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Abstract

We present an actor platform for wireless sensor networks (WSNs). A typical WSN may consist of

hundreds to tens of thousands of tiny nodes embdedded in an environment. Hence, manual reprogram-

ming of nodes for development, fixing bugs and updating features is an arduous process; moreover, in

some cases physical access to nodes is simply out of the question. In an attempt to address this problem,

network reprogramming tools such as Deluge and MNP [10, 14] have been developed. Unfortunately,

these bulk reprogramming services incur significant costs in terms of energy usage, latency, and loss of

sensing coverage when nodes are rebooted into a new program image. ActorNet, in contrast, provides an

environment for lightweight concurrent object-oriented mobile code on WSNs. As such, actorNet enables

a wide range of new dynamic applications on WSNs, including support for fully customizable queries and

aggregation functions, in-network interactive debugging facilities, and high-level concurrent program-

ming on the inherently parallel sensor network platform. Moreover, actorNet cleanly integrates all of

these features into a fine-tuned, multi-threaded embedded Scheme interpreter which supports compact,

maintainable programs – a significant advantage over primitive stack-based virtual machines [15, 8].

1 Introduction

A Wireless Sensor Network (WSN) is a system of autonomous sensor nodes which interact via wireless com-

munication channels. Canonical WSN applications include environment monitoring [16], target tracking [5],

intrusion detection [3] and structural health monitoring [4]. These applications are enabled by the unique

features of WSNs, such as independent energy sources, wireless communication channels and large-scale de-

ployment of inexpensive devices. However, these features also impose severe constraints on WSNs, including
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a finite energy supply, low network bandwidth, and limited memory and processing power.

Typically, sensor nodes may be deployed in the field, monitor environmental data, and perform some

logging or communication. Some applications may require global data metrics, such as the mean and

variance of a parameter across the network. One means to maintain a global view is to collect all data at a

base station; however, due to limited power, this technique sacrifices network longevity, especially near the

base station. On the other hand, if each node is pre-programmed to process data locally, then the system

cannot adapt to changing requirements. As such, a mobile agent platform is an attractive solution: agent

programs migrate from node to node, and sample and process data on the spot. All data need not be

collected centrally, and agents can be injected into the WSN on a need basis. Moreover, it is well known

that as the working data set size grows, the overhead incurred due to agent migration becomes negligible;

past a certain point, mobile agents prove more cost effective than data transfer.

Communication in WSNs can be different from other network systems. For example, a temperature

monitoring application may need to know the maximum temperature across a network. In this case, messages

need only be forwarded to the extrema, ideally along the paths of steepest temperature ascent. Generic

spanning tree-based packet routing or distance vector routing does not take into account this information.

Such environment-dependent routing can easily be implemented with mobile agents. Comparing the amount

of data involved in broadcasting commands and collecting data against the cost of agent migration, it becomes

clear that for large networks, mobile agents are a plausible, and indeed a desirable technique.

In addition to efficiency, we must consider the level of abstraction in WSN application development.

Applications for Mica2 motes are generally developed in NesC. Unfortunately, the low level of abstraction

which NesC inherits from C makes it unnecessarily complicated and time-consuming to write code to measure

environmental data, exchange data with other nodes, and perform some coordination. To alleviate this

development bottleneck, this paper presents a simple actor language that has concise, high-level abstractions

for complex operations such as message exchange, multi-threading, and process migration.

The main contributions of this paper are as follows:

1. Definition of a high-level language for actor programming on wireless sensor nodes. Our language

enables much more expressive, maintainable programs than previous mobile agent systems for wireless

sensor networks.

2. Virtual memory manager with garbage collection for deeply embedded systems. Our solution overcomes

the tight memory constraints of wireless sensor nodes and other microcontroller-based systems, while

maintaining good response times.
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3. Application-level multitasking service. Provides support for multiple threads written to the simple

blocking I/O model, while maintaining the efficiency of non-blocking I/O.

4. ActorNet platform implementations on the PC and Mica2 wireless sensor nodes.

5. Evaluation of ActorNet platform performance using a real application.

2 Related Work

KVM [11] is a compact Java virtual machine designed for embedded systems. As a virtual machine, it

provides a uniform computing environment for application programs regardless of hardware and operating

system differences. Its class loader [2] makes it possible to dynamically load applications onto nodes via

the network, and a form of process migration is possible through object serialization. One of its merits is

its applications are written in the popular Java programming language [2]. However, it requires a memory

space of 128–256 Kbytes. Hence, it is not suitable for wireless sensor nodes such as the Mica2, which only

has 4 Kbytes of SRAM.

