow, then circulate through the 

bloodstream, where they account for approximately 5% of leukocytes, before being 

recruited into tissues (Blumenreich, 1990; Patel et al., 2017). Monocytes are highly 

plastic and heterogeneous, able to differentiate into macrophages or moDC under 

inflammatory conditions (Chomarat et al., 2000). Human monocytes are divided in 3 

subsets: classical (CD14++CD16−), intermediate (CD14++CD16+), and non-classical 

(CD14dimCD16++) (Ziegler-Heitbrock et al., 2010). These subsets have differential 

abilities for cytokine production, migration, and promoting T cell proliferation (Tolouei 

Semnani et al., 2014). CD14+ monocytes specialise in phagocytosis, innate sensing 

and migration, CD14+CD16+ monocytes excel at antigen presentation, cytokine 

secretion, apoptosis regulation, and differentiation, while CD14dimCD16+ monocytes 

are involved in phagocytosis and adhesion (reviewed by Kapellos et al., 2019).  

 

1.4 SLAN DC 
The CD16+ monocyte subset, marked by the expression of 6-sulfo LacNAc (SLAN), 

has been the subject of debate, as it was also classified by some authors as a type of 

dendritic cell (Hofer et al., 2019; reviewed by Collin and Bigley et al., 2018). 

However, transcriptional profiling of monocytes and myeloid DCs from human 

peripheral blood proposed their role in inflammatory processes and confirmed the 

relationship of SLAN+ cells with the monocytic compartment rather than with DCs 

(van Leeuwen-Kerkhoff et al., 2017). Furthermore, recent studies used a human in 

vivo cell tracing experiment to show that the non-classical monocytes originate from 

classical CD14+ monocytes (Patel et al., 2017). Contamination of the HLA-DR+Lin- 

flow cytometry gate with non-classical CD14dim CD16++ monocytes, has also led to 

the discovery of a new subset of dendritic cells named DC4 (Villani et al., 2017). 

Further studies identified that these cells differ from all DC subsets and classical 

monocytes and behave like CD16++ SLAN+ monocytes (Calzetti et al., 2017, Dutertre 

et al 2019).  

 

1.4 In vitro-derived DCs 
The first in vitro-generated DCs were produced from monocytes (Gieseler et al, 

1998). As monocytes are found in great numbers in peripheral blood (100,000 to 

500,000 per mL), this approach can generate large numbers of monocyte-derived 
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DCs. However, natural DCs are heterogeneous, and comprise multiple subsets with 

different functions, while the exact role of moDCs in vivo is not well understood 

(Collin et al, 2013). The DC generation methods shifted to their manufacture from 

bone marrow progenitors, in the presence of cytokines, such as GM-CSF and FLT3L 

(Naik et al., 2005; Helft et al., 2015). Further studies revealed that co-culture of bone 

marrow progenitors with a feeder layer, such as the MS5 or OP9 stromal cell lines, 

allowed the production of all major DC subsets (Lee et al. 2015; Kirkling and Cylak, 

et al., 2018). Chapter 3 of this thesis elaborates further on the in vitro generation of 

DCs, aiming to determine the transcriptional identity of DCs generated in culture. 

 

1.5 DC therapy 
Currently, the field of immunotherapy is dominated by immune checkpoint inhibitors 

that target molecules with inhibiting functions (such as CTLA-4, PD-L1, and PD-1) in 

order to allow T cells to kill cancer cells (van Willigen et al., 2018). As the most potent 

antigen presenting cells, able to shape adaptive immunity, dendritic cells also offer a 

promising prospect in cancer immunotherapy. Numerous clinical trials for DC 

vaccines have been conducted within the last decades, and the first anticancer 

vaccine (sipuleucel-T, used to treat prostate cancer) was approved by the United 

States Food and Drug Administration in 2010 (Hammerstrom et al., 2011). A 

common approach in most DC vaccine protocols is the harvest of DCs from the 

peripheral blood of a patient. As DCs are extremely rare, blood monocytes are often 

harvested instead, and used to generate DCs in vitro via the addition of GM-CSF and 

IL-4. The bona fide DCs or the monocyte-derived DCs are then matured and loaded 

with tumour antigens or synthetic peptides in the presence of an adjuvant, and 

administered to the patient, in order to induce the tumour-specific effector T cells 

(Sadeghzadeh et al., 2020). A number of advantages of using natural circulating DCs 

have been noted, including the preservation of their function due to shorter culture 

time compared to monocyte-derived DCs (van Willigen et al., 2018) and the ability to 

migrate. However, monocytes are still used in most protocols due to their availability, 

and the use of natural DCs (cDC1, cDC2, and pDC) has been underexplored. 

 

In recent years, the ability of immature DCs to induce tolerance has been 

investigated to treat autoimmune conditions. Phase I trials have been conducted at 

Newcastle University, with the aim to establish the safety and efficiency of 

tolerogenic dendritic cells (tolDC) in treating rheumatoid and inflammatory arthritis 
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affecting the knee joint (Bell et al., 2017). This method used monocyte-derived tolDC, 

produced from the peripheral blood of the patients using a novel protocol containing 

immunosuppressive and immunomodulatory drugs, and suggested that injection of 

these DCs into the affected joint offered a safe and promising treatment (Harry et al., 

2010; Bell et al., 2017). 

 

1.6 Murine DCs and monocytes 
Dendritic cells are a vital component of the mammalian immune system. pDCs and 

the two cDC subsets have been identified in numerous species, including humans, 

mice, macaques, and pigs (Guilliams, et al., 2016; Edwards et al., 2017). Efforts have 

been made to unify the classification of DCs across species and identify common 

markers of the DC subsets. The identification of murine homologues of human 

mononuclear phagocytes is of particular importance, as most of the knowledge about 

dendritic cells was gained from studies in mice. 

 

cDC1s, or CD141+ DCs in human and CD8/CD103+ DCs in mouse, are marked by 

the expression of CLEC9A, XCR1, CADM1, TLR3, BAFT3 and IRF8 (Haniffa et al., 

2015; Crozat et al., 2010; reviewed by Edwards et al., 2017). In both species, cDC1s 

are potent cross-presenters (Gutiérrez-Martínez et al., 2015; Embgenbroich and 

Burgdorf, 2018). Similarly, cDC2s are conserved across the two species, and are 

marked by CD1c in human and CD11b in mouse (Haniffa et al., 2015). These cells 

express CD11c, FLT3, CD11b, CX3CR1, and SIRPA/CD172, and present 

exogenous antigens to CD4+ T cells in both species (Vu Manh et al, 2015). In 

humans and mice, pDCs are major interferon producers, and can be distinguished by 

expression of CD4, CD123, and CD45RA (Vu Manh et al, 2015; Haniffa et al., 2015). 

pDC markers in mouse also include Ly-6C, Siglec-H, and BST2 (Haniffa et al., 2015). 

 

Two major monocyte subsets have been described in both species: classical (Ly6Chi 

CD43− monocytes in mice and CD14++ CD16− monocytes in humans) and non-

classical (Ly6Clo CD43+ monocytes in mice and CD14dim CD16++ monocytes in 

humans) (reviewed by Wolf et al., 2019). In addition, the equivalents of moDC, LC, 

and macrophages have also been identified in mouse (Vu Manh et al, 2015; Haniffa 

et al., 2015).  
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1.7 DC haematopoiesis  
Haematopoiesis is the process by which haematopoietic stem cells give rise to 

immune cellular components. In the developing human, the primitive wave of 

haematopoiesis begins in the yolk sack, while the first multipotent adult-type 

haematopoietic stem cells (HSCs) emerge in the aorta/gonad/mesonephros region 

inside the embryo (Tavian et al., 2010). The HSCs then migrate to the liver, spleen 

and then into the bone marrow, where they are located in adults (Jagannathan-

Bogdan et al., 2013). All natural DCs originate from bone marrow progenitors, 

independently from monocytes, through progenitors and precursors with restricted 

DC potential (Geissman et al., 2010; Puhr et al., 2015). In the classical 

haematopoietic model, involving sequential bifurcation, DCs have an apparent “dual” 

origin (Figure 1.3 A), arising from both myeloid and lymphoid progenitors (Doulatov et 

al, 2010). Human DCs descending from common myeloid progenitors (CMPs) and 

their counterparts arising from common lymphoid progenitors (CLPs), have been 

observed to be exhibiting the same phenotype, function and gene expression in a 

mouse xenotransplantation model (Ishikawa, 2007). The traditional model is based 

on the analysis of cell populations, also referred to as gates, predefined by flow 

cytometry. The apparent dual origin may therefore be explained by the inclusion of 

DC-primed progenitors in both myeloid-defined and lymphoid-defined analysis gates. 

Presently, the traditional hierarchical model of haematopoiesis has largely been 

replaced by the early lineage priming model for haematopoietic lineages (Notta et al., 

2016; Velten et al., 2017). According to the early lineage priming model, cell fate 

specification occurs in the early progenitors and development progresses in a 

continuous manner along increasingly stable unilineage-restricted trajectories (Figure 

1.3 B). 

 

Recent studies have identified precursors with DC potential in human. Breton et al. 

(2015) discovered a peripheral blood population of cells lacking mature DC markers 

but expressing CD117 (also known as KIT or stem cell growth factor receptor), 

CD116 (CSF2RA) and CD135 (FLT3). Via a single cell transcriptomic study of 

peripheral blood cells, Villani et al. (2017) identified a DC population, expressing AXL 

and SIGLEC6, later reclassified as pre-DCs (See et al., 2017). Villani and colleagues 

also described a small population of CD34+CD100+CD116- negative cells which 

could give rise to cDC1s and cDC2s in culture. It has not been established how these 

cells relate to other progenitors or precursors, including the AXL+ SIGLEC6+ cells. 
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Figure 1.3. Classical and revised models of human haematopoiesis (Collin and 
Bigley, 2018).  
 A. In classical models of haematopoiesis, cell potential partitions by successive 

bifurcations descending from the apex where common lymphoid and common 

myeloid progenitors (CLP; CMP) arise from the haematopoietic stem cell (HSC). 

Each progenitor population has homogeneous differentiation potential such that 

every cell has an equal probability of two mutually exclusive fates. Hence, dendritic 

cells (DC) were proposed to arise in the sequence: CMPs, granulocyte–macrophage 

DC progenitor (GMDP), macrophage DC progenitor (MDP), common DC progenitor 

(CDP) with a final pre-DC stage leading to conventional cDC1 and cDC2. Each 

population is given a uniform colour to indicate homogeneous potential.  

B. Recent studies support several adjustments to the classical model. First, lineage is 

primed in early progenitors so that most populations contain only cells with a single 

potential. Second, lymphoid and myeloid potential run together originating as the 

lymphoid primed multi-potent progenitor (LMPP) that separates from megakaryocyte 

and erythroid potential (MkE) at the apex. Hence the gates defined by CD38 (blue 

borders) and CD45RA (red borders) contain phenotypically related cells but with 

restricted potentials, indicated by bands of colour each corresponding to a discrete 

lineage. 

A B 
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1.7.1 Transcription regulation in the context of DC haematopoiesis 
In humans, gene expression programmes that establish specific cell states and 

maintain cellular homeostasis are controlled by transcription factors, cofactors, and 

chromatin regulators (Lee and Young, 2013). RNA polymerase II, which synthesizes 

precursors of mRNAs in eukaryotes, collaborates closely with proteins termed 

transcription factors in order to initiate transcription (Hamspsey, 1998).  

 

Transcription factors can be divided into two categories: (1) basal, or general, 

transcription factors, which are expressed ubiquitously and participate in the 

formation of the transcription preinitiation complex, and (2) gene-specific transcription 

factors (sometimes referred to as simply transcription factors) that activate or repress 

basal transcription (Villard, 2004). All gene-specific transcription factors contain at 

least one DNA-binding domain (DBD), while some of the general TFs do not bind 

DNA directly. DBDs bind specific DNA sequences, also called motifs. Gene-specific 

TFs often have a preference for certain motifs over other sequences, driven by 

features such as high or low guanine-cytosine content and DNA shape (Dror et al., 

2016). Over 1,600 TFs are known in humans, classified into “families” based on their 

DBDs (Lambert et al., 2018). 

 

Gene-specific transcription factors can act as activators or repressors of gene 

expression. Gene transcription starts with the assembly of the transcription 

preinitiation complex near the transcription start site (TSS) (Figure 1.4). Enhancer 

regions recruit gene-specific TFs in order to enhance transcription of a regulated 

gene, which is typically located downstream. Regions of DNA with high levels of 

transcription factor binding, comprised of multiple enhancers, are entitled super-

enhancers. Super-enhancers significantly increase the expression of the genes they 

are regulating; however, these genes are very sensitive to transcription perturbation 

(Villicaña et al., 2014). The TFs bind to the enhancers or super-enhancers and act as 

activators, causing the DNA to bend and come closer to the gene promoter. TFs then 

bind coactivators, which bind to RNA polymerase II, which in turn binds to general 

TFs at the TSS, forming the preinitiation complex (Lee and Young, 2013). 

Conformational changes in the complex lead to the positioning of single-stranded 

DNA to the active site of RNA polymerase II (Gupta et al., 2016). 
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The repression of gene expression can be achieved via a variety of mechanisms. 

One example is the physical blocking of the biding sites of the basal TFs or RNA 

polymerase II by the gene-specific TFs (Donev, 2017). Often, a set of activators and 

repressors are involved in the regulation of the same gene, a mechanism termed 

combinatorial regulation (Reece, et al., 2011).  

 

 
Figure 1.4. Formation of the preinitiation complex as part of transcriptional 
regulation (adapted from Lee and Young, 2013). 
Transcription factors bind to specific DNA elements (enhancers) and to coactivators, 

which bind to RNA polymerase II, which in turn binds to general transcription factors 

at the transcription start site (TSS, shown as a bent arrow). The DNA loop formed 

between the enhancer and the start site is stabilised by cofactors, such as the 

Mediator complex and cohesin. 

 

As described in section 1.7, DCs develop through increasing commitment, where 

lineage determination is mediated by transcription factors (Figure 1.5). The discovery 

of patients with primary immunodeficiency caused by mutations within the genes 

encoding for transcription factors GATA2, IRF8, and IKZF1, offered valuable insights 

into transcription factor requirements for DC development in human (Dickinson et al., 

2014; Hambleton et al., 2011; Cytlak et al., 2018). Transcription factors essential for 

the development of DC subsets include IRF8, BATF3, and ID2 for cDC1s, IRF4 for 

cDC2s, and IRF8, E2-2/TCF4, and IKZF1 for pDCs (reviewed by Colonna et al., 2004 

and Colin and Bigley et al., 2018; Cytlak, et al., 2018).  
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Figure 1.5. Model of transcription factors regulating DC haematopoiesis. 
Human dendritic cell subsets develop in the bone marrow from HSC (haematopoietic 

stem cells), under the control of a set of transcription factors. Transcription factor 

GATA2 is required for multiple haematopoietic lineages, and mutations in this gene 

are the cause of dendritic cell, monocyte, B, and natural killer lymphoid deficiency 

(Dickinson et al., 2014). IRF8 is required at early stages of DC development, and is 

expressed at later stages in pDCs and cDC1s. Lineage-specific factors include  

E2.2/TCF4 for pDC, BATF3/BATF and ID2 for cDC1s, IRF4 for cDC2s, and KLF4 for 

monocytes (reviewed by Collin and Bigley, 2018 and Haniffa et al, 2015; Feinberg et 

al., 2007). 

 

1.7.2 Transcription factor IRF8 
IRF8 is part of the interferon regulatory factor (IRF) family which consists of nine 

members in mammals (Tamura et al., 2015). The IRF family regulate expression of 

type I Interferons and interferon-stimulated genes (ISGs) by binding to the IFN-

stimulated response element (ISRE). Several members of the IRF family also play 

critical roles in the cellular differentiation of hematopoietic cells and in inducing innate 

pattern recognition receptors and antigen-specific immune responses (Tamura et al., 

2008). Members of the IRF family contain a conserved N-terminal region with a DNA-

binding domain that binds to the core IRF binding motif, GAAA (Figure 1.6; Fujii et 

al., 1999). The C-terminus region of IRFs is less well conserved and is thought to 
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mediate the protein–protein interaction of a specific IRF with other family members 

and TFs (Yanai et al., 2012). The regulatory C-terminus region is also referred to as 

the IRF association domain (IAD). 

 

Figure 1.6. Schematic of the IRF8 protein and multiple sequence alignment of 
IRF8 orthologues, illustrating conserved coding sequences across multiple 
species (adapted from Bigley et al., 2018). 
IRF8 contains a conserved N-terminal region with a DNA-binding domain (DBD, 

depicted in orange). Core ISRE binding residues are marked. The IRF8 C-terminus 

region (also referred to as the IRF association domain, IAD, shown in blue) is less 

well conserved and is thought to mediate the protein–protein interaction with other 

transcription factors.  

 

Most of the knowledge about IRF8 has been derived from murine studies. The role 

played by this transcription factor in human has only recently been highlighted by the 

discovery of patents with bi-allelic IRF8 mutations, experiencing a loss of all the 

monocyte and DC subsets (Bigley et al., 2018; Hambleton et al., 2011; Salem et al., 

2014), along with reduced numbers of mature NK cells (Mace et al., 2017). A more 

restricted loss of cDC1 and pDC subsets was observed in mono-allelic IRF8 mutation 

(Cylak and Resteu et al., 2020).  Studies in mouse showed that within the progenitor 

compartment, IRF8 inhibits CEBPA to limit granulocyte production in favour of 

monocyte/DC differentiation (Kurotaki, et al, 2014). It is then required to maintain the 

identity of terminally differentiated cDC1s and control lineage survival (Grajales-

Reyes et al., 2015). Recent lineage-specific conditional knockout models suggest 

  

 

 



 
 

19 

that IRF8 is primarily required for pDC function rather than development (Sichien et 

al., 2016).  

 

1.7.3 Notch signaling pathway and dendritic cell development  
The Notch signaling pathway is highly conserved across multicellular organisms, and 

it is involved in both developmental and homeostatic processes. The mammalian 

Notch signaling pathway consists of membrane-bound ligands of the Delta-like (DL) 

and Jagged families and four receptors: NOTCH 1-4. The signaling is initiated via the 

binding of Notch ligands on an adjacent cell (Figure 1.7), leading to the release of 

intracellular segment of Notch, which migrates to the nucleus, where it interacts with 

the transcription factor CSL (also called RBPJ), converting it from a repressor to an 

activator (Kramer, 2015). Coactivators of the Mastermind family are also recruited to 

activate Notch-dependent gene expression programmes (McElhinny et al., 2008). 

 

During haematopoiesis, Notch is one of the main signalling pathways engaged in the 

direct interaction of progenitors and bone marrow stromal cells, and has long been 

established to play a crucial role in the development of T and B lymphocytes 

(reviewed by Cheng et al., 2010). In human, mutations in Notch signaling pathway 

genes have been reported to cause developmental phenotypes affecting an array of 

organs and are linked to conditions such as T cell acute lymphoblastic leukaemia 

(Penton et al., 2012; Elisen at al.,1991). The role of Notch signaling in DC 

development was first highlighted by studies in mice, which identified that Notch2 

controls differentiation of splenic cDC1s and cDC2s (Lewis et al., 2011). Recent in 

vitro experiments performed by the Human Dendritic Cell Lab and overseas 

collaborators, established the role DL1-Notch2 signaling in the generation of 

authentic cDC1s in mouse and revealed that DL1 signaling facilitates the generation 

of human cDC1s (Kirkling and Cytlak et al., 2018). Chapter 3 of this thesis further 

elaborates on a novel culture system, able to generate large number of cDC1s with 

the aid of Notch signaling.  
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Figure 1.7. Canonical Notch signaling (Koch et al., 2013).  
A Notch ligand expressed on the surface of a signal-sending cell interacts with a 

Notch receptor on the signal-receiving cell, triggering Notch receptor activation (1). 

The E3 ubiquitin ligase mindbomb 1 (Mib1) promotes ligand endocytosis and is 

required for efficient Notch receptor activation (2). The trans-interaction between 

ligand and receptor induces two consecutive proteolytic cleavages of the 

heterodimeric Notch receptor (3). The first cleavage is mediated by the 

metalloprotease ADAM10/17 (S2 cleavage), followed by a second cleavage through 

the γ-secretase complex (S3 cleavage). These cleavages lead to the generation of a 

free intracellular domain (NICD), which translocates to the nucleus of the signal-

receiving cell (4). In the absence of NICD (5), a transcriptional repressor complex 

composed of CSL and additional co-repressors (CoR), such as N-CoR, keeps Notch 

target genes silent. The interaction of NICD with CSL (6) dissociates the repressor 

complex and leads to the recruitment of MAML and additional co-activators (CoA, 

e.g. p300) to the complex. The assembly of this transcriptional activation complex on 

the promoter regions of Notch target genes leads to an upregulation of gene 

expression. 
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1.7.4 Growth factor requirements for DC development 
External factors driving the development of dendritic cells include a set of lineage-

specific cytokines or growth factors. These small secreted proteins interact with their 

cognate receptors on the cell surface, activating signaling pathways that result in 

alterations in gene expression and a biological response.  

 

1.7.4.1 FLT3L 

Fms-related tyrosine kinase 3 ligand (FLT3L) is a potent dendritic cell stimulator, with 

the ability to expand DC populations in vivo and in vitro (Dong et al., 2002). 

Administration of FLT3L in vivo dramatically increases the number of DCs in both 

mice and humans (Maraskovsky et al., 1996; Maraskovsky et al., 2000), while 

incorporation of FLT3L in in vitro culture of bone marrow progenitors allows for the 

generation of diverse DC subsets (Brasel et al., 2000; Naik et a., 2005). In murine 

cell culture, Flt3L alone is sufficient to generate DCs from BM, while in human, 

additional factors are required. 

 

1.7.4.2 GM-CSF 

Granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2) is a cytokine 

commonly used to generate DCs in both murine and human cell culture systems. It 

was the first growth factor recognised to promote the in vitro development of DC, 

along with granulocytes and macrophages, in cultures of murine bone marrow 

progenitors (Inaba et al., 1992). The combined GM-CSF and Flt3L requirement for 

DC homeostasis in vitro was later demonstrated by a double-negative murine model, 

where mature DCs and pre-DC populations were reduced more significantly in 

combined deficiency than in Flt3L or GM-CSF deficiency alone (Kingston et al., 

2009).  

 

1.7.4.3 SCF 

Stem cell factor (SCF) is the ligand of the c-KIT cytokine receptor. SCF is able to 

regulate DC production in bone marrow progenitor-based in vitro systems 

supplemented with other cytokines, via the recruitment of early progenitors of a high 

proliferative potential with the capacity to differentiate into erythroid and myeloid 

cells, as well as into DCs (Saraya et al., 1996). 
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1.7.4.4 M-CSF 

Macrophage colony stimulating factor (M-CSF or CSF-1) is a cytokine known to drive 

the development of the monocyte/macrophage lineage. Evidence from murine 

studies suggests that it can also drive the development of cDCs and pDCs, likely 

because the expression of its receptor is retained through the pre-DC stage (Fancke 

et al., 2008; Sichien et al., 2017). 

 

1.8 Technologies employed in DC research 
Technological advances of the last decades in the fields of cytometry, genomics, and 

transcriptomics enabled great progress to be made in dendritic cell research.  

 
1.8.1 Cytometry 

1.8.1.1 Flow cytometry 

Flow cytometry is a single cell technique widely used in immunophenotyping, due to 

its ability to perform accurate enumeration and identification of immune cells. This 

versatile technique has a vast number of applications and is fundamental for dendritic 

cell research, as it offers a time- and cost-effective means to enumerate ex vivo- and 

in vitro-derived DCs and discern between the dendritic cell subsets in these samples. 

This technique is indispensable for the interrogation of the output of in vitro culture 

systems, and for phenotyping and identifying missing immune cell populations in 

human DC immunodeficiency. Furthermore, fluorescence activated cell sorting 

(FACS) enables the sorting of desired cells populations or individual cells for further 

studies, facilitating the closer inspection of rare populations.  

 

Flow cytometry is a laser-based technique. It operates by passing cells suspended in 

a liquid stream in front of a laser in order to measure the physical and chemical 

characteristics of each individual analysed cell. Several detectors, placed around the 

stream, measure a combination of scattered and fluorescent light, and 

simultaneously produce readings for up to 20 parameters, also known as channels. 

Generally, the forward scatter (FSC) channel values reflect the cell size, while the 

side scatter (SSC) readings provide information on its inner complexity, such as 

granularity. In addition, fluorescence detectors sense fluorescently labelled 

molecules present on the cell surface or within the cells. Fluorescently-conjugated 

antibodies and fluorescence dyes are commonly used to aid the detection of the 

molecules of interest, and are added to the samples prior to analysis in the form of an 
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antibody “cocktail”. The signals produced by the detectors are converted to channel 

values and analysed with specialised software. The cell populations are identified 

with the help of markers, many of which are named according to the CD 

nomenclature. The traditional approach to flow cytometry data analysis involves the 

inspection of series of 2D scatter plots, where cell populations are separated by 

“gates”. Figure 1.8 illustrates an example of a gating strategy employed in the flow 

cytometric identification of peripheral blood human DCs and monocytes. Recently, 

novel computational methods have been developed, aiming to provide more rapid 

and less biased analysis techniques, and improve data visualisation. Examples of 

analysis algorithms widely applied to flow cytometry data include t-distributed 

stochastic neighbour embedding (tSNE) and minimum spanning trees. These 

computational techniques become more important as the number of channels or 

parameters increases with advancing flow cytometer capabilities. 

Figure 1.8. Gating strategy for flow cytometric identification of human DCs and 
monocytes in peripheral blood (Collin and Bigley, 2016).  
Monocytes and DCs are found in the HLA-DR positive, and lineage (CD3, 19, 20, and 

56) negative compartment. CD14 versus CD16 displays monocyte subsets. The 

double-negative population contains the DC subsets. In this example, CD123 and 

CD11c are used to define pDCs and myeloid/classical DCs. cDCs can be separated 

into cDC1 and cDC2 using CD141 and CD1c, respectively. Lineage – a set of mature 

cell lineage markers not expressed by DC, including T, B, and NK cell markers. 
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1.8.1.2 Mass cytometry 

Mass cytometry, also known as cytometry by time of flight (CyTOF) is a recently 

developed next generation flow cytometry platform. Its main advantage is the ability 

to assess the expression of up to 40 antigens, with further potential for multiplexing.  

Metal isotopes, rather than fluorophores, are used for labelling the antibodies, 

allowing to reduce spectral overlaps compared to multi-colour flow cytometry, with 

little “spillover” between channels. Cells are stained with the metal-labelled 

antibodies, then loaded into a CyTOF mass cytometer, where they are nebulised, 

and the readout is produced by time of flight mass spectrometry. The analysis of the 

mass cytometry data involves a similar approach to that of flow cytometry, and is 

often performed via the gating of cell populations, or more recently, using 

computational approaches.  

 

Drawbacks of this method include the inability to retrieve the analysed cells for 

further analysis, as the cells are nebulised within the instrument in order to be 

analysed by mass spectrometry. In addition, the throughput of this technique (~ 

1,000 cells/s) is typically lower than that of flow cytometry, which is able to analyse 

tens of thousands of cells per second (Li et al., 2018). 

 

1.8.2 Transcriptomics 

1.8.2.1 NanoString gene expression assay 

The nCounter Analysis System performs a highly multiplexed direct digital counting 

of transcripts with no requirement for amplification and is ideal for low amounts of 

input material, such as RNA derived from DCs, present in blood in low numbers. The 

accurate detection of transcripts is achieved by the usage of a pair of short probes for 

the identification of each gene of interest. The reporter probes are approximately 50 

base pairs long RNA sequences complementary to target genes of interest. Each 

reported probe is labelled with a fluorescent barcode, unique for every target. The 

expression of up to 800 individual genes can be measured in one reaction. The 

capture probes have a structure similar to the reporter probes, the fluorescent 

barcode being replaced with a biotin molecule. As a result of a hybridisation step, the 

capture and reporter probes, along with the input RNA from the sample form a probe-

target complex (Figure 1.9). The samples are transferred in the nCounter Prep 

Station (Figure 1.10), and following the removal of excess probes, this complex bind 
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to the imaging surface of a NanoString cartridge via the capture probe’s biotin 

molecule. The probes are then aligned on the cartridge, and the fluorescent barcodes 

are scanned, counted, and assigned to their respective genes by the Digital Analyser 

(Figure 1.10), producing a Reporter Code Count (RCC) dataset. A pre-built ‘Human 

Immunology V2’ panel with 594 genes associated with innate and adaptive immune 

responses is among the most applicable in an immunology context. 

 

 

 
 

 
 
Figure 1.9. Schematic of the NanoString gene expression assay hybridisation 
chemistry (adapted from NanoString Technologies). 
As part of the NanoString assay, the capture and reporter probes are added to 

purified RNA or cell lysates, then hybridised in a thermocycler, forming the probe-

target complex. 
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Figure 1.10. The NanoString nCounter FLEX platform. 
The NanoString nCounter FLEX system consists of the prep station (right) and the 

digital analyser (left). The battery pack in the centre ensures the sample processing 

will not be affected by power outages. The hybridised samples are first placed in the 

nCounter Prep Station, and following the removal of excess probes, the probe-target 

complexes bind to the imaging surface of a NanoString cartridge via the capture 

probe’s biotin molecule. The probes are then aligned on the cartridge via an electric 

current. The cartridge is transferred into the Digital Analyser, where the fluorescent 

barcodes are scanned, counted, and assigned to their respective genes. 

 

1.8.2.2 Bulk RNA-Seq  

As the cost of sequencing has been steadily decreasing in the last two decades, the 

field of transcriptomics shifted rapidly from probe-based microarrays to bulk RNA-

Seq. A standard RNA-Seq workflow begins with the purification or enrichment of the 

cells populations of interest, often performed via FACS or via magnetic-activated cell 

sorting. The RNA is then extracted in bulk from each cell type or biological replicate. 

This is often followed by rRNA depletion or Poly A mRNA enrichment, RNA 

fragmentation, cDNA synthesis (also called reverse transcription), and finally 

sequencing library preparation, which involves adapter ligation and polymerase chain 

reaction (PCR). The libraries are then sequenced on a next generation sequencing 

platform, such as Roche 454, Illumina, Helicos, or PacBio (Chu et al., 2012).  

 

RNA-Seq is indispensable for the profiling of the whole transcriptome of bulk 

populations of mature DCs and progenitors. However, its main disadvantage is that 
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the expression values represent an average of the thousands of cells present in each 

sample. This renders the method unsuitable for the analysis of DC development, as 

understanding the mechanisms and patterns of cell decision-making and early 

lineage bias at molecular level can only be achieved by analysing individual cells 

(Nimmo et al, 2015).  

 

1.8.2.3 Single cell RNA-Seq 

Single cell RNA sequencing (scRNA-Seq) is a powerful technique developed in the 

last decade, used for characterising genome-wide mRNA expression of individual 

cells. In the context of dendritic cell research, this technique is vital for studying cell 

fate decisions of individual DC progenitors or precursors, as bulk RNA sequencing 

obscures the cellular heterogeneity by averaging the gene expression in the 

samples. The scRNA-Seq technique has proven useful for unravelling heterogeneity 

across multiple tissues (Human Cell Atlas, https://www.humancellatlas.org; Collin et 

al., 2019). Using methods such as pseudotime to determine the position of a given 

cell in a developmental continuum can help explore developmental pathways. In 

addition, the scRNA-Seq method excels at identifying rare cell populations. 

 

Generally, the workflow for the generation of scRNA-Seq data is similar to that of 

bulk RNA-Seq. The main difference is the tissue dissociation and the isolation of 

single cells, rather than of a bulk population, at the start of the scRNA-Seq protocols. 

Multiple approaches have been developed for this purpose. The first multiplexed 

scRNA-Seq protocols, able to analyse the expression of multiple cells in parallel, 

emerged in 2011 and were plate-based (Wu et al., 2018). As part of the plated-based 

approach, the single cells are isolated into 96 well or 384 well plates (Figure 1.11). A 

widely-used plate-based method is the Smart-seq2 protocol, which enables full-

length coverage across transcripts and is therefore sensitive for gene detection 

(Picelli et al., 2014). Moreover, using FACS to isolate the cell into plates offers an 

additional advantage, as the gene expression for each individual cell can be linked 

with its antigen expression determined by flow cytometry. Droplet based scRNA-seq 

systems, which rely on capturing each cell in its own microfluidic droplet, are also 

widely used for the isolation of single cells. Examples include the Drop-seq, inDrop 

and Chromium 10X technologies. These methods often offer a high cell throughput, 

however, are also generally more prone to more noise and gene dropouts than plate-

based approaches (Wang et al., 2019). 
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Drawbacks of scRNA-Seq are the technical challenges, the complex and noisy data 

output due to false-negative errors, and the prohibitive cost of the procedure. The 

technical challenges include the necessity for standardised sample preparation, 

reliable isolation of single cells, the limited efficiency of RNA capture and subsequent 

conversion to cDNA and sequencing (Grun and van Oudenaarden, 2015). In order to 

assess the sample-to-sample variability of scRNA-Seq data, a set of synthetic control 

genes are often added to each cell’s lysate in a theoretically constant and known 

amount (Vallejos et al., 2017). However, the commonly used External RNA Control 

Consortium (ERCC) molecules may have different molecular properties to the 

molecules of interest (Yuan et al., 2017). 

 

Figure 1.11. Schematic of the plate-based approach to single cell RNA 
sequencing. 
Cells are first isolated in to 96 or 384 well plates, often via fluorescence activated cell 

sorting. The cells are then lysed, and the mRNA molecules are selected via the 

capture of the polyadenylated mRNA tails by complementary poly[T] primers. Next, 

depending on the protocol used, the cells are the barcoded and combined into a 

single tube for library preparation, or separate sequencing libraries are prepared for 

each individual cell. The libraries are then sequenced using a next generation 

sequencing platform. 



