

# eCommons@AKU

# Department of Biological & Biomedical Sciences

Medical College, Pakistan

10-7-2021

# Systematic review of polyherbal combinations used in metabolic syndrome

Amber Hanif Palla

Faridah Amin

**Bilgees Fatima** 

Arooj Shafiq

Najeeb Ur Rehman

See next page for additional authors

Follow this and additional works at: https://ecommons.aku.edu/pakistan\_fhs\_mc\_bbs

Part of the Animal Experimentation and Research Commons, Clinical Trials Commons, and the Pharmacology Commons

# Authors

Amber Hanif Palla, Faridah Amin, Bilqees Fatima, Arooj Shafiq, Najeeb Ur Rehman, Ikram Ul Haq, and Anwar-Ul-Hassan Gilani





# Systematic Review of Polyherbal Combinations Used in Metabolic Syndrome

Amber Hanif Palla<sup>1</sup>\*, Faridah Amin<sup>2</sup>, Bilqees Fatima<sup>3</sup>, Arooj Shafiq<sup>4</sup>, Najeeb Ur Rehman<sup>5</sup>, Ikram ul Haq<sup>6</sup> and Anwar-ul-Hassan Gilani<sup>7</sup>\*

<sup>1</sup>Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan, <sup>2</sup>Family Medicine, Liaquat National Hospital, Karachi, Pakistan, <sup>3</sup>Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan, <sup>4</sup>Department of Bioscience, Salim Habib University, Karachi, Pakistan, <sup>5</sup>Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj, Saudi Arabia, <sup>6</sup>National Institute of Health, Islamabad, Pakistan, <sup>7</sup>Department of Public Health and Nutrition, The University of Haripur, Pakistan

#### **OPEN ACCESS**

#### Edited by:

Mahendra Rai, Sant Gadge Baba Amravati University, India

#### Reviewed by:

Claudio Ferrante, University of Studies G. d'Annunzio Chieti and Pescara, Italy Luigi Brunetti, University of Studies G. d'Annunzio Chieti and Pescara, Italy

#### \*Correspondence:

Amber Hanif Palla amberpalla@yahoo.com Anwar-ul-Hassan Gilani vc@uoh.edu.pk anwarhgilani@yahoo.com

#### Specialty section:

This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

Received: 03 August 2021 Accepted: 20 September 2021 Published: 07 October 2021

#### Citation:

Palla AH, Amin F, Fatima B, Shafiq A, Rehman NU, Haq I and Gilani A-u-H (2021) Systematic Review of Polyherbal Combinations Used in Metabolic Syndrome. Front. Pharmacol. 12:752926. doi: 10.3389/fphar.2021.752926 **Background:** Metabolic syndrome (MetS) is a multifactorial disease, whose main stay of prevention and management is life-style modification which is difficult to attain. Combination of herbs have proven more efficacious in multi-targeted diseases, as compared to individual herbs owing to the "effect enhancing and side-effect neutralizing" properties of herbs, which forms the basis of polyherbal therapies This led us to review literature on the efficacy of herbal combinations in MetS.

**Methods:** Electronic search of literature was conducted by using Cinnahl, Pubmed central, Cochrane and Web of Science, whereas, Google scholar was used as secondary search tool. The key words used were "metabolic syndrome, herbal/poly herbal," metabolic syndrome, clinical trial" and the timings were limited between 2005–2020.

**Results:** After filtering and removing duplications by using PRISMA guidelines, search results were limited to 41 studies, out of which 24 studies were evaluated for combinations used in animal models and 15 in clinical trials related to metabolic syndrome. SPICE and SPIDER models were used to assess the clinical trials, whereas, a checklist and a qualitative and a semi-quantitative questionnaire was formulated to report the findings for animal based studies. Taxonomic classification of Poly herbal combinations used in animal and clinical studies was designed.

**Conclusion:** With this study we have identified the potential polyherbal combinations along with a proposed method to validate animal studies through systematic qualitative and quantitative review. This will help researchers to study various herbal combinations in MetS, in the drug development process and will give a future direction to research on prevention and management of MetS through polyherbal combinations.

Keywords: obesity, natural products, clinical trials, animal models, polyherbal

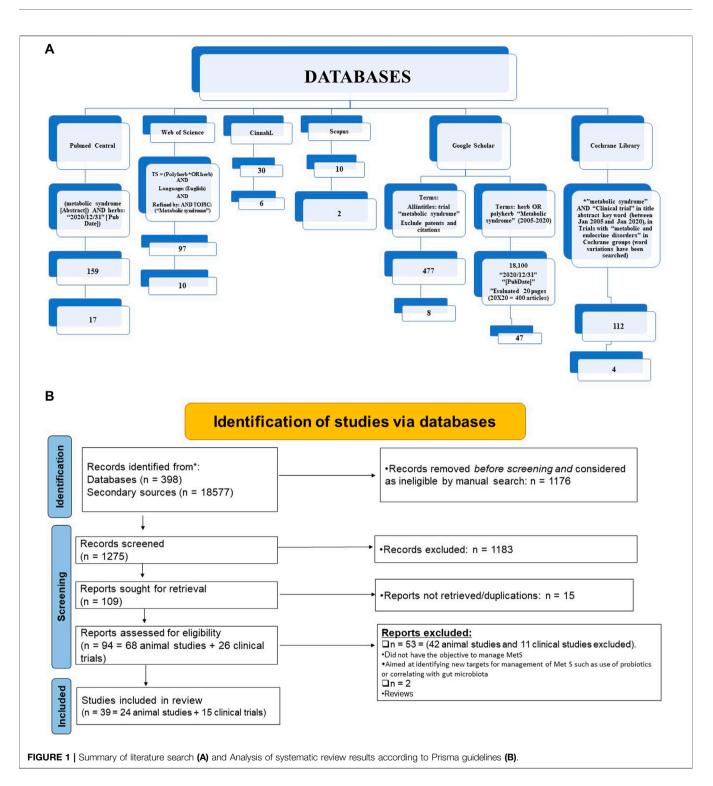
1

# INTRODUCTION

Non-communicable diseases (NCDs) account for 71% of the deaths worldwide with rising prevalence in lower- and middleincome countries (Huang, 2009; Robinson et al., 2013). NCDs have been ranked as one of the top ten global threats in 2019 by World Health Organization (Khowaja et al., 2007; Robinson et al., 2013). Metabolic syndrome (MetS) is a type of NCD with worldwide prevalence ranging from less than 10% to as much as 84% (Rhee et al., 2010) with the burden being greater in South Asian countries (Sever et al., 2003; Su and Li, 2011).

MetS is characterized by a cluster of three or more features including hyperglycaemia, hypertriglyceridemia, a low level of high-density lipoprotein cholesterol (HDL-C), blood pressure and central obesity (Bodeker and Kronenberg, 2002; Anderson and Taylor, 2012). A person who has at least three out of five of these characteristics is labelled as MetS patient. The following criteria should be met for MetS (AuH, 1998; Anderson and Taylor, 2012): waist circumference more than 35 and 40 inches in women and men, respectively (central obesity); triglycerides (TGs) 150 mg/dl or greater, HDL-C less than 50 and 40 mg/dl in women and men, respectively, blood pressure (BP) of 130/85 mm Hg or higher, fasting blood glucose (FBG) of 100 mg/dl or greater. Besides the above mentioned abnormalities, underlying initiators of MetS are inflammation, oxidative stress and insulin resistance (Ma et al., 2009; Aziz et al., 2013; Amin et al., 2015a). Together these factors pose a three- and five-fold greater risk for cardiovascular disease (CVD) and type II diabetes mellitus (T2DM) respectively (Zimmermann et al., 2007), along with high mortality rate (Gilani and Rahman, 2005).

MetS has multiple aetiologies and therefore no single drug can be effective in reversing this situation. The main stay of prevention and management of individuals at risk is life-style modification. However, those who have high levels of risk factors are the recipients for pharmacological treatment which is aimed towards individual symptoms' management (AuH, 1998; Devalaraja et al., 2011; Mohamed, 2014). Multiple drugs including drugs to lower the blood glucose level, TGs, and blood pressure (Robinson et al., 2013) may be needed for a long time resulting in drug related complications, low compliance rate and high cost of care (Khowaja et al., 2007; Huang, 2009). Alternately, some researchers suggest to advocate life-style modification as the first line therapy for prevention of a chronic disease, rather than using pharmacological therapies such as metformin in pre-diabetes (Rhee et al., 2010) and statins in mild to moderate dyslipidemia (Sever et al., 2003). Endorsing only life-style modifications is challenging for the physicians especially among high-risk patients such as in obese patients, since compliance to dietary modification, and physical activity is difficult to attain (Samir et al., 2011). Therefore, it is imperative to explore innovative therapies which are cost-effective and acceptable, with fewer adverse effects, in order to reduce the risk of cardiovascular diseases (CVD) through addressing the risk factors.


According to World Health Organization (WHO), up to 80% of the Asian population relies on complementary and alternative/ Traditional medicine (CAM/T) for their primary healthcare, possibly because more than 80% of people in developing nations can barely afford basic medical needs (Su and Li, 2011). Interestingly, almost half of the population in the developed world also uses CAM/T therapies (Bodeker and Kronenberg, 2002). Amongst the most common complementary modalities used by individuals with CVD risk factors are natural products (Anderson and Taylor, 2012) that have evidently contributed in the development of modern medicine for cardiovascular disorders (AuH, 1998). MetS requires multiple factors to be addressed simultaneously, therefore polyherbal combinations can offer a safe and more effective therapeutic option. Research has revealed that the multicomponent properties of polyherbal combinations make them suitable for treating complex diseases and offer great potential for exhibiting synergistic actions. Evaluation of literature from individual effects of potential polyherbal combinations paves the path for deriving new combinations.

Synergistic therapeutic actions of polyherbal formulations are possible through underlying mechanisms such as regulation of same or different targets in various pathways hence in combination enhance efficacy, regulation of enzymes and transporters to improve oral drug bioavailability, neutralize adverse effects and overcome drug resistance mechanisms. Synergism is observed when multiple chemical constituents are present in single or in combination of herbs (Amin et al., 2015a), which are potential therapeutic options for various disease targets. This forms the basis of polyherbal therapies (Ma et al., 2009; Aziz et al., 2013) and is considered rational and more efficacious in multi-targeted diseases (Zimmermann et al., 2007). The effect-enhancing and side-effect neutralizing properties of polyherbal combinations (Gilani and Rahman, 2005) prompted us to review the literature on the efficacy of polyherbal combinations in metabolic syndrome, the incidence of which is rising globally. This will help researchers to identify various effective polyherbal combinations in MetS, which may help in the drug development process, as well as provide future direction towards research on prevention and cure of a menace like metabolic syndrome. Although synergistic therapeutic interactions of herbal ingredients have been frequently reported, to the best of our knowledge, none of the reports have offered review of polyherbal formulations in MetS. Individual herb reviews related to MetS were limited to functional foods (Mohamed, 2014) and exotic fruits (Devalaraja et al., 2011). Hence, in this review, we present recent literature reporting herb synergisms and efficacy of various polyherbal formulations in MetS. We have identified the herb to be good if it manages to modulate at least 3 out of 5 MetS criteria.