Deluge [10] is a network reprogramming protocol especially designed for cases when application code size

is larger than node memory space. The protocol works by comparing versions of applications: each node

advertises the versions of its applications. If there exists a higher version of the applications on its neighboring

nodes, it requests and installs them. With this protocol, we can easily maintain applications on a WSN.

However, when we need to update only few nodes, it does too much work. Moreover, some applications are

only needed temporarily, and hence need not reside in a node’s permanent program memory.

Mate [15] is a high-level stack-based virtual machine for sensor networks. Its high level instructions, like

OPson, which turns on the sounder, makes application code size small, and make it suitable to transfer code

over the network. However, its primitive, assembler-like language makes it difficult to maintain applications.

Agilla is another virtual machine for sensor networks which supports code mobility [8]. Like Mate, Agilla

also is a stack-based virtual machine with a powerful instructions set. However, unlike Mate, which supports

only a single application program per node, Agilla supports multiple applications. It also supports a Linda-

like tuplespace that decouples data from spatial constraints. However, like mate, programmability and code

maintainability pose a challenge due to the low level of language abstraction.

Other than the actual implementations of virtual machines, research has also been pursued on the def-

inition of languages for coordination in distributed environments. In [12], rather than sending data, a

continuation is transferred to a remote node and data is communicated locally, so as to resolve synchro-
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nization issues (communication-passing style). Although we do not send continuations for this purpose, our

notion of process migration is similar to this mechanism.

3 Example ActorNet Application

actorNet is an implementation of the actor model of distributed computing [1] for wireless sensor networks. In

this section, we present an example application that demonstrates how actorNet can be used to create sensor

network applications and coordination services. Our example consists of an actor migrating through the

WSN, in search of a maximal temperature–a typical environment monitoring task. The example demonstrates

the high level of abstraction which actorNet provides for WSN application development. An outline of the

application follows:

1. An actor A broadcasts to its neghbors a small actor that measures the temperature at a node and

sends back the result.

2. Actor A determines the local maximum temperature and migrates itself to the corresponding node.

When it migrates to another node, A records where it migrated from so that it can forward the

maximum temperature reading back along the path it followed.

3. When it arrives at a maximal temperature point, A migrates back to the base station. When it arrives

at a base station it prints out the temperature value.

Note that in this example we do not need any support for message routing. An actor locally broadcasts and

moves itself to its neighbor with the greatest temperature. The return path is constructed as it migrates

from node to node.

Let us first consider a migrate function that makes an actor migrate to another node and continue its

execution. The state of an actor can be considered as a pair of a continuation and a value to be passed to the

continuation. Using this representation, an actor can easily migrate itself to a neighboring node by sending

a list containing its current continuation, which can be obtained via callcc, and an associated argument

value. More precisely, migrate can be defined as follows:

(lambda (adrs val) ;; migrate
(callcc

(lambda (cc)
(send (list adrs cc (list quote val))))))
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(rec (move path temp)
(par

(send (list 0 measure id));;broadcast a measure actor
( (lambda (dummy maxt)

(par
(cond (le (car maxt) temp) ;;if it arrives at an maximal point

(return migrate path temp) ;;then return the temp
(move ;;otherwise move to the highest temp. reading node.

(cond (equal path nil)
(cons launch path) ;;add a launcher actor address
(cons (io 0) path)) ;;append its HW-ID to the path

(migrate
(cadr maxt) ;;migrate to the highest temp. node
(car maxt)))) ;;pass the max temp. to the current continuation

(setcdr msgq nil))) ;;reset msgq
(delay 100) ;;wait 10 sec
(max (cdr msgq) (list 0 0))))) ;;find the max temp. and its node

Figure 1: An example actor program that migrates to a maximal temperature point of a WSN and returns
the temperature back to the base station.

Note that there is a launcher actor running on every actorNet platform that regards messages sent to it

as the continuation-value list and applies the continuation to the value. As a simple example, the expression

(add 1 (migrate 100 2)) evaluates the numbers 1 and 2 at the current node, migrates itself to node 100,

and then adds 1 and 2 at node 100. Note that with this approach, an actor can migrate at any point during

its program execution.