 
 

29 

1.8.3 Genomics 

1.8.3.1 ChIP-Seq 

Chromatin immunoprecipitation, followed by high-throughput DNA sequencing (ChIP-

Seq) is used to examine protein-DNA interactions at molecular level. Studying the 

DNA binding sites and binding targets of transcription factors is of particular interest 

in the context of DC research, in order to unveil the roles of transcription factors 

critical for DC haematopoiesis. Standard ChIP-Seq protocols require abundant 

starting material, in the region of 1-20 million cells (Gilfillan et al, 2012). However, 

novel ChIP-Seq protocols, designed for a low cell number, have been able to reduce 

the number of input cells to 50,000-100,000 cells per immunoprecipitation reaction. 

As the name suggest, chromatin immunoprecipitation is performed with an antibody 

against the transcription factor or histone of interest. Chapter 5 of this thesis is 

dedicated to the optimisation of the low cell ChIP-Seq protocol for transcription factor 

IRF8 and describes the ChIP-Seq method in great detail. 

 

1.9 Aims and objectives 
This project aimed to investigate multiple aspects of human DCs and their 

development. First, in order to address the rarity of DC in vivo and make them 

accessible for research, an in vitro culture system was developed by members of the 

Human Dendritic Cell lab. While the system generated DCs with a seemingly 

appropriate phenotype, as determined by flow cytometry, this work was aimed at 

confirming the similarities between the culture-derived DCs and their ex vivo 

counterparts at transcriptomic level. An additional focus was the verification of the 

transcriptomic identities of cDC1s (the rarest DC subset), produced in large numbers 

in culture via Notch stimulation, against blood and tissue DCs. 

 

The second main objective was to identify distinct DC lineages and their precursors 

in human bone marrow, and to establish whether there is a developmental basis for 

the recently described heterogeneity in the cDC2 population. Following the 

verification of the culture output as part of the first aim, the novel culture method was 

used to interrogate multiple phenotypic spaces of the bone marrow in order to 

establish increasingly committed progenitor and precursor populations. This project 

then sought to examine the transcriptomes of individual DC progenitors or precursors 

from human bone marrow using single cell RNA-Seq. Analyses of these data were 
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aimed at inferring the developmental trajectories of the single cells and defining the 

distinct pathways of DC development. A further objective was to determine the link 

between the developmental pathways originating in the bone marrow and the mature 

DC subsets found in peripheral blood. 

 

Following the discovery of two DC developmental pathways marked by the 

expression of transcription factor IRF8, as part of the previous objective, the final 

goal of this project was to establish the role of IRF8 in the homeostasis of human 

cDC1 and pDC. These DC subsets develop through the IRF8 high pathway, retain 

the expression of this transcription factor as they mature, and are the most affected 

by the loss of IRF8 in monoallelic IRF8 mutation in human (Cytlak and Resteu et al., 

2020). Of particular interest were the functional modules controlled by IRF8 in cDC1 

and pDC and the presence of IRF8 auto-activation, a phenomenon previously 

described in murine studies (Grajales-Reyes et al., 2015). This objective was set to 

be achieved via ChIP-Seq, a gold-standard technique for interrogating transcription 

factor binding sites. Previously, this study was not possible in human due to the rarity 

of DC in vivo, however this was overcome via the use of a novel culture system, 

designed to produce large numbers of bona fide DC subsets in vitro.   

 

As the ChIP-Seq assay relies heavily on the quality of the used antibody, it was 

imperative to identify and test ChIP-compatible IRF8 antibodies available on the 

market in order to select an antibody with appropriate sensitivity and specificity prior 

to preforming IRF8 ChIP-Seq on rare human cells. Further aspects of this assay that 

needed to be tested and optimised include the sonication settings and input cell 

number.  
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Chapter 2. General materials and methods 
2.1 Buffers and reagents 

2.1.1 Lymphoprep Solution 
Lymphoprep (STEMCELL Technologies) is a density gradient solution used for the 

isolation of human peripheral blood, cord blood, and bone marrow mononuclear cells. 

During centrifugation, granulocytes and erythrocytes sediment trough the 

Lymphoprep medium due to their higher density, while the mononuclear cells form a 

layer on top of the solution (Figure 2.1). Lymphoprep contains sodium diatrizoate 

(9.1% w/v) and polysaccharide (5.7% w/v), along with other (unlisted) ingredients, 

and has a density of 1.077 g/mL. 

 

Figure 2.1. Schematic of samples separated using Lymphoprep. 
Lymphoprep employs density gradient to separate granulocytes and erythrocytes, 

which form a pellet at the bottom of the tube, from mononuclear cells, found in a 

distinct layer above the Lymphoprep solution.  

 

2.1.2 Dulbecco’s Phosphate-Buffered Saline  
Dulbecco’s Phosphate-Buffered Saline (DPBS) is a buffered salt solution used for 

washing and dilution of mammalian cells. The pH of the solution is maintained within 

the range of 7.1 - 7.5 by phosphate buffering. DPBS is water-based solution, and 

each litre of it contains 8g sodium chloride, 0.2g potassium phosphate, monobasic, 

1.15g sodium phosphate, dibasic, and 0.2g potassium chloride. The Sigma-Aldrich 
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formulation, used in this work, does not contain calcium and magnesium ions, which 

can cause cell clumping.  

 

2.1.3 Foetal calf serum  
Foetal calf serum (FCS) is a media supplement, containing essential nutrients and 

growth factors for cell culture. Heat inactivation at 56°C for 30 minutes is a common 

treatment of FCS, performed to disable the complement system and any potential 

inhibitors of cell growth in culture. 

 

2.1.4 Flow and sort buffer 
Flow and sort buffer, used to dilute the cells in flow cytometry assays and FACS, was 

made up of DPBS, 0.1%–2% Heat Inactivated Foetal Calf Serum (HI-FCS, Gibco) 

and 0.4% EDTA (Sigma-Aldrich). The role of the FCS is to reduce the non-specific 

antibody binding, while the EDTA acts as chelating agent to reduce cell clumping. 

 

2.1.5 Culture media  
All culture media were supplemented with HI-FCS and penicillin/streptomycin 

(Sigma). The role of FCS is described above in subsection 2.1.3. Penicillin-

streptomycin is a mix of antibiotics, used to control bacterial contamination in cell 

culture. All media were supplemented with L-glutamine (Sigma). This amino acid 

supports the growth of cells that have high energy demands and serves as an 

alternative energy source for rapidly diving cells. 

 

2.1.6 Minimum Essential Medium α  
Minimum Essential Medium α (MEM α) is used for the suspension and adherent 

culture of mammalian cells. It is a modification of MEM, containing non-essential 

amino acids, sodium pyruvate, lipoic acid, vitamin B12, biotin, and ascorbic acid. In 

addition, the used formulation contained L-glutamine. MEM α was supplemented with 

1% penicillin/streptomycin, 1% L-glutamine, and 10% HI-FCS. 

 

2.1.7 Dulbecco’s Modified Eagle Medium  
Dulbecco’s Modified Eagle Medium (DMEM) is a medium broadly suitable for the 

culture of adherent cells. The Gibco formulation, used for this work, contained high 

glucose, pyruvate, and no glutamine. DMEM contains no proteins, lipids, or growth 
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factors. For cell culture, the medium was supplemented with 10% HI-FCS 1% 

penicillin-streptomycin, 1% L-glutamine, and 1% Fungizone (Gibco). 

 

2.1.8 RF-10 
RF-10 was prepared from Roswell Park Memorial Institute (RPMI) 1640 medium 

(Sigma), with the addition of 10% FCS, 1% penicillin-streptomycin, and 1% L-

glutamine. RPMI 1640 medium is suitable for a variety of mammalian cells and 

contains biotin, vitamin B12, para-aminobenzoic acid, inositol and choline. 

 

2.1.9 RNA Lysis Buffers 
RNA Lysis Buffers RLT and RLT plus (QIAGEN) are used for cell lysis prior to RNA 

isolation. RLT buffer contains a high concentration of guanidine isothiocycanate, 

which supports the binding of RNA to the silica membrane in the spin columns used 

for RNA extraction. RLT plus has the same composition, supplemented with a 

proprietary blend of detergents. 1% ß-mercaptoethanol (Sigma) was added to both 

buffers before use in order to effectively inactivate RNAses in the cell lysate. 

 

2.1.10 Freezing solution 
Freezing solution was prepared from 90% HI-FCS (Gibco) and 10% dimethyl 

sulfoxide (NBS Biologicals), which acts as a cryoprotectant. 

 

2.1.11 NanoString nCounter reagents 
The NanoString nCounter kits for gene expression assays are composed of 

CodeSets and a master kit. The CodeSets are shipped in two separate vials with 

reporter and capture probes. The nCounter master kits contain a sodium chloride-

based hybridisation buffer, prep plates, cartridges, and all plastics necessary for the 

assay. 

 

2.2 Cell lines 

2.2.1 OP9 and OP9-DL1 cell lines 
OP9 is a cell line derived from Csf1-/- murine bone marrow stromal cells. The cells 

are adherent and have a fibroblastic appearance. Due to their hematopoietic 

supportive capacity, OP9 can be used as a feeder layer to co-culture stem cells and 

induce differentiation into haematocytes. Unlike bone marrow stromal cells, they are 
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unable to produce M-CSF, as they are derived from the Csf1 knockout “osteopetrotic” 

mouse (hence OP). OP9 cell lines transduced with retroviruses encoding green 

fluorescent protein (GFP) or Notch ligand DL1 (referred to as OP9-DL1 cells) were 

obtained from Juan Carlos Zúñiga-Pflücker and the Sunnybrook Research Institute. 

 

2.2.1 HEK 293T cell line 
HEK 239T is a cell line derived from human embryonic kidney cells. The cells are 

adherent and have an epithelial morphology. The cell line is an altered version of the 

HEK 293 cell line, modified to express the SV40 T-antigen, in order to transiently 

maintain a high copy number of transfected plasmids that carry the SV40 origin of 

replication. HEK 239T (and its parent HEK293) are highly transfectable, making them 

suitable for gene expression, protein production, and retroviral production. HEK 239T 

cells were obtained from American Type Culture Collection. 

 

2.3 Sample collection and processing 
This work was performed in accordance with the Declaration of Helsinki. Written 

informed consent was obtained from participants or their parents. The studies 

relevant to this thesis were approved by local review board NRES Committee North 

East-Newcastle and North Tyneside: 08/H0906/72 and REC 14/NE/1136; REC 

14/NE/1212, 17/NE/0361. 

 

2.3.1 Isolation of peripheral blood and bone marrow aspirate mononuclear cells  
Prior to performing flow cytometry and FACS, as well as before cell storage, 

mononuclear cells were isolated using density centrifugation.  Blood samples, 

collected in Vacutainer EDTA tubes (BD), were diluted at a 1:1 ratio with DPBS 

(Sigma-Aldrich). Bone marrow samples were collected from excess donor material 

from clinical bone marrow transplants or excavated from femoral heads removed in 

joint replacement surgery (see next section). Cells from bone marrow donations were 

obtained by flushing the collection bags and tubes with DPBS. 

 

The blood and bone marrow cells were layered on a volume of Lymphoprep 

equivalent to approximately a quarter of that of the diluted sample in 50mL Falcon 

tubes. The tubes were spun down at room temperature for 15 minutes at 800g. The 

cells situated at interphase of the Lymphoprep and plasma layers were aspirated with 
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a Pasteur pipette and washed twice with cold DPBS for 5 minutes at 800g. An extra 

wash (7 minutes at 200g) was introduced for the blood samples in order to remove 

platelets. Cells were then washed with DPBS (5 minutes at 800g), and pelleted for 5 

minutes at 800g. 

 

2.3.2 Isolation of cells from hip femoral bone marrow 
Femoral heads were obtained from hip replacement surgery donations in sterile 

DMEM or RPMI 1640 medium. Bone marrow was extracted with bone clippers, then 

placed on a 100μm cell strainer (Corning), and washed with DPBS. BMMCs were 

extracted from the DPBS solution containing cells via the Lymphoprep density 

centrifugation. 

 

2.3.3 Cryopreservation of cells 
Cells were frozen in freezing solution, prepared as described in subsection 2.1.10. 

PBMC and BMMC were stored at a concentration of 6.6 million cells/mL in 1.5 mL 

freezing solution.  OP9 and OP9-DL1 were frozen at a concentration of 0.5 million 

cells/mL in 1 mL freezing solution. HEK 239T were frozen at a concentration of 3.3 

million cells/mL in 1.5mL freezing solution. Cells in freezing solution were stored in 

Nunc cryovials (Sigma-Aldrich), placed at -80°C, then transferred to -140°C for long-

term storage. 

 

For defrosting, vials were removed from -140°C and immediately thawed at 37°C in a 

water bath. The liquid containing the cells was then transferred in a dropwise manner 

into a 15mL Falcon tube with pre-warmed medium (RF-10 for PBMC and BMMC, 

MEM α for OP9 and OP9-DL1, and DMEM for HEK 293T). The tube was then spun 

down at room temperature for 5 minutes at 800g. The supernatant was discarded, 

and the cell pellets were resuspended in the appropriate sort/flow buffer or culture 

media. 

 

2.3.4 Cell counting 
A volume of 10μl was pipetted out the cell suspension and mixed with an equivalent 

volume of trypan blue stain for dead cells (Invitrogen). The cells were then counted 

using a haemocytometer (Hawksley). 
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2.3.5 Co-culture of bone marrow progenitors with OP9 and OP9-DL1 cell lines 
The OP9 and OP9-DL1 cell lines were defrosted as described in section 2.3.3 and 

seeded into 24 well plates (Corning) at a density of 25,000 cells/well in 1 mL growth 

medium or in 96 well plates at a density of 5,000/well in 200μl medium. The feeder 

layer OP9 and OP9-DL1 cells were left to settle for 4-24 hours prior to the addition of 

FACS-purified BM CD34+ progenitors at a density of 15,000 cells/ well for the 24 well 

plates and up to 3,000 cells/well for the 96 well plates. The cells were co-cultured in 

MEM α medium supplemented with 10% HI-FCS and 1% penicillin/streptomycin at 

37°C in a humidified atmosphere at 5% CO2. The medium was also supplemented 

with 20 ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF, R&D 

systems), 20ng/ml (used for pDC generation for ChIP-Seq) or 100 ng/ml (all other 

experiments) FLT3-ligand (Immunotools), and 20 ng/ml stem cell factor (SCF, 

Immunotools). Half of the volume of MEM α with the same cytokine concentration 

was replaced weekly. Microscopy images of the OP9-DL1 culture are shown in 

Appendix A. Cells were harvested on ice at day 14-21 of culture, passed through a 

50μm filter, then washed with DPBS, and stained for flow cytometric analysis or cell 

sorting.  

 

2.3.6 General flow cytometry and cell sorting 
Fresh or thawed PBMCs or BMMCs, separated by Lymphoprep density 

centrifugation, were aliquoted into flow tubes at a density of 1–3 million cells per 50μl 

of DPBS with 0.1%–2% fetal calf serum (FCS, Gibco) and 0.4% EDTA. 3-5μl of anti-

mouse IgG were added to each sample to prevent non-specific antibody binding, and 

incubated for 10 minutes at room temperature. Only fresh cells were used for bulk 

and single-cell RNA-Seq experiments. The samples were then stained with 

fluorescently-conjugated antibodies and incubated for 30 minutes at room 

temperature in the dark. Cells were washed in flow/sort buffer for 5 minutes at 500g 

and resuspended in 300-500μl flow/sort buffer. Dead cells (typically <5%) were 

excluded by staining cells with Zombie (Biolegend) amine dyes prior to staining, or 

4',6-diamidino-2-phenylindole stain (DAPI, Partec), added immediately before the 

samples were analysed.  Flow cytometry was performed with an LSRFortessa X-20 

(BD Biosciences) running BD FACSDIVA™ 8.0.1.  Cell sorting was performed using 

the FACSAria III sorter (BD Biosciences) running BD FACSDIVA™ 8.0 software. 

Data were processed with FlowJo 10.4.1 and 10.1r5 (Tree Star, Inc). 
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2.3.7 NanoString Assay 
Ex vivo or culture-generated DCs were FACS purified (> 98% purity) and lysed in 

RLT buffer containing 1% b-mercaptoethanol, at a concentration of 2,000 cells/µl. 

Samples were analysed on the NanoString nCounter FLEX platform according to 

manufacturer’s instructions. Briefly, 5µl of lysate (10,000 cells) were mixed with 

reporter probes, hybridisation buffer, and capture probes and hybridised at 65°C for 

12-30 hours. Samples were then processed on the NanoString Prep station and 

cartridges were read on the NanoString Digital Analyzer to yield a reporter code 

count (RCC) dataset. The human Immunology_V2 panel was used, supplemented 

with the following 30 genes: ASIP, DAXX, MERTK, C19orf59, DBN1, Ki67, CCL17, 

F13A1, NDRG2, CD1c, FGD6, PACSIN1, CD207, FLT3, PPM1N, CLEC10A, 

GCSAM, PRAM1, CLEC9A, GGT5, S100A12, CLNK, LPAR2, TMEM14A, COBLL1, 

LYVE1, UPK3A, CXCL5, MAFF, ZBTB46. 

 

2.4 Bioinformatic techniques and analysis pipelines 

2.4.1 Clustering and dimensionality reduction  
The majority of the datasets generated and analysed within this thesis (including flow 

and mass cytometry, NanoString, and bulk and single cell RNA-Seq) contained a 

large number of measured variables, and are considered to be high dimensional 

datasets. The data become increasingly more difficult to analyse with the number of 

dimensions, and dimensionality reduction techniques are often employed to aid the 

visual exploration and interpretation of high dimensional data. These techniques can 

be broadly classified into linear and non-linear methods.  The linear methods rely on 

a linear projection of the data on a subspace. The non-linear methods focus on 

recovering the low-dimensional surface of the underlying manifold (low-dimensional 

data embedded in higher dimensional space) that the data have been sampled from. 

 

2.4.1.1 Principal component analysis  

Principal component analysis (PCA) is linear dimensionality reduction technique. An 

orthogonal transformation of the data is performed in order to convert potentially 

correlated variables into a set of linearly uncorrelated variables called principal 

components. The new variables are ranked in order of the amount of variance 

explained, principal component 1 (PC1) explaining the most variance. The PCA 

method can be used on its own or combined with other dimensionality reduction 
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techniques. An initial PCA step is often performed prior to running non-linear 

methods, in order to reduce noise and speed up the computation. 

 

2.4.1.2 t-distributed stochastic neighbour embedding  

tSNE is a method for data visualisation and exploration suitable for high-dimensional 

datasets (van der Maaten and Hinton, 2008). It is a non-linear dimensionality 

reduction technique, relying on the attraction/repulsion balance (Barnes-Hut 

approximation). tSNE preserves the local structure of the data, and is able to identify 

patterns and clusters in the data. However, the distances between the clusters and 

their density are not meaningful. 

 

2.4.1.3 Diffusion maps 

Diffusion maps are a non-linear technique, based on a distance metric, known as 

diffusion distance. Diffusion maps are able to preserve the developmental continuum 

and can be used to infer cell trajectories. Formulations adapted especially for single 

cell data analysis have been developed (Haghverdi et al., 2015).  

 

2.4.1.4 Hierarchical clustering 

Clustering represents the task of grouping a set of data into clusters. As a result, data 

objects similar to one another are placed within the same cluster, and dissimilar to 

the objects are placed in other clusters. Hierarchical clustering, also known as 

connectivity clustering, is based on connecting the data objects to form clusters 

based on their distance. Clustering results are often represented as dendrograms. 

Strategies for clustering include the bottom-up and top-down approaches. The 

bottom-up approach, also known as agglomerative, starts with single data objects 

and aggregates them into clusters. The top-down, divisive, approach, starts with the 

complete dataset and divides it into partitions. In addition, the clustering methods 

differ by the way the distance is computed. Examples of distance calculation 

methods include single, complete, average, and Ward linkage.  

 

2.4.2 Analysis of transcriptomic data 
Common steps in all used transcriptomic pipelines include quality control (QC) and 

normalisation. Crucial QC steps are read QC (for sequencing data), as well as 

sample and gene filtering. Sample filtering (or cell filtering for scRNA-Seq) aims to 
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identify and remove poor quality samples/cells, often behaving as outliers in the 

dataset. Gene QC filters out genes with low expression that do not hold any useful 

information. Normalisation aims to make the levels of gene expression across the 

samples directly comparable. Raw data are adjusted for factors that prevent this, 

such as technical variability, differences in input material, and variations in library 

size (for sequencing data). Depending on the type of data, normalisation is 

performed based on library size, distribution, and/or controls. Control methods 

include housekeeping genes and normalisation with ERCC spike-ins (Evans et al., 

2018).  

 

To discover differences in expression levels between experimental groups, 

differential gene expression testing is often employed to perform statistical analysis 

on normalised gene counts. Statistical testing is used to confirm whether differences 

in the expression of certain genes are significant enough to not be attributed to 

random variation. A variety of methods for differential gene expression testing exist, 

appropriate for certain types of data and experimental design.  

 

Gene Set Enrichment Analysis (GSEA) is an analytical method commonly applied to 

transcriptomic data. It determines whether a selected set of genes shows correlation 

with a biological state, in a pairwise comparison manner (Subramanian et al., 2005). 

Bubble GUM (GSEA Unlimited Map), a computational tool based on GSEA, allows to 

automatically extract gene signatures based on transcriptomic data by performing 

multiple GSEA runs in a row (Spinelli et al, 2015).  

 

2.4.3 Analysis of ChIP-Seq data 
The ChIP-Seq analysis pipelines commonly include read QC and alignment to the 

reference genome, followed by filtering of the alignment file to remove PCR 

duplicates and reads with poor alignment quality. A typical processing step for ChIP-

Seq data is peak calling, executed in order to identify the binding sites of the DNA-

binding protein of interest. This is commonly performed against a similarly processed 

reference sample prepared from appropriate control chromatin or a control 

immunoprecipitation (Landt et al., 2010). Peak calls are then compared between 

biological groups, as well as within groups. Peaks are annotated, and further 

analyses often revolve around the functional enrichment analysis of the genes that 

are found in the proximity of the binding peaks. 
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Chapter 3. Transcriptional identity of DCs generated in culture 
 
Questions answered in Chapter 3: 

1. How can human bona fide DCs be generated in vitro? 

2. Is it possible to produce sufficient cDC1s for research applications and therapeutic 

approaches in culture? 

3. Do the culture-derived cDC1s resemble peripheral blood and/or tissue DCs? 

 

3.1. Introduction 
The ability of DCs to initiate and regulate immune responses has made them prime 

candidates for use in immunotherapy and vaccination. Nevertheless, DCs, and 

cDC1s in particular, remain relatively inaccessible for therapeutic use, as well as 

research, due to their rarity in vivo (5,000 pDCs, 4,000 cDC2s, and 500 cDC1s per 

mL of peripheral blood). Due to the relative abundance of peripheral blood 

monocytes, DC research and therapeutics have largely focused on in vitro monocyte-

derived DCs. However, natural DCs show functional specialisation, while the role of 

the inflammatory, monocyte-derived DCs is not well understood. The ability to 

generate functional human DCs in vitro, in a scalable system, could facilitate 

translational studies to exploit their therapeutic benefit.  

 

Common methods for producing DCs in culture include culture of haematopoietic 

stem cells and progenitors from bone marrow with the addition of GM-CSF, a 

cytokine known to stimulate stem cells to differentiate into granulocytes and 

monocytes. The culture output in these conditions is skewed toward macrophages 

and cDC2-like cells in mouse (Helft et al., 2015). Supplementation of murine BM with 

the ligand for the cytokine receptor Flt3 was shown to yield pDCs and cDC2s in 

culture (Naik et al., 2005). However, the produced cDC1s did not express the 

appropriate phenotypic markers and were likely immature (Kirkling and Cytlak et al., 

2018). 

 

In human, co-culture of HSCs and progenitor cells from cord blood, with a mix of 

cytokines, including FLT3L and SCF, produced DCs with the appropriate expression 

profile and function, after an initial progenitor expansion step (Balan et al., 2014). Lee 

et al. (2015) identified that all three major human DC subtypes can be produced 

without CD34+ progenitor expansion in co-culture with murine stromal cell line MS5 in 
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the presence of cytokines SCF, FLT3L, and GM-CSF. However, the proportion of 

generated cDC1s under these conditions was low. 

 

Stromal cell lines producing M-CSF have been shown to induce the differentiation of 

embryonic stem cells down the monocyte-macrophage route (Nakano et al., 1994). 

The use of a stromal cell line with no M-CSF expression could have the potential to 

improve the DC culture output. One such cell line is OP9. It was established from 

stromal cells derived from a mouse with an M-CSF mutation (Csf1-/-), resulting in the 

lack of functional M-CSF expression. This enables the OP9 stromal cells to promote 

differentiation of progenitors into haematopoietic lineages other than monocytes and 

macrophages, such as the erythroid, myeloid and lymphoid lineages (reviewed by 

Trakarnsanga et al., 2018). 

 

In mouse, Notch2 deficiency results in reduction of splenic CD8+ cDC1s (Lewis et al., 

2011). It was therefore hypothesized that Notch signaling could improve human 

cDC1 differentiation in vitro. To optimise DC production, the differentiation of DCs 

from human CD34+ progenitor cells was studied in liquid media, on the OP9 stromal 

layer or with OP9 expressing Notch ligand DLL1 (OP9-DL1), supplemented with 

FLT3L, SCF and GM-CSF (FSGM cocktail) (Figure 3.1). The transcriptomic profile 

and the surface markers of the in vitro generated DC subsets and their ex vivo 

counterparts were then assessed.  
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Figure 3.1. Schematic of the culture conditions used for experiments in 
Chapter 3. 
A range of culture conditions were interrogated in order to investigate human DC 

development. Bone marrow-derived CD34+ progenitors were placed in culture media 

supplemented with a mix of cytokines (FSGM) and in co-culture with the OP9 or 

OP9-DL1 feeder layers with the addition of the cytokine mix. 

FSGM – growth medium supplemented with FLT3 ligand (100ng/ml), SCF (20ng/ml) 

and GM-CSF (20ng/ml) (FSGM); OP9-DL1 - OP9 expressing Notch ligand DL1. 
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3.2. Materials and methods 

3.2.1. Co-culture of bone marrow progenitors with OP9 and OP9-DL1 cells 
The OP9 and OP9-DL1 cell lines were defrosted as described in Chapter 2 

subsection 2.3.3 and cultured in 96 well plates as described in Chapter 2 subsection 

2.3.5 by Dr Urszula Cytlak. 

 

3.2.2. Flow cytometry and cell sorting 
Flow cytometry and fluorescence-activated cell sorting were performed by Dr Urszula 

Cytlak as described in Chapter 2 subsection 2.2.6, using the flow panel outlined in 

Table 3.1. 

 

Table 3.1. Antibodies used for flow cytometry and cell sorting.  
For each antibody, the table lists the target antigen, the conjugated fluorochrome, the 

clone, and the manufacturer.  

 

Antigen Fluorochrome Clone Manufacturer 

CD11c BV421/AF700/BV711 B-ly6 BD 

CD123 PerCP-Cy5.5/BUV395 7G3 BD 

CD14 BV650 M5E2 Biolegend 

CD141 APC/BV510 AD5-14H12/1A4 Miltenyi/BD 

CD16 FITC 3G8 BD/Biolegend 

CD19 FITC 4G7 BD 

CD1c PE-Cy7/PERCPCy5.5 L161 Biolegend 

CD2 PE RPA-2.10 BD 

CD20 FITC L27 BD 

CD3 FITC SK7(Leu4) BD 

CD303 APC/BV605 201A Biolegend 

CD304 APC/BV605 12C2/U21-1283 Biolegend/BD 

CD33 BV711 WM53 Biolegend 

CD34 BV605/APCCy7 581 Biolegend 

CD45 AF700 HI30 Biolegend 

CD5 BUV730 UCHT2 BD 

CD7 FITC M-T701 BD 

HLA-DR BV785/V500 L243/G46-6 Biolegend/BD 
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3.2.3. NanoString gene expression assay 
The NanoString assay was performed as described in Chapter 2 subsection 2.3.7. 

Counts were normalised within the nSolver 3.0 software (NanoString Technologies). 

Samples marked with a QC flag by the nSolver software were removed from 

analysis.  Data were normalised in nSolver advanced analysis module version 1.1.4. 

The module uses the geNorm algorithm to select the best housekeeping genes, 

which are used for normalisation. The log2 transformed normalised output data were 

analysed using R version 3.6.0 (R Core Team, 2019).  

 

Heatmaps and hierarchical clustering of primary DCs or DCs cultured on OP9 or 

OP9-DL1 were performed based on subset specific surface antigen, TLRs and TFs, 

as well as chemokine receptor gene expression using the “heatmap.2” function from 

the pheatmap R package version 1.0.12. 

 

For further analysis, genes that were not expressed at a detectable level and did not 

reach normalised log2 expression values of at least 4 in at least one third of the 

samples were removed from analysis (235 out total 608 endogenous genes were 

filtered out).  

 

A culture signature was derived by performing pairwise comparisons (two-tailed t-test 

with Benjamini-Hochberg correction of p-values) of all culture versus all ex vivo 

populations. The results of the differential gene expression testing were displayed as 

a volcano plot using the EnhancedVolcano version 1.2.0 package in R (Blighe, 

2019). Genes with adjusted p-values < 0.05 (the “culture signature”) were excluded 

(95 out of the 373 expressed genes were removed) and the remaining 278 genes 

were used to construct the combined ex vivo and culture-derived cell PCA plot 

(Figure 3.5 B). For comparison, PCA plot was also constructed using all 608 assayed 

genes (Figure 3.5 A). Principal component analysis was performed using the 

"prcomp" function within the stats package version 3.6.0 and visualised using the 

ggbiplot package version 0.55. 

 

The culture signature was split into genes with higher expression in blood (32/95 

genes) and in culture-derived populations (63/95 genes), according to the fold 

changes in mean expression between the two conditions. The hypergeometric test 

for association of categories and genes within the Catergory R package version 
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2.50.0 was employed to evaluate the overrepresentation for Gene Ontology (GO) 

terms in culture signature genes with higher expression in blood and in culture. Prior 

to being used in the hypergeometric test, the gene symbols were converted into 

Entrez Gene IDs with the “translate” function within the AnnotationFuncs package 

version 1.34.0. The hypergeometric overrepresentation test was carried out for the 

GO Biological Processes (BP) category using the two converted gene sets as input. 

The 608 genes assayed by NanoString gene expression panel were specified as the 

gene universe. The adjusted p-value cut-off was set at 0.05. The p-values and the 

OddsRatio statistics for the GO BP terms with more that 5 observed genes counts 

were visualised as a bar chart with the ggplot2 package version 3.2.1 (Wickham, 

2016). 

 

3.2.4. Bulk RNA-Seq 
Ex vivo or culture-generated DCs were FACS purified (> 98% purity) and lysed in 

RLT buffer containing 1% b-mercaptoethanol. RNA was extracted using the QIAGEN 

RNeasy Mini Kit. The RNA was quantified with the Qubit RNA HS Assay Kit and 

diluted to 5ng in 10µl. The SMART-Seq v4 protocol was used for cDNA synthesis. 

Sequencing libraries were prepared with the Nextera XT library prep kit. The Illumina 

NextSeq 500 platform was employed to generate 75bp paired-end reads. Library 

preparation and sequencing were performed by the Genomics Core Facility, 

Newcastle University. 

 

Reads were trimmed based on quality with Trimmomatic v 0.36 (Bolger et al., 2014). 

Bases with quality scores below Q20 (inferred base cell accuracy below 99%) were 

trimmed and reads shorter than 50bp were dropped. The remaining reads were 

aligned with the STAR mapping algorithm v 2.4.0 (Dobin and Gingeras, 2015) to the 

human reference genome version GRCh38.p7 (GENCODE release 25). The files 

were converted from SAM format to the more compressed BAM format with 

SAMtools v 1.3 (Li et al., 2009). The count tables were obtained using HTSEQ v 

0.6.1 (Anders et al., 2015). ENSEMBL IDs were converted to HGNC gene names 

using biomaRt v 2.30.0 (Durinck et al., 2015).  

 

Further analyses of the data were undertaken in R v 3.6.0 and Rstudio v 1.0.143. 

15,081 protein coding genes with over 50 reads in total were retained for the 

analysis. The DESeq2 package v 1.24.0 (Love et al., 2014) was used for 
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normalisation. The top 1,000 genes with highest variance across the samples were 

selected for the PCA, performed using the "prcomp" function within the stats package 

version 3.6.0 and visualised using the ggbiplot package version 0.55. 

 

To cluster the samples by similarly, the regularised-logarithm transformation was 

applied to the data. The Euclidean distances between the samples were then 

calculated, and used as input for the hierarchical clustering with the complete linkage 

method. The results were displayed as a heatmap with the pheatmap R package 

version 1.0.12 (Kolde, 2019).  

 

The blood and tissue cDC1 signatures were computed via the BubbleGUM software. 

The peripheral blood (4,957 genes) and tissue (8,086 genes) signatures were used 

as input for the single sample Gene Set Enrichment Analysis (ssGSEA), along with 

the normalised gene expression values for cDC1s from all 5 sources. The enrichment 

scores were displayed as a dot plot. 

 

The hypergeometric test for association of categories and genes within the Catergory 

R package version 2.50.0 was employed to evaluate the overrepresentation for Gene 

Ontology terms in the blood and tissue cDC1 signatures. Prior to being used in the 

hypergeometric test, the gene symbols were converted into Entrez Gene IDs with the 

“translate” function within the AnnotationFuncs package version 1.34.0. 

 

3.3. Results 

3.3.1. Culture output phenotyping and cell enumeration 
To optimise the DC production in vitro, human CD34+ progenitors were FACS-purified 

and placed in culture under 3 different conditions: (1) liquid culture containing growth 

medium supplemented with the cytokine mix FSGM, consisting of FLT3 ligand 

(100ng/ml), SCF (20ng/ml) and GM-CSF (20ng/ml), (2) co-culture with stromal cell 

line OP9, supplemented with FSGM, and 3) co-culture with OP9-DL1 with the 

addition of FSGM.  

 

The phenotype of the cells produced at 14 days of culture was assessed using flow 

cytometry and compared to that of peripheral blood DCs and CD14+ monocytes 

(Figure 3.2). Overall, the culture-derived cells occupied phenotypic spaces 
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corresponding to blood DCs and monocytes, and were gated in a similar manner. 

