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Abstract

Stochastic parametric hybrid systems allow formalising automata with
discrete interruptions, continuous nonlinear dynamics and parametric
uncertainty (e.g. randomness and/or nondeterminism), and are a use-
ful framework for cyber-physical systems modelling. The problem of
designing safe cyber-physical systems is very timely, given that such
systems are ubiquitous in modern society, often in safety-critical con-
texts (e.g., aircraft and cars) with possibly some level of decisional
autonomy. Therefore, the verification of cyber-physical systems (and
consequently of hybrid systems) is a problem urgently demanding in-
novative solutions. Unfortunately, this problem is also extremely chal-
lenging.

Reachability checking is a crucial element of designing safe systems.
Given a system model, we specify a set of "goal" states (indicat-
ing (un)wanted behaviour) and ask whether the system evolution can
reach these states or not. Probabilistic reachability is the correspond-
ing problem for stochastic systems, and it amounts to computing the
probability that the system reaches a goal state.

The main problem researched in this thesis is probabilistic reachabil-
ity analysis of hybrid systems with random and/or nondeterministic
parameters. For nondeterministic systems, this problem amounts to
computing a range of reachability probabilities depending on how non-
determinism is resolved.

In this thesis I have investigated and developed three distinct tech-
niques:

• Statistical methods, involving Monte Carlo, Quasi-Monte Carlo



and Randomised Quasi-Monte Carlo sampling with interval es-
timation techniques which give statistical guarantees;

• An analytical approximation method, utilising Gaussian Pro-
cesses that offer a statistical approximation for an (unknown)
smooth function over its entire domain;

• A promising combination of a formal approach, based on formal
reasoning which provides absolute numerical guarantees, and the
Gaussian Regression method.

This research offers contributions on two different levels to the veri-
fication of stochastic parametric hybrid systems. From a theoretical
point of view, it offers a proof that the reachability probability func-
tion is a smooth function of the uncertain parameters of the model,
and hence Gaussian Processes techniques can be used to obtain an
efficient analytical approximation of the function. From a practical
point of view, I have implemented all the above described statistical
and approximation techniques as part of the publicly available Pro-
bReach tool, including a Gaussian Process Expectation Propagation
algorithm that performs Gaussian Process classification and regression
for uni-variate and multiple class labels. My empirical evaluation of
the presented techniques to a number of case studies has shown a
great Gaussian Process approach advantage with respect to standard
statistical model checking techniques.
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Chapter 1

Introduction

1.1 Introduction

One of the fundamental problems in verification and model checking is reacha-
bility. Given a system model and a set of “goal” states (indicating (un)wanted
behaviour), does the system eventually reach these states? Probabilistic reach-
ability is defined as the generalisation of this problem for stochastic parametric
hybrid systems (SPHS), and it entails computing the probability that the sys-
tem reaches a goal state. Hybrid (discrete-continuous) systems [52], which are
the main focus of this thesis, are considered to be a very successful framework
for modelling cyber-physical systems. The vast use of cyber-physical (and hence
of hybrid) systems in our society, often in safety-critical contexts (e.g., aircraft
and cars) with possibly some level of decisional autonomy, is the reason why the
verification of these systems is a problem needing urgent scalable solutions. At
the same time, unfortunately, this problem is extremely challenging.

Checking reachability in hybrid systems is an undecidable problem for all
but the simplest systems (e.g. timed automata - a timed automaton is a finite
state automaton extended with a set of real-valued variables modelling clocks)
[7], [6]. It is a well-known fact that verifying satisfiability of formulas involving
real variables, which can arise in formal verification of hybrid systems, is an
undecidable problem when, e.g., trigonometric functions are involved. The notion
of δ-complete decision procedure [30] was defined by Gao, Avigad and Clarke in
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order to combat the undecidability of general sentences over the reals. This
approach has been extended to a bounded probabilistic reachability method with
statistically valid enclosures for the probability that a hybrid system can reach a
goal state within a given time bound and the number of steps [74]. State-of-the-
art statistical techniques [24, 74] cannot fully compute the bounded reachability
probability function for the systems under consideration, as they struggle with
nondeterministic systems.

All the above-mentioned facts serve as a motivation for us to find efficient and
numerically accurate statistical techniques that can deal with realistic, nonlinear
hybrid systems. In particular, we address hybrid systems with random parameters
whose distribution is subject to nondeterministic parametric uncertainty, and we
aim at (approximately) solving the bounded probabilistic reachability problem
(with bounded meaning that we consider only a finite number of discrete steps
and finite time in the system evolution). For nondeterministic systems, this
problem amounts to computing a range of reachability probabilities depending
on how nondeterminism is resolved.

In my work, I developed methods that compute under- and over-approximation
of the reachability probability, which involves computing multi-dimensional in-
tegrals. I investigated four main approaches to compute such integrals: formal,
Monte-Carlo (MC), Quasi-Monte Carlo (QMC) and Gaussian Process (GP). It
is known that the number of system evolutions to explore in order to accurately
compute integrals grows exponentially with respect to the number of dimensions
[85]. This motivates the exploration of a combination of MC and QMC meth-
ods and numerical decision procedures in order to define efficient, numerically
accurate estimation techniques.

It is well-known that the Law of Large Numbers and random sampling serve
as a basis for MC methods. Instead, QMC methods are based on deterministic
sampling from so-called quasi-random sequences [78]. Theoretically, it is possi-
ble to compute the estimation error of the QMC method by the Koksma-Hlawka
inequality. The aim of the inequality is to bound the QMC estimation error by
the discrepancy of the sample points and the variation of the integrand product.
These two quantities measure sample point consistency and integrand rough-
ness, respectively. Unfortunately, the practical usage of the the Koksma-Hlawka
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inequality involves a number of calculation difficulties [37]. The Central Limit
Theorem (CLT), which states that a properly defined sum of independent random
variables tends towards a normal distribution even if the original variables are not
normally distributed themselves, cannot be used for estimating the integration
error, as the terms of quasi-random sequences are statistically dependent. How-
ever, we can successfully apply the CLT for estimating the error of Randomised
Quasi-Monte Carlo (RQMC) methods.

In my thesis I present a comparison of different interval estimation techniques,
particularly in the extreme cases of probability close to 0 or 1, where the actual
coverage probability of many Confidence Intervals (CI) techniques can be poor
[16, 59].

I also motivate the use of GP and apply it for approximating the bounded
reachability probability function over the nondeterministic parameters domain.
Given an (unknown) smooth real function and a set of function evaluations at a
finite set of (training) input points, a GP offers a statistical approximation for said
function over its entire domain (with asymptotic guarantees). This contribution
allows us to look at approximating the reachability probability function from
another side, by using machine learning techniques. In perticular, I first show that
the reachability probability function for our class of stochastic hybrid systems is
a smooth function of the nondeterministic parameters. This fact thereby justifies
our use of GP to approximate the reachability probability function. Next, I
provide a comparison of GP approximation with statistical model checking (SMC)
methods and show that GP offers comparable accuracy to SMC while requiring
much less simulation effort.

The experiments show that our modified CLT technique and GPs are usable in
practice even for complex dynamics and for probabilities close to the bounds. The
QMC-based techniques we considered have excellent convergence and efficiency
especially when the number of samples is small. The results presented in this
thesis also prove the GP advantage in terms of CPU time, number of samples and
CI average size with respect to standard statistical model checking. For example,
the Gaussian process approach needs between 3-135 times fewer samples, it spends
between 2-56 times less CPU time for calculating results and it shows between
2-67 times smaller confidence interval average size, depending on the confidence
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level. Based on my analysis of the CIs, I suggest that my results can be used as
guidelines for probability estimation techniques.

In my thesis I provide new results of the comparing a novel statistical tech-
nique for computing bounded reachability probability in Stochastic nondetermin-
istic Parametric Hybrid Systems (SnPHSs) (combined approach) and the GP
Expectation Propagation (GPEP) method. The combined approach represents a
new perspective combination of machine learning technique and formal methods
for approximation. It gives statistically rigorous confidence intervals by combin-
ing the formal approach with an appropriate precision of probability enclosures
and the GP regression method.

This combination provides very promising results in terms of calculation pre-
cision and computational complexity. On the basis of the small research into the
SnPHS model it is feasible to predict an effectiveness of the combined approach
application and choose an appropriate precision. The latter fact gives us hope
that GP regression in combination with the formal approach as well as GPEP
approach can be an effective solution not only for rare event cases but also in
general.

1.2 Related Work

The reachability probability can be defined by adding a quantitative measure
to bounded reachability by introducing random parameters to a hybrid system.
A range of reachability probabilities are introduced after adding nondeterminis-
tic parameters to the system above (i.e., the reachability probability becomes a
function of nondeterministic parameters).

It is possible to verify such systems in two ways: formally, by rigorously
computing the probability measure of random parameters for the parameter sets
satisfying the bounded reachability property, or statistically, by sampling the pa-
rameter space according to the parameters’ distributions and evaluating bounded
reachability for each drawn sample. The former approach grants stronger (ab-
solute) guarantees but has high computational complexity as disadvantage [93],
while the latter approach provides weaker (statistical) guarantees relaxing the
complexity [94].
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Considering the formal verification approach, in [83] Stochastic Satisfiability
Modulo Theory (SSMT) is suggested by expanding the classical nonlinear Sat-
isfiability Modulo Theory with randomised quantifiers. Nonetheless, this work
is restricted to finite domains (only discrete randomness is supported). In [33]
this problem is dealt with by extending SSMT to continuous domains (CSSMT)
to support continuous randomness, but the approach does not include Ordinary
Differentiation Equations (ODEs), and the accuracy of the produced results is
not guaranteed.

In [2] an approach to computing bounds on reachability probabilities for
stochastic parametric hybrid systems is introduced, which involves abstraction
by discrete-time Markov chains. This method is further developed to full Lin-
ear Temporal Logic (LTL) and nondeterminism [84]. Reference [60] describes
model checking algorithms for Probabilistic Computation Tree Logic (PCTL) for-
mulae over continuous-time stochastic parametric hybrid systems. However, in
[2, 60, 84] the authors address the problem of the continuous state space through
finite discretisation, providing approximate numerical solutions for the experi-
ments. Instead, in this thesis I present algorithms which consider continuous
time and space, and give full statistical/numerical guarantees.

Considering the statistical verification technique, in [24] we find a statistical
model checking approach for verifying hybrid systems with continuous random-
ness and nondeterminism. Nonetheless, in the presented method SMT decision
procedures are combined with fixed-sample size techniques, based on Hoeffding’s
inequality [24]. Besides, this work does not deal with stochastic hybrid systems,
whose dynamics are defined by ODEs. In comparison with the algorithm de-
veloped by [74], the presented technique involves a more suitable non-sequential
Bayesian approach, thus efficiently accelerating the verification procedure.

In this thesis I also consider QMC methods, which are regarded as a deter-
ministic counterpart to classical MC methods [79]. In [37] the authors show the
advantages of QMC methods with respect to MC but also highlight the main
problem of QMC error bounds estimation and consider a practical application of
the Koksma-Hlawka inequality. One of the newest approaches for QMC variance
estimation is introduced in [1]. In [16] a number of interval estimation techniques
for a binomial proportion are revisited and their coverage probability is examined.
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I also focus on works that combine verification with GP-based methods. In
[11] it is shown that the satisfaction probability of temporal logic formulas over
uncertain continuous-time Markov chains is a smooth function of the nondeter-
ministic parameters, and hence GP approximation can be used. Some authors
suggested an online model learning using stochastic hybrid systems based on
GP, but without formal justification [4]. In [12], reachable sets of (non-hybrid)
dynamic systems are computed with the help of GPs, but the authors directly
assume smooth system dynamics.

In my work I use the GP algorithm whose basis was initially proposed in [56]
and then generalised in [53]. In [66], GP training using multiple annotators per
input point is considered, although with binary values only. In the Shogun library
[80], a range of tools are provided, including expectation-propagation algorithms
for binary classification. References [24, 74] propose statistical approaches for
nondeterministic stochastic hybrid systems, but it is only possible to compute the
extrema of the reachability probability function, while my algorithms analytically
approximate it over its entire domain.

1.3 Aims and Objectives

The aim of this work is to evaluate approximate probabilistic reachability tech-
niques for the verification of stochastic parametric hybrid systems and provide
efficient alternatives to known approximation methods. The following objectives
were identified:

• investigate techniques for probabilistic reachability analysis and develop
algorithms for computing bounded reachability probability in Parametric
Hybrid Systems with statistical guarantees, which make a significant impact
on the change of the state of art;

• provide a comprehensive evaluation of the confidence intervals calculation
methods and produce guidelines for probability estimation techniques;

• show the theoretical basis importance of the presented novel approaches by
proving that the reachability probability function is a smooth function of
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the uncertain parameters of a model, hence showing that GP techniques
can be used to obtain an efficient analytical approximation of the function;

• explore GP statistical methods for improving the performance of the formal
approach while providing new techniques via a composition of statistically
and numerically accurate results;

• implement attained theoretical findings in a software tool, and apply it to
several complex case studies.

1.4 Thesis Outline

This section presents the outline and shows the contributions of this thesis with
respect to the declared aim and objectives.

• Chapter 2 introduces bounded reachability in Parametric Hybrid Systems
(PHS) and defines Stochastic nondeterministic Parametric Hybrid System
(SnPHS). This Chapter presents delta-complete decision procedures and in-
tegral estimation methods including MC, QMC and RQMC. Additionally,
this Chapter describes CI error estimation approaches based on the stan-
dard CLT interval and on the Beta function and provides a brief description
of GP methods for regression and classification.

• Chapter 3 discusses estimation techniques for probabilistic reachability
analysis and shows modifications of the classical CLT method. The Chapter
also provides a proof of smoothness of the reachability probability function
for SnPHSs, which is a precaution for GP approximation. This Chapter
also investigates and develops a new combined approach: a promising com-
bination of the formal and the GP approaches.

• Chapter 4 describes the architecture and implementation details of the de-
veloped tools in ProbReach, which incorporates the algorithms introduced
in Chapters 2 and 3.
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• Chapter 5 demonstrates several real-world case studies for the developed
tool application, such as UVB therapy for treating psoriasis and pharma-
cokinetics model for anaesthesia delivery. This Chapter also presents a full
description of the results, which have been obtained by using the algorithms
from Chapter 2, 3 and tools from Chapter 4.

• Chapter 6 contains final conclusions and some pointers for future work.

1.5 Publications

Portions of the work within this thesis have been documented in the following
publications:

Conferences/Workshops:

M. Vasileva and P. Zuliani, “An evaluation of estimation techniques for proba-
bilistic reachability. Full version”, in Symbolic and Numerical Methods for Reach-
ability Analysis, 4th International Workshop, SNR 2018. Avaliable at:
https://arxiv.org/abs/1804.03121.

M. Vasileva, F. Shmarov and P. Zuliani, “Approximate Probabilistic Reacha-
bility for Uncertain Stochastic Hybrid Systems”, in 8th International Conference
on Computational Methods in Systems Biology, CMSB 2020, to be submitted.
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Chapter 2

Background

2.1 Introduction

It is impossible to overestimate the positive impact made by mathematical mod-
elling and model verification on the process of system design. With their help,
we can dismiss faulty implementations, while doing it experimentally would be
very expensive, time-consuming, or even hardly possible. Also in silico (compu-
tational) analysis can grant further indications and prognosis for physical exper-
iments.

Stochastic hybrid systems are widely used in modelling various real-world
systems from different domains. For example, they are applied for modelling
biological systems such as DNA reproduction and networks of gene regulation
[48], closed-loop systems giving feedback such as the transmission of insulin for
type 1 diabetes patients [41] (also referred to as artificial pancreas), and cyber-
physical systems such as powertrains [43], wind turbines [89] and autonomous
underwater vehicles [17].

The verification of stochastic hybrid systems helps to deal with important
problems, such as analysis of probabilistic reachability and safety [3], arranging
control and planning strategies [26], and parameter identification [49].

This Chapter presents an introduction to Stochastic nondeterministic Para-
metric Hybrid Systems (SnPHS) as a subclass of SPHS [74] - dynamical systems
that combine discrete and continuous dynamic behaviour with continuous and dis-
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crete parameters whose values are set in the initial state and remain unchanged
during the system’s evolution. The Chapter explains reachability checking prob-
lems in hybrid systems, in particular their undecidability, and suggest δ-complete
decision procedures as a solution, which combat the undecidability of reasoning
over real sentences [30] and correctly decide whether a slightly relaxed sentence is
satisfiable or not. On this basis the needs of computing either rigorous enclosures
[73] or verified confidence intervals [74] are further discussed.

Also, the Chapter discusses four main ways for integral estimation - formal
approach, which is based on formal reasoning and provides absolute numerical
guarantees and the MC, QMC and RQMC computation methods, which give
statistical guarantees only. In this Chapter, I paid attention to the main idea
behind QMC - the fact that the true randomness of the sampling process is less
relevant rather than the even spread of the samples over the integration domain,
which can significantly increase the accuracy of the estimation. The Chapter
considered QMC problems in terms of the difficulty of computing an estimate
of the integration error and suggested an efficient way to solve this problem
by using RQMC. The latter allows Confidence Intervals (CIs) construction for
error estimation. As a result, I introduced several CI construction techniques:
CIs based on the Beta-Function, including Bayesian Interval, Jeffreys Interval,
Clopper-Pearson Interval and CIs based on the central limit theorem, including
Wilson Interval, Agresti-Coull Interval, Logit Interval, Anscombe Interval and
Arcsine Interval. The Qint algorithm (see Subsection 2.3.5) proposed by Antonov
for QMC variance estimation and based on a set of random quadrature formulas
is also considered in this Chapter.

Finally, this Chapter introduces machine learning techniques application to
SnPHSs models. In particular, I present GP approximation methods, which
severely depend on the initial mean and covariance functions. The Chapter
exhaustively discusses selecting an appropriate covariance function and covari-
ance hyperparameters issues for hybrid system models. The Chapter also covers
Gaussian Process Classification (GPC) algorithms for probabilistic classification,
where predictions take the form of class probabilities, and explain the main dif-
ferences between GPC and GP learning on the example of different multiple
annotators techniques. At the end of this Chapter, I provide the description of
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the Expectation Propagation (EP) technique [53, 56], which solves the problem
of non-Gaussian inference in our SnPHSs.

2.2 Hybrid Systems

Hybrid systems [7] can be considered as a generalisation of finite-state machines
for representing continuous behaviour.

Hybrid systems consist of two components: flows that generally can be mod-
elled using nonlinear ODEs and behave according to the laws of physics, and
jumps, which model discrete state changes between different flows. A set of
Boolean predicates are used to detect the possibility of a discrete transition be-
tween the continuous flows.

Figure 2.1: A trajectory of a bouncing ball thrown down from the point (0, y)
with gravitational constant g. The jump and reset states are shown by the red
dashed line and the flow state evolution until the next fall is shown by the red
solid line.

Also, a reset of the initial values of continuous variables in the successor flow
can be caused by a discrete transition. Besides, very common features of hybrid
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systems are invariants – predicates which should be true for all time points in the
flow.

A bouncing ball model presents a simple example of a hybrid system. Con-
sider a ball thrown down with some initial speed, depending on the gravitational
constant g (see Figure 2.1). The ball’s dynamics evolve continuously over time
while it is in the air (flow), and when it touches the ground the discrete state
change occurs (jump). At the same time, the speed of the ball is reduced when
it touches the ground (reset).

Stochastic parametric hybrid systems (SPHS) can be used to model such
systems containing uncertain parameters. There are a wide range of SPHSs
types, which show the contrasting level of abstraction: starting from systems
with stochastic dynamics (defined by stochastic differential equations) to systems
which have random and nondeterministic parameters [48, 74, 90].

2.2.1 Definitions

Parametric Hybrid Systems (PHSs) (see Definition 2.1) represent continuous and
discrete dynamic behaviour dependent on initial parameters, which remain un-
changed during the system evolution. Such systems can both flow, described by
a differential equation and jump, described by differential equations or control
graphs.

Definition 2.1. (Parametric Hybrid System [74])
A Parametric Hybrid System (PHS) is a tuple

H =< Q,Υ, X, P, Y,R, jump, goal >

where

• Q = {q0, · · · , qm} is a set of modes (discrete components of the system),

• Υ = {(q, q′) : q, q′ ∈ Q} is a set of transitions between modes,

• X = [u1, v1]× · · · × [un, vn] ⊂ Rn is is a domain of continuous variables,

• P = [a1, b1]× · · · × [ak, bk] ⊂ Rk the parameter space of the system,
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• Y = {yq(p, t) : q ∈ Q,p ∈ X × P, t ∈ [0, T ]} the continuous system
dynamics where yq : X × P × [0, T ]→ X,

• R = {g(q,q′)(p, t) : (q, q′) ∈ Υ,p ∈ X × P, t ∈ [0, T ]} are ‘reset’ functions
g(q,q′) : X × P × [0, T ] → X defining the continuous state at time t = 0 in
mode q′ after taking the transition from mode q.

and predicates (or relations)

• jump(q,q′)(x) defines a discrete transition (q, q′) ∈ Υ which may (but does not
have to) occur upon reaching the jump condition in state (x, q) ∈ X×P×Q,

• goalq(x) defines the goal state x in mode q.

Stochastic Parametric Hybrid Systems (SPHS) [74] are dynamical systems
that combine discrete and continuous dynamic behaviour with continuous and
discrete parameters whose values are set in the initial state and remain unchanged
during the system’s evolution. The parameters can be probabilistic, in which case
a probability measure is associated to them, or nondeterministic otherwise.

In this thesis, I focus on hybrid systems with nondeterministic parameters.
I define Stochastic nondeterministic Parametric Hybrid Systems (SnPHS) as a
subclass of SPHS [74]:

Definition 2.2. A Stochastic nondeterministic Parametric Hybrid System (SnPHS)
is a tuple 〈Q,Υ, X, P, Y, I,Ξ, jump,goal〉:

• Q = {q0, . . . , qm} is a set of modes (discrete components of the system),

• Υ = {(q, q′) : q, q′ ∈ Q} is a set of transitions between modes,

• X = [u1, v1]× · · · × [un, vn] ⊂ Rn is a domain of continuous variables,

• P ⊂ Rk is the (compact) nondeterministic parameter space, with associated
probability density functions f1(·,p), ..., fr(·,p) for r random parameters
with p ∈ P and with domain R = [a1, b1]× · · · × [ar, br] ⊂ Rr,

• Y = {flowq : q ∈ Q} where flowq : X × R × [0, T ] → X is the continuous
system dynamics,
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• I = {initq : q ∈ Q} where initq : R → X computes the initial continuous
state in mode q,

• Ξ = {reset(q,q′) : (q, q′) ∈ Υ} where reset(q,q′) : X ×R× [0, T ]→ X defines
the continuous state at time t = 0 in mode q′ after taking the transition
from mode q.

and predicates (or relations)

• jump(q,q′)(x) ≡ discrete transition (q, q′) ∈ Υ occurs upon reaching the
jump condition in state (x, q) ∈ X ×R× [0, T ]×Q,

• goalq(x) ≡ state x ∈ X ×R× [0, T ] in mode q is a goal state.

SnPHS restrict SPHS [74] by disallowing nondeterministic jumps, i.e., we
require that every resetq,q′ ∈ Ξ is a Boolean predicate and their true preimages are
disjoint. We assume that the domain of the random parameters does not depend
on the nondeterministic parameters p, but this is not a restriction in practice.
Indeed, the domain of certain distributions (e.g., the uniform distribution) can
depend on nondeterministic parameters. However, it is possible to apply a change
of variable to make the domain independent of the nondeterministic parameters
(e.g., given a < b and a random variable U uniformly distributed over an interval
[0, 1], then Z = (b − a)U + a is uniformly distributed over [a, b]). Also, the
boundedness of R is not a significant restriction in practice, since any probability
density can be approximated to arbitrary precision by a density over a bounded
support. The continuous dynamics Y is made of Lipschitz-continuous ODEs,
which have a unique solution for any initial condition in X×R× [0, T ] according
to the well-known Picard-Lindelöf theorem. Again, both nondeterministic and
random parameters do not change through the system’s evolution.

2.2.2 Undecidability of Reachability

Checking reachability in hybrid systems, even for linear ones, is known to be
generally undecidable [7]. Moreover, bounded reachability in hybrid systems with
nonlinear continuous dynamics is undecidable for the reason of undecidability of
nonlinear arithmetic over the reals. Despite the fact that the first-order logic of
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real polynomials has been proven by Tarski to be decidable [82], the introduction
of trigonometric functions (e.g. sin, cos) makes the problem undecidable [47, 64,
88].

For robust hybrid systems (systems where the reachability property holds
under small input perturbations) the reachability problem becomes decidable
[27, 30].

One-sided guaranteed answers can be returned by certain decision procedures.
For instance, δ-satisfiability solves the problem of undecidability over the reals
by applying a procedure which returns one-sided guaranteed answers: one of the
two answers is accurate while the other one is liable to some over-approximation
[30, 55]. There is an algorithm which always terminates correctly returning one
of the answers above, thus making such a problem (called δ-decision) decidable.

Similarly, in [28] a procedure is suggested that incorporates interval constraint
propagation (ICP), which consists in iterating domain reductions by using the
set of constraints until no domain can be contracted and SAT solving techniques
to grant one-sided decisions for Boolean combinations on nonlinear arithmetic
constraints.

In addition, a semi-terminating algorithm for safety verification of nonlin-
ear hybrid systems is introduced in [62]. This algorithm terminates for robust
instances of the problem (i.e., safety holds comfortably for some positively per-
turbed version of the system), and it may run eternally otherwise.

2.2.3 Delta-Complete Decision Procedure

In order to combat the undecidability of reasoning over real sentences Gao et
al. [30] defined δ-complete decision procedures, which correctly decide whether a
slightly relaxed sentence is satisfiable or not.

The basic definitions [74] are given next:

Definition 2.3. (δ-Weakening [30]) Given an arbitrary δ > 0 and a bounded
LR-sentence (see Definition 2.4)

φ := QX1
1 x1, . . . , Q

Xn
n xn :

m∧
i=1

( ki∨
j=1

(
fi,j(x1, . . . , xn) ◦ 0

))
,
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where the fi,j(x1, ..., xn) are compositions of Type 2-computable functions [44]
(these are essentially “numerically computable” real functions, including tran-
scendental functions and solutions of differential equations), Qi = {∃, ∀}, and
◦ ∈ {>,≥}.

Definition 2.4. (Bounded LR-formula [30]) A bounded LR-formula is defined
as follows [74]:

t := c | x | f
(
t(x)

)
,

φ := t(x) > 0 | t(x) ≥ 0 | φ ∧ φ | φ ∨ φ | ∃[u,v]x : φ | ∀[u,v]x : φ,
(2.1)

where c is a constant, x is a variable, f is a computable real function, and
∃[u,v]x, ∀[u,v]x are bounded quantifiers – shorthand for ∃x ∈ [u, v] and ∀x ∈ [u, v].

Given a sentence φ as above and δ ∈ Q+ the δ-decision problem asks to
correctly decide one of the following: unsatisfiable (φ is false), or δ-satisfiable
(φδ is true), where φδ is the δ-weakening of φ: The δ-weakening of φ is the
formula:

φδ := QX1
1 x1, . . . , Q

Xn
n xn :

m∧
i=1

( ki∨
j=1

(
fi,j(x1, . . . , xn) ◦ δ

))
.

In this thesis, Type 2 computability terms (see Definition 2.5) is used to define
computable real function (see Definition 2.6). In general, we define a real function
as computable if its value can be algorithmically approximated with arbitrary
finite precision. One of the most important properties of computable functions is
that they are continuous [44]. Computable real functions include transcendental
functions and solutions of differential equations.

Definition 2.5. (Computable Real Number [13, Definition 3.1]) A real
number x is computable if there exists a computable sequence of rational numbers
(qn)n∈N that converges to x (i.e., ∀i : |x− qi| < 2−i).

Definition 2.6. (Computable Real Function [13, Definition 4.1]) A func-
tion f : Rn → R is computable if there is an oracle Turing machine M that,
given any precision k ∈ N and input x ∈ dom(f), quires another procedure for
an arbitrarily good rational approximation qi of x satisfying |x − qi| < 2−i, and
produces a rational number M(qi) such that |f(x)−M(qi)| < 2−k.
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The bounded δ-SMT problem asks for the following: given a sentence φ of the
above form and δ ∈ Q+, correctly decide one of the following:

• unsat: φ is false,

• δ-true: φδ is true.

If the two cases overlap either decision can be returned. Standard bounded reach-
ability questions over PHSs can be coded as sentences of the type introduced by
Definition 2.3 and “δ-decided” by δ-complete decision procedures [22, 32].

Definition 2.7. (δ-complete decision procedure [30]) Given δ > 0, a δ-
complete decision procedure correctly decides whether an arbitrary bounded LR-
sentence is false or its δ-weakening is true, returning unsat and δ-sat respec-
tively. When both cases overlap, either answer can be returned.

It can be concluded from the definitions above that unsat means that the
given LR-sentence is false. However, it is also can be noticed that although δ-sat
implies satisfiability of the δ-weakening of the shown sentence, its original version
can still be false. This is usually known as a false alarm, which means that for
the unsatisfiable LR-sentence a δ-complete decision procedure returns δ-sat. It
happens because of the crude over-approximation introduced by δ.

There are SAT ODE solvers that implement a δ-decision procedure - e.g.
iSAT-ODE [23], and dReal [31].

2.2.4 Bounded Probabilistic Reachability

In Figure 2.2, a simple thermostat hybrid system model is presented. On the basis
of its behaviour, which depends on the guard conditions, a bounded reachability
question can be formulated: does the temperature in the room, where such ther-
mostat is installed reach the “bad region” in 5 steps? Steps here denote changes
between two modes (see Figure 2.3). The notion of “bad region” here represents
unwanted temperature values which can be reached during the thermostat work
after 5 steps. In particular, Figure 2.3 assigns these values around the [18, 21.5]
region. This term is used for defining a goal state, whose probability of occurrence
we need to verify. For example, during a biological experiment with genetically

17



modified plants, we need to make sure that the plants are resistant to a sharp
temperature change, so the thermostat should be set so that the temperature
in the room should not be in the bad region because this region represents an
uncomfortable climate. Similarly one can also define the goal set as a "good"
region.