Figure 1 shows the code of our temperature-search example. The program first broadcasts a measure

actor that reads a temperature at a remote node and sends back the reading. The sender waits for a 10

seconds and then checks its message queue, msgq, for the measurement. The measure actor is a simple

anonymous function:

(lambda (ret)
(send (list ret (io 1) (io 0)))).

The (io 1) call returns a temperature reading and the call (io 0) returns the node id of the platform.

The launcher actor of a remote platform will call this function with the return address. Although the

measure actor is a simple function that reads temperature and returns the reading, it could potentially be

any arbitrarily complex function. That is, one can easily distribute complex sub-processes to other nodes

and later collect the results in the form of messages. This simple example shows how naturally actorNet

provides a concurrent programming environment.
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The move function takes as arguments a return path and the current maximum temperature reading. As

we have seen in the simple example of the previous paragraph, migration occurs after evaluating the second

parameter. The 9th line of Figure 1 shows how the actor migrates to another node: it first appends its node

id– (io 0) –to the path and then migrates to the node where the greatest temperature was read. When it

arrives at a maximal temperature point, it returns the temperature value using the return function, shown

below:

(rec (return migrate path temp)
(cond (equal path nil)

(print temp)
(return migrate (cdr path) (migrate (car path) temp))))

The return function performs a similar task as move: it migrates across the nodes along the return path.

Note how easily one can migrate a process from one node to another. By providing these simple-to-use,

high-level features, actorNet enables rapid development of powerful WSN applications.

4 Language and Semantics

In this section we describe the syntax and semantics of the actorNet language. The syntax and local semantics

are similar to those of Scheme [7]. The concurrent semantics at the inter-actor level is defined as a transition

relation from one configuration to another.

4.1 Data Structures

The state of an actor is represented as a triple

A(id , continuation,M )

where id is a unique actor name–represented by an integer, continuation is a sequence of actions to be per-

formed by the actor, represented in the form

act1 → act2 → . . . → stop

and M : address → value × value is a mutable memory array used to store cons cells. In general, we rep-

resent continuations by the variable K. Note that actions in a continuation may include an environment,

E : name → value, which is a mapping from variable names to values. These values may be constants

(including actor names) or addresses of cons cells in the memory array, i.e., value := constant | address . An

asynchronous message is represented as a pair
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msg(recipient-id, value).

Note that compound values, such as lists, are passed by copying, not as references to another actor’s memory

space. The configuration of an actor system is represented as a set of actor states and messages

A1 | · · · | Am | msg1 | · · · | msgn.

4.2 Syntax

The syntax of an actor program is defined as

Exp ::= Num | Sym

| (lambda (Sym∗) Exp)
| (if test-Exp true-Exp false-Exp)
| (begin Exp∗)
| (par Exp∗)
| (quote Exp)
| (Op Exp∗)

Op ::= Prim | Exp
where Num is the set of numerical values, Sym the set of symbols or names, and Prim = {car, cdr, . . .} is

the set of primitive procedures built into the actorNet platform.

4.3 Semantics

The semantics of actor programs is defined as a transition relation on equivalence classes of configurations.

We first specify the equations defining the equivalence classes on configurations. We then define a transition

relation λ⇒ for the internal transitions on actor states. The interaction amongst actors is defined by a

transition relation ⇒.

The equivalence class equations on states are as follows:

eval(n, E) → K = val(n) → K

eval(s, E) → K = val(E[s]) → K

eval((lambda (args) body), E) → K = val(cl(args , body , E)) → K

eval((if test texp fexp), E) → K = eval(test , E) → if(texp, fexp, E) → K

eval((quote exp), E) → K = val(exp, E) → K

eval((op e1 ...en), E) → K = eval([op, e1, . . . , en], [ ], E) → apply(E) → K

eval((begin e1 ...en), E) → K = eval(e1, E) → discard → . . . → eval(en, E) → K

eval(exec(s, K ′), E) → K = val(E[s]) → K ′

val(v) → eval([. . .], [. . .], E) → K = eval([. . .], [. . . , v], E) → K

The local transition relation λ⇒ on actor states is as follows:
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val(true) → if(texp, fexp, E) → K
λ⇒ eval(texp, E) → K