# METHODS

# Systematic Review Protocol (Search Strategy and Data Sources)

We decided for a qualitative systematic review for which an electronic literature search was carried out to find articles published mainly in the last 15 years (2005–2020).



For this purpose, following databases, and/or search engines were used: Cinnahl, Pubmed central, Cochrane, Web of Science and Scopus. Google scholar was used as secondary search tool.

The key words used were "metabolic syndrome, herbal/ polyherbal," "metabolic syndrome, clinical trial".

#### **Inclusion Criteria**

- 1. Animal model with MetS that are given more than one herb for treatment.
- 2. Adults diagnosed with MetS (who qualify for 3 of the 5 MetS parameters: obesity, high blood pressure,

| S.No | Reference              | Name<br>of the<br>Combination          | Components                                                                                            | Chinese<br>Name   | Common<br>name                                                                                                                                               | Scientific<br>name                                                                                                 | Family                      | Specie                                        |
|------|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|
| 1    | Thota et al.           |                                        | Curcuma longa                                                                                         |                   | Turmeric                                                                                                                                                     | Curcuma longa L.                                                                                                   | Zingiberaceae               | C. longa                                      |
|      | (2014)                 |                                        | (Rhizomes), <i>Salacia</i><br><i>reticulate</i> (Root),                                               |                   | Kotala himbatu<br>Gurmar                                                                                                                                     | Salacia reticulata, Wight<br>Gymnema sylvestre                                                                     | Celastraceae<br>Apocynaceae | S. reticulata<br>G. sylvestre                 |
|      |                        |                                        | Gymnema sylvestre<br>(leaves), Emblica<br>officinalis (fruits),<br>Terminalia chebula                 |                   | Emblic, myrobalan,<br>Indian gooseberry;<br>Amla                                                                                                             | (Retz.) Schult<br>Emblica officinalis<br>Gaertn; Phyllanthus<br>emblica, L.                                        | Phyllanthaceae              | P. emblica                                    |
|      |                        |                                        | (fruits)                                                                                              |                   | Black- or chebulic<br>myrobalan; Haritali                                                                                                                    | <i>Terminalia chebula</i> Retz.                                                                                    | Combretaceae                | T. chebula                                    |
| 2    | Sung et al.<br>(2014)  | Dohaekseunggi-<br>tang                 | <i>Glycyrrhizae<br/>uralensi</i> s Fischer (40<br>g), <i>Rheum</i>                                    | Bo ye da<br>huang | Chinese licorice<br>root; Radix<br>Glycyrrhizae                                                                                                              | <i>Glycyrrhiza uralensis</i> ,<br>Fisch. ex DC                                                                     | Fabaceae                    | G. uralensis                                  |
|      |                        |                                        | <i>undulatum</i> Linne (80<br>g), <i>Prunus persica</i><br>Linne (60 g),                              |                   | Rhubarb                                                                                                                                                      | Rheum undulatum<br>Linne; Rheum<br>rhabarbarum L                                                                   | Polygonaceae                | R. undulatum; R.<br>rhubarb arum              |
|      |                        |                                        | <i>Cinnamomum cassia</i><br>Presl (40 g), and                                                         |                   | Peach                                                                                                                                                        | <i>Prunus persica</i> (L)<br>Batsch                                                                                | Rosaceae                    | P. persica                                    |
|      |                        |                                        | Natrii Sulfas (40 g)                                                                                  |                   | Chinese cinnamon                                                                                                                                             | Cinnamomum cassia (L.)<br>J.Presl                                                                                  | Lauraceae                   | C. cassia                                     |
|      |                        |                                        |                                                                                                       |                   | Sodium sulfate<br>(Na <sub>2</sub> SO <sub>4</sub> ); main<br>component of<br>mineral Chinese<br>medicine                                                    | Natrii sulfas                                                                                                      |                             |                                               |
| 3    | Li et al.<br>(2013)    | Huang-Lian-Jie-<br>Du-Tang             | Rhizoma <i>Coptidis</i> ,<br>Radix <i>Scutellariae</i> ,<br>Cortex <i>Phellodendri</i><br>and Fructus | Huang<br>Lian     | Chinese goldthread<br>or canker root                                                                                                                         | <i>Coptis chinensis</i> Franch;<br><i>Coptis deltoidea</i> C.Y.<br>Cheng et Hsiao, and<br><i>Coptis teeta</i> Wall | Ranunculaceae               | C. chinensis; C.<br>deltoidea and C.<br>teeta |
|      |                        |                                        | Gardeniae (3:2:2:3)                                                                                   | Baikal            | Skullcap or Chinese<br>skull cap                                                                                                                             | Scutellaria baicalensis,<br>Georgi                                                                                 | Lamiaceae                   | S. baicalensis                                |
|      |                        |                                        |                                                                                                       | Huáng băi         | "Yellow fir" bark of<br>one of two species<br>of Phellodendrn<br>tree: <i>Phellodendron</i><br><i>amurense</i> or<br><i>Phellodendron</i><br><i>chinense</i> | Phellodendron<br>amurense Rupr +<br>Phellodendron chinense<br>Schneid                                              | Rutaceae                    | P. amurense, P.<br>chinense                   |
|      |                        |                                        |                                                                                                       |                   | Gardenia; Cape<br>Jasmine                                                                                                                                    | <i>Gardenia jasminoide</i> s,<br>J.Ellis                                                                           | Rubiaceae                   | G. jasminoides                                |
| 4    | Kho et al.<br>(2016)   | RGPM:                                  | Red ginseng and<br>Polygoni Multiflori<br>Radix (1:1)                                                 |                   | Red ginseng<br>(produced by<br>steaming and<br>drying fresh and raw<br>ginseng.                                                                              | Panax ginseng C.A.<br>Meyer                                                                                        | Araliaceae                  | P. ginseng                                    |
|      |                        |                                        |                                                                                                       | Heshuwu           | Tuber fleece flower;<br>Chinese climbing<br>knotweed.                                                                                                        | Polygonum multiflorum<br>Thunb (Fallopia multiflora<br>Thunb; Reynoutria<br>multiflora                             | Polygonaceae                | P.multiflorum, R.<br>multiflora               |
| 5    | Yao et al.<br>(2017b)  | Modified<br>lingguizhugan<br>decoction | Poria cocos Wolf,<br>Cinnamomum cassia<br>Presl, Atractylodes                                         |                   | Poria cocos, China<br>root                                                                                                                                   | <i>Wolfiporia cocos</i> (F.A.<br>Wolf) Ryvarden and<br>Gilb.,                                                      | Polyporaceae                | W. extensa                                    |
|      |                        |                                        | lancea DC.,<br>Glycyrrhiza uralensis<br>Fisch., Nannf. and                                            |                   | Tvach and Guda-<br>tvach; Kirfat-ed-<br>darsini                                                                                                              | Cinnamomum cassia (L.)<br>Presl                                                                                    | Lauraceae                   | C. cassia                                     |
|      |                        |                                        | Rheum palmatum L]<br>(ratio of 12:9:6:6:9:9)                                                          |                   | Southern tsangshu                                                                                                                                            | <i>Atractylodes lancea</i><br>(Thunb) DC                                                                           | Asteraceae                  | A. lancea                                     |
|      |                        |                                        |                                                                                                       |                   | Glycyrrhizae radix;<br>Liquorice root                                                                                                                        | <i>Glycyrrhiza uralensis</i> ,<br>Fisch                                                                            | Fabaceae                    | G. uralensis                                  |
| 6    | A posino entre el      |                                        |                                                                                                       |                   | Chinese rhubarb,<br>Rheum                                                                                                                                    | Rheum palmatum                                                                                                     | Polygonaceae                | R. palmatum                                   |
| 6    | Amin et al.<br>(2015a) |                                        | <i>Curcuma longa</i> and<br><i>Nigella Sativa</i>                                                     |                   | Turmeric                                                                                                                                                     | Curcuma longa L.                                                                                                   | Zingiberaceae               | C. longa                                      |
|      |                        |                                        |                                                                                                       |                   | Kalonji/black seeds                                                                                                                                          | <i>Nigella sativa</i> L.                                                                                           | Ranunculaceae<br>(Continued | N. sativa<br>on following page)               |