Figure 2.2: A thermostat hybrid system model. The system states are represented
by Mode 1 and Mode 2. Continuous behaviour is shown by Flow 1 and Flow
2. The guard condition refers to system Jump between two modes.

As stated above, checking such reachability question in hybrid systems is
generally undecidable, and thus we need to compute either rigorous enclosures
[73] or verified confidence intervals [74]. Both approaches exploit δ-complete
decision procedures [30] to reason about nonlinear hybrid systems.

We now move towards probabilistic bounded reachability. The following def-
inition is a specialisation of the corresponding notion for SnPHS [75].

Definition 2.8. Given a SnPHS and reachability depth l∈N, the bounded reach-
ability probability function Pr:P → [0, 1] is:

Pr(p) =

∫
G

dµ(p)

where µ(p) is the probability measure given by the product of the probability den-
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Figure 2.3: Representation of the thermostat hybrid system model bounded
reachability question over time graph. The system evaluate from Mode 1 to
Mode 2 and back through the system Jump according to the guard conditions.
Bounded reachability question: Does the temperature reach the Bad region in 5
steps.

sities f1(·,p), . . . , fr(·,p) and G is the goal set:

G = {x ∈ R : ∃π ∈ Π(l) : reach(π, x)},

where Π(l) is the set of paths of length l in the SnPHS and reach is the sentence
in standard form (see Definition 2.3) that defines l-step reachability:

reach(π, x) ≡ ∃[0,T ]t0, · · · ,∃[0,T ]tl−1 :
(
x0(t0) = flowπ[0](initπ[0](x), x, t0)

)
∧

l−2∧
i=0

[
jump(π[i],π[i+1])(xi(ti), x, ti) ∧

(
xi+1(ti+1) =

flowπ[i+1](resetπ[i],π[i+1](xi(ti), x, ti), x, ti)
)]
∧ goalπ[l−1]

(
xl−1(tl−1), x, tl−1

)
.

We recall that in SnPHS the predicates flow, init, jump, reset and goal must
involve Type 2 computable functions only.

It is possible to check the reachability of the goal mode in l steps via finding
a path π (see Definition 2.9) such that:

Definition 2.9. (Path trajectory [72]) Given a PHS H, a path π of depth l is
a finite sequence of modes of H such that initπ[0] ∈ init, jump(π[i],π[i+1]) ∈ jump
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for 0 < i < l, and goalπ[l] ∈ goal. A trajectory defines a continuous evolution
of the system along the given path for the given initial value of the continuous
dynamics.

• the initial element (π[0]) of π belongs to the set of initial modes,

• the last element (π[l]) of π is in the set of goal modes,

• for each pair of successive modes (π[i], π[i+ 1]) there exists a discrete tran-
sition defined by jump(π[i],π[i+1]) and reset(π[i],π[i+1]).

Unfortunately, the decision on the reachability of the goal state by finding
such path π cannot be made, because there might not be a trajectory satisfying
the corresponding invariants, goal predicates and jump conditions [77]. It requires
checking the values of the continuous dynamics over P × [0, T ].

The bounded reachability formulation that can be verified using δ-complete
decision procedures is presented below.

Definition 2.10. (Bounded Reachability [72]) The bounded reachability prop-
erty for a PHS H, a reachability depth l, and a subset B of the parameter space
of H is defined as the bounded LR-sentence:

Reach(H, l, B) := ∃Bp,∃[0,T ]t0,∀[0,t0]t′0, · · · ,∃[0,T ]t|π|−1,∀[0,t|π|−1]t′|π|−1 :∨
π∈Paths(H,l)

[(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
∧ invtπ[0]

(
x0(t′0),p, t′0

)
∧

|π|−2∧
i=0

[(
xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)

)
∧

jump(π[i],π[i+1])(xi(ti),p, ti) ∧ invtπ[i+1]

(
xi+1(t′i+1),p, t′i+1

)]
∧

goalπ[|π|−1]

(
x|π|−1(t|π|−1),p, t|π|−1

)]
.

The definition of the formula Reach with the examples of application can be
found in [72].

It is necessary now to introduce a universal quantifier in formula Reach to
check reachability for all values in given parameter subsets as shown below.
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Definition 2.11. (Universal Bounded Reachability) The universal bounded
reachability property for a PHS H, a reachability depth l, and a subset B of the
parameter space of H is defined as the bounded LR-sentence Reach∀(H, l, B) :=

∀Bp : Reach(H, l, {p}).

2.2.5 Verifying Bounded Reachability in SnPHS

The formula Reach∀ defined previously (see Definition 2.11) can be verified by
a δ-complete decision procedure as it is defined by bounded LR-sentences. As
stated in Subsection 2.2.4, given a bounded LR-sentence and a positive δ, a δ-
complete decision procedure can correctly decide whether the relaxed version of
the given sentence (δ-weakening) is true (outputing δ-sat) or it is false (returning
unsat).

It is important to highlight here that δ-sat might in fact be a false alarm be-
cause of the over-approximation properties characterised by δ > 0, and therefore,
does not guarantee satisfiability of the given bounded LR-sentence, while unsat
is a stronger answer implying unsatisfiability of the given formula.

More concretely, a δ-complete decision procedure applied to Reach∀ returns:

• unsat for Reach(H, l, B) if for all parameter values in B ⊆ P the system
H does not reach a goal state;

• δ-sat if there exists p ∈ B such that
(
Reach(H, l, B)

)δ (the weakening of
Reach(H, l, B)) is true.

The decision algorithm combines the properties of δ-complete decision proce-
dures and formulae Reach∀. Given a PHS H, a reachability depth l, a parameter
space P , a subset B ⊆ P and a positive δ, the decision procedure procedure
evaluate [74] returns:

• sat if for all parameter values in B the goal state is reachable in l steps;

• unsat if no values from B satisfy the bounded reachability;

• undet if neither of the above can be decided, or a false alarm occurred due
to a too large value of δ being used by the δ-complete decision procedure.
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Choosing a smaller δ can sometimes help to reduce the number of false
alarms.

2.3 Integral Estimation Methods

From the previous section, we can conclude that we can apply a bounded reach-
abilty probability for approximation SPHSs. In fact, we can determine bounded
reachability probability in terms of the algorithm for computing confidence in-
tervals, which is based on the integration of the probability measure and can be
presented in the form of sample approximation.

In this thesis four main ways of integral estimation are considered - Formal,
Monte-Carlo (MC), Quasi-Monte Carlo (QMC) and Randomised Quasi-Monte
Carlo (RQMC). The formal approach is based on formal reasoning and hence
provides absolute numerical guarantees. It guarantees an interval computation,
which contains the exact reachability probability value. The other methods are
based on Monte Carlo sampling and give statistical guarantees only. They con-
struct an interval, which contains the probability value with some statistical con-
fidence.

In case of a SnPHS, that cannot easily be predicted due to the presence of
random variables, simulation methods (MC, QMC and RQMC) are used to model
the probability of different outcomes in such process. This method is widely
used to evaluate the impact of risk and uncertainty in prediction and forecasting
models. The simulation methods are also referred to as multiple probabilistic
simulations [68].

QMC simulations can offer a much better solution when there is significant
uncertainty in the process of making a forecast or estimation in comparison to
just replacing the uncertain variable with a single average number. As was noted
before, hybrid systems are afflicted by random variables and QMC simulations
have a huge array of potential applications in these fields. They are used to esti-
mate the probability of certain events for different models and the likelihood that
a certain event can take place. Airlines use them to assess network performance
in different scenarios and optimise such networks on the basis of obtained data
[67, 81]. Analysts use them widely to analyse derivatives such as options and to
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assess the risk that an entity will default [40]. QMC simulations have inumerous
applications outside of business and finance, including meteorology, astronomy
and particle physics [76].

2.3.1 Formal Approach

The technique presented in [73] and named Formal approach computes the prob-
ability enclosures for a certain range of parameters of the bounded reachability
probability function Pr. The algorithm takes inputs:

• a SnPHS (H,P),

• a reachability depth l ∈ N,

• a precision ε > 0 for the size of the probability enclosures,

• a constant κ ∈ (0, ε) for bounding the domain of continuous random pa-
rameters with the unbounded support,

• a precision vector ρ for nondeterministic parameter boxes,

• a parameter η controlling the precision of procedure evaluate,

and returns a collection of probability enclosures.
Such a collection is presented in the form of disjoint nondeterministic pa-

rameter boxes that fully cover parameters’ domain (i.e., each nondeterministic
parameter box will be strictly associated with a probability enclosure). In other
words, the algorithm initially divides the domain of nondeterministic parameters
into boxes of desired precision and then obtains a probability enclosure for each
such box. This division is made by computing the under-approximation and the
over-approximation of the given integral over the whole random parameter space
for the chosen nondeterministic box.

If a SPHS does not feature nondeterministic parameters or in case of SnPHS
with fixed nondeterministic parameter, only one probability enclosure will be
returned. The size of the probability enclosure will be bounded above by the ε
input if the given system generates robust bounded LR-sentences (see Theorem
3.1 in [72]). In general when a model contains nondeterministic parameters, the
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size of the enclosure(s) cannot be controlled by ε. This is because the reachability
probability function Pr might be discontinuous. Finally, the size of the smallest
nondeterministic parameter box that will be analysed is limited by the precision
vector ρ, which guarantees the termination of the algorithm in the most general
case.

2.3.2 Monte Carlo Simulations

MC methods enable computational algorithms to repeatedly generate random
numbers to solve a given problem. The most precise definition was given by Hal-
ton [39]. In general, MC methods can be defined by providing the solution of a
problem through a parameter of a hypothetical population. In other words we
can construct a sample of the population, from which statistical estimates of the
parameter can be obtained, by using a random sequence of numbers. Next, we
consider the application of MC to integral estimation and discuss the approxima-
tion error.

Consider the integral I =
∫ b
a
f(y)dy, and a random variable U on [a, b]. The

expectation of f(U) is:

E[f(U)] =

∫ b

a

f(y)ϕ(y)dy,

where ϕ is the density of U . If U is uniformly distributed on [a, b], then the
integral becomes:

I =

∫ b

a

f(y)dy = (b− a)E[f(U)].

If we take N points (u1, ..., uN), uniformly distributed on [a, b], and compute the
sample mean 1

N

∑N
i=1 f(ui), we obtain the MC integral estimation:∫ b

a

f(y)dy ≈ (b− a)
1

N

N∑
i=1

f(ui). (2.2)

According to the Strong Law of Large Numbers, this approximation is convergent
(for N →∞) to I with probability one. The variance of the MC estimator (2.2)
is:

V ar(MC) =

∫ b

a

...

∫ b

a

(
1

N

N∑
i=1

f(ui)− I
)2

du1...duN =
σ2
f

N
. (2.3)
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The MC integration error mean is σf√
N
, where σ2

f is the integrand variance, which
is assumed to exist. In practice, the integrand variance is often unknown. That
is why the next estimation is instead used:

σ̂2
f =

1

N − 1

N∑
i=1

(
f(ui)−

1

N

N∑
i=1

f(ui)

)2

.

This estimator satisfies the unbiasedness property (an unbiased estimator can be
defined when the mean of the statistic’s sampling distribution is equal to the
population’s parameter): E[σ̂2

f ] = σ2
f .

2.3.3 Quasi-Monte Carlo Simulations

One of the known ways of increasing the efficiency of Monte Carlo simulation is
the usage of deterministic sequences. This method is discussed in detail in the
work of Niederreiter [54]. The main idea behind QMC is the fact that the true
randomness of the sampling process is not that relevant rather than even spreads
of the samples over the integration domain. The latter can significantly increase
the accuracy of the estimation. This leads us to the problem of the deterministic
nodes choice in such a way that the approximation error bound is as small as
possible instead. The QMC theory and tools are different from the ordinary MC
method - QMC is based on abstract algebra and number theory while MC is
based on probability and statistics theory.

In other words, QMC methods can be regarded as a deterministic counter-
part to classical MC methods. Unlike MC integration, which uses estimates (see
Equation 2.2) with randomly selected points, QMC methods select the points ui
deterministically. As it was noted before, QMC techniques produce determinis-
tic sequences of points that provide the best-possible spread over the integration
domain.

In general, it is possible to define an integration rule that yields a prescribed
level of accuracy in advance. It is just necessary to replace the MC random
samples by well-chosen deterministic points. The discrepancy can be regarded as
a quantitative measure of the deviation from a uniform distribution.

The deterministic sequences are often referred to as low-discrepancy sequences.
The Sobol sequence [79] is a well-known example of a low-discrepancy sequence.
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In Figure 2.4, we present a simple example of the comparison between Sobol and
pseudorandom distribution points. An effective way to use the QMC method is
by performing a change of variables to reduce integration to the [0, 1] domain.
When we need to integrate over a large domain [a, b], that avoids multiplying the
QMC estimate by a large factor (b− a) as required by Equation (2.2).

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while the

MC error is O
(

1√
N

)
, where N is the sample size. The Koksma-Hlawka inequality

[54] bounds the error of QMC estimates, but in practical applications it is very
hard to estimate [37], thereby hampering the use of QMC methods. As such,
other methods for estimating the QMC error need to be developed.

Suppose we want to compute I =
∫
Ud
f(x)dx, where Ud is the hypercube over

[0, 1]d. Let {u1, ..., un} be a set in Ud. Then the Koksma-Hlawka inequality [54]
is: ∣∣∣∣I − 1

n

n∑
i=1

f(ui)

∣∣∣∣ 6 V (f)D∗n{u1, ..., un}, (2.4)

where V (f) is the bounded variation in the sense of Hardy and Krause:

V (f) =
d∑

k=1

∑
1<i1<...<ik<d

V k
Vit

(f ; i1, ..., ik),

where V k
Vit

(f ; i1, ..., ik) is the variation in sense of Vitali [86], applied to the restric-
tion of f to the space dimension k{(u1, ..., ud) ∈ [0, 1]d : uj = 1 for j 6= i1, ..., ik}.
If k = d we obtain an empty set, which cannot be calculated.

The star-discrepancy D∗n is defined as follows:

D∗n{u1, ..., un} = sup
B∈W ∗

∣∣∣∣#{ui : ui ∈ B}
n

− λd(B)

∣∣∣∣,
where #{ui : ui ∈ B} are points from the set B and W ∗ is defined as the set of
the form:

d∏
k=1

[0, ck) = {y ∈ Ud : 0 6 yk < ck}.

Unfortunately, Equation (2.4) can not serve as a basis for a constructive eval-
uation of the integration error in practical applications. In particular, computing
the star-discrepancy of an arbitrary set is an NP-hard problem [37]. Also, esti-
mating the Hardy-Krause variation is a very complicated computational problem.
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Figure 2.4: Sobol sequence, uniform pseudorandom and randomised Sobol se-
quence points (obtained by transformation Γ = (X+ε)mod1, where ε is a random
sample from MC sequence and X is low-discrepancy sample from Sobol sequence)
distribution in the 2-dimensional unit space. The comparison is based on the first
300 points of sequences.

2.3.4 Randomised Quasi-Monte Carlo Simulations

One of the main problems with QMC, as discussed earlier, is the difficulty of
computing an estimate of the integration error. Theoretically, it is possible to es-
timate an upper bound but it is far from being possible in all cases. An efficient
way to solve this problem is to use Randomised Quasi-Monte Carlo (RQMC).
Allowing the randomisation technique into the deterministic QMC procedure en-
ables constructing CIs to estimate the error.

This gives us the best out of two methods: a tool to estimate a confidence
interval of the error by using randomisation while keep the accuracy of QMC.
RQMC can be regarded as a trade-off between sacrificing some precision in order
to get a better error estimation. One of the main disadvantages of RQMC as well
as QMC is that the method is only applicable when using inversion methods for
sampling from the distribution.

There are different randomisation methods that can be used, see e.g. [57]. In
this thesis, I use the shifting method, as described in [86].

In general an RQMC procedure can be described as follows. Suppose that X =

{x1, ..., xn} is a deterministic low-discrepancy set. By means of a transformation
X̃ = Γ(X, ε) a finite set X̃ is generated by the random variable ε and has the same
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quasi-random properties as set X (see Figure 2.4). For a randomised set X̃i we
construct a RQMC estimate similar to (2.2):

RQMCj,n =
1

n

n∑
i=1

f(X̃i,j) (2.5)

for 0 < j 6 r, where r is the total number of different pseudo-random sequences.
Then, we take their average for the overall RQMC estimation (2.5):

RQMCn =
1

r

r∑
j=1

RQMCj,n. (2.6)

If we choose the Γ transformation in such a way that each of the estimates
RQMCj,n has the unbiasedness property, i.e., ∀j E [RQMCj,n] = I, (e.g. Γ =

(X + ε) mod 1), then the estimator (see Equation 2.6) will also be unbiased, i.e.,
E[RQMCn] = I. By independence of the samples used in Equation (2.5) and
Equation (2.6), we have that for all 0 < j 6 r:

V ar(RQMCn) =
V ar(RQMCj,n)

r
.

Thus, we have the following variance estimation:

V̂ ar(RQMCn) =
1

r(r − 1)

r∑
j=1

(
RQMCj,n −RQMCn

)2

.

2.3.5 Quadrature Formulas

The QMCmethods presented in Subsection 2.3.3 can be improved by finding more
effective deterministic sequences, which potentially can produce a new method for
QMC variance estimation and thus allow us to construct CIs using fewer number
of samples. One of such methods is considered in this Subsection.

The QMC method has a natural interpretation in terms of integrand functions
decomposition in a series of piecewise constant functions. Many authors associate
the remainder of integration with families of Haar functions [51] and Walsh func-
tions [20], so that the remainder is determined by the asymptotic behaviour of
such decomposition. On this basis, there arises the idea of constructing such a
random quadrature formula that would be exact for the first n functions from
the Haar function families.
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The Generalised Haar System. The system of Haar functions hr(x), (r =

0, ..., N − 1) proposed by Haar in [38] is defined on the interval 0 ≤ t ≤ 1. A
similar idea of the generalised Haar system, but with a different approach to the
definition, is presented in [34].

By analogy with the definitions given by Sobol in [79] the notation for an
arbitrary natural r depends on two parameters k and i and can be shown as its
decomposition in the form r = 2k + i, where i ∈ 1, ..., 2k and k ∈ N0. For any
value of r ≥ 0, k and i are uniquely determined so that i is the remainder r− 2k

and 2k is the largest power of 2 contained in k (2p < k).
The Haar function for the rth element is defined as follows:

h1(x) = 1,

hr(x) =


2k/2, x ∈ lk+12i− 1

−2k/2, x ∈ lk+12i

0, x ∈ [0, 1] \ l̄ki ,

(2.7)

where l̄ki is the closure of lki = ( i−1
2k
, i

2k
). Moreover, all functions are continuous

on the right at zero and continuous on the left at one, and at the inner points of
the discontinuity, the Haar functions are defined as the half-sum of the left and
right limits.

The Haar system (see Equation 2.7) is orthonormal in L2[0.1]. In addition,
Schauder [69] showed that the Haar system is a basis for all L2[0.1] spaces. Other
important properties of the Haar system are described in detail in Sobol’s book
[78].

Qint Quadrature Construction and Variance Analysis. Ermakov and
Antonov [1] have introduced a new method for QMC variance estimation. To
construct an estimate of the integral I they use the set of random quadrature for-
mulas, introduced by the Ermakov-Granovsky theorem [25]. This theorem allows
us to construct N -point formulas with two important properties: the unbiased-
ness property for integral I and the accuracy property for the considered Haar
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system. The nodes of the formula are random variables with distribution density:

φ(u1, u2, ..., uN) =

NN

N !
if (u1, u2, ..., uN) ∈ Lat(i1, i2, ..., iN)

0 otherwise,

where Lat(i1, i2, ..., iN) is a Latin set that relates to the permutation (i1, i2, ..., iN)

and can be defined by the next condition:

(u1, u2, ..., uN) ∈ Lat(i1, i2, ..., iN)⇔ ∀j ∈ {1, 2, ..., N}uj ∈ Uij ,

where Uij is a set of permuted orthonormal Haar functions [1].
The variance of the constructed cubature formula Cub[f ] = 1

N

∑N
i=1 f(ui) can

be calculated as:

DCub[f ] =

∫
UN

Cub[f ]2dφ−
(∫

UN

Cub[f ]dφ

)2

=

= DMC [f ]+
1

N
(a1 +a2 + ...+aN)2−a2

1−a2
2− ...−a2

N = DMC [f ]− 1

N

∑
i<j

(ai−aj)2,

where DMC is the variance of MCmethod (see Equation 2.3) and ai =
∫
Ui
f(u)µ(du)

for i = 1, 2, ..., N .
In other words, it allows us to calculate the integral estimation variance as:

V ar(QMC) = V ar(MC)− 1

N

∑
i<j

(ai − aj)2 . (2.8)

2.4 Confidence Interval Estimation and Error Anal-

ysis

The construction of a Confidence Interval (CI) enables us to estimate the true
mean and true standard deviation of a function via the mean and standard devi-
ation of the gathered sample data. However, the most important questions here
are: how dependable are the sample data at representing the population data?
Can we precisely estimate the population data by using sample data? Therefore,
when constructing the mean of the obtained sample data it is necessary to in-
dicate the reliability of the data, i.e. the quality of the estimation of the true
function mean from the sample mean. This can be done by using CIs. CIs are
usually represented in the form of a range with the center-mean and bounds,
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Figure 2.5: The 68–95–99.7 rule indicating 68.27%, 95.45% and 99.73% confidence
intervals construction.

representing the probability of observing the true mean. The confidence of the
interval can be chosen manually, however, choices common CIs are 65%, 95% and
99%.

For this case, the standard deviation distribution is used to calculate confi-
dence intervals for the population standard deviation. In Figure 2.5 the 68–95–99.7
rule, also known as the empirical rule, is presented. It is used to show the different
percentage confidence bounds, which can be constructed in a normal distribution
by using mean and standard deviation - more accurately, 68.27%, 95.45% and
99.73% of the values lie within one, two and three standard deviations of the
mean, respectively.

In the following the next notation is used:

• X̃ = 1
n

∑n
i=1 xi - the sample mean.

• Ca = Quant(1− a
2
) - the inverse cumulative distribution function of a normal

random variable with mean 0 and standard deviation 1; parameter a defines
the confidence level at 1− a.

• p̂ = ns/n - the binomially-distributed proportion, where: ns - the number

31



of “successes” and nf - the number of “failures” in a Bernoulli trial process;
n - the total number of Bernoulli “trials”.

• q̂ = 1− p̂.

2.4.1 Intervals Based on the Beta-Function

The Beta function represented by a parametrized family of Beta distributions
f(·; v) with v = {α, β}, where α ≥ 1 and β ≥ 1 are the parameters of a Beta
distribution [72]. The probability density function of a Beta distribution is the
function:

f(x, α, β) =
xα−1(1− x)β−1

B(α, β)
,

where B(α, β) – Beta function (see more information in Section 4.3 of [72]).

Bayesian Interval This method is based on the assumption that the (un-
known) probability p to estimate is a random quantity [97]. The Bayesian in-
terval is also called “credible”, because it computes the posterior distribution of
the unknown quantity by using its prior distribution and Bayes theorem. The
prior distribution can be constructed by means of the Beta distribution, which is
widely used for computing inferences on p. If p has a prior distribution Beta(α, β)

then p has posterior distribution Beta(ns + α, n − ns + β). We can construct a
Bayesian equal-tailed interval by the formula:

CIB =
(
Beta−1(

a

2
, ns + α, n− ns + β), Beta−1(1− a

2
, ns + α, n− ns + β)

)
,

(2.9)
where, Beta−1(a, α, β) is the inverse of the cumulative distribution function of
Beta(α, β).

Jeffreys Interval The Jeffreys interval is a Bayesian interval and uses the
Jeffreys prior [50], which involves a non-informative prior given by the Beta

distribution with parameters (1
2
, 1

2
). We can form the Jeffreys equal-tailed interval

by Equation (2.9) with parameters (1
2
, 1

2
).

32



Clopper-Pearson Interval This method was introduced by Clopper and Pear-
son in 1934 [14] and is based on the inversion of binomial test, rather than on
approximations. The Clopper-Pearson interval is:

CICP =
(
Beta−1(

a

2
, ns, n− ns + 1), Beta−1(1− a

2
, ns + 1, n− ns)

)
. (2.10)

The CICP interval states that the computed coverage probability is always above
or equal to the 1 − a confidence level. In practice, it can be achieved in cases
when n is large enough, while in general, the actual coverage can exceed 1 − a.
We can conclude from Equation (2.10) that due to the absence of the α and β

parameters, the appropriate result can be achieved only by increasing number of
“trials”.

2.4.2 Intervals Based on the CLT Interval

The Central Limit Theorem (CLT) states that if we assume that all samples are
independent and distributed identically then the distribution of sample means
approximates a normal distribution simultaneously with the increase of the sam-
ple size, regardless of population distribution shape. In other words, the CLT
states that the mean of all samples from the same population will be approxi-
mately equal to the mean of the population, given that there is a sufficiently large
number of samples from a population with finite variance. Furthermore, all vari-
ances are approximately equal to the variance of the population divided by each
sample’s size and all the samples follow an approximately normal distribution.
In this Subsection, I consider the most effective CIs which are based on the CLT
interval.

Wilson Interval It was introduced by Wilson in 1927 in his fundamental work
[21] and uses the inversion of the CLT interval. Additionally, it involves a modified
center by quantile formula mean value. The interval has the following form:

CIW =

(
ns + C2

a

2

n+ Ca
− Ca

√
n

n+ C2
a

√
p̂q̂ +

C2
a

4n
;
ns + C2

a

2

n+ Ca
+

Ca
√
n

n+ C2
a

√
p̂q̂ +

C2
a

4n

)
. (2.11)

This interval has some obvious advantages - it can not exceed the probability
boundaries, and it can be easily calculated even if p̂ is 0 or 1. At the same time,
CIW has downward spikes when p̂ is close to 0 and 1, because it is formed by an
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inverted CLT approximation.

Agresti-Coull Interval This method was introduced by Agresti and Coull in
1998 [5]. One of the most interesting features of this CI is that it makes a crucial
assumption about ns and nf . This interval formally adds two successes and two
failures to the obtained values in case of 95% confidence level and then uses the
CLT method. The interval can be constructed as follows:

CIAC =

(
X̃ − 1

n+ C2
a

(ns +
1

2
C2
a); X̃ +

1

n+ C2
a

(ns +
1

2
C2
a)

)
. (2.12)

Additionally, this interval can be modified by using the center of the Wilson
interval (see Equation 2.11) in place of p̂:

CIACW =

(
ns + C2

a

2

n+ Ca
− Ca

√
p̂q̂(n+ C2

a); (
ns + C2

a

2

n+ Ca
− Ca

√
p̂q̂(n+ C2

a)

)
. (2.13)

Logit Interval The Logit interval is based on a transformation of the standard
interval [19]. It uses the empirical logit transformation: λ = ln( p̂

1−p̂) = ln( ns
n−ns ).

The variance of λ is: V̂ ar(λ) = n
ns(n−ns) and the Logit interval can be estimated

as:

CIL =

(
eλL

1 + eλL
,

eλU

1 + eλU

)
, (2.14)

where the lower bound transformation is λL = λ − Ca
√
V̂ ar(λ) and the upper

bound transformation is λU = λ+ Ca

√
V̂ ar(λ).

Anscombe Interval This interval was proposed by Anscombe in 1956 [9] and
is based on the Logit interval (see Equation 2.14). The key difference is in λ

and V̂ ar(λ) estimation, where λ is defined as λ = ln(
ns+

1
2

n−ns+ 1
2

) and the variance is

V̂ ar(λ) = (n+1)(n+2)
n(ns+1)(n−ns+1)

. On this basis, the Anscombe interval CIAnc is estimated
in the same way as the Logit interval (see Equation 2.14).

Arcsine Interval It uses a variance-stabilising transformation of p̂. In 1948,
Anscombe introduced an improvement [8] for achieving better variance stabilisa-
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tion by replacing p̂ to p† = ns+3/8
n+3/4

, obtaining

CIArc =

(
sin(arcsin(

√
p†)− Ca

2
√
n

)2, sin(arcsin(
√
p†) +

Ca
2
√
n

)2

)
. (2.15)

2.5 Gaussian Processes

We can also look at the evaluation of the approximate probabilistic reachability
in SnPHSs from the data collection and prediction point of view. In this case,
we compose a training data set by sampling the probability values at a number
points from the nondeterministic parameters domain. As a result of the training
process, we have a set of points and a set of probability values, so that we can
then make a prediction for other points from the same nondeterministic domain
without new sampling process. Our aim is to minimize the amount of time and
data which we need to produce the most accurate evaluation of the probability
function. In order to solve this problem machine learning techniques can be
successfully applied.

It is possible to generally divide machine learning algorithms into three main
groups: supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning is known to be the most thoroughly studied and easiest to
perform. It concerns learning a relationship from inputs to targets (or outputs).
Supervised learning can be subdivided into two primary tasks: classification and
regression. In the former, the outputs are discrete labels, while in the latter the
outputs are continuous variables.

In this thesis I will focus on the regression task, as GP models, in their simplest
form, are used for regression. Despite the fact that the regression problem is one
of the basic and most general statistical problems, it underlies many machine
learning tasks. Therefore, reliable general methods for regression are crucial for
the whole field of study and can be applied in more advanced and specific learning
tasks.

GPs are considered to be a simple and general type of probability distribu-
tions on functions. They were first applied for time series prediction [45, 91].
A probability distribution on functions p(f) is defined by means of a GP. This
can be used as a Bayesian prior for the regression, and Bayesian inference can be
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applied to make predictions from data (i.e. building the posterior distribution).
In this section, I define GP regression and classification and show how they

can naturally be used to define distributions over functions.