val(false) → if(texp, fexp, E) → K
λ⇒ eval(fexp, E) → K

eval([e, . . .], [. . .], E) → K
λ⇒ eval(e, E) → eval([. . .], [. . .], E) → K

eval([ ], [. . .], E) → K
λ⇒ val([. . .]) → K

val([#prim , ..args ..]) → apply(E) → K
λ⇒ prim(..args .., E) → K

cons(v, v′, E) → K, M
λ⇒ val(vc) → K, M{vc ← (v, v′)} where vc is fresh

car(v, E) → K, M
λ⇒ val(M [v].car) → K, M

cdr(v, E) → K, M
λ⇒ val(M [v].cdr) → K, M

setcar(v, v′, E) → K, M
λ⇒ novalue → K, M{v ← (v′, M [v].cdr)}

setcdr(v, v′, E) → K, M
λ⇒ novalue → K, M{v ← (M [v].car, v′)}

callcc(v, E) → K
λ⇒ val([v, cl([s], exec(s, K), ∅)]) → apply(E) → K

val([v, ..args ..]) → apply(E) → K
λ⇒ eval(v.body, v.E{v.args ← args}) → K

Note that the above constitutes the continuation-passing style operational semantics for a basic Scheme-

like language. The concurrent transition relation ⇒ on actor configurations is as follows:

A(id , eval((par e1 ...en), E) → K, M) ⇒ A(id ′
1, eval(e1, E) → stop, M) | · · · |

A(id ′
n−1, eval(en−1, E) → stop, M) |

A(id , eval(en, E) → K, M)
A(id , create(v, E) → K, M) ⇒ A(id , val(id ′) → K, M) | A(id ′, eval(v, E) → stop, [ ], [ ])

where id ′ is fresh
A(id , send(v, v′, E) → K, M) ⇒ A(id , novalue → K, M) | msg(v, marshal(M, v′))

A(id , recv(E) → K, M) | msg(id , m) ⇒ A(id , val(v) → K, unmarshal(M, v, m)) where v is fresh

The par and create operations allow for implicit and explicit actor creation, while send and recv enable

communication amongst actors. The marshal and unmarshal functions are required to provide a linearized

representation of a complex memory graph when compound values are transmitted.

5 ActorNet Architecture

As mentioned, an actorNet system is a collection of actorNet platforms running on sensor nodes or PCs.

Platforms are networked via wireless channels and the Internet. Each platform hosts several computing

elements, called actors, which are able to interact with each other both locally and over the network. Like

other virtual machines, the actorNet platform provides a uniform computing environment for all actors,

regardless of hardware or operating system differences.

Figure 2 shows an actorNet configuration, consisting of sensor node platforms (small circles) and PC
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Figure 2: ActorNet architecture

Actor ActorActor
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VM Driver
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Mica2 Hardware

Interpreter

. . . .

Application−Level Context Switcher

Figure 3: Software architecture of an ActorNet
platform (Mica2 node)

platforms. The platforms are connected via two types of server programs called forwarder and repeater.

PC actorNet platforms and repeaters are connected through a forwarder via TCP/IP [21]. Repeaters are

hosted on PCs, and communicate with sensor networks via a special GenericBase [18] sensor node, which

serves as a bridge. The forwarder maintains a list of connected repeaters and PC actorNet platforms, and

broadcasts received packets to all repeaters and PC platforms. Repeaters copy packets from a WSN to the

forwarder and vice versa. Because of the bandwidth difference between WSNs and the Internet, repeaters

buffer packets from the forwarder to sensor nodes and transmit them gradually.

Figure 3 depicts the layered software architecture of a sensor node actorNet platform. Note that while

lower layer modules do not make use of higher layer modules, higher layer module may depend on several

lower layer modules, not just those directly below. However, actors only use the interpreter module; thus

the implementation details are hidden from actor programs.

5.1 TinyOS and Mica2

Currently, the sensor node actorNet platform is specifically designed for Mica2 hardware. The Mica2 has an

8 MHz 8-bit ATmega 128L CPU with 4 KB of SRAM, 128 KB of program flash memory and 512 KB of serial

flash [6]. The 4 KB SRAM space is shared by the stack, heap, and all TinyOS components’ static variables.

As mentioned earlier, this places a tight memory constraint on applications requiring several coordination

services.

Application code, large constant tables, and log data are loaded in the flash memory units. ActorNet

uses the serial flash memory as a virtual memory space. Flash memory read operations are fast, but writes

are slow–it takes ∼15 ms to write a 128-byte page.
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Mica2 hardware is equipped with a CC1000 RF transceiver for single-duplex wireless communication. At

the bit-level, TinyOS uses Manchester encoding [21], achieving a theoretical raw throughput of 38.4 Kbits/sec.