| S.No | Reference               | Name<br>of the<br>Combination | Components                                                                                | Chinese<br>Name    | Common<br>name                                                 | Scientific<br>name                                                                            | Family                         | Specie                                       |
|------|-------------------------|-------------------------------|-------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|
| 7    | Mounts<br>et al. (2015) |                               | soybean meal and<br>probiotics<br>( <i>Bifidobacterium,</i><br><i>longum</i> (BB536)      |                    | Mung bean;<br>Soybean meal                                     | Vigna radiata, (L.) R.<br>Wilczek, Testa glycinis                                             | Fabaceae                       | V. radiata, T.<br>glycinis                   |
|      |                         |                               |                                                                                           |                    | Probiotics (BB536)                                             | <i>Bifidobacterium longum</i><br>Reuter 1963                                                  | Bifidobacteriaceae             | B. longum                                    |
| 8    | Lee et al.<br>(2015b)   | ACE                           | Artemisia iwayomogi<br>and Curcuma longa<br>(1:1)                                         |                    | Dowijigi                                                       | <i>Artemisia iwayomogi</i><br>Kitamura                                                        | Compositae/<br>Asteraceae      | A. iwayomogi                                 |
| 9    | Hu et al.<br>(2014)     | Fu Fang Zhen<br>Zhu Tiao Zhi  | <i>Ligustrum lucidum</i><br>W.T. Aiton, fructus;                                          |                    | Turmeric<br>Chinese Privet,<br>Glossy privet                   | <i>Curcuma longa</i> L.<br><i>Ligustrum lucidum</i> , W.T.<br>Aiton                           | Zingiberaceae<br>Oleaceae      | C. longa<br>L. lucidum                       |
|      | X 7                     | formula (FTZ)                 | Atractylodes macrocephala Koid.,                                                          |                    | Baizhu (rhizome)                                               | Atractylodes<br>macrocephala Koidz.                                                           | Compositae/<br>Asteraceae      | A.macrocephala                               |
|      |                         |                               | rhizoma; Salvia<br>miltiorhiza Bunge,                                                     | Danshen            | Red sage, Chinese<br>sage                                      |                                                                                               | Lamiaceae                      | S. miltiorrhiza                              |
|      |                         |                               | radix; Coptis<br>chinensis Franch,<br>rhizoma; <i>Panax noto</i>                          | Huang<br>Lian      | Chinese goldthread<br>or canker root                           | Salvia miltiorrhiza, Bunge                                                                    | Ranunculaceae                  | C. chinensis; C.<br>deltoidea and C<br>teeta |
|      |                         |                               | <i>ginseng</i> F.H.Chen,<br>radix; Eucommia<br>ulmoides Olive.,<br>cortex; <i>Cirsium</i> |                    | Sanchi ginseng;<br>Sanqi, Chinese<br>ginseng or<br>notoginseng | Coptis chinensis Franch;<br>Coptis deltoidea C.Y.<br>Cheng et Hsiao, and<br>Coptis teeta Wall | Araliaceae                     | P. notoginseng                               |
|      |                         |                               | <i>japonicum</i> Fisch. ex<br>DC., radix; <i>Citrus</i>                                   |                    | Gutta-Percha                                                   | Panax notoginseng<br>(Burk) F.H.Chen                                                          | Eucommiaceae                   | E. ulmoides                                  |
|      |                         |                               | medica var.<br>sarcodactylus                                                              |                    | Japanese thistle                                               | <i>Eucommia ulmoides</i><br>Oliv.                                                             | Compositae/<br>Asteraceae      | C. japonicum                                 |
|      |                         |                               | Swingle, fructus                                                                          |                    | Fingered citron;<br>Buddha's hand                              | <i>Cirsium japonicum</i><br>(Thunb) Fisch. ex DC.,<br>radix                                   | Rutaceae                       | C. medica                                    |
| 10   | Gao et al.<br>(2015)    | Erchen<br>decoction           | Pericarpium <i>Citri</i><br><i>Reticulatae</i> (9 g),<br>Rhizoma <i>Pinelliae</i> (9      |                    | Pericarpium of<br>mandarin orange<br>(dried and ripe peel)     | <i>Citrus medica</i> var.<br>sarcodactylus Swingle                                            | Rutaceae                       | C. reticulata                                |
|      |                         |                               | g), <i>Poria</i> (6 g) and<br>Radix <i>Glycyrrhizae</i>                                   | Ban Xia<br>Fu ling | Crowdipper<br>Poria cocos, China                               | Citrus reticulata, <i>Blanco</i><br>Pinellia ternate (Thunb.)                                 | Araceae<br>Polyporaceae        | P. ternata<br>W. extensa                     |
|      |                         |                               | (3 g).                                                                                    |                    | root<br>Glycyrrhizae radix;<br>Liquorice root                  | Makino<br><i>Wolfiporia cocos</i> (F.A.<br>Wolf) Ryvarden and Gilb,                           | Fabaceae                       | G. uralensis                                 |
| 11   | Kaur and C<br>(2012)    | CPQ                           | Curcumin, Piperine<br>and Quercetin in a<br>ratio (94:1:5)                                |                    | Curcumin (pure<br>chemical from<br>turmeric)                   | Glycyrrhiza uralensis,<br>Fisch                                                               | Zingiberaceae                  | C. longa                                     |
|      |                         |                               |                                                                                           |                    | Piperine (pure<br>chemical from black<br>pepper                | Curcuma longa L.                                                                              | Piperaceae                     | P. nigrum                                    |
|      |                         |                               |                                                                                           |                    | Quercetin:<br>Chemical<br>compound<br>$(C_{15}H_{10}O_7)$      | Piper nigrum, L                                                                               |                                |                                              |
| 12   | Tan et al.<br>(2013)    |                               | Extracts of <i>Salvia</i><br><i>miltiorrhiza</i> and<br><i>Gardenia</i>                   | Danshen            | Red sage, Chinese sage                                         | Plant flavonol from the<br>flavonoid group of<br>polyphenols                                  | Lamiaceae                      | S. miltiorrhiza                              |
|      |                         |                               | jasminoides                                                                               |                    | Gardenia; Cape<br>Jasmine                                      | Salvia miltiorrhiza, Bunge                                                                    | Rubiaceae                      | G. jasminoides                               |
| 13   | Wei et al.<br>(2012)    | SUB885C                       | Fructus Crataegi ,<br>Folium Nelumbinis,<br>Folium Apocyni, Flos                          |                    | Single-seeded<br>hawthorn;<br>Hawthorn Berry                   | <i>Gardenia jasminoides,</i><br>J.Ellis                                                       | Rosaceae                       | C. monogyna                                  |
|      |                         |                               | Rosaen rugosae ,<br>Radix et Rhizoma                                                      | He ye<br>herb      | Lotus leaf                                                     | Crataegus monogyna<br>Jacq                                                                    | Nelumbonaceae/<br>Nymphaeaceae | N. nucifera                                  |
|      |                         |                               | Rhei , <i>Depuratum</i><br><i>mirabilitum, Thallus</i><br><i>Sargassi</i> , and honey     |                    | Sword-leaf<br>dogbane (Folium                                  | <i>Nelumbo nucifera</i><br>Gaertn                                                             | Apocynaceae                    | A. venetum                                   |

| S.No | Reference                 | Name<br>of the<br>Combination | Components                                                                                                  | Chinese<br>Name    | Common<br>name                                                                                                        | Scientific<br>name                                                                              | Family                    | Specie                                                    |
|------|---------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|
|      |                           |                               | fried Radix<br>Glycyrrhizae                                                                                 | Meigui<br>Dahuang  | Beach rose<br>Radix et Rhizoma<br>Rhei; Chinese                                                                       | Apocynum venetum, L.<br>Rosa rugose, Thunb.                                                     | Rosaceae<br>Polygonaceae  | <i>R. rugosa</i><br><i>R. palmatum</i> ,<br>R.tanguticum, |
|      |                           |                               |                                                                                                             |                    | rhubarb, Rheum<br>Glauber's salt or<br>mirabilite /Natrii<br>Sulphas (Na2S04<br>10H2O); Chinese<br>mineral stone drug | Rheum palmatum L.,<br>Rheum tanguticum<br>Maxim. ex Balf., <i>and</i><br>Rheum officinale Baill | mirabilite                | and R. officinale                                         |
|      |                           |                               |                                                                                                             | Hai<br>Zao (HZ)    | Thallus Sargassi                                                                                                      | Mirabilitum Depuratum                                                                           | Sargassaceae              | S. pallidum                                               |
|      |                           |                               |                                                                                                             |                    | Glycyrrhizae radix;<br>Liquorice root                                                                                 | Sargassum pallidum<br>(Turner) C. Agardh                                                        | Fabaceae                  | G. uralensis                                              |
| 4    | Azushima<br>et al. (2013) | Bofu-tsu-shosan               | Glycyrrhizae radix,<br>Schizonepetae                                                                        |                    | Glycyrrhizae radix;<br>Liquorice root                                                                                 | <i>Glycyrrhiza uralensis</i> ,<br>Fisch                                                         | Fabaceae                  | G. uralensis                                              |
|      |                           |                               | spica, Ephedrae<br>herba, Forsythiae<br>fructus), Others:                                                   | Jing jie           | <i>Schizonepetae</i><br><i>spica;</i> Japanese<br>catnip                                                              | <i>Glycyrrhiza uralensis,</i><br>Fisch                                                          | Lamiaceae                 | S. tenuifolia                                             |
|      |                           |                               | Platycodi radix,<br>Gypsum fibrosum<br>Atractyloids rhizoma,<br>Rhei rhizoma,                               |                    | Ephedrae herba;<br>Joint-pine, jointfir,<br>Mormon-tea or<br>Brigham tea                                              | Schizonepeta tenuifolia<br>(Benth.) Briq; <i>Nepeta</i><br><i>tenuifolia</i> Benth              | Ephedraceae               | E. sinica                                                 |
|      |                           |                               | Scutellariae radix,<br>Gardeniae fructus,<br>paeoniae radix, cnidii<br>rhizoma, Angelicae<br>radix, Menthae | lianqiao           | Weeping forsythia ;<br>golden-bell<br>Forsythia fructus<br>(fruit of Forsythia<br>suspense                            | Ephedra sinica Stapf                                                                            | Oleaceae                  | F. suspensa                                               |
|      |                           |                               | herba,<br>Ledebouriellae radix,<br>Zingilberis rhizoma,<br>Kadinium, Natrium<br>sulfuricum                  |                    | Chinese bellflower<br>root; balloon flower<br>root; <i>Platycodi</i> radix<br>(the root of<br>Platycodon              | Forsythia suspense<br>(Thunb.) Vahl                                                             | Campanulaceae             | P. grandiflorum                                           |
|      |                           |                               |                                                                                                             | Duan<br>Shi Gao    | main component:<br>CaSO4                                                                                              | Platycodon grandifloras<br>(Jacq) A. DC                                                         |                           |                                                           |
|      |                           |                               |                                                                                                             |                    | <i>Atractyloides</i><br>rhizome                                                                                       | Gypsum fibrosum                                                                                 | Asteraceae/<br>Compositae | A. macrocephal                                            |
|      |                           |                               |                                                                                                             | Da Huang           | Rhei rhizome;<br>Chinese rhubarb,<br>Rheum                                                                            | Atractylodes<br>macrocephala Koidz.                                                             | Polygonaceae              | R. palmatum                                               |
|      |                           |                               |                                                                                                             | Baikal             | Skullcap or Chinese<br>skull cap                                                                                      | Rheum palmatum L.                                                                               | Lamiaceae                 | S. baicalensis                                            |
|      |                           |                               |                                                                                                             | Zhizi              | Gardenia; Cape<br>Jasmine                                                                                             | <i>Scutellaria baicalensis,</i><br>Georgi                                                       | Rubiaceae                 | G. jasminoides                                            |
|      |                           |                               |                                                                                                             |                    | Paeoniae radix;<br>Peony root;<br>Chinese peony                                                                       | <i>Gardenia jasminoide</i> s,<br>J.Ellis                                                        | Paeoniaceae               | P. lactiflora                                             |
|      |                           |                               |                                                                                                             |                    | dried root stem of<br>Cnidium officinale;<br>cnidii rhizome                                                           | Paeonia lactiflora Pall                                                                         | Apiaceae                  |                                                           |
|      |                           |                               |                                                                                                             | Duhuo              | Angelicae radix                                                                                                       | Cnidium officinale<br>Makino; Ligusticum<br>officinale (Makino) Kitag                           | Apiaceae                  | A. pubescens                                              |
|      |                           |                               |                                                                                                             | Bo He<br>Fang feng | Menthae herba<br><i>Radix Ledebouriella</i>                                                                           | Angelica pubescens<br>Maxim.                                                                    | Lamiaceae<br>Apiaceae     | M. Haplocalycis<br>S. divaricata                          |
|      |                           |                               |                                                                                                             |                    | Ginger (Zingiberis<br>rhizome)                                                                                        | Mentha canadensis L;<br><i>Menthae haplocalyx</i> Briq                                          | Zingiberaceae             | Z. officinale                                             |
|      |                           |                               |                                                                                                             |                    |                                                                                                                       | ωσημίας παρισσαιγλ ΒΠΥ                                                                          | (Continued                | on following page)                                        |