2.5.1 Gaussian Process Regression

A GP is a collection of random variables, any finite number of which have a joint
multidimensional Gaussian distribution. A Gaussian process can be described as
a generalisation of the Gaussian probability distribution. The major advantage
of GPs is that inference can obtain properties of the function at a finite number
of points, ignoring infinitely many points, with the same quality as if we would
have taken them all into account [61].

GPs can be fully described by the mean and covariance functions. The mean
function m(x) shows the expected data taken before any observations. The co-
variance function k(x,x′), which is also known as kernel function represents the
expected correlation between the observations x and x′. In general, these func-
tions are defined as follows:

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

We can then model any function using GP as:

f(x) ∼ GP (m(x), k(x,x′)).

Depending on the initially known properties of the function we need to choose
the initial mean and covariance functions. In most cases, a zero mean function
and squared exponential (SE) covariance kernel function are suggested for these
purposes:

m(x) = 0,

k(x,x′) = σ2
fexp

[
− 1

2
(x− x′)Tdiag−1(x− x′)

]
+ δx,−x′σ

2
w,

where σf is the variance of the kernel function, δ is the Kronecker delta, σw is the
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Figure 2.6: Dependence of GP predictive distribution with SE parameters a=1 and λ=1 on
the integration domain of a smooth function. The single test point predictive distribution is
presented as mean and two 95 % standard deviation. The real function is shown in green.
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Figure 2.7: Dependence of GP predictive distribution with SE parameters a=1 and λ=1 on the
integration domain of an oscillating function. The single test point predictive distribution is
presented as mean and two 95 % standard deviation. The real function is shown in green.
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noise variance and diag−1 is the inverse of diagonal length-scales matrix. Given
N samples X = (x1, ...,xN) we build a probability distribution over functions by
using the next Gaussian joint distribution:

p(y) ∼ N(0,K(X,X)), (2.16)

where K(X,X) is the covariance matrix, composed by the chosen kernel and
mean functions.

The main aim of the GP method is to obtain the posterior distribution. After
training our simulation model with the training set X we collect the test set X∗.
This set defines the points where we want to receive the function prediction. From
Equation (2.16) we can show the joint distribution of the unknown y∗ using the
known y: [

y
y∗

]
= N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
.

We can now define mean and covariance of the conditional Gaussian distribu-
tion for the posterior distribution p(y) ∼ N(0,K(X,X)) as:

E[y∗|y,X,X∗] = KT
∗ β,

var[y∗|y,X,X∗] = K∗∗ −KT
∗ (K + σ2

wI)
−1K∗,

where K∗ = k(X,X∗), K∗∗ = k(X∗,X∗), K = k(X,X) and β := (K + σ2
wI)−1y.

In this Section I consider three different types of functions for GP approxima-
tion: simple smooth functions (see Figure 2.6), oscillating functions (see Figure
2.7) and rare-event functions, whose values are very close to zero (see Figure
2.8). The shape of the approximant function significantly affects the approxima-
tion results. For example, comparing in Figure 2.6 (a) and Figure 2.7 (a) the
CIs constructed over the same domain by using the SE function with the same
parameters we can easily note that Figure 2.6 (a) has better approximation. The
CI shown in Figure 2.7 (a) is almost twice wider, which leads us to the conclu-
sion that the accuracy of the GP approximation is directly correlated with the
unknown function shape. Another key point for good approximation by GP is an
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(a) Large integration domain [0,10] (b) Small integration domain [0,0.4]

Figure 2.8: Dependence of GP predictive distribution with SE parameters a=1 and λ=1 on the
integration domain of a rare-event function (near 0 bound). The single test point predictive
distribution is presented as mean and two 95 % standard deviation. The real function is shown
in green.

appropriate number of sample points, which unfortunately can not be predicted
in advance without any knowledge about the function being sampled. However, in
case of very small values (near 0 bound), GPs approximate a rare-event function
very successfully (see Figure 2.8 (a)).

Although most GP sources [12, 61] consider only well-behaved functions over
large domains, it is necessary to pay attention to small domains as well. In the
real world we deal with very hardly predictable hybrid systems, whose behaviour
vary significantly. In this thesis, we estimate functions predominantly on a rela-
tively small domain, where function values change only within the [0,1] interval
(probability functions). Unfortunately, if we keep the same simple functions fea-
tures, which were used for a large domain (see Figure 2.6 (a)) and apply it to
a smaller one (see Figure 2.6 (b)) we will see that GPs are not as effective as
before. The same picture can be seen for a curved function as well (see Figure
2.7 (a) and (b)). The confidence interval bounds represent now a flat line despite
the information obtained from our data observation. Though for rare event case
an effective GP behaviour still remains (see Figure 2.8 (b)).
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2.5.2 Covariances and Hyperparameter Learning

It was already stated in Subsection 2.5.1 that it is necessary to define the mean
and covariance function to specify a particular GP prior. Most of the properties of
sample functions drawn from the GP prior can be determined by the covariance
function (e.g. smoothness, lengthscales, amplitude etc). Therefore, one of the
key steps in GP modelling is selecting an appropriate covariance function for a
particular problem or hybrid system model.

In fact, there is a wide range of flexible and computationally efficient covari-
ance functions. The reader can find more information about such functions in
[61]. In this research, the SE covariance function was chosen for the tests and
implementation as one of the most efficient. It is widely used in machine learn-
ing. It very efficiently draws sample functions that are infinitely differentiable
(i.e. smooth):

KSE(r) = a2exp(− r2

2λ2
), (2.17)

where r = ‖x − x′‖. The SE covariance is stationary (a function of ‖x − x′‖ –
invariant to translations) and more practically isotropic (a function of r – invari-
ant to both rotation and translation). It is governed by two hyperparameters a
and λ, that change properties of approximant functions: λ controls the typical
lengthscale of variation and a controls the typical amplitude.

Figures 2.9 (a) and 2.9 (b) show GP function estimation obtained by using
the SE covariance function with two different λ hyperparameters: 0.15 and 9.5
respectively. It easily can be seen that the confidence interval shape and the mean
line for these pictures significantly differ from one with the SE default parameters
settings (see Figure 2.6 (a)). A notable increase of the λ parameter transforms
CIs into a line while decreasing change the CIs form.

Figures 2.10 (a) and 2.10 (b) compare GP estimation with the same λ hy-
perparameters equal to 0.15 and 9.5. It can be noted now that the plot with
the λ parameter equal to 9.5 (see Figure 2.10 (b)) has better approximation in
comparison to Figure 2.9 (b).

Finally, in Figures 2.11 (a) and 2.11 (b) the results with λ hyperparameters
0.01 and 0.15 for GP function of Figure 2.8 are presented. It can be seen that
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the CIs for both figures are significantly larger. In Figure 2.11 (a) a very bad flat
approximation is presented, while in Figure 2.11 (b) a small correlation towards
the observed point is present.

It can easily be seen that the smoothness of the sample functions arises from
the form of the covariance Equation (2.17). We can see a strong correlation
between those variables, which are close in the input space. At the same time,
function variables far apart relative to the lengthscale λ are uncorrelated. One
of the possible disadvantages of the SE covariance is that in realistic regression
tasks it may be unreasonably smooth.

The reader can note now that the choice of SE hyperparameters is not uni-
versal for all function kinds and should be considered closely in every particular
case. More information about covariance functions choice strategies alongside
with their comparison can be found in [61].
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Figure 2.9: Gaussian process regression with the SE covariance function λ parameter equals to
(a) and (b). The same real function is presented in Figure 2.6.

One of the most exciting features of GPs in comparison with other methods
is the possibility to choose covariance hyperparameters from the training data
directly. This can be especially effective in case other hyperparameters selecting
methods, e.g. cross-validation, can not be successfully applied.
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Figure 2.10: Gaussian process regression with the SE covariance function λ parameter equals
to (a) and (b). The same real function is presented in Figure 2.7.

(a) SE, λ = 0.01 (b) SE, λ = 0.15

Figure 2.11: Gaussian process regression with the SE covariance function λ parameter equals
to (a) and (b). The same real function is presented in Figure 2.8.

In an ideal world, we would like to place a prior and compute a Bayesian
posterior p(θ|y) according to the hyperparameters. Unfortunately, computing
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the posterior is not analytically tractable in general. In order to solve this issue,
the marginal likelihood can be used as an appropriate cost function. In other
words, we aim to minimise the negative log marginal likelihood L with respect
to the hyperparameters of the covariance θ:

L = −log p(y|θ) =
1

2
log detC(θ) +

1

2
yTC−1(θ)y +

N

2
log(2π), (2.18)

where C = KN + σ2I is the covariance matrix and I is the identity matrix.
In any other operations where we use the training data to optimise parameters,

we need to worry about overfitting. Practically, GP processes do not optimise f
function variables by themselves, but rather integrate over their uncertainty. The
optimisation of the GP hyperparameter occurs at a greater hierarchical level.

The minimisation of the log marginal likelihood of Equation (2.18) represents
a non-convex optimisation task. When gradients are readily acquired, conven-
tional gradient optimisers can, therefore, be used. Of course, the accurate details
will rely on the covariance function selection. The cost of computing the marginal
probability and gradients of log is again dominated by the inversion of the C co-
variance matrix.

Local minima can be an issue, especially if there is a tiny quantity of in-
formation, and hence the solution is unclear. Local minima can correspond to
alternative, reliable explanations for the information in this scenario (such as low
noise and brief lengthscale vs. elevated noise and lengthy lengthscale). Therefore,
it is often worthwhile to make several optimisations from random starting points
and investigate the different minima.

2.5.3 Gaussian Process Classification

Gaussian Process Classification (GPC) is an effective algorithm for probabilistic
classification, where predictions take the form of class probabilities.

The standard binary GPC aims to predict the class membership probability
for a new test point x∗, giving a set of training points X = [x1, ...,xN ]T of size N
and correlated class label y = [y1, ...,yN ]T of the same size. GPC exploits a latent
function f by mapping its values within [0,1] interval using the probit regression
function Φ [61]. The idea behind the probit regression is to turn the output of a
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model into a class probability, using the cumulative density function of a standard
normal distribution: Φ(z) =

∫ z
−∞N(x|0, 1)dx, where N is the density of a normal

distribution with 0 mean and 1 standard deviation.
The class membership probability p(y = 1|x) can be presented by Φ(f(x)).

Hence, GPC then can be performed by placing a GP prior over the latent function
f(x). In other words, similar to the GP regression algorithm (see Subsection
2.5.1), we can compute the distribution of the latent variable f(x) corresponding
to the new test input point x∗ in order to make prediction:

p(f∗|x∗,X,y) =

∫
p(f∗|x∗,X, f)p(f|X,y)df, (2.19)

where f = [f1, ..., fN ]T . The distribution (see Equation 2.19) can be now applied
to draw a full picture of class membership distribution.

p(y∗ = 1|x∗,X,y) =

∫
Φ(f∗)|p(f∗|x∗,X,y)df∗.

Unfortunately, the solution of classification problems using Gaussian processes
is rather more expensive than the one for the regression problems considered in
the previous subsection [61].

2.5.4 Gaussian Process Multiple Annotators Classification

In many situations gold ground truth information is unavailable, so there has
been much work on estimating ground truth labels from multiple annotators, for
example in the context of bio-statistics and epidemiology [18, 42]. This strategy,
however, first estimated the ground truth from estimates of annotators and used
probabilistic ground truths to learn a classifier. Some other methods [10, 15, 71]
exploit previous knowledge of the labels similarities.

The main difference between GPC and GP learning from multiple annotators
classification is that instead of a single class label - yi for the ith instance, like
it was described in Subsection 2.5.3 we need to deal now with a vector of class
labels - yi = [y1

i , ...,yRi ]T , representing noisy labels provided by R annotators.
In our case we have a set of observations of function Pr (see Definition 2.8 from
Subsection 2.2.4), obtained by checking probabilistic reachability over a finite set
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of random points. In other words per every input point, we have a reachability
decision 0 or 1, which forms a row of 0/1 decisions for a particular reachability
question.

The latest and most efficient methods in the most general setting, i.e. ap-
proaches that do not suppose any previous knowledge of the labels or their inter-
actions are presented below.

Majority voting. A commonly used strategy in the case of multiple labels
is to use a label that the majority agree on as an estimate of the true label. A
concealed true label ŷi can be calculated as follows for a binary case classification:

ŷi =

1, if (1/R)
∑R

r=1 y
r
i > 0.5

0, if (1/R)
∑R

r=1 y
r
i < 0.5,

(2.20)

where the case of tie (ŷi = 0.5) can be broken by a super-expert or randomly.

Independent approach. The approach demonstrated in [63] assumes the yr

annotator labels are independent of the input features given the true labels exist.
This hypothesis may not be precise, particularly when one has easy instances
where the annotators are less likely to make mistakes. This approach is graphi-
cally represented in Figure 2.12.

Figure 2.12: The independent multiple annotators classification approach pro-
posed by Rayker et al. [63].

A maximum-likelihood estimator (MLE) that jointly learns the classifier, the
annotator accuracy, and the true label represents the basis of this algorithm. The
performance of the rth annotator can be measured in terms of the sensitivity and
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the specificity with respect to the unknown gold standard. In this thesis, the
sensitivity is denoted as αr and the specificity as βr respectively. α and β are
engaged in distinguishing the true positive rate from the true negative rate. In
other words, αr = Prob[yr = 1|y = 1] and βr = Prob[yr = 0|y = 0].

The MLE approach is used to estimate the sensitivity and the specificity and
defined as follows:

Prob[D|θ] =
N∏
i=1

Prob(y1
i , ..., y

R
i |xi, θ),

where θ = {ω, α, β} and ω is the weight vector.

Dependent approach. The previous assumption is relaxed by the work in
[92]. It takes into consideration that some annotators are better at labelling
certain kinds of information points. Another difference is that [92] assumes that
for positive and negative examples, each annotator’s performance is symmetric.
This approach is graphically represented in Figure 2.13. In this figure, it can be
noted that there is an edge between x and yr that was not present in Figure 2.12.
These edge models how the input instance depends on the annotated labels.

Figure 2.13: The dependent multiple annotators classification approach proposed
by Yan et al. [92].

This method exploits the dependence of the input labels via Gaussian distri-
bution as follows:

Prob[y
(r)
i |xi, yi] = N(y

(r)
i ; yi, σ(xi)),

where σ(xi) is the variance of the distribution given by σ(xi) = 1/(1 + e−(ur)T xi),
where ur is the weight vector for the annotator r.
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In [63], the parameters θ = {ut, ωt} are estimated by MLE. This is achieved
by maximizing the likelihood function which can be derived as in the Independent
approach.

Latent approach. In [66], the authors claim that in instances where the num-
ber of classes is large, using ground truth labels as latent variables is inefficient.
Another problem with using ground truth labels as latent variables is the ex-
plosion of the number of parameters which need to be stored. For example, for
K classes, the probability Prob(yri |yi) for each annotator r and for each class i
is needed to be stored. That means that we need to store K × K parameters
for each annotator. Simultaneously with K increasing the number of parameters
becomes very large and this often leads to overfitting. The authors propose a
formulation which models the annotator accuracies as latent variables to handle
this problem. This approach is graphically represented in Figure 2.14.

Figure 2.14: The dependent multiple annotators classification approach proposed
by Rodrigues et al. [66].

In this work the authors define the variable zri which represents a binary
random variable in this case. zri indicates whether the rth annotator labelled
the ith instance correctly or not so that zri ∼ Bernoulli πr, where πr denotes the
annotator accuracy, xi indicates the features for the ith instance and yri represents
the label assigned by annotator r to instance i. Similar to [63], there is no arc
from xi to zri (i.e., the latent variable annotator accuracy in this case does not
depend on the input instance labels’ characteristics). If for a particular instance
i, an annotator r has zri = 0, the label assigned to i by r is provided by a random
model Prand(yri = k|xi).
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The likelihood function for this case is defined as follows:

p(D,Z|θ) =
N∏
i=1

R∏
i=1

p(zRi=1|πr)(p(yri |xi, zri , w),

where D is the dataset and θ(π,w) are the model parameters: π is the annota-
tors’ accuracy vector and w is the classifier weights. The MLE can be simplified
by representing logistic regression as the classifier:

p(D,Z|θ) =
N∏
i=1

R∏
i=1

(πrpLogReg(y
r
i |xi, w) + (1− πr)prand(yri |xi)),

where pLogReg(yri |xi, w) is the logistic regression output.
Although in my research I considered and tested the application of the above

mentioned multiple annotators techniques, in this thesis I did not use them due
to the problems discussed earlier in Section 2.5. More information about learning
from multiple annotators alongside with their comparison can be found in [70].

2.5.5 Expectation Propagation Method

In this thesis I use a Bayesian approach for approximating the Pr function, which
means that Pr will be approximated by the posterior distribution of a stochastic
process over (the uncertain parameters domain) P given a set of observations of
Pr. In our case such observations are obtained by checking probabilistic reach-
ability over a finite set of points in P . Hence the likelihood function at each
point will be a Bernoulli. For prior I instead choose a GP, which can be adapted
to sample from certain types of continuous functions. In particular, I show in
Theorem 3.1 that the Pr function is smooth, hence I employ GPs which sample
from the space of smooth functions over P .

GP posterior inference requires a normal likelihood, while in our case we have
Bernoulli’s. To solve this problem I follow the approach presented in [11], in which
the posterior inference is efficiently handled via the Expectation Propagation (EP)
algorithm [53, 56]. More details about the GPEP approach can be found in [61].
EP is an efficient approximate inference algorithm that unifies two techniques
- assumed density filtering and loopy belief propagation (an extension of belief
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propagation in Bayesian networks). It was developed by Opper and Winther [56]
and then adapted for the general case by Minka [53].

EP is an iterative algorithm in which a target density f(θ) is approximated by
a density from some specified parametric family q(θ). It assumes that our target
density f(θ) has proper factorisation as:

f(θ) ∝
h∏
i=0

fi(θ).

The target f is the posterior density p(θ|y) in the classical case of Bayesian
inference. Hence, we can assign one factor as the prior and other factors as
the likelihood for one data point. In comparison with GP regression, the EP
classification deals with non-Gaussian likelihood. In our case we have a Bernoulli
distribution - per every input point, we sample non-deterministic parameters
from the certain range and receive 0/1 decision, which indicates the possibility to
reach a goal state. To solve this problem, EP iteratively approximates f(θ) with
a density q(θ) which takes the same factorisation:

q(θ) ∝
h∏
i=0

qi(θ).

This approximation, which associates the factors fi(θ) with the approximation
qi(θ), is usually called sites approximation.

At each iteration of the algorithm, and for i = 1, ..., h, we take the current
approximating function q(θ) and replace qi(θ) by the corresponding factor fi(θ)
from our target distribution. Now we can define the cavity distribution as:

q−i(θ) ∝
q(θ)

qi(θ)
,

with the tilted distribution equals to:

q\i(θ) ∝ fi(θ)q−i(θ).

In general, EP at first constructs an approximation qnew(θ) for the tilted
distribution q\i(θ) and then updates approximation to the target density’s fi(θ),
which can be computed as qnewi (θ) ∝ qnew(θ)/q−i(θ). From the definition qnewi (θ)
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can be estimated via the Kullback–Leibler divergence [61]:

qnewi (θ) = arg minD(fi(θ)q−i(θ)||qi(θ)q−i(θ)),

where D(||) is the Kullback–Leibler divergence. It is important to note that other
minimisation methods can be also rather efficiently used for this purpose [53].

At a very simple level the EP algorithm works as follows:

1. Initialisation of the initial site approximation qi(θ).

2. Repeat for i = 1, ..., h until all site approximations qi(θ) convergence:

• Compute cavity parameters approximation q−i(θ) ∝ q(θ)/qi(θ) ;

• Update site parameters approximation qi(θ) and re-compute the pos-
terior parameters so that qi(θ)q−i(θ) approximates as fi(θ)q−i(θ).

3. Return natural site parameters.

In section 5.6 I exhaustively consider the advantages of the EP algorithm
application on different models.

2.6 Summary

The Chapter shows verifying bounded reachability in SnPHS options and pro-
vides a decision algorithm, which combines the properties of δ-complete decision
procedures and formulae Reach∀ (see Subsection 2.2.4).

It has been explained in this Chapter that reachability, including its bounded
version (with a finite number of discrete transitions in the reachability analysis),
is undecidable, even for linear hybrid systems as well as for stochastic hybrid
systems. In this Chapter I described the idea of using a δ-complete decision
procedure [30], which allows us to decide whether a bounded reachability ques-
tion is unsatisfiable (i.e., it is impossible to reach a goal state), or its relaxed
version is satisfiable, which is characterised by some positive, user-defined over-
approximation. I also show that that it is possible to solve bounded reachability
in hybrid systems with the help of tools such as dReach [46] and iSAT-ODE [23],
which incorporates SMT solvers that implement δ-decision procedures.
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This Chapter also focuses on providing some background in the verification
of stochastic parametric hybrid systems, i.e., hybrid systems described in terms
of parameters as random and nondeterministic initial conditions.

In this Chapter, parametric nondeterministic hybrid systems are formally
characterised and the bounded reachability property is defined in terms of bounded
LR-sentences (see Definition 2.4). Further, some theoretical materials are pro-
vided to explain the mathematical methods used, including a brief introduction
to MC and QMC methods, and in conclusion an overview of RQMC methods.
Error estimation of these methods, including the theoretical usage of the Koksma-
Hlawka inequality and Qint method, is also considered.

Finally, a detailed introduction to GP models is presented, aiming at under-
standing the essence of the stochastic process and how it is used to characterise
a distribution over functions. GP regression and classification are described in
a simple way. Some arguments for the advantages of practical usage of GPEP
method are given, and in conclusion, the current trends in GP research are con-
sidered.
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Chapter 3

Estimation Techniques for
Probabilistic Reachability and
Gaussian Processes

3.1 Introduction

In this Chapter the bounded reachability probability is defined in terms of expec-
tation of Bernoulli random variables, and algorithms for computing confidence
intervals for the bounded reachability probability are described. MC and QMC
methods are evaluated in terms of bounded probability reachability and are il-
lustrated with an example of their application. CI estimation problems are con-
sidered in the case when the actual probability is near the borders of the [0,1]
interval. In this Chapter I also introduce a new method of error approximation,
based on the classical CLT approach. The aim of the above mentioned algorithm
is to solve the problem of poor confidence interval actual coverage probability es-
timation near the boundaries (0 and 1). In this method a sequential estimation of
the sample standard deviation is used and CI at every new sample is reestimated.
In Chapter 5 I empirically demonstrate the advantages of this approach.

I also consider the problem of computing probabilistic reachability for stochas-
tic models with parametric uncertainty (nondeterministic parameters). The use
of the EP algorithm, which performs model checking for probability functions
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with non-Gaussian likelihood, can be enabled only on the basis of the fact that
reachability probability function should be a smooth function of the model pa-
rameters. I give a proof that the reachability probability function of a SnPHS is,
under mild conditions, a smooth function of the uncertain parameters. This cru-
cial fact allows us to show that GP approximation can be successfully applied in
SnPHSs. This is accomplished by exploiting the nature of the function’s smooth-
ness, which allows modelling explicitly correlations through previous distribution
over a smooth function space (a GP) and place observations at individual param-
eter values to create a function’s own analytical approximation.

In this Chapter, I introduce a novel statistical technique for computing bounded
reachability probability in SnPHSs. The presented algorithm grants statistically
rigorous confidence intervals by combining the formal approach, based on formal
reasoning which provides absolute numerical guarantees, and the GP regression
method, which provides statistical guarantees. This algorithm help to reduce the
computational cost with respect to the formal approach. In particular, during
the first phase of the proposed method the formal algorithm returns probability
enclosures for the points from the parameter’s domain of the bounded reachabil-
ity probability function. GP then utilises these probability enclosures data with
the aim to construct two regression approximations for upper and lower bound
of the probability enclosures.

Finally, I outline the theoretical basis of the formal and GP regression com-
bination technique and provide an informal evaluation of its computational char-
acteristics including calculation precision and computational complexity. I also
show that it is feasible to discover an effective trade-off between output precision
and the computational complexity. The latter fact gives us hope that GP process
regression in combination with some formal approach method can be an effective
solution not only for rare event cases but also in general. This point will be more
precisely covered in Section 5.7. The application of the developed technique is
also discussed in more detail in Section 5.7.
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3.2 Monte Carlo and Quasi-Monte Carlo Methods

Validation

A statistical approach to probabilistic reachability is essential because it scales
with system size much better than other methods and can still provide correctness
guarantees. For instance, statistical model checking [94] can be quicker than
probabilistic model checking, which is based on exhaustive state-space search
[93].

Monte Carlo probability estimation methods assume that the random variable
representing the real system behaviour can be sampled. However, this is impos-
sible in practice because reachability is undecidable. The methods described in
this section explicitly take into account undecidability and numerical accuracy.

In this section, the bounded reachability probability is defined in terms of
Bernoulli random variables and an algorithm for computing confidence intervals
for the bounded reachability probability in SPHSs is discussed. Then I show a
method for computing an approximation of the maximum/minimum bounded
reachability probability. I also present MC and QMC methods in terms of
bounded probability reachability and provide an application example.

3.2.1 Computing Confidence Intervals for Bounded Reach-

ability

In order to define bounded reachability in SPHS (H,P) it is possible to use a
Bernoulli random variable of the following form [73]:

X(pN ,pR) =

1 if system H reaches the goal in l steps for pN ∈ PN ,pR ∈ PR
0 otherwise,

(3.1)

where PN and PR are the nondeterministic and random parameter domain, re-
spectively.

It implies that the expected value of X is equal to the bounded reachability
probability, i.e., Pr(pN) = E[X(pN)], where pN is a nondeterministic parameter
and pR is a random parameter. Unfortunately, as it was already discussed in
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Subsection 2.2.1 it is impossible to directly evaluate samples of variableX because
of the undecidability of bounded reachability in hybrid systems.

Instead, two Bernoulli random variables Xsat and Xusat whose values can be
computed can be used for bounding the range of X [72]. For any given δ > 0,
pN ∈ PN and pR ∈ PR, Xsat and Xusat are defined as the following:

Xsat(pN ,pR, δ) =

1 if evaluate(H, l, {pN ,pR}, δ) = sat,

0 otherwise,

Xusat(pN ,pR, δ) =

0 if evaluate(H, l, {pN ,pR}, δ) = unsat,

1 otherwise.

The evaluate(H, l, p, δ) procedure here outputs sat if H reaches a goal in l steps
for p; unsat if H does not reach the goal and undet if none of the above could
be determined (see Section 2.2). Therefore, if it is possible to conclude that H
reaches the goal state for the given pN and pR thenXsat(pN ,pR, δ) equals 1. Oth-
erwise if it can be decided that H does not reach the goal state for these pN and
pR then Xusat(pN ,pR, δ) equals 0. When no decision can be made (because of the
precision δ being used or the nature of the reachability question), Xsat(pN ,pR, δ)

and Xusat(pN ,pR, δ) take 0 and 1, respectively. Thus, the following holds for any
δ > 0 (see Section 2.3):

Xsat(pN ,pR, δ) ≤ X(pN ,pR) ≤ Xusat(pN ,pR, δ) . (3.2)

In our case, we deal with independent random parameters, so that for n sam-
ples pi ∈ PR the random variables Xsat and Xusat are independent and identically
distributed, and we can define the next estimators:

Ŝn =
Σn
i=1Xsat(pN ,pi, δ)

n
, Ûn =

Σn
i=1Xusat(pN ,pi, δ)

n
. (3.3)

The presented Equation (3.3) can be successfully used for producing confi-
dence intervals for the bounded reachability probability.

3.2.2 MC and QMC Bounded Reachability

Let us consider a hybrid system H with random parameters only. I consider two
Bernoulli random variables: Xsat, which takes 1 if we can correctly decide that
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system H reaches the goal in k steps for p and 0 otherwise; Xusat, which takes 0
if we can correctly decide that system H does not reach the goal and 1 otherwise
[74]. Therefore:

Xsat 6 X 6 Xusat

and thus:
E[Xsat] 6 E[X] 6 E[Xusat] .

By the definition of expectation, we get:∫
PR

Xsat(p)dp 6
∫
PR

X(p)dp 6
∫
PR

Xusat(p)dp . (3.4)

We take the sample approximation of (3.4) and obtain

1

N

N∑
i=1

Xsat(pi) 6
1

N

N∑
i=1

X(pi) 6
1

N

N∑
i=1

Xusat(pi),

where the pi’s can be sampled by using low-discrepancy sequences for QMC
methods or pseudo-random sequences for MC methods.

3.3 Modified CLT Method

In this section, I investigate whether it is possible to apply statistical methods
for efficient estimation of the approximation error near the probability bounds
(0 or 1). I consider CLT methods as a possible solution due to their theoretical
benefits in convergence and number of samples. In this section, I also discuss CI
estimation problems when the actual probability is near the borders of the [0,1]
interval and also introduce a novel approach for error approximation based on
the classical CLT method.

3.3.1 Approximation of CI for Probabilities Near the Bounds

In situations when data are few, classical approaches to estimating the rate of
occurrence of rare events show very poor performance. There have been some
alternative empirical-based approaches suggested. They are based on median es-
timators or non-informative prior distributions. Although these alternatives have
an advantage in point estimates of zero, they can be generally conservative. One
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approach is offered by Empirical Bayes procedures, which is performed through
pooling data across different hazards to support the stronger statistical inference
[87].

There is a difficulty though that many problems normally face when inves-
tigating the probability of rare events. In that situation standard Monte Carlo
needs on average a very large number of samples to witness the rare event once,
for instance, 109 independent simulations on average for an event of probability
10−9, a typical target. Consequently, some specific techniques have to be applied.
Importance Sampling and Multilevel Splitting (sometimes called Subset Simula-
tion) techniques are examples of the most prominent ones, which nevertheless are
sometimes too complicated and involve high computational costs [35, 36].