In practice, we are able to transmit about 20 34-byte packets per second. Internally, TinyOS employs a carrier

sense multiple access (CSMA) medium access control protocol, called B-MAC [17], together with SEC-DED

encoding and a 16-bit cyclic redundancy code (CRC) on each packet, which allows recievers to detect data

corruption. In addition to the wireless transceiver, Mica2 units feature an RS-232 serial interface [19],

allowing communication with PC-based applications through an interface board. A GenericBase node is a

specially-programmed Mica2 node that serves as a bridge between the wireless and serial channels.

Other notable features of the Mica2 include an independent energy source and a variety of available sensor

boards. The ability to run off of a pair of AA batteries allows a Mica2 to be deployed practically anywhere;

however, this also imposes strict power usage constraints. Add-on sensor boards included capabilities such

as a microphone, photo sensor, magnetometer and accelerometer.

TinyOS is a lightweight operating system for sensor nodes written primarily in NesC [9]. The system is

structured as a collection of modules which are statically linked together based on a component specfication.

Modules consist of statically-allocated variables and three different types of program blocks: command, event,

and task. Service requests are typically split-phase: a caller invokes a command, which returns quickly;

once the request is satisfied, the service calls back to a corresponding event procedure in the caller. This

communication pattern enables higher application throughput as compared to simple blocking I/O. Long-

running procedures are explicitly executed as tasks, which are scheduled in series and run to completion.

Since only interrupts can pre-empt tasks or lower-priority interrupt handlers, if multiple processes must be

run concurrently, they must be explicitly segmented into a sequence of tasks.

5.2 Virtual Memory

Since the 4 KB SRAM space on the Mica2 is insufficient for many applications, actorNet provides a virtual

memory (VM) subsystem. We use 64 KB of the 512 KB serial flash as virtual memory; this space is

efficiently indexed by a 16-bit integer. The virtual address space is divided into 512 pages of 128 bytes each.

Additionally, 8 pages of SRAM (1 KB) are used as a cache for the virtual memory.

An inverted page table [20] is used to search the cached pages for a requested address. It is implemented

as a priority queue that maintains the 8 most recently used pages. Hence, SRAM pages are replaced via

an least recently used (LRU) policy. Figure 4 shows the structure of a page. The 128 byte page is divided

into a 112-byte data area, a 14-byte bitmap, and a 1-bit dirty bit flag, a 4-bit lock count, and 11 bits of
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BitmapData

Dirty bit: 1 bit

Lock count: 4 bits

Reserved: 11 bits

14 bytes112 bytes

Figure 4: Memory page structure

reserved space. Because flash memory writes are slow, we use the dirty bit to avoid writing pages which are

evicted from the cache unmodified. The lock count is used to prevent the VM subsystem from swapping

out certain pages. For example, the communication driver of Figure 3 uses 104 bytes of static variables,

defined in a structure called ComData. Because this data includes buffers which must be shared with the

TinyOS communication subsystem, its page must be locked during receive or transmit operations; this is

accomplished by calling the VM’s lock procedure, subsequently followed by a call to unlock.

Since there are 112 bytes of data area per page, the effective virtual memory space is 56 KB (512× 112).

In Figure 4, an allocation bitmap with 8-byte granularity is maintained at the end of each page. Note that

the whole 4 KB SRAM space of the Mica2 is not large enough to hold the bitmap of all 56 KB of virtual

memory space: 56KB/8 = 7KB. Distributing the bitmap at each page has disadvantages when searching for

free space, because a VM driver has to load each page from flash to check for free space. On the other hand,

it is crucial to save the precious SRAM space.

The current implementation of the VM driver does not perform memory compaction. This is because the

actorNet platform does not need to frequently allocate large chunks of memory; the primary data types are

small: bytes, integers, single precision floating point numbers, and a pairs of 16-bit addresses (cons cells).

The large blocks of memory used in conjunction with the lock-unlock mechanism are allocated once when

the modules are initialized and never reallocated. As such, fragmentation is a non-issue from a memory

availability standpoint.

5.3 Application-Level Context Switching

Most TinyOS I/O operations follow the non-blocking command-event model. While this improves CPU

utilization, it also complicates application development. This model would be infeasible to support directly

in actorNet modules, since every virtual memory access potentially involves split-phase flash memory I/O.

For example, let us consider the code in Figure 5. The code on the left assumes blocking I/O: bar calls foo

and foo calls read, which performs I/O. Without blocking I/O, we must use something like the right hand
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foo() {
int a;

...

read();

...

}
bar() {

int a;

...

foo();

...