| S.No | Reference              | Name<br>of the<br>Combination      | Components                                                                                                     | Chinese<br>Name            | Common<br>name                                                                            | Scientific<br>name                                                                            | Family                         | Specie                                                           |
|------|------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|
| 15   | Li etal.<br>(2015)     | Tang-Nai-Kang:                     | Fructus Ligustri<br>Lucidi, Spica<br>Prunellae vulgaris,<br>Saururus chinensis,                                | Nuzhenzi                   | broad-leaf privet;<br>Fructus Ligustri<br>Lucidi                                          | Saposhnikovia divaricata<br>(Turcz.) Schischk;<br>Ledebouriella divaricata<br>(Turcz.) Hiroe  | Oleaceae                       | L. lucidum                                                       |
|      |                        |                                    | <i>Psidium guajava</i> and<br>Radix ginseng (25:<br>10:15:10                                                   |                            | Common self-heal,<br>heal-all, (Spica<br>Prunellae vulgaris)                              | Zingiber officinale<br>Roscoe                                                                 | Lamiaceae                      | P. vulgaris                                                      |
|      |                        |                                    |                                                                                                                |                            | Asian lizard's tail<br>(Saururus chinensis)                                               | <i>Ligustrum lucidum</i> i,<br>W.T.Aiton                                                      | Saururaceae                    | S. chinensis                                                     |
|      |                        |                                    |                                                                                                                |                            | common guava<br>Radix ginseng                                                             | <i>Prunella vulgaris</i> L.<br><i>Saururus chinensis,</i><br>(Lour.) Baill                    | Myrtaceae<br>Araliaceae        | P. guajava<br>P. ginseng                                         |
| 16   | Chen et al.<br>(2017)  | Wendan<br>decoction (WDD)          | Radix Glycyrrhizae (3<br>g), Pericarpium Citri                                                                 |                            | Glycyrrhizae radix;<br>Liquorice root                                                     | Psidium guajava L.                                                                            | Fabaceae                       | G. uralensis                                                     |
|      |                        |                                    | Reticulatae (9 g),<br>Poria Cocos (4.5 g),<br>Citrus aurantium (6                                              |                            | Pericarpium of<br>mandarin orange<br>(dried and ripe peel)                                | <i>Panax ginseng</i> C. A.<br>Meye                                                            | Rutaceae                       | C. reticulata                                                    |
|      |                        |                                    | g), <i>Pinellia ternata</i> (6<br>g) ad <i>Caulis</i>                                                          |                            | Poria cocos, China<br>root                                                                | <i>Glycyrrhiza uralensi</i> s,<br>Fisch                                                       | Polyporaceae                   | W. extensa                                                       |
|      |                        |                                    | <i>bambusae</i> (6 g)                                                                                          |                            | Bitter orange,<br>crow-dipper                                                             | Citrus reticulata, <i>Blanco</i><br><i>Wolfiporia cocos</i> (F.A.<br>Wolf) Ryvarden and Gilb. | Rutaceae<br>Araceae            | C. aurantium<br>P. ternata                                       |
|      |                        |                                    |                                                                                                                |                            | Caulis Bambusae<br>(Bamboo shavings)                                                      | Citrus aurantium L.                                                                           | Poaceae                        | P. nigra                                                         |
| 17   | Leong et al.<br>(2013) | Herbal<br>formula MCC:             | <i>Momordica</i><br><i>charanti</i> a, the                                                                     |                            | Bittermelon;<br>Balsam Pear                                                               | <i>Pinellia ternata</i> , (Thunb.)<br>Makino                                                  | Cucurbitaceae                  | M. charantia                                                     |
|      |                        |                                    | pericarpium of <i>Citri</i><br><i>reticulate</i> and<br>L-carnitine                                            |                            | Pericarpium of<br>mandarin orange<br>(dried and ripe peel)                                | Phyllostachys nigravar.<br>henonis (Mitford) Rendle                                           | Rutaceae                       | C. reticulata                                                    |
| 18   | Tan et al.<br>(2011)   | Chinese herbal<br>extract (SK0506) | Gynostemma<br>pentaphyllum,<br>Coptis chinensis and<br>Salvia miltiorrhiza                                     | jiaogulan<br>Huang<br>Lian | L-carnitine<br>five-leaf ginseng<br>Chinese goldthread<br>or canker root                  | Momordica charantia L.<br>Citrus reticulata, <i>Blanco</i>                                    | Cucurbitaceae<br>Ranunculaceae | G. pentaphyllum<br>C. chinensis; C.<br>deltoidea and C.<br>teeta |
|      |                        |                                    | (gypenosides,<br>berberine and<br>tanshinone)                                                                  | Danshen                    | Red sage, Chinese<br>sage                                                                 | Gynostemma<br>pentaphyllum <i>(Thunb.)</i><br><i>Makino</i>                                   | Lamiaceae                      | S. miltiorrhiza                                                  |
| 19   | Liu and Shi<br>(2015)  | Yi Tang Kang                       | sugar, <i>Poria cocos</i> ,<br>atractylodes, <i>Radix</i><br><i>astragali</i> , red ginseng<br>and other drugs |                            | Poria cocos, China<br>root                                                                | Coptis chinensis Franch;<br>Coptis deltoidea C.Y.<br>Cheng et Hsiao, and<br>Coptis teeta Wall | Polyporaceae                   | W. extensa                                                       |
|      |                        |                                    | Ŭ                                                                                                              | Baizhu                     | obtained from roots of sunflower family                                                   | Salvia miltiorrhiza, Bunge                                                                    | Asteraceae/<br>Compositae      | A. macrocephala                                                  |
|      |                        |                                    |                                                                                                                |                            | Red ginseng<br>(produced by<br>steaming and<br>drying fresh and raw<br>ginseng            | <i>Wolfiporia cocos</i> (F.A.<br>Wolf) Ryvarden and Gilb                                      | Araliaceae                     | P. ginseng                                                       |
| 20   | Lim et al.<br>(2019)   | SCH                                | Pharbitish semen;<br>Trogopterorumh<br>Faeces, Cyperih<br>Rhizoma = 2:1:1                                      |                            | ginseng.<br>Pharbitish Semen<br>( <i>Pharbitis nill</i> Seed)<br>picotee morning<br>glory | Atractylodes<br>macrocephala Koidz.                                                           | Convolvulaceae                 | I. nil                                                           |
|      |                        |                                    |                                                                                                                |                            | Trogopterorum<br>Faeces;complex-<br>toothed flying<br>squirrel                            | Panax ginseng C.A.<br>Meyer                                                                   | Sciuridae                      | T. xanthipes                                                     |
|      |                        |                                    |                                                                                                                |                            | coco-grass, Java<br>grass (Cyperi<br>Rhizoma)                                             | <i>lpomoea nil</i> , (L.) Roth;<br><i>Pharbitis nil</i> (L.) Choisy                           | Cyperaceae                     | C. rotundus                                                      |

| S.No | Reference              | Name<br>of the<br>Combination  | Components                                                                                             | Chinese<br>Name   | Common<br>name                                                                                            | Scientific<br>name                                                                           | Family                               | Specie                          |
|------|------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|
| 21   | Ahmed<br>et al. (2009) | Marjoram and chicory           | Marjoram dry leaves<br>(Origanum majorana)                                                             |                   | Marjoram dry leaves                                                                                       | <i>Trogopterus xanthipes,</i><br>(Milne-Edwards)                                             | Lamiaceae                            | O. majorana                     |
|      | ()                     |                                | and chicory dry<br>leaves ( <i>Cichorium</i><br><i>intybus</i> ) (1:5 w/v in<br>water)                 |                   | chicory dry leaves;<br>Common chicory                                                                     | Cyperus rotundus L.                                                                          | Asteraceae                           | C. intybus                      |
| 2    | Jang et al.<br>(2018)  | Gambihwan<br>(GBH1)            | Ephedrae Herba;<br>Coicis semen;<br>Menthae herba<br>Gypsum; Alismatis                                 |                   | Ephedrae Herba<br>Job's tears seed or<br>adlay; Coix seed;<br>Coicis semen;                               | Origanum majorana L<br>Cichorium intybus L                                                   | Ephedraceae<br>Poaceae/<br>Gramineae | E.sinica<br>C. lacryma-jobi     |
|      |                        |                                | Rhizoma; Crataegi<br>fructus; Arecae<br>semen; Hordei<br>fructus germinatus.                           | Bo He             | Menthae herba<br>Alisma; Asian<br>water-plantain;<br>mad-dog weed                                         | Ephedra sinica Stapf<br>Coix lacryma-jobi L.                                                 | Lamiaceae<br>Alismataceae            | M. Haplocalycis<br>A. orientale |
|      |                        |                                | GBH2: Ephedrae<br>herba; Coicis semen;<br>Typhae pollen;                                               |                   | Single-seeded<br>hawthorn;Hawthorn<br>Berry                                                               | Mentha canadensis L;<br><i>Menthae haplocalyx</i> Briq                                       | Rosaceae                             | C. monogyna                     |
|      |                        |                                | Castaneae semen;<br>Sinomeni Caulis et<br>Rhizoma;<br>Scutellariae radix                               |                   | Arecae semen;<br>areca; betel nut,<br>areca nut                                                           | Alisma orientale (Sam.)<br>Juzep; Alisma plantago-<br>aquaticasubsp. orientale<br>(Sam.) Sam | Palmaceae                            | A. catechu                      |
|      |                        |                                |                                                                                                        |                   | Malt Barley Sprout;<br>germinated barley;<br>(Hordei fructus<br>germinates)                               | Crataegus<br>monogynaJacq                                                                    | Poaceae/<br>Gramineae                | H. vulgare                      |
|      |                        |                                |                                                                                                        | Sheng Pu<br>Huang | Typha Pollen,<br>Cattail Pollen,<br>Bulrush                                                               | Areca catechu L                                                                              | Typhaceae                            | T. angustifolia                 |
|      |                        |                                |                                                                                                        |                   | Castaneae<br>semenDried<br>Chestnut                                                                       | Hordeum vulgare L                                                                            | Sapindaceae                          | A.<br>hippocastanum             |
|      |                        |                                |                                                                                                        | Boi               | Sinomeni Caulis et<br>Rhizoma                                                                             | Typha angustifolia L                                                                         | Menispermaceae                       | S. acutum                       |
|      |                        |                                |                                                                                                        | Baikal            | Skullcap or Chinese<br>skullcap (Radix<br>scutellariae)                                                   | Aesculus<br>hippocastanum L                                                                  | Lamiaceae                            | S. baicalensis                  |
| 23   | Wat et al.<br>(2018)   |                                | combination of<br>sylimarin,<br><i>Schisandrae</i><br><i>Fructus</i> , Crataegus<br><i>Fructus</i> and |                   | Sylimarin<br>(flavonolignans<br>extracted from the<br>milk thistle <i>Silybum</i><br><i>marianum</i> (L.) | Sinomenium acutum<br>(Thunb.) Rehder and<br>E.H.Wilson                                       | Asteraceae                           | S. marianum                     |
|      |                        |                                | Momordica<br>charantia (1:1:1:1)                                                                       |                   | Magnolia-Vine,<br>Chinese magnolia-<br>vine, schisandra<br>(Schisandrae<br>Fructus)                       | Scutellaria baicalensis,<br>Georgi                                                           | Schisandraceae                       | S. chinensis                    |
|      |                        |                                |                                                                                                        |                   | Single-seeded<br>hawthorn;Hawthorn<br>Berry                                                               | <i>Silybum marianum</i> , (L.)<br>Gaertn                                                     | Rosaceae                             | C. monogyna,                    |
|      |                        |                                |                                                                                                        |                   | Bittermelon;<br>Balsam Pear                                                                               | Schisandra chinensis<br>(Turcz.) Baill                                                       | Cucurbitaceae                        | M. charantia                    |
| 24   | Park et al.<br>(2009)  | Herbal Complex<br>(HC) extract | Dioscorea Rhizoma,<br>Glycine soja Sieb. et<br>Zucc, Bombycis                                          | SanYak            | Dioscorea<br>Rhizoma;<br>Chinese Yam                                                                      | Crataegus monogyna<br>Jacq                                                                   | Dioscoreaceae                        | D. polystachya                  |
|      |                        |                                | corpus, Fermented<br>Glycine soja                                                                      |                   | wild soybean                                                                                              | Momordica charantia L.                                                                       | Leguminosae/<br>Fabaceae             | G. soja                         |