We can set upper confidence bounds on event risks when no events are ob-
served. It may be applicable when we try to determine possible risks for serious
adverse events. A simple rule defined as the “rule of threes” has been widely
used before. It states that if no events are observed in a group, then the upper
confidence interval limit for the number of events is three, and for the risk (in
a sample of size N) is 3/N [58]. The usage of this rule has not directly been
suggested or estimated for systematic reviews.

One of the classical methods to estimate the rate of occurrence of events is
calculating the ratio of the number of events that have occurred to the length of
the period of observation. Theoretically, this process has the necessary asymptotic
properties, as it is an unbiased estimate of the rate of occurrence of such incidents
and the minimum variance unbiased estimator. In the condition when data are
few, though, its performance is quite poor.

The methodology I present is based on the natural overall rate of the obtained
data. It estimates appropriate adjustments from the pooled rate for each indi-
vidual event. This methodology is based on the standard CLT method and aims
to solve the problem of poor confidence interval actual coverage probability near
the boundaries (0 and 1) [16, 59].
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3.3.2 Modified Central Limit Theorem

First, I consider the case when the samples xi are extracted from the normal
distribution N(µ, σ2) with unknown parameter µ and known σ2, where µ is the
mean or expectation of the distribution and σ2 is the variance. Here, µ can be
approximated by the sample mean: µ ≈ X̃, where X̃ = 1

n

∑n
i=1 xi. To clarify this

approximation, we need to construct a CI covering the parameter µ with a given
confidence probability:

CICLT =

(
X̃ − Ca

σ√
n

; X̃ + Ca
σ√
n

)
, (3.5)

where Ca = Quant(1− a
2
) is the inverse cumulative distribution function of a nor-

mal random variable with mean 0 and standard deviation 1; parameter a defines
the confidence level at 1− a. If the variance σ2 is unknown, we can use the same
CI by replacing σ with its sample standard deviation s =

√
1

n−1

∑n
i=1(xi − X̃)2.

This method is widely used for estimating the distribution of the error regarding
the binomially-distributed p̂ = ns/n, where, ns is the number of “successes” and
n is the total number of Bernoulli “trials” which is the setting we are interested
in this thesis. Many related works [14, 16, 19] note that CICLT approximation
can be poor when applied to Bernoulli trials with p̂ close to 0 or 1. It can be eas-
ily seen that when p̂ is 0 (or 1), the standard confidence interval Ca

√
1
n
p̂(1− p̂)

cannot be constructed.
In order to solve this problem, I introduce a new method for variance esti-

mation, which uses a sequential estimation of the sample standard deviation and
calculates CICLT (3.5) at every new sample. My solution simply approximates
the sample standard deviation with 1

n2 (where n is the total number of samples)
at the initial stages of the computation if p̂ is equal to 0 (or 1, when all re-
turned results of a hybrid system model evaluation are the same) and propagates
it through the computation until the necessary number of samples (differ from 0
or 1) to construct the interval are obtained. I will show the advantages of this
approach in Subsection 5.3.1.

The same modification was applied to calculation of the Qint CI (see results
in Subsection 5.3.2). Initially the Qint method (see Subsection 2.3.5) is also not
able to compute CI in the cases where the output of Bernoulli trials is equal to 0
or 1 using standard CLT, that is why this modification is essential for calculation
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results of the probability near the bounds for the Qint method, which has a strong
potential to show better results among statistical methods.

3.4 Probabilistic Reachability Analysis

In this section, I consider the problem of computing the probability of a formula
for stochastic models with parametric uncertainty, i.e. SnPHS. I show that the
reachability probability function is under reasonable conditions a smooth function
of the model parameters, so it can be successfully approximated by GP. This also
enables the use of the EP algorithm, which can open GP approach with non-
Gaussian likelihood. It uses observations of truth values of the formula over
individual runs of the model at isolated parameter values to provide CIs over
values of the model the whole parameters’ range.

This problem addresses a very important question of whether the reachability
probability function can be considered for Gaussian processes (GP) approxima-
tion. I solve it by exploiting the nature of smoothness of the function: by mod-
elling explicitly correlations through a prior distribution over a space of smooth
functions (a Gaussian Process), so it is possible to condition on observations
at individual parameter values to construct an analytical approximation of the
function itself. I also show that the reachability probability function can be ap-
proximated arbitrarily well by Quasi-Monte Carlo (QMC) sampling from a GP,
and then the GP regression method can be successfully applied to it to obtain an
analytical approximation.

Finally, in this section I discuss the smoothed model checking approach and
the likelihood model I use. I provide a high-level description of the method and
introduce an EP-based approximation algorithm.

3.4.1 Reachability Probability Function Smoothness

As it was stated above my aim is to show that the reachability probability of an
SnPHS (see Definition 2.2 in Subsection 2.2.1) is a smooth function of the non-
deterministic parameters, and thus GP can be used to approximate the function
itself very efficiently over the entire domain of nondeterministic parameters.
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Theorem 3.1. Let H be an SnPHS in which the random parameter densities
are smooth, i.e., fi(x,p) ∈ C∞(R × P ) for all 1 6 i 6 r. Then, the reachability
probability function of H is a smooth function of the uncertain parameters, i.e.,
Pr(p) ∈ C∞(P ).

Proof. We recall that P ⊂ Rk, R ⊂ Rr and G are the uncertain parameters space,
random parameters domain and goal set of the SnPHS H, respectively. We need
to show that the function of Definition 2.8:

Pr(p) =

∫
G

dµ(p) =

∫
R

IG dµ(p)

admits derivatives of any order, where IG is the indicator function over G. Since
the random parameters are independent, we can rewrite the above as:

Pr(p) =

∫
R

IG(x)F (x,p) dx

where x ∈ Rr and F (x) = Πr
i=1fi(xi,p) is the product measure obtained from

the random parameters’ densities. For clarity of presentation, I assume that p

is a single uncertain parameter, i.e., k = 1. The extension to multiple uncertain
parameters (k > 1) is easily obtained by considering each coordinate.

Since
∫
R
IG(x) dx < ∞ (recall R is a bounded set), by Lebesgue’s criterion

[96, Theorem 1, Sect. 11.1] the function IG is continuous almost everywhere on
R. Let D ⊂ R be the set of points at which IG is discontinuous. Since D has
measure zero we have that

Pr(p) =

∫
R\D

IG(x)F (x,p) dx (3.6)

and by the hypothesis on the densities fi’s the function IG(x)F (x,p) is then
continuous over R\D×P and has continuous partial derivative with respect to p.
Therefore, by Equation (3.6) and Leibniz’s rule [96, Proposition 2, Sect. 17.5.1],
we have that

dPr(p)

dp
=
d
∫
R\D IG(x)F (x,p) dx

dp
=

∫
R\D

∂IG(x)F (x,p)

∂p
dx

=

∫
R\D

IG(x)
∂F (x,p)

∂p
dx

and dPr(p)
dp

is a continuous function over P by [96, Proposition 1, Sect. 17.5.1].
The proof now simply proceeds by induction on the order of the derivative, with
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the smoothness hypothesis.

In our case studies we shall use normally-distributed random parameters: it
is easy to show that Gaussian densities satisfy the hypothesis of Theorem 3.1.

It is also important to note that the GP approach can be applied to any
SnPHSs where the goal set does not depend on nondeterminstic parameters, which
means that the presented above theoretical result can be successfully applied to
a broad number of studies in the field.

Figure 3.1: Non-smooth reachability probability function of “Bad” SnPHS model
with the goal set which depends on nondeterminstic parameter n.

An example where it is impossible to apply GP can be shown on the example
of the simple model used in this thesis and called “Bad” (see Section 5.2). The
predicate (x(0) = r) ∧ (n ∈ [0, 1]), where r is uniformly distributed over [0,1],
and n is a continuous nondeterministic parameter on [0, 1] is used to define the
original state of the system. Now we slightly change the goal so that: (x ≤
2(n− 0.5)2 + 0.5) ∧ (x ≥ −2(n− 0.5)2 + 0.5) ∧ (n ≤ 0.8). The goal now directly
depends on the nondeterministic parameter n. Therefore, the probability function
will be equal to Pr(n) = 4n2−4n+1 up to 0.8 point from n’s parameter domain,
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which reaches its minimum value of 0 at n = 0.5 and then will have a jump to
0 flat line values. We can see in Figure 3.1 that the graph of the reachability
probability function obtained analytically represents a non-smooth function.

3.4.2 GP Approximation of a Smooth Probability Function

In order to successfully apply GP, we need to determine an initial prior distribu-
tion, which describes our probability reachability function in the most effective
way (see Section 2.5). Then it is necessary to define the functional form of the
likelihood. This form influences the dependence of the probability of the ob-
served satisfaction values at individual parameters on the (unknown) true value
of the reachability probability at that point. The final step is computing an ap-
proximation of the posterior distribution over functions, given the observations
via Bayes’s theorem. We receive the required estimate and confidence interval
by evaluating the statistics of the induced posterior distribution on the function
values at each point. The latter can be done by using EP methods, described in
Subsection 2.5.5.

Given a SnPHS Sθ depending on a vector of parameters θ ∈ D, our goal is to
find a statistical estimate of the reachability probability as a function of θ, i.e.
of the function:

f(θ) = P (ϑ|Sθ) = Pr(θ).

Evaluating reachability over a SnPHS model returns Boolean observations -
1/0 according to every new sample. The probability of the observations being 1
is a Bernoulli distribution with parameter f(θ). Per each ϑ in the training set, we
generate n observations, which should be drawn from a Binomial random variable
Binomial(n, f(θ)) (see Algorithm 1 in Section A.1 of Appendix). Therefore per
every nondeterministic point we have an output in form of the observations row
( e.g. [0, 1, 1, 0, 0, 1]). An approximation of f(θ) can be computed directly from
such binomial variable observations. For the convenience of the algorithm, we
take the probability value for each point equals to the mean of the observations
row, so that if we have [0, 1, 1, 0, 0, 1] observations the probability for the chosen
point will be equal to 0.5. In statistical model checking the accuracy of such
approximation would only be guaranteed in the limit of n→∞.
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There is no need to conduct this intermediate assessment in a GP context:
we can directly use the binomial observation model in the Bayes theorem. Thus,
it is possible to use the exact statistical model of the process, converging in the
limit of a large number of observations to the true function. The advantage
of this approach follows directly from the GP definition (see Subsection 2.5.1):
GPs provide a full range approximation with few samples per each input point
θ1, ..., θk, which is very efficient from a computational point of view.

It has been already noted in Subsection 2.5.3 that the observation of 1/0
labels per every input point makes this process similar to a classification prob-
lem. However, in classical GP classification, we deal only with two classes. The
classification problem can be extended to consider multiple labels (see Subsec-
tion 2.5.4), but the crucial difference is that in a multiple annotator classification
all the probability classes should be initially known, which is impossible in our
case. In our situation, the reachability probability function observations are pro-
duced at isolated parameter values through (Boolean) reachability evaluations of
a SnPHS model. Therefore, the Gaussian likelihood cannot be applied directly,
meaning that a closed-form solution to the inference problem can not be found.
At the same time, our observations have infinitely many classes of probability
values (see Subsection 2.5.3) so that multiple annotators techniques are not also
useful.

A possible solution is the use of a modified version of the EP algorithm (see
Algorithm 2 in Section A.1 of Appendix) as proposed by Minka [53]. However,
to map probabilities to the full real line, we need to introduce the inverse probit
transformation [61]:

Ψ(w) = ζ ⇔ w =

∫ ζ

∞
N(0, 1),

where N(0, 1) is the standard Gaussian density (with mean zero and variance 1),
∀w ∈ [0, 1] and ζ ∈ R. Note that the function ζ(θ) = Ψ(f(θ) is a smooth real
valued function of the model parameters by definition, which allows us to use GP
methods.

In general, at each training point (parameter value), our data would consist
of N binary satisfaction evaluations. Binary evaluation represents independent
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draws from the same Bernoulli distribution with f(θ) likelihood of success at each
parameter value. The overall joint probability of the probability function f(θ)

and of the observations O can be presented as:

p(O, f(θ)) = GP (Ψ(f(θ)))
C∏
i=1

N∏
j=1

Bernoulli(Oi,j|f(θj).

Note that computing the target function at new parameter value θ (e.g. f(θ))
can be solved through computing the posterior distribution of the probability
reachability function at θ∗ (see Algorithm 3 in Section A.1 of Appendix). The
EP procedure of computing the posterior distribution is described in detail in
Subsection 2.5.5.

3.5 Formal and GP Combination Approach

In this section, I present a new distinct technique: a promising combination of the
formal approach, based on formal reasoning which provides absolute numerical
guarantees, and the GP regression method, which provides statistical guarantees
only.

The formal algorithm computes probability enclosures for the range of the
bounded reachability probability function Pr defined in Subsection 2.2.4. In
other words the formal algorithm returns a probability interval, with the absolute
guarantee that the reachability probability function is within its bounds. GPs
then utilise these probability enclosures with the aim to construct two regression
approximations for the upper and lower limit of the enclosures.

In this Section I discuss computing probability enclosures aspects that directly
affect the formation of initial data for GP training. Finally, I demonstrate the
theoretical basis of the formal and GP regression combination procedure and
evaluate its computational characteristics.

3.5.1 Computing Probability Enclosures

The formal approach allows us to compute probability enclosures for the range of
the bounded reachability probability function Pr. The algorithm takes as input:
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a SPHS, a reachability depth l ∈ N, a precision ε > 0 for the size of probability
enclosures, a constant κ ∈ (0, ε) for bounding the domain of continuous random
parameters, a parameter η controlling the precision of procedure evaluate and a
precision vector ρ for nondeterministic parameter boxes. The output is a probabil-
ity enclosures list [72]. This list represents a finite set of disjoint nondeterministic
parameter boxes which fully cover the parameters’ domain PN . The technique be-
hind the algorithm is first to partition the domain with boxes of non-deterministic
parameters and then to obtain a probability enclosure for each such box. It can
be done by sequentially adjusting under-approximations and over-approximations
of the definite integral representing the Pr function over the random parameter
space for every corresponding nondeterministic box. The proof of correctness of
the described algorithm is given in [72]. The algorithm for building probability
enclosures is given in Algorithm 4 in Section A.1 of Appendix.

If an SPHS does not feature nondeterministic parameters, only one enclosure
will be returned, and its size will be bounded above by the ε input. If non-
deterministic parameters are present, the size of the smallest nondeterministic
parameter box can be limited by the precision vector ρ, allowing termination of
the algorithm in the most general case.

In general, if procedure evaluate returns unsat then there is no value in
BN × BR for which the goal state is reachable, and the upper bound of the
probability enclosure [a, b] can be reduced. If evaluate returns sat then for
every value in BN × BR it is possible to reach the goal and the lower bound of
the probability enclosure [a, b] can be increased.

In was proven in [72] that evaluate returns formally correct answers because
they rely on the unsat answer from the δ-complete decision procedure.

An example of enclosures returned by the formal approach is presented in
Figure 3.2. In this example, the size of each enclosure is ε = 5 · 10−2, implying
that the algorithm terminated because every nondeterministic parameter box
reached the minimal size of ρ.

Summing up, the formal approach’s output quality relies on three input ar-
guments: the probability enclosure precision ε, the precision value ρ for nonde-
terministic parameter boxes and η – argument for controlling precision of the
procedure evaluate. The first argument ε describes the primary goal — to de-
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crease the sizes of probability enclosures to an arbitrarily small value.

Figure 3.2: Formal enclosure boxes (computed with precision parameter p = 5 ·
10−2) for stochastic model Collision, type advanced with one uncertain parameter
σ.

3.5.2 Probability Enclosures GP Approximation

As it was mentioned above, the formal approach returns probability enclosure
boxes ( see e.g. Figure 3.2) when exploring all parameter’s values in a certain
range. It can be seen from the figure that the formal approach can return the
same probability values for a certain region of the parameter space. However,
for an efficient application of our novel combined approach, we do not need to
have so much information and do not need to spend time on extra computation.
Instead, we ask to compute probability enclosures for certain points only, chosen
over the nondeterministic parameter’s space. In Figure 3.3 we can see that the
formal approach returns enclosures for the chosen 11 points of the parameter
space σ. The number of points can vary in accordance with the approximation
purposes. Such points can be sampled by a simple partition or more effectively
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by using low-discrepancy sequences, e.g. QMC. The formal approach provides
absolutely precise probability enclosures (see Subsection 3.5.1), which allows us
to use their upper and lower points as absolutely precise bounds for function Pr

(see Algorithm 4 in Section A.1 of Appendix).

Figure 3.3: Upper and lower latent function construction for GP regression ap-
proximation via formal enclosure intervals (computed with precision parameter
ε = 5 · 10−2) for stochastic model Collision type advanced with one uncertain
parameter σ.

GP regression (see Subsection 2.5.1) is computed on the basis of information
obtained from the initial training dataset. The dataset is formed by the input
parameter points’ values and latent probability function values, the real shape of
which we aim to approximate. In other words, we have a X set of nondereministic
points σ and a Y set of probability values according to every nondeterministic
point. However, for our combined approach we need to use two input datasets
- one for the upper latent Pr function Y1 and another for the lower latent Pr

function Y2 (see Figure 3.3), which means that for the combined approach we
essentially have two probability values sets, Y1 and Y2. So that we need to run
two GP regressions for Y1 and Y2. The GP regression output will then provide
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estimated mean approximation and two CIs - lower and upper for the two function
approximations. It can be easily shown that the final CI returned by our proposed
approach can be formed by the upper CI of the upper latent Pr function (with Y1

training set) and the lower CI of the lower latent Pr function (with Y2 training
set). The GP regression algorithm for the combined approach is presented in
Algorithm 5 in Section A.1 of Appendix.

The major advantage of the developed method is based on the basic GP fea-
ture. The inference in the GP can define properties of the upper and lower Pr

functions at a finite number of points, ignoring infinitely many points, with the
same quality as if we would have taken them all into account [61]. It allows us to
provide information about CIs, which include the true probability function over
the whole parameter’s domain. At the same time, the uncertainty of CIs in case
of functions with no strong nonliniarities does not increase and remains almost
the same for latent points over parameter’s domain. It also brings a huge com-
putational reduction. Unfortunately, the guarantees provided by this combined
approach are statistical, while formal approach provides absolutely precise prob-
ability enclosures. At the same time in comparison with the GPEP approach the
combined approach should be able to provide much more precise CIs size, which
will be significantly smaller for the full parameter’s domain. The latter fact will
be closer considered in the Chapter 5.

Next, we discuss the precision and computational cost of the developed ap-
proach more precisely.

Precision. The combined approach is based on the formal approach, which
can compute probability enclosures for the range of the bounded reachability
probability function. In some cases, such enclosures can be arbitrarily tight, in
particular, for systems featuring at least one continuous random parameter and no
nondeterministic parameters. For example, in Figure 3.3 probability enclosures
are presented, computed with approximation parameter ε = 5 · 10−2.

The second part of the combined algorithm consists of the GP regression
method solely. The precision of GP computation is usually presented by CIs,
which can also be computed up to the requested precision level. It can be con-
cluded intuitively that the final GP CI, constructed from the two GP regression
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calculations (for upper and lower Pr function, see Figure 3.3) will be larger than
the formal probability enclosure. However, the main GP advantage that covers
this deficiency is the fact that even based on a small number of data points from
nondeterministic parameter domain, GP is able to provide CIs over the whole
parameter space. Moreover, in case of even data points distribution, which can
be ensured by QMC sampling, GP regression provides CIs of almost the same
size.

Computational Complexity. Computational complexity is very important
for the application of the combined approach. The time for parameter space
search grows exponentially with the number of system parameters. In the formal
approach, the partitioning procedure [72] constructs 2n boxes for each parameter
box with n positive edges if the required precision ε is not reached. Thus, the
algorithm’s general computational complexity increases exponentially with the
number of system parameters.

The GP regression method in turn does not require such computational over-
head as formal method does. The “heaviest” element of GP regression (for test-
ing and training) is the inversion of the covariance matrix (see Subsection 2.5.1),
which should be performed for all pairs of parameter values. Having n points
in the parameter’s domain we obtain complexity O(n3) [11]. In particular, the
matrix inversion requires Cholesky factorization computation, which has O(n3/6)
complexity and further triangular systems solving which has O(n2/2) complexity
[61].

Even though we need to run two GP regression processes for our combined
approach, the total computational time of the combined approach is mostly deter-
mined by the formal approach part. The GP advantage mentioned before allows
us not to waste time again on parameter space exploration to estimate probabil-
ity reachability function at new points like the formal approach does. It securely
saves time for GP regression. In other words, it is possible to find a very effi-
cient trade-off between the precision rate and computational complexity, which
outdoes a single formal approach, covering the whole domain of nondeterministic
parameters.
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3.6 Summary

Chapter 3 provides the definition of bounded reachability probability in terms
of Bernoulli random variables, and algorithms for computing confidence inter-
vals for the bounded reachability probability. This Chapter addresses MC and
QMC methods from the point of view of bounded probability reachability with
an example of their usage and considered CI estimation problems when the actual
probability is near the borders of the [0,1] interval.

Chapter 3 introduces a novel way of error approximation based on the classical
CLT approach which fixes the problem of poor confidence interval actual coverage
probability estimation near the boundaries (0 and 1) by sequential estimation of
the sample standard deviation and re-estimation of CI at each new sample.

Chapter 3 also analyses the question of computing the probability reachabil-
ity formula for stochastic models with parametric uncertainty. I show that the
reachability probability function of a SnPHS is, under mild conditions, a smooth
function of the uncertain parameters, which allows GP approximation to be suc-
cessfully applied to SnPHSs.

A new statistical method for computing the bounded reachability probabil-
ity in SnPHSs was also offered in this Chapter. I introduced an algorithm which
gives statistically rigorous confidence intervals by combining the formal approach,
based on formal reasoning providing absolute numerical guarantees, and the GP
regression method, providing statistical guarantees. The main advantage of the
presented algorithms over a simple formal approach is the reduction in the compu-
tational cost. Finally, Chapter 3 presented the theoretical grounds of the formal
and GP regression combination technique and granted a theoretical estimation
of its computational characteristics, including calculation precision and computa-
tional complexity. I also demonstrated that it is achievable to find a good trade-off
between the precision of the results and the complexity of the computation.
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Chapter 4

Implementation of Probability
Reachability Evaluation Tools

4.1 Introduction

This Chapter presents the Confidence Interval Estimation Tool and the GPEP
Tool, which I developed for computing bounded reachability probability in stochas-
tic parametric hybrid systems. These tools enable the usage of the developed
methods for CI estimation, including modified CLT method (see Subsection 3.3.2)
and EP method (see Subsection 2.5.5). The GPEP Tool also provides a practical
application of Theorem 3.1 presented in Subsection 3.4.2. The latter also allows
the implementation of the novel statistical technique for computing the bounded
reachability probability in SnPHSs, providing statistically rigorous confidence
intervals by combining the formal approach, based on formal reasoning giving
absolute numerical guarantees, and the GP regression method, giving statistical
guarantees (see Section 3.5).

The two tools provide a C++ implementation (about 8,500 lines of code)
of the algorithms introduced in the previous chapters. The implementation is
developed within the ProbReach tool and uses also publicly available libraries,
and is distributed under the GNU General Public License1 (GPL).

This Chapter discusses the implementation details of the Confidence Interval

1http://www.gnu.org/licenses/gpl.html
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Estimation Tool and the GPEP Tool, their architectures, and presents several
usage scenarios.

4.2 ProbReach

The proposed techniques were developed on the basis of the ProbReach tool [73],
which can be used to compute bounded reachability in SPHSs.
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Compu/ng	
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  Enclosures	
  

Bayesian	
  
Es/ma/on	
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STATISTICAL	
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Figure 4.1: ProbReach Architecture with new developed tools.

ProbReach can use either dReal [31] or iSAT-ODE [22] for analysing (non-
probabilistic) bounded reachability question.Essentially, both dReal and iSAT-
ODE are implementations of δ-complete decision procedures for first-order logic
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formulae over the reals that may include nonlinear functions and ordinary differ-
ential equations.

For CI estimation I implemented eight CI evaluation methods as part of the
statistical engine of the Probreach tool. In order to evaluate GP algorithms
for computing probabilistic reachability, I implemented a GPEP algorithm in
ProbReach as part of the engine that performs GP classification and regression
not only for uni-variate class labels but also for the multiple annotators case [65].

ProbReach consists of several components (as shown in Figure 4.1): PDRH
Parser, Evaluation Procedure, Utility Package and Algorithms. In this thesis I
only describe my owm contribution in detail, namely the developed CI estima-
tion and GPEP algorithms only. More information about the PDRH Parser,
Evaluation Procedure and Utility Package can be found in [72].

4.2.1 Confidence Interval Estimation Tool Input

As part of ProbReach, Confidence Interval Estimation Tool uses theProbabilistic
Delta-ReacHability (PDRH) format for SPHSs and SnPHSs encoding. PDRH
extends Delta-ReacHability (DRH) format utilised by dReach [46] with random
parameters [72]. Figure 4.2 shows the PDRH encoding of Deceleration model
(see Section 5.2 for the full model description). The full description of the PDRH
format can be found in the ProbReach documentation1.

#define v_max 55.56 // [200 km/h] maximum speed of a car (m/s)

#define v_100 27.78 // m/s

#define drag 3.028e-4 // some average value (1/m)

#define alpha 0.05776 //acceleration coefficient

#define t_react 1.2 //driver reaction time

[0,1000] s; // distance m

[0,v_100] v; // velocity m/s (16.67 m/s = 60 km/h)

[0,30] tau; [0,30] time; // time in seconds

#define a_d 4.0; //deceleration parameter

dist_normal(4,0.1) beta; //random parameter

{ mode 1; //accelerating
1https://github.com/mariiavasileva/EPPR-models
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flow:

d/dt[s]= v;

d/dt[v]= alpha*exp(-alpha*tau+beta)-drag*v*v;

d/dt[tau]= 1.0;

d/dt[a_d]=0.0;

jump: (v >= v_100)==>@2(and(s’=s)(v’=v)(tau’=0)(beta’=beta)(a_d’=a_d)); }

{ mode 2; // reacting

flow:

d/dt[s]= v;

d/dt[v]= -drag*v*v;

d/dt[tau]= 1.0;

d/dt[a_d]=0.0;

jump: (tau = t_react)==>@3(and(s’=s)(v’=v)(tau’=0)(beta’=beta)(a_d’=a_d)); }

{ mode 3; // braking

flow:

d/dt[s]= v;

d/dt[v]= -a_d;

d/dt[v]= -a_d-drag*v*v;

d/dt[tau]= 1.0;

d/dt[a_d]=0.0;

jump: (v <= 0)==>@4(and(s’=s)(v’=v)(tau’=0)(beta’=beta)(a_d’=a_d)); }

{ mode 4; // stopped

flow:

d/dt[s]= v;

d/dt[v]= 0.0;

d/dt[tau]= 1.0;

d/dt[a_d]=0.0;

jump: }

init: @1(and (s = 0) (v = 0) (tau = 0));

goal: @4(s>=400);

Figure 4.2: Deceleration model encoded in PDRH format for CI estimation.
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4.2.2 GPEP Tool Input

The GPEP Tool also uses the PDRH input format for SPHSs and SnPHSs en-
coding. Figure 4.5 shows the PDRH encoding of Deceleration model (see Section
5.2 for the full model description). GPEP Tool also works with data source input
in the library format 1. Figure 4.3 shows a generated in hdf5 format data set,
which can be used multiple times and immediately without the model evaluation
procedure usage. Other input option in GPEP Tool is Inverse Covariance Matrix
data, obtained after testing GP (see Figure 4.4). This input can be applied very
effectively in case when we need to test new input points on the basis of the
existing training data, so that we do not need to run training process again.

N% x_points y_points
0 {0.1046} {0.09}
1 {0.1523} {0.19}
2 {0.0574} {0.00}
3 {0.0763} {0.03}
4 {0.1742} {0.21}
5 {0.1247} {0.14}
6 {0.0261} {0.00}
7 {0.0372} {0.00}
8 {0.1376} {0.16}
9 {0.1876} {0.21}
10 {0.0874} {0.07}
11 {0.0622} {0.01}
12 {0.1636} {0.20}
13 {0.1126} {0.12}
14 {0.0111} {0.00}
15 {0.0183} {0.00}
16 {0.1187} {0.13}
17 {0.1686} {0.20}
18 {0.0689} {0.02}
19 {0.0931} {0.08}

Figure 4.3: Deceleration model data set obtained after the evaluation decision
procedure. These data constructs the initial observations data set for 20 points
and consists of parameter values - x_points and probability values - y_points.

1https://www.hdfgroup.org/solutions/hdf5/
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0 1 ...20
0 1.9834045063027033 -0.14381230836290995 ...
1 -0.14381230836291528 4.042066708093642 ...
2 -0.07524409250141711 -0.007637212981806582 ...
3 -0.1263020977650748 -0.06650109950814154 ...
4 -0.03873445356676367 -0.5796685531537467 ...
5 -0.1901100740238572 -0.3302802433652063 ...
6 -0.048819614367838 0.01706682205382522 ...
7 -0.06075278940399859 0.0070247384547653365 ...
8 -0.17348822470222375 -0.4041542481149479 ...
9 0.029638162747448356 -0.6076172799222995 ...
10 -0.1618016145118691 -0.12228089159321176 ...
11 -0.09783043958836685 -0.030544908436681395 ...
12 -0.09719684085543936 -0.534646976952196 ...
13 -0.1931761749182235 -0.25658385686623425 ...
14 -0.039317722224407214 0.024106851896966555 ...
15 -0.0437855017893501 0.020873074731551124 ...
16 -0.19324312380769829 -0.2931325162129056 ...
17 -0.06910837005851449 -0.5567953117257585 ...
18 -0.11224704870658812 -0.04694991943663979 ...
19 -0.17197414960442536 -0.15141534441850854 ...

Figure 4.4: Deceleration model Inverse Covariance Matrix data obtained after
training procedure. Please see more details of Covariance Matrix estimation
process in Section 2.5.