}

int foo a;

int bar a;

prefoo() {
...

preread();

}
postfoo() {

postread();

...

}

prebar() {
...

prefoo();

}
postbar() {

postfoo();

...

}

Figure 5: Code examples with and without blocking I/O

side of Figure 5: the read and its callers must be divided into two parts. The problem is that every time read

is called, the functions along the call chain must be divided into two parts. Furthermore, one cannot use

automatic local variables: all data must now be declared as static variables outside of the function definition.

This makes programs unnecessarily complicated, and also results in inefficient memory usage: local variables

must be exclusively allocated as static data rather than as temporary values on a shared stack.

In order to address the above problems with non-blocking I/O, we devised an application-level context

switching mechanism that simulates blocking I/O. To preserve portability and modularity, this is imple-

mented purely as an application-level service; we do not modify TinyOS itself. In order to explore the utility

of the context switching mechanism, let us consider the following NesC program for read. Note that there

is a spin-loop in the read function waiting for the isFlashReadDone variable to become true.

read() {
...
while(!isFlashReadDone)

yield();
return flashData;

}

task loop() {
resume();
post loop();

}

With our context switching mechanism the yield() call in the read function causes control to exit from

the resume() call of the loop task. Thus, TinyOS can schedule other tasks and process pending events.

Later, when the loop task is scheduled again and the resume function is called, control continues following

the yield() call of the read function as if it had just returned from yield. Note that we do not need to

divide the application program into two phases as in Figure 5. Hence the yield-resume mechanism eases

development of maintainable applications.

Figure 6 shows pseudocode for the yield-resume mechanism. In order to perform the context switching

correctly, stack contents and register values must be preserved. We reserve stack space for TinyOS and other
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jmp buf toTos, toApp;
void yield() {

if(setjmp(toApp)==0)
longjmp(toTos,1);

}
int resume() {

int r=setjmp(toTos);
if(r==0)

if(/*first time called*/)
stackBottom(500);

else
longjmp(toApp,1);

else
return r!=2;

}
void stackBottom(int n) {

char stack[n];
/*start ActorNet platform*/
longjmp(toTos,2);

}

Figure 6: Yield-resume: an application level context
switching mechanism

yield()

stackBottom()

resume()

TinyOS stack

stack[n] of stackBottom()

actorNet Platform stack

Figure 7: A stack configuration

applications by defining the stack[n] array in the stackBottom function. Register values including the

program counter and stack pointer are stored and reloaded through the setjmp and longjmp system calls.

The control flow for this mechanism is as follows.

1. When resume is called from TinyOS, it stores its register values in toTos. If this is the first time

resume has been called, stackBottom is called to allocate TinyOS stack space by defining stack[n]

array. Following stack reservation, stackBottom initiates the actorNet platform.

2. When actorNet calls yield, the current register values are stored in the toApp variable and control

flow returns from the setjmp call of the resume function. Note that control does not go back to the

stackBottom function. The value of r in resume is 1 in this case.

3. When the resume function is called again from TinyOS, the register values are restored from the toApp

variable and control flow is returned to the setjmp of the yield function.

4. When the actorNet platform finally finishes execution, control returns to the stackBottom function,

and finally back to the resume function. Note that the value of r is 2 in this case.

Figure 7 shows the stack configuration with this mechanism. In the figure, the stack fills up from

the bottom. The shaded area below resume() is the stack space used by TinyOS. The white area below
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stackBottom() is the additional stack space allocated to TinyOS in the stack[n] local variable. We use

n = 500 for Mica2 platforms and n = 5000 for PC platforms. Note that the TinyOS stack is limited to this

white area; while in general, we cannot anticipate stack usage, the applications running on a Mica2 is fixed

when a binary image is loaded. This, combined with the fact that most TinyOS applications do not employ

recursion, means that in most cases the stack usage is predictable. The shaded area above stackBottom()

is the stack space used by the actorNet platform. The yield() line shows the top of the application stack

when yield is called.

5.4 Multi-Phase Garbage Collector

The actorNet platform supports a mark and sweep garbage collection (GC) mechanism [13]. System-level

support for garbage collection has many benefits: it eases application development, eliminates the chances of

memory leaks, protects other actors from misbehaving actors, and reduces the actor code size. However, for

embedded applications, it also has one serious drawback: GC may not always occur at the most opportune

moment. This problem becomes especially severe for the actorNet platform because it takes a significant

amount of time to write pages to the flash memory. When virtual memory is lightly loaded, the marking

step can be done quickly. However, the sweeping step must check and restore all pages. In our experiments,

a mark and sweep GC algorithm can take as long as 10 sec. This is a serious problem for communication:

because of the memory limit, we cannot prepare enough buffer space for 10 sec while GC is running. We

have no choice but to reduce the communication speed: with a buffer for 4 packets we can only reliably send

1 packet every 2.5 sec.