| S.No | Reference | Name<br>of the<br>Combination | Components | Chinese<br>Name | Common<br>name                                                                                                                                                                   | Scientific<br>name                                                                                        | Family                   | Specie      |
|------|-----------|-------------------------------|------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------|-------------|
|      |           |                               |            |                 | Bombycis corpus a<br>drug consisting of<br>the dried larva of<br>silkworm, dead and<br>stiffened due to the<br>infection of fungus<br><i>Beauveria bassiana</i><br>(Bals.) Vuill | <i>Dioscorea polystachya,</i><br>Turcz.                                                                   | Cordycipitaceae          | B. bassiana |
|      |           |                               |            |                 | Fermented Glycine<br>soja; cultivated<br>soybean                                                                                                                                 | Glycine max <i>subsp.</i> soja<br>(Siebold and Zucc)                                                      | Leguminosae/<br>Fabaceae | G. soja     |
|      |           |                               |            |                 |                                                                                                                                                                                  | Bombyx Batryticatus<br>(silkworm infected of<br>fungus <i>Beauveria</i><br><i>bassiana</i> (Bals.) Vuill) |                          |             |
|      |           |                               |            |                 |                                                                                                                                                                                  | Glycine max [L.] Merr                                                                                     |                          |             |

hypertriglyceridemia, low HDL, high blood sugar (>100–125 mg/dl).

3. Adults >17 years < 74 years.

#### **Exclusion Criteria**

- 1. Review article.
- 2. Effect of individual herbs on MetS
- 3. Effect of interventions through diet, low caloric, mediterranean diet etc., on MetS.
- 4. Any MetS model used but not for the purpose of assessing effect on MetS, rather individual aspect such as obesity, nonalcoholic fatty liver disease and non-alcoholic steatohepatitis and polycystic ovary syndrome.

#### Data Analysis and Study Design

All the polyherbal formulations were classified taxonomically and then effect of intervention and evaluation of results were done, based on number of MetS criteria met both in animal and/or humans.

Quality of animal-based studies were assessed by using a qualitative scoring system using 8 questions. Maximum score achieved was 8, with yes = score 1 and no = score 0 with following questions:

- 1. MetS parameters assessed >3 = score 1;  $\leq 3 =$  score 0
- MetS parameters met: 3 out of 5 parameters (good Effect) = 1;
   <3 out of 5 (not so good) = 0.</li>
- 3. Dosage of herb provided: Yes = 1; No = 0
- 4. Components and rationale for dosing: yes = 1; no = 0
- 5. Animal ethical approval: Yes = 1; No = 0
- 6. Euthanasia protocol mentioned/followed: Yes = 1; No = 0
- 7. Model validated for MetS: Yes = 1; No = 0
- 8. Positive control used: Yes = 1; No = 0

For clinical trial we adopted a mixed model for assessing our articles including SPICE (S = setting; P = population; I = intervention/what; C = comparison/controls E = evaluation/with what result) (Booth, 2006; Cleyle and Booth, 2006) and SPIDER (S = Sample P = phenomenon of interest/ intervention I = intervention size, D = design, E = evaluation/ outcome R = research type; qualitative, quantitative or mixed type). SPIDER methods had added points for assessing both qualitative and quantitative methods (Cooke et al., 2012). Further aspects of quality of clinical trial were assessed based on following aspects with yes = 1; No = 0 according to an adopted guideline for critical appraisal (Alcántara et al., 2011):

- 1. The study addresses an appropriate and clearly focused question
- 2. The assignment of subjects to treatment groups is randomized.
- 3. An adequate concealment method is used
- 4. The design keeps subjects and investigators 'blind' about treatment allocation.
- 5. The treatment and control groups are similar at the start of the trial.
- 6. The only difference between groups is the treatment under investigation.
- 7. All relevant outcomes are measured in a standard, valid and reliable way
- 8. What percentage of the individuals or clusters recruited into each treatment arm of the study dropped out before the study was completed?
- 9. All the subjects are analyzed in the groups to which they were randomly allocated (often referred to as intention to treat analysis)
- 10. Where the study is carried out at more than one site, results are comparable for all sites.

Besides, following questions were also assessed: concentration of the herb provided or not, quality control

TABLE 2 | Taxonomic classification of all the polyherbal combinations used in clinical studies against metabolic syndrome.

| S.<br>No | References                   | Name of the herb                         | Components                                                                                     | Chinese<br>Name        | Common<br>name/source                                                                                           | Scientific<br>name                                                                                              | Family                         | Specie                                        |
|----------|------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|
| 1        | Tian-zhan<br>et al. (2019)   | Yiqi Huazhuo<br>Gushen herbal<br>formula | Huang qi (Astragalus<br>membranaceus);<br>Huanglian (Coptis                                    | Huang Qi               | Mongolian milkvetch;<br>root of Astragalus;<br>Radix astragali                                                  | Astragalus membranaceus<br>(Fisch.) Bunge; Astragalus<br>propinguus Schischkin                                  | Fabaceae                       | A.<br>membranace                              |
|          |                              |                                          | chinensis),<br>Shengpuhuang (Pollen<br>typhae), Ze Xie (the                                    | Huang Lian             | Chinese goldthread or<br>canker root                                                                            | <i>Coptis chinensis</i> Franch;<br><i>Coptis deltoidea</i> C.Y. Cheng et<br>Hsiao, and <i>Coptis teeta</i> Wall | Ranunculaceae                  | C. chinensis;<br>C. deltoidea<br>and C. teeta |
|          |                              |                                          | rhizome of oriental water plantain), Lu Dou Yi                                                 | Sheng Pu<br>Huang      | Typha Pollen                                                                                                    | Typha angustifolia L                                                                                            | Typhaceae                      | T. Angustifolia                               |
|          |                              |                                          | (Mung bean peel), Liu<br>Yue Xue (S <i>erissa</i>                                              |                        | Cattail Pollen<br>Bulrush                                                                                       |                                                                                                                 |                                |                                               |
|          |                              |                                          | serissoides), Zhi-fuzi<br>(Radix Aconiti lateralis<br>praeparata)                              | Ze Xie                 | the rhizome of oriental<br>water plantain; Alisma;<br>Asian water-plantain;<br>mad-dog weed                     | Alisma orientale (Sam.) Juzep;<br>Alisma plantago-aquatica<br>subsp. orientale (Sam.) Sam                       | Alismataceae                   | A. orientale                                  |
|          |                              |                                          |                                                                                                | Lu Dou Yi ;<br>Hei Dou | Mung bean peel;<br>Soybean meal                                                                                 | Vigna radiata (L.) R. Wilczek;<br>Testa glycinis                                                                | Fabaceae                       | V. radiata, T.<br>glycinis                    |
|          |                              |                                          |                                                                                                | Liu Yue Xue            | Chinese Snow of June<br>Herb;                                                                                   | <i>Serissa serissoide</i> s (DC.)<br>Druce                                                                      | Rubiaceae                      | S. serissoides                                |
|          |                              |                                          |                                                                                                | Zhi-fuzi               | Radix Aconiti lateralis<br>Preparata (Prepared<br>Aconite; Prepared<br>Sichuan Aconite Root;<br>monkshood root) | Aconitum carmichaelii<br>Debeaux                                                                                | Ranunculaceae                  | A. carmichael                                 |
|          | Wang et al.                  | Yiqi Huaju Qingli                        | Huangqi (Radix                                                                                 | Details similar        |                                                                                                                 | difference in methods of collection                                                                             | n of the extracts              |                                               |
|          | (2013)                       |                                          | Astragali)<br>Huanglian (Rhizoma<br>Coptidis)                                                  |                        |                                                                                                                 |                                                                                                                 |                                |                                               |
|          |                              |                                          | Pu huang (Pollen<br>Typhae)                                                                    |                        |                                                                                                                 |                                                                                                                 |                                |                                               |
|          |                              |                                          | Ze Xie (Artemisiae<br>Rhizoma Alismatis)                                                       |                        |                                                                                                                 |                                                                                                                 |                                |                                               |
|          |                              |                                          | Lu Dou Yi (Testa Vignae<br>Radiatae), Liu Yue Xue<br>(Serissa Japonica)<br>Fuzi (Radix Aconiti |                        |                                                                                                                 |                                                                                                                 |                                |                                               |
|          | Farajbakhsh                  | Sesame oil and                           | Lateralis Preparata)                                                                           |                        | Sesame oil                                                                                                      | Sesamum indicum L                                                                                               | Pedaliaceae                    | S. indicum                                    |
|          | et al. (2019)<br>Amin et al. | vitamin E<br>Curcuma longa               | Curcuma longa and                                                                              |                        | Vitamin E<br>Turmeric                                                                                           | α- tocopherol<br><i>Curcuma longa</i> L                                                                         | Zingiberaceae                  | C. longa                                      |
|          | (2015b)<br>Yadav et al.      | and Nigella sativa<br>Diabegon           | Nigella sativa<br>Momordica charantia,                                                         |                        | Kalonji/black seeds<br>Bittermelon; Balsam                                                                      | Nigella sativa L<br>Momordica charantia L                                                                       | Ranunculaceae<br>Cucurbitaceae | N. sativa<br>M. charantia                     |
|          | (2014)                       | Diabegon                                 | Gymnema sylvestre,                                                                             |                        | Pear                                                                                                            |                                                                                                                 |                                |                                               |
|          |                              |                                          | Trigonella<br>foenumgraecum,                                                                   |                        | Chirata; Chiretta                                                                                               | <i>Swertia chirayita</i> (Roxb.)<br>BuchHam. ex C.B.Clarke                                                      | Gentianaceae                   | S. chirayita                                  |
|          |                              |                                          | Plumbago zeylanica,<br>Eugena jambolana,                                                       |                        | Gurmar                                                                                                          | <i>Gymnema sylvestre</i> (Retz.)<br>Schult                                                                      | Apocynaceae                    | G. sylvestre                                  |
|          |                              |                                          | Aegle marmelos,<br>Terminalia chebula,                                                         |                        | Fenugreek                                                                                                       | Trigonella foenum-graecum L                                                                                     | Fabaceae/<br>Leguminosae       | T. foenum-<br>graecum                         |
|          |                              |                                          | Terminelia balerica,<br>Emblica officinalis,<br>Curcuma longa,                                 |                        | Plumbago; Ceylon<br>leadwort, doctorbush or<br>wild leadwort                                                    | Plumbago zeylanica L                                                                                            | Plumbaginaceae                 | P. zeylanica                                  |
|          |                              |                                          | Pterocarpus<br>marsupium, Berberis                                                             |                        | Jamon; Java Plum                                                                                                | Eugenia jambolana Lam;<br>Syzygium cumini (L.) Skeels                                                           | Myrtaceae                      | S. cumini                                     |
|          |                              |                                          | aristata, Cytrullus                                                                            |                        | Bael, Bengal Quince                                                                                             | Aegle marmelos (L.) Correa                                                                                      | Rutaceae                       | A. marmelos                                   |
|          |                              |                                          | <i>culocynthis, Cyperus</i><br><i>rotondus</i> , Piper longum,<br>root of Piper longum,        |                        | Chebulic myrobalan,<br>haritali; black- or<br>chebulic myrobalan                                                | <i>Terminalia chebula</i> Retz                                                                                  | Combretaceae                   | T. chebula                                    |
|          |                              |                                          | Zingiber officinale, and<br>Asphaltum punjabinum                                               |                        | Belleric; bahera or<br>beleric or bastard<br>myrobalan                                                          | <i>Terminalia bellirica</i> (Gaertn.)<br>Roxb                                                                   | Combretaceae                   | T. bellirica                                  |
|          |                              |                                          |                                                                                                |                        | Emblic myrobalan                                                                                                | Phyllanthus emblica<br>L.; Emblica officinalis                                                                  | Phyllanthaceae                 | P. emblica                                    |
|          |                              |                                          |                                                                                                |                        |                                                                                                                 |                                                                                                                 | (Continued on f                | iollowing nage)                               |