#define v_max 55.56 // [200 km/h] maximum speed of a car (m/s)

#define v_100 27.78 // m/s

#define drag 3.028e-4 // some average value (1/m)

#define alpha 0.05776 //acceleration coefficient

#define t_react 1.2 //driver reaction time

[0,1000] s; // distance m

[0,v_100] v; // velocity m/s (16.67 m/s = 60 km/h)

[0,30] tau; [0,30] time; // time in seconds

#define a_d 4.0 //deceleration parameter

#define mu 4.0; //1st nondeterministic parameter mu is fixed

76



[0,0.2]sigma; //2nd nondeterministic parameter sigma

dist_normal(mu,sigma) beta; //random parameter

{ mode 1; // accelerating

flow:

d/dt[s]= v;

d/dt[v]= alpha*exp(-alpha*tau+beta)-drag*v*v;

d/dt[tau]= 1.0;

jump: (and (v >= v_100))==>@2(and(s’=s)(v’=v)(tau’=0)); }

{ mode 2; // reacting

flow:

d/dt[s]= v;

d/dt[v]= -drag*v*v;

d/dt[tau]= 1.0;

jump: (and (tau = t_react))==>@3(and(s’=s)(v’=v)(tau’=0)); }

{ mode 3; // braking

flow:

d/dt[s]= v;

d/dt[v]= -a_d-drag*v*v;

d/dt[tau]= 1.0;

jump: (and (v <= 0))==>@4(and(s’=s)(v’=v)(tau’=0)); }

{ mode 4; // stopped

flow:

d/dt[s]= v;

d/dt[v]= 0.0;

d/dt[tau]= 1.0;

jump: }

init: @1(and (s = 0) (v = 0) (tau = 0));

goal: @4(s>=400);

Figure 4.5: Deceleration model encoded in PDRH format for GP approximation.
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4.2.3 Input for the Combined Approach

As part of the combined approach presented in Section 3.5 we first need to use
the formal approach to obtain probability enclosures for SnPHS models. Unfortu-
nately, the same PDRH Deceleration model shown for GPEP Tool input in Figure
4.5 can not be used directly due to the formal approach computation procedure
technique. Instead, we need to replace derivative calculations for our random pa-
rameter manually. For example for the mentioned above Deceleration model (see
Section 5.2) with the same nondeterministic parameter range and normal random
parameter beta distribution it is necessary to replace the random parameter rep-
resentation in PDRH format from dist_normal(mu,sigma) to dist_normal(0,1)
and also change mode1 derivative representation of d/dt[v] from

alpha ∗ exp(−alpha ∗ tau+ beta)− drag ∗ v ∗ v

to
alpha ∗ exp(−alpha ∗ tau+ (beta ∗ sigma+mu))− drag ∗ v ∗ v.

See Figure 4.6 for more information. In other words we perform normal distribu-
tion by changing our random parameter beta in accordance with nondeterministic
parameter ranges of mu and sigma.

...

#define mu 4.0; //1st nondeterministic parameter mu is fixed

[0,0.2]sigma; //2nd nondeterministic parameter sigma

dist_normal(0,1) beta; //random parameter

{mode 1; // accelerating

flow:

d/dt[s]= v;

d/dt[v]= alpha*exp(-alpha*tau+(beta*sigma+mu))-drag*v*v;

d/dt[tau]= 1.0;

jump: (and (v >= v_100))==>@2(and(s’=s)(v’=v)(tau’=0)); }

...

Figure 4.6: Deceleration model encoded in PDRH format for combined approach.
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Note that in case of uniform distribution (models “Good” and “Bad”) where
we have a random parameter r uniformly distributed over nondeterministic pa-
rameters [γ, θ] (see models description in Section 5.2), we need to scale r by
r ∗ (γ − θ) + θ formula.

4.3 Confidence Interval Estimation Tool

The methods shown in Section 2.4 were realised as part of the Statistical CI
engine. In particular I implemented Wilson, Agresti-Coull, Logit, Anscombe and
Arcsine CIs (see Subsection 2.4.2) based on the CLT Interval. I also implemented
the new modified CLT method (see Section 3.3), which is shown to have a better
approximation of CI for probabilities near the bounds (see Section 3.3). In order
to compare the results obtained from CIs based on the CLT Interval with CI based
on Beta-Function, the Clopper-Pearson CI estimation method was also added (see
Subsection 2.4.1). The Qint quadrature algorithm for QMC variance estimation
(see Subsection 2.3.5) was investigated and implemented as an extra-method for
CI construction.

The portion of Confidence Interval Estimation Tool in the ProbReach
architecture is presented in Figure 4.1. The tool contains all the methods listed
above. Every method can be run separately or simultaneously for easier results
comparison. In this section I discuss an example input model, which can be used
for CI construction and show examples of Confidence Interval Estimation

Tool use.
More information about Confidence Interval Estimation Tool’s usage

with command line and output examples can be found in Subsection A.2.1 in
Section A.2 of Appendix.

4.4 GPEP Tool

In this section I present the GPEP Tool, which uses the EP method (see Subsec-
tion 2.5.5) based on GP evaluation (see Section 2.5). The ability to apply GP
method to SnPHSs was proved in Section 3.4 as a novel and essential aspect of
GP application in hybrid systems featuring random parameters that depend on
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nondeterministic parameters. The developed tool was also extended by the fea-
tures to store and use current GP training data. These features allow the GPEP

Tool to save a large amount of time by excluding time costs on model evaluation
decision procedure and data training.

More information about GPEP Tool’s usage with command line and output
examples can be found in Subsection A.2.1 in Section Subsection A.2.2 in Section
A.2 of Appendix.

Next in this section, I discuss input data options, provide brief architecture
outlines and show examples of GPEP Tool usage.

4.4.1 Architecture

The main GPEP algorithm consists of several components (Figure 4.7): Opti-
miseGP Hyperparameters, doTraining and ClassProbabilities Approximation. The
doTraining procedure (Figure 4.7) involves in turn Expectation Propagation al-
gorithms ( OptimiseGP Hyperparameters from Subsection 2.5.2 and Expectation
Propagation from Subsection 2.5.5 are presented in Figure 4.8).

A more general GPEP class diagram is shown in Figure 4.9. This Figure repre-
sents the algorithms from Section 2.5, an efficient approximation inference method
that uses two techniques - assumed density filtering and loopy belief propagation
(see Subsection 2.5.5). For sampling the system’s parameter space this algorithm
uses RQMC (see Subsection 2.3.4) and QMC (see Subsection 2.3.3) methods as
well as some auxiliary methods for parameter boxes (see Subsection 2.3.1) for the
combined approach discussed in Section 3.5.
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Figure 4.7: The GPEP architecture: main block and Training block.
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Figure 4.8: The GPEP architecture: Hyperparameters Optimiser block and Ex-
pectation Propagation block.
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Figure 4.9: The GPEP tool classes.
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The GPEP tool architecture, adapted from the Java implementation of the U-check
tool ( a tool for model checking for uncertain continuous time markov chains [11])
to C++ code presented in Figure 4.9 consists of the next main units:

• SmoothModelChecker implements the EP procedure for obtaining ProbitRe-
gressionPosterior, via computing GpPosterior, which provides mean, vari-
ance and standard deviation for an approximated probability function.

• AnalyticApproximation utilises theGPEP procedure, which is used by Smooth-
ModelChecker for computing the probability values. The GPEP procedure
also provides training of the EP algorithm by using initial GpDataset and all
parameters data in AbstractGP, including information about KernelFunc-
tion and matrices.

• GpDataset initial optimisation is made by using LocalOptimisation proce-
dure via PowellMethodApache for finding a local minimum of a function
through continuous reestimation of the nondeterministic parameters set for
computing the probability value for multiple continuous random parame-
ters.

• AbstractGP also generates HyperparamLogLikelihood for calculating likeli-
hood hyperparameters (see Section 2.5) for EP marginal moment iteration
as presented in Figure 4.8.

4.5 Summary

This Chapter introduces the Confidence Interval Estimation Tool and the
GPEP Tool, which I developed for computing bounded reachability probability
in stochastic parametric hybrid systems [73]. These tools enable the use of the
developed methods for CI estimation, including the modified CLT method (see
Subsection 3.3.2) and EP method (see Subsection 2.5.5).

This Chapter also includes the implementation of the novel statistical tech-
nique for computing the bounded reachability probability in SnPHSs, providing
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statistically rigorous confidence intervals by combining formal approach, and the
GP regression method (see Section 3.5).

The implementation is developed within the ProbReach tool and uses publicly
available libraries, and it is distributed under the GNU General Public License1

(GPL). It provides a C++ implementation for all of the algorithms presented in
this thesis, which were parallelised using OpenMP. ProbReach, which includes
Confidence Interval Estimation Tool and GPEP Tool is publicly available
and does not require any commercial software.

1http://www.gnu.org/licenses/gpl.html
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Chapter 5

Experiments Results

5.1 Introduction

In this Chapter, I show a successful usage of the implemented approaches in a
few real-world studies. I compare different CIs estimation techniques for extreme
probability cases, including the Qint method (see Subsection 2.3.5). I also present
a comparison between the modified Qint method and the original algorithm. This
Chapter also deals with the difference between the Bayesian CI and the CIs based
on CLT, and the use of MC and QMC techniques for interval calculation.

As one of the most important outcomes of my research, I present the results
produced via GP estimation techniques based on the EP algorithm and compare
them to statistical model checking (SMC) CI estimation based on the standard
Clopper-Pearson technique with standard MC sampling. I evaluate the accuracy
of the GP approach by computing the average CI interval size and root mean
squared error (RMSE) of my estimates across all input points. The results pre-
sented in this Chapter demonstrate that for all the SnPHS models examined GPs
are more accurate than SMC. We can conclude that GP estimation with EP is
generally very accurate and more accurate than Clopper-Pearson SMC, and thus
it can be used for the verification of SnPHS.

In this Chapter I also study CPU time costs of the GP and SMC techniques
and contrast the sample size necessary for both techniques to give results of
similar accuracy. The obtained results demonstrated an excellent performance of

86



the GPEP algorithm showing a particular that SMC requires much longer CPU
time and more samples to reach the CI results of GPEP.

Finally, in this Chapter I show the novel combined approach results. The
experiments prove that the combined approach grants very encouraging results
in terms of CI size and CPU time in comparison with the GPEP method. This
approach definitely demands further research in order to find a good trade-off
between the number of samples and CPU time spent and expansion on rare-event
SnPHS models.

5.2 Case Studies

The main aim of my experiments was to reveal how different model types and
their complexity can affect the computational result. Six models were chosen
for the experiments. Despite the fact that the number of selected models is not
large, the models allow me to effectively test the tools I have proposed because the
selected set consists of both simple models whose reachability probability function
can be calculated analytically and difficult complex models whose evaluation
takes much time. At the same time, the selected models allow me to give an
honest assessment of the proposed reachability probability evaluation methods
since their probabilistic functions include complex, curved and almost flat lines
that are located both in the middle of the probability space and close to the
boundaries and cover different sizes of parameters regions - from very small (0.2)
to huge (10,000). The full description of the models and the files can be found
at: https://github.com/mariiavasileva/EPPR-models.

5.2.1 “Good” and “Bad” Models

These models are two basic introductory examples of a single mode non-hybrid
system with constant flow dynamics (dx

dt
= 0). The predicate (x(0) = r) ∧

(n ∈ [0, 1]), where r is uniformly distributed over [m, f ], where m ∈ [0, 0.8] and
f ∈ [1.2, 2] are nondeterministic parameters is used to define the original state
of the system. We used ProbReach for calculating 0-step bounded reachability
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probability for two different goals: a good goal defined by the predicate

(x ≤ 0.9n+ 0.1) ∧ (x ≥ 0.9n)

and a bad one shown by

(x ≤ 2(n− 0.5)2 + 0.5) ∧ (x ≥ −2(n− 0.5)2 + 0.5).

The projections of the goal set on the domain of continuous random parame-
ters PR = [0, 1] for each n are the intervals [0.9n, 0.9n+ 0.1] and [−2(n− 0.5)2 +

0.5, 2(n − 0.5)2 + 0.5] for the good and the bad cases, respectively. Taking in
consideration that the random parameter r is distributed uniformly and x is a
constant, the probability of reaching the goal can be computed as the difference
of the right-hand side and the left-hand side of these intervals. Therefore, the
probability function is constant Pr(n) = 0.1 in the good case, while in the bad
case it is equal to Pr(n) = 4n2 − 4n + 1, which reaches its minimum value of 0

at n = 0.5 and the maximum value of 1 at n = 0 and n = 1. Figure 5.1 demon-
strate the graphs of the reachability probability functions obtained analytically
for “Good” and “Bad” models respectively.

Figure 5.1: Reachability probability functions of “Good” and “Bad” models with
the goal sets which depend on nondeterminstic parameter n.
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Note that for SPHS good model results I use nondeterministic constant values:
min value = 0.091 and max value = 0.091 and for SPHS bad model results I use
min value = 0.5 and two max values: max = 0.987 and max2 = 0.028.

5.2.2 Deceleration Model

This model describes a car deceleration scenario. In the first mode the car ac-
celerates from 0 to 27.78 m/s (0 to 100 km/h). During this period its velocity
shifts according to dυ(t)

dt
= α exp (−αt+ β) − cdv

2(t), where α = 0.05776 and
β ∼ N(µ, σ) are coefficients modelling the acceleration properties of the car,
which depend on the nondeterministic parameters µ ∈ [3.9, 4.1], σ ∈ [0, 0.2] and
cd = 3.028 · 10−4 m−1 is the drag coefficient.

Figure 5.2: Reachability probability function of “Deceleration” model with the
goal set which depends on nondeterminstic parameter ad, where black boxes -
probability enclosures computed by ProbReach and red line - graph of the prob-
ability enclosures mean function.

When the target velocity 27.78 m/s is achieved, it takes treact = 1.2 seconds
for the driver to react and to begin decelerating. There is no acceleration of
the car in the “reaction” mode, and its velocity is controlled by the equation
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dυ(t)
dt

= −cdv2(t). In the final (braking) mode the car’s deceleration is governed
by the equation dυ(t)

dt
= µad− cdv2(t) where ad ∈ [4.0, 6.0] is the car’s deceleration

(a nondeterministic parameter), and µ = 1 is the coefficient modelling the road
characteristics, such as slope, friction, etc. At full length of the modes the distance
s(t) covered by the car is controlled by ds(t)

dt
= υ(t). We use ProbReach to calculate

the probability of the car stopping within 400 meters. Figure 5.2 demonstrate
the graph of the reachability probability functions obtained via ProbReach for
the Deceleration model.

Note that for SPHS model results I use ad min constant value = 5.697 and ad
max constant value = 4.117.

5.2.3 Collision Model

In this model a two-car collision scenario is presented, described by a 2-step
bounded reachability problem in a three mode SnPHS. Two cars (Car1 and Car2)
are moving on the same track, starting at s1(0) = 0 and s2(0) = υ1 · tsafe respec-
tively (where tsafe is an interval of time for keeping a safe space between the cars).
The initial velocity of both cars is 11.12 m/sec. In the initial mode Car1 changes
tracks and begins to accelerate at aa1 = 3 m/sec2, while Car2 is going with the
unchanged speed υ2. Car1 continues accelerating until it overtakes Car2 by the
distance υ2 · tsafe. Within the second mode Car1 returns to the initial lane and
begins to decelerate at ad1 ∼ N(−2.0, 0.2) m/sec2, while the driver of Car2 is
taking time to react and then beginning deceleration with (negative) acceleration
ad2 ∼ N(−0.5, 0.1) m/sec2. It takes Car2 driver treact seconds to react before
braking. After that the final mode is initiated, where Car2 also decelerates with
acceleration ad2 until it stops. We used ProbReach to calculate a set of enclosures
for the probability of the cars collision for three different variants of this model:

• Basic - including one random ‘and one nondeterministic parameter,

• Extended - featuring two random and one nondeterministic parameter,

• Advanced - with two random and two nondeterministic parameters.

Table 5.1 shows the parameter values and distributions used for calculating
SPHS models, where nondeterministic parameters are presented in form of max
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Model ad1 ad2 tsafe treact

Basic N(−2.0, 0.2)
min=-0.393
max=-0.672 1.0 1.5

Extended N(−2.0, 0.2) N(−0.5, 0.1)
min=1.816
max=1.08 1.5

Advanced N(−2.0, 0.2) N(−0.5, 0.1)
min=1.921
max=1.221

min=1.081
max=1.107

Table 5.1: Parameter values and distributions for the cars collision model, where
Model - name of the model, ad1 - deceleration of Car1, ad2 - deceleration of Car2,
tsafe - time for maintaining safe distance, treact - reaction time of the driver in
Car2, N(µ, σ) - represents the normal distribution with mean µ and standard
deviation σ.

and min constants. We used ProbReach to calculate the probability of the cars
collision for two different versions of this model: the basic model features one ran-
dom parameter - deceleration of Car1; the extended model includes two random
parameters for the deceleration of Car1 and Car2. Table 5.1 demonstrates the
ProbReach settings.

Note also that for calculating SnPHS models the Basic type of the of the model
was used with random parameter ad1 ∼ N(µ, σ), which depends on the nondeter-
ministic parameters µ ∈ [−2.1,−1.9] and σ ∈ [0.1, 0.3] and the Extended type was
used with two random parameters ad1 ∼ N(µ1, σ1) and ad2 ∼ N(µ2, σ2), which
depends on the nondeterministic parameters µ1 ∈ [−2.1,−1.9], σ1 ∈ [0.1, 0.3],
µ2 ∈ [−0.6,−0.4] and σ2 ∈ [0, 0.2].

5.2.4 Pharmocokinetics Model for Anaesthesia Delivery

This case study considers a pharmacokinetics model for anaesthesia delivery
which tracks how the drug concentration changes as it is being metabolised by
the body [29]. The model features three species:

• cp - concentration of the drug in the plasma,

• c1 - concentration of the drug in the fast peripheral compartment,

• c2 - concentration of the drug in the slow peripheral compartment.
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The dynamics of the system are governed by the set of differential equations (5.1).

dcp(t)

dt
= −(k10 + k12 + k13)cp(t) + k12c1(t) + k13c2(t) +

u(t)

V1

,

dc1(t)

dt
= k21cp(t)− k21c1(t),

dc2(t)

dt
= k31cp(t)− k31c2(t),

du(t)

dt
= p cos(

2tπ

Tj
).

(5.1)

The model’s scenario assumes that drug delivery is continuous, but every 15
minutes (starting at time 0) the drug infusion rate is subject to random errors.
ProbReach computes the probability of reaching the unsafe state:

(cp(t) ≥ 6) ∨ (cp(t) ≤ 1) ∨ (c1(t) ≥ 10) ∨ (c1(t) ≤ 0) ∨ (c2(t) ≥ 10) ∨ (c2(t) ≤ 0)

in 3 jumps within 60 minutes. Therefore, the model features 4 continuous ran-
dom parameters ∆ui (one in the initial state and one per each jump)(see Table
5.2). This model does not feature any nondeterministic parameters, which allow
ProbReach returns only one probability enclosure of the required length ε.

Initially chosen precision for the experiment conduction was equal to ε =

10−2. Unfortunately, ProbReach did not return the probability enclosure of the
required precision with 360 hours. At the same time ProbReach used almost 10
Gigabytes of RAM for storing the parameter boxes partitioning the parameter
space. This example illustrates that the computation time grows dramatically
with the number of parameters (see Table 5.2). In order to solve this problem,
it was decided to increase the precision value of ε to 5 × 10−2. As a result the
probability enclosure [0.009769, 0.042274] of length 0.032505 was obtained within
80,823 seconds.

du0 du1 du2 du3 u0

N(0, 0.3 · u0) N(0, 0.3 · u0) N(0, 0.3 · u0) N(0, 0.3 · u0) 7000

Table 5.2: Parameter values and distributions for the Anaesthesia model, where
du0, du1, du2 and du3 - continuous random parameters, N(µ, σ) - represents the
normal distribution with mean µ, standard deviation σ and constant u0.
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5.2.5 UVB Irradiation Therapy for Treating Psoriasis.

In this case a simplified version of a UVB irradiation therapy model [95] is used,
which is applied in the treatment of psoriasis, an immune system-mediated chronic
skin condition which is characterised by overproduction of keratinocytes.

The model consists of three classes of normal and three classes of psoriatic
skin cells, their dynamics are presented by the nonlinear ODEs (5.2).

dSC

dt
= γ1

ω(1− SC+λSCd

SCmax
)SC

1 + (ω − 1)(TA+TAd

Pta,h
)n
− β1InASC −

k1sω

1 + (ω − 1)(TA+TAd

Pta,h
)nSC + k1TA

,

dTA

dt
=

k1a,sωSC

1 + (ω − 1)(TA+TAd

Pta,h
)n

+
2k1sω

1 + (ω − 1)(TA+TAd

Pta,h
)n + γ2GA− β2InATA− k2sTA− k1TA

,

dGA

dt
= (k2a,s + 2k2s)TA− k2GA− k3GA− β3GA

SCd
dt

= γ1d(1−
SC + SCd
SCmax,t

SCd − β1dInASCd − k1sdSCd −
kpSC

2
d

k2a + SC2
d

+ k1dTAd),

dTAd
dt

= k1a,sdSCd + 2k1sdSCd + γ2dTAd + k2dGAd − β2dInATAd − k2sdTAd − k1dTAd,

dGAd
dt

= (k2a,sd + 2k2sd)TAd − k2dGAd − k3dGAd − β3dGAd.

(5.2)

The therapy involves a series of UVB irradiation episodes, which are simulated
in the model by increasing InA times the apoptosis rate constant for two cell types
(stem cells and transit amplifying cells). The duration of each episode is 48 hours,
followed by 8 hours of rest (InA = 1), before the next irradiation can be started.

The efficacy of the therapy depends one the apoptosis rate (modified by InA)
and on the number of irradiation episodes. An insufficient number of treatments
can lead to early psoriasis relapse: the deterministic variant of this model prog-
nosticates psoriasis relapse for less than seven treatments [95]. Our model has
one random parameter InA ∼ N(µ, 10, 000), which depends on the uncertain pa-
rameter µ ∈ [55, 000, 65, 000]. We compute the probability of a psoriasis relapse
within a year following a seven-treatment therapy.
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5.3 Confidence Interval Border Probability Cases

The true probability values which are shown in this Section were obtained via
pseudo-random number generation that produces Boolean values according to a
Bernoulli distribution.

5.3.1 Intervals Based on CLT and Bayesian Interval

The comparison of the different CIs estimation techniques for extreme probability
cases (near 0 bound) with accuracy CI ε = 5× 10−3, which is presented in Figure
5.3, shows that all intervals except the Arcsin interval (see Equation 2.15) (see
plot c = 0.99 of Figure 5.3 for probability=0.001) contain the true probability
value within their bounds. The Bayesian method (see Subsection 2.4.1) tends to
overestimate the true probability values according to their increase while CICLT
tends to underestimate them. Also, it is interesting to note that the most accurate
center value is returned by the Agresti-Coull interval (see Equation 2.12). The
reason why CICLT tends to include the true probability value near the upper
bound of the interval is directly related to the number of samples. As it is shown
in Figure 5.3 for true probability values 0.007 - 0.01, the CICLT center is moving
up evenly to the true probability value with the increase of the confidence value.
It echoes the number of samples growth for obtaining the necessary confidence
level. For the other true probability values (0.001-0.006), although this trend
retained, it can not be seen from the Figure, because of the small difference in
the number of samples for all confidence levels, which causes the CI center to
move wave-like.

The results in Figure 5.3 also demonstrate that the CIs based on the standard
interval (see Subsection 2.4.2) can have interval size smaller than its nominal
value even for “large” sample sizes. It can be seen that every confidence level
from 0.99 to 0.99999 displays further instances of the inadequacy of the CIs
size. Also, Figure 5.3 shows that the size of the CIB (Bayesian), CICLT (CLT)
and CIACW (Agresti-Coull) intervals decreases significantly as p moves toward
0. Also, CIs based on the standard interval have interval size changes because
of two reasons: absence of a posteriori estimate and skewness of the underlying
binomial distribution.
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In Figure 5.4 I plot the number of samples that different CI estimation tech-
niques used to return intervals with accuracy (size) ε = 5 × 10−3 for different
confidence levels. It can be clearly seen from the plots that with the increasing
of the confidence all CIs based on the standard interval outperform the Bayesian
CI (see Equation 2.9). The plot with c = 0.99999 in Figure 5.4 displays that
the best techniques in the number of samples from the best to the worst are:
CICLT (CLT), Qint (Qint), CIArc (Arcsine), CIW (Wilson), CIL (Logit), CIAns
(Anscombe), CIACW (Agresti-Coull) and CIB (Bayesian). The CIL and CIAns

techniques always show almost the same results near the bounds, because of the
modification of the CIL. Initially, CIL is not able to deal with probability values
near the bounds according to its λ formula (see Subsection 2.4.2). It has been
modified to use the Anscombe estimation formula in cases when p̂ = 0 or p̂ = 1.
It is also important to note that the difference in sample number between CICLT ,
CIArc and CIB for extreme probability cases is significant. For example in the
plot with c = 0.9999 of Figure 5.4 the number of samples used to obtain interval
for p = 0.005 equals to 1,078 for CICLT , 2,662 for the CIArc and 4,440 for CIB.

This trend is not preserved with the increase of the probability value from
0 to 0.5 and with the decrease from 1 to 0.5, respectively. Figure 5.5 shows
that the difference in sample number between all CIs (except CIArc) is almost
undetectable. At the same time, CIArc shows very “bad” results in comparison
with the others, as opposed to its results for probability values at the extremes.

Summarising, for probability values near the bounds (0 or 1) the modified CLT
method (see Section 3.3), named here CICLT achieves better results in number
of samples in comparison with the others (see Figure 5.4). For probability values
away from the bounds, CLT, Wilson, Agresti–Coull, Logit and Anscombe meth-
ods are all very similar (see Figure 5.5), and so for such probabilities we come to
the conclusion that the CLT interval should be recommended, due to its simplest
form. Meanwhile for smaller sample sizes, the CICLT is strongly preferable to the
others and so might be the choice where sampling cost is paramount.
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Figure 5.3: Comparison of confidence interval distribution for probability values
near 0, interval size equal to 10−2 and c - confidence level.
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Figure 5.4: Comparison of sample size for probability values near 0, interval size
equal to 10−2 and c - confidence level.
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Figure 5.5: Comparison of sample size for probability values from 0 to 1, interval
size equal to 10−2 and confidence level equal to 0.99999.

5.3.2 Qint Method Results

In Figure 5.3 and Figure 5.4, I also plotted the results of the recently developed
Qint algorithm [1]. In my research we used Qint with n = k × 2s, where k = 2

(see Subsection 2.3.5). These parameters were used to form n points of the Sobol
sequence xi with numbers i ∈ Ik,s = {1, 2, ..., k × 2s}. These parameters were
chosen on the basis of the original study of the Qint method as the most universal
and reliable. As it was described earlier, Qint uses a cubature randomisation
method and provides the integral estimation variance (see Equation 2.8). This
formula is used to obtain a CI by calculating the standard interval (see Equation
3.5) with our modification.

In Figure 5.3, I display the Qint intervals distribution for border probability
values. We can see from the plots that the Qint CI always contains the true
probability value. At the same time for all confidence levels from 0.99 to 0.99999
and for true probability values 0.006-0.01, Qint shows better centration than CIB
and CICLT . The greatest differences between the Qint CLT center result and the
true probability values are: 0.00245 for c = 0.99 (p=0.004), 0.00191 for c = 0.999

(p=0.004), 0.00168 for c = 0.9999 (p=0.003), 0.00141 for c = 0.99999 (p=0.004),
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while for example this difference for CIB reaches 0.00518 for c = 0.99 (p=0.007),
0.00235 for c = 0.999 (p=0.008), 0.00181 for c = 0.9999 (p=0.008), 0.00143 for
c = 0.99999 (p=0.008).

We can see in Figure 5.4 that, as it was expected, Qint uses fewer samples
than other CIs but CICLT . This modification allows the Qint algorithm to return
intervals even if ns = 0, which significantly decreases the final sample size for 10
runs. With the increase in n, which leads to further sampling and better reflects
the behaviour of the underlying random process, the effectiveness of the method
decreases, and the benefit no longer seems so significant.

The fact that with the chosen parameters Qint cannot outperform our mod-
ified CICLT leads us to the conclusion that the usage of the standard deviation
formula with 1

n2 lower bound is a rather effective and simple solution. However,
the deep range of the possible parameters variation as well as the novelty of the
Qint algorithm suggest that further research towards their comparison is needed.

5.4 Monte Carlo and Quasi-Monte Carlo Error

Comparison

Another key difference between the Bayesian CI (see Subsection 2.4.1) and the
CIs based on CLT (see Subsection 2.4.2) is the use of MC and QMC techniques
(see Section 2.3) for interval calculation. As it was described in Subsection 2.3.3,
the QMC advantage in the error size holds for all of the tested models. In the
cases where the true error rate could not be detected due to the probability value
being extremely close to 0 (“Bad” model type min and Collision (Basic) model
type min), we have that the MC absolute error line equals the true probability
value, because ns = 0 was obtained.

The chaotic coverage properties of the MC method (see Subsection 2.3.2) are
far more persistent than they are appreciated. The chaotic behaviour does not
disappear even when n is quite large and the true probability p is not near the
boundaries. For instance, in Figure 5.6 it is visible that even when n is quite
large (i.e., tends to 10,000 samples) the actual absolute error value of the MC
method reaches 5× 10−3. Hence we can conclude that CIs estimation techniques
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Figure 5.6: MC (blue line) and QMC (red line) absolute error with respect to the
number of samples. Model: Collision advanced, type - max.

Figure 5.7: MC (blue line) and QMC (red line) absolute error with respect to the
number of samples. Model: Collision advanced, type - max.
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based on MC are misleading and defective in several respects and should not be
trusted [16].