The surface markers were expressed appropriately, classical monocytes showing 

high CD14 and CD11c expression, cDC1s were marked by CD141 and CLEC9A, 

cDC2s – by CD1c and CD11c, and pDCs – by CD123 and CD303/304.  Most of the 

APCs, distinguished by high HLA-DR expression, were represented by classical 

monocytes in blood, as well as in liquid culture. The APC gate contained significantly 

lower proportions of classical monocytes in co-culture with feeder layers OP9 and 

OP9-DL1. 

 

The culture output was normalised per input progenitor placed in culture to directly 

compare the efficiency of generating each of the DC subsets under different 

conditions (Figure 3.3). The culture in the liquid medium with FSGM supported only a 

minor expansion of the DC subsets, creating a small proportion of cDC2-like cells, 

and no pDCs or cDC1s were observed. The addition of the OP9 feeder layer saw an 

increase in DC output, the majority of DCs produced still being cDC2s, with little 

pDCs and cDC1s generated. The incorporation of Notch ligand DLL1 in the co-

culture with the use of OP9 cells resulted in the selective expansion of cDC1, with an 

11-fold increase in cDC1 output per progenitor compared to the OP9 co-culture.  
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Figure 3.2. Analysis of primary peripheral blood and in vitro-derived cells via 
flow cytometry (Dr Urszula Cytlak and Dr Venetia Bigley). 
Sorted CD34+ progenitor cells purified from human BM were cultured for 14 days in 

liquid culture in the presence of the cytokine cocktail FSGM and on monolayers of 

OP9 or OP9-DL1 cells supplemented with the same cytokine mix. Single, live, and 

CD45+ cells were gated for the analysis of the culture output. Bivariate flow plots 

show expression of cell markers: HLA-DR for APCs, CD14 and CD11c for classical 

monocytes, CD141 and CLEC9A for cDC1, CD1c and CD11c for cDC2, and CD123 

and CD303/304 for pDC. Lineage markers include B, T and NK cell markers CD3, 

19, 20, and 56, and cells expressing them were gated out. 
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Figure 3.3. The number of output DCs generated per input progenitor cell in 
culture media supplemented with a mix of cytokines (FSGM) and in co-culture 
with the OP9 or OP9-DL1 feeder layers (Kirkling and Cytlak et al., 2018).  
Data points represent values in 14 days BM cultures from different donors (n=4 for 

FSGM, 8 for OP9, and 7 for OP9-DL1); bars represent mean with SEM. Indicated p-

values were derived by unpaired two-tailed Student’s t-test conducted on cDC1 

proportions derived from OP9 and OP9-DL1. 
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3.3.2. Confirmation of cultured cell identities via NanoString analysis 
Having identified a culture system able to enrich the output in cDC1s and generate all 

DCs subsets with a seemingly appropriate phenotype, transcriptomic approaches 

were sought to validate the identities of the produced cells. The NanoString gene 

expression assay was selected for this analysis, as it provides robust measurements 

of gene expression from low input material and requires no amplification steps. 

 

All 3 DC subsets from peripheral blood and OP9, along with cDC1s derived from 

OP9-DL1 were subjected to NanoString analysis using the NanoString pre-built 

human Immunology V2 panel. The panel contains 578 immunology-related genes 

and 15 housekeeping genes, and was supplemented with 30 DC-related genes.  

 

To confirm the transcriptomic identity of the cells generated in culture, the expression 

of DC subset-specific genes and chemokine receptors was compared between the 

ex vivo-derived and cultured cells. All culture-derived cells resembled their ex vivo 

counterparts, and clustered closely with them based on the expression of DC subset-

specific genes (hierarchical clustering displayed as a dendrogram above the 

heatmap in Figure 3.4 A). Crucially, genes encoding subset-specific transcription 

factors, surface markers, and TLRs were expressed faithfully.  The marker genes 

included CLEC9A, XCR1, IRF8, BATF3, and TLR3 in cDC1s, CD1C, CD2, IRF4, 

TLR2, TLR8 in cDC2, and IRF8, IRF4, TLR7, TLR9 in pDCs (Figure 3.4 A). Higher 

CD1C expression was noted on the culture-derived cDC1s. Likewise, the expression 

of chemokine receptors was split by subset (Figure 3.4 B), however a higher 

expression of CCR7 in OP9-derived cDC1s and cDC2s was observed.  
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Figure 3.4. Heatmaps of DC subset-specific genes encoding surface markers, 
transcription factors, and TLRs (A) and chemokine receptors (B), as 
determined by NanoString nCounter analysis. 
The dendrograms above the heatmaps represent hierarchical clustering based on the 

log2 gene expression of the listed genes. 

 

Next, principal component analysis was employed to obtain a summary of the 

dataset. In this analysis, all cultured subsets were shifted in a similar direction and by 

a similar distance both on PC1 and PC2 in relation to their ex vivo counterparts, 

implying that a particular set of genes, conserved between all DC subsets, was 

differentially expressed in all blood versus all cultured samples (Figure 3.5 A). 

Removing this set of differentially expressed genes, also referred to as “culture 

signature”, resulted with the perfect alignment of primary and in vitro-generated 

subsets, PC1 splitting cDCs from pDCs, and PC2 splitting cDC1s and cDC2s, 

irrespective of their source (Figure 3.5 B). Notably, both cDC1s generated on OP9 

and on OP9-DL1 aligned closely with the peripheral blood cDC1s. 

A B 
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Figure 3.5. Principal component analysis of mRNA expression from FACS-
purified primary and in vitro-derived DC subsets using the NanoString Human 
Immunology V2 panel plus 30 custom DC-related genes. 
A. PCA performed based on all 608 genes assayed by the NanoString panel. 
B. Analysis based on the expression of 278 genes, performed after the removal of 

genes with low expression (235/608) and of a “culture signature” (95/608) derived by 

pairwise comparison of all culture-generated versus all primary cells via a two-tailed 

t-test with Benjamini-Hochberg correction of p-values. 

 

 

 

 

A 
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Further investigation of the culture signature revealed that it contained 95 genes, 32 

of which had higher expression in blood DCs, and 63 were expressed higher in 

culture.  

 

Among the culture signature components with higher expression in culture (Figure 

3.6) were genes encoding the complement subunits C1QA and C1QB, costimulatory 

molecules CD80 and CD276, chemokines CXCL12, CCL17, and CCL22, 

transmembrane protein CD1A, highly expressed in tissue DCs, dendritic cell 

lysosomal associated membrane glycoprotein LAMP3, phosphatase DUSP4, 

associated with the negative regulation of the cellular proliferation and differentiation, 

as well as LAG3, a protein involved in the maturation and activation of dendritic cells 

(Andreae et al., 2002).  

 

The top genes with higher expression in blood included PRAM1, expressed during 

normal myelopoiesis (National Centre for Biotechnology Information, 

https://www.ncbi.nlm.nih.gov/) and the receptor for granulocyte colony-stimulating 

factor CSF3R (Figure 3.6). 

 

In order to gain functional insight into the lists of differentially expressed genes, an 

overrepresentation test for Gene Ontology terms from the Biological Processes 

category was performed for both gene sets (Figure 3.7). The set of genes with higher 

expression in culture was enriched in GO terms relating to the regulation of 

apoptosis, response to DNA damage, metabolism, cell cycle, and cell growth. The 

biological processes significantly overrepresented in blood included actin 

cytoskeleton organisation and regulated exocytosis. 

 



 
 

54 

 

Figure 3.6. Differential gene expression analysis between all culture-derived 
versus all blood DC subsets, as determined by NanoString nCounter analysis. 
Genes with higher expression in culture are shown on the right, and genes with 

higher expression in blood are displayed on the left. The volcano plot displays the 

log2 fold change and the log10 adjusted p-values obtained via a paired t-test with 

Benjamini-Hochberg correction. Names are shown for top differently expressed 

genes with adjusted p-values below 0.05 and log2 fold change above 1 and below -1 

(equivalent to linear fold change of 2 and 0.5, respectively). All genes passing the 

adjusted p-value threshold of 0.05 were regarded as the “culture signature”. 
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Figure 3.7. Bar chart depicting the overrepresentation of Gene Ontology terms 
among the culture signature genes with higher expression in blood and in 
culture, as determined by NanoString nCounter analysis. 
The significantly overrepresented GO Biological Processes (p value< 0.05) are 

displayed on the y axis. The x axis and the length of the bars correspond to the 

OddsRatio, derived from the observed and expected gene counts for each GO term. 

The OddsRatio values increase toward the right for terms overrepresented in culture, 

and toward the left for terms overrepresented in blood. The bars are coloured 

according to the p-values resulting from the hypergeometric test for over or under-

representation of each Biological Process term among the specified gene set. 
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The presence of marker CD1A as a top differentially expressed gene with higher 

expression in culture compared to blood suggested that the transcriptome of cultured 

cells could more closely resemble tissue than blood DCs. Typically, CD1A is 

abundantly expressed by LCs (reviewed by Brigl and Brenner, 2004), as well as by 

dermal and other tissue DCs (Haniffa et al., 2012).  

 

3.3.3. Transcriptome analysis of cDC1s from blood, tissue, and culture 
To analyse the relationship between culture-derived cDC1s, grown with OP9 and 

OP9-DL1, and their ex vivo counterparts from human spleen, bone marrow, and 

peripheral blood at the whole transcriptome level, bulk RNA-Seq was undertaken. 

PCA, performed using top 1,000 variable genes showed 3 separate clusters that 

contained; (1) PB cDC1s, (2) spleen and bone marrow cells, and (3) culture-derived 

cells (Figure 3.8). Akin to the NanoString analysis, the cDC1s cultured with OP9 and 

OP9-DL1 clustered very closely.  

 

Next, hierarchical clustering was employed to further assess the overall similarity 

between the cultured and ex vivo-derived cDC1s (Figure 3.9). The initial division of 

the populations in the clustering hierarchy was between all culture derived cells (OP9 

and OP9-DL1) and all ex vivo cells, suggestive of the presence of a set of genes 

specific to cultured cells. Peripheral blood cDC1s were the most dissimilar ex vivo 

compartment to the cultured cells. Interestingly, both the PCA and the clustering 

analyses showed no significant differences between the spleen and BM cDC1s. 

These samples were treated as one group titled “tissue cDC1s” in further analyses.  
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Figure 3.8. Principal component analysis of primary cDC1s from peripheral 
blood (PB), bone marrow (BM), and spleen, and cDC1s co-cultured with OP9 
and OP9-DL1, as determined by bulk RNA-Seq. 
Top 1,000 genes with highest variance across the samples were selected for the 

analysis. 
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Figure 3.9. Heatmap and clustering of primary cDC1s from peripheral blood 
(PB), bone marrow (BM), and spleen, and cDC1s co-cultured with OP9 and 
OP9-DL1, as determined by bulk RNA-Seq. 
The colours of the heatmap represent Euclidean distances between the samples, the 

dark blue indicating similarity and lighter blue showing dissimilarity between the 

samples. The mirrored dendrogram depicts the hierarchical clustering using the 

complete linkage method based on the Euclidean distances.  

 

In order to further investigate whether the cultured cells aligned more closely with 

peripheral blood or with spleen and bone marrow cDC1s, the blood and tissue 

signatures from the RNA-Seq dataset were computed via the BubbleGUM software. 

The enrichment scores for the two signatures were theen calculated using the single 

sample Gene Set Enrichment Analysis (ssGSEA) method (Figures 3.10 A and B). As 

expected, the peripheral blood samples had the highest “blood signature” scores, 

while both groups of ex vivo-derived cells had high scores for the “tissue signature”. 

Keeping with their previously observed similarity to tissue cells, culture-derived 

populations were similarly enriched for the “tissue signature” genes. The blood 

samples displayed the least “tissue signature” enrichment. 
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Figure 3.10. Enrichment scores of gene signatures across primary cDC1s from 
peripheral blood (PB), bone marrow (BM), and spleen, and cDC1s co-cultured 
with OP9 and OP9-DL1, as determined by bulk RNA-Seq. 
The gene signatures for peripheral blood (A) and tissues (B), derived using the 

BubbleGUM software (Spinelli et al., 2015), were used as input for the ssGSEA 

enrichment method, along with the normalised gene expression values for all cDC1 

conditions. 

 

 

 

A Blood signature 

B Tissue signature 
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Next, the tissue and blood signatures were explored with an overrepresentation test 

for Gene Ontology terms (Figure 3.11). The tissue signature was enriched in terms 

relating to metabolism, response to DNA damage, cell cycle and division, as well as 

in mitochondrial gene expression. A large proportion of the GO terms overlapped 

with the terms enriched in culture, as determined by the NanoString analysis (Figure 

3.7). The GO terms overrepresented in the peripheral blood cDC1s centred around 

leukocyte activation, immune processes, localisation, transport and exocytosis. A 

fraction of these terms was also observed in the list of terms enriched in blood 

compared to culture, as determined by the NanoString assay.  

 

 

 

 



 
 

61 

 

Figure 3.11. Bar chart depicting the overrepresentation of Gene Ontology terms 
among the BubbleGUM signatures for the blood cDC1s and tissue cDC1s, as 
determined by bulk RNA-Seq. 
The top 40 significantly overrepresented GO Biological Process are displayed on the 

y axis. The x axis and the length of the bars correspond to the OddsRatio, derived 

from the observed and expected gene counts for each GO term. The OddsRatio 

values increase toward the right for terms overrepresented in tissue. The OddsRatio 

values increase toward the left for terms overrepresented in blood and are denoted 

with a negative sign. The bars are coloured according to the p-values resulting from 

the hypergeometric test for over or under-representation of each Biological Process 

term among the specified gene set. 

BLOOD TISSUE 
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3.4. Discussion 

3.4.1. The production of human DC subsets in vitro 
To address the requirement of large-scale DC production techniques, a method 

enabling the generation of all DC subsets in culture has been developed in the 

Human Dendritic Cell laboratory. The OP9 culture system is able to produce large 

numbers of cDC1s, cDC2s, and pDCs, in proportions of similar to those seen in 

peripheral blood and bone marrow. Together with the cytokines FLT3L, SCF, and 

GM-CSF, the OP9 feeder layer facilitates cell proliferation and differentiation in vitro, 

without the requirement for a progenitor expansion step, used in the past for DC 

production (Naik et al., 2005). Evidence that OP9 support CD34+ cells comes from 

previous experiments which were able to create CD34+ progenitors from human 

embryonic stem cells in co-culture with OP9 (Vodyanik et al., 2005). In these 

experiments, the OP9 cell line proved to be superior at growing progenitors to other 

murine stromal cell lines, such as MS5. This could be attributed to the fact that OP9 

lack M-CSF expression, which inhibits the differentiation of progenitors into 

haematopoietic cells and drives the development of the monocyte/macrophage 

lineage (Nakano et al., 1994).  

 

3.4.2. Confirmation of culture-derived cell identity 
The authenticity of cDC1s, cDC2s, and pDCs produced in co-culture with OP9 and 

OP9-DL1 (for cDC1s) was verified via both proteomic and transcriptomic 

approaches, including gene expression analysis on the NanoString platform and 

surface phenotype analysis using flow cytometry.  

 

The NanoString assay was used to investigate the expression of 578 immunology-

related genes and that of 30 DC-related genes. All DC subsets faithfully expressed 

subset-specific transcription factors, surface markers, and TLRs, previously reported 

as DC markers in literature (Bigley, et al., 2016; Collin and Bigley, 2018; Schlitzer et 

al., 2018). Both peripheral blood and culture-derived cDC1s expressed high levels of 

key markers including CLEC9A, XCR1, IRF8, BATF3, and TLR3. cDC2s were 

marked with CD1C, CD2, IRF4, TLR2, and TLR8, and pDCs exhibited appropriate 

expression of IRF8, IRF4, TLR7, TLR9. The summary of the data based on all genes 

provided by the PCA revealed the presence of a gene set with altered expression in 
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culture. The identification and removal of these genes from the analysis resulted in 

the perfect alignment of the DC subsets with their ex vivo counterparts. 

 

Phenotypic investigation of the OP9 and OP9-DL1-derived cells via flow cytometry 

aligned them closely with their ex vivo counterparts from peripheral blood, showing 

that the cultured and the primary cells occupied the same phenotypic spaces when 

defined by at least two subset-specific surface markers. The gates were determined 

based on the ex vivo populations, with the exception of the APC gate, marked by 

high HLA-DR and low lineage marker expression. The APC gate had to be adjusted 

for the cultured samples, as unlike the peripheral blood, they contained no lineage 

positive cells. This suggests that culture system does not support the growth of cell 

types with lineage markers, such as non-classical monocytes, and B, T, and NK 

cells. Co-expression of two established markers was used to identify each of the DC 

subsets and the classical monocytes. This practice is highly recommended for flow 

cytometry analysis, as using several antibodies coupled with different fluorochromes 

generally improves the reliability of the data.  

 

In addition, the functional integrity of the culture-derived DCs was confirmed via 

assays performed by members of the group showed appropriate cytokine production 

in response to TLR stimulation by culture-derived cDC1s, cDC2s, and pDCs (Kirkling 

and Cytlak et. al, 2018).  

 

3.4.3. The cells produced in culture bear close transcriptional resemblance to 
tissue DCs  
As revealed by the NanoString analysis, the cultured DCs resemble the peripheral 

blood subsets based on markers defined in the literature. However, a set of genes 

was differentially expressed between all cultured versus all peripheral blood DCs (95 

genes out of 608 assayed genes). Disparities in the cell microenvironment in 

peripheral blood and culture are the likely cause of the observed differences in gene 

expression. The factors include cell interactions, soluble factors, haemodynamic 

differences, and epigenetics. 

 

The genes with higher expression in culture were linked to apoptosis, cell growth, 

and cell cycle. Complement component C1Q, upregulated in culture, has previously 

been shown to facilitate apoptotic cell clearance (reviewed by van Cooten et al., 
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2008), which aligns with the apoptotic signature of the culture. The cultured cells are 

likely more metabolically active, divide more rapidly, and are more prone to 

apoptosis.  

 

Higher CD1C expression was noted on the culture-derived cDC1s. The elevated 

expression of this marker has previously been observed in tissue DCs (Haniffa et al., 

2012). LC marker CD1A also had higher expression in culture than in blood.  

These observations are in agreement with the cDC1 RNA-Seq analysis results, 

which show an enrichment of the “tissue signature” in the OP9 and OP9-DL1-derived 

cDC1s. Together, the NanoString and RNA-Seq analyses reveal an overlap of the 

tissue and culture signatures. This could be due to the similarity of the two 

environments, in particular the contact with stromal cells and lack of consistent shear 

forces in both the culture and the tissue settings.  

 

The peripheral blood DCs had higher expression of genes regulating actin 

cytoskeleton organisation and regulated exocytosis compared to cultured cells. As 

DCs pass through blood vessel endothelium on their journey from bone marrow into 

peripheral blood, they might involve actin rearrangement when moving through tight 

spaces. Peripheral blood, being subject to shear forces, may also require additional 

cytoskeletal activity. Furthermore, blood DCs could be in preparation to migrate 

through endothelium once more in order to enter peripheral or lymphoid tissues.  

 

The upregulation of exocytosis-regulated genes in blood can be attributed to the fact 

that DCs undergo major endocytic processes, such as phagocytosis. Large fractions 

of the plasma membrane are transferred to the cytoplasm, requiring non-secretory 

exocytosis to take place in order to compensate for the internalised volume (Cocucci 

and Meldolesi, 2013). Moreover, the blood DCs appear more activated than their 

tissue and culture counterparts. The analysis of the differentially expressed genes 

between blood and tissue (spleen and bone marrow) cDC1s, showed that the cells in 

blood are marked by the expression of genes related to leukocyte activation and 

immune responses.  

 

3.4.4. Notch signaling facilitates in vitro generation of human cDC1s 
Together, the results of the transcriptomic validation and the surface marker 

evaluation show that through Notch stimulation, OP9-DL1 system produced large 
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numbers of functionally proficient cDC1s with an appropriate gene expression and 

phenotype. Co-culture of human BM CD34+ progenitors with OP9 generated all DC 

subsets in similar proportions to peripheral blood, while addition of Notch Delta like 

Ligand 1 resulted in an eleven-fold increase of CLEC9A+ CD141+ cDC1 output per 

progenitor cell.  

 

The addition of Notch also improved cDC1 functionality and gene expression profile. 

Assays performed by members of the group (Kirkling and Cytlak et. al, 2018) 

demonstrated enhanced CD4 and CD8 T cell activation ability of OP9-DL1 cDC1 

compared to OP9-derived cells and similar to that of ex vivo cDC1s from peripheral 

blood in vitro.  

 

The OP9-DL1 culture system is able to produce large numbers of cDC1 in vitro, 

making them more accessible for therapeutic use and research. A 4mL bone marrow 

aspirate (equivalent to the volume taken in diagnostic procedures) typically yields 

sufficient CD34+ progenitors to generate 1.5-3 million cDC1s on OP9-DL1 in 96 well 

plates. This output is equivalent to the number of cDC1s in 3L whole blood (which 

contains approximately 500 cDC1s per mL), providing sufficient numbers of 

functional cDC1s for further biological study and translational applications. 

Furthermore, the culture is highly scalable, and large numbers of cDC1s have also 

been produced in 24 well plates and successfully used for the ChIP-Seq experiment 

in Chapter 5. The DC output per primary CD34+ stem/progenitor cell may be further 

increased with the addition of a CD34+ cell expansion step prior to DC differentiation. 

The use of moDCs in clinical trials for DC vaccines are often listed as a reason of 

failure. The use of defined, patient-derived DC subsets for next-generation DC 

vaccines could offer better vaccine functionality. cDC1s are particularly important for 

cancer vaccines, as they excel at activating critical effector cell types in antitumor 

immunity, such as cytotoxic T lymphocytes, NK cells, and NKT cells (reviewed by 

Cancel et al., 2019). In addition, cDC1s have superior cross presentation abilities in 

vivo (reviewed by Gutiérrez-Martínez et al., 2015), offering a promising prospect in 

therapy as the most potent anti-cancer DCs. 

 

3.5. Summary and further work 
Experiments undertaken as part of this chapter showed that co-culture of human 

bone marrow CD34+ progenitors with OP9 cells generates all DC subsets. The 
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resulting pDCs, cDC1s, and cDC2s aligned closely with their ex vivo counterparts by 

gene expression analysis and exhibited an appropriate phenotype. However, the 

proportion of generated cDC1s was low. Addition of Notch ligand DLL1 resulted in an 

eleven-fold increase of CLEC9A+ CD141+ cDC1 output per progenitor cell. The 

resulting cDC1s showed equivalent T cell stimulatory capacity to ex vivo derived cells 

in further experiments (Kirkling and Cytlak et al., 2018). Interrogation of their 

transcriptome revealed that the cells bear a striking similarity to the tissue cDC1 

compartment. The OP9-DL1 culture system addresses one major hurdle for the utility 

of human cDC1s for vaccination – the rarity of cDC1s in vivo. The system allows the 

production of sufficient numbers of cells for functional study and therapeutic 

applications (Figure 3.12). 

 

 
Figure 3.12: Schematic of OP9-DL1 co-culture process and its cDC1 output. 
Approximately 4mL of bone marrow aspirate are required for culture. Once the 

CD34+ progenitors are FACS-purified, they are co-cultured with the OP9-DL1 stromal 

cell line for 14-21 days in the presence of a cytokine cocktail. The cDC1 output of the 

culture is equivalent to the cDC1 numbers in 3 litres of whole blood. 

 

Future studies, necessary for the use of in vitro-derived DCs in therapy include 

adaptation of culture system to be Good Manufacturing Practice-compliant by 

removing animal-derived products from the culture system. The utilised animal-

derived products include the foetal calf serum, used as a supplement in culture, as 

well as the murine OP9 feeder layer itself. Initial studies will determine whether cell-

cell interactions, soluble factors or both are necessary for DC generation on OP9. For 

Notch stimulation, it is possible that the ligand signal (DLL1) could be provided by 

coating the culture vessel or beads with DLL1. In-depth proteomics of the factors 

produced by OP9 cells could help narrow down the proteins strictly necessary for DC 

production, which could be then used to supplement feeder layer-free cultures. The 
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contribution of autologous or haematopoietic cell derived factors may also be 

important in the generation of a mixed DC output. Practical factors will also be 

considered, including whether autologous DCs would be necessary or whether “off-

the-shelf” third party DC products could be used. 
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Chapter 4. The two pathways of DC development defined by IRF8 
expression 
 
Questions to be answered in Chapter 4: 

1. Can distinct DC lineages and their precursors be identified in human bone 

marrow via single cell transcriptomics?  

2. Is there a developmental basis for the recently described heterogeneity in the 

cDC2 population? 

3. Can the developmental pathways originating in the bone marrow be linked to 

peripheral blood DC subsets?  

 

4.1 Introduction 
Human DC subsets develop in the bone marrow under the control of specific 

transcription factors, mutation of which can result in dendritic cell immunodeficiency. 

In humans, important roles are played by transcription factors IRF8 (Hambleton et al., 

2011; Bigley et al., 2018), GATA2 (Dickinson et al., 2014), and IKZF1 (Cytlak et al., 

2018). DCs can be divided into at least 3 subsets, by transcription factor requirement, 

phenotype, and function (Bigley et al., 2016). The subset specialisation in DCs 

results directly from haematopoiesis (Lee et al., 2017; See et al., 2017; Villani et al., 

2017), however, the pathways giving rise to cDC1, cDC2, and pDC in the bone 

marrow are not well mapped. 

 

DCs have an apparent “dual” lympho-myeloid origin and, during their development, 

traverse the phenotypic spaces of hematopoietic stem cells (HSC), multipotent 

progenitors (MPP), common myeloid progenitors (CMP), lymphoid-primed 

multipotent progenitors (LMPP) and granulocyte-macrophage progenitors (GMP) 

(Doulatov et al., 2010; Lee et al., 2015; Lee et al., 2017; Helft et al., 2017). The 

CD123+ region of GMP has been demonstrated to contain potential to generate 

human cDC1s, cDC2s, and pDCs (Lee et al., 2015; Helft et al., 2017). However, the 

phenotypic identities of the unipotent DC progenitors are currently unknown. 

 

Additional complexity is added by the recently described heterogeneity in the cDC2 

compartment. The bulk of cDC2s are comprised of two subpopulations, one closer in 

gene expression and function to cDC1, referred to as DC2, and the other more 

similar to monocytes, referred to as DC3 (Villani et al., 2017; Dutertre, et al. 2019). 
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As this is a novel finding, earlier studies investigating DC development did not 

explore the source of cDC2 heterogeneity. It is currently unknown whether both 

subtypes of cDC2 arise from distinct lineage trajectories, regulated by different 

transcription factors, whether some of them are monocyte-derived, or whether they 

represent two transcriptional states of a common lineage originating from the 

CD123high GMP (Figure 4.1). 

 

 
Figure 4.1. Schematic of the development of haematopoietic lineages from 
bone marrow HSCs, illustrating the unknown phenotypic identities of the DC 
progenitors. 
During their development, the DC subsets traverse the phenotypic spaces of 

hematopoietic stem cells (HSC), multipotent progenitors (MPP), common myeloid 

progenitors (CMP), lymphoid-primed multipotent progenitors (LMPP) and 

granulocyte-macrophage progenitors (GMP). Early haematopoietic cells show high 

expression of marker CD34 (depicted in pink). As the cells develop, the CD34 

expression is gradually lost. In this work, the term “progenitor” was used for cells 

expressing marker CD34, and “precursor” - for cells with intermediate or negative 

CD34 expression and without mature DC markers. 
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The apparent dual myeloid and lymphoid origin of DCs may be explained by early 

lineage commitment, not detectable by analysis of a few surface antigens, as used in 

traditional progenitor cell classification by flow cytometry. The work in this chapter 

aimed to employ single cell transcriptomics and mass cytometry, combined with 

phenotyping and in vitro culture, to define distinct pathways of DC development. This 

work was undertaken in close collaboration with other members of the Human DC 

Lab. In particular, Dr Urszula Cytlak performed the in vitro culture and phenotypic 

analysis and Sarah Pagan undertook the CyTOF experiments. The majority of this 

work has been published as a joint first author manuscript in Immunity (Cytlak and 

Resteu et al., 2020). 

 

4.2 Materials and methods 

4.2.1 Contributions 
The following members of the HuDC Lab contributed to the generation and analysis 

of the data presented within this chapter:  

• Urszula Cytlak: Phenotyping analysis, cell purification and in vitro 

differentiation assays (sections 4.2.2 and 4.2.3) 

• Sarah Pagan: Antibody conjugation and cell preparation for CyTOF analysis 

(section 4.2.10) 

• Venetia Bigley: pre-processing of mass cytometry data with the FlowJo 

software (part of section 4.2.11) 

• Anastasia Resteu: visualisation of flow cytometry data to generate a 3D plot of 

antigen expression, generation and analysis of NanoString gene expression 

data, including normalisation, gene filtering, and principal component analysis 

(section 4.2.4), processing and analysis of single cell RNA-Seq data, 

specifically read QC, trimming, and alignment to the reference genome, 

counting of reads, gene and cell QC, filtering, normalisation, hierarchical 

clustering, dimensionality reduction using tSNE, lineage tracing with diffusion 

maps, and pseudotime analysis (sections 4.2.6-4.2.9), computational analysis 

of mass cytometry data, including visualisation of tSNE embeddings, lineage 

reconstruction with diffusion maps (section 4.2.11) 
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4.2.2 Co-culture of bone marrow progenitors with OP9 cells 
The culture was undertaken as described in Chapter 2 subsection 2.3.5. Briefly, 

human bone marrow CD34+ progenitors, progenitor subsets or pre-DC were FACS-

purified and placed into 96 well U-bottomed plates (Corning) with pre-seeded OP9 

stromal cells (5,000/well) in 200μl alpha-MEM (αMEM, Gibco) supplemented with 1% 

penicillin/streptomycin (Sigma), 10% FCS, 20ng/ml granulocyte-macrophage colony-

stimulating factor (GM-CSF, R&D systems), 100ng/ml Flt3-ligand (FLT3, 

Immunotools), 20ng/ml stem cell factor (SCF, Immunotools).  

 
4.2.3 Flow cytometry 
The culture output was assessed via flow cytometry, as described in Chapter 2 

subsection 2.3.6, using fluorescently-conjugated antibodies listed in Appendix B.  

 

4.2.4 Analysis of NanoString gene expression data 
The NanoString assay was performed as described in Chapter 2 subsection 2.3.7. 

Data were normalised in nSolver advanced analysis module version 1.1.4. The log2 

transformed normalised output data were analysed using R version 3.6.0 (R Core 

Team, 2019). For the peripheral blood PCA (Figure 4.3), genes that did not reach 

above–background counts (normalised log2 expression values of at least 4) in at 

least half of the samples were removed (293 out total 608 endogenous genes were 

filtered out). The remaining 315 genes were used to construct the PCA plot. Principal 

component analysis was performed using the "prcomp" function within the stats 

package version 3.6.0 and visualised using the ggbiplot package version 0.55. 

For the combined ex vivo- and culture-derived cell PCA, a culture signature was 

derived by performing pairwise comparisons (two-tailed t-test with Benjamini-

Hochberg correction of p-values) of all culture versus all ex vivo populations. 110 

genes with adjusted p values <0.05 (the ‘culture signature’) were excluded from 

further analysis. The remaining 210 genes were used to construct the PCA plot 

(Figure 4.5).  

 

4.2.5 Generation of single cell RNA-Seq data  
Single human PBMC or BMMC were index-sorted into 96 well round-bottom plates 

containing 2μl cold RNA lysis buffer (RNAse-free water, 2U/μl RNAse inhibitor and 

0.2% Triton X-100, Sigma) (BM progenitor plates) or SMARTer Dilution buffer 

(SMARTer Kit, Fluidigm) with the addition of 2U/μl RNAse inhibitor (BM precursor 
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and DC plates). Plates were immediately centrifugated at 500xg for 1 minute, frozen 

on dry ice then stored at -80°C. Each plate included 2 controls; one blank and one 

well containing purified mouse RNA. The reverse transcription was performed using 

an adapted Smart-seq2 protocol (Picelli et al., 2014). Briefly, modifications included 

21 PCR cycles and duplicate Ampure clean-up steps, following cDNA generation. 

The library prep was performed using the Nextera XT DNA Library Prep Kit. The 

Illumina HiSeq 4000 platform was employed to generate paired-end reads (75bp x 2).  

An average of 1.5 million reads were retrieved for each cell from the BM CD34+ 

progenitors and 2.3 million per cell for the BM CD34med precursors and DC. 

 

4.2.6 Processing of single cell RNA-Seq data  
Reads were trimmed based on quality with Trimmomatic v 0.36 (Bolger et al., 2014). 

Bases with quality scores below Q10 (inferred base cell accuracy below 90%) were 

trimmed and reads shorter than 60bp were dropped. The remaining reads were 

aligned with the STAR mapping algorithm v 2.4.0 (Dobin and Gingeras, 2015) to the 

human reference genome version GRCh38.p7 (GENCODE release 25), 

supplemented with External RNA Controls Consortium (ERCC) spike-in controls. The 

files were converted from SAM format to the more compressed BAM format with 

SAMtools v 1.3 (Li et al., 2009). The count tables were obtained using HTSEQ v 

0.6.1 (Anders et al., 2015). ENSEMBL IDs were converted to HGNC gene names 

using biomaRt v 2.30.0 (Durinck et al., 2015). 

 

4.2.7 QC and normalisation of scRNA-Seq data 
Further analysis of the data was undertaken in R v 3.3.3 and Rstudio v 1.0.143. The 

scater R package v 1.2.0 was used to perform cell and gene QC and filtering 

(McCarthy et al., 2017). To remove technical outliers with poor coverage, genes with 

less than 2 counts in at least 2 cells were filtered out. Outlier cells were further 

removed based on number of total features, total counts and percentage of counts 

derived from ERCC spike-ins and mitochondrial genes. The normalisation was 

performed with the RUVg method (Risso et al., 2014) combined with counts per 

million (CPM) adjustment for library size and log transformation [log2(CPM+1)] for all 

downstream analyses. Only the genes annotated as protein coding in the 

“gene_type” column of the GENCODE reference genome GTF file were retained. To 

minimise the effect of cell-division cycle on the clustering performed in future steps, 
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the genes identified to play a role in cell cycle were downloaded from the 

supplementary materials provided by Macosko et al. (2015) and removed from all our 

analyses.  