TABLE 2 | (Continued) Taxonomic classification of all the polyherbal combinations used in clinical studies against metabolic syndrome.

| 6. Re<br>No | ferences           | Name of the herb                                                  | Components                                                                                           | Chinese<br>Name              | Common<br>name/source                                                                                                                                                                                                                                                                                                                                                                           | Scientific<br>name                                                                        | Family                                                                                    | Specie                                                         |
|-------------|--------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|             |                    |                                                                   |                                                                                                      |                              | Turmeric<br>Malabar kino<br>Indian Barberry, Tree                                                                                                                                                                                                                                                                                                                                               | Curcuma longa L<br>Pterocarpus marsupium Roxb<br>Berberis aristate DC.                    | Zingiberaceae<br>Fabaceae<br>Berberidaceae                                                | C. longa<br>P. marsupium<br>B. aristata                        |
|             |                    |                                                                   |                                                                                                      |                              | Turmeric<br>Colocynth, Bitter apple,                                                                                                                                                                                                                                                                                                                                                            | Citrullus colocynthis                                                                     | Cucurbitaceae                                                                             | C. colocynthis                                                 |
|             |                    |                                                                   |                                                                                                      |                              | wild gourd<br>Coco-grass, Java<br>grass, nut grass, purple                                                                                                                                                                                                                                                                                                                                      | (L.) Schrad<br><i>Cyperus rotundus</i><br>L                                               | Cyperaceae                                                                                | C. rotundus                                                    |
|             |                    |                                                                   |                                                                                                      |                              | nut sedge<br>Long pepper; Indian                                                                                                                                                                                                                                                                                                                                                                | -<br>Piper longum                                                                         | Piperaceae,                                                                               | P. longum                                                      |
|             |                    |                                                                   |                                                                                                      |                              | long pepper or pipli<br>Pippalimula ( <i>root</i> of<br><i>Bipor longum</i> )                                                                                                                                                                                                                                                                                                                   | L<br>Piper longum<                                                                        | Piperaceae,                                                                               | P. longum                                                      |
|             |                    |                                                                   |                                                                                                      |                              | Piper longum)<br>Ginger<br>Asphaltum punjabinum;<br>Shilajatu; Shilajit,<br>Mineral Pitch, Asphlat<br>(Some researchers<br>hypothesize that shilajit<br>is produced by the<br>decomposition or<br>humification of latex and<br>resin-bearing plant<br>material from species<br>such as <i>Euphorbia</i><br><i>royleana</i> and <i>Tirfolium</i><br><i>repens</i> over a period of<br>centuries) | L<br>Zingiber officinale<br>—                                                             | Zingiberaceae<br>blackish-brown<br>powder or an<br>exudate from<br>high mountain<br>rocks | Z. officinale                                                  |
|             | ng et al.<br>)14b) | Modified,<br>Lingguizhugan<br>decoction (MLD)+<br>weekend fasting | Dangshen (Radix<br>Codonopsis) 20 g,<br>Guizhi (Ramulus<br>Cinnamomi) 12 g, Fuling                   | Dangshen                     | Radix <i>Codonopsis</i><br><i>pilosulae</i> (mixture)                                                                                                                                                                                                                                                                                                                                           | <i>Codonopsis pilosula</i> (Franch.)<br>Nannf                                             | Campanulaceae                                                                             | C. pilosula, C.<br>pilosula var.<br>modesta and<br>C. tangshen |
|             |                    | Ŭ                                                                 | (Poria) 30 g, Baizhu<br>(Rhizoma Atractylodis<br>Macrocephalae) 15 g,<br>Gancao (Radix               | GuiZhi                       | Ramulus Cinnamomi<br>(obtained from dried<br>twigs of <i>Cinnamomum</i><br><i>cassia</i> (L.) Presl,                                                                                                                                                                                                                                                                                            | Cinnamomum cassia (L.) Presl                                                              | Lauraceae                                                                                 | C. cassia                                                      |
|             |                    |                                                                   | Glycyrrhizae) 6 g;<br>Dahuang (Radix Et                                                              | Fu Ling                      | Poria, Hoelen, Indian<br>bread, Poria, Tuckahoe                                                                                                                                                                                                                                                                                                                                                 | <i>Wolfiporia cocos</i> (F.A. Wolf)<br>Ryvarden & Gilb                                    | Polyporaceae                                                                              | W. extensa                                                     |
|             |                    |                                                                   | Rhizoma Rhei<br>Palmati) 9 g                                                                         | Gan Cao                      | Liquorice root; Radix<br>Glycyrrhizae                                                                                                                                                                                                                                                                                                                                                           | Glycyrrhiza uralensis, Fisch                                                              | Fabaceae                                                                                  | G. uralensis                                                   |
|             |                    |                                                                   | , .                                                                                                  | Baizhu,<br>Atractylodes      | obtained from roots of<br>Atractylodes<br>Macrocephala Koidz                                                                                                                                                                                                                                                                                                                                    | <i>Atractylodes macrocephala</i><br>Koidz                                                 | Asteraceae                                                                                |                                                                |
|             |                    |                                                                   |                                                                                                      | Dahuang                      | Radix et Rhizoma Rhei;<br>Chinese rhubarb,<br>Rheum                                                                                                                                                                                                                                                                                                                                             | Rheum palmatum L., Rheum<br>tanguticum Maxim. ex Balf.,<br>and Rheum officinale Baill     | Polygonaceae                                                                              | <i>R. palmatum,</i><br>R.tanguticum<br>and R.<br>officinale    |
|             | et al.<br>)18)     | Dahuang<br>Huanglian Xiexin<br>Decoction (JTTZ)                   | Aloe vera, <i>Coptis</i><br><i>chinensis</i> , Rhizoma<br>Anemarrhenae, red<br>yeast rice, Momordica | Luhui<br>Huanglian<br>Zhi mu | Aloe vera<br>Chinese goldthread<br>Rhizoma Anemarrhena                                                                                                                                                                                                                                                                                                                                          | Aloe vera, (L.) Burm.f<br>Coptis chinensis, Franch<br>Anemarrhena asphodeloides,<br>Bunge | Asphodelaceae<br>Ranunculaceae<br>Asparagaceae                                            | A. vera<br>C. chinensis<br>A.<br>asphodeloides                 |
|             |                    |                                                                   | charantia, Salvia<br>miltiorrhiza, Schisandra<br>chinensis, and dried                                | Hong qu                      | red yeast rice (purple<br>fermented rice,<br>cultivated with the mold                                                                                                                                                                                                                                                                                                                           | Monascus purpureus, (Went,<br>1895)                                                       | Monascaceae                                                                               | M. purpureus                                                   |
|             |                    |                                                                   | ginger                                                                                               | Kugua                        | <i>Monascus purpureus</i> )<br>Bittermelon; Balsam<br>Pear                                                                                                                                                                                                                                                                                                                                      | Momordica charantia L                                                                     | Cucurbitaceae                                                                             | M. charantia                                                   |
|             |                    |                                                                   |                                                                                                      | Danshen<br>Wuweizi           | Red sage, Chinese sage<br>Magnolia-vine, Chinese<br>magnolia-vine,<br>schisandra                                                                                                                                                                                                                                                                                                                | Salvia miltiorrhiza, Bunge<br>Schisandra chinensis (Turcz.)<br>Baill                      | Lamiaceae<br>Schisandraceae                                                               | S. miltiorrhiza<br>S. chinensis                                |
|             |                    |                                                                   |                                                                                                      | Ganjiang                     | Dried ginger                                                                                                                                                                                                                                                                                                                                                                                    | Zingiber officinale Roscoe                                                                | Zingiberaceae<br>(Continued on t                                                          | Z. officinale<br>following page)                               |