A phenomenon that was noticed for the MC and QMC probability calculation
is that the actual coverage probability contains non-negligible oscillations as both
p and n vary. There exist some “unlucky” pairs (p, n) such that the corresponding
absolute error is much greater than the results for smaller n. The phenomenon
of oscillation is both in n, for fixed p, and in p, for fixed n. Furthermore, drastic
changes in coverage occur in nearby p for fixed n and in nearby n for fixed p [16].
We can see it on the simple example in Figure 5.7.

5.5 Confidence Interval Tested Models Results

The results in this Section were obtained via the ProbReach tool [73] for comput-
ing bounded reachability in stochastic parametric hybrid systems and the dReal
solver [31] analyzing (standard) bounded reachability question.

5.5.1 Intervals Based on CLT and Bayesian Interval

Based on the model set (see Section 5.2), I provide in Tables 5.3, 5.4, 5.5 and
5.6 a comparison of the CIs described in Section 2.4, obtained via ProbReach
with precision δ = 10−3, interval size 10−2 and where the true probability value
P is either analytically computed single probability values or formally computed
absolute (non-statistical) intervals. These parameters were chosen according to
previous work [73] as a fine trade-off between the precision of the results and the
CPU time. Each model was verified separately with different confidence levels
from 0.99 to 0.99999. The lowest confidence level is often used in literature, while
the highest can provide reasonable results for real-world complex models.

As it can be seen in Tables 5.3, 5.4, 5.5 and 5.6, all the intervals for the
various techniques overlap. The modified CICLT approach (see Subsection 3.3)
shows very similar results to the CIB, which can be regarded as a successful
implementation. The key difference in the interval sizes can be found in the
results of the “Bad” model Type min and the Collision (Basic) model Type min
(see Tables 5.3, 5.4, 5.5 and 5.6). From the results we can conclude that the true
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probability value is very close to 0. This allows the Bayesian, CLT and Agresti-
Coull methods to form intervals, which in reality are half of the proposed interval
size 10−2, while the other techniques return “fully” sized intervals. That happens
because CIB is using a posterior distribution to form the interval (interval size
10−2). At the same time, the CICLT and CIACW calculations of the mean value
return the result, which is quite close to zero. Thus, the next step of the interval
bounds computation cuts the negative part of the interval. This trend holds for
all probability values within [0, 0.001].

Tables 5.5 and 5.6 also shows that with the increase of the confidence level the
interval’s precision is growing, which in turn is directly related to the use of the
inverse cumulative distribution function for normal random variable with given
confidence level in formulas for CICLT (3.5), CIW (2.11), CIACW (2.13) and CIArc
(2.15). It also results in the increase of the sample size n for CIL and CIAnc.

The comparison of the obtained intervals (see Table 5.3) with the true proba-
bility value or interval P shows that all CIs contain the single probability values
but CIAcr (see “Bad” type min model of Table 5.3), and all CIs overlap with the
true probability intervals. We can also note that the true probability intervals of
the Collision Extended, Collision Advanced, and Anaesthesia models contain all
confidence intervals for all confidence levels (see Tables 5.3 and 5.5). The reason
why Collision Basic and Deceleration models’ true probability intervals do not
contain CIs is their size (< 0.01).

Table 5.7 provides very interesting results with respect to the number of sam-
ples which were used to find CIs obtained via ProbReach with solver precision
δ = 10−3 and interval size 10−2. The number of samples varies for different models
and types. As it was noted earlier, the number of samples needed for the compu-
tation grows from the bounds to the center of the [0,1] interval. The presented
models show different behaviour and probability results. The most important
outcome is that all CIs (except CIArc) show better result in number of points
with respect to CIB. The best result was shown by CICLT . It shows that the
proposed CLT modification can provide reasonable results for RQMC calculation
in comparison with the well-established Bayesian MC integral calculation.
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Confidence level c=0.99
Model Type P CIB CICLT CIW CIACW

Good max 0.1 [0.09671, 0.10671] [0.09564, 0.10564] [0.09632, 0.10632] [0.09574, 0.10574]
min 0.1 [0.09529, 0.10529] [0.0956, 0.1056] [0.09666, 0.10666] [0.09679, 0.10679]

Bad
max 0.95001 [0.94416, 0.95416] [0.94495, 0.95493] [0.94422, 0.95422] [0.94397, 0.95397]
max2 0.88747 [0.8825, 0.8925] [0.88028, 0.89028] [0.88031, 0.88031] [0.88019, 0.89019]
min 4× 10−7 [0, 0.00525] [0, 0.005] [0, 0.00483] [0, 0.00955]

Deceleration max [0.08404, 0.08881] [0.08471, 0.09471] [0.08802, 0.09802] [0.08817, 0.09817] [0.08685, 0.09685]
min [0.04085, 0.04275] [0.03835, 0.04835] [0.03861, 0.04861] [0.03854, 0.04854] [0.03884, 0.04884]

Collision
(Basic)

max [0.96567, 0.97254] [0.96371, 0.97381] [0.96873, 0.97873] [0.9684, 0.9784] [0.96851, 0.97851]
min [0, 0.00201] [0, 0.00525] [0, 0.005] [0, 0.00483] [0, 0.00955]

Collision
(Extended)

max [0.35751, 0.49961] [0.42267, 0.43675] [0.42418, 0.4342] [0.42187, 0.43187] [0.42345, 0.43345]
min [0.04296, 0.06311] [0.0482, 0.0582] [0.04772, 0.05772] [0.04785, 0.05785] [0.04823, 0.05823]

Collision
(Advanced)

max [0.14807, 0.31121] [0.2072, 0.2172] [0.20873, 0.21872] [0.21872, 0.2185] [0.20854, 0.21854]
min [0.02471, 0.05191] [0.02631, 0.03631] [0.03045, 0.04045] [0.03016, 0.04016] [0.03001, 0.04]

Anesthesia n/a [0.00916, 0.04222] [0.01361, 0.02361] [0.01339, 0.02332] [0.01374, 0.02374] [0.01373, 0.02373]

Confidence level c=0.999
Model Type P CIB CICLT CIW CIACW

Good max 0.1 [0.09555, 0.10555] [0.09559, 0.10559] [0.09559, 0.10559] [0.0957, 0.1057]
min 0.1 [0.09393, 0.10393] [0.0961, 0.1061] [0.09613, 0.10613] [0.0962, 0.1062]

Bad
max 0.95001 [0.94549, 0.95549] [0.94544, 0.95544] [0.94526, 0.95526] [0.94504, 0.95504]
max2 0.88747 [0.88165, 0.89165] [0.88069, 0.89069] [0.88071, 0.89071] [0.8806, 0.8906]
min 4× 10−7 [0, 0.00525] [0, 0.005] [0, 0.00489] [0, 0.00972]

Deceleration max [0.08404, 0.08881] [0.08695, 0.09695] [0.08659, 0.09659] [0.08656, 0.09656] [0.0867, 0.0967]
min [0.04085, 0.04275] [0.03785, 0.04785] [0.0362, 0.0462] [0.04, 0.05] [0.0403, 0.0503]

Collision
(Basic)

max [0.96567, 0.97254] [0.96397, 0.97052] [0.96362, 0.97362] [0.96392, 0.97392] [0.96412, 0.97412]
min [0, 0.00201] [0, 0.00525] [0, 0.005] [0, 0.00489] [0, 0.00972]

Collision
(Extended)

max [0.35751, 0.49961] [0.42673, 0.43676] [0.42477, 0.43477] [0.42634, 0.42634] [0.42441, 0.42441]
min [0.04296, 0.06311] [0.05004, 0.06004] [0.05173, 0.06173] [0.04189, 0.05189] [0.04244, 0.05244]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20451, 0.21456] [0.20639, 0.21643] [0.20623, 0.21623] [0.20617, 0.21617]
min [0.02471, 0.05191] [0.02626, 0.03633] [0.03256, 0.04256] [0.02666, 0.03666] [0.03212, 0.04212]

Anesthesia n/a [0.00916, 0.04222] [0.01285, 0.02285] [0.01497, 0.02495] [0.01574, 0.02574] [0.01492, 0.02492]

Table 5.3: Results for CI computation obtained via ProbReach, with solver pre-
cision δ=10−3 and interval size equal to 10−2, Type - extremum type and P -
true probability value.
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Confidence level c=0.99
Model Type P CIL CIAns CIArc Qint

Good max 0.1 [0.09575, 0.10575] [0.09577, 0.10577] [0.09559, 0.10559] [0.09147, 0.10147]
min 0.1 [0.09678, 0.10678] [0.0968, 0.1068] [0.09639, 0.10639] [0.09164, 0.10164]

Bad
max 0.95001 [0.94396, 0.95396] [0.94392, 0.95392] [0.94735, 0.95735] [0.94459, 0.95459]
max2 0.88747 [0.8803, 0.8902] [0.88019, 0.89019] [0.88325, 0.89325] [0.88136, 0.89136]
min 4× 10−7 [0.00005, 0.00959] [0.00005, 0.00959] [0.00131, 0.00959] [0,0.005]

Deceleration max [0.08404, 0.08881] [0.08614, 0.09614] [0.0863, 0.0963] [0.08963, 0.09932] [0.08852, 0.09852]
min [0.04085, 0.04275] [0.03886, 0.04886] [0.0389, 0.0489] [0.03873, 0.04873] [0.03337, 0.04337]

Collision
(Basic)

max [0.96567, 0.97254] [0.96875, 0.97875] [0.96853, 0.97853] [0.96851, 0.97851] [0.96301, 0.97301]
min [0, 0.00201] [0.00005, 0.00959] [0.00005, 0.00959] [0.00131, 0.00959] [0,0.005]

Collision
(Extended)

max [0.35751, 0.49961] [0.42463, 0.43463] [0.42457, 0.43457] [0.42385, 0.43385] [0.42342, 0.43342]
min [0.04296, 0.06311] [0.04812, 0.05812] [0.0481, 0.0581] [0.04757, 0.05772] [0.04618, 0.05618]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20854, 0.21854] [0.20855, 0.21855] [0.20111, 0.21111] [0.20167, 0.21166]
min [0.02471, 0.05191] [0.03001, 0.04] [0.03016, 0.04016] [0.03164, 0.04164] [0.0304, 0.0404]

Anesthesia n/a [0.00916, 0.04222] [0.01318, 0.02318] [0.01311, 0.02311] [0.01592, 0.02592] [0.01815, 0.02815]

Confidence level c=0.999
Model Type P CIL CIAns CIArc Qint

Good max 0.1 [0.09572, 0.10572] [0.09571, 0.10571] [0.09528, 0.10528] [0.09444, 0.10444]
min 0.1 [0.09619, 0.10619] [0.0962, 0.1062] [0.09637, 0.10637] [0.09263, 0.10263]

Bad
max 0.95001 [0.94502, 0.95502] [0.94499, 0.95499] [0.94735, 0.95735] [0.94564, 0.95564]
max2 0.88747 [0.88061, 0.89061] [0.88061, 0.89061] [0.88325, 0.89325] [0.88059, 0.89059]
min 4× 10−7 [0.00005, 0.00978] [0.00005, 0.00978] [0.00024, 0.01173] [0,0.005]

Deceleration max [0.08404, 0.08881] [0.08675, 0.09675] [0.08683, 0.09683] [0.0868, 0.0968] [0.08825, 0.08925]
min [0.04085, 0.04275] [0.0402, 0.0502] [0.0403, 0.0503] [0.04001, 0.05001] [0.03495, 0.04495]

Collision
(Basic)

max [0.96567, 0.97254] [0.96521, 0.97521] [0.96516, 0.97516] [0.96851, 0.97851] [0.96305, 0.97305]
min [0, 0.00201] [0.00005, 0.00978] [0.00005, 0.00978] [0.00024, 0.01173] [0,0.005]

Collision
(Extended)

max [0.35751, 0.49961] [0.42448, 0.42448] [0.42434, 0.42434] [0.42345, 0.43345] [0.43553, 0.45553]
min [0.04296, 0.06311] [0.04385, 0.05385] [0.04382, 0.05382] [0.04483, 0.05483] [0.04499, 0.05499]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20647, 0.21647] [0.20643, 0.21643] [0.20111, 0.21111] [0.20469, 0.21469]
min [0.02471, 0.05191] [0.03301, 0.04301] [0.03301, 0.04301] [0.03364, 0.04364] [0.03112, 0.04112]

Anesthesia n/a [0.00916, 0.04222] [0.01446, 0.02446] [0.01442, 0.02442] [0.01592, 0.02592] [0.01774, 0.02774]

Table 5.4: Results for CI computation obtained via ProbReach, with solver pre-
cision δ=10−3 and interval size equal to 10−2, Type - extremum type and P -
true probability value.
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Confidence level c=0.9999
Model Type P CIB CICLT CIW CIACW

Good max 0.1 [0.09621, 0.10621] [0.09465, 0.10465] [0.09464, 0.10464] [0.09478, 0.10478]
min 0.1 [0.09352, 0.10352] [0.09662, 0.10662] [0.09669, 0.10669] [0.09672, 0.10672]

Bad
max 0.95001 [0.94477, 0.95477] [0.94595, 0.95595] [0.94598, 0.95598] [0.94574, 0.95574]
max2 0.88747 [0.88208, 0.89208] [0.88058, 0.89058] [0.88061, 0.89061] [0.88049, 0.89049]
min 4× 10−7 [0, 0.00525] [0, 0.005] [0, 0.00492] [0, 0.00979]

Deceleration max [0.08404, 0.08881] [0.08593, 0.09593] [0.08631, 0.09631] [0.08629, 0.09629] [0.08642, 0.09642]
min [0.04085, 0.04275] [0.03764, 0.04764] [0.0394, 0.0494] [0.03438, 0.04438] [0.03972, 0.04972]

Collision
(Basic)

max [0.96567, 0.97254] [0.96371, 0.97373] [0.96285, 0.97285] [0.96799, 0.97799] [0.96792, 0.97792]
min [0, 0.00201] [0, 0.00525] [0, 0.005] [0, 0.00492] [0, 0.00979]

Collision
(Extended)

max [0.35751, 0.49961] [0.42492, 0.43495] [0.42799, 0.43804] [0.42157, 0.43157] [0.42356, 0.43356]
min [0.04296, 0.06311] [0.04933, 0.05933] [0.04708, 0.05708] [0.04864, 0.05864] [0.04848, 0.05848]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20531, 0.21537] [0.20617, 0.21621] [0.20633, 0.21633] [0.20631, 0.21631]
min [0.02471, 0.05191] [0.02895, 0.03895] [0.02937, 0.03937] [0.02984, 0.03984] [0.03823, 0.04823]

Anesthesia n/a [0.00916, 0.04222] [0.01388, 0.02388] [0.01428, 0.02427] [0.01399, 0.02399] [0.01425, 0.02425]

Confidence level c=0.99999
Model Type P CIB CICLT CIW CIACW

Good max 0.1 [0.09499, 0.10499] [0.09378, 0.10378] [0.09386, 0.10386] [0.09389, 0.10389]
min 0.1 [0.09419, 0.10419] [0.09667, 0.10667] [0.09668, 0.10668] [0.09677, 0.10677]

Bad
max 0.95001 [0.94525, 0.95525] [0.94579, 0.95579] [0.94564, 0.95564] [0.94548, 0.95548]
max2 0.88747 [0.88215, 0.89215] [0.88055, 0.89055] [0.88057, 0.89057] [0.88046, 0.89046]
min 4× 10−7 [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Deceleration max [0.08404, 0.08881] [0.08613, 0.09613] [0.08624, 0.09624] [0.08312, 0.09312] [0.08725, 0.09725]
min [0.04085, 0.04275] [0.03514, 0.04514] [0.03919, 0.04919] [0.03918, 0.04918] [0.03942, 0.04942]

Collision
(Basic)

max [0.96567, 0.97254] [0.96359, 0.97359] [0.96241, 0.97241] [0.96767, 0.9767] [0.96892, 0.96892]
min [0 , 0.00201] [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Collision
(Extended)

max [0.35751, 0.49961] [0.42651, 0.43652] [0.42719, 0.43724] [0.42757, 0.43757] [0.42656, 0.43656]
min [0.04296, 0.06311] [0.04979, 0.05979] [0.04766, 0.05766] [0.04764, 0.05764] [0.04748, 0.05748]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20515, 0.21519] [0.20558, 0.21563] [0.20533, 0.21533] [0.20531, 0.21531]
min [0.02471, 0.05191] [0.03011, 0.04015] [0.02902, 0.03902] [0.02954, 0.03945] [0.03956, 0.04956]

Anesthesia n/a [0.00916, 0.04222] [0.01284, 0.02284] [0.01513, 0.02511] [0.01623, 0.02623] [0.01545, 0.02545]

Table 5.5: Results for CI computation obtained via ProbReach, with solver pre-
cision δ=10−3 and interval size equal to 10−2, Type - extremum type and P -
true probability value.
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Confidence level c=0.9999
Model Type P CIL CIAns CIArc Qint

Good max 0.1 [0.09477, 0.10477] [0.09424, 0.10424] [0.09423, 0.10423] [0.09415, 0.10415]
min 0.1 [0.09674, 0.10674] [0.09674, 0.10674] [0.09684, 0.10684] [0.09489, 0.10489]

Bad
max 0.95001 [0.94576, 0.95576] [0.94574, 0.95574] [0.95377, 0.96377] [0.94658, 0.95658]
max2 0.88747 [0.88051, 0.89051] [0.88053, 0.89053] [0.88325, 0.89325] [0.88051, 0.89051]
min 4× 10−7 [0, 0.00987] [0, 0.00987] [0.00349, 0.01287] [0,0.005]

Deceleration max [0.08404, 0.08881] [0.08643, 0.09643] [0.08644, 0.09644] [0.08672, 0.09672] [0.08799, 0.09799]
min [0.04085, 0.04275] [0.03969, 0.04969] [0.03971, 0.04971] [0.03938, 0.04938] [0.03359, 0.04359]

Collision
(Basic)

max [0.96567, 0.97254] [0.96775, 0.97775] [0.96772, 0.97772] [0.96851, 0.97851] [0.96411, 0.97411]
min [0, 0.00201] [0, 0.00987] [0, 0.00987] [0.00349, 0.01287] [0,0.005]

Collision
(Extended)

max [0.35751, 0.49961] [0.4177, 0.42783] [0.42187, 0.43187] [0.42345, 0.43345] [0.42656, 0.43656]
min [0.04296, 0.06311] [0.04845, 0.05845] [0.04845, 0.05845] [0.04254, 0.05254] [0.04463, 0.05463]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20647, 0.21647] [0.20646, 0.21646] [0.20834, 0.21834] [0.20496, 0.21496]
min [0.02471, 0.05191] [0.03971, 0.04971] [0.03971, 0.04971] [0.03473, 0.04473] [0.03062, 0.04062]

Anesthesia n/a [0.00916, 0.04222] [0.01483, 0.02483] [0.01493, 0.02493] [0.01623, 0.02623] [0.01847, 0.0284]

Confidence level c=0.99999
Model Type P CIL CIAns CIArc Qint

Good max 0.1 [0.09391, 0.10391] [0.09392, 0.10392] [0.09405, 0.10405] [0.09512, 0.10512]
min 0.1 [0.09671, 0.10671] [0.09679, 0.10679] [0.09675, 0.10675] [0.09525, 0.10525]

Bad
max 0.95001 [0.94545, 0.95545] [0.94543, 0.95543] [0.94735, 0.95735] [0.94543, 0.95543]
max2 0.88747 [0.88046, 0.89046] [0.88046, 0.89046] [0.88325, 0.89325] [0.88052, 0.89052]
min 4× 10−7 [0, 0.00992] [0, 0.00992] [0.00445, 0.0139] [0,0.005]

Deceleration max [0.08404, 0.08881] [0.08725, 0.09725] [0.08726, 0.09726] [0.08746, 0.09746] [0.08737, 0.09735]
min [0.04085, 0.04275] [0.03943, 0.04943] [0.03944, 0.04944] [0.039, 0.049] [0.03377, 0.04377]

Collision
(Basic)

max [0.96567, 0.97254] [0.96689, 0.97589] [0.96683, 0.97583] [0.96863, 0.97863] [0.96462, 0.97462]
min [0 , 0.00201] [0, 0.00992] [0, 0.00992] [0.00445, 0.0139] [0,0.005]

Collision
(Extended)

max [0.35751, 0.49961] [0.41774, 0.42774] [0.41779, 0.42779] [0.42745, 0.43745] [0.42875, 0.43875]
min [0.04296, 0.06311] [0.04745, 0.05745] [0.04776, 0.05776] [0.05776, 0.05673] [0.04576, 0.05576]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20547, 0.21547] [0.20547, 0.21547] [0.20385, 0.21385] [0.20453, 0.21453]
min [0.02471, 0.05191] [0.03861, 0.04861] [0.03887, 0.04887] [0.0363, 0.04363] [0.03031, 0.04031]

Anesthesia n/a [0.00916, 0.04222] [0.01557, 0.02557] [0.01562, 0.02562] [0.01385, 0.02385] [0.01852, 0.02852]

Table 5.6: Results for CI computation obtained via ProbReach, with solver pre-
cision δ=10−3 and interval size equal to 10−2, Type - extremum type and P -
true probability value.
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Model Type c CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good max 0.99 24252 24025 24038 24027 24035 24034 26681 23136
min 0,99 23451 23248 24256 24250 24253 24252 26894 23245

Bad
max 0.99 13118 12670 12841 12817 12833 12832 23006 11726
max2 0.99 27498 26954 26960 26955 26958 26958 40442 25734
min 0.99 2590 96 961 688 680 680 347 n/a

Deceleration max 0.99 22842 22393 22673 22517 22628 22623 24365 20318
min 0.99 11224 11073 11114 11086 11104 11104 11570 9798

Collision
(Basic)

max 0.99 9581 9318 9653 9463 9386 9381 10643 8222
min 0.99 2590 96 961 688 680 680 347 n/a

Collision
(Extended)

max 0.99 65109 64804 64854 64841 64932 64930 104637 62485
min 0.99 13624 13257 13486 13375 13326 13320 14737 12869

Collision
(Advanced)

max 0.99 44370 43602 43645 43640 43644 43643 51734 43524
min 0.99 9500 9081 9094 9085 9090 9089 9282 9080

Anesthesia n/a 0.99 5801 4847 5024 4952 4928 4919 5522 4804

Good max 0.999 39211 39187 39215 39196 39210 39200 43407 38094
min 0,999 39650 39364 39401 39368 39373 39373 43848 38204

Bad
max 0.999 20717 20401 20550 20497 20527 20562 32006 20322
max2 0.999 44557 43848 43863 43848 43855 43855 56442 42888
min 0.999 3950 107 1549 1103 1362 1362 434 n/a

Deceleration max 0.999 36609 36039 36061 36044 36132 36130 39524 33068
min 0.999 18727 18629 18709 18671 18628 18682 19438 16618

Collision
(Basic)

max 0.999 13795 13222 13341 13286 13311 13397 15385 13098
min 0.999 3950 107 1549 1103 1362 1362 434 n/a

Collision
(Extended)

max 0.999 106252 106099 106243 106147 106224 106224 166345 104531
min 0.999 22887 21860 22196 21935 22041 22038 24742 20862

Collision
(Advanced)

max 0.999 71746 70435 70646 70636 70642 70640 143390 69642
min 0.999 15833 15679 15746 15723 15748 15746 18354 15086

Anesthesia n/a 0.999 9017 8516 8827 8628 8593 8592 9284 8430

Table 5.7: Samples size comparison for confidence interval computation obtained
via ProbReach, with solver δ precision equal to 10−3 and interval size equal to
10−2, Type - extremum type and c - confidence level. Min result between all CIs
results reported in bold.
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Model Type c CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good max 0.9999 55187 54327 54361 54347 54355 54362 60104 52990
min 0,9999 55885 55281 55231 55286 55307 55307 61631 53411

Bad
max 0.9999 29147 28240 28339 28276 28289 28289 42463 27944
max2 0.9999 62735 61139 61364 61152 61359 61358 86442 59012
min 0.9999 4849 116 2153 1530 2458 2458 508 n/a

Deceleration max 0.9999 50476 50243 50277 50250 50269 50268 55495 46084
min 0.9999 25741 25695 25817 25779 25794 25794 26790 22466

Collision
(Basic)

max 0.9999 19476 18907 19084 18984 19035 19032 21537 18128
min 0.9999 4849 116 2153 1530 2458 2458 508 n/a

Collision
(Extended)

max 0.9999 148388 147675 147834 147746 147786 147635 236423 145974
min 0.9999 31528 29894 30420 30023 30423 30420 34736 28588

Collision
(Advanced)

max 0.9999 100592 100143 100275 100174 100196 100195 168345 99456
min 0.9999 20497 20130 20412 20312 20384 20383 23864 19788

Anesthesia n/a 0.9999 13131 11462 11683 11658 11724 11722 13948 11288

Good max 0.99999 70422 69484 69582 69496 69530 69529 77262 68456
min 0,99999 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 0.99999 37388 36518 36771 36629 36687 36868 37006 36164
max2 0.99999 79306 79097 79125 79101 79118 79118 96442 77892
min 0.99999 5797 124 2766 1963 4136 4136 572 n/a

Deceleration max 0.99999 65248 65233 65330 65299 65320 65319 72114 59882
min 0.99999 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 0.99999 25279 24711 24834 24789 24934 24933 26045 23016
min 0.99999 5797 124 2766 1963 4136 4136 572 n/a

Collision
(Extended)

max 0.99999 191466 190776 191253 190894 191485 191472 376294 185456
min 0.99999 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 0.99999 131517 129746 131185 129845 129934 129933 183405 127486
min 0.99999 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 0.99999 16197 15453 15834 15634 15734 15733 17845 15314

Table 5.8: Samples size comparison for confidence interval computation obtained
via ProbReach, with solver δ precision equal to 10−3 and interval size equal to
10−2, Type - extremum type and c - confidence level. Min result between all CIs
results reported in bold.
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5.5.2 Qint Method Results

A comparison of the Qint method’s confidence intervals is also presented in Tables
5.3, 5.4, 5.5 and 5.6. All of the Qint intervals also contain single probability
values and overlap with true probability intervals. The original Qint algorithm
is not able to provide results for “Bad” type min and Collision Basic type min
models, because for very small probability values like 4 × 10−7 and [0, 0.00201]
it could not detect ns > 0 for the chosen confidence levels and interval size. Due
to this reason the original Qint algorithm was changed by modifying the CLT
method described in Section 3.3. From the results we see that the Qint algorithm
shows great potential, which is connected with the very fast convergence rate
of the QMC method and with finding an appropriate partition (in terms of the
parameters k, s).

Table 5.7 allows us to compare Qint’s sample sizes with those of other CIs.
However, CICLT had an advantage in the number of samples for small probability
values near the border (see Figure 5.4), where we can clearly see that for bigger
true probability values, which is presented in the tested models except “Bad” type
min and Collision Basic type min, this trend is not preserved. On the contrary,
Qint uses fewer number of samples than other CIs and CICLT in particular (see
also Figure 5.5). For the tested models set with confidence c=0.99999, Qint used
on average between 1,850 and 24,802 fewer samples than other CIs techniques.

5.6 Gaussian Process Estimation Results

In my thesis I apply GP estimation techniques (see Section 2.5) based on the
EP algorithm (see Subsection 2.5.5), and statistical model checking (SMC) CI
estimation based on the standard Clopper-Pearson technique with standard MC
sampling (see Subsection 2.4.1). In the experiments, the parameter types used in
each model were:

• “Good” and “Bad”: random parameter r uniformly distributed over [γ, θ],
where γ and θ are uncertain parameters;

• Deceleration: random parameter β and two uncertain parameters µ and σ
for the normal distribution of β;
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• Collision basic: one random ad1 parameter and two uncertain parameters µ
and σ for the normal distribution of ad1;

• Collision extended: random parameters ad1, ad2 and four uncertain param-
eters µ1, σ1 and µ2, σ2 for the normal distribution of ad1 and of ad2;

• Psoriasis treatment: random parameter InA and one uncertain parameter
µ of the normal distribution of InA.

Next, I provide a comparison of the CIs obtained via ProbReach and true prob-
ability values that are either analytically calculated or absolute (non-statistical)
enclosures computed using ProbReach’s formal approach, which provides rigorous
guarantees.

5.6.1 Accuracy of the Expectation Propagation Method

I estimate the accuracy of the GP approach using the average CI interval size
and root mean squared error (RMSE) of our estimates across all input points.