 

4.2.8 Clustering of scRNA-Seq data 
Clustering was performed on the remaining genes using the Single-Cell Consensus 

Clustering (SC3) R package v 1.3.18 (Kiselev et al., 2017). The SC3 tool requires the 

k number of number of clusters to be specified by the user. A range of clusters (2 to 

15) were visualised and studied for each of the datasets. The output from the 

“sc3_estimate_k” function guided the minimum number of clusters to be considered 

for each of the datasets.  

  

Heatmaps with marker genes were generated with SC3. The area under the receiver 

operating characteristic curve (AUROC) and p-values assigned by a Wilcoxon signed 

rank test and corrected using the Holm method were used to define the marker 

genes (thresholds for statistics are stated in the figure legends). Clusters were 

annotated based on the top statistically significant marker genes from the SC3 

output, as well as FACS phenotype and culture output.  

 

4.2.9 Dimensionality reduction of scRNA-Seq data 
The tSNE technique for dimensionality reduction was used to visualise the clusters. 

First, SC3 gene filter was applied to further remove genes with low expression, as 

well as ubiquitously expressed genes that do not contribute to clustering. The 

remaining genes were used for tSNE analysis with the Rtsne package v 0.13. An 

initial PCA step was introduced to reduce dimensionality and eliminate noise. Top 

principal components accounting for most variance (25-35%) were retained for the 

tSNE algorithm (the number of PCs is stated in the legend for each plot). Graphics 

were generated with the ggplot2 package v 3.0.0. 

 

Diffusion maps were used to infer a pseudo-temporal ordering and reconstruct 

lineage branching. All protein coding genes that are not known to play a role in cell 

cycle were used in the diffusion map calculation with the destiny tool v 2.14.0 

(Angerer et al., 2016) in R v 3.6.0. An initial PCA step was employed to reduce noise, 

and PCs accounting for most variance (total of approximately 40% for both datasets) 
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were retained for destiny. PCA was performed using the prcomp and princomp 

functions from the stats R package. Diffusion components 1-3 were used for 

trajectory tracing with slingshot v 1.2.0 (Street et al., 2018) and visualized on 3D 

plots. Graphics were generated with the rgl package v 0.100.19. 

 

4.2.10 Generation of mass cytometry data 
Pre-conjugated antibodies (Fluidigm), purified antibodies conjugated to their 

respective lanthanide metals using the Maxpar antibody labelling kit (as per 

manufacturer’s instructions; DVS Sciences) or fluorophore-conjugated primary with 

anti-fluorophore metal-conjugated secondary antibodies were used for surface or 

intracellular staining (Appendix B).  

 

Healthy control CD45+Lineage- (CD3,19,20,56,161) PBMC (3x106 cells) or BMMC 

(1.5x 106) were FACS purified into 1mL CyTOF staining buffer (PBS plus 2% FCS). 

Cell staining was performed at room temperature in a final staining volume of 100µl.  

Centrifugation was performed at 500xg for 5 minutes. ‘Barcoding’ of PBMC and 

BMMC samples was achieved by staining with 0.5ug anti-CD45-Irr115 or anti-CD45-

89Y, respectively, (30mins) in CyTOF staining buffer before washing twice in PBS. 

Barcoded PBMC and BMMC were combined before addition of 2.5μM cisplatin for 5 

minutes in PBS for live/dead cell discrimination, then washed promptly in CyTOF 

staining buffer. Successive primary and secondary surface staining was performed 

using approximately 0.5µg of each antibody in CyTOF staining buffer (30mins) before 

washing twice with PBS. The cells were fixed in 500ml eBioscience fixation buffer 

(eBioscience FoxP3 fix perm kit) with the addition of 500μl of 3.2% formaldehyde 

(final concentration 1.6%) and incubated for 30 minutes, before washing twice with 

eBioscience perm buffer. Cells were stained successively in perm buffer for 1hr each 

with intracellular primary and secondary antibodies then washed twice with PBS.  

Cells were resuspended in 500μl 250nM Irridium in PBS (final concentration 125nM) 

and 500μl 3.2% formaldehyde (final concentration 1.6%) and incubated for 1hr, 

before centrifugation and resuspension in 500μl CyTOF wash buffer for overnight 

storage at 4°C. Prior to CyTOF acquisition, cells were washed twice in 200μl MilliQ 

water (800xg for 8 minutes), counted, diluted to a maximum final concentration of 

0.55x106/mL in MilliQ water and filtered through a 40μm filter (BD). EQ beads were 
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added (10% by volume) and 1.5x106 cells were acquired on the Helios mass 

cytometer running CyTOF software v 6.7.1014. 

 

4.2.11 Mass cytometry data analysis 
Within the CyTOF software, the resultant flow cytometry file (.fcs) was normalised 

against the EQ bead signals and randomised for a uniform negative distribution. 

FlowJo software was used to deconvolute live, lineage(CD3,19,20,56)-HLA-DR+ PB 

or BM cells by manual gating. For diffusion maps and lineage tracing (Figure 4.14), 

cells were down-sampled using random sampling within FlowJo, to select a total of 

14,000 cells consisting of up to 500 or 1,000 cells per progenitor/precursor or mature 

cell population, respectively: CD33+GMP (300), CD33-GMP (200), 

CD123low/medGMP (298), CD123hi303/4low (499), CD2+pDC (490), pDC (490), early 

pre-DC2 (498), pre-DC2 (491), CD5-DC2 (498), CD5+DC2 (800), early pre-DC1 

(500), pre-DC1 (254), cDC1 (800), pre-DC3/mono (500), pre-DC3 (298), CD14-DC3 

(498), CD14+DC3 (1000), pre-mono (500), mono (999). Further analysis was 

undertaken in R version 3.6.0. Diffusion map calculation was performed with the 

destiny tool v 2.14.0 (Angerer et al., 2016) using log2-transformed values for the 

following CD markers: 14, 16, 123, 11b, 116, 303, 304, 2, 38, 10, 33, 11c, 90, 141, 

34, 88, 117, 1c, 5, 15 and CLEC9A, AXL, SIGLEC6, SIRPA, IRF4, IRF8, FCER1A, 

BTLA and FLT3. 3D graphics were produced with the rgl package v 0.100.30. 

 

For combined PB and BM progenitor, pre-DC and DC/monocyte analysis (Figure 

4.15), combined lineage-HLA-DR+ cells were down-sampled to select 75,000 cells 

consisting of 20,000 CD11b+CD14+ monocytes, 4,000 CD11b+CD16+ monocytes and 

50,000 non-monocyte cells. The concatenated .fcs file was subjected to tSNE 

dimensionality reduction with perplexity 30 from 1000 iterations using CD markers 

14, 16, 123, 11b, 116, 303, 304, 2, 38, 10, 33, 11c, 90, 141, 34, 88, 117, 1c, 5 and 

CLEC9A, AXL, SIGLEC6, SIRPA, IRF4, IRF8, FCER1A, and BTLA. tSNE plots and 

marker expression heat plots were generated in ggplot2 R package using tSNE co-

ordinates exported from FlowJo. 
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4.3 Results 

4.3.1 Evaluation of mature cDC2 heterogeneity in human blood 
cDC2 heterogeneity in human has been recently described in the literature, however, 

specific antigens for the isolation of the blood cDC2 subsets were unknown at the 

start of this project. Flow cytometry experiments undertaken by Dr Urszula Cytlak 

(Human DC Lab) identified markers able to split the cDC2 compartment in blood. The 

bulk of cDC2s were marked by high expression of CD2 and CD1c, distinct from 

CD141high cDC1s, and CD123+ and CD303/304+ pDC. The bulk of cDC2 was split 

into subsets using markers BTLA, CD5, and CD14 (Figure 4.2 A). BTLA divided the 

blood cDC2 population into BTLA+ DC2 and BTLA- DC3. BTLA+ DC2 was further split 

into CD5+ and CD5- populations, while BTLA- DC3 were subdivided into CD14+ and 

CD14- fractions. Expression of CD163 (a marker for the monocyte/macrophage 

lineage), negatively correlated with that of BTLA (Figure 4.2 B). With this is mind, the 

two cDC2 subtypes in peripheral blood were defined as CD163- BTLA+ CD5+/- DC2 

and CD163+ BTLA- CD14+/- DC3 (Figure 4.2 C) with CD5 and CD14 marking the 

poles of the phenotypic continuum. 

 

NanoString gene expression analysis of 10,000 ex vivo, FACS-sorted cDC1s, pDCs, 

cDC2s, and classical monocytes, confirmed the presence of cDC2 heterogeneity. 

Mirroring that seen in phenotypic analysis, a transcriptional continuum was evident 

with CD5+ DC2s, clustering near the cDC1s, and CD14+ DC3s, located closer to the 

classical monocytes (Figure 4.3).  
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Figure 4.2. Phenotyping of DC populations in human peripheral blood (Cytlak 
and Resteu, et al., 2020). 
A. Gating strategy for flow cytometry analysis. HLA-DR positive and lineage 

(CD3,16,19,20,34,7) negative cells were used for analysis. cDC2 were defined by 

CD2 and CD1c expression, distinct from CD141+ cDC1, CD123+CD303/304+ pDC 

and monocytes (mono). BTLA expression categorised DC2 (BTLA+) with (red) or 

without (pink) CD5; and DC3 (BTLA-) with (yellow) or without (orange) CD14. 

Numbers on the plots represent percentage of the parent gate. 

B. 3D plot of the expression of CD14, CD5 and BTLA across the cDC2 (CD1c+DC) 

compartment, as measured by flow cytometry. Cell colours represent CD163 antigen 

expression. 

C. Definition of cDC2 subpopulation phenotypes: CD163-CD5+/-(BTLA+ in blood) DC2 

and CD163+CD14+/-(BTLA- in blood) DC3.  

 
 
 
 
 

A 
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Figure 4.3. Principal component analysis of mRNA expression from FACS- 
purified cDC1s, cDC2s (DC2 and DC3), pDCs and classical monocytes from 
peripheral blood, as determined by the NanoString assay. 
PCA was performed based on 315 genes with expression levels detectable via the 

NanoString Human Immunology V2 panel plus 30 custom DC-related genes. 

 

4.3.2 Interrogation of DC haematopoiesis in vitro 
Following the successful identification and isolation of cDC1, pDC, DC2, and DC3 in 

human peripheral blood, this project aimed to identify the developmental pathways 

giving rise to the different cDC2 subpopulations. The in vitro culture system 

described in Chapter 3 was used to interrogate the progenitors and precursors for 

their potential to generate DC subsets. Firstly, to identify DC2 and DC3 in culture 

output, the phenotyping of culture-derived DCs was performed via conventional flow 

cytometry, as for the peripheral analysis described above. Due to the lack of BTLA 

protein expression in culture, the gating strategy was adjusted (Figure 4.4). CD2 and 

CD1c defined the bulk of the cDC2s. Within this compartment, CD163 was 

exclusively expressed by CD14+ cells, while the CD5+ DC2 population was contained 

within the CD14- gate. Marker CD14 was therefore used to split cDC2s into (CD14-) 

DC2 and (CD14+) DC3. This gating was reproducible for cultured, blood and bone 

marrow cells (Figure 4.4). Akin to the cultured cells, the lack of BTLA expression was 

also noted in human bone marrow DCs.  
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Figure 4.4. Gating strategy used to identify in vitro-derived DCs and monocytes 
generated from BM CD34+ progenitors, shown with blood and bone marrow 
(BM) for comparison (Dr Venetia Bigley and Dr Urszula Cytlak).  
A minimum of two antigens were used to define each of the populations: 

CD141+CLEC9A+ cDC1, CD2+CD1c+ cDC2 divided as CD14- DC2 and CD14+ DC3, 

CD123+CD303+CD304+ pDC and CD14+CD11c+CD1c- CD2- monocytes. Numbers on 

the plots represent percentage of the parent gate. 

 

 

NanoString gene expression analysis was used to confirm the identity of the culture-

derived DC2s and DC3s defined by CD14 expression. Figure 4.5 shows the joint 

analysis of the culture-derived and peripheral blood DCs and classical monocytes. All 

cultured subsets clustered close to their ex vivo equivalents. The cultured DC2 and 

DC3 subsets were more polarised towards, but remained distinct from cDC1s or 

monocytes, respectively, compared to their blood counterparts. 
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Figure 4.5. Principal component analysis of mRNA expression from FACS- 
purified primary cDC1, cDC2 (DC2 and DC3), pDC and classical monocytes 
from human peripheral blood and in vitro culture. 
The blood subsets are displayed in darker colours and the in vitro-generated samples 

are shown in lighter colours marked with a black outline. NanoString Human 

Immunology V2 panel supplemented with 30 custom DC-related genes was 

employed to profile the gene expression. PCA was performed based on all genes 

with detectable expression after removal of a culture signature (210 remaining 

genes).  

 
Next, the culture system, able to produce bona fide cDC2 subsets, was used to 

interrogate DC haematopoiesis in vitro. Cells originating from the phenotypic spaces 

known or hypothesized to contain progenitors were FACS-purified and placed in the 

OP9 culture system. The output was assessed via flow cytometry, following 14 days 

of culture. Figure 4.6 shows a schematic of haematopoiesis, overlaid by the sampled 

phenotypic spaces and their output in culture. In culture, HSCs produced DC2s and 

DC3s at a similar ratio to that observed in blood. The DC2 potential was identifiable 

in the HSC, LMPP, CD123+ GMP, and was highest in the gate identified as pre-DC2. 

DC3 were progressively enriched through the HSC, CD33+ GMP, and the pre-DC3 

gates. The HSC, LMPP, CD123+ GMP also gave rise to a significant number cDC1s 
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and pDCs. Despite the culture conditions being designed to inhibit monocyte 

generation, some monocyte potential was observed. This was seen in the 

populations giving rise to DC3, but most enriched in a phenotypically distinct 

precursor population giving rise primarily to monocytes. Detailed gating strategies 

and culture output results are shown in Appendix C (CD34+ progenitors) and 

Appendix D (CD34med/- precursors and DCs/monocytes). 

 

Figure 4.6. Schematic of the development of haematopoietic lineages from 
bone marrow, showing the DC and monocyte culture output of the phenotypic 
spaces as bar charts. 
The bulk culture output of FACS-purified bone marrow CD34+ progenitors was 

assessed with flow cytometry following 14 days of culture. The proportion of 

generated DC subsets and monocytes is expressed as % of the total cells captured 

by all DC and monocyte gates. n=3-9 healthy donors for each population. Bars 

represent mean+SEM.  



 
 

82 

4.3.3 Single cell transcriptomics of human bone marrow progenitors reveals 
two pathways of DC development distinguished by differential IRF8 expression 

The cells from the examined phenotypic spaces in healthy human BM were 

subjected to scRNA-Seq, in order to examine their transcriptomes at single cell 

resolution. The first scRNA-Seq dataset (also referred to as the “progenitor” dataset) 

contained CD34+ bone marrow progenitors. These cells were index-sorted directly 

into 96 well plates as shown in Appendix C, allowing the concurrent interrogation of 

cell-specific surface phenotype and transcriptomic analysis.  

 

Hierarchical clustering of the single cell transcriptomes alone (without considering 

surface phenotype) from the CD34+ bone marrow compartment revealed the 

presence of distinct clusters, roughly corresponding to the annotation from FACS-

guided index sorting. The clusters were annotated based on marker genes as 

determined by scRNA-Seq and related to the information from index sorting and 

culture output. HSCs and MPP were marked by vasopressin (AVP) expression, and 

were index sorted from the CD34+ CD45RA- fraction of the bone marrow. 

Megakaryocyte/erythroid progenitors (referred to as mega/erythro) were identified as 

the erythroid transcription factor GATA1-expressing cluster and were sorted as 

CD33- CMP. Early myeloid cells formed a cluster of mixed cells from CD123- CD33+ 

GMP and CD33+ CMP sort gates, marked with high MYC expression, a gene known 

to drive cell proliferation. LMPP formed a cluster made up almost exclusively of cells 

from the FACS-purified LMPP gate. The monocyte and neutrophil progenitors 

clustered closely and were both marked by myeloid cell associated genes, such as 

myeloperoxidase (MPO) and CD33 antigen expression. The monocyte progenitors, 

were distinguishable by higher lysozyme (LYZ) gene expression and were mainly 

derived from the CD123- CD33+ GMP gate, while neutrophil progenitors expressed 

neutrophil elastase (ELANE) and belonged to the CD33+ CMP sort gate. The cluster 

enriched for monocyte genes also displayed a low/medium level of IRF8 expression. 

Progenitors with in vitro cDC1, pDC, and DC2 potential, also referred to as DC 

progenitors, formed a cluster adjacent to the LMPPs. This cluster was marked with 

high IRF8 expression and contained cells from the phenotypic spaces of CD123- 

CD33low GMP, CD123low GMP, CD123med GMP.  

 

tSNE, a dimensionality reduction and clustering technique, was used to visualise the 

scRNA-Seq dataset (Figure 4.7). The cells on the tSNE plots were annotated using 
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the FACS gates (Figure 4.8 A), or the 10 clusters produced by hierarchical clustering 

(Figure 4.8 B). Both annotations correlated with the tSNE clusters. Distinct clusters 

were noted for HSC/MPP, Mega/erythro, early myeloid cells, adjacent to the 

monocyte and neutrophil progenitors, and DC progenitors, adjacent to the LMPP 

cluster. The expression of IRF8, a top marker gene for the DC cluster (Figure 4.8 C), 

defined the DC cluster on the tSNE. The monocyte cluster displayed intermediate 

IRF8 expression, lower than that of the DC cluster, and higher than the HSC/MPPs 

(Figure 4.8 D). 
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Figure 4.7. Hierarchical clustering of single cell transcriptomes of CD34+ 
progenitors isolated from BM showing marker genes that identify 10 clusters of 
all progenitors. 
The colours of the heatmap indicate normalised log2 marker gene expression, as 

determined by scRNA-Seq (p-value < 0.01, AUROC > 0.6). Antigen expression, as 

determined my FACS is displayed above the cells, along with the phenotype. 

Log2 gene expression Antigen expression 
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Figure 4.8. Visualisation of single cell transcriptomes of CD34+ progenitors. 
A - C. tSNE of 262 single cell transcriptomes of CD34+ progenitor subsets annotated 

by the gate of origin from index-linked flow cytometry (A) or 10 clusters from 

hierarchical clustering (B), or displaying log2 IRF8 gene expression (C).  

D. Violin plot of differential IRF8 expression in clusters 1 (GMP33+), 5 (HSC/MPP) 

and 8 (DC). 
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Next, diffusion maps, together with Slingshot pseudotime were used to infer the 

developmental trajectories of the single cells (Figure 4.9 A). HSCs were located at 

the centre of the diffusion map, as they represented the earliest progenitors, common 

for all examined cell types. The cells belonging to the DC cluster formed a branch of 

the diffusion map, rooting from LMPP. The monocyte and neutrophil precursors 

formed two separate trajectories with early myeloid cells at the base. Mega/erythro 

progenitors produced a fourth developmental branch. 

 
Together, the in vitro culture experiments and the scRNA-Seq data were consistent 

with a model whereby cDC1, pDC, and DC2 develop through an IRF8high pathway, 

traversing the phenotypic spaces of LMPP and the CD123+ fraction of GMP, while 

DC3 potential segregates with monocyte potential through a different, CD33+ part of 

GMP, expressing lower IRF8 levels (Figure 4.9 A and B). 
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Figure 4.9. 3D diffusion map and lineage tracing of 262 single cell 
transcriptomes from CD34+ progenitor subsets.  
A. Diffusion map showing clusters obtained via hierarchical clustering of the dataset. 

Top 3 diffusion components, displayed as the x, y and z axes of the 3D plot, were 

used as input for a pseudotime analysis. Developmental trajectories, inferred with the 

Slingshot R package (Street et al., 2018), are depicted in grey.  

B. Diffusion map displaying log2 IRF8 gene expression. Diff Comp, diffusion 

component. 

 

A 
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4.3.4 IRF8high and IRF8low pathways connect bone marrow progenitors with 
mature DC subsets 
Having identified the two DC developmental pathways within the CD34+ fraction of 

the bone marrow, the analysis was extended to potential DC precursors. To achieve 

this, a second scRNA-Seq experiment was performed on CD34 intermediate or 

negative populations defined in vitro as DC precursors generating the “precursor” 

dataset (the detailed gating strategy and culture output of these populations are 

described in Appendix D). Fully differentiated bone marrow DC subsets and 

monocytes were also included. 

 

Hierarchical clustering of the transcriptomes of cells within the new dataset identified 

the presence of 15 clusters (Figure 4.10). The CD34med and mature DC clusters were 

annotated based on marker genes and related to flow cytometric phenotype and in 

vitro culture potential. The precursors defined in previous experiments clustered 

adjacent to their mature counterparts. This was observed for all lineages, apart from 

cDC1, likely due to the rarity of precursors for this population in vivo.  

 

Five clusters related to pDCs were identified: two mature pDC clusters and three pre-

DC clusters (distinguished by CD34 protein expression). All pDCs clusters displayed 

high IRF8 expression and were marked by GZMB and SERPINF1, identified as pDC 

markers by Villani et al. (2017).  

 

Two clusters, each containing a subdivision of cDC2 were observed. Both expressed 

the cDC2 marker FCER1A, along with class II MHC genes, such as HLA-DQB1 and 

HLA-DQB2. Notably, the DC2 cluster had distinguishably higher CD5 antigen 

expression. A number of early DC2 and early DC3 clusters were observed. One of 

the early pre-DC2 clusters was marked with SIGLEC6 expression, a signature gene 

for the (AXL+) AS DC or pre-DC, described by Villani et al. (2017) and See et al, 

respectively. The early pre-DC3 clusters retained MPO expression, while also 

expressing MHC Class II genes.  

 

Two monocyte-related clusters were found: a mature monocyte cluster with high 

CD14 gene expression, and a pre-mono cluster. The pre-mono cluster retained some 

MPO expression, resembling the monocyte progenitors from the CD34+ dataset 

(Figure 4.7).    
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Figure 4.10. Hierarchical clustering of single cell transcriptomes of CD14+ 
monocytes, DCs and precursors isolated from BM, showing signature genes 
that identify 15 clusters. 
The colours of the heatmap indicate normalised log2 marker gene expression, as 

determined by scRNA-Seq (p-value < 0.01, AUROC > 0.85). Antigen expression, as 

determined my FACS is displayed above the cells, along with the phenotype. 

Antigen expression 
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tSNE analysis of the single cell transcriptomes identified four poles, corresponding to 

pDC, cDC1, the two cDC2 subpopulations, and monocytes. This was reflected by 

both the phenotypic annotation (by flow cytometry) and the hierarchical clustering 

(Figures 4.11 A and B, respectively). The poles were linked by progenitor populations 

with preserved CD34 expression (Figure 4.12 A). The two hotspots of CD34 

expression corresponded to the early pre-DC2 and early pre-DC3 cluster populations 

defined by the in vitro experiments, as well as hierarchical clustering of the scRNA-

Seq data. The early pre-DC2s exhibited high IRF8 expression and were located in 

the proximity to the DC populations derived from the IRF8-high pathway, including 

DC2, cDC1, and pDC (Figure 4.12 B). The early pre-DC3 clustered closely to pre-

monocytes and pre-DC3 and displayed medium IRF8 levels (Figure 4.11 C).  

 

Diffusion maps, in combination with pseudotime analysis were used to reconstruct 

the developmental trajectories of the DC populations (Figure 4.13). The resulting 

diffusion map showed 4 trajectories, corresponding to pDC, cDC1, monocytes, and 

cDC2, and resembled the tSNE graph. Consistent with their independent origin, DC2 

and DC3 formed two distinct branches of the cDC2 trajectory. The lineage tracing 

with Slingshot linked early pre-DC2 to the DC2 fraction, and early pre-DC3 to the 

DC3 with subsequent phenotypic convergence of the trajectories to form a cDC2 

population.  
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Figure 4.11. tSNE of 244 single cell transcriptomes sampled from mature DCs 
and classical monocytes and pre-DC populations of human BM. 
A. Single cells annotated by the gate of origin from index-linked flow cytometry. 

B. Cells annotated by 15 clusters generated from hierarchical 

clustering of the transcriptomes. 

C. Violin plot of differential IRF8 expression in clusters 10 (pre-DC3/mono) and 12 

(early pre-DC2), as determined by hierarchical clustering of single cell 

transcriptomics of pre-DC populations. 
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Figure 4.12. tSNE of 244 single cell transcriptomes sampled from pre-DC 
populations of human BM.  
The heatmap shows CD34 antigen expression, as detected by FACS (A) and log2 

IRF8 gene expression, as determined by scRNA-Seq (B).  

  

 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.13. 3D diffusion map and lineage tracing of 244 single cell 
transcriptomes pre-DC populations of human BM annotated by 15 clusters 
from hierarchical clustering.   
Diffusion map was performed following a principal component analysis, aimed at 

reducing noise. Top 3 diffusion components, displayed on the plot, were used as 

input for the pseudotime analysis. The inferred trajectories, originating from HSCs, 

are depicted in grey. Diff Comp, diffusion component. 
 

B A 
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4.3.5 Coupling the two pathways in bone marrow and peripheral blood via 
mass cytometry 
Following the detection of the two DC pathways in the CD34high and CD34med 

compartments of the human bone marrow via scRNA-Seq, the next steps were to 

validate the link between these compartments, and couple the two pathways with 

mature cells in peripheral blood. Mass cytometry (CyTOF) was chosen for these 

experiments to allow the simultaneous analysis of blood and bone marrow with 

sufficient parameter capacity to analyse the phenotype of progenitors, precursors 

and mature subsets across the same platform.  

 

To this end, a panel of 33 markers was designed, consisting of mature DC and 

monocyte markers, early DC lineage markers (including AXL, SIGLEC6, CD123, 

CD2, CD33, SIRPA), progenitor markers (including CD34 and CD117) and 

transcription factors IRF4 and IRF8, found intracellularly. PB and BM cells were 

stained with distinct CD45 antibody conjugates so they could be distinguished in 

subsequent analyses. Cells were then combined for subsequent experimental steps. 

Including initially only BM derived cells, diffusion maps, employed to infer pseudo-

temporal ordering of cells and reconstruct lineage branching, showed four branches 

dominated by different cell types: GMP, cDC1, pDC, and monocytes (Figure 4.14 A). 

The cells showed appropriate antigen expression, cDC1 being marked by CLEC9A, 

pDC – by CD123, cDC2 subsets – by FCER1, SIRPA and CD2, with mutually 

exclusive expression of CD14 and CD5 (Figure 4.14 B). The earliest progenitors 

were concentrated within the uppermost points of the diffusion map (marked by 

CD34 expression, Figure 4.14 B) and were linked to the peripheral DC populations 

via arms of precursor cells. The DC3 trajectory ran parallel with and in close 

proximity to the branch dominated by monocytes, originating from CD33+ GMP. 

DC2s were located between the other DC subsets descending from CD123low/med 

IRF8high GMP and the IRF8low DC3/monocytes. However, unlike mature pDCs and 

cDC1s, which retained IRF8 expression, differentiated DC2s downregulated this 

transcription factor (Figure 4.14 B).  
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Figure 4.14. 3D diffusion map generated with mass cytometry data for 14,000 
granulocyte-monocyte progenitors (GMP), precursor and mature DC/monocyte 
cells from human bone marrow.  
A. Diffusion map showing cells color-coded according to the gating strategies 

depicted in Appendix Figures C (progenitors) and D (precursors and DC/mono). Diff 

C, diffusion component. 

B. Heatmaps showing the expression of key markers across the diffusion map 

trajectories.  

A 
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Next, to validate the link between the two pathways originating in bone marrow and 

peripheral blood DC/mono populations, BMMC and PBMC compartments were 

analysed together. The tSNE dimensionality reduction technique was employed to 

visualise the dataset. On the resulting tSNE plot, most bone marrow cells occupied a 

central position, while the cells derived from blood were found at the peripheries 

(Figure 4.15 A). A cluster containing predominantly CD34+ progenitors was formed of 

almost exclusively bone marrow cells. In addition to that, the BMMC sample 

contained precursors and most mature populations, with the exception of CD16+ 

monocytes (Figure 4.15 B). In keeping with flow cytometric analysis, the majority of 

the cells in blood were mature DC and monocytes, with the exception of AXL+ cells 

and a few progenitors. The two DC development pathways were apparent on the 

joint BMMC and PBMC tSNE plot, when guided by the IRF8 expression (Figure 4.15 

C). The IRF8high pathway progenitors, such as cells from the LMPP and CD33low and 

CD123med GMP compartments were close to mature pDC, CD5+ DC2, and were 

adjacent to the cDC1 cluster in tSNE space. In contrast, IRF8low progenitors were 

located in the proximity of classical monocytes and the CD14+ DC3 (Figure 4.15 B). 
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Figure 4.15. tSNE analysis of mass cytometry data for a total of 75,000 
progenitors, precursors and mature DCs and monocytes from human PBMC 
and BMMC.  
A. Plot depicting cells derived from bone marrow (grey) and peripheral blood (red), 

barcoded and combined prior to CyTOF analysis. 

B. Progenitor and precursor cells from the IRF8high and IRF8low pathways, as well as 

mature DCs and monocytes, highlighted on the tSNE plot.  

C. Heatmap of IRF8 expression superimposed on the tSNE. 

A 
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4.4 Discussion 

4.4.1 Transcription factor IRF8 defines two DC developmental pathways in 
human 
Recent literature showed that DCs, originate from bone marrow progenitors and 

precursors with increasingly restricted potential. However, the identity of the pre-DC 

was unknown prior to the start of this project.  The combination of several approaches 

employed in this chapter the mapping of two pathways of DC development. A culture 

system, able to support the growth of DCs and monocytes, was used to single out 

increasingly committed progenitor and precursor populations. Single cell 

transcriptomic analyses enabled the reconstruction of lineage branching within the 

progenitor and precursor populations to infer a pseudotemporal ordering of the cells, 

linking them to mature DC subsets. And finally, computational analyses of mass 

cytometry data connected the bone marrow compartment to peripheral blood. 

 

Together, the work undertaken within this chapter revealed the presence of two distinct 

DC development pathways in human bone marrow, defined by expression levels of 

transcription factor IRF8. High IRF8 expression marked a CD123+ developmental 

pathway that gave rise to pDC, cDC1 and DC2, while the IRF8low pathway produced 

DC3, along with classical monocytes. The discovery of the IRF8high CD123+ pathway is 

in line with previous studies reporting the presence of unipotent progenitors of cDC1, 

cDC2, and pDC within the CD123+ compartment of GMP (Lee et al., 2017). However, 

earlier studies did not account for the presence of cDC2 subtypes, recently described 

in literature, and investigated the bulk CD1c+ cDC2 population.  

 

This chapter shows that the two developmental pathways are the source of the blood 

cDC2s, as the DC2 and DC3 subsets develop via different routes. DC2, the 

subpopulation bearing higher resemblance to cDC1, originates within the IRF8high 

pathway, while monocyte-resembling DC3 develops through the IRF8low pathway. 

Importantly, the data support a model whereby DC3 develop independently from 

monocytes. While the two cell types shared a “pre-mono/DC3” phenotypic gate, 

separate immediate precursors for these lineages were captured within the bone 

marrow compartment, and linked to either mature BM monocytes and DC3 via lineage 

branching reconstruction based on scRNA-Seq. In addition, DC3 cells emerged before 

monocytes in progenitor cell culture experiments (data available within the following 

publication: Cylak and Resteu et al., 2020).  
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The different levels of IRF8 requirement exhibited by cells of the IRF8hi and IRF8low 

pathways are congruent with the phenotypes exhibited by patients with primary 

immunodeficiency caused by mutations in IRF8. The bi-allelic loss of IRF8 causes 

absence of all monocytes and DC subsets (Hambleton et al., 2011; Bigley et al., 2018), 

while IRF8 haploinsuffiency primarily affects the cells developing via the IRF8hi 

pathway, which have greater requirements for this transcription factor (Cytlak and 

Resteu et al., 2020). 

 

As DCs are relatively short-lived, small numbers of bone marrow-derived cells 

constantly replenish the DC pool, traveling through blood to peripheral organs (Collin 

and Bigley, 2018). Mass cytometry analyses aligned the two pathways originating in 

bone marrow with bone marrow mature DC subsets, as well as their peripheral blood 

counterparts. The segregation of DC potential at an early stage, noted in this chapter, 

is consistent with the early lineage priming model for haematopoietic lineages in 

human (Notta et al., 2016; Velten et al., 2017).  

 

4.4.2 DC2 and DC3 markers support their functional specialisation 
A crucial part of this project was the identification of markers able to discern between 

the cDC2 subpopulations in vivo and in vitro. This was necessary in order to correctly 

assess the output of the progenitor cultures. The identified markers include lymphoid-

associated antigens CD5 and BTLA for DC2 and monocyte-associated markers CD14 

and CD163 for DC3. B and T lymphocyte attenuator BTLA, was originally identified as 

a DC2 marker in peripheral blood, but its use was hindered by the lack of expression 

in culture. The absence of BTLA expression was also noted on bone marrow DC, in 

agreement with the observation that culture produces tissue-like cells, made in Chapter 

3. The use of a second DC2 marker, CD5, which was ubiquitously expressed in blood, 

bone marrow, and culture, greatly aided the separation of ex vivo-derived cDC2 

subsets. This surface marker suggests that cDC2 subtypes might play different roles 

in immunity, as CD5 expression on DCs has a regulatory effect on their activity to 

stimulate T cells and inhibits the production of pro-inflammatory cytokines (Li et al., 

2019).  

 

Both DC3 markers identified in this project have been previously reported as markers 

of the monocyte-macrophage lineage. Pathogen recognition receptor CD14 is well 

known as a marker for classical monocytes as was shown at single cell level by Villani 
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et al. (2017). Villani and colleagues also noted that DC3 showed higher CD14 

expression than DC2. The expression of scavenging receptor and bacterial sensor 

CD163 has been previously reported mainly in human monocytes and macrophages, 

as well as on a fraction of peripheral blood DC, where it is thought to induce an 

immunostimulatory response (Maniecki et al., 2006). Overall, the markers are in 

agreement with previous findings that cDC2 subpopulations exhibit functional 

specialisation into anti-inflammatory DC2 and pro-inflammatory DC3 (Yin el al., 2017; 

Villani et al., 2017; Brown et al., 2019; Dutertre et al., 2019; Bourdely et al., 2020). 