| S.<br>No | References              | Name of the herb                                                                            | Components                                                                                                 | Chinese<br>Name | Common<br>name/source                                                           | Scientific name             | Family                   | Specie                             |
|----------|-------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|-----------------------------|--------------------------|------------------------------------|
| 8        | Rozza et al.<br>(2009)  | Armolipid Prev,<br>Rottapharm,                                                              | Combination of<br>Ortosiphon staminensis,                                                                  |                 | Misai, kucing and kumis<br>kucing                                               | Orthosiphon stamineus Benth | Lamiaceae                | O. stamineus                       |
|          | × ,                     | Monza, Italy) +<br>dietary intervention                                                     | with policosanol (dietary supplement), red yeast                                                           |                 | policosanol (mixture of alcohols isolated from                                  | Saccharum officinarum<br>L  | Poaceae                  | S. officinarum                     |
|          |                         |                                                                                             | rice extract, berberine,                                                                                   |                 | Cuban sugar cane wax                                                            |                             |                          |                                    |
|          |                         |                                                                                             | folic acid and                                                                                             |                 | Red yeast rice extract                                                          | Monascus purpureus          | Monascaceae              | M. purpureus                       |
|          |                         |                                                                                             | coenzyme Q10                                                                                               |                 | (purple fermented rice,                                                         | (Went, 1895)                |                          |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | cultivated with the mold                                                        |                             |                          |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | Monascus purpureus)                                                             |                             |                          |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | Berberine (chemical in<br>Berberis genus)                                       | chemical                    |                          |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | Folic acid (obtained                                                            | chemical                    |                          |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | from food source)                                                               | Ghorniour                   |                          |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | coenzyme Q10                                                                    | chemical                    | coenzyme                 |                                    |
| 9        | Castellino              | Cynara                                                                                      | Cynara cardunculus (L.)                                                                                    |                 | Artichoke; cardoon                                                              | Cynara cardunculus (L.)     | Asteraceae               | C.                                 |
|          | et al. (2019)           | cardunculus (L.)<br>subsp. scolymus<br>Hayek-based                                          | subsp. scolymus<br>Hayek; Chlorogenic<br>Acid and Luteolin                                                 |                 |                                                                                 |                             |                          | cardunculus<br>(scolymus<br>Hayek) |
|          |                         | nutraceutical,<br>named Altilix                                                             |                                                                                                            |                 | Chlorogenic Acid (ester<br>of caffeic acid and-<br>quinic acid)                 | compound: C16H18O9          | dietary<br>polyphenol    |                                    |
|          |                         |                                                                                             |                                                                                                            |                 | Luteolin                                                                        | Chemical compound:          | flavone, a type of       |                                    |
|          |                         |                                                                                             |                                                                                                            |                 |                                                                                 | C15H10O6                    | flavonoid,               |                                    |
| 10       | Panahi et al.           | curcuminoids                                                                                | (95% curcuminoids                                                                                          |                 | Curcuminoids                                                                    | Curcuma longa L             | Zingiberaceae            | C. longa                           |
|          | (2015)                  | (Curcumin C3                                                                                | (70% is curcumin;                                                                                          |                 | (curcumin;                                                                      |                             |                          |                                    |
|          |                         | Complex <sup>®</sup> , Sami                                                                 | remaining                                                                                                  |                 | demethoxycurcumin                                                               |                             |                          |                                    |
|          |                         | Labs LTD,<br>Bangalore, India);                                                             | demethoxycurcumin<br>and                                                                                   |                 | and<br>bisdemethoxycurcumin)                                                    |                             |                          |                                    |
|          |                         | piperine                                                                                    | bisdemethoxycurcumin                                                                                       |                 | Piperine                                                                        | Piper nigrum L              | Piperaceae               | P. nigrum                          |
|          |                         | (Bioperine <sup>®</sup> ; Sami<br>Labs LTD,<br>Bangalore, India)<br>was added to<br>enhance | in patented ratio.<br>Curcuminoids obtained<br>from turmeric 5%<br>piperine (obtained from<br>black pepper |                 |                                                                                 |                             |                          |                                    |
|          |                         | Bioavailability                                                                             |                                                                                                            |                 |                                                                                 |                             |                          |                                    |
| 11       | Panahi et al.<br>(2014) | Curcuminoids<br>(piperine was<br>added to enhance<br>Bioavailability)<br>(95%               | (95% curcuminoids<br>(70% is curcumin;<br>remaining<br>demethoxycurcumin<br>and                            |                 | curcuminoids<br>(curcumin;<br>demethoxycurcumin<br>and<br>bisdemethoxycurcumin) | Curcuma longa L             | Zingiberaceae            | C. longa                           |
|          |                         | curcuminoids, of which at least 70%                                                         | bisdemethoxycurcumin<br>in patented ratio.                                                                 |                 | Piperine                                                                        | Piper nigrum L              | Piperaceae               | P. nigrum                          |
|          |                         | is curcumin)                                                                                | Curcuminoids obtained<br>from turmeric 5%<br>piperine (obtained from<br>black pepper                       |                 |                                                                                 |                             |                          |                                    |
| 12       | Verhoeven               | Red yeast rice                                                                              | Red yeast rice (obtained                                                                                   |                 | red yeast rice (Purple                                                          | Monascus purpureus, (Went,  | Monascaceae              | M. purpureus                       |
|          | et al. (2015)           | (obtained by                                                                                | by culturing the yeast                                                                                     |                 | fermented rice,                                                                 | 1895)                       |                          |                                    |
|          |                         | culturing the yeast                                                                         | Monascus purpureus                                                                                         |                 | cultivated with the mold                                                        |                             |                          |                                    |
|          |                         | Monascus                                                                                    | on rice) and olive extract                                                                                 |                 | Monascus purpureus)                                                             |                             |                          |                                    |
|          |                         | <i>purpureus</i> on rice)                                                                   |                                                                                                            |                 | olive extract                                                                   | Olea europaea L             | Oleaceae                 | O. europaea                        |
| 13       | He et al.               | and olive extract<br>Yiqi Sanju Formula                                                     | Details not available as                                                                                   |                 |                                                                                 |                             |                          |                                    |
|          | (2007)                  | ., <i>je i sinna</i> ka                                                                     | paper is in Chinese                                                                                        |                 |                                                                                 |                             |                          |                                    |
| 14       | Lee et al.              | Red yeast rice,                                                                             | Red yeast rice, bitter                                                                                     |                 | Red yeast rice                                                                  | Monascus purpureus, (Went,  | Monascaceae              | M. purpureus                       |
|          | (2012)                  | bitter gourd,                                                                               | gourd, chlorella, soy                                                                                      |                 |                                                                                 | 1895)                       |                          |                                    |
|          |                         | chlorella, soy                                                                              | protein, and licorice                                                                                      |                 | Bitter gourd                                                                    | Momordica charantia L       | Cucurbitaceae            | M. charantia                       |
|          |                         | protein, and                                                                                |                                                                                                            |                 | Green algae                                                                     | Chlorella                   | Chlorellaceae            | 0                                  |
|          |                         | licorice                                                                                    |                                                                                                            |                 | Soy protein (isolated<br>from soybean)                                          | Glycine max (L.) Merr       | Fabaceae                 | G. max                             |
|          |                         |                                                                                             |                                                                                                            |                 | Licorice                                                                        | Glycyrrhiza glabra L        | Fabaceae/<br>Leguminosae | G. glabra                          |
|          |                         |                                                                                             |                                                                                                            |                 |                                                                                 |                             | (Continued on f          |                                    |

#### TABLE 2 | (Continued) Taxonomic classification of all the polyherbal combinations used in clinical studies against metabolic syndrome.

| S.<br>No | References              | Name of the herb                            | Components                                                                           | Chinese<br>Name | Common<br>name/source                                                                | Scientific name                                        | Family       | Specie               |
|----------|-------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|----------------------|
| 15       | Nagata et al.<br>(2012) | Keishibukuryogan<br>(Guizhi-<br>Fuling-Wan) | Cinnamomi Cortex,<br>Paeoniae Radix, Moutan<br>Cortex, Persicae<br>Semen, and Hoelen | Guizhi          | Cinnamomi cortex<br>(dried bark of<br><i>Cinnamomum verum</i> );<br>Chinese cinnamon | Cinnamomum verum J.Presl                               | Lauraceae    | C. veruum            |
|          |                         |                                             |                                                                                      | Shaoyao         | Paeoniae Radix; Peony root; Chinese peony                                            | Paeonia lactiflora Pall                                | Paeoniaceae  | P. lactiflora        |
|          |                         |                                             |                                                                                      | Mudanpi         | Moutan Cortex                                                                        | Paeonia x suffruticosa<br>Andrews                      | Paeoniaceae  | P. ×<br>suffruticosa |
|          |                         |                                             |                                                                                      | Taoren          | Persicae Semen; fruit<br>kernel of Peach                                             | Prunus persica (L) Batsch                              | Rosaceae     | P. persica           |
|          |                         |                                             |                                                                                      | Fuling          | Hoelen (dried sclerotia<br>of Wolfiporia cocos;                                      | <i>Wolfiporia cocos</i> (F.A. Wolf)<br>Ryvarden & Gilb | Polyporaceae | W. extensa           |

TABLE 2 | (Continued) Taxonomic classification of all the polyherbal combinations used in clinical studies against metabolic syndrome.

of the combination assessed or not and chemical classification done or not.

# RESULTS

The selection parameter, applied filters, as well as output of all the searches, are summarised in Figure 1A. In Figure 1B the summary of identified results is presented according to PRISMA guidelines (Page et al., 2019; Maraolo, 2021).

The total reference shortlisted were 109, out of which duplications and or articles which could not be retrieved were removed (n = 15) and number of articles to review were 94. Out of total 94 articles, 26 were divided as clinical trials and remaining 68 articles were either based on animal studies or in-vitro assays. These articles were further shortlisted by reviewing their basic theme and it was identified that some of the articles did not have the objective to manage MetS or were aimed at identifying new targets for management of Met S such as use of probiotics or correlating with gut microbiota (Ni et al., 2018) or the basic target for those studies were to cater different disease, although parameters for MetS were being met. Hence, out of 68 animal studies, filtered animal studies were identified to be 24 which matched our main objective of MetS. The taxonomic classification of polyherbal combinations used both in animal and clinical studies are summarized in Tables 1, 2, respectively. The meta-analysis of animal studies is summarized in Table 3. To further analyze the quality of studies, a semiquantitative scale was used, the details of which are presented separately as Table 4. The maximum score was 8, and references have been aligned from highest score to lowest score.

Out of 26 clinical trial articles, 15 articles matched our main objective, and their meta-analysis is presented in **Table 5** according to SPIDER model with references. **Supplementary Table S1** is attached to shows the analysis by SPICE protocol along with information about other targets met besides the 5 parameters of MetS. **Table 6** summarizes the qualitative scoring based on a checklist as mentioned in analysis section along with the online link available for the same. Out of 15 polyherbal combinations that were reviewed three formulations were able to modify 4 MetS parameters clinically. They include Yiqi Huazhuo Gushen herbal formula (Tian-zhan et al., 2019), Yiqi Huaju Qingli Formula (Wang et al., 2013), Sesame oil and vitamin E (Farajbakhsh et al., 2019). Six polyherbal combinations were able to reduce three out of 5 standard MetS parameters. The combinations included, *Curcuma longa* and *Nigella sativa* (Amin et al., 2015b), Diabegon (Yadav et al., 2014), modified Lingguizhugan decoction (MLD)+ weekend fasting (Yang et al., 2014a), Dahuang Huanglian Xiexin Decoction (Yu et al., 2018), combination of Nutraceuticals (Rozza et al., 2009) and Altilix supplement containing chlorogenic acid and luteolin (Castellino et al., 2019).

# DISCUSSION

MetS is a cluster of metabolic abnormalities that appear as a prediseased state and predisposes to CVD risk even before overt disease such as diabetes or hypertension develops. Catering those risk factors at this stage could prevent incidence of CVD. Hence, clinicians need to target multiple risk factors simultaneously. As the incidence of MetS is rising, there is a need to identify therapeutic modalities that could address multiple disease targets, offer better compliance, and reduce risk of adverse effects (Reilly and Rader, 2003; Keith et al., 2005). Polyherbal formulations could mutually enhance pharmacological synergy on the targeted disease and often exhibit pharmacological and therapeutic superiority in comparison to isolated single constituents.