As it can be seen in Table 5.9, where the average CI size comparison ± stan-
dard deviation is presented, the GP approach shows much better results in com-
parison with SMC using the same number of samples. We can see that GP offers
not only tighter intervals but also smaller standard deviation values for all the
tested models over a different number of points and samples with 0.99 confidence.
Table 5.10 also shows that with the increase of the confidence level to 0.99999
the precision of the interval is obviously decreasing, but GPs still show better
results for all the values. It is important to note that the GP superiority in terms
of average CI size can be quite significant with respect to SMC. For example,
for the Psoriasis model (see Section 5.2) with 20 points and 200 samples GP has
0.0727 average interval size while SMC has as much as 0.4014 (see Table 5.9).
For instance, in Figure 5.8 (a) it is clearly visible that even when the number of
samples is quite small and equal to 20, the GP method provides thin CI bounds.
It is also important to note that GP presents much smoother mean curve in com-
parison with SMC, which follows directly from the GP construction procedure
(see Section 2.5). The same trend is retained for 100 samples (see Figure 5.8 (b)).
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Model n S=20 S=100 S=300
SMC GP SMC GP SMC GP

Good
20 0.0864±0.005 0.0544±0.004 0.0573±0.003 0.0395±0.002 0.0418±0.002 0.0325±0.001
100 0.0532±0.003 0.0426±0.003 0.0496±0.003 0.0366±0.002 0.0356±0.001 0.0268±0.001
300 0.0328±0.002 0.0284±0.002 0.0289±0.002 0.0258±0.001 0.0255±0.001 0.0208±0.0008

Bad
20 0.0734±0.031 0.0628±0.025 0.0625±0.018 0.0536±0.018 0.0511±0.011 0.0435±0.011
100 0.0657±0.024 0.0574±0.022 0.0553±0.015 0.0467±0.015 0.0385±0.008 0.0342±0.008
300 0.0577±0.016 0.0486±0.014 0.0472±0.013 0.0384±0.012 0.0336±0.009 0.0358±0.008

Deceleration
20 0.0637±0.023 0.0431±0.021 0.0346±0.014 0.0243±0.004 0.0237±0.007 0.0164±0.005
100 0.0482±0.021 0.0364±0.009 0.0294±0.004 0.0189±0.003 0.0216±0.003 0.0113±0.002
300 0.0421±0.015 0.0294±0.011 0.0259±0.003 0.0119±0.001 0.0146±0.002 0.0102±0.002

Collision
(Basic)

20 0.0815±0.014 0.0647±0.012 0.0619±0.011 0.0528±0.010 0.0428±0.008 0.0325±0.006
100 0.0684±0.012 0.0627±0.011 0.0519±0.011 0.0426±0.008 0.0317±0.007 0.0234±0.005
300 0.0412±0.008 0.0386±0.008 0.0295±0.009 0.0254±0.006 0.0158±0.007 0.0128±0.005

Collision
(Extended)

20 0.0574±0.009 0.0462±0.008 0.0357±0.006 0.0346±0.004 0.0173±0.005 0.0127±0.003
100 0.0453±0.008 0.0391±0.007 0.0276±0.005 0.0258±0.005 0.0147±0.003 0.0105±0.004
300 0.0319±0.006 0.0208±0.005 0.0185±0.004 0.0113±0.004 0.0093±0.004 0.0085±0.002

Psoriasis
20 0.0756±0.017 0.0593±0.016 0.0584±0.014 0.0485±0.012 0.0388±0.011 0.0347±0.011
100 0.0566±0.015 0.0416±0.015 0.0496±0.013 0.0295±0.011 0.0352±0.012 0.0208±0.011
300 0.0393±0.012 0.0317±0.012 0.0279±0.011 0.0218±0.009 0.0218±0.009 0.0159±0.006

Table 5.11: Root-Mean-Square Error ± standard deviation for SMC vs. GP,
obtained via ProbReach, with solver δ precision equal to 10−3 and 0.99 confidence
level for 10 independent runs of the experiment, Model - model type, n - number
of points and S - number of samples per point. Min between SMC and GP results
reported in bold.

The comparison of RMSE ± standard deviation (see Table 5.11) shows that
in all cases GPs are more accurate than SMC. In this table, the true probability
values used to compute the RMSE for the Good and Bad models (see Section
5.2) were calculated analytically, while for all the other models 10,000 SMC sim-
ulations were used. We can also note that the RMSE for both GP and SMC
approaches do not depend on the confidence level because that is used only to
construct CI bounds, so for all confidence levels the result of RMSE depends only
on the number of points, samples, and parameters of the chosen model.

Figure 5.9 also provides very interesting results with respect to the number
of samples. The true probability function values for these figures were obtained
analytically. The presented GP mean shows slightly different behaviour and prob-
ability results for the 20 samples case (see Figure 5.9 (a)). The GP CI does not
include the true probability function for σ values approximately in [1.6, 2.0]. How-
ever, when the number of samples needed for the computation grows to 100 (see
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Figure 5.9 (b)), the GP approach shows much better results and the 99% GP CIs
fully include the true probability function. A similar behaviour is illustrated in
Figures 5.10 and 5.11, where the true probability function is not available so we
computed rigorous enclosures (boxes) with ProbReach’s formal approach. We can
see that the GP CIs intersect with all the probability enclosures for 100 samples
(see Figure 5.10 (b)) but not for 20 samples (Figure 5.10 (a)).

These results also hold with the increase of the number of parameters, e.g.,
a two-parameter case comparison. Figures 5.14 and 5.15 show 3D a comparison
of SMC (see Figure 5.14 (a)) and GP (see Figure 5.14 (b)) CIs constructed for
20 samples and SMC (see Figure 5.15 (a)) and GP (see Figure 5.14 (b)) CIs
constructed for 100 samples from the Deceleration model (see Section 5.2). We
can clearly see an advantage of the GP method for both cases. At the same time
it is also visible that the CI borders contract with the increase of the number of
samples as for SMC approach (from 20 samples 5.14 (a) to 100 samples 5.15 (a))
as well for GP approach from 20 samples 5.14 (b) to 100 samples (b)). The same
trend is preserved on the other models, including the Bad model, whose results
are presented in Figures 5.16 and 5.17. An interesting fact here is that CI shrink
with respect to the number of samples faster for SMC method is much higher
than for the GP approach. It can be seen that CI borders contract much quickly
for SMC approach (from 20 samples 5.16 (a) to 100 samples 5.17 (a)) then for
GP approach from 20 samples 5.17 (b) to 100 samples (b).

It is also important to note that there are cases where the true probability
function is not available and probability enclosures can not be computed via the
formal approach as well even for the 2D case because of the complexity of the
models. For my chosen models this problem presents itself for Collision model
type extended (see Figure 5.12) and Psoriasis model (see Figure 5.13).

Hence, we conclude that GP estimation with EP is generally very accurate
and more accurate than Clopper-Pearson SMC, and thus it can be used for the
verification of SnPHS.
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Figure 5.8: True probability function, GP and SMC 0.99 confidence CI comparison with respect
to one uncertain parameter θ for 20 points and a) 20 samples and b) 100 samples per point.
Model: Bad.

Figure 5.9: True probability function, GP and SMC 0.99 confidence CI comparison with respect
to one uncertain parameter θ for 20 points and a) 20 samples and b) 100 samples per point.
Model: Good.
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Figure 5.10: Formal enclosure, GP and SMC 0.99 confidence CI comparison with respect to one
uncertain parameter σ for 20 points and a) 20 samples and b) 100 samples per point. Model:
Deceleration.

Figure 5.11: Formal enclosure, GP and SMC 0.99 confidence CI comparison with respect to one
uncertain parameter σ for 20 points and a) 20 samples and b) 100 samples per point. Model:
Collision, type: basic.
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Figure 5.12: Formal enclosure, GP and SMC 0.99 confidence CI comparison with respect to one
uncertain parameter σ for 20 points and a) 20 samples and b) 100 samples per point. Model:
Collision, type: extended.

Figure 5.13: Formal enclosure, GP and SMC 0.99 confidence CI comparison with respect to one
uncertain parameter σ for 20 points and a) 20 samples and b) 100 samples per point. Model:
Psoriasis.
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Figure 5.14: a) SMC and b) GP CI and formal bounds comparison with respect to two uncertain
parameters: µ and σ for 20 points and 20 samples per point with 0.99 confidence. Model:
Deceleration.

Figure 5.15: a) SMC and b) GP CI and formal bounds comparison with respect to two uncertain
parameters: µ and σ for 20 points and 100 samples per point with 0.99 confidence. Model:
Deceleration.

118



Figure 5.16: a) SMC and b) GP CI and formal bounds comparison with respect to two uncertain
parameters: µ and σ for 20 points and 20 samples per point with 0.99 confidence. Model: Bad.

Figure 5.17: a) SMC and b) GP CI and formal bounds comparison with respect to two uncertain
parameters: µ and σ for 20 points and 100 samples per point with 0.99 confidence. Model: Bad.
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5.6.2 Cost of the Expectation Propagation Method

An important aspect to consider is the CPU time cost of the GP and SMC
techniques. I measured CPU time in seconds, and I also compared the sample
size needed by both techniques to produce results of similar accuracy.

As it was described in Section 2.5, the GP method has a significant advantage
after the training process, because all the subsequent test inputs (with different
points’ values) can be calculated using a simple regression process, which is rel-
atively fast and does not require further sampling. This feature reveals also one
of the most important advantages of the GP method - construction of a smooth
probability function, while SMC provides only a pointwise approximation.

Model n S=20 S=50 S=100 S=200
SMC GP SMC GP SMC GP SMC GP

Good
20+20 24 25 33 31 41 35 71 51

100+100 109 137 151 159 196 180 360 256
200+200 221 459 321 571 429 681 708 823

Bad
20+20 28 27 37 36 75 57 140 87

100+100 126 148 181 164 394 260 690 439
200+200 224 463 363 600 736 745 1,254 1,043

Deceleration
20+20 30 28 41 36 73 59 183 95

100+100 124 121 250 184 460 293 817 476
200+200 234 474 415 613 892 806 1,496 1,139

Collision
(Basic)

20+20 259 140 394 229 1,070 518 1,721 989
100+100 1,322 692 2,181 1,126 5,304 2,791 8,902 5,047
200+200 2,491 1,497 3,924 2,481 10,058 5,817 17,244 11,328

Collision
(Extended)

20+20 328 179 834 428 1,286 674 3,804 1,255
100+100 1,682 896 4,108 2,112 6,311 3,307 1,696 6,284
200+200 3,246 1,931 8,319 4,470 13,305 7,138 23,133 12,760

Psoriasis
20+20 4,628 2,396 10,027 5,577 20,168 11,473 39,208 19,808

100+100 23,879 11,973 53,190 27,890 118,350 57,398 172,908 98,145
200+200 46,284 24,371 114,326 56,150 237,364 115,065 391,879 198,075

Table 5.12: Total CPU time (sec) for SMC and GP. This table shows time needed
to construct a CI by GP (one training and two testing) and by SMC for the first
n randomly chosen points + second randomly n chosen points. Model - model
type, n - number of points and S - number of samples per point. All values were
obtained via 10 independent runs of the experiment. Min between SMC and GP
results reported in bold.

Table 5.12 demonstrates the total CPU time in seconds needed to construct
CIs by GP and SMC for the first n randomly chosen points (training) + second
n randomly chosen points (testing). As it was noted above, the GP testing
process is relatively fast, however, it takes time to recompute all the covariances
according to the new testing points input, while for SMC almost all the time
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Model n S=20 S=50 S=100 S=200
SMC GP SMC GP SMC GP SMC GP

Good
20 64

(7242)
16

(400)
104

(13,663)
23

(1,000)
119

(13,746)
27

(2,000)
131

(13,868)
40

(4,000)

100 1,083
(127,442)

106
(2,000)

1,108
(137,585)

125
(5,000)

1,147
(138,773)

131
(10,000)

1,215
(139,943)

220
(20,000)

200 2,644
(316,464)

310
(4,000)

2,717
(328,419)

369
(10,000)

2,757
(329,837)

413
(20,000)

2,802
(330,494)

570
(40,000)

Bad
20 160

(9,061)
18

(400)
183

(9,729)
26

(1,000)
197

(10,405)
44

(2,000)
223

(11,266)
78

(4,000)

100 3,320
(194,455)

114
(2,000)

3,374
(195,834)

147
(5,000)

3,364
(196,128)

243
(10,000)

2,837
(196,835)

410
(20,000)

200 8,868
(566,835)

328
(4,000)

9,093
(578,673)

392
(10,000)

9,230
(586,837)

584
(20,000)

9,317
(592,844)

927
(40,000)

Deceleration
20 222

(11,105)
21

(400)
239

(11,426)
30

(1,000)
270

(11,648)
51

(2,000)
286

(12,285)
90

(4,000)

100 4,771
(238,485)

117
(2,000)

4,965
(241,635)

162
(5,000)

5,084
(248,551)

277
(10,000)

5,118
(248,734)

457
(20,000)

200 19,536
(964,611)

338
(4,000)

20,540
(982,463)

432
(10,000)

20,606
(1,000,683)

642
(20,000)

21,823
(1,034,434)

1,033
(40,000)

Collision
(Basic)

20 2,745
(10,266)

133
(400)

2,851
(10,941)

220
(1,000)

2,974
(11,845)

548
(2,000)

16,666
(12,283)

992
(4,000)

100 70,236
(264,727)

678
(2,000)

70,482
(269,433)

1,134
(5,000)

71,094
(274,862)

2,783
(10,000)

71,190
(275,423)

4,996
(20,000)

200 145,688
(569,809)

1,451
(4,000)

146,354
(576,294)

2,341
(10,000)

147,410
(582,828)

5,620
(20,000)

149,061
(587,483)

10,019
(40,000)

Collision
(Extended)

20 7,232
(5,641)

170
(400)

7,280
(5,692)

417
(1,000)

7,352
(5,767)

670
(2,000)

7,402
(6,144)

1,251
(4,000)

100 43,600
(59,193)

883
(2,000)

47,044
(74,314)

2,126
(5,000)

50,211
(74,563)

3,361
(10,000)

51,148
(75,125)

6,257
(20,000)

200 105,122
(147,606)

1,851
(4,000)

118,680
(226,846)

4,331
(10,000)

123,520
(246,822)

6,850
(20,000)

126,672
(249,474)

12,604
(40,000)

Psoriasis
20 10,527

(17,879)
2,389
(400)

24,651
(24,781)

5,568
(1,000)

29,364
(25,184)

11,460
(2,000)

36,071
(25,385)

14,782
(4,000)

100 62,184
(147,323)

11,824
(2,000)

68,136
(195,674)

27,876
(5,000)

69,045
(22,784)

35,196
(10,000)

75,931
(241,846)

48,926
(20,000)

200 162,406
(544,884)

23,965
(4,000)

191,761
(632,116)

55,821
(10,000)

243,504
(634,808)

114,713
(20,000)

284,397
(637,466)

197,933
(40,000)

Table 5.13: CPU time in seconds and total number of samples (written in paren-
theses) comparison for confidence interval match between SMC and GP. This
table presents time and samples needed for SMC to provide the same interval
width per every point like GP; and GP CPU time and samples according to the
n and S table values, Model - model type, n - number of points and S - number
of samples per point. All values were obtained via 10 independent runs of the
experiment. Min between SMC and GP results reported in bold.
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is spent on sampling. That is why for “lightweight” models (“Good”, “Bad” and
Deceleration models presented in Section 5.2, GPs show worse results for small
number of points and samples. For example, the “Bad" model shows that SMC
has an advantage for 100+100 points over 20 samples and 200+200 points over
20, 50 and 100 samples, but by increasing the number of samples this trend does
not hold and GPs compute results faster.

The advantage of the GP method in total CPU time also depends on the
probability values obtained from a certain model for a chosen goal set. Even
if we deal with “lightweight” models, which could however returns an average
probability values around 0.5, the GP approach can show better results because
SMC will require longer probability computation.

At the same time it can be seen that with the increase of the number of testing
sessions from two, as in Table 5.12, to 3 and more the advantage of GP will be
more and more dramatic. This time will be spent only on GP testing process,
based on the initial training set obtained from the very beginning, while SMC
will engage the probability evaluation procedure again and again, which requires
much more computation costs.

In Table 5.13 I show CPU time and number of samples needed for SMC to
provide the GP interval width with 99% confidence per every point in accordance
with the number of points and samples. It can be seen that SMC requires much
longer CPU time and higher number of samples to achieve the CI results of GP.
In this case, even lightweight models cannot prevent a clear advantage of the GP
method.

However, with the increase of the number of observations for all models the
CPU time difference decreases and the SMC method starts to narrow the gap. It
can be especially seen for the larger number of points (e.g. for 100 points). For
example, for the Psoriasis model the CPU computation time for 100 points and
20 samples, the difference ratio between SMC and GP is 5.25, while for the CPU
computation time for 200 points and 200 samples the difference ratio is 1.55 (see
Table 5.13).

In general, for all the tested models the GP approach spends between 2-56
times less CPU time for calculating results, it needs between 3-135 times less
number of samples and it shows between 2-67 times smaller confidence interval
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average size, depending on the confidence level. Therefore, it is possible to high-
light a very important advantage of the GP method in both CPU time and the
number of samples with respect to SMC.

5.7 Combined Approach Results

In this section, I show an application of the new combined approach, consisting of
the formal approach, based on formal reasoning which returns results with abso-
lute numerical guarantees, and the GP regression method, which offers statistical
guarantees only (see Section 3.5).

In particular, I compare the combined approach with the GPEP method (see
Subsection 2.5.5), whose results have been presented in Section 5.6. Like the
GPEP method, where we obtain CIs for the whole parameter’s domain, sim-
ple GP regression also provides CIs not only for the chosen parameter’s testing
points but also for the full parameter’s range. The training points dataset for
the combined approach produced by the formal approach which returns interval
enclosures for a selection of points in the nondeterministic parameters range (see
Subsection 3.5.1). GP then simply considers two rows of upper and lower points
of these intervals as input training data and constructs two regression approxi-
mations (latent Pr function). A GP regression output provides estimated mean
approximation and two CIs (lower and upper) per every function. As it was dis-
cussed in Section 3.5 the final CI returned by the combined approach is formed
by the upper bound of the CI of the upper latent Pr function and lower bound of
the CI of the lower latent Pr function. In this section I discuss how probability
enclosures size obtained from the formal approach may affect the formation of
initial data for GP training and the final size of confidence intervals returned by
the combined approach.

In Subsection 5.7.1 I also consider the accuracy of the GPEP approach with
respect to the combined approach and formal probability enclosures, which as
it was mentioned above returns probability intervals with absolute numerical
guarantees. The results in this Section are based on the Deceleration model (see
Section 5.2), a distinctive feature of which is the difficulty of constructing an
analytically calculated function in view of the complexity of the model.
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In Subsection 5.7.2 I discuss the efficiency of the combined approach in terms
of CPU time costs. As discussed in Section 3.5, the formal approach could spend
a lot of CPU time on the computation of probability boxes to cover all the pa-
rameter’s space, while the combined approach does not need to have so much
information and does not need to spend time on extra computation. That is why
I instead compute probability enclosure intervals for certain points, chosen over
the parameter’s space (see Figure 3.3). As well as for the GPEP method these
points were chosen by using the QMC method.

One of the most interesting features considered in this Section is the ability
of the combined approach to outperform the GPEP approach in terms of total
computation CPU time with respect to the number of samples of GPEP and
probability enclosures precision of the formal part of the combined approach. In
the combined approach we deal with GP regression (see Subsection 2.5.1), which
is computed on the basis of information obtained from the formal data. Obviously
this fact doubles CPU time on GP regression computation as we deal with two
input points’ rows - one for the upper formal interval points and the other one
for the lower formal interval points (see Figure 3.3).

The efficacy of the combined approach, as well as GPEP approach with respect
to the classical formal and SMC methods, is based on the major advantage of
GP regression. It allows us to provide information about CIs that include the
true probability function over the whole model parameter’s domain. At the same
time, in this Section I raise a problem of finding a trade-off between accuracy
and computational costs for the combined method and discuss the question of
choosing the most efficient method between GPEP and combined approaches.

5.7.1 Accuracy of the Combined Method

I estimate the accuracy of the GP approach using the average CI size across all
input points. In particular, the results presented in this Section are based on 20
input points of the σ parameter for the Deceleration model.

I compared two versions of the Combined approach (with formal probability
enclosures precision is equal to 0.1 and 0.001) with GPEP approach with different
number of samples obtained per every point. As it can be seen in Table 5.14,
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where the average CI size comparison is presented. The combined approach
benefits in 50% of the cases. However, I need to highlight that the decisive
factor affecting the CI size, in this case, is the precision of the formal part of the
combined approach. Moreover, the results for 0.001, shown in Table 5.14 serve
as a border line in the sense of the combined approach advantage. It means that
with the increase of the precision level the combined approach outperforms the
GPEP approach in full for all the numbers of samples per point in the provided
Table.

Here we can raise a question of finding a number of samples which allow us
to receive the same size of CI for GPEP as for the combined approach. However,
it can be concluded intuitively that for example in the case of 0.001 precision
(see Table 5.14) this number will be about 8,000-10,000 samples according to the
decreasing combined approach advantage in CI size from 0.07446 for 20 samples to
0.04698 for 3,000 samples. The ineffectiveness of computing such a big number
of samples per input point for GPEP approach will be discussed in the next
Subsection. At the same time for the small precision values like 0.1 (see Table
5.14) the advantage of the GPEP method also grows with the increase in the
number of samples.

It is also important to note that the GP methods superiority in terms of av-
erage CI size is quite significant with respect to all SMC methods. This becomes
apparent on the basis of the fact that the combined approach shows approxi-
mately equal CIs compared to GPEP approach with different sample sizes, while
GPEP approach, as discussed in Section 5.6 is superior to all SMC methods.
For example, for the Deceleration model (see Section 5.2) with 20 points and 50
samples, GPEP has 0.0802 average interval size, SMC has as much as 0.2206 (see
Table 5.9), while the combined method provides 0.15871 (0.0802 + 0.07782) CI
size for 0.1 precision and 0.00673 (0.0802 − 0.07347) CI size for 0.001 precision
(see Table 5.14).

Another important aspect in terms of accuracy of the combined and GPEP
approaches is the placing of the mean lines and CIs borders with respect to
the true probability formal enclosures. For the chosen Deceleration model (see
Section 5.2) the formal approach can return arbitrarily tight enclosures because
this model features one continuous random parameter, which depends on the only
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Combined Approach
Precision

GPEP
S=20 S=50 S=100 S=200 S=1000 S=3000

0.1 -0.07683 -0.07782 -0.07794 -0.07851 -0.08674 -0.10431
0.001 0.07446 0.07347 0.07335 0.07278 0.06455 0.04698

Table 5.14: Average CI size difference between GPEP and Combined approaches
(GPEP - Combined), obtained for 20 points with 0.99 confidence and S - number
of samples per point for the Deceleration model. Results reported in bold show
advantage for the combined approach.

one nondeterministic parameter (σ). As it was discussed earlier, it is possible to
specify manually a particular precision, which we want to obtain. In other words,
the mean value of the combined approach is represented by the center of the
probability enclosures obtained from the formal part, while for GPEP method
the mean function is represented by the regression process on the training data.

In Figure 5.18 (a) it is shown that the GPEP mean for 20 points and 20
samples (shown in black solid line) does not fit in between the two GP regression
(GPR) mean lines for upper (shown in green solid line) and lower bound (shown
in red solid line) constructed using the formal enclosures data with precision 0.1.
However, when using 100 samples as presented in Figure 5.18 (b) the GPEP mean
is within the GPR lines remains true for the 1,000 samples and 3,000 samples per
point (see Figures 5.19 (a) and (b)). We can see that the increase in the number
of samples helps GPEP to fit in between the two GPR lines.

The comparison of Figures 5.18 (a),(b) and 5.19 (a),(b) also shows that the
CI borders of the GPEP method (shown in black dashed line) also change their
shape with the increase of the number of samples. Starting with larger interval
sizes around σ = 0.15 for 20 samples, which lies outside of the GPR means (see
Figure 5.18 (a)) GPEP gradually changes its location and reduces the CI size
with the increase of the number of samples. So we can see in Figure 5.19 (b)
that around σ = 0.15 parameter’s value not only the GPEP mean is included in
between GPR means but also almost all CI is lying within the GPR means.

An interesting feature of the Combined approach, which can be noted for the
results with 0.1 precision (see Figures 5.18 (a),(b) and 5.19 (a),(b)) is that the
obtained GPR means are presented by almost flat lines, which as we will see later
does very well reflect the actual latent true probability function shape.
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In Figure 5.20 (a) it is shown that GPEP mean for 20 points and 20 samples
(shown in black solid line) also does not fit in between the two GP regression
(GPR) mean lines for upper (shown in green solid line) and lower bound (shown
in ref solid line) constructed using the formal enclosures data with precision 0.001.
However, with 100 samples as presented in Figure 5.20 (b) this fact does not
change at all and remains the same for the 1,000 samples and 3,000 samples per
point case (see Figures 5.22 (a) and (b)). We can see that the increase in the
number of samples now does not help GPEP to fit in between the two GPR
lines. This fact simply follows from the very small size (0.001) of the probability
enclosures returned from the formal part.

Figures 5.20 (a),(b) and 5.22 (a),(b) represent the GPEP mean shape changes
with the increase of the number of samples. Starting far from the combined
approach means especially for σ between 0.08 and 0.15 for 20 samples (see Figure
5.20 (a)) the GPEP mean gradually changes its location and almost follows the
combined approach mean with the increase of the number of samples. We can
see in Figure 5.22 (b) that for σ between 0.00 and 0.15 and 3,000 samples the
GPEP mean is very close to the around GPR means but unfortunately still does
not lie inside the GPR lines.

We now consider the question of the GPEP mean placing a bit closer on the
example of the same Figures 5.20 (a),(b) and 5.22 (a),(b). Figures 5.21 (a),(b)
and 5.23 (a),(b) zooming in around σ=0.1 point with the same formal precision
of 0.001 and number of samples from 20 to 3,000. It is interesting to note how
the GPEP mean and GPEP CI border change with respect to the GPR means.
In Figure 5.21 (a) the GPEP mean for 20 samples lies very far away from the
actual combined approach means. We can see that even GPEP upper border
crosses the combined approach means. For the 100 samples case represented in
Figure 5.21 (b) the GPEP mean is much closer to the GPR means and the upper
GPEP CI bound now lies above the GPR means and GPR CI lines. With the
increase of the number of samples to 1,000 and 3,000 (see Figures 5.23 (a) and
(b)) the GPEP means move closer to the GPR means and the GPEP CI bounds
are almost parallel to the GPR CI bounds. However, the GPEP mean still lies
outside of the GPR means and even outside the GPR CI bound.

The latter facts show a great accuracy advantage of the combined method
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with the increase of the formal precision. It also proves that in comparison to the
classical formal approach the combined approach can provide very thin CIs over
the whole parameter’s domain, using fewer enclosures.

5.7.2 CPU Time Cost of the Combined Method

As it was already discussed before, the GP method has a significant advantage
after the training process, because any subsequent test inputs can be calculated
using a simple regression process, which is relatively fast and does not require
further sampling. However, in comparison to the combined and GPEP approaches
this fact does not help us to choose a winner because these two approaches both
have this feature.

Computational complexity is a very important reason for the combined ap-
proach application. Formal approach computation depends on the input argu-
ment for controlling probability enclosure precision, with its complexity growing
exponentially in the inverse of the precision. Also, the complexity increases ex-
ponentially with the number of system parameters. At the same time despite the
fact that we need to run two GP regression processes for the combined approach,
the total time, needed for the combined approach to provide GP regression is al-
most not noticeable in comparison with the formal part. While the GP advantage
mentioned before allows us not to waste time again on parameter space explo-
ration to estimate probability reachability function at new points, we still need
to evaluate probability enclosures up to certain precision, which takes time. One
of the features of the combined approach and especially its formal computational
costs part is the fact that for probability function values far from the bounds (0/1
values) the formal approach spends much more time.

The GPEP approach in turn does not require such computational time as the
formal approach does. The computational time of GPEP method almost fully
depends on the number of samples chosen per each point. The GPEP method
enables ProbReach’s procedure to receive the probability value for each point
and with the increase of the number of points and samples the CPU time grows
dramatically.

Table 5.15 demonstrates the total CPU time difference in seconds between
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Combined Approach
Precision

GPEP
S=20 S=50 S=100 S=200 S=1000 S=3000

0.1 -11 -2 19 58 184 552
0.001 -65 -56 -35 4 130 498

Table 5.15: CPU time (in seconds) difference between GPEP (average time for
10 runs) and combined approaches (GPEP - Combined). This table presents
time and samples needed for both approaches to compute CIs for 20 points with
0.99 confidence and S - number of samples per point for the Deceleration model.
Results reported in bold show advantage for the combined approach.

GPEP and combined approaches (GPEP - Combined). It can be seen that for
the smaller number of samples (20 and 50) the GPEP approach outperforms the
combined approach. The picture changes with the increase of the number of
samples so that for 200, 1,000 and 3,000 samples the combined approach shows
better results. The difference standard deviations not reported in the table due
to very small values (<0.0001).

However, with the increase of the precision of the enclosure computation of the
combined approach and for models with probability values far from the bounds,
the CPU time difference will increase in favour of GPEP. At the same time with
the increase in the number of samples for the GPEP approach the combined ap-
proach still can show better results. For example, for the Deceleration model
CPU computation time difference between the combined approach with 0.1 pre-
cision and GPEP approaches 100 samples is 19, while for GPEP approaches for
3,000 samples it is 552 (see Table 5.15).

In general, the results presented in Table 5.15 show that as in the case of CI
size comparison for the Deceleration model it is hard to choose one particular
favourite between GPEP and combined approaches. However, it is possible to
define the main features and the differences in both approaches, which will be
summarised and discussed in the next Subsection.

5.7.3 Combined Approach Issues

In this chapter I provided the results of the comparison of a novel statistical tech-
nique for computing bounded reachability probability in SnPHSs called combined
approach with the GPEP method. The tests showed that the presented approach
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gives statistically rigorous confidence intervals by combining the formal approach
with an appropriate precision of probability enclosures and the GP regression
method.

As it was expected the combined approach shows a severe reduction of the
computational cost needed to construct CIs for the whole parameter’s range space
in comparison with a simple formal approach. In particular, the results presented
in this Section showed that the combined approach can provide results similar to
the GPEP method in terms of CPU computation time.

I discussed the problem of finding a number of samples which allow us to
obtain the same size of CI for GPEP as for combined approach for different
precision levels. I also considered the theoretical effectiveness of the use of GPEP
approach with a large number of samples per input point with respect to the
combined approach, which does not require an additional sampling. At the same
time, it was shown that for small precision values like 0.1 (see Table 5.14) the
advantage of the GPEP method also grows very quickly with the increase in the
number of samples.

In this Section I also considered the problem of placing the mean lines and CIs
borders with respect to the true probability enclosures. It was shown that the
combined approach starting with precision 0.001 shows very promising results
by providing very tight CIs and the two GPR mean functions which fit into
the true probability enclosures. It can be easily concluded here that with the
increase of enclosure precision we can obtain more and more rigorous results and
approximate the latent probability reachability function more precisely. At the
same time, GPEP approach did not show the same precision, because even for
1,000 and 3,000 samples per point the mean values of GPEP still lie outside the
probability enclosures. We can conclude at this stage that the combined approach
can show much smaller and more precise CIs than GPEP by involving the formal
approach with an appropriate precision parameter.