In order to solve this problem, we divide the sweep step into many phases. At each phase a GC routine

sweeps 10 pages, which takes about 150 msec. Because actorNet has a communication buffer for 4 packets,

disregarding the mark phase, ideally, we can send as many as 26 packets per second. However, because we

sweep only 10 pages each phase, there are cases when we cannot find sufficient free space in the 10 pages. One

important detail in implementing the multi-phase garbage collection algorithm is how to maintain memory

allocated after the mark operation but before all sweep phases are finished: if a freshly allocated cell is

not marked, it will be swept. One way to solve this problem is to distinguish already-swept pages from

not-yet-swept pages and mark freshly-allocated memory only when it is in a not-yet-swept page.

The actorNet platform solves this problem in a more efficient way. Instead of using a single bit marking,

we use a 2-bit marking: every time the mark function is called, it changes marking bits between 1 and 2.

For the fresh memory reserved before sweep phases are done, we mark the memory with the current mark
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bit. This prevents the fresh memory from being swept away, and also saves flash write operations by not

modifying marked memory to be unmarked.

All actorNet platform datatypes have an associated type-tag byte. Since actorNet has only 9 types, we

can use 2 bits of the tag field for the marking algorithm. Note also that the size of data can be inferred

from the the type-tag. As such, the sweep algorithm can efficiently use this information to collect unused

memory.

In the actorNet platform, actor states are represented as a pair: a continuation and a value which will

be passed to the continuation. Thus, a reachability test from this state representation is easy. There is a

slight difficulty for an actor that is in the running state, since it may have temporary values that are not yet

linked to its state. For these temporary variables, the GC algorithm maintains an array of references to all

memory allocated during the execution of an actor prior to its yielding. The GC includes this list in its root

set when computing reachability. Note that this reference list is reset every time a new actor is scheduled to

execute.

6 Experimental Evaluation

In this section, we evaluate the experimental performance of the actorNet platform. First, we examine the

page hit ratio of the virtual memory subsystem. Second, we evaluate the performance of the multi-phase

garbage collector. Finally, we evaluate the communication costs incurred by actorNet.

6.1 Virtual Memory Performance

The current implementation of the actorNet platform has 30,960 byte of code and uses 1,967 bytes of data.

The code is stored in the Mica2’s 128 KB flash memory unit, leaving 100 KB for other applications; the

data is allocated in the 4 KB of SRAM space. Because the SRAM must be shared with other applications

and TinyOS, it is important to limit the number static variables. As mentioned in Section 5.2, we use

the lock-unlock mechanism to reliably store and load infrequently used variables from the virtual memory

space. The majority of actorNet’s memory usage is thus dedicated to the 1 KB virtual memory cache.

We use the following actor program to measure the performance of the virtual memory subsystem and

the garbage collector. The program computes the nth Fibonacci number.

(rec (fib n)
(cond (eq n 0)
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Figure 8: Page hit ratio

0
(cond (eq n 1)

1
(add (fib (sub n 1))

(fib (sub n 2))))))

As one might expect, as the page cache size increases, the page hit ratio increases as well. However, in a

resource-limited computing environment such as sensor node, we cannot increase the cache size unboundedly:

we must consider a tradeoff between performance and the number of applications that can be run on the

same platform (since not all applications are written to use our virtual memory manager). The first graph

of Figure 8 shows the page hit ratio vs. cache size (the number of pages stored in SRAM). Its shape is

approximately concave and increasing with the cache size. After about 14 pages, the slope becomes almost

flat. However, in the Mica2 platform, flash write operations dominate the time spent in the virtual memory

subsystem. Hence, considering only flash write operations as page-misses is a more accurate performance

measure for the actorNet platform. The second graph of Figure 8 shows the page hit ratio considering

only flash writes as page miss. This graph shows a plateau after 9 cache pages (the current actorNet

implementation uses 8 cache pages). However, because of the lock count, when a message encoding or

decoding task is running, it would use 7 cache pages. When there are 8 cache pages, the non-flash-write

page hit ratio is 99.24% while with 7 cache pages, the ratio becomes 99.06%.