 
4.4.3 Advances in single cell technologies help reveal the fate of DCs in human  
The investigation of DC development in the human was made possible by recent 

technological advances and novel analysis algorithms. In the last decade, the field of 

transcriptomics has moved rapidly from microarrays to bulk RNA-Seq, and more 

recently to single cell RNA-Seq. Employing single cell transcriptomics and phenotyping 

in this work allowed the characterisation of the heterogeneity of bulk progenitor and 

precursor populations at single cell level in the BM CD34+ and CD34med compartments, 

and established differential IRF8 expression as a defining feature of the two pathways 

of DC development. The use of a plate-based index-sorted approach in conjunction 

with the Smart-seq2 protocol (Picelli et al., 2014) enabled the coupling of 

transcriptomics data with cell-specific antigen expression parameters by FACS. The 

main benefit of this approach is the traceability of the flow gates for every analysed 

cell, which can be used to enrich the desired DC of pre-DC populations in the future 

via flow cytometry. In addition, antigen expression data were used in the analysis, 

where gene expression values were missing due to a phenomenon called “dropout”,  

characteristic of scRNA-Seq data. Dropouts occur due to low RNA input of these 

experiments and the failure of mRNAs to be reversed transcribed (Andrews and 

Hemberg, 2019).  

 

The chapter also employed novel tools designed specifically for scRNA-Seq data.   

Clustering is a common approach for the identification of groups of cells or samples. 

However, this can be challenging due to high levels of noise specific to scRNA-Seq, 

combined with the high-dimensionality of the transcriptome. Recent methods, such as 

the Single-Cell Consensus Clustering (Kiselev et al., 2017), have been developed with 

this in mind. SC3 is a method for unsupervised clustering, based on techniques such 

as PCA and k-means, and functions by combining multiple clustering solutions through 
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a consensus approach. Oher common computational approaches specific to scRNA-

Seq aim to perform trajectory inference in order to arrange the single cells in an order 

that represents their developmental trajectories. Over 70 tools for pseudotemporal 

ordering have been developed in the last years (Saelens et al., 2019). The choice of 

software for the analysis of DC haematopoiesis was determined by the ability to 

recreate multiple lineage branching events. This was crucial for the very complex 

human bone marrow scRNA-Seq datasets, as they encompassed a multitude of 

closely related lineages, including at least 3 DC subsets. The Slingshot software, 

designed for inferring continuous, branching lineage structures (Street et al., 2018), 

was selected for this analysis. The software is flexible enough to handle arbitrarily 

many branching events and allows for the incorporation of prior knowledge, such as 

clustering information (Human Cell Atlas, https://www.humancellatlas.org). In addition, 

it was highly ranked by a study aiming to benchmark single-cell trajectory inference 

methods based on cellular ordering, topology, scalability and usability (Saelens et al., 

2019).  

 
The experiments in this chapter were also made possible by recent advances in 

cytometry. Florescence flow cytometry is the most commonly used platform for 

identifying human DC, and has been invaluable for analysing surface antigens and 

intracellular molecules in cells derived from human peripheral blood, as well as 

single-cell suspensions of tissues including skin, lung, intestine, liver, and body fluids 

(Collin and Bigley, 2018). However, flow cytometry is currently limited to detecting 

15-18 antigens. This technology uses fluorophores with overlapping emission 

spectra, which must be mathematically compensated, limiting the number of 

parameters that can be assessed simultaneously (Gadalla et al., 2019). Mass 

cytometry, a next generation single-cell proteomic analysis technique, utilises rare 

metal isotopes which have relatively little overlap (<2%), as each atom’s time of flight 

is determined by its mass, in order to overcome the limit of multiplexing capability of 

flow cytometry (Gadalla et al., 2019). CyTOF allows the simultaneously assess the 

expression of up to 40 antigens, facilitating the analysis of complex cell populations.  

 

In this chapter, the mass cytometry technique enabled the use of a panel of 33 

antigens to align the DC developmental pathways in bone marrow and peripheral 

blood. However, the mass cytometry technique has a number of limitations, including 

a lower throughput than flow cytometry. It is also a destructive method, and the cells 
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used as input are nebulised, then analysed by mass spectrometry, and cannot be 

retrieved for further experiments, such as cell culture or sequencing. 

 

As many single cell methods produce high dimensional data, a number of algorithms 

have been developed to reduce dimensionality and produce two- or three-

dimensional visualisations where similar cells are grouped together. t-Distributed 

stochastic neighbour embedding is a non-linear dimensionality reduction technique, 

particularly suitable for the visualisation of large high dimensional datasets (van der 

Maaten, 2008). It was indispensable for the analysis of the scRNA-Seq, in order to 

obtain a visualisation of the dataset and the grouping defined by hierarchical 

clustering within the SC3 software. tSNE was also used for the analysis of the 

CyTOF data, and helped directly compare the groups of cells present in the bone 

marrow and in peripheral blood. A different approach was undertaken to map the 

cellular differentiation in these data, as during development cells follow continuous 

branching lineages, instead of forming distinct clusters. Diffusion maps were the 

technique of choice, as they deal with the problem of defining differentiation 

trajectories, and preserve the global relations between data points, are robust to 

noise, and are insensitive to the sampling density, aiding the detection of rare cell 

populations (Angerer et al., 2015).   

 

4.5 Summary and further work 
The experiments undertaken in this chapter support the existence of two 

developmental pathways giving rise to dendritic cells in human bone marrow (Figure 

4.16). High IRF8 expression defines a CD123+ DC developmental pathway giving 

rise to pDC, cDC1 and DC2. In contrast, DC3 arise through an IRF8low pathway with 

precursors independent from monocytes.  



 
 

102 

 

 

Figure 4.16. Schematic summary of the main findings from Chapter 4. 
Human DCs subsets develop in the bone marrow via two pathways marked by IRF8 

expression. The IRF8high pathway gives rise to pDC, cDC1 and DC2, while the 

IRF8low pathway produces DC3 and classical monocytes. The traditional progenitor 

cell classification by flow cytometry is displayed as black rectangles and includes 

haematopoietic stem cells (HSC), lymphoid-primed multipotent progenitors (LMPP) 

and granulocyte-macrophage progenitors (GMP). 

 

To derive further insights into the role of IRF8 in DC development, future work will 

involve the analysis of a scRNA-Seq dataset comprising of cells derived from the 

bone marrow of patients with IRF8 mutations. This will allow the detailed mapping of 

pathways and cells affected by IRF8 deficiency.  

 

To further investigate the early lineage priming model in human, supported by this 

work, future efforts should focus on back-tracing the developmental pathways in 

primitive populations of the bone marrow. This could be achieved via single cell 

culture of human HSC/MPP.  

 

Finally, the two pathways of DC development and the cells they give rise to must be 

explored in other settings (e.g. inflammation and disease) and expanded to other 

tissues. 
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Chapter 5. Optimisation of the low cell ChIP-Seq protocol   
 
Questions answered in this chapter: 

1. Can a ChIP-compatible IRF8 antibody be identified? 

2. What are the optimal sonication conditions for performing low cell IRF8 ChIP-

Seq on culture-derived DCs?  

3. Does cell number impact the quality of the resulting ChIP-Seq libraries? 

 

5.1 Introduction  
Protein–DNA interactions take place when a protein binds a DNA molecule and often 

result in the regulation of the biological function of the DNA. DNA-binding proteins 

include transcription factors, involved in the process of transcribing DNA into RNA, 

and histones, able to control DNA accessibility. Chromatin immunoprecipitation, 

followed by high-throughput sequencing analysis is the gold-standard technique for 

examining the distribution of transcription factors and histone modifications in a 

genome-wide manner (Kidder et al., 2011). The ChIP-Seq method is indispensable 

for studying the multitude of biological processes that depend on protein-DNA 

interactions, including cell differentiation and function, cell cycle progression, DNA 

replication, recombination, repair, gene expression, chromosome stability, and 

epigenetic silencing (Mundade et al., 2014). 

 

IRF8, also known as interferon consensus sequence-binding protein (ICSBP), is an 

important immune transcription factor, playing a critical role in the development and 

homeostasis of DC subsets. Most studies of IRF8 have been performed in mice and 

its role in humans is not well understood. Applying the chromatin immunoprecipitation 

(ChIP) technique to its study could help gain significant insights into human immune 

biology and transcriptional programmes and signaling pathways regulated by IRF8 in 

human. First, this method can be applied to study the role of IRF8 in mature DC, an 

experiment that has not previously been performed in human due to the rarity of DC. 

This issue has been recently addressed via the development of a novel culture 

system, confirmed to produce large numbers of bona fide DC in Chapter 3 of this 

work. Next, the study could be extended to understand the behaviour of IRF8 during 

DC differentiation and in immune responses, e.g. to interferon stimulation.   
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5.1.1 The ChIP-Seq method 
ChIP-Seq is an established and powerful technique for the analysis of protein-DNA 

interactions. However, to obtain accurate and reproducible results, a number of steps 

in the ChIP-Seq assay require careful optimisation. 

 

At the start of most ChIP-Seq protocols (outlined in Figure 5.1), the proteins are 

crosslinked to the DNA with formaldehyde. Formaldehyde readily permeates cell 

membranes and acts in several steps, which result in the formation of covalent bonds 

between macromolecules. Small proteins, such as Tris or glycine, interact with 

formaldehyde, and are used to quench the crosslinking reaction (Hoffman et al., 

2015). Alternative crosslinking methods have also been described (Zeng et al., 

2006). Chromatin shearing is then performed in order to obtain smaller DNA 

fragments, optimal for immunoprecipitation (IP) and sequencing. DNA shearing is 

often achieved via mechanical methods, such as acoustic sonication, or enzymatic 

digestion. Sonication is the preferred approach, as it produces evenly distributed 

fragments, while the enzymes used for digestion often have a preference for specific 

sites, without regard for the distance between them, and may introduce bias into the 

experiment. Sonication consists of several ON/OFF cycles, aiming to produce 200-

1200bp DNA fragments. Typically, samples are immersed in a cold water bath (4°C) 

during sonication. The shearing is achieved during the ON setting. Throughout the 

OFF setting, the sonication is paused and the samples are cooled down to prevent 

DNA degradation. Next, the DNA-binding protein, attached to its specific DNA 

fragments, is immunoprecipitated using a specific ChIP-grade antibody. The antibody 

is incubated with the lysate, along with agarose or sepharose beads covered in an 

immunoglobulin-binding protein, such as Protein A, G, A/G, or L. The protein-DNA 

complexes are then eluted off the beads and descrosslinked, commonly via a 

digestion at 60-65°C, lasting a few hours to overnight. The protein-free DNA is 

extracted and purified, and sequencing libraries are prepared. The DNA 

concentration and fragment size distribution are assessed, and the libraries are 

sequenced. 

 

The ChIP-Seq assay can be difficult to optimise, as multiple aspects, such as the 

duration of the crosslinking, the optimal number and length of sonication cycles, the 

number of PCR amplification rounds applied during preparation of the sequencing 

library, as well as the sequencing depth have a major impact on the quality of the 
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ChIP-Seq dataset (Mendoza-Parra and Gronemeyer, 2014). In addition, the following 

steps of the ChIP-Seq experimentation may give rise to artefacts: (1) DNA shearing: 

open chromatin regions are easier to shear than closed chromatin regions and 

produce higher background signals; (2) antibody cross reactivity during IP; (3) base-

composition bias during sequencing (Kidder et al., 2011). Two types of controls are 

commonly used in ChIP-Seq experiments: input chromatin and samples 

immunoprecipitated with nonspecific IgG antibodies. The use of input chromatin is 

generally recommended, as it provides enough DNA for a more complex sequencing 

library and requires less input material (Kidder et al., 2011), which is ideal when 

studying rare cell types, such as DC. However, the controls do not account for the 

antibody cross-reactivity, and antibody validation must be performed through 

independent experiments.  

 

The Low Cell ChIP-Seq protocol (Active Motif, Catalog No. 53084) was selected for 

the ChIP-Seq experiments in this chapter, as it provided reagents for a complete 

ChIP-Seq workflow including chromatin preparation, immunoprecipitation and 

Illumina-compatible next generation sequencing library preparation. In addition, the 

protocol has been designed specifically for the use on limited cell numbers of 50,000 

and above. However, the number and length of the sonication cycles and the IRF8 

antibody required further testing and optimisation. 
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Figure 5.1. Schematic of the ChIP-Seq workflow. 
The schematic outlines the common steps in most ChIP-Seq protocols: formaldehyde 

cross-linking, cell lysis, sonication, IP, elution and decrosslinking of protein-DNA 

complexes, DNA extraction, library preparation, and sequencing. 

 



 
 

107 

5.1.2 Guidelines for antibody testing 
The success of the ChIP-Seq assay relies heavily on the quality of the selected 

antibody. To ensure the validity of the results, a ChIP-grade antibody, previously 

validated for this application by the vendor, must be utilised for the ChIP-Seq assay. 

Alternatively, antibody testing for ChIP suitability can be performed by the user.  

 

The Encyclopaedia of DNA Elements Consortium (ENCODE; 

https://www.encodeproject.org) is an ongoing international collaboration of research 

groups set up with the goal to build a comprehensive parts list of functional elements 

in the human genome. ENCODE release curated, uniformly processed and validated 

experiments to the scientific community and provide strict guidelines to ensure high 

quality data standards are met. According to the ENCODE consortium, antibody 

deficiencies are of two types: poor reactivity against the intended target (low 

sensitivity) and cross-reactivity with other DNA-associated proteins (poor specificity) 

(Landt et al., 2012). The ENCODE consortium guidance recommends performing 

both primary and secondary characterisation for antibodies against transcription 

factors to ensure that they are suitable for ChIP-Seq experiments. The suggested 

characterisation workflow is outlined in Figure 5.2. The starting method 

recommended for primary characterisation is western blotting. The ENCODE 

consortium state that in order to pass primary characterisation, the antibody must 

detect more than 50% of bands on a western blot. The size of the detected protein 

must be within 20% of the size predicted from amino acid sequence. If the antibody 

fails the test, in can be rescued by an immunofluorescence assay. Multiple options 

are provided for secondary characterisation, including small interfering RNA 

knockdown, IP/mass spectrometry, IP with epitope-tagged version of target, and 

motif enrichment.  

 

A high quality IRF8 antibody (ICSBP Antibody (C-19): sc-6058, Santa Cruz 

Biotechnology, Inc) has been previously successfully used for ChIP-Seq experiments 

in human (Shin et al, 2011; Mohaghegh et al., 2019). Unfortunately, this antibody has 

been discontinued and was therefore unavailable for this project. In addition, the 

ENCODE database did not contain any validated IRF8 antibodies suitable for this 

work. Consequently, a new ChIP-grade antibody had to be identified prior to 

performing the IRF8 ChIP-Seq assay. 
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Figure 5.2. Flowchart of antibody characterisation assays, as outlined by 
ENCODE (adapted from Landt et al., 2012). 

One assay is required for primary characterisation. Immunoprecipitation or western 

blotting are suggested as starting experiments. In case of a fail, the characterisation 

ca be saved via a successful immunofluorescence experiment. Once the primary 

characterisation is completed, the secondary characterisation may be performed via 

one of the following approaches: siRNA knockdown, IP against different region of 

target protein or complex, IP coupled with mass spectrometry, IP with epitope tagged 

version of protein, or motif enrichment.  
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5.2 Materials and methods  

5.2.1 Shipment and rehydration of expression vectors 
The vectors pIRES2-EGFP-HA-IRF8 (IRF8 vector) and pIRES2-EGFP (empty vector) 

were kindly provided by Dr Gina Doody from the School of Medicine at the University 

of Leeds. The plasmid DNA was shipped and Whatman paper at room temperature. 

On receipt, the 1-2μg plasmid DNA, were placed in 500μl TB buffer (Invitrogen) for 6 

hours at 4°C. After a brief centrifugation, 5μl of the supernatant (equivalent to 10-

20ng DNA) were used for transformation into competent E. coli cells (Promega).  

 

5.2.2 Preparation of LB medium supplemented with kanamycin 
For the preparation of LB medium for bacterial culture, 20.6g Lennox LB Broth 

(Sigma) were stirred with a magnetic stirrer until suspended in 1L water, then 

autoclaved at 121°C for 15 minutes to sterilise. The solution was allowed to cool 

down before the addition of antibiotic kanamycin (Sigma) to obtain a working 

concentration of 50µg/mL, and stored at 4°C. 

 

5.2.3 Preparation of LB agar plates supplemented with kanamycin 
For the preparation of agar plates for bacterial culture, 30.5g of Luria low salt LB 

Broth with agar (Sigma) were heated while stirring until dissolved in 1L water, then 

autoclaved at 121°C for 15 minutes to sterilise. The solution was allowed to cool 

slightly before the addition of antibiotic kanamycin (Sigma) to obtain a working 

concentration of 50µg/mL, then poured into petri dishes (Sigma) and allowed to 

solidify. The plates were stored upside down at 4°C for up to 2 weeks. 
 

5.2.4 Bacterial culture and transformation 
The Promega “single-use cells” protocol was used for the bacterial transformation. 

Briefly, the competent cells were thawed and mixed with 10-20ng plasmid DNA and 

placed on ice for 30 minutes. Cells were then heat-shocked in a water bath at 42°C 

for 15 seconds, and placed on ice for 2 minutes. 450μl room temperature SOC 

medium (New England Biolabs) were added to the cells, and incubated at 37°C for 1 

hour with shaking. 100μl and 50μl undiluted cells were plated on LB agar plates, 

supplemented with 50mg/ml Kanamycin and grown overnight at 37°C. The next day, 

colonies were picked and grown overnight at 37°C with shaking in LB medium 

(Sigma) supplemented with 50mg/ml Kanamycin.  
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5.2.5 Plasmid DNA extraction and quantification 
The plasmid DNA was extracted the next day after transformation, using the QIAprep 

Spin kit (Qiagen), then quantified with a NanoDrop spectrophotometer (Thermo 

Scientific). 

 

5.2.6 Restriction enzyme digestion and gel electrophoresis 
Restriction enzyme digestion was performed using restriction enzymes EcoRI, BglII, 

and BamHI (Promega), following manufacturer’s instructions. Gel electrophoresis 

was performed on a 1% agarose gel with the addition of 0.01% GelRed nucleic acid 

stain (Biotium) at 80V for 60 minutes. 300-1,500ng undigested plasmid DNA were 

loaded as control. The gel was visualised using the Odyssey Imaging System (LI-

COR Biosciences). 

 

5.2.7 Sanger sequencing of vectors 
Vectors were sent to GATC Biotech, Germany for Sanger sequencing. 5μl purified 

plasmid DNA at a concentration of 80-100ng/µl were aliquoted in 1.5ml Eppendorf 

tubes (Sigma) and shipped at room temperature. 

 

5.2.18 Culture and transfection of HEK293T cells 
HEK293T cells were defrosted as described in Chapter 2 section 2.3.3 and placed in 

culture in a T25 flask (Sigma) with 5mL DMEM medium, prepared as described in 

section Chapter 2 section 2.1.7. The cells were passaged twice into T75 flasks 

(Sigma) when they reached 70-80% confluency. The cells were then counted using a 

haemocytometer (Hawksley) and seeded into 6 well plates (Costar) to a density of 

300,000 cells per well in 2ml DMEM culture medium (Gibco). The seeded cells were 

incubated overnight at 37°C in a humidified atmosphere at 5% CO2. 

 

For each of the vectors (pIRES2-EGFP-HA-IRF8 and pIRES2-EGFP), 6μg plasmid 

DNA were added to 610μl unsupplemented DMEM medium, and vortexed at full 

speed for 5 seconds. 30μl of 1% Polyethyleneimine (Sigma-Aldrich) were added to 

the transfection mixes. The mixes were then vortexed at full speed for 10 seconds, 

and incubated for 20 minutes at room temperature.  Following an overnight 

incubation of the seeded cells at 37°C and 5% CO2, 200μl of the transfection mixes 
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were added to each well of the 6 well plates (Costar) in triplicates for each of the 

vectors.  

 

Fluorescence and light microscopy were performed 23 hours post-transfection using 

EVOS FL Cell Imaging System (Life Technologies). The cells were lysed on ice 27 

hours post-transfection with 200μl RIPA cell lysis buffer (Cell Signaling Technology) 

per well, supplemented with cOmplete EDTA-free Protease Inhibitor Cocktail 

(Roche). The triplicates were combined for each vector, yielding lysates containing 

approximately 1.8 million cells, considering the 24-30 hours doubling time of the 

HEK293T cell line (DSMZ; https://www.dsmz.de). The lysates were spun down at full 

speed (21,000g) for 10 minutes at 4°C.  The pellets were discarded and the clarified 

lysates were retained. 30μl of the each of the lysates were frozen at  

-20°C for western blotting the following day, and the rest of the supernatant was used 

for immunoprecipitation immediately.  

 

5.2.9 Immunoprecipitation 
For each IP reaction, 1μg IRF8 antibody (Santa Cruz (E-9): sc-365042) or 1 μg 

Purified Mouse IgG2b, κ isotype control antibody (Biolegend), were added to 570μl 

lysate, and incubated on a rocker (Bibby Stuart) at 4°C overnight. The following day, 

20μl agarose beads coated with Protein G (Cell Signaling Technology) were added 

to each of the lysate and antibody mixes and incubated on a rocker (Bibby Stuart) at 

4°C for 60 minutes. The lysates were spun down at 500g for 2 minutes, and the 

supernatant was discarded. The pellets were washed 4 times with 0.8ml RIPA cell 

lysis buffer (Cell Signaling Technology). 

 

5.2.10 Western blotting 
A loading mix was prepared by adding 20μl reducing agent 10X NuPAGE Sample 

Reducing Agent (Invitrogen) to 180μl sample loading buffer 4X NuPAGE LDS 

Sample Buffer (Invitrogen). For lysates, 10μl loading mix was added to 30μl lysate. 

Considering the HEK293T doubling time of 24-30 hours, the lysates contained 

approximately 90,000 cells. For IPs, 10μl loading mix and 5μl RIPA cell lysis buffer 

(Cell Signaling Technology) were added to the washed IP beads prepared in the 

immunoprecipitation step. All samples were boiled at 95°C for 5 minutes. The lysates 

were loaded onto a 7.5% Mini-PROTEAN TGX Precast Protein Gel (BIO-RAD). The 
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IPs were centrifuged at 500g for 2 minutes prior to loading onto the same gel. The 

gel was run in Tris/Glycine/SDS running buffer (BIO-RAD) at 120V for 15 minutes, 

then at 150V for 40 minutes. The transfer was performed in Tris/Glycine Buffer 

transfer buffer (BIO-RAD) at 100V for 90 minutes. The membrane was probed with 

the following primary antibodies: IRF8 antibody (Santa Cruz (E-9): sc-365042, 1:500 

dilution), HA-probe antibody (Santa Cruz (F-7): sc-7392, 1:200 dilution), and Vinculin 

antibody (Abcam ab129002, 1:10,000 dilution). A secondary anti-mouse κ light chain 

antibody (Santa Cruz m-IgGκ BP-HRP: sc-516102) was used in combination with all 

primary Santa Cruz antibodies, which were raised in mice. A secondary anti-rabbit 

light chain antibody (Merck Millipore MAB201P, 1:20,000 dilution) was used with the 

primary Vinculin antibody (Abcam), raised in rabbits. The visualisation was performed 

using the chemiluminescent Pierce ECL Substrate (ThermoFisher) and the Odyssey 

Imaging System (LI-COR Biosciences).  

 

5.2.11 Sorting of bone marrow cells for western blotting and cell culture 
Bone marrow cells from hip replacement procedures or haematopoietic stem cell 

transplantation donors were stored and defrosted as described in Chapter 2 

subsection 2.3.3. The cells were stained and FACS-purified as described in Chapter 

2 subsection 2.3.6 using fluorescently-conjugated antibodies listed in Table 3.1. 

CD34+ Lineage- cells were retained for culture and CD34- Lineage- cells were lysed 

with RIPA cell lysis buffer (Cell Signaling Technology) and used for western blotting, 

as part of the primary characterisation of the Santa Cruz (E-9): sc-365042 antibody, 

performed in the same manner as for the lysates in section 5.2.10. 

 

5.2.12 Co-culture of bone marrow progenitors with OP9-DL1 cells 
CD34+ Lineage- progenitors were co-cultured with OP9-DL1 cells for 14-21 days in 

order to enrich the output in cDC1s, as described in Chapter 2 subsection 2.3.5.   

 

5.2.13 Chromatin immunoprecipitation 
The Low Cell ChIP-Seq kit and Next Gen DNA Library Kit (Active Motif) were used 

for cell fixation, immunoprecipitation, DNA extraction, and sequencing library 

preparation, according to manufacturer’s instructions. The workflow of the protocol is 

outlined in Figure 5.3. An additional cell sorting step was introduced at beginning of 

the protocol in order to purify the populations used in the ChIP-Seq experiment. 
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Cultured cDC1s were FACS-sorted into siliconized tubes (Active Motif) with 300µl 

MEM-a medium (Gibco) and kept on ice. The cells were spun down at RT at 1,300g 

for 5 minutes and resuspended into 50µl PBS (Active Motif). The cells were then 

fixed for 10 minutes at RT with 5µl of Complete Cell Fixation Solution, the 55µl 

fixation reaction containing 1% formaldehyde. The fixation was quenched for 5 

minutes with the Stop Solution (Active Motif) at RT. The lysate was transferred into 

1.5ml Bioruptor Pico microtubes with caps (Diagenode) and sonicated on a rotating 

carousel with 6 slots in the Bioruptor Pico device (Diagenode). 2-3 tubes were 

sonicated at a time, balanced on opposite sides of the carousel. As part of the 

optimisation, two sonication settings were tested: (1) 10 cycles of 30 seconds ON 

and 30 seconds OFF, suggested as a starting setting by the Low ell ChIP-Seq kit, 

and (2) 6 cycles of 30 seconds ON and 90 seconds OFF, suggested by Diagenode 

for our sample volume and target DNA fragment size. Following sonication, lysates 

were stored at -80°C. They were thawed on ice prior the pre-clearing step of the 

protocol. IP was performed with 3µg IRF8 antibody (Santa Cruz (E-9): sc-365042). 

The protein-DNA complexes were then eluted, and decrosslinking was performed 

overnight at 65°C in a thermocycler (Applied Biosystems). DNA was extracted and 

stored at -20°C until it was thawed at room temperature and used for sequencing 

library preparation. A two-sided SPRI clean-up was performed after the PCR to 

ensure an appropriate size distribution of DNA fragments for sequencing. 

 

5.2.14 Quantification of sequencing libraries 
The DNA concentration, molarity, and fragment size distribution of the sequencing 

libraries were assessed with the Agilent Bioanalyzer 2100 using the high sensitivity 

DNA kit (Agilent). 
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Figure 5.3. Flow chart of the low cell ChIP-Seq process (Active Motif).  
The 5-day protocol includes the start-to-end processing of fresh cultured or primary 

cells up to the sequencing stage. On day 1, cells are collected into siliconized tubes, 
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fixed with formaldehyde, and sonicated. On day 2, the agarose beads coated in 

Protein G are prepared for the pre-clearing and IP reactions. The chromatin is then 

thawed and the pre-clearing reaction is performed, followed by an overnight 

immunoprecipitation with the desired antibody. On day 3, agarose beads are added 

to the samples. After 3-4 hours of incubation, and the antibody-bound protein-DNA 

complexed are eluted off the beads. The cross-linking induced by formaldehyde on 

day 1 is reversed overnight. The DNA in extracted on day 4, and used for library 

preparation on day 5. The library construction comprises multiple steps, including two 

repair steps, two ligation steps, and a PCR amplification step. 

 

5.3 Results 

5.3.1 Candidate antibodies for characterisation  
Initially, the IRF8 (D20D8) Rabbit mAb #5628 (Cell signaling) was chosen for testing. 

According to information provided by its manufacturer, this antibody is suitable for the 

following applications: western blotting, immunoprecipitation, ChIP, ChIP-Seq. 

However, the Cell signaling IRF8 antibody failed to detect its target by western 

blotting in the IRF8-expressing lymphoblast-like Raji cell line (Figure 5.4). A band 

was expected in the western blot analysis at 48kDa, which is the atomic mass of the 

most common splice variant of the IRF8 protein (Human Protein Atlas; 

https://www.proteinatlas.org). In addition, this antibody lacked specificity, as it 

detected numerous bands in the HeLa cell line, which does not express IRF8 

(Human Protein Atlas; https://www.proteinatlas.org/). Therefore, the testing of this 

antibody was not pursued further.   
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Figure 5.4. Western blot of Raji and HeLa cell lines probed with the primary 
antibody IRF8 (D20D8) Rabbit mAb #5628 (Cell signaling).  
Mouse Anti-Rabbit light chain, HRP conjugate Antibody (Merck Millipore MAB201P) 

directed against the species of the primary antibody, was used as secondary 

antibody. Lysates containing 300,000 IRF8-expressing Raji cells and 300,000 IRF8- 

HeLa cells were used in the analysis. The ladder shows atomic mass of proteins in 

kDa.  
 

Next, the ICSBP Antibody (E-9): sc-365042 (Santa Cruz Biotechnology) was selected 

for validation. Its applications recommended by the supplier include IP, western 

blotting, immunohistochemistry, and immunofluorescence. In addition, the antibody 

has been successfully used for generating publication-quality data (Arifuzzaman, et 

al. 2017, Bouamar, et al. 2013). The antibody is a mouse monoclonal IgG2b (kappa 

light chain), raised against amino acids 357-426 (C-terminus) of the IRF8 protein of 

human origin. Analysis of the 70-amino acid long sequence targeted by the antibody 

with the Protein Basic Local Alignment Search Tool (BLASTP) against the NCBI 

Protein Reference Sequences database, revealed that the sequence shared 100% 

identity with all three IRF8 isoforms present in the database. Up to 31% identity was 

also shared with three isoforms of the NLRX1 protein. This minor resemblance did 

not present a concern for the ChIP-Seq experiment, particularly because the NLRX1 

protein does not bind DNA (Xiao et al., 2012). Critically, BLASTP analysis of amino 

acids 357-426 of the IRF8 protein did not identify any significant alignments to other 
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DNA-binding members of the IRF family, in particular to IRF4, which shares strong 

homologies with IRF8 and could therefore contaminate the assay. 

 

5.3.2 Primary characterisation 
Primary characterisation of the ICSBP Antibody (E-9): sc-365042 (Santa Cruz 

Biotechnology) was performed via western blotting of CD34- Lineage- bone marrow 

cells. This population contained the bulk of DCs, including cDC1s, cDC2s, and pDCs, 

as well as a small proportion of other immune cells. The CD34- Lineage- cells were 

expected to express high levels of IRF8, sufficient for detection by western botting. In 

addition, testing the bulk of DCs would identify any cross reactivity of the antibody 

with proteins expressed by any of the DC subsets. Western blotting was performed 

with biological duplicates, derived from two different bone marrow samples. The 

western blot was then probed with the candidate ChIP antibody anti-ICSBP (E-9): sc-

365042 (Santa Cruz Biotechnology). 

 

A single band was detected in both of the processed biological replicates at around 

50kDa (Figure 5.5), corresponding to the atomic mass of the most common splice 

variant of the IRF8 protein. No other bands were detected on the membrane. This 

fulfilled the ENCODE criteria for primary characterisation, allowing to proceed with 

secondary characterisation. 
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Figure 5.5. Western blot of primary CD34- Lineage- cells from human bone 
marrow, probed with IRF8 antibody ICSBP (E-9): sc-365042 (Santa Cruz 
Biotechnology).  
The labels above the lanes denote two bone marrow samples derived from different 

donors. 500,000 cells were lysed and loaded in the lane labelled BM1 and 1,000,000 

cells – in BM2. The ladder shows atomic mass of proteins in kDa. 

 

5.3.3 Secondary characterisation  
On the successful completion of the primary characterisation, secondary 

characterisation of the ICSBP Antibody (E-9): sc-365042 (Santa Cruz Biotechnology) 

was performed via IP and probing of the epitope-tagged version of IRF8. The 

HEK293T human epithelial cell line was selected for this experiment. The cell line 

does not express IRF8 (Human Protein Atlas; https://www.proteinatlas.org), and 

would serve as a negative control in IP experiments. HA-tagged IRF8 was intended 

to be introduced into the HEK293T cells via transfection, following the confirmation of 

Ladder    BM1   BM2 
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vector identities. The epitope tagging, which is a procedure whereby a short well-

known amino acid sequence is attached to a protein under study, would allow the 

detection of heterologously expressed IRF8 with an HA antibody, as well as with the 

candidate IRF8 antibody. 

 

5.3.3.1 Confirmation of vector identities  

The vectors used in the transfection experiment were gratefully received from Dr 

Gina Doody (University of Leeds) and propagated in E. Coli. The bacteria that 

incorporated the plasmids were selected using agar plates and medium containing 

kanamycin, as the vectors featured an antibiotic resistance gene. The IRF8-

containing vector (pIRES2-EGFP-HA-IRF8) used for transfection is described in 

Figure 5.6 A. This vector was sequenced to confirm that the insert maintained the 

correct orientation and had an appropriate size (Figure 5.6 B). The “empty” vector 

with no gene insert (pIRES2-EGFP, Clontech), was used to control for factors such 

as transfection-induced apoptosis and is described in Figure 5.7 A. The multiple 

cloning site (MCS) of the “empty” vector, where the IRF8 gene and the HA-tag were 

inserted to create the pIRES2-EGFP-HA-IRF8 vector, is displayed in Figure 5.7 B.  

 

Restriction enzyme digestion, followed by gel electrophoresis were performed in 

triplicates in order to further confirm the identities of the two vectors (Figure 5.8). 