Another important aspect which was discussed in this Section is the computa-
tional time costs of both the combined and GPEP approaches. Both approaches
have a significant advantage after the training process because all the subsequent
test inputs (with different points’ values) can be calculated using a simple re-
gression process, which is relatively fast and does not require further sampling in
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comparison with the classical formal method. However, in the case of comparison
between the combined and GPEP approaches we need to pay attention to the
computational costs of the procedures which precede the GP computation.

For the combined approach the time for parameter space searching during the
formal method use grows exponentially with the number of system parameters.
At the same time, formal approach computation severely depends on the input
argument for controlling probability enclosure precision. In other words, the
algorithm’s general computational complexity increases exponentially with the
number of system parameters and the reachability depth.

Computational complexity is a very important factor for the combined ap-
proach application. The complexity increases exponentially with the number of
system parameters. At the same time, the formal approach computation de-
pends on the input argument for controlling probability enclosure precision, with
its complexity growing exponentially in the inverse of the precision. We also note
that for some heavy models it is quite impossible to run formal verification at all
because of the extreme complexity, so that the combined approach can not be
applied in general, while GPEP has no such problems. For the second part of the
combined approach where we need to run two GP regression processes, the total
time needed for the combined approach to provide GP regression is almost not
noticeable in comparison with the formal part.

Another important problem of the combined approach is related to its for-
mal part computational time costs. For probability function values far from the
bounds (0/1 values) the formal approach spends much more time to return prob-
ability enclosures, even if we ask not to cover all the parameter’s space with boxes
but simply to compute the probability enclosures up to certain precision. This
fact can lead to very different results in computation time for different models. If
we assume that we do not have any initial information about the latent probabil-
ity function then we can not predict how efficient the combined approach will be.
This question requires further research and in particular an investigation of the
opportunity to use simple SMC sampling in advance to create a general picture
about the possibility of using the combined approach.

For the GPEP approach, we do not use any formal method’s procedures. How-
ever, the GPEP method enables ProbReach’s procedure to receive the probability
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value for each point and with the increase of the number of points and samples
the CPU time grows very quickly. In other words, the GPEP approach severely
depends on the number of samples chosen per each point. Like in the combined
approach case, the GPEP method time costs also depend on the model’s com-
plexity with that difference that GPEP method can always compute CIs.

Finally, both accuracy and computational costs results show the superiority
of the combined and GPEP approaches with respect to all SMC methods. How-
ever, the question of the unconditional leader between the combined and GPEP
approaches is still open. On the basis of the results provided in this Section we
can conclude that in case of the combined approach it is possible to find a trade
off between accuracy and computational costs, which is more difficult to do than
in the GPEP case where we can have linear dependency of the results with the
number of points and samples. This problem requires further investigation and
testing on different SnPHS models.

Summing up the application of the combined approach results I would like to
highlight that the novel approach’s formal and GP regression combination pro-
vides very promising results in terms of calculation precision and computational
complexity. On the basis of the small research into the SnPHS model it is feasible
to predict an effectiveness of the combined approach application and choose an
appropriate precision. The latter fact gives us hope that GP regression in com-
bination with the formal approach as well as GPEP approach can be an effective
solution not only for rare event cases but also in general.

5.8 Summary

The final Chapter 5 demonstrated the successful application of the implemented
approaches to several case studies, such as cars collision scenarios and devising
UVB irradiation therapy for treating psoriasis. In this Chapter I provided the
comparison of the different CIs estimation techniques for extreme probability
cases. The tests described in this Chapter showed that for probability values
near the bounds (0 or 1) the developed modified CLT method achieves better
results with respect the number of samples in comparison with other techniques
and so it is strongly preferable when sampling cost is paramount.
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Chapter 5 displayed the distribution of the Qint intervals for border proba-
bility values, which showed that the Qint CI always contains the true probability
value within its bounds. In Qint test description I noted the fact that the classical
Qint method can not outperform our modified CLT method, which leads us to
the conclusion that the usage of the standard deviation formula advised in this
thesis is quite an effective and simple solution. Due to this reason, the original
Qint algorithm was changed by modifying the CLT method and the results were
provided.

This Chapter also discusses the difference between the Bayesian CI and the
CIs based on CLT and the use of MC and QMC techniques for interval calculation.
As it was described in Subsection 2.3.3, the QMC advantage in error size holds
for all of the tested models. In this Chapter I also highlighted a phenomenon that
was noted during my research of MC and QMC methods: the actual coverage
probability contains non-negligible oscillations. There exist some “unlucky” pairs
between probability values and number of samples, which provide unpredictable
results with respect to the number of samples.

Chapter 5 demonstrated the results obtained via GP estimation techniques
based on the EP algorithm and CI estimation based on the standard Clopper-
Pearson technique with MC sampling. I estimated the accuracy of the GP ap-
proach using the average CI interval size and root mean squared error (RMSE)
of my estimates across all input points.

The results presented in this Chapter showed that for all the considered
SnPHS models GPs are more accurate than SMC, and it is possible to conclude
that GP estimation with EP is generally very accurate and more accurate than
Clopper-Pearson SMC, and thus it can be used for the verification of SnPHS. In
this Chapter I also considered CPU time costs of the GP and SMC techniques
and compared the sample size needed by both techniques to produce results of
similar accuracy. The provided results showed an outstanding performance of the
GPEP algorithm, it can easily be seen that SMC requires much longer CPU time
and a higher number of samples to achieve the CI results of GPEP.

Finally, in this chapter I presented some results of the novel combined ap-
proach. As a result a considerable advantage of combined approach was proven,
with the increase of formal precision. It can also be concluded that it is possible
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for the combined approach to grant very tight CIs over the whole parameter’s
domain, using fewer enclosures. This might be contrasted to the classical formal
approach.

According to our expectations, the combined approach demonstrated a great
reduction of computational costs required for constructing CIs for the whole pa-
rameter’s range space, contrasted to a full formal approach. To be more precise,
the acquired results demonstrated the possibility for the combined approach to
provide results same as the GPEP method in terms of CPU computation time.

On the basis of the results provided we can conclude that in case of the
combined approach it is possible to find a trade off between accuracy and com-
putational costs, which is more difficult to do than in the GPEP case where we
can have linear dependancy of the results.

Both computational cost and accuracy results prove the advantage of the
combined and GPEP approaches over all SMC methods. At the same time, the
question of the unconditional leader between the combined and GPEP approaches
still remains unsolved.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis I have presented my work on the verification of stochastic nonde-
terministic parametric hybrid systems (SnPHS). This thesis offers contributions
on two different levels to the verification of SnPHSs and demonstrates applica-
bility of the devised methods and techniques to real-world case studies. From
the theoretical point of view, it addresses the question of whether the reacha-
bility probability function in SnPHS can be considered for Gaussian processes
(GP) approximation. My main theoretical result is the proof that the reacha-
bility probability function is a smooth function of the uncertain parameters of
the model, and hence GP techniques can be used to obtain an efficient analytical
approximation of the function. From the practical point of view I show that GPs
are usable in practice even for models with complex dynamics.

I described the use of Monte Carlo (MC) and Quasi-Monte Carlo (QMC) sta-
tistical techniques for bounded reachability probability in SnPHSs and provided a
novel approach for the central limit theorem confidence interval (CLT CI) method
approximation. The new CLT CI method serves to provide statistically rigorous
confidence intervals for systems without nondeterministic parameters. The pre-
sented approach also allows reducing the computational cost with respect to the
number of samples in comparison to classical CLT interval construction.

In my thesis I showed how the expectation propagation (EP) algorithm can
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be applied to compute confidence intervals which contain the bounded reacha-
bility probability value for systems with nondeterministic parameters. I also put
an emphasis on the fact that the EP algorithm can be used for systems exhibit-
ing smooth probability reachability functions only and consequently the GPEP
techniques (a composition of GP and EP methods) can be successfully applied
to SnPHSs. I demonstrated that the GP approach can be used to obtain an an-
alytical approximation of the probability function. This allows us to predict the
value of the probability function at all values of the uncertain parameters from
individual model simulations at a finite (and generally rather small) number of
distinct parameter values.

One of the main outcomes of this thesis is the creation of a novel, combined
statistical approach to model checking SnPHSs. I combined the formal and GP
regression to give joint absolute numerical and statistical guarantees. In particu-
lar, the formal approach in SnPHS with fixed nondeterministic parameters values,
chosen with the help of QMC method, returns probability enclosures. These in-
tervals are further divided into two arrays of input points (upper and lower) in
order to train a GP and receive a predictive distribution over the nondeterminis-
tic parameter domain. This novel approach showed the most impressive results
in terms of computational costs and accurate CIs construction.

Another practical contribution of this thesis is the creation of Confidence In-
terval Estimation and GPEP tools, which were developed for computing bounded
reachability probability in stochastic parametric hybrid systems (SPHSs) and
SnPHSs. The C++ implementation of the developed algorithms does not require
any proprietary software. It is based on the ProbReach tool [73] and supports
multiple SMT solvers (i.e., iSAT-ODE and dReal). The parallelising OpenMP
tool was used to increase Confidence Interval Estimation Tool and GPEP Tool
performance on multi-core system. The developed GPEP Tool can be also easily
used separately from the main ProbReach architecture.

The results conducted in this research showed a great accuracy advantage of
the combined and GPEP approaches with respect to statistical model checking
(SMC) methods (for both CIs types based on beta function and based on CLT).

The GP calculation techniques I considered have excellent convergence and
efficiency especially when the number of samples is small. I empirically showed
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a GP advantage in terms of CPU time, number of samples and CI average size
with respect to standard statistical model checking.

In particular, according to the provided experiments GPEP approach spends
between 2-56 times less CPU time for calculating results, it needs between 3-135
times fewer number of samples and it shows between 2-67 times smaller confidence
interval average size, depending on the confidence level, in comparison to various
SMC methods’ results.

Very important results were obtained for the combined approach, which is
based on the formal approach and GP regression method. My results showed
that the combined approach can be extremely efficient and accurate and can
outperform not only the formal but also the GPEP approaches.

As it was expected the combined approach presented a severe reduction of the
computational cost needed to construct CIs for the whole parameter’s range space
in comparison with a simple formal approach. The results also displayed that in
comparison to the classical formal approach the combined approach can provide
very thin CIs over the whole parameter’s domain, using fewer enclosures. Based
on the presented results we can make a conclusion that in case of the combined
approach a trade-off between accuracy and computational costs can be found.

In general, the experiments showed that the combined approach provides very
promising results in terms of CI size and CPU time. This approach definitely
requires further investigation with the aim to find a gold trade-off between the
number of samples and CPU time spent and analysis of rare-event SnPHS models.

In this thesis, I also provided a comprehensive evaluation of CIs calculation
techniques based on the MC and QMC techniques. The experiments show that
my modified CLT technique is usable in practice even for complex dynamics and
for probabilities close to the bounds. Based on my analysis of CIs, I suggest that
my results can be used as guidelines for probability estimation techniques.
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6.2 Future Work

In this Section I describe the future work directions, including possible software
improvements.

One of the most important points of the future work is further investigating a
combined formal-GP approach in which GP training exploits the rigorous prob-
ability enclosures computed by ProbReach’s formal approach. In particular, I
plan to investigate GP behaviour in rare-event cases, where the true probability
function is very close to 0. In accordance with this research, I also plan to pay
attention to researching rare-event EP behaviour and finding effective ways for
variance minimisation.

It is well known that rare events are events that are expected to occur in-
frequently, in the other words they are events whose probabilities to occur are
equal to about 10−6 or less for a probability model. In this situation, rare events
often cause a failure of systems designed for high reliability. In the context of
uncertainty quantification that means that a system is unable to detect a rare
event, which can lead to serious problems for safe-state systems. That is why
the computation of such rare-event probabilities is such an important problem.
As it was stated before in my thesis analytical solutions are usually not available
for complex problems. I want to address the problem of estimating rare-event
probabilities by GP methods, which can also be done by involving importance
sampling, and subset simulation techniques.

For testing GP techniques for the rare-event case, we could use a simple model
with the small failure probability for a highly reliable dynamic system for exam-
ple aircraft under uncertain turbulence excitation or building under uncertain
earthquake excitation. Such models represent typical dynamic systems with both
parametric uncertainty (what values of the model parameters best represent the
behaviour of the system?) and nonparametric modelling uncertainty (what are
the effects of the aspects of the system behaviour not captured by the dynamic
model?).

Another point for the future investigation is researching the efficacy of the
combined approach to the probability function values far from the bounds (0/1
values) which is very important due to the formal approach’s large computational
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costs to return probability enclosures for such values.
As it was discussed in this thesis, the formal approach allows us to compute

probability enclosures. However, despite the given precision for nondeterministic
parameter boxes, the formal approach output in form of probability enclosures
vary its size in accordance with the estimated probability function value. The
technique behind the algorithm returns larger probability enclosures sizes for the
probability values far from the bounds. It is important to investigate this aspect
of the combined approach work because it affects directly the approach’s efficacy.

Computational complexity is one of the most important aspects of the com-
bined approach application. The time for parameter space search has a strong
influence on the overall use of the algorithm. This time directly depends on
the formal approach partitioning procedure, because in general the combined
approach does not spend much time on the regression computation by the GP
algorithm.

The extension of the test model range is the next challenge for further re-
search. In particular, I plan to include complex models whose reachability prob-
ability function can not be calculated analytically and whose evaluation takes
considerable time. In accordance with the above mentioned points for the fu-
ture work, I would like to add rare-event models, including complex, curved and
almost flat lines and modes with probability functions which are located in the
middle of the probability space. The fast oscillating function is a particular point
of interest.

In future work, I also plan to do some technical improvements, one of which is
3D visualization of the chosen stochastic models and direct graphical visualization
through Matlab of all produced approximation results. I also plan to make an
improvement in the Gaussian process editor tool by adding new covariance fea-
tures and characteristics, which are known to be governed by the mean function
and covariance function. That is why for choosing distinct covariance functions,
some initially obtained information on the probability reachability function may
be useful.

In many practical applications, it may not be efficient to apply one covariance
function with confidence to receive a good result. In light of the above, the
expansion of the set of covariance functions is an important addition to the current
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version of the GPEP tool. This improvement can turn GPEP into a more practical
tool and address its methods to the model selection problem. As part of this
work, I plan to consider the model selection problem rather broadly, to identify
all aspects of future model approximation by choosing an efficient functional form
for hyperparameters and the covariance function.

In fact, model selection can help to give an important understanding to the
user about the properties of the data, (e.g. that a polynomial covariance func-
tion may be preferred over an exponential one) and to refine the predictions
of the model. I suggest using different families of covariance functions for this
purpose, including squared exponential, polynomial, neural network, constant,
linear, Matern, exponential, rational quadratic, etc. It is important to note that
all these families also have different hyperparameters whose values also need to
be determined.

Another technical improvement aspect is implementing a more efficient par-
allelisation approach involving the development of a sophisticated parallelisation
manager controlling the accessibility of the CPUs and the dynamic administra-
tion of the load between the threads in order to decrease idle CPUs. This could
substantially improve the functioning of the developed tools as well as implement-
ing a user-friendly interface for model representation instead of current PDRH
format.
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Appendix A

A.1 Algorithms

Algorithm 1 Sampling Pr for GP training
Inputs: H : SnPHS, l ∈ N : reachability depth, δ > 0 : solver precision, N :

number of training points, S : number of samples per training point.
Output: X = x1, . . . , xN training points, Y = y1, . . . , yN probability values.
1: n← 0;
2: for n < N do
3: v ← 0;
4: d← 0;
5: xn ← QMC_sample(P ); // sampling nondeterministic parameters via

Quasi-Monte Carlo
6: for d < S do
7: rnd←MC_sample(R); // Monte Carlo sampling random

parameters
8: d← d+ 1;
9: // formally evaluate reachability - see Section 4.2 in [72]

10: switch evaluate(H, l, xn, rnd, δ) do
11: case unsat do v ← v + 1; // count ‘true’ unsatisfiable

reachability only, anything else is satisfiable

12: end for
13: yn ← (S − v)/S; // estimate Pr(xn)

14: n← n+ 1;
15: end for
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Algorithm 2 GP training via the Expectation-Propagation algorithm (adapted
from Algorithm 3.5 in [61] )
Inputs: K: covariance matrix,

ssss X: nondet points,
ssss N : number of points,
ssss Y : probability values.

Output: ὼ, ὴ: natural site parameters.
1: ὼ ← 0, ὴ ← 0, Σ← 0, µ← 0;
2: repeat
3: for i < N do
4: η−i ← σ−2

i − ὴi;
5: ω−i ← σ−2

i µi − ὼi; // Compute approximate cavity parameters (Eqs.
(3.55) and (3.56) [61])

6: zi ← yiµ−i/
√

1 + σ2
−i;

7: ẑi ← Φ(zi); // See Eqs. (3.50) and (3.52) [61]
8: µ̂i ← µ−i + (yiσ

2
−iN(zi))/(Φ(zi)

√
1 + σ2

−i);
9: σ̂2

i ← σ2
−i −

σ4
−iN(zi)

(1+σ2
−i)Φ(zi)

(zi + N(zi)
Φ(zi)

);
10: \\Compute marginal moments µ̂i and σ̂2

i see Eq. (3.58) [61].
11: ∆ὴ ← σ̂−2

i − η−i − ὴi;
12: ὴi ← ὴi + ∆ὴ;
13: ὼi ← σ̂−2

i µ̂i − ω−i;
14: \\Update site parameters ὴi and ὼi see Eq. (3.59) [61].
15: Σ = Σ− ((∆ὴ)−1 + Σii)

−1CiC
>
i ; // see Eq. (3.70) [61], where Ci is i

column of Σ.
16: µ← Σὼ; // see Eq. (3.53) [61]
17: i← i+ 1;
18: end for
19: L← cholesky(In + Č

1
2KČ

1
2 );

20: \\Č diagonal of Σ, In identity matrix.
21: V ← L>\Č 1

2K

22: Σ← K − V >V
23: \\See Eq. (3.53) and (3.68) [61].
24: µ← Σὼ

25: \\Recompute approximate posterior parameters see Eq. (3.53) [61].
26: until convergence.
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Algorithm 3 GPEP regression (adapted from Algorithm 3.6 in [61])
Inputs: k : covariance function, p∗ : nondeterministic test point, c ∈ (0, 1) :

confidence (coverage probability), ὼ, ὴ : natural site parameters (computed
by Expectation-Propagation)

Output: ȳ∗: mean Pr(p∗) value, Low: lower CI bound, Up : upper CI bound
1: L← cholesky(In + Č

1
2KČ

1
2 );

2: ζ ← Č
1
2L>\(L\(Č 1

2Kὼ));
3: ȳ∗ ← k(p∗)>(ὼ − ζ); // compute mean value (Eqs. (3.60) and (3.71) [61])
4: t← L\(Č 1

2k(p∗)); // see Eq. (3.61) [61]
5: V(y∗)← k(p∗,p∗)− t>t;
6: Low,Up← CDF(ȳ∗ ∓ CDF−1(1− (1− c)/2)V(y∗)); // compute confidence

intervals of coverage at least c (Eq. (3.72) [61])
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Algorithm 4 Formal approach collecting Pr enclosures phase for the combined
approach (adapted from Algorithm 3 in [72])
Inputs: (H,P): SnPHS(Prand, Pnon),

ssss l ∈ N: reachability depth,
ssss ε ∈ Q+: enclosure precision,
ssss κ ∈ (0, ε): size of probability enclosures,
ssss ρ ∈ Q+: precision for nondet parameter box,
ssss η ∈ Q+: multiplier for controlling precision of δ-decision procedure.

Output: Lup, Llow: lists of upper and lower values of the probability enclosure.
1: Q← (BN , [a, b],ΠR); // BN is a nondeterministic parameter box, [a, b] is a

probability enclosure and ΠR is a list of random parameter boxes.
2: repeat
3: Q→ (BN , [a, b],ΠR);
4: repeat
5: BR ← ΠR;
6: [c, d]←measure(BR,P, (ε− κ)µ

+(BR)
µ+(PR)

); // See Algorithm 5 in
Section 3.5.2 of [72].

7: δ ← η ·min
(
|BR|+

)
;

8: switch evaluate(H, l, BRxBN , δ) do
9: case sat do a← a+ c;

10: case unsat do b← b− c;
11: case undet do form QR // BR is partitioned using

procedure bisect, and each obtained sub-box is pushed to the queue QR to
be analysed in the next iteration of the outer loop (see [72]).

12: until (|ΠR| = 0)

13: if (|[a, b]| ≤ ε) ∨ (|BN | ≤ ρ) then
14: L← (BN , [a, b]); // L is a list of pairs (nondet. parameter box,

probability enclosure.
15: else
16: for B ∈ QN do
17: Q← (B, [a, b], QR);
18: end for
19: end if
20: until (|Q| = 0)

21: Lup = max(L), Llow = min(L);
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Algorithm 5 GP regression for the combined approach (adapted from Algorithm
2.1 in [61])
Inputs: k : covariance function, Lup: list of upper bounds of probability enclo-

sures, Llow: list of lower bounds of probability enclosure, p∗ : nondetermin-
istic test point, c ∈ (0, 1) : confidence (coverage probability)

Output: CIs with coverage c.
1: Sup ← cholesky(K(Lup) + σ2I); // compute Cholesky decomposition (see

[61, Appendix A.4])
2: αup ← S>up\(Sup\(Lup);
3: ȳ∗up ← k>∗ αup; // compute mean value (Eq. (2.25) [61])
4: tup ← Sup\k∗;
5: Vup(y

∗
up)← k(p∗,p∗)− t>uptup; // compute variance (Eq. (2.26) [61])

6: Ub ← CDF(ȳ∗up + CDF−1(1− (1− c)/2)Vup(y
∗
up)); // compute CI upper

bounds for Lup points
7: 〈 repeat steps 1-5 for Llow points 〉
8: La ← CDF(ȳ∗lo − CDF−1(1− (1− c)/2)Vlo(y

∗
lo)); // compute CI lower

bounds for Llow points
9: return [La, Ub]
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A.2 Tools Usage

A.2.1 Confidence Interval Estimation Tool Usage

Confidence Interval Estimation Tool can be executed by running the fol-
lowing command:

qmc_verifier <options> <solver-options> <file.pdrh/file.drh>

The examples below demonstrate an application of the developed CI esti-
mation approaches to the Deceleration model (see Figure 4.2). The full list of
command line arguments available can be found in documentation1.

Example A.1. (Applying Confidence Interval Estimation modified CLT
method to Deceleration model)

./qmc_verifier -t 3 --qmc-acc 0.1 --qmc-conf 0.99

--CI CLT --verbose-result --solver dReal

../../EPPR-models/deceleration/stop-nonlinear.pdrh

where

• -t 3 - specifies the reachability depth l = 3.

• –-qmc-acc 0.01 - specifies the half-size of the confidence interval computed
by chosen CI estimation method.

• –-qmc-conf 0.99 - specifies the confidence value for chosen CI estimation
method.

• –-CI CLT - defines a CI estimation method (CLT - CLT, AC - Agresti-
Coull, W - Wilson, L - Logit, ANC - Anscombe, ARC - Arcsine, Q - Qint,
ALL - all listed methods, CP - exact Clopper-Pearson (see Chapter 2)).

• –-verbose-result - provides detailed output.
1https://github.com/dreal/probreach/blob/master/doc/usage.md
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• –-solver dReal - specifies the full path to the solver executable. In this
example it is assumed that the directory containing dReal is added to the
path or defined as a symbolic link.

• ../../EPPR-models/deceleration/stop-nonlinear.pdrh - specifies the
full path to the file containing the PDRH model, presented in Figure 4.2.

Confidence Interval Estimation Tool produces the following output:

...

------------

ICDF sample :beta:[3.89002093333449,3.89002093333449];

UNSAT

Number of SAT: 2033

Number of UNSAT: 20103

Number of UNDET: 0

ressat: 0.09184134441633539

resunsat: 0.09184134441633539

points: 22136

samplevar = 0.08341027995489453

Interval/2 = 0.005000083948350912

------------

ICDF sample :beta:[4.034701951195709,4.034701951195709];

UNSAT

Number of SAT: 2033

Number of UNSAT: 20104

Number of UNDET: 0

ressat: 0.09183719564529973

resunsat: 0.09183719564529973

points: 22137

samplevar = 0.08340689290084505

Interval/2 = 0.004999869493754902

------------

1-test running points = 22137
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CI Interval:

[8.6837326151544839e-02,9.6837065139054643e-02] | 9.9997389875098042e-03

...

The output represents the two last evaluations of the parameter’s point and
shows the sample point, goal decision, total number of SAT/UNSAT and UNDET
results (see Section 3.2.1), satisfaction proportion for SAT values, total points
number, current sample variance and half of the intervals size. In the last string
of the output we can see final CI values [ , ] and the returned CI’s size.

These produced CIs are presented in Chapter 5 in Table 5.3.

Example A.2. (Applying the full range of confidence interval estimation
methods to Deceleration model)

./qmc_verifier -t 3 --qmc-acc 0.1 --qmc-conf 0.99

--CI ALL --verbose-result --solver dReal

../../EPPR-models/deceleration/stop-nonlinear.pdrh

An example of the produced output is presented below:

...

---------------------------------------------------------

CLT RESULTS:

10-tests average running points number for CLT=22393

[INTERVAL CLT]= [0.08668385001344965,0.0966837436565206]

---------------------------------------------------------

AGRESTI-COUL RESULTS:

10-tests average running points number for AC=22673

[INTERVAL AC]= [0.08667091848577629,0.09667052692221982]

---------------------------------------------------------

WILSON RESULTS:

10-tests average running points number for W=22517

[INTERVAL W]= [0.08680819267258803,0.09680816001757328]

---------------------------------------------------------

LOGIT RESULTS:

10-tests average running points number for L=22628

162



[INTERVAL L]= [0.08486976079398766,0.09486953595889873]

---------------------------------------------------------

ANSCOMBE RESULTS:

10-tests average running points number for ANS=22623

[INTERVAL ANS]= [0.08489267369498253,0.09489265488272093]

---------------------------------------------------------

ARCSINE RESULTS:

10-tests average running points number for ARC=24365

[INTERVAL ARC]= [0.08479567364498253,0.09499567311242648]

---------------------------------------------------------

QINT RESULTS:

10-tests average running points number for QINT=20318

[INTERVAL QINT]= [0.0885282452483752,0.09852432348023947]

---------------------------------------------------------

The output represents final CIs values and the returned CI’s sizes per every
method. These produced CIs were presented in Chapter 5 in Table 5.3.

A.2.2 GPEP Tool Usage

GPEP Tool can be executed by running the following command:

gp <solver-options> <file.pdrh/file.drh> <options>

The example below demonstrates application of GPEP Tool to the Deceler-
ation model presented in Figure 4.5. The full list of command line arguments
available can be found in documentation1.

Example A.3. Applying GPEP Tool to deceleration model (see Figure
4.5 )

./gp -u 3 --verbose ../../EPPR-models/deceleration/stop-nonlinear.pdrh

-n 20 --conf 0.99 --samples 100

where
1https://github.com/dreal/probreach/blob/master/doc/usage.md
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• -u 3 - specifies the reachability depth l = 2.

• –-verbose - provides detailed output.

• ../../model/IFM/cars-old/stop-nonlinear.pdrh - specifies the full path
to the file containing the PDRH model, presented in Figure 4.5.

• -n 20 - specifies number of points.

• –-conf 0.99 - specifies the confidence of CIs for EP algorithm.

• –-samples 100 - specifies number of samples.

GPEP Tool produces the log.txt file with the following output:

getClassProbabilities getLowerBound getUpperBound

------ ------ ------

length=20 length=20 length=20

0.0829272 0.0594135 0.112837

0.192409 0.152558 0.238051

0.00550462 0.00137792 0.0182607

0.0287358 0.0158105 0.0494464

0.205186 0.158444 0.259268

0.148464 0.114409 0.188706

0.000617304 2.33169e-05 0.00843252

0.00194342 0.000225692 0.0117152

0.174433 0.136279 0.218758

0.203347 0.136042 0.287339

0.0523111 0.0341042 0.0775036

0.0135741 0.00555663 0.0300782

0.202232 0.161988 0.247926

0.11662 0.0877773 0.151613

0.000185826 1.49762e-06 0.00718803

0.000339633 6.26731e-06 0.00760053

0.133063 0.101561 0.170715

0.204449 0.162418 0.252353
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0.0201346 0.00974632 0.0386994

0.0669403 0.0460768 0.0944565

The output represents estimated mean reachability probability function (get-
ClassProbabilities), CI lower bound (getLowerBound) and CI upper bound (getUp-
perBound) per every input point (20). The obtained results are visualised in
Chapter 5 in Figure 5.10.

The tool also produces the test.scv file with the following output:

N% NOND-point CPLower CPUpper CPCenter

0 0.1046 0.032117 0.189152 0.09

1 0.1523 0.100817 0.309838 0.19

2 0.0574 0 0.051604 0

3 0.0763 0.003407 0.105481 0.03

4 0.1742 0.116101 0.332522 0.21

5 0.1247 0.064548 0.251285 0.14

6 0.0261 0 0.051604 0

7 0.0372 0 0.051604 0

8 0.1376 0.078684 0.275057 0.16

9 0.1876 0.116101 0.332522 0.21

10 0.0874 0.020789 0.162803 0.07

11 0.0622 5.01E-05 0.0719577 0.01

12 0.1636 0.108411 0.321226 0.2

13 0.1126 0.051009 0.226955 0.12

14 0.0111 0 0.051604 0

15 0.0183 0 0.051604 0

16 0.1187 0.057697 0.239196 0.13

17 0.1686 0.108411 0.321226 0.2

18 0.0689 0.001039 0.0894307 0.02

19 0.0931 0.026301 0.176114 0.08

The obtained results representing Clopper-Pearson CI estimation method (see
Subsection 2.4.1) for comparison with the GPEP results were visualised in Chap-
ter 5 in Figure 5.10.
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