6.2 Multi-Phase GC Performance

The slow flash write operation of the Mica2 also poses a challenge for the garbage collection service. As

mentioned earlier, the GC delay directly limits the communication speed. In order to reduce the delay due
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to GC, we have devised a multi-phase GC algorithm. In this section we evaluate the performance of the

multi-phase GC algorithm as a function of the number of pages swept per phase. The first graph of Figure 9

shows the number of flash write operations during a GC phase. The solid line shows the average number of

flash write operations, which can be interpreted as the expected delay due to GC for each phase, and the

dashed line shows the maximum number of flash write operations, which can be interpreted as the worst

case GC delay for each phase. The two lines are roughly increasing functions of the number of pages swept,

which agrees with our intuition. The second graph of Figure 9 shows the number of times GC is called during

an experiment. As is expected, it is a decreasing function of the number of pages swept per phase. The

current implementation of actorNet sweeps 10 pages per phase; its average number of flash write operations

is 3.02 per GC. If we choose the number of pages swept to be 100, then the average number of flash writes

is increased to 38.19. That is, when 10 pages are swept per phase, each GC phase takes about 45.3 msec on

average, and in the worst case it takes about 870 msec. Currently actorNet has a communication buffer for

4 packets; since the repeater of Figure 2 sends 1 packet at every 500 msec, a node can endure upto 2 sec of

delay.

There is another merit to multi-phase GC other than the reduced delay of each GC phase. Because

our memory reservation algorithm limits the search space for free memory within the interval of the last-

swept pages, if the number of pages swept per phase is small, freshly allocated memory addresses are highly

correlated in space and time. That is, the fewer the pages swept per phase, the higher the spatial and

temporal locality of allocated data. The first graph of Figure 10 shows the number of mark operations
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message content size (byte) number of messages
measure 107 4
temperature 27 1
move 1629 + hop*8 57+
return 474 + hop*4 17+

Figure 11: Amount of message

during an experiment. Note that for each round of GC, there are a single mark phase and multiple sweep

phases. Hence, the number of mark phases is an indicator of how efficiently the memory is used. The graph

roughly shows that the number of GC rounds increases with the number of pages swept per phase. The

second graph of Figure 10 shows the total number of flash write operations made for GC operations during

an experiment. It shows an increasing, concave curve: when few pages are swept per phase, related data

tends to aggregate. Thus, related data can more likely to be found in cache, which reduces the number of

flash write operations. However, sweeping too few pages at a time results in overly frequent call to the GC,

as one can see in the second graph of Figure 9.

6.3 Evaluation of Communication Performance

In this section we evaluate the communication costs of actorNet applications. We consider the example

application of Section 3. As mentioned, this application does not require a routing mechanism. It follows

a steepest ascent path of temperatures, and also maintains a return path by itself. Also note that it does

not involve spanning tree based data dissemination; the program migrates through the network, rather than

collecting all of the data at a central node. When the gradient based path is a straight line, and assuming

that nodes are uniformly distributed, the number of nodes involved in this experiment is proportional to
√

n

where n is the number of nodes in the WSN.

Figure 11 shows the number of messages sent in this experiment. Broadcasting a measurement actor

to neighboring nodes requires 107 bytes of data in 4 messages. Sending a temperature reading needs 27

bytes, which can be sent in 1 message, if necessary. However, in order to compute the total number of bytes

actually sent, this must be multiplied by the number of neighboring nodes. In order to move an actor along

the gradient ascent path, 1,629 bytes plus 8 bytes times the hop count thus far are necessary. The hop

count-related extra 8 bytes account for the local variables stored during migration (recursion). Note that

when the actor migrates back to the base station, it discards unnecessary structure of itself. As such, the

returning actor shrinks in size from 1,629+ bytes to 474+ bytes.
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7 Conclusions

We have developed an actor platform called actorNet for WSNs. actorNet provides a high level abstractions

for coordination in distributed systems, such as WSNs. The Scheme-like programming environment provides

high expressivity features, such as higher-order functions, and the intuitive communication mechanism makes

application development easier. The continuation-based actor state representation also makes it clear and

easy to manage multi-threading and process migration. actorNet also provides a solution for resource-

constrained computing environment: its virtual memory and application-level context switching mechanisms

enable applications to use large amounts of memory while maintaining code portability. We have demonstrate

the utility of the platform via a working temperature monitoring application.
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