Undigested plasmids were loaded alongside vectors digested using restriction 

enzymes BglII and EcoRI. For the “empty” vector, the digestion was expected to 

produce fragments similar in size to a 5.3kb linearised plasmid, as the two restriction 

recognition sites are located in close proximity to each other (Figure 5.7 B). For the 

IRF8-containing vector, the restriction digestion was expected to excise the DNA 

fragment encoding the HA-tag and the IRF8 gene with the combined length of 

1,335bp and produce a second, 5,288bp-long DNA fragment, containing the rest of 

the plasmid (Figure 5.6 A). As expected, a single DNA fragment was produced as a 

result of the “empty” vector digestion and two fragments were produced when 

digesting the IRF8 vector (wells labelled with “D” in Figure 5.8). The produced 

fragments corresponded to the predicted size for all replicates for both the IRF8-

containing (1.3kb and 5.3kb) and the empty vector (5.3kb). All undigested plasmids 

(“U”) formed multiple bands, representing the different plasmid forms, such as nicked 

and supercoiled. 
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Figure 5.6. The pIRES2-EGFP-HA-IRF8 expression construct. 
A. pIRES2-EGFP-HA-IRF8 vector map, displaying restriction recognition sites used 

for restriction enzyme digestion in this chapter. Unique cutters are shown in bold. The 

vector contains features similar to those of the pIRES2-EGFP vector (Figure 5.7), 

with the exception of the multiple cloning site. The MCS was exploited for inserting 

the IRF8 gene into the “empty” vector. 

B. Sanger sequencing results for the pIRES2-EGFP-HA-IRF8 vector using the CMV 

promoter forward primer. The 963bp-long read contained the sequence encoding the 

HA-tag, as well as the 5’ end of the IRF8 gene. 

 

 

 

 

 

B 

A 
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Figure 5.7. The pIRES2-EGFP expression construct. 
A. Vector map of pIRES2-EGFP. The plasmid contains the following features at the 

specified locations: human cytomegalovirus (CMV) immediate early promoter: 1–589, 

multiple cloning site (MCS): 591–665, internal ribosome entry site (IRES) sequence: 

666–1250, enhanced green fluorescent protein (EGFP) gene: 1254–1973, SV40 

early mRNA polyadenylation signal: 2096–2217, f1 single-strand DNA origin: 2224–

2679, bacterial promoter for expression of KanR gene 2706–2810, SV40 origin of 

replication: 3020–3155, SV40 early promoter/enhancer: 2812–3169, 

kanamycin/neomycin resistance gene: 3204–3998, herpes simplex virus (HSV) 

thymidine kinase (TK) polyadenylation signals: 4234–4252, pUC E. coli plasmid 

replication origin: 4583–5226. 

B. Enlarged view of the pIRES2-EGFP multiple cloning site. The 75bp-long MCS 

contains restriction recognition sites for numerous commercially-available restriction 

enzymes. 

A 

B 
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Figure 5.8. Gel electrophoresis of the IRF8-containing vector pIRES2-EGFP-HA-
IRF8 (top) and the empty vector pIRES2-EGFP (bottom). 
The experiment was performed in triplicates picked from different bacterial colonies. 

The wells labelled with “U” were loaded with undigested vectors. Plasmids digested 

with restriction enzymes BglII and EcoRI were loaded in the wells labelled with “D”. 

The size of the fragments in kilobases is depicted on the left by the well containing 

the ladder. 
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5.3.3.2 Immunoprecipitation and western blotting of epitope-tagged IRF8 protein 

Following the confirmation of the vector identities, the plasmids were used for 

transfection into HEK293T cells. The success of the transfection was assessed with 

fluorescence microscopy. This was made possible by the presence of a gene 

encoding the Enhanced Green Fluorescent Protein (EGFP) in both vectors. 

Microscopy confirmed that the transfection was successful for both vectors (Figure 

5.9).  

 

 

 

 

Figure 5.9. Overlay of light and fluorescence microscopy images for HEK293T 
cells transfected with the IRF8-containing vector (left) and the empty vector 
(right).  
Light microscopy and fluorescence microscopy in the GFP channel were performed 

23 hours post-transfection with Polyethylenimine. The same microscopy settings 

were used to produce both images. The size of the bars is 400 microns.  

 

Once the success of the transfection was confirmed via fluorescence microscopy, the 

cells were lysed and subjected to IP followed by western blotting, or to western 

blotting alone (Figure 5.10 A). Lysates were probed with the candidate IRF8 antibody 

from Santa Cruz and with an HA-probe antibody. A single band was detected at 

approximately 50kDa by both antibodies in the IRF8-containg lysates. This 

corresponds to the atomic mass of the most common splice variant of the IRF8 

protein – 48kDa.   

IP was performed with the Santa Cruz IRF8 antibody, as well as with a mouse IgG2b 

(kappa light chain) antibody, of the same isotype (class) as the IRF8 antibody. The 

pIRES2-EGFP-HA-IRF8  pIRES2-EGFP	 
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isotype control was necessary to identify nonspecific bands resulting from subjecting 

proteins to immunoprecipitation. All IPs were probed with the Santa Cruz IRF8 

antibody being tested. The IRF8 protein was detected at 48kDa in the lysate of cells 

transfected with the IRF8 vector but not in the “empty” vector-transfected cell lysate. 

Further bands were observed at low molecular weights in all IP wells. They can be 

attributed to the IgG light chains (25kDa), originating from the antibodies used for 

immunoprecipitation and detected by the secondary antibody. The heavy chains of 

the IP antibodies (50kDa) were not detected by the anti-light chain secondary 

antibody, which was used specifically to avoid obscuring the IRF8 protein at 48kDa. 

 

An additional control was used to ensure similar amounts of protein were loaded in 

all wells (Figure 5.10 B). Vinculin, a 117-kDa ubiquitously expressed cytoskeletal 

protein was selected as “loading” control. The bands in all lysates had a consistent 

size, for both the IRF8-containing and “empty” vector-transfected cells. The Vinculin 

antibody showed no bands in the IP reactions, as the IRF8 and the mouse IgG2b 

antibodies did not immunoprecipitate the Vinculin protein.  

 

The Santa Cruz IRF8 antibody proved to be specific, as it detected only one band 

matching the predicted atomic mass of IRF8. The antibody was also able to 

immunoprecipitate the IRF8 protein, as evident from the larger size of the 48 kDa 

band in the IP samples compared to the lysates. 
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Figure 5.10. Western blot performed on lysates and IP reactions of HEK293T 
cells transfected with the IRF8-containing vector pIRES2-EGFP-HA-IRF8 and 
the empty vector pIRES2-EGFP.  
A. HEK293T lysates probed with an anti-HA antibody and the Santa Cruz IRF8 

antibody ICSBP (E-9): sc-365042. Approximately 90,000 cells were loaded in each 

well labelled as “lysate”. IP reactions were performed on 1.7 million transfected cells, 

using the IRF8 antibody and a mIgG control and were probed with the Santa Cruz 

IRF8 antibody. Labels above lanes denote the vector used for transfection. The 

ladder shows atomic mass of proteins in kDa. 

B. Probing of all lysate and IP wells with an antibody targeting the 117kDa Vinculin 

protein. 

B 

A 
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5.3.4 Optimisation of sonication settings 
As a sensitive and specific IRF8 antibody had been identified, the ChIP experiment 

was able to progress to the next optimisation step – the sonication settings. The 

testing covered two main aspects of the sonication: the number of cycles and the 

length of the OFF setting. Two different sonication settings, derived from different 

sources were used for testing. The protocol for the Active Motif kit, used for the ChIP 

experiment, recommended a starting setting of 10 cycles of 30 second ON and 30 

seconds OFF. The setting suggested by the manufacturer of the Bioruptor Pico 

sonicator (Diagenode) for our sample was 6 cycles of 30 seconds On and 90 

seconds OFF.  This recommendation took into account our sample volume (260-

300µl) and desired fragment length of 400bp (falling within the 200-1200bp range 

suggested by the manufacturer of the ChIP-Seq kit). 

 

Both suggested settings were tested on the same number of FACS-purified culture-

derived cDC1s. The Active Motif Low Cell protocol was used for ChIP and library 

prep, and the concentration and the fragment size distribution of the resulting 

libraries were assessed with Bioanalyser (Figure 5.11). A similar fragment size 

distribution was seen in both settings, most DNA fragments falling between 300 and 

450bp in size. However, the library produced from chromatin subjected to 6 cycles of 

sonication had higher concentration and molarity readings than the library produced 

following 10 sonication cycles. The readings for DNA concentration were 595.20 

pg/µl for the 6 cycles setting and 291.27pg/µl for 10 cycles. The molarity readings 

were 2,528.7 pmol/l and 1,278.7 pmol/l, respectively. The fragment size distribution 

and molarity of libraries from both tested setting were suitable for sequencing. 

However, peaks containing small DNA fragments below 200bp were detected in the 

sample subjected to 10 cycles of sonication, but not in the sample subjected to 6. 

These peaks are undesirable in a sequencing library, as they can undergo 

preferential amplification during sequencing.  
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Figure 5.11. Bioanalyser electropherogram for ChIP libraries prepared from 
100,000 cultured, sorted, and formaldehyde-fixed cDC1s subjected to different 
sonication settings and readings for an empty well and the ladder ran on the 
same Bioanalyser chip.  
100,000 cDC1s were produced from CD34+ progenitors in OP9-DL1 culture to test 

each of the sonication conditions, then FACS-purified on day 19. The cells were fixed 

and subjected to 6 or 10 sonication cycles, then immunoprecipitated with 3µg of IRF8 

antibody (Santa Cruz Biotechnology) as part of the Low Cell ChIP-Seq protocol 

(Active Motif). The ChIP DNA was extracted and used for library preparation, 

quantified with the Bioanalyser high sensitivity DNA kit. The x axis indicates fragment 

size in base pairs, while the y axis shows signal intensity in fluorescence units. Peaks 

at 35bp and 10380bp seen on all plots represent lower and upper markers. 

 

Negative baseline dips were detected in all samples, as well as in the empty well and 

the ladder (Figure 5.11). According to the Agilent 2100 Bioanalyzer System 

Maintenance and Troubleshooting Guide (Agilent Technologies), this feature is 

caused by residual RNaseZap on the Bioanalyser instrument electrodes. However, 

this did not interfere with the interpretation of results, as none of the wells had a QC 

flag, and all ladder markers were detected. Based on the Biolanalyser results, both 6 

and 10 cycles of sonication produced useable libraries from 100,000 cDC1. However, 

the library prepared following 6 sonication cycles had a more appropriate fragment 

6 sonication cycles, 100,000 cells 

10 sonication cycles, 100,000 cells 

Empty well 

Ladder 
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size distribution and a significantly higher concentration. The 6-cycle setting was 

therefore selected for further experiments. 

 
Next, the effect of cell number on the quality of the sequencing library was explored 

by undertaking the same experiment with 6 sonication cycles while using 50,000 

cDC1 cells as input. The resulting library displayed a fragment distribution of 300-

450bp and had readings for DNA concentration (829.32 pg/µl) and molarity (3,384 

pmol/l) comparable to the ChIP experiment performed with 100,000 cDC1 and 6 

sonication cycles (Figure 5.12). These results suggested that 50,000 cells, which is 

the minimum recommended by the Low Cell ChIP-Seq protocol (Active Motif), are 

sufficient for producing a sequencing library that does not differ in quality from a ChIP 

library prepared from double the cell number. 

 
 

 
Figure 5.12. Bioanalyser electropherogram for a ChIP library prepared from 
50,000 cultured, sorted, and formaldehyde-fixed cDC1s subjected to 6 
sonication cycles.   
50,000 cDC1s were produced from CD34+ progenitors in OP9-DL1 culture, then 

FACS-purified on day 19. The cells were fixed and subjected to 6 sonication cycles, 

then immunoprecipitated with 3µg of the Santa Cruz IRF8 antibody of IRF8 antibody 

(Santa Cruz Biotechnology) as part of the Low Cell ChIP-Seq protocol (Active Motif). 

The ChIP DNA was extracted and used for library preparation, quantified with the 

Bioanalyser high sensitivity DNA kit. The x axis indicates fragment size in base pairs, 

while the y axis shows signal intensity in fluorescence units. Peaks at 35bp and 

10380bp represent lower and upper markers. 

6 sonication cycles, 50,000 cells 
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5.4 Discussion  
The aim of this chapter was to optimise the IRF8 ChIP-Seq pipeline to probe the 

transcriptional programs and signaling pathways regulated by IRF8 in human IRF8-

expressing DC subsets. First, the identification of a ChIP-grade antibody was 

necessary, as the IRF8 antibody used in previous IRF8 ChIP studies had been 

discontinued. Sonication settings and effect of cell number were also explored for the 

low cell ChIP-Seq protocol. 

 

Performing antibody validation is critical before undertaking ChIP-Seq experiments, 

to ensure accurate and reproducible data, to maximise the financial efficiency and 

avoid wastage of limited human samples. When published, it also avoids duplication 

of work between labs and helps to ensure data quality, facilitating the collaborative 

use data across the research community. The ENCODE: Encyclopaedia of DNA 

Elements outlines rigorous criteria for testing candidate ChIP antibodies. These 

include primary and secondary characterisation steps. The first antibody selected for 

testing failed to detect IRF8 in an IRF8-expressing cell line and exhibited very low 

specificity, highlighting the need of rigorous testing of antibodies prior to preforming 

the ChIP-Seq assay. The second antibody selected for testing was a mouse 

monoclonal antibody manufactured by Santa Cruz Biotechnology, raised against the 

C-terminus of the human IRF8 protein. This antibody passed its primary 

characterisation testing, as it detected a single band corresponding to the atomic 

mass of IRF8 in 500,000 - 1,000,000 bone marrow CD34- cells. The antibody was 

also able to immunoprecipate the IRF8 protein and showed high specificity in IP 

followed by western blotting.  

 

The factors considered when optimising sonication settings included maximising 

DNA yield and generating appropriate sized DNA fragments. These criteria were best 

fulfilled by subjecting cells to 6 sonication cycles, compared to 10. The effect of cell 

number was also explored, and comparable sequencing libraries were produced 

using 50,000 and 100,000 cells. These data demonstrated the feasibility of 

performing IRF8 ChIP-Seq in low numbers of primary human DCs using the Santa 

Cruz IRF8 antibody and the Active Motif Low Cell ChIP-Seq protocol and optimised 

the pipeline for use in future experiments.  
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The use of limited human samples in the production of DCs for the optimisation 

experiment, as well as the high cost and the labour-intensive nature of the work (up 

to 3 weeks of cell culture, followed by cell sorting and a 5-day long ChIP-Seq 

protocol) limited the number of replicates and conditions studied during optimisation, 

representing a weakness of this study. Nevertheless, all tested conditions produced 

high quality libraries, suitable for sequencing on an Illumina instrument, which will 

ultimately be employed for the generation of ChIP-Seq data. 

 

5.5 Summary and further work 
Through the work in this chapter, a specific and sensitive IRF8 antibody was 

identified. The Santa Cruz IRF8 antibody met the criteria outlined by the ENCODE 

consortium and was able to detect IRF8 in human primary CD34- Lineage- bone 

marrow cells, as well as immunoprecipitate the heterologously expressed IRF8 

protein in HEK293T cells. The antibody was successfully used for ChIP experiments 

aimed at the optimisation of sonication settings for chromatin derived from culture-

derived DC.  

 

Future efforts should aim at including the Santa Cruz IRF8 antibody in the ENCODE 

database as a ChIP-validated antibody. Currently (2020), ENCODE lists 5 IRF8 

antibodies, of which 2 are partially characterised and none are fully characterised. 
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Chapter 6. The role of IRF8 in cDC1 and pDC homeostasis 
 
Questions answered in this chapter: 

1. How do the functional modules controlled by IRF8 compare in human cDC1s and 

pDCs? 

2. What motifs are bound by IRF8 in cDC1s and pDCs?  

3. Does the auto-activation of IRF8 occur in mature human DC? 

 

6.1 Introduction 
IRF8 is a transcription factor of the interferon regulatory factor family, expressed by 

hematopoietic lineages, including DC, B cells, monocytes, and NK cells. Akin to 

many other members of the IRF family, IRF8 plays several crucial, yet diverse roles, 

in the lineage determination of immune cells, directing innate immune responses 

(including regulation of type I IFNs and IFN-inducible genes), controlling cell growth 

and survival, as well as in oncogenesis (Tamura et al., 2008).  As a transcription 

factor, IRF8 is able to regulate gene transcription in a positive or negative manner 

(Huang et al., 2007; Nelson et al., 1993). Regulation of the ability of IRF8 to activate 

or repress gene transcription is achieved via the association of IRF8 with different 

biding partners, in order to bind to certain promoter elements (Figure 6.1). IRF8 

associates with other IRFs (such as IRF1 and IRF2) to bind the IFN-stimulated 

response element (ISRE). In this case, IRF8 predominantly represses the 

transcription of type I IFNs and IFN-stimulated genes (Tamura et al, 2015). IRF8 

activates transcription via the association with Ets transcription factors (e.g. 

PU.1/SPI1 or SPIB) to bind the Ets–IRF composite element (EICE) or the IRF–Ets 

composite sequence (IECS). IRF8 also promotes gene activation via the formation of 

the IRF8–BATF3–JUN complex, which binds to activating protein-1 (AP-1)–IRF 

composite element (AICE) motifs (Murphy et al, 2013). 
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Figure 6.1. Transcriptional regulation by IRF8 and its interacting proteins 
(Tamura et al, 2015). 
Transcription factor IRF8 is able to regulate or repress gene expression by 

associating with different binding partners. Association of IRF8 with Ets family 

transcription factors (e.g. PU.1/SPI1) or transcription factor AP-1 (formed by the 

association of bZIP domain containing proteins BATF or BATF3 and JUN) leads to 

transcription activation. The interaction of IRF8 with other members of the IRF family 

often leads to negative regulation of transcription.  

 

From murine studies, IRF8 is known to be vital for the development of mononuclear 

phagocytes and crucial for driving lineage specification. The Irf8-/- mouse displays 

impaired immunity against viral infections, and has absent cDC1s and monocytes, 

reduced pDCs, expanded granulocyte precursors, and unaffected cDC2s (Turcotte et 

al., 2004; Sichien et al., 2016). cDC1s are the only cells sensitive to IRF8 

haploinsufficiency, as one copy of Irf8 is sufficient to support monocyte and pDC 

development (Sichien et al., 2016). IRF8 is required at several steps of cDC1 

development and is a terminal selector for this DC subset, maintaining end stage 

differentiation through its interaction with BATF3 (Grajales-Reyes et al., 2015). IRF8 

was shown not to be essential for pDC development, however it controls several 

functional modules in differentiated pDCs, such as production of type I IFNs and 

antigen presentation (Sichien et al., 2016). At the progenitor stage, IRF8 cooperates 

with PU.1/SPI1 to induce the expression of monocyte-related genes including the 

critical transcription factor KLF4 (Kurotaki et al, 2013). Crucially, IRF8 inhibits CEBPA 

promoter activity to block the neutrophil differentiation programme (Kurotaki et al, 
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2014). However, IRF8 is not required to maintain terminally differentiated monocytes 

(Sichien et al., 2016). 

 

The mechanisms of induction of Irf8 expression driving DC lineage specification have 

recently been described in mouse. Two distinct enhancers were identified within the 

Irf8 super-enhancer, located at 32 kb and 41 kb downstream of the Irf8 transcriptional 

start site (TSS) (Grajales-Reyes et al., 2015). The +32-kb enhancer is selectively 

active in mature cDC1s and contains several AICE motifs, bound by Irf8 and Batf3, 

suggesting that this enhancer might support Irf8 expression through auto-activation 

(Durai et al., 2019). The +41-kb Irf8 enhancer is active in differentiated pDCs, and is 

transiently accessible in cDC1 progenitors. Several E-box motifs are found within the 

+41-kb Irf8 enhancer, suggesting that E-proteins (e.g. E2-2/TCF4, a TF essential for 

pDC development, Cisse et al, 2008), could use this enhancer to drive Irf8 

expression in pDCs (Durai et al., 2019). Both enhancers are required at different 

stages of cDC1 development, and the switch between them is crucial for this lineage. 

Bagadia et al. (2019) proposed that this switch is controlled by Zeb2-Id2-Nfil3 

interactions that facilitate the development of cDC1s and maintain Irf8 expression. 

 

The majority of the insights into the role of IRF8 in vivo have been derived from 

murine studies, as genetically modified mouse models are powerful tools for 

exploring DC development and function, while human studies rely primarily on in vitro 

systems. The recent discovery of patients with primary immunodeficiency, caused 

solely by mutations in the IRF8 gene (Hambleton et al., 2011; Bigley et al. 2018; 

Cytlak and Resteu, 2020), shed some light on the role of IRF8 in human and 

revealed a phenotype broadly reminiscent of Irf8 deficient mice. In humans, biallelic 

IRF8 mutations cause complex immunodeficiency with myeloproliferation, absence of 

all monocytes and DCs, B and T cell defects, leading to susceptibility to viral and 

intracellular infections (Hambleton et al., 2011; Bigley et al, 2018). As in murine 

systems, the effects of IRF8 in human are gene dose-dependent, and heterozygous 

IRF8 mutations lead to cDC1 and often pDC deficiency, mild-moderate CD14+ 

monocytosis and NK cell defects, causing potential susceptibility to Epstein Barr 

Virus and intracellular organisms (Bigley and Collin, 2020; Cytlak and Resteu, 2020).  

 

Work by the Human DC Lab has previously described two patients with bi-allelic 

IRF8 mutations (homozygous K108E mutation and compound heterozygous 
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R83C/R291Q mutation) with a complete lack of monocytes and DCs (Hambleton et 

al., 2011; Bigley et al., 2018). K108E mutation results in loss of nuclear localization 

and transcriptional activity, as well as decreased protein stability (Salem et al., 2014). 

The R291Q alteration is orthologous to R294, mutated in the BXH2 mouse, which 

exhibits an immunodeficient phenotype similar to the IRF8 knockout mouse. R83C 

shows reduced nuclear translocation, and neither R291Q nor R83C mutant was able 

to regulate the Ets/IRF composite element or ISRE, while R291Q retained BATF-JUN 

interactions in vitro (Bigley et al., 2018). Together, the heterozygous parents of these 

patients, and a newly described kindred with an autosomal dominant phenotype due 

to a dominant negative IRF8V426fs mutation, represent an allelic series of IRF8 activity 

(Figure 6.2). 

 

 

 

 
Figure 6.2. Quantification of blood DC and monocyte populations of subjects 
carrying IRF8 mutations (Cytlak and Resteu et al., 2020). 
Cont n=25, Het n=4 (IRF8R83C, IRF8R291Q and two subjects carrying heterozygous 

IRF8K108E mutations), Dom n=3 (IRF8V426fs), Bi n=2 (IRF8R83C/R291Q and 

IRF8K108E/K108E). Bars show mean+/- standard error of the mean, circles represent 

individual subjects. P values derived from two tailed Mann Whitney U testing 

(*p<0.05, **p<0.01). Cont – healthy controls; Het – patients with heterozygous IRF8 

mutation; Dom – patients with heterozygous dominant IRF8 mutation; Bi – patients 

with homozygous IRF8 mutation. 
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This chapter aimed to elucidate the role of IRF8 in the homeostasis of human pDCs 

and cDC1s by analysing its DNA binding patterns in mature cells. Limited by 

technical restraints related to cell number, this was made possible by the generation 

of DC from primary stem/progenitor cells in vitro using the OP9/OP9-DL1 systems, 

described in detail in Chapter 3 of this thesis and by Kirkling and Cylak et al. (2018). 

This approach was employed to produce sufficient numbers of bona fide mature 

cDC1s and pDCs in order to perform chromatin immunoprecipitation followed by 

high-throughput DNA sequencing. Identification of IRF8 binding sites, related DNA 

motifs and genes in close proximity drove the exploration of pathways regulated by 

IRF8 and its binding partners in human.  

 

6.2 Materials and methods 

6.2.1 In vitro generation of cDC1s and pDCs from human bone marrow 
progenitors 
Bone marrow cells from hip replacement procedures were collected, stored and 

defrosted as described in Chapter 2 subsections 2.3.2 and 2.3.3. The BMMC were 

stained and FACS-purified as described in Chapter 2 subsections 2.3.6 using 

antibodies listed in Table 3.1. CD34+ Lineage- cells were retained for culture. To 

produce mature cDC1, FACS-purified CD34+ Lineage- progenitors were co-cultured 

with OP9-DL1 cells for 21 days, supplemented with 20 ng/ml granulocyte-

macrophage colony-stimulating factor (GM-CSF, R&D systems), 100 ng/ml FLT3-

ligand (Immunotools), and 20 ng/ml stem cell factor (SCF, Immunotools), as 

described in Chapter 2 subsection 2.3.5. For the production of pDC, FACS-purified 

CD34+ Lineage- progenitors were co-cultured with OP9 for 21 days, supplemented 

with a modified cytokine cocktail, as data from members of the lab (not shown) 

showed that lower FLT-ligand concentrations promoted pDC production. Therefore, 

for the generation of pDC, the following cytokine cocktail was used: 20 ng/ml 

granulocyte-macrophage colony-stimulating factor, 20 ng/ml FLT3-ligand and 20 

ng/ml stem cell factor.  

 

6.2.2 Chromatin immunoprecipitation, DNA extraction, and sequencing library 
preparation 
After 21 days of culture, OP9-DL1-derived cDC1s and OP9-derived pDCs were 

FACS-purified, as described in Chapter 3, and fixed with a formaldehyde mix, as 
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described in the methods for Chapter 5. Sonication of lysates following fixation was 

performed with the Bioruptor Pico (Diagenode) using the 6 cycles of 30 seconds ON 

and 90 seconds OFF setting, established to be best in the optimisation experiments. 

The total volume for each lysate (200µl) contained an average of 93,000 cells per 

replicate. Of this, 190µl were used for immunoprecipitation, and 10µl were used as 

input chromatin control.  

 

The Low Cell ChIP-Seq kit and Next Gen DNA Library Kit (Active motif) were used 

for cell fixation, immunoprecipitation, DNA extraction, and sequencing library 

preparation, according to manufacturer’s instructions and as described in detail in 

Chapter 5. 3µg IRF8 antibody (Santa Cruz (E-9): sc-365042) were used for 

immunoprecipitation. The input chromatin controls for each sample were prepared by 

extracting DNA from 10µl of sonicated lysate, as suggested by Dr Stefan Dillinger 

(Active motif). Lysates were transferred to PCR tubes and mixed with 70µl TE pH 8.0 

(Active motif) and 0.4µl RNase A (Invitrogen) via vortexing. The mix was incubated in 

a thermocycler at 37°C for 30 minutes. 0.8μl Proteinase K (Active motif) were added 

to each tube. Following a vortexing step, the tubes were incubated in a thermocycler 

at 55°C for 30 minutes. The temperature was then increased to 80°C for 2 hours. 

Each chromatin input was transferred into a 1.5ml microcentrifuge tube and mixed 

with 33ul of 5M ammonium acetate (Invitrogen), 0.8µl carrier (Active motif), and 

300µl absolute ethanol via vortexing. Tubes were chilled at -80°C for 30 minutes, 

then spun at 4°C in a microcentrifuge at 21,000xg for 15 minutes. The supernatant 

was carefully removed, and the pellet was washed with 500µl 70% ethanol and spun 

at 4°C in a microcentrifuge at 21,000xg for 5 minutes. The supernatant was removed, 

taking care not to disturb the pellet. Residual ethanol was removed with a P10 

pipette. Tubes were left uncapped and air dried for 15 minutes. When the pellets 

dried, 40µl Low EDTA TE (Active motif) were added to each tube and incubated at 

room temperature for 10 minutes, then vortexed to ensure the pellet was completely 

resuspended. The solution, containing the input chromatin, was used for library 

preparation with the Next Gen DNA Library Kit (Active motif). Following library 

preparation for the immunoprecipitation reactions and the controls, the DNA 

concentration, molarity, and fragment size distribution of the sequencing libraries was 

assessed with the Agilent Bioanalyzer 2100 using the high sensitivity DNA kit 

(Agilent). 
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6.2.3 Generation and processing of ChIP-Seq data 
The Illumina NextSeq 500 platform at the Genomics Core Facility, Newcastle 

University, was employed to generate 150bp paired-end reads, averaging 27.7 

million per sample. The reads were demultiplexed with bcl2fastq version 2.19.0.316 

(Illumina). Adapter trimming, removal of low quality bases, and exclusion of short 

reads (below 70bp) were performed with Cutadapt version 1.9.1 (Martin, 2011) and 

FastQC version 0.11.2 (Simon Andrews, Babraham Institute) via the Trim Galore 

wrapper version 0.4.3 (Felix Krueger, Babraham Institute). Reads were aligned to the 

human reference genome GRCh38p12 (release29) with the BWA-MEM algorithm as 

part of the BWA software version 0.7.15 (Li, 2013). The SAM to BAM conversion was 

achieved with samtools version 1.3 (Li et al., 2009). PCR duplicates were removed 

using a Perl script provided by Active Motif, as part of the Low ChIP-Seq protocol. 

Peak calling was performed with MACS version 2.1.0.20150731 (Zhang et al., 2008) 

against input chromatin controls, and employed a q-val cut-off of 0.05. Additionally, 

all peaks identified on the mitochondrial chromosome were filtered out, as the IRF8 

protein is localised exclusively in the nucleoplasm (The Human Protein Atlas, 

https://www.proteinatlas.org), and therefore is not expected to directly regulate 

mitochondrial gene expression. Peaks mapped to chromosome Y were also removed 

from analysis, as all bone marrow donors used in this experiment were female. 

Further analysis was undertaken in R version 3.6 (R Core Team, 2019).  

 

6.2.4 Differential binding analysis  
The DiffBind R package version 2.12.0 (Ross-Innes et al., 2012) was used for 

counting reads within each peak (peak width was set to 500bp) and determining the 

consensus peaks present in at least two biological replicates of cDC1s and pDCs, as 

well as for differential ChIP-Seq analysis, including PCA and hierarchical clustering  

using the complete linkage method based on the Pearson’s distances. The Venn 

diagram displaying the overlap between cDC1s and pDCs consensus peaks was 

produced with the VennDiagram package version 1.6.20 (Chen, 2018).  

 

6.2.5 Peak annotation and pathway enrichment analysis 
The consensus peaks were annotated with the ChiPseeker package version 1.20.0 

(Yu et al., 2015). Gene symbols were converted into Entrez Gene IDs with the 

“translate” function from the AnnotationFuncs package version 1.34.0. Pathway 
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enrichment analysis for genes regulated by IRF8 in cDC1s and pDCs (with IRF8 

peaks located within the promoter region, +/-3kb from TSS), was performed with 

ClusterProfiler version 3.12.0 (Yu et al., 2012) against the Reactome biological 

pathways (Jassal et al., 2020). 

 

6.2.6 Motif analysis 
The GimmeMotif software (Bruse and van Heeringen, 2018) was used for motif 

enrichment analysis and for known motif scanning. The motif enrichment analysis in 

cDC1s and pDCs was undertaken with the “gimme motifs” command, using 500bp-

wide consensus peaks located within the promoter region of genes. The enrichment 

was performed against the GimmeMotifs database of known vertebrate motifs and 

transcription factors. The p-values for each motif were determined with the 

hypergeometric/Fisher’s exact test. The motif scan for the consensus peaks identified 

in cDC1s within +/-100kb of the IRF8 TSS was performed via the “gimme scan” 

command. The search was performed against the GimmeMotifs database and 

displays known bZIP, Ets, and IRF motifs identified within the 500bp-wide peaks. 

 

6.3 Results 

6.3.1 Overview of the IRF8 ChIP-Seq dataset 
To interrogate the IRF8 binding sites in human, an IRF8 ChIP-Seq experiment 

(optimised in Chapter 5) was performed using in vitro-derived cDC1s and pDCs as 

described in Chapter 3. Based on all IRF8 binding sites detected via ChIP-Seq, the 

two cell types showed a clear separation. This was confirmed both by hierarchical 

clustering and PCA (Figures 6.3 A and 6.3 B, respectively). These analyses also 

suggested that the cDC1 biological replicates bear more similarity to each other than 

the pDC, as they have higher positive correlation between the samples, and cluster 

more tightly together on the PCA plot. 

 

In order to further explore the differences, the number of peaks shared by the 

biological replicated of the two cells types were interrogated (Figure 6.4). Overall, a 

much higher number of peaks was noted in cDC1, with over 11,000 peaks present in 

all cDC1 replicates, in contrast to only 212 peaks shared by all pDC. In addition, a 

higher degree of overlap was evident in cDC1, which shared the majority of their 

peaks, while most pDC replicates contained mainly sample-specific peaks.  
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Figure 6.3. Overview of the generated IRF8 ChIP-Seq dataset comprised of 
culture-derived cDC1s and pDCs with 3 biological replicates per cell type. 
A. Heatmap and clustering of the ChIP-Seq samples based on the read counts at all 

sites. The dendrogram positions together the samples with similar counts at binding 

sites. The colours of the heatmap represent the correlation between the samples, 

dark blue indicating high positive correlation, and light blue to white - low correlation.  

B. Principal component analysis based on the counts at all binding sites. The percent 

variance explained by each principal component is indicated in square brackets.  

A 

B 
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Figure 6.4. Venn diagrams showing IRF8 binding site overlaps in biological 
replicates of cDC1 (left) and pDC (right). 
The peaks were called with MACS2 (Zhang et al., 2008) against input chromatin 

controls corresponding to each sample. Peaks with q-values below 0.01 were 

processed, counted, and visualised within the DiffBind package in R (Ross-Innes et 

al., 2012). 
 
To focus on the high confidence data, peaks called with MACS2 (qval < 0.05) and 

present in at least two out of the three biological replicates, also known as consensus 

peaks, were used for further analysis. Over 20,000 peaks were identified in at least 

two of the cDC1 samples, 1,027 of which were shared with pDC. The number of 

pDC-specific peaks was lower, as only 389 peaks were identified in at least two of 

the pDC replicates (Figure 6.5). 

 

The consensus peaks identified in the IRF8 ChIP-Seq dataset were annotated with 

the ChiPseeker R package (Yu et al., 2015). Peak annotation bar charts (Figure 6.6) 

were used to explore the distribution of peaks. In both cDC1s and pDCs, more than 

half of the peaks were located in enhancer regions (distal intergenic and intronic 

regions), and around 20% of the peaks were found in promoter regions, a profile 

common in ChIP-Seq and ATAC-Seq datasets (Yan et al., 2020).  
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Figure 6.5. Venn diagram displaying the overlap between consensus peak 
regions in cDC1s and pDCs. 
The diagram was constructed using peaks called with MACS2 (qval < 0.05) in at 

least 2 of the 3 biological replicates for each of the cell types. 73% of pDC peaks 

were shared with cDC1, while 5% of cDC1 peaks were shared with pDCs. 

 

 

 
 
 
Figure 6.6. Visualisation of the genomic annotation for the IRF8 binding peaks 
in cDC1s and pDCs.  
Annotation was performed with the ChiPseeker R package (Yu et al., 2015) for peaks 

identified in two out of the three biological replicates for each of the cell types. 

cDC1 pDC 
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6.3.2 IRF8 differentially regulates immune pathways in mature cDC1s and pDCs  
To determine the pathways regulated by IRF8 and mature cDC1s and pDCs, the 

genes with IRF8 peaks in the promoter region (+/-3kb from TSS) were selected for 

pathway enrichment analysis. The analysis revealed an array of functional modules 

regulated by IRF8 in cDC1s and pDCs (Figure 6.7 and Table 6.1). The vast majority 

of the pathways were linked to the function of the immune system. Neutrophil 

degranulation was the most significant among the commonly regulated pathways, 

both cell types containing a large number of genes from this pathway with IRF8 

peaks in the promoter region. Interferon signaling was also shared by both cell types, 

and interferon gamma signaling in particular was present in both cell types. Interferon 

alpha/beta signaling, however, emerged to be the only pDC-specific pathway 

regulated by IRF8. cDC1-specific pathways included numerous adaptive immune 

system features, such as MHC II antigen presentation, costimulation by the CD28 

family, and immunoregulatory interactions between a lymphoid and non-lymphoid 

cell, as well as innate immune functions, such as pattern recognition thorough NLRs, 

CLRs, and TLRs (within the MyD88 deficiency pathway). Remarkably, IRF8 itself was 

contained within the genes it regulates in cDC1s (Table 6.1), suggesting potential for 

IRF8 auto-activation in these cells, but not in pDC. 
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Figure 6.7. Pathway enrichment analysis for genes regulated by IRF8 in cDC1s 
and pDCs. 
The dot plot displays the Reactome biological pathways enriched in one or both cell 

types (adjusted p-value < 0.05). The pathway enrichment analysis was performed 

using genes that have at least one peak identified in the promoter region (+/- 3kb 

from the TSS). The number of identified genes in each category is displayed in 

parentheses. The size of the dots represents the GeneRatio (the overlap between 

genes in each list and the genes associated with a Reactome term), and the colour 

represents the adjusted p-values (calculated based on the hypergeometric model 

and adjusted using the Benjamini-Hochberg method). 

 
 
 
 
 
 



 
 

144 

 
Table 6.1. Biological pathways enriched in cDC1s and pDCs (adjusted p-
value<0.05). 
The table displays cells type, name of pathway in the Reactome database, as well as 

a list of genes from each pathway with IRF8 peaks within +/-3kb of TSS.  
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Next, motif analysis was undertaken to investigate the role of IRF8 co-operating 

factors and binding partners in cDC1 and pDC homeostasis. The majority of the 

sequences bound by IRF8 in both cell types were Ets and IRF motifs (Table 6.2 and 

Table 6.3) and a very similar top motif was shared. This Ets/C2H2 motif, most 

significantly enriched in both cell types, is known to be bound by IRF8 and IRF4 (a 

member of the IRF family), as well as their binding partners from the Ets family: SPI1 

and SPIB. Further motifs bound by IRF8 (motif GM.5.0.IRF.0013), and other 

members of the IRF family (GM.5.0.IRF.0010 and GM.5.0.IRF.0020) were identified 

in both cell types. In addition, multiple Ets motifs, bound by transcription factors 

ETS1, ETS2, ELF1, ELK1, ETV6 and ETV7, were shared. A number of differentially 

bound sequences were identified, including an IRF motif thought to be bound by 

IRF4 (GM.5.0.IRF.0017), strongly enriched in pDCs but not observed in cDC1s, in 

keeping with the known expression of IRF4 in pDCs but its absence in cDC1. bZIP 

motifs, bound by AP-1 forming transcription factors BATF3, BATF and JUN, were 

found exclusively in cDC1. In mice, the cooperation of Batf3 and Jun with IRF8 is 

crucial for maintaining the expression of Irf8 by auto-activation during the 

development of cDC1s (Grajales-Reyes et al., 2015). This prompted further 

investigation of the IRF8 auto-activation in human cDC1s. 
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Table 6.2. Known motifs enriched (adjusted p-value <0.005) in cDC1s within the 
IRF8 binding peaks. 
Peaks located in promoter regions were used for analysis. The table shows the motif 

name from the GimmeMotifs database of known vertebrate motifs and transcription 

factors known to bind them directly, and indirect or predicted factors. The p-value for 

the motif, determined with the hypergeometric/Fisher’s exact test, and its sequence 

logo are shown. The height of the characters in the logo indicates their conservation. 
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Table 6.3. Known motifs enriched (adjusted p-value <0.005) in pDCs within the 
IRF8 binding peaks. 
Peaks located in promoter regions were used for analysis. The table shows the motif 

name from the GimmeMotifs database of known vertebrate motifs and transcription 

factors known to bind them directly, and indirect or predicted factors. The p-value for 

the motif, determined with the hypergeometric/Fisher’s exact test, and its sequence 

logo are shown. The height of the characters in the logo indicates their conservation. 

 
6.3.3 cDC1s maintain their cell identity through the auto-activation of IRF8 
Having shown the potential of IRF8 in regulating a number of key immune pathways 

in cDC1, the next step of the analysis focused on the induction and maintenance of 

IRF8 expression through self-activation. This phenomenon has been previously 

described in mouse, where enhancer and superhancer regions surrounding the IRF8 

gene contain motifs bound by IRF8 and its binding partners (Durai et al., 2019). 

Since enhancers can be located at great distances upstream or downstream away 

from the transcription start site of the genes they are regulating, all peaks called in 

the +/-100 kb region around the IRF8 TSS were visualised (Figure 6.8). No evidence 

of IRF8 auto-activation was found in mature pDC, as no common peaks were 

identified across the replicates. In contrast, multitude of peaks were present 

consistently across at least two replicates in cDC1. Three of the consensus peaks 
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were located upstream of the IRF8 TSS at -32kb, -25kb, -16kb, one near the 3rd exon 

at +10kb, and three downstream at +37kb, +59kb, and +68kb.  

 
To further explore auto-activation of IRF8 in cDC1, a motif scan of the consensus 

peaks for known sites bound by IRF8 and its binding partners was undertaken. The 

scan included the transcription-activating bZIP (bound by JUN and BATF, forming 

AP-1) and Ets motifs (bound by ETS family TFs, such as SPI1), as well as IRF motifs 

(repressive if bound by an IRF8-IRF1,2 complex). Table 6.4 highlights the motifs 

identified in each of the peaks, together with the sequence bound, as well as 

transcription factors that that are known or predicted to bind them. The motif scan 

identified multiple sites with potential to act as enhancers, and all seven of the 

consensus peaks contained at least one of the motifs. The transcription-activating 

Ets motifs bound by known IRF8 partner SPI1(PU.1), were enriched in the peak at -

25kb, which contained eight Ets motifs, and present in the peaks at +10kb and 

+37kb, suggesting capacity for IRF8 auto-activation at these sites. Transcription-

activating bZIP motifs known to be bound by IRF8 partners BATF3, BATF and JUN 

were identified in the -16kb and +68kb. Notably, the motifs identified in the latter peak 

were bound by BATF3, a TF which maintains the expression of IRF8 by auto-

activation during development of cDC1s in cooperation with IRF8 and JUN (Grajales-

Reyes et al., 2015). Further motifs identified by the scan include a sequence bound 

by IRF3 within the +37 peak and an E-box canonical motif at +59kb. 
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Figure 6.8. Overview of peaks called with MACS2 (qval < 0.05) in the region 
between -50kb and +100kb around the IRF8 TSS in individual cDC1 and pDC 
samples.  
Consensus peaks, present within+/-100kb from IRF8 TSS in at least 2 biological 

replicates of cDC1s are marked with and arrow and their distance from IRF8 TSS is 

shown in red. No consensus peaks were observed in cDC1s or pDCs in the region 

between -100kb and -50kb in relation to the IRF8 TSS (not shown).  
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Table 6.4. Motif scanning results for the 7 consensus peaks from the cDC1 
triplicates, highlighting the bZIP, Ets, and IRF motifs identified with 
GimmeMotif.  
For each peak, the following information is listed: rounded distance in relation to the 

IRF8 TSS, type of motifs identified by the scan, motif sequence, list of human and 

murine TF known or predicted to bind the motif, and as well as further notes, 

highlighting ETS family transcription factors and TFs known to form the AP-1 

complex with IRF8, as well as the motif containing the E-box canonical sequence. 
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The evidence of IRF8 auto-activation, along with the multitude of key immune 

modules controlled by IRF8 in cDC1, suggested that IRF8 plays a vital role in the 

homeostasis and function of these cells. To further investigate the role of IRF8 in 

controlling the genes that define the cDC1 identity, a published scRNA-Seq dataset 

encompassing mononuclear phagocyte subsets was interrogated. Via single cell 

transcriptomics, Villani et al. (2017) outlined a list of top six genes that mark the 

cDC1 lineage. The IRF8 ChIP-Seq dataset helped identify that out of the six marker 

genes, four genes (including surface markers CLEC9A and XCR1) had IRF8 peaks 

within the promoter region, and one had multiple intronic and distal intergenic peaks 

(Figure 6.9). In addition, the genes from an extended list of markers published by 

Villani et al. (2017) were interrogated in the ChIP-Seq dataset. Out of 112 cDC1 

signature genes, the majority of the gene showed potential IRF8 regulation. 47 genes 

(including multiple HLA class II genes, FLT3, and TLR10) had consensus peaks in 

the promoter region and a further 30 genes (including BTLA) containing peaks in the 

intronic or distal intergenic regions. This effect was not observed in pDC, where none 

of the top markers were controlled by IRF8, and only 15 out of the 390 marker genes 

from the extended list had peaks in the promoter region. 
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Figure 6.9. Heatmap displaying the expression of cDC1 marker genes identified 
by Villani et al., 2017, across peripheral blood DC and monocyte subsets.  
The heatmap was generated via the Single Cell Portal (The Broad Institute of MIT 

and Harvard) and displays the conventional notation for the DC and monocyte 

subsets. For each cDC1 marker gene, information is given on the consensus IRF8 

peak location in the cDC1 ChIP-Seq experiment, 4/6 cDC1 signature genes having at 

least 1 peak in the promoter region, 1/6 having multiple intronic and distal peaks, and 

1/6 having no proximal or distal IRF8 peaks. 

 
 
6.4 Discussion 
Transcription factors are able to control cell fate at different phases of the cell 

lifespan via (1) prompting the specification of precursors toward a given lineage (2) 

suppressing alternative lineages to preserve the commitment of these precursors, (3) 

maintaining the cell identity of terminally differentiated cells, or (4) regulating key 

functional modules (Sichien et al., 2016). This chapter aimed to reveal the role of 

IRF8 in mature human pDC and cDC1, the two DC subsets marked by the 

expression of this transcription factor (Collin and Bigley, 2018), allowing indirect 

inference of its role in their development. ChIP-Seq was employed to assess the 
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binding sites occupied by IRF8 in these DC lineages. Previously, this study was not 

possible in human due to the rarity of these cells in vivo and the requirement for 

millions of cells for the chromatin immunoprecipitation technique. The use of a novel 

OP9/OP9-DL1 culture system, designed to produce large numbers of bona fide DC 

subsets from human bone marrow progenitors, along with advances in the chromatin 

precipitation protocols, such as the development of the Low Cell ChIP-Seq method 

(Active Motif), facilitated the success of this experiment. Significant differences 

between the IRF8 binding sites in pDCs and cDC1s were apparent within the 

generated ChIP-Seq dataset.  

 

6.4.1 Role of IRF8 in cDC1s 
In cDC1, IRF8 regulates multiple immune pathways involved in innate and adaptive 

immunity, indispensable for their function as antigen-presenting cells. Crucially, 

among the functional modules controlled by IRF8 is the DC-defining antigen 

presentation via MHC Class II, which is the first step in CD4 T cell activation. IRF8 

also controls the costimulatory signal, mandatory for the activation of T cells. CD80 

and CD86, regulated by IRF8, are considered the most important costimulatory 

molecules, as they serve as very early costimulatory signals and can lead to both the 

inhibition and activation of T cells (Hubo et al., 2013). The CD80 and CD86 

molecules have intermediate expression in immature DCs and are upregulated in 

terminally differentiated DC, possibly due to the activator effect of transcription factor 

IRF8. The third signal required for T cell polarisation has also been found to be 

controlled by IRF8, mainly the production of IL-10, a potent immunomodulatory 

cytokine. Furthermore, IRF8 is likely to play a role in sensing and elimination of 

pathogens by cDC1. The transcription factor controls the signaling of three out of the 

four major pattern recognition receptors families, namely membrane-bound TLRs and 

CLRs, and cytoplasmic NLRs. Receptors TLR1, 4 and 6, regulated by IRF8, are 

specialised in the recognition of bacterial lipids. Additionally, TLR stimulation leads to 

the secretion of pro-inflammatory cytokines such as IL-6, TNF-alpha and IL-12 or 

anti-inflammatory cytokines such as IL-10, which shape the T-cell responses. CLRs 

recognise fungal and bacterial glycans, and are involved in the recognition of 

glycosylated self-antigens, and as adhesion and/or signalling molecules (van Kooyk, 

2008). NOD1, a member of the NLR family regulated by IRF8, senses intracellular 

bacterial peptidoglycan and can trigger signal transduction via NF-κB and MAPK 

pathways (Saxena et al., 2014). In addition to controlling antigen sensing, 
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presentation, and T cell priming, IRF8 was found to control cDC1 cell identity, as 

peaks were found in the promoter region of the most cDC1-defining marker genes 

and surface antigens, including the established markers XCR1 and CLEC9A. This 

finding is in line with the role of IRF8 in mouse cDC1s, where it acts as the terminal 

selector for this lineage and is therefore required to maintain the identity of terminally 

differentiated cells (Grajales-Reyes et al., 2015).  

 

Mature cDC1s are likely to maintain the expression of IRF8, critical for their function 

and phenotype, through auto-activation. Evidence of IRF8 auto-activation was found 

in the cDC1 ChIP-Seq in the form of peaks surrounding the IRF8 TSS, consistent 

across biological replicates. Two of the peaks identified upstream of IRF8 TSS 

closely resembled the peaks detected in murine cDC1s via IRF8 ChIP-Seq at -25kb 

and -16kb of IRF8 TSS (Grajales-Reyes et al., 2015). The peaks identified 

downstream of IRF8 TSS fell within the superenhancer region reported in murine 

cDC1, but were not an exact match with the peaks reported in murine studies 

(Grajales-Reyes et al., 2015). Notable peaks which contained several motifs bound 

by Ets factor PU.1/SPI1, a known IRF8 binding partner with an activator role, were 

located at -25kb, +10kb and +37kb relative to IRF8 TSS. Motifs bound by a second 

prominent IRF8 partner, BATF3, were found within the peak at +68 kb relative to the 

IRF8 TSS. These sites are strong candidates for IRF8 auto-activation, as both 

PU.1/SPI1 and BATF3 known to support IRF8 auto-activation at different stages of 

cDC1 development in mouse (Grajales-Reyes et al., 2015). In addition to the above-

described activating motifs bound by IRF8 and its partners, the scan revealed an E-

box canonical sequence motif within the +59kb peak. This advocates for the role for 

E-proteins in the induction of IRF8 expression in cDC1s, a concept recently proposed 

in murine studies (Durai et al., 2019). Further insights derived from the analysis 

include the presence of an IRF motif, known to be bound by Irf3, at +37kb from IRF8 

TSS. As cDC1s show IRF3 and IRF8 expression (Single Cell Portal, 

https://singlecell.broadinstitute.org/single_cell), this could be achieved by the direct 

interaction of the two transcription factors, previously demonstrated to play a role in 

transcription activation (Li et al., 2013). 
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6.4.2 Role of IRF8 in pDCs 
The pDC-specific role of IRF8 comprises the control of one of the pDC functional 

modules - the transcriptional regulation of the IFN α/β signaling. This is a significant 

role, as pDCs are the main producers of type I IFNs in response to viral infections 

(Tel et al., 2012). This observation is consistent with mouse models, where IRF8 

positively regulates essential functional modules in differentiated pDCs, such as 

production of type I IFNs, while being dispensable for pDC development (Sichien et 

al., 2016). Remarkably, no evidence of auto-activation was found in mature pDCs, 

suggesting that other mechanisms are employed to maintain IRF8 expression in 

these cells.  

 

pDCs, but not cDC1s, exhibit high expression of a second transcription factor from 

the IRF family – IRF4. Interestingly, a motif bound by IRF4 was strongly enriched in 

pDC. This can be explained by the direct interaction of the two transcription factors 

as cooperative partners (Humblin et al., 2017). Alternatively, the two IRF family 

transcription factors could bind similar motifs, due to their high homology (Antonczyk 

et al., 2019), and therefore functioning redundantly in binding certain motifs.  

 

6.4.3 Pathways likely to be downregulated by IRF8 
In both cDC1s and pDCs, IRF8 controls pathways relating to two biological terms: 

neutrophil degranulation and IFN g signaling, and likely represses the expression of 

the genes associated with these pathways. IRF8 is known to block the neutrophil 

differentiation programme to favour the development of DCs and monocytes 

(Kurotaki et al, 2014), and could act in a similar manner toward other neutrophil-

related genes, repressing their expression in mature cDC1s and pDCs. In the case of 

IFN g signaling, downregulation of the pathway is the also the most probable 

outcome, as IFN	g is primarily secreted by activated T cells and NK cells, and cDCs 

and pDCs show little capacity for its production (Vremec et al., 2007).  

 

6.4.4 IRF8 in immunodeficiency 
The findings of this chapter are congruent with the gene dosage-related phenotypes 

observed in patients with IRF8 deficiency. IRF8 haploinsufficiency manifests as a 

reduction or depletion of all DC subsets developing through the IRF8high pathway: 

pDC, cDC1 and DC2 (Cytlak and Resteu, et al., 2020). cDC1s are most sensitive to 
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the loss of IRF8, their numbers being selectively depleted as a result of the dominant 

negative T80A mutation in IRF8 (Kong et al., 2018). This observation is in line with 

the critical role IRF8 plays in the multiple aspects of cDC1 function and maintaining 

the identity of these cells, as determined by IRF8 ChIP-Seq. In heterozygotes, pDCs 

exhibit an abnormal pDC function due to deficits in IFNa and TNF production (Cytlak 

and Resteu, et al., 2020). Findings of this chapter revealed that the deficits in IFN 

a could be the direct cause of a lower IRF8 dosage in these individuals, as peaks 

corresponding this the transcription factor’s binding site were found in the promoter 

region of type I IFN-related genes, including the Interferon Alpha 16 (IFNA16) gene. 

An even lower IRF8 dosage is found in biallelic IRF8 deficiency, which leads to the 

complete loss of all monocyte and DC subsets, including cells developing through 

both the IRF8hi and IRF8low pathways (Bigley et al., 2018). Therefore, IRF8 plays and 

important, currently unrevealed roles in development of all monocyte and DC 

precursors in human. 

 

6.4.5 Technical caveats of the study 
This study relied heavily on the FACS-purification of pDCs and cDC1s prior to the 

ChIP-Seq assay. pDCs were defined as CD123+CD303/304+ cells, however the 

expression of the established pDC markers CD303/304 is fickle in culture. In 

addition, other cells have been shown to express CD123, including the pre-DC2 in 

Chapter 4 of this thesis. It is therefore likely that the population sorted as pDC is 

more heterogeneous than the cDC1 population, the markers for which (CLEC9A and 

CD141) are very faithful in culture. 

 

Other caveats include the interpretation of ChIP-Seq peaks. This work focused on 

the peaks located in the immediate vicinity of the gene TSS (+/-3kb), as often 

performed in similar studies. However, the location of the promoter of a gene near a 

peak does not absolutely guarantee that it is regulated by IRF8. In addition, distal 

peaks were excluded from analysis, as it was not possible to determine with 

confidence the genes they regulated. Further experimental data is required to explore 

the distal peaks and verify the peaks in the promoter regions.  
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6.5 Summary and further work 
Together, the findings of this chapter expand the knowledge about the role of 

transcription factor IRF8 in human. A unique ChIP-Seq dataset, generated within this 

project, demonstrated that IRF8 controls different functional modules in the IRF8-

expressing human DC subsets. In pDC, IRF8 controls an important functional 

module, type I IFN signaling. The role of IRF8 is different in cDC1, where it maintains 

both the function and surface phenotype of these cells. Strikingly, evidence of IRF8 

auto-activation was found in mature cDC1, but not pDC. 

 

In order to corroborate the role of IRF8 within the reported biological pathways in 

cDC1 and pDC, future efforts should focus on generating and analysing an RNA-Seq 

dataset that complements the ChIP-Seq samples. This will allow to assess the effect 

of IRF8 on the expression of genes within the pathways deemed significant by the 

ChIP-Seq analysis. The cells for this analysis have been produced in culture and 

subjected to FACS purification by the candidate and members of the Human DC Lab. 

However, the project was paused at the library preparation stage due to the impact of 

COVID19. 

 

To confirm the location of active transcription sites and define the enhancer and 

super-enhancer regions controlling the expression of IRF8 in human, further 

experiments should focus on histone ChIP-Seq in order to identify active promoters 

via H3K4me3 enrichment, inactive promoters via H3K27me3 enrichment, enhancers 

via enrichment of H3K4me1 and H3K27ac in regulatory regions, and active gene 

bodies with H3K36me3 enrichment. In addition, ChIP-Seq of IRF8 binding partners 

could reveal the interactions that are most crucial in maintaining IRF8 expression 

through auto-activation. Furthermore, genome-wide chromatin accessibility could be 

assessed with ATAC-Seq, which can be performed at single cell level, facilitating the 

use of small numbers of rare cells, such as DC and their precursors and progenitors. 

 

IRF8 is required at multiple stages of cDC1 development in mice, however this 

requirement has not yet been explained in human DC precursors. To reveal how 

IRF8 prompts the specification of precursors toward a given lineage, efforts should 

be made to perform IRF8 ChIP-Seq using recently defined pre-DC populations 

(Cytlak and Resteu et al., 2020). However, the main limitations to this are the rarity of 



 
 

158 

these cells in vivo and the difficulty of producing sufficient numbers of precursors in 

vitro under the current culture conditions of the OP9/OP9-DL1 systems. 

 

Finally, the role of IRF8 in the control of type I IFN signaling in pDC, will be explored 

further in the future. Since the produced ChIP-Seq experiment used unstimulated 

cells, the use of DCs stimulated with TLR ligands to actively produce interferons 

could benefit further studies wishing to uncover the role of IRF8.  
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Chapter 7. Overview, discussion, and further work 
7.1 Summary of novel findings 
This work explored multiple aspects of human dendritic cell development. A 

combination of approaches, including cytometry, transcriptomics and genomics, 

enabled the following novel observations to be made: 

 

1. Co-culture of human bone marrow CD34+ progenitors with feeder layer OP9 
in the presence of a cytokine cocktail generates all DC subsets in proportions 
similar to peripheral blood. The resulting pDCs, cDC1s, and cDC2s exhibit an 

appropriate phenotype and align closely with their ex vivo counterparts by gene 

expression analysis. 

 
2.  Addition of Notch ligand DL1 to the OP9 culture system results in an eleven-
fold increase of cDC1 output per progenitor cell (Kirkling and Cytlak et al., 
2018). The OP9-DL1 system, able to produce large numbers of bona fide cDC1s in 

vitro makes these cells more accessible for therapeutic use and research. 

 

3. cDC1s produced in culture closely resemble their ex vivo-derived tissue 
counterparts. Comparative transcriptomics revealed that OP9 and OP9-DL1 derived 

cDC1s bear higher resemblance to spleen and bone marrow cells than to cDC1s 

from peripheral blood. 
 
4. Human DC subsets develop in the bone marrow via two pathways, marked 
by differential expression of transcription factor IRF8 (Cytlak and Resteu et al., 
2020). A combination of cell culture and cutting-edge single cell analysis techniques 

facilitated the discovery that high IRF8 expression defines a developmental pathway 

giving rise to pDC, cDC1 and DC2. In contrast, the DC3 population arises through an 

IRF8low pathway with precursors independent from monocytes.  

 
5. A specific and sensitive IRF8 antibody was validated for ChIP-Seq. The Santa 

Cruz (E-9): sc-365042 IRF8 antibody met the characterisation criteria outlined by the 

ENCODE consortium (Landt et al., 2012). As part of the validation, this antibody was 

able to detect IRF8 in human ex vivo-derived bone marrow cells via western blotting 

and to immunoprecipitate the IRF8 protein heterologously expressed by the 
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HEK293T cell line. Following characterisation, the Santa Cruz antibody was 

successfully used to produce a low cell ChIP-Seq dataset.  

 
6. IRF8 controls different functional modules in the homeostasis of the IRF8-
expressing human DC subsets. Analysis of IRF8 ChIP-Seq data showed that this 

transcription factor is crucial for cDC1, where it maintains both the function and 

surface phenotype. In pDC, IRF8 controls an important functional module, IFN α/β 

signaling. 

 

7. Mature cDC1, but not pDC, show evidence of IRF8 auto-activation in human. 
Visualisation of the ChIP-Seq data revealed the presence of several peaks 

surrounding the IRF8 transcription start site in cDC1. Motif analysis showed that the 

majority of these peaks contained motifs bound by IRF8 and its binding partners with 

an activator role. This was not observed in mature pDC, suggesting that IRF8 

expression in these cells is maintained via different mechanisms. 

 
7.2 Overview of the techniques used 
The above-listed findings were made possible by employing a combination of novel 

and established methods and analysis pipelines. Initial work was performed using the 

NanoString gene expression assay, in order to validate the DC output of a novel in 

vitro culture system against ex vivo-derived DCs from peripheral blood. The 

NanoString system was selected, as it offered a material- and cost-effective method 

of assaying the expression of hundreds of Immunology-related genes via the use of 

the pre-built Immunology panel. The use of fluorescence activated sorting allowed for 

the purification and sorting of the DC subsets into lysis buffer, and due to the 

specialised chemistry of the NanoString assay, the lysates could be used directly for 

hybridisation, omitting the RNA isolation step, and therefore minimising the loss of 

material and cutting down on the cost and time needed for RNA extraction. In 

addition, the system was available in-house, and the samples were processed on the 

NanoString system shortly after cell sorting. This allowed to reduce the number of 

freeze-thaw cycles that cause degradation of RNA during sample shipping. 

Furthermore, the amount of time from cell sorting to obtaining the data on the 

NanoString system from as short as 48 hours. The data produced by the NanoString 

assay is in form of counts, each count being equivalent to one mRNA molecule, 

greatly simplifying the processing steps of this data compared to sequencing 
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approaches. In this work, data normalisation was performed with the advanced 

analysis module of the nSolver software (NanoString Technologies), which selects 

the housekeeping genes with the most consistent expression across the samples 

and uses them as reference. Normalisation of NanoString data is a critical step, as 

the gene counts in each sample are affected by the concentration and quality of input 

RNA and by chaotropic agents and other contaminants originating from RNA 

extraction reagents or cell lysis buffers. As the nSolver software is not fully 

customisable, further data analysis was undertaken in the R environment, where it 

was possible to perform additional filtering of genes with background-level 

expression, as well as use a t-test to identify list of differentially expressed genes 

between all culture versus all ex vivo-derived populations, also referred to as “culture 

signature” (Figure 7.1). 

 

 
Figure 7.1. Analysis pipeline for NanoString data. 
The analysis steps are listed in blue boxes and the tools used at each stage are 

shown in grey. Data QC and normalisation steps were undertaken within the nSolver 

software (NanoString Technologies). Further analysis was performed within the R 

software environment.  
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The second transcriptomic approach employed in this work was “low input” bulk 

RNA-Seq. A modified single cell protocol was used for this work, rather than standard 

RNA-Seq requiring tens of thousands of cells. This whole transcriptome analysis 

method was used to gain a better understanding of the identity of cDC1s produced in 

OP9 and OP9-DL1 culture, by comparing the transcriptomes of the in vitro-derived 

population to those of their counterparts from peripheral blood, bone marrow, and 

spleen. Generally, the production of RNA-Seq data entails a labour-intensive 

protocol, which involves the isolation or enrichment of cells of interest, RNA 

extraction, library preparation, then sequencing. In addition, the analysis of RNA-Seq 

data is more complex and labour-intensive than that of NanoString system output, 

and requires additional processing steps, often preformed using command line tools. 

In this work, the processing steps were performed on a computer cluster, due to their 

memory-intensive nature. An adaptation of analysis scripts provided by the 

Bioinformatics Support Unit at Newcastle University was used to trim and filter 

sequencing reads based on quality with Trimmomatic (Bolger et al., 2014), align 

them with the STAR mapping algorithm (Dobin and Gingeras, 2015), convert the 

alignment files from SAM format to the more compressed BAM format with SAMtools 

(Li et al., 2009), and count reads with HTSEQ (Anders et al., 2015) in order to 

generate the count table, which reports the number of reads assigned to each gene 

for each sequenced sample. As bulk RNA-Seq is an established technique, a 

multitude of analysis pipelines designed for performing comparative transcriptomics 

using count matrices have been made available, primarily in the R software 

environment. The data analysis in this thesis employed a widely-used pipeline for 

normalisation and differential expression – the DESeq2 R package (Love et al., 

2014). The goal of the RNA-Seq data normalisation is to control for sources of 

variation, such as differences in the sequencing depth of the samples. The DESeq2 

tool also performs the estimation of dispersion values for each gene, followed by the 

fitting of a generalised linear model to minimise sampling noise. Further “custom” 

methods that suited the analysis needs the most include the BubbleGUM software 

(Spinelli et al., 2015), employed to determine the blood and tissue signatures, and 

the single sample GSEA from the GSVA R package (Barbie et al., 2009; 

Hänzelmann, et al, 2013), applied to determine the enrichment of these signatures 

across ex vivo-derived and cultured cells (Figure 7.2).  
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Figure 7.2. Analysis pipeline for bulk RNA-Seq data. 
The analysis steps are listed in blue boxes and the software programmes used for 

each step are shown in grey. The data processing was performed on a computer 

cluster, using command line tools. Further analysis was undertaken in the R 

environment by employing the DESeq2 pipeline, especially designed for RNA-Seq 

experiments. Other R packages, as well as the BubbleGUM software, were 

incorporated in the analysis pipeline in order to analyse the molecular signatures of 

tissue and blood DCs. 

 
Recent advances in sequencing lead to an increase in availability and decrease in 

cost of single cell RNA-Seq, enabling the use of this technology to dissect DC 

haematopoiesis in Chapter 4 of this thesis. The single cell plate-based approach was 

adopted, as it allows the index sorting of each cell and is able to generate better 

quality data and compared to droplet methods, such as 10X. However, this method is 

more expensive and labour intensive. The workflow for the generation of the scRNA-

Seq data generally resembled that of bulk RNA-Seq, the main difference being that 
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FACS was employed to isolate single cells, rather than bulk cell populations. Pre-

processing steps of plate-based scRNA-Seq data often mimic those used for bulk 

transcriptome analysis, and in this work an almost identical pipeline was employed. 

However, the two approaches diverge once the count tables are obtained (Figure 

7.3). From this point, single cell specific tools are essential for analysis, primarily due 

to differences in the quality of the data, scRNA-Seq data containing many dropouts 

and having sparser gene counts. Tools specialised to handle single-cell gene 

expression data applied in this work include the scater R package (McCarthy et al., 

2017), employed to perform cell and gene QC and filtering and the SC3 R package 

(Kiselev et al., 2017), used to cluster the cells by gene expression and determine the 

markers defining each cluster of similar cells, and the Slingshot method for inferring 

cell lineages and pseudotimes (Street et al., 2018). As the scRNA-Seq datasets are 

often highly multidimensional, containing hundreds of cells and thousands of genes, 

their visualisation and interpretation can be challenging. Dimensionality reduction 

techniques, such as tSNE and diffusion maps, allow for low-dimensional 

representation of the expression data and are therefore indispensable for the single 

cell transcriptomic analysis (van der Maaten, 2008; Angerer et al., 2016). 

Transformation of data from a high-dimensional space into a low-dimensional space 

is also critical for computational analysis and visualising of flow and mass cytometry 

datasets. In this thesis, dimensionality reduction allowed the representation of all 

parameters constituting the cytometry datasets as 2D or 3D figures, in contrast to the 

traditional sequence of multiple 2D scatter plots displaying 2 antigens at a time.  
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Figure 7.3. Analysis pipeline for scRNA-Seq data. 
The analysis steps are listed in blue boxes and the tools used at each stage are 

shown in grey. The data processing was performed on a computer cluster, using 

command line tools. The data analysis was undertaken in the R environment and 

employed packages developed or adapted for scRNA-Seq data. 

 

The final two results chapters of this thesis revolved around the optimisation and 

analysis of low cell IRF8 ChIP-Seq for the cDC1 and pDC subsets. These 

experiments were made possible by recent advances in ChIP protocols, which 

allowed the use of under 100,000 cells for each ChIP reaction, in contrast to over a 

million cells, previously used in ChIP-Seq experiments. In addition, the rarity of cDC1 

in vivo, was addressed via a novel culture system, the output of which was verified by 

two transcriptomic approaches in addition to surface phenotype and functional 

assays (Kirkling and Cytlak et al., 2018). A hurdle encountered in these experiments 

was the commercial discontinuation of high-quality ChIP-grade IRF8 antibodies, 

previously used for most related studies (Langlais et al. 2016, Shin et al, 2011). This 

was overcome by the validation of a different antibody, following the characterisation 

criteria outlined by the ENCODE consortium (Landt et al., 2012). Molecular biology 
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techniques, such as western blotting, bacterial transformation and transfection of 

mammalian cell lines, as well as immunoprecipitation, were combined to ensure the 

specificity and sensitivity of the antibody. The generation of sequencing data was 

guided by the standards outlined by the ENCODE consortium 

(https://www.encodeproject.org) for Transcription Factor ChIP-seq. In accordance to 

the ENCODE experimental guidelines, each experiment had 3 biological replicates 

and employed an appropriately characterised antibody, each ChIP-Seq experiment 

had a corresponding input control experiment with matching run type, read length, 

and replicate structure, and most replicates contained over 20 million reads. In 

addition, ENCODE Uniform Processing Pipeline Restrictions were followed to 

generate 150bp paired-end reads (longer read lengths than 50 base pairs being 

encouraged). Upon production of the datasets, custom data processing and analysis 

pipelines were assembled by the candidate to suit the analysis needs (Figure 7.4). 

For the most  part, the data processing pipeline consisted of a set of established 

genomic tools, such as bcl2fastq (Illumina), used to assign reads to samples 

following multiplexed sequencing based on the indexes incorporated during library 

construction, Cutadapt (Martin, 2011) and FastQC (Simon Andrews, Babraham 

Institute), used for trimming of adapters and low quality bases, BWA-MEM (Li, 2013), 

a fast and accurate algorithm for mapping of DNA sequences against a large 

reference genome, and samtools (Li et al., 2009), a tool used for converting SAM 

files to the more compressed BAM format. To mitigate the effects of PCR 

amplification bias introduced during library preparation, which can interfere with 

downstream peak calling, a custom tool developed by Active Motif, Inc was applied to 

the BAM alignment files. First, a molecular identifier in the form of a 9 base N random 

sequence was incorporated into each DNA fragment prior to library construction. The 

custom tool recognised reads with identical molecular identifies as true PCR 

duplicates, leading to their removal.  Peak calling was undertaken with an improved 

version of a commonly used tool for identifying transcription factor binding sites, 

named Model-based Analysis of ChIP-Seq version 2 (MACS2, Zhang et al., 2008). 

Following the processing steps, performed on a computer cluster due to their 

prohibitive memory requirements, analysis of called peaks was migrated to the R 

environment, which contains a multitude of ChIP-Seq-specific packages and analysis 

pipelines. A blend of R packages was used to create an analysis pipeline that 

computes differentially bound sites from multiple ChIP-Seq experiments using affinity 

data with DiffBind (Ross-Innes et al., 2012), annotates the consensus peaks found in 
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most replicates with ChIPseeker (Yu et al., 2015), and performs pathways analysis 

with ClusterProfiler (Yu et al., 2012). Motif analysis was migrated back to the 

command line environed, where a larger number of specialised tools, such as 

GimmeMotif (Bruse and van Heeringen, 2018) are available. Finally, the 

incorporation of the external single cell transcriptomic dataset published by Villani 

and colleagues (2017), was essential to verify and visualise the cDC1 marker genes 

controlled by transcription factor IRF8. 

 
 

 
Figure 7.4. Analysis pipeline for ChIP-Seq data. 
The analysis steps are listed in blue boxes and the tools used at each stage are 

shown in grey. Initial data processing and analysis, including peak calling, were 

performed on a computer cluster using command line tools. Further analysis tools 

include R packages, as well as the IGV software, used to visualise the genomic 

locations of the peaks, and the GimmeMotifs command line tool for motif analysis. 
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7.3 Research impact 
As described in the previous sub-chapter, multiple unique datasets have been 

generated and analysed throughout this project. The biological findings, as well as 

the data and the analysis pipelines represent valuable contributions to immunology. 

They pave the way to tackle future research including the leads and further questions 

raised through the work in this project. 

 

First, this project verified the identity of DCs produced in culture and established the 

critical role of Notch signaling for human cDC1 differentiation. These results were 

published (co-author) in collaboration with a research group that determined the 

crucial role of Notch signaling in the functional maturation of murine cDC1s (Kirkling 

and Cytlak et al., 2018). The OP9-DL1 culture system, able to produce large 

numbers of cDC1s in vitro via Notch stimulation, renders cDC1, the rarest DC subset 

in vivo, more accessible for therapeutic use and research. A research application has 

already been found for this culture method in Chapters 5 and 6 of this work, where it 

was applied to produce sufficient cells for the study of the role of transcription factor 

IRF8 in the homeostasis of cDC1s. The OP9 system, able to generate DC subsets in 

proportions similar to peripheral blood, was applied to produce pDCs for the IRF8 

ChIP-Seq experiment in Chapter 6 and aided the dissection of DC haematopoiesis in 

Chapter 4. The R code created for the analysis of NanoString gene expression data 

from ex vivo and culture-derived DCs and monocytes has been used as learning 

material by BSc and MSc students in the HuDC group. The RNA-Seq data 

processing and analysis pipelines for cDC1s from blood, tissue, and culture has been 

adapted for the exploration of other datasets generated within the HuDC Lab, such 

as the RNA-Seq data created to verify the identity of monocyte-derived Langerhans 

cells produced in culture via Notch stimulation through DLL4. The findings of 

transcriptomic analysis of the moLC have recently been published as part of a 

publication titled “Notch-mediated generation of monocyte-derived Langerhans cells: 

Phenotype and function” (Bellmann et al., 2020). 

 

Using the OP9 in vitro differentiation assay in combination with single cell methods, 

the research undertaken as part of Chapter 4 of this thesis revealed that two 

pathways of DC development are present in human bone marrow. Differential 

expression levels of transcription factor IRF8 marks for the two pathways, high IRF8 

developmental pathway giving rise to pDC, cDC1 and DC2, and the IRF8low pathway 
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producing DC3 and classical monocytes. This has not been previously reported in 

literature, as most studies of DC haematopoiesis did not account for the cDC2 

heterogeneity, which was first described in detail in 2017 by Villani and colleagues.  

Chapter 4 identifies the two distinct developmental pathways as the source of the 

cDC2 heterogeneity, as the DC2 and DC3 subsets develop via different routes. 

Furthermore, work undertaken this chapter revealed the previously unknown 

phenotypical identities of the progenitor populations with increasingly committed DC 

potential and determined that DC2s develop through subsets of LMPP and CD123-

/lowCD33- GMP, while DC3 follow a trajectory passing through the CD123-/lowCD33+ 

GMP phenotypic space, explaining the apparent dual lympho-myeloid origin of 

dendritic cells. An important observation made in this thesis was that DC3 are not 

monocyte-derived, despite of their inflammatory-like expression profile. Instead, the 

resemblance of DC3 and monocytes can be explained by the similar developmental 

routes followed by these cell types. The single cell transcriptomics data for primary 

human bone marrow progenitors and mature DCs and monocytes generated during 

this project have been deposited within the Gene Expression Omnibus data 

repository (accession numbers GSE142999 and GSE143002) and are available for 

use by other researchers. 

 

As part of Chapter 6 of this work, an IRF8 ChIP-Seq dataset for human cDC1s and 

pDCs has been generated and will be made available to other researchers upon 

publication of the related manuscript. This importance of this dataset lies in its 

uniqueness, as only a small number of ChIP-Seq datasets for transcription factor 

IRF8 in human are currently publicly available and none have been performed using 

human dendritic cells. Due to the lack of ChIP-validated IRF8 antibodies, extensive 

laboratory testing was undertaken as part of this project in order to identify a high-

quality ChIP-grade antibody. Efforts will be made to include the antibody used in this 

experiment in the ENCODE database. Collaborators of the HuDC Lab on the IRF8 

ChIP-Seq project have been informed about the potential of the newly characterised 

antibody and are planning to perform further independent validation and use it for 

ChIP-Seq experiments. Additionally, the analysis of the newly generated ChIP-Seq 

data expanded the knowledge about transcription factor IRF8 and uncovered its 

diverse role in the homeostasis of human DC subsets. A pipeline for the analysis of 

ChIP-Seq data has been compiled by the candidate as part of this project, and can 
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be applied to any ChIP-Seq datasets that will be generated within the HuDC group in 

the future. 

 

7.4 Limitations of the project 
Together, this work greatly expands the knowledge about the development of human 

dendritic cells. However, conducting research on this cell type in human is restricted 

by certain limitations. Dendritic cells are extremely rare in vivo, and are difficult to 

obtain in sufficient numbers for research studies. cDC1 cells are particularly rare, 

found in very low numbers in peripheral blood (an average of 500 cells per mL of 

blood, or 0.1% of PBMC; Collin et al 2013). Although they may be more abundant in 

tissues, for example splenic or lymphoid tissue, this material is less accessible for 

human research. Typically, the volume of blood drawn from healthy volunteers does 

not exceed 180mL, giving a total of 90,000 cDC1s in most samples cells. The loss of 

30-40% of cells during FACS and subsequent steps further reduces the quantity of 

available material (Sutermaster et al., 2019), restricting the genomic and 

transcriptomic methods that can be used to study these cells to low input 

technologies. The most common methods for cell isolation and purification are FACS 

and magnetic-activated cell sorting. While magnetic-activated cell sorting is a faster 

method, the low purity resulting from this protocol renders it suboptimal for DC 

research. The rarity of dendritic cells was overcome by the use of the scalable OP9 

and OP9-DL1 culture systems, able to generate sizable numbers of DC from human 

bone marrow progenitors. Nevertheless, the scarcity of the samples remains an 

issue, and in particular the limited availability of healthy donor bone marrow. In this 

project, bone marrow obtained from hip replacement surgery was used to meet the 

high demand for CD34+ progenitors for cell culture. However, the majority of patients 

undergoing this type of surgery are of an advanced age, limiting the samples further, 

if all age groups are to be represented. As the immune system and the process of 

haematopoiesis undergo changes with aging (Gubbels Bupp et al., 2018), it was 

imperative to not focus on a certain age group in this project. Therefore, the bone 

marrow samples used for culture were carefully selected to include range of age 

groups, and for ChIP-Seq donors were aged between 28 and 50. In addition, only 

samples derived from female donors were used in this analysis, as differences 

between male and female immune systems have recently come to light (Moulton, 

2018; Griesbeck et al., 2015).  

 



 
 

171 

In addition, each of the multitude of techniques employed in this project has its 

advantages and limitations. As mentioned above, the purification of cell populations 

for downstream genomic and transcriptomic applications relied heavily on FACS. 

Drawbacks of this technology include the relatively low number of antigens (up to 18) 

than can be evaluated in each assay. In addition, FACS can only examine the 

expression of surface markers and cannot determine the expression of intercellular 

proteins (including transcription factors) on live cells, as intercellular staining 

commonly requires a permeabilisation step which causes cell damage and death. 

Furthermore, cell sorters commonly employ a gating strategy consisting of a 

sequence of 2D scatter plots. The software used for cell sorting in this project, 

allowed up to 8 scatter plots, leading to the adoption of alternative gating strategies 

for the sorting of large numbers of complex populations in order to accommodate this 

limit. 

 
Further technical limitations stem from the genomic and transcriptomic approaches 

adopted in this work. While the NanoString assay is a robust alternative for a low 

input gene expression assay, its multiplexing capability is limited to 800 genes. The 

pre-built NanoString Immunology panel was the most economical to use for DC 

research. Nevertheless, many genes present in this panel covered other aspects of 

the immune system and were not expressed by DCs. This was in part overcome by 

the addition of 30 custom DC-related genes. However, approximately one third of the 

608 total assayed genes displayed background-level counts. The detection of all 

known DC subsets was still possible based on the expressed genes.  

 

The scRNA-Seq method, while being invaluable for dissecting haematopoiesis in 

Chapter 4, has a number of limitations. The first challenge of this method is the 

isolation of single cells, which often leads to cell loss, and depending on the 

technology used, may cause a high proportion of doublet cells to be sequenced. In 

addition, a variable proportion of low quality data is generated due to sequencing of 

broken or dead cells. QC of single cell data is therefore crucial in order to remove 

poor quality cells. Outlier cells are commonly removed based on the total number of 

detected features, total gene counts and percentage of counts derived from ERCC 

spike-ins and mitochondrial genes. These steps were used in this project to filter out 

doublets with abnormally high numbers of detected features, and remove damaged 

and apoptotic cells with low total counts, low number of features, a high proportion of 
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reads derived from spike-ins, rather than endogenous genes, and significant 

mitochondrial contamination. This QC step relies on the proportion of mitochondrial 

genes, increased as the cell dies, but doesn’t take into account of any lineage 

differences in expression of mitochondrial genes. Due to low amounts of starting 

material, the scRNA-Seq data is also prone to dropout events, occurring when 

specific transcripts cannot be detected and adding substantial challenges for the 

computational analysis of this data. As the scRNA-Seq datasets are noisier than bulk 

RNA-Seq, specialised tools must be used for the analysis. The scRNA-Seq methods 

are continuously evolving, which brings benefits such as decrease in cost and 

improvement of data quality. However, this constituted a hindrance in this project, 

due to alterations over the years in the protocol for the generation of the scRNA-Seq 

data at the Wellcome Centre for Human Genetics, where sequencing was performed. 

This led to the inability to efficiently remove batch effects in order to combine the 

datasets containing BM CD34+ progenitors and BM CD34med precursors and mature 

DCs, generated at different points in time. These scRNA-Seq datasets were 

therefore analysed separately, and mass cytometry data were generated to explore 

the BM CD34high and CD34med fractions, along with mature cells as a single dataset.   

 
The transcription factor ChIP-Seq method was used study the role of TF IRF8 in the 

homeostasis of IRF8-expressing DC subsets in human. However, despite being a 

long-established technique, this assay required extensive optimisation, to which 

Chapter 5 was dedicated. The quality of the ChIP-Seq data relies heavily on the 

antibody used for immunoprecipitation, and multiple molecular biology techniques 

had to be used to ensure the adequate specificity of the employed IRF8 antibody. 

The number and duration of sonication cycles was one of the aspects that required 

optimisation. This was a time-consuming experiment, as DCs were first produced in 

14-21 days of culture, then fixed and sonicated, and the full 5-day ChIP-Seq protocol, 

including the library preparation had to be performed in order to assess the effect of 

different sonication settings. Assessment of fragment size was not possible 

immediately after sonication, due to the use of a low number of cells, and was 

performed after PCR amplification as part of library construction protocol. The 

minimal number of cells required for the low input ChIP-Seq protocol is 50,000 for 

each replicate, which allowed us to use this technique for mature culture-derived DC. 

However, this number is still prohibitively high for using this technology on DC 
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progenitors, which are extremely rare in vivo and transient in culture, and on ex vivo-

derived mature DCs. 

 
7.5 Future research vision 
Further work will aim to: 

1. Study and optimise the OP9/OP9-DL1 culture system. Further optimisation 

of the culture system will be performed, aiming to enhance it as a research 

tool and to adapt it for use in DC therapy. To increase the yield of DCs both for 

research and therapy, introduction of a CD34+ progenitor expansion step in 

the first days of culture will be attempted. Further aspects to be investigated 

include: 

a. Examining the effect of exogenous factors: the effect of alternative or 

additional growth factors or cytokines on the quantity, phenotype or 

function of the output cells, including factors which activate or tolerise the 

cells. The culture will also be altered with the goal to produce sufficient 

numbers of DC progenitors, which can be used for further studies or tolDC 

therapy. 

b. Determining the OP9 factors are necessary for human DC development, 

including cell-cell contact and secreted factors, allowing the design of a 

mouse-stromal cell free system. This approach is in line with the aim to 

reduce the use of the animal-derived products in the culture system, such 

as the feeder layer and the foetal calf serum, in order to allow the adoption 

of this system for therapeutic use. 

c. Determining the autocrine factors that influence the culture output. As DCs 

develop they may secrete factors which inhibit or support other DCs for 

homeostasis.  

 
2. Explore the developmental pathways disrupted by mutations in IRF8. 

This will be achieved via the generation and analysis of scRNA-Seq datasets 

encompassing cells derived from patients with heterozygous and homozygous 

IRF8 mutations. The single cell transcriptomics data will help uncover the 

dose-dependent effect of IRF8 on the development of individual cells within 

heterogeneous DC progenitor populations. Further experiments will also 

include: 
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a. CRISPR-Cas9 techniques to introduce known mutations into primary 

CD34+ cells to explore the phenotypes in vitro.  

b. Creation of induced pluripotent stem cells from patient cells for in vitro 

studies. 

c. Co-immunoprecipitation experiments to determine whether mutations 

affect the IRF8 binding partners. 

d. ChIP-Seq of cells carrying IRF8 mutations to establish the effect of 

mutations on IRF8 transcriptional regulation – both for cell development 

and for functional responses, e.g. to IFN stimulation. 

 
3. Validate the IRF8 ChIP-Seq findings. IRF8 can act as an activator or 

repressor of gene expression, and the effect of IRF8 on the biological 

pathways deemed significant by the ChIP-Seq analysis is presently unknown. 

Analysis of pDC and cDC1 RNA-Seq data from a complementary experiment 

will reveal the levels of expression of IRF8-regulated genes and help infer the 

role of this transcription factor in regulating the expression of individual genes 

and biological pathways. The active and inactive promoters will be verified via 

histone ChIP-Seq, and the chromatin accessibility at IRF8 binding sites will be 

explored with single cell ATAC-Seq on the 10X platform. Further ChIP-Seq 

experiments involving IRF8 binding partners with an activator role (such as 

BATF3 and PU.1) will reveal the interactions most crucial for the homeostasis 

of human DC subsets. The validation of IRF8 auto-activation in cDC1s will 

also be performed via CRISPR-Cas9 knock out of IRF8 peaks surrounding the 

IRF8 gene in order to determine the sites necessary for the different elements 

of IRF8 function.  

 
4. Investigate the role of IRF8 in the development of cells emerging from 

the IRF8high pathway. This will be explored via an IRF8 ChIP-Seq experiment 

of increasingly committed progenitor populations, the phenotypic identities of 

which were revealed in Chapter 4 of this work. However, this can only be 

achieved via further optimisation of the culture system in order to produce 

larger number of progenitors. Alternatively, modifications can be applied to the 

ChIP-Seq protocol with the aim to decrease the number of cells required per 

IP reaction.  
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Appendix A.  Microscopy of cells produced in culture 
 

 
Microscopy of the cells produced within the OP9-DL1 culture system on days 
3, 6, and 19 of culture. 
3,000 bone marrow CD34+ progenitors were co-cultured with 5,000 OP9-DL1 murine 

bone marrow stromal cells in the presence of growth factors SCF, GM-CSF, and 

FLT3L. Microscopy was performed using the Olympus CK2 inverted microscope 

(100x magnification). 
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Appendix B.  List of antibodies used for flow cytometry, FACS and 
mass cytometry in Chapter 4 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Mouse anti-APC 176 Yb, clone APC003 Fluidigm Cat# 3176007B 

Mouse anti-human AXL APC, clone 108724 R&D Systems Cat# FAB154A 

Mouse anti-human AXL purified, clone 108724 R&D Systems Cat# MAB154; 
RRID:AB_2062558 

Mouse anti-human BTLA 163Dy, clone MIH26 Fluidigm Cat# 3163009B 

Mouse anti-human BTLA BV650, clone J168-540 BD Biosciences Cat# 564803; 
RRID:AB_2738962 

Mouse anti-human CD1c APC-Cy7, clone L161 BioLegend Cat# 331520; 
RRID:AB_10644008 

Mouse anti-human CD1c PE-Cy7, clone L161 BioLegend Cat# 331516; 
RRID:AB_2275574 

Mouse anti-human CD1c PerCP-Cy5.5 , clone L161 BioLegend Cat# 331513; 
RRID:AB_1227536 

Mouse anti-human CD1c purified, clone L161 BioLegend Cat# 331502; 
RRID:AB_1088995 

Mouse anti-human CD2 151Eu, clone TS1/8 Fluidigm Cat# 3151003B 

Mouse anti-human CD2 BV421, clone TS1/8 BioLegend Cat# 309217; 
RRID:AB_10915139 

Mouse anti-human CD2 PE-CF594, clone RPA-2.10  BD Biosciences Cat# 562300; 
RRID:AB_11153492 

Mouse anti-human CD3 AF700, clone SK7 (Leu-4) BioLegend Cat# 344822; 
RRID:AB_2563420 

Mouse anti-human CD3 FITC, clone SK7(Leu-4) BD Biosciences Cat# 345763 

Mouse anti-human CD3 PE, clone SK7(Leu9) BD Biosciences Cat# 345765 

Mouse anti-human CD5 BUV737, clone UCHT2 BD Biosciences Cat# 564451; 
RRID:AB_2714177 

Mouse anti-human CD5 purified, clone L17F12 BioLegend Cat# 364002; 
RRID:AB_2564477 

Mouse anti-human CD7 FITC, clone Leu-9 BD Biosciences Cat# 347483; 
RRID:AB_400309 

Mouse anti-human CD7 PE, clone M-T701  BD Biosciences Cat# 332774 

Mouse anti-human CD10 156Gd, clone HI10a Fluidigm Cat# 3156001B 

Mouse anti-human CD10 BV650, clone HI10a BD Biosciences Cat# 563734; 
RRID:AB_2738393 

Mouse anti-human CD11b 144Nd, clone ICRF44 Fluidigm Cat# 3144001B 

Mouse anti-human CD11c 159Tb, clone Bu15 Fluidigm Cat# 3159001B 

Mouse anti-human CD11c AF700, clone B-ly6 BD Biosciences Cat# 561352; 
RRID:AB_10612006 

Mouse anti-human CD11c APC-Cy7, clone Bu15 BioLegend Cat# 337218; 
RRID:AB_10662746 

Mouse anti-human CD11c BV711, clone B-ly6 BioLegend Cat# 301630; 
RRID:AB_2562192 

Mouse anti-human CD14 BV650, clone M5E2 BioLegend Cat# 301835; 
RRID:AB_11204241 

Mouse anti-human CD14 FITC, clone M5E2 BD Biosciences Cat# 555397; 
RRID:AB_395798 

Mouse anti-human CD14 PE, clone M5E2 BD Biosciences Cat# 555398; 
RRID:AB_395799 

Mouse anti-human CD14 PE-Cy7, clone HCD14 BioLegend Cat# 325618; 
RRID:AB_830691 

Mouse anti-human CD14 purified, clone M5E2 BioLegend Cat# 301802; 
RRID:AB_314184 

Mouse anti-human CD15 164Dy, clone W6D3 Fluidigm Cat# 3164001B 

Mouse anti-human CD15 BUV395, clone HI98 BD Biosciences Cat# 563872; 
RRID:AB_2738461 
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Mouse anti-human CD15 BV605, clone W6D3 BD Biosciences Cat# 562979; 
RRID:AB_2744292 

Mouse anti-human CD16 209Bi, clone 3G8 Fluidigm Cat# 3209002B 

Mouse anti-human CD16 AF700 , clone 3G8 BioLegend Cat# 302026; 
RRID:AB_2278418 

Mouse anti-human CD16 FITC, clone 3G8 BD Biosciences Cat# 335035 

Mouse anti-human CD16 PE, clone 3G8 BD Biosciences Cat# 555407; 
RRID:AB_395807 

Mouse anti-human CD16 PE-Dazzle594, clone 3G8 BioLegend Cat# 302054; 
RRID:AB_2563639 

Mouse anti-human CD19 AF700 , clone 4G7/HIB19 BioLegend Cat# 302226; 
RRID:AB_493751 

Mouse anti-human CD19 FITC, clone 4G7 BD Biosciences Cat# 345776 

Mouse anti-human CD19 PE, clone HIB19 BD Biosciences Cat# 555413; 
RRID:AB_395813 

Mouse anti-human CD20 AF700 , clone L27/2H7 BioLegend Cat# 302322; 
RRID:AB_493753 

Mouse anti-human CD20 FITC, clone L27 BD Biosciences Cat# 345792 

Mouse anti-human CD20 PE, clone L27 BD Biosciences Cat# 345793 

Mouse anti-human CD33 158Gd, clone WM53 Fluidigm Cat# 3158001B 

Mouse anti-human CD33 APC, clone P67.6 BD Biosciences Cat# 345800 

Mouse anti-human CD33 BV711, clone WM53 BD Biosciences Cat# 563171; 
RRID:AB_2738045 

Mouse anti-human CD34 166Er, clone 581 Fluidigm Cat# 3166012B 

Mouse anti-human CD34 APC-Cy7, clone 581 BioLegend Cat# 343514; 
RRID:AB_1877168 

Mouse anti-human CD34 BV605, clone 581 BioLegend Cat# 343529; 
RRID:AB_2562193 

Mouse anti-human CD34 FITC, clone 8G12 BD Biosciences Cat# 345801 

Mouse anti-human CD34 PE-CF594, clone 581 BD Biosciences Cat# 562383; 
RRID:AB_11154586 

Mouse anti-human CD36 155Gd, clone 5-271 Fluidigm Cat# 3155012B 

Mouse anti-human CD38 PE-Cy7, clone HB7 BD Biosciences Cat# 335825 

Mouse anti-human CD38 purified, clone HB-7 BioLegend Cat# 356602; 
RRID:AB_2561794 

Mouse anti-human CD45 89Y, clone HI30 Fluidigm Cat# 3089003B 

Mouse anti-human CD45 APC-Cy7, clone 2D1 BD Biosciences Cat# 557833; 
RRID:AB_396891 

Mouse anti-human CD45 V450, clone 2D1 BD Biosciences Cat# 642275; 
RRID:AB_1645755 

Mouse anti-human CD45RA 153Eu, clone HI100 Fluidigm Cat# 3153001B 

Mouse anti-human CD45RA BV510, clone HI100 BioLegend Cat# 304142; 
RRID:AB_2561947 

Rat anti-human CD52 PE, clone YTH34.5 Bio-Rad Cat# SFL1642PE; 
RRID:AB_324131 

Mouse anti-human CD56 FITC, clone NCAM16.2 BD Biosciences Cat# 345811 

Mouse anti-human CD88 PE, clone S5/1 BioLegend Cat# 344304; 
RRID:AB_2067175 

Mouse anti-human CD88 purified, clone C5AR BioLegend Cat# 344302; 
RRID:AB_2259318 

Mouse anti-human CD90 161Dy, clone 5E10 Fluidigm Cat# 3161009 

Mouse anti-human CD90 AF700, clone 5E10 BioLegend Cat# 328120; 
RRID:AB_2203302 

Mouse anti-human CD90 PerCP-Cy5.5, clone 5E10 BioLegend Cat# 328118; 
RRID:AB_2303335 

Human anti-human CD100 APC-Vio770, clone REA316 Miltenyi Biotec Cat# 130-104-604; 
RRID:AB_2654328 

Mouse anti-human CD100 purified, clone A8 BioLegend Cat# 328401; 
RRID:AB_1236386 

Mouse anti-human CD115 purified, clone 9-4D2-1E4 BioLegend Cat# 347302; 
RRID:AB_2085375 
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Mouse anti-human CD116 BV421, clone hGMCSFR-M1 BD Biosciences Cat# 564045; 
RRID:AB_2738561 

Mouse anti-human CD116 BV650, clone hGMCSFR-M1 BD Biosciences Cat# 564044; 
RRID:AB_2738560 

Mouse anti-human CD116 purified, clone 4H1 BioLegend Cat# 305902; 
RRID:AB_314568 

Mouse anti-human CD117 BV605, clone 104D2 BD Biosciences Cat# 562687; 
RRID:AB_2737721 

Mouse anti-human CD117 PE, clone 104D2 BD Biosciences Cat# 332785 

Mouse anti-human CD117 purified, clone 104D2 BioLegend Cat# 313201; 
RRID:AB_314980 

Mouse anti-human CD123 143Nd, clone 6H6 Fluidigm Cat# 3143014B 

Mouse anti-human CD123 BUV395, clone 7G3 BD Biosciences Cat# 564195; 
RRID:AB_2714171 

Mouse anti-human CD123 BV421, clone 6H6 BioLegend Cat# 306018; 
RRID:AB_10962571 

Mouse anti-human CD123 PerCP-Cy5.5, clone 7G3 BD Biosciences Cat# 558714; 
RRID:AB_1645547 

Mouse anti-human CD135 BV711, clone 4G8 BD Biosciences Cat# 563908; 
RRID:AB_2738479 

Mouse anti-human CD135 purified, clone BV10A4H2 BioLegend Cat# 313302; 
RRID:AB_314987 

Mouse anti-human CD141 BV510, clone 1A4 BD Biosciences Cat# 563298; 
RRID:AB_2728103 

Mouse anti-human CD141 purified, clone M80 BioLegend Cat# 344102; 
RRID:AB_2201808 

Mouse anti-human CD161 PE-Cy7, clone HP-3G10 Thermo Fisher Scientific Cat# 25-1619-42; 
RRID:AB_10807086 

Mouse anti-human CD303 147Sm, clone 201A Fluidigm Cat# 3147009B 

Mouse anti-human CD303 APC, clone 201A BioLegend Cat# 354206; 
RRID:AB_11150412 

Mouse anti-human CD303 BV605, clone 201A BioLegend Cat# 354224; 
RRID:AB_2572149 

Mouse anti-human CD304 169Tm, clone 12C2 Fluidigm Cat# 3169018B 

Mouse anti-human CD304 APC, clone 12C2 BioLegend Cat# 354506; 
RRID:AB_11219600 

Mouse anti-human CD304 BV605, clone U21-1283 BD Biosciences Cat# 743130; 
RRID:AB_2741297 

Mouse anti-human CLEC9A PE, clone 8F9 BioLegend Cat# 353804; 
RRID:AB_10965546 

Mouse anti-human CLEC9A purified, clone 8F9 BioLegend Cat# 353802; 
RRID:AB_10983070 

Rat anti-human CX3CR1 APC, clone 2A9-1 BioLegend Cat# 341610; 
RRID:AB_2087424 

Mouse anti-human FceRI 150Nd, clone AER-37 (CRA-1) Fluidigm Cat# 3150027B 

Mouse anti-FITC purified, clone FIT-22 BioLegend Cat# 408305; 
RRID:AB_2563769 

Mouse anti-human HLA-DR 173Yb, clone L243 Fluidigm Cat# 3173005B 

Mouse anti-human HLA-DR AF700, clone G46-6 BD Biosciences Cat# 560743; 
RRID:AB_1727526 

Mouse anti-human HLA-DR BV785, clone L243 BioLegend Cat# 307642; 
RRID:AB_2563461 

Mouse anti-human HLA-DR PerCP-Cy5.5, clone L243 BioLegend Cat# 307629; 
RRID:AB_893575 

Mouse anti-human ID2 purified, clone 4E12G5 Thermo Fisher Scientific Cat# MA5-17095; 
RRID:AB_2538566 

Mouse anti-human IFN-a PE , clone LT27:295 Miltenyi Biotec Cat# 130-092-601; 
RRID:AB_871560 

Rat anti-human IL-10 APC, clone JES3-9D7 BioLegend Cat# 501410; 
RRID:AB_315176 

Mouse anti-human IL-12p40/p70 BV421, clone C8.6 BD Biosciences Cat# 565023; 
RRID:AB_2739045 

Mouse anti-human IL-1b FITC, clone JK1B-1 BioLegend Cat# 508206; 
RRID:AB_345362 
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Mouse anti-human IL-8 PE-Cy7, clone E8N1 BioLegend Cat# 511416; 
RRID:AB_2565291 

Rat anti-human IRF4 PE, clone 3E4 Thermo Fisher Scientific Cat# 12-9858-80; 
RRID:AB_10853179 

Mouse anti-human IRF4 purified, clone IRF4.3E4 BioLegend Cat# 646402; 
RRID:AB_2280462 

Mouse anti-human IRF8 efluor710, clone 3GYWCH Thermo Fisher Scientific Cat# 46-9852-80; 
RRID:AB_2573903 

Mouse anti-human IRF8 purified, clone GW4CML3  Thermo Fisher Scientific Cat# 14-7888-82; 
RRID:AB_2572907 

Goat anti-human KLF4 APC, clone POLY R&D Systems Cat# IC3640A; 
RRID:AB_2044690 

Mouse anti-PE purified, clone PE001 BioLegend Cat# 408105; 
RRID:AB_2563787 

Mouse anti-human SIGLEC-6 purified, clone 767329 R&D Systems Cat# MAB2859  

Mouse anti-human SIRPa purified, clone 15-414 BioLegend Cat# 372102; 
RRID:AB_2629807 

Mouse anti-humanSIRPa/b AF700, clone SE5A5 BioLegend Cat# 323816; 
RRID:AB_2687275 

Mouse anti-human SIRPa/b APC, clone SE5A5 BioLegend Cat# 323809; 
RRID:AB_11219399 

Mouse anti-human SIRPa/b PE, clone SE5A5 BioLegend Cat# 323805; 
RRID:AB_830704 

Mouse anti-human SLAN PE, clone DD1 Miltenyi Biotec Cat# 130-093-029; 
RRID:AB_871582 
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Appendix C. Detailed gating strategy for the FACS-purification of 
bone marrow progenitors for scRNA-Seq 

 

Identification of the components of the CD34+ lineage(CD3,14,16,19,20,7)- 
progenitor compartment of human BM (Cytlak and Resteu et al., 2020). 
A. Gating strategy used for the index sorting of bone marrow progenitors subjected to 

scRNA-Seq, along with IRF8 expression across the GMP region. 
B. Culture output of FACS-purified bone marrow progenitors, assessed with flow 

cytometry following 14 days of culture. The proportion of generated DC subsets and 

monocytes is expressed as % of the total cells captured by all DC and monocyte 

gates. n=3-9 donors for each population. Bars represent mean+SEM. HSC, 

hematopoietic stem cell; MPP, multipotent progenitor; MEP, megakaryocyte erythroid 

progenitor; MLP, multilymphoid progenitor; LMPP, lymphoid primed multipotent 

progenitor; CMP, common myeloid progenitor; GMP, granulocyte macrophage 

progenitor. 
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Appendix D. Detailed gating strategy for the FACS-purification of 
bone marrow DC and monocyte precursors for scRNA-Seq 
 

 

 

 

 

 

 

 

 

 

 

 

The identification of bone marrow pre-DC subjected to scRNA-Seq (Cytlak and 
Resteu et al., 2020). 
A. Gating strategy used for the isolation of cells for scRNA-Seq. 

B. Culture output of FACS-purified bone marrow DC precursors, assessed with flow 

cytometry following 14 days of culture. The proportion of generated DC subsets and 

monocytes is expressed as % of the total cells captured by all DC and monocyte 

gates. n=3-4 donors for each population. Bars represent mean+SEM. 