The current review focuses on studies published from 2005–2020, reporting the efficacy of polyherbal therapies in MetS. This is attributed to either the action of bioactive ingredients from different herbs on the same molecular target forming a multiple-drug-one-target model (additive effect) and/or the functionally diverse targets but with potentially clinically relevant associations forming a multiple-drug-multiple-target-one-disease (synergistic effect) (Lu et al., 2012; Wang et al., 2012). In the current review, we identified 25 animal based studies in which polyherbal formulations were used in animal models of Mets. We categorised them as good and not very good, based on the

| S.<br>No | Polyherbal<br>combination                                                                                                                                                                                                                                                                                                 | Model/animal/<br>treatment duration                                                                                                                                         | Parameters assessed:<br>5 = glucose/FBG, TG, HDL-C, BP<br>and central obesity (weight, BMI,<br>HC and WC). Parameters met:<br>BMI [WC, HC], BP, HDL, TG, FBG.<br>Additional: TC, LDL                                                                                          | Other parameters related to<br>MetS                                                                                                                                                                                                                                                                                | Score of<br>study MetS<br>parameters<br>assessed<br>>3 = 1; ≤3 = 0 | Score for<br>effects (3/5:<br>Good) = score<br>1; <3/5 (not so<br>good) = score 0 | Concentration<br>given | Quality<br>control                                                                     | Chemical<br>classification | References             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|----------------------------|------------------------|
| 1        | Curcuma longa,<br>Salacia reticulate,<br>Gymnema sylvestre,<br>Emblica officinalis,<br>Terminalia chebula                                                                                                                                                                                                                 | High fructose diet/<br>Wistar rats/3 weeks                                                                                                                                  | Assessed: 5/5 = Body weight,<br>abdominal waist, BP, glucose, TG,<br>HDL-C, TC, LDL and VLDL. Met: 5/5<br>= Lowered Body weight, abdominal<br>waist and BMI, reduced BP, AI,<br>improved FBG and OGTT, reduced<br>TG, increased HDL-C. Also, TC, LDL<br>and VLDL reduced      | Reduced SGOT, SGPT, Uric acid,<br>MDA. Reduced gastrocnemius<br>muscle weight and fat pads.<br>Reduced infiltration of inflammatory<br>cells and fat accumulation in liver and<br>pancreas                                                                                                                         | 1                                                                  | 1                                                                                 | Yes                    | No (Purchased<br>from registered<br>company<br>(References no:<br>SR/KN/CL/1/<br>2003) | No                         | Thota et al.<br>(2014) |
| 2        | DHSGT: <i>Glycyrrhizae</i><br><i>uralensis</i> Fischer<br>(40 g), <i>Rheum</i><br><i>undulatum</i> Linne<br>(80 g), <i>Prunus persica</i><br>Linne (60 g),<br><i>Cinnamomum cassia</i><br>Presl (40 g), and Natrii<br>Sulfas (40 g)                                                                                       | HFD-induced obesity/<br>C57BL/6 J mice/<br>7 weeks                                                                                                                          | Assessed: 5/5 = Body weight, BP,<br>TG, HDL, Glucose. TC and LDL, Met:<br>5/5 = Reduced body weight<br>(Reduced liver weight and adipose<br>tissue mass, adipocyte size), BP, TG,<br>glucose and increased HDL-c. TC<br>and LDL-c reduced                                     | Decreased serum leptin and leptin<br>mRNA expression. increased mRNA<br>expression of peroxisome proliferator<br>activated receptor-gamma,<br>uncoupling protein-2, and<br>adiponectin in visceral adipose tissue<br>of HFD mice. Inhibition of porcine<br>pancreatic lipase and ACE activities<br><i>in vitro</i> | 1                                                                  | 1                                                                                 | Yes                    | No                                                                                     | No                         | Sung et al.<br>(2014)  |
| 3        | Huang-lian-jie-du-<br>tang: Rhizoma<br>coptidis, Radix<br>scutellariae, Cortex<br>phellodendri and<br>Fructus gardeniae (3:<br>2:2:3)                                                                                                                                                                                     | Obese-diet (2% fat,<br>10% sucrose, 6% salt<br>and 8% defatted milk<br>powder) and drinking<br>water (20% sucrose<br>solution) ad libitum/<br>Wistar male rats/<br>12 weeks | Assessed: 5/5 = BP, body weight,<br>FBG, fasting insulin, and insulin<br>resistance index, TG, HDL-C, LDL-c.<br>Met: 5/5 = Reduction in body weight,<br>BP, FBG, fasting insulin and insulin<br>resistance index, TG levels reduced,<br>and HDL-c increased. LDL-C<br>reduced | inhibited the activation of NF-kB and<br>reduced serine phosphorylation of<br>IRS-1                                                                                                                                                                                                                                | 1                                                                  | 1                                                                                 | Yes                    | Yes                                                                                    | No                         | Li et al.<br>(2013)    |
| 4        | RGPM: Red ginseng<br>and <i>Polygoni Multiflori</i><br>Radix (1:1)                                                                                                                                                                                                                                                        | High fructose/SD rats/<br>6 weeks                                                                                                                                           | Assessed: 5/5 = body weight,<br>Glucose, BP, TG, HDL-c. TC and<br>LDL-c. Met: 5/5 = Reduced body<br>weight and epididymal fat pads<br>weight, reduced TG, systolic BP and<br>increased HDL-c, OGTT improved.<br>TC and LDL-c reduced                                          | reduced leptin, CRP and glutamic-<br>oxaloacetic transaminase,<br>Decreased VCAM-1, ICAM-1, E<br>selectin, MCP-1 and improved<br>PPAR- $\gamma$ expression. lipid droplets in<br>liver decreased                                                                                                                   | 1                                                                  | 1                                                                                 | Yes                    | No<br>(Commercially<br>available<br>product was<br>used)                               | No                         | Kho et al.<br>(2016)   |
| 5        | Modified<br>lingguizhugan<br>decoction with dietary<br>restriction and<br>exercise. [ <i>Poria cocos</i><br>Wolf,<br><i>Cinnamomumcassia</i><br>Presl, <i>Atractylodes</i><br><i>lancea</i> DC.,<br><i>Glycyrrhiza uralensis</i><br>Fisch., <i>Codonopsis</i><br><i>pilosula</i> , Nannf. and<br><i>Rheum palmatum</i> L] | HFD for 12 weeks<br>(30% HFD + dietary<br>restriction ± 45 min<br>swim)/adult SD male<br>rats/1 week after HFD<br>for subsequent<br>12 weeks                                | Assessed: 5/5 = body weight, TG,<br>HDL, BP, blood glucose. Met: 5/5 =<br>reduced body weight, TG, BP, blood<br>glucose and insulin levels, Increased<br>HDL. Reduced TC, LDL, adipose and<br>liver tissue weight                                                             | Reduced serum FFA, AST, ALT and ALP and TNF- $\alpha$ , leptin in serum and liver                                                                                                                                                                                                                                  | 1                                                                  | 1                                                                                 | Yes                    | Yes                                                                                    | Yes                        | Yao et al.<br>(2017b)  |

Polyherbals in Metabolic Syndrome

Palla et al.

| S.<br>No | Polyherbal<br>combination                                                                                                                                                                                                                                                                                                                                                                       | Model/animal/<br>treatment duration                                                                                   | Parameters assessed:<br>5 = glucose/FBG, TG, HDL-C, BP<br>and central obesity (weight, BMI,<br>HC and WC). Parameters met:<br>BMI [WC, HC], BP, HDL, TG, FBG.<br>Additional: TC, LDL                                                                                                                             | Other parameters related to<br>MetS                                                                                                                                                       | Score of<br>study MetS<br>parameters<br>assessed<br>$>3 = 1; \le 3 = 0$ | Score for<br>effects (3/5:<br>Good) = score<br>1; <3/5 (not so<br>good) = score 0 | Concentration<br>given | Quality<br>control                               | Chemical<br>classification | References             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|--------------------------------------------------|----------------------------|------------------------|
| 6        | <i>Curcuma longa</i> and<br><i>Nigella sativa</i>                                                                                                                                                                                                                                                                                                                                               | Fructose fed rats (60%<br>fructose in diet + white<br>flour instead of wheat<br>flour) for 6 weeks/SD<br>rats/6 weeks | Assessed: 5/5 = body weight, BP,<br>Fasting serum insulin, FBG, HDL, and<br>TG, Met: 4/5 = Reduced BP, TG,<br>FBG, increased HDL. Reduced LDL,<br>TC and insulin                                                                                                                                                 | CRP reduced                                                                                                                                                                               | 1                                                                       | 1                                                                                 | Yes                    | No                                               | Yes                        | Amin et al.<br>(2015a) |
| 7        | Soybean meal and<br>probiotics<br>( <i>Bifidobacterium,</i><br><i>longum</i> (BB536)                                                                                                                                                                                                                                                                                                            | Obese Zucker rats/<br>Rat/100 days<br>(14.2 weeks)                                                                    | Assessed: 4/5 = Body weight, TC,<br>TG, HDL and glucose. Met: 4/5 =<br>Reduced weight gain (reduced liver<br>weight and fat), FBG and insulin, TG<br>and Increased HDL. Reduced TC<br>and LDL.                                                                                                                   | Reduced food intake, ALT,<br>GGT, ALP                                                                                                                                                     | 1                                                                       | 1                                                                                 | Yes                    | No but the diet<br>was purchased<br>commercially | No                         | Mounts et al<br>(2015) |
| 8        | ACE: Artemisia<br>iwayomogi and<br>Curcuma longa (1:1)                                                                                                                                                                                                                                                                                                                                          | HFD (10 weeks)/<br>C57BL/6/male mice/<br>10 weeks                                                                     | Assessed: 4/5 = Body weight, TG,<br>FBG, HDL-C (TC and LDL-c). Met: 4/<br>5 = Reduced body weight (reduced<br>liver weight, epididymal,<br>retroperitoneal, and visceral adipose<br>tissues. Reduced adipocyte size, TC<br>and TG in liver), reduced serum TG,<br>FBG and increased HDL. Reduced<br>LDL-c and TC | PPAR- $\gamma$ , fatty acid synthase;<br>SREBP-1c; and PPAR- $\alpha$                                                                                                                     | 1                                                                       | 1                                                                                 | Yes                    | Yes                                              | Yes                        | Lee et al.<br>(2015b)  |
| •        | Fu Fang Zhen Zhu<br>Tiao Zhi formula (FTZ):<br>Ligustrum lucidum<br>W.T. Aiton, fructus;<br>Atractylodes<br>macrocephala Koidz.,<br>rhizoma; Salvia<br>miltiorhiza Bunge,<br>radix; Coptis chinensis<br>Franch., rhizoma;<br>Panax notoginseng<br>F.H.Chen, radix;<br>Eucom- mia ulmoides<br>Oliv., cortex; Cirsium<br>japonicum Fisch. ex<br>DC., radix; Cirus<br>medica var.<br>sarcodactylus | HFD and insulin<br>resistant HepG2 cell<br>lines/Male SD rats/<br>8 weeks                                             | Assessed: 4/5 = Body weight, FBG,<br>TG, HDL-c, TC. Parameters met: 4/5<br>= Reduced body weight, FBG<br>(HOMA-IR index), TG increased<br>HDL-c. reduced TC.                                                                                                                                                     | Increased PI3K p85 mRNA<br>expression in the adipose tissues.<br>Reduced glucose content, PI3K p85<br>mRNA and IRS1 protein expression<br>upregulated in insulin resistant<br>HepG2 cells | 1                                                                       | 1                                                                                 | Yes                    | Yes                                              | Yes                        | Hu et al.<br>(2014)    |
| 10       | Erchen decoction:<br>Pericarpium Citri<br>Reticulatae (9 g),<br>Rhizoma Pinelliae<br>(9 g), Poria (6 g) and<br>Radix<br>Glycyrrhizae (3 g)                                                                                                                                                                                                                                                      | HFD for 10 weeks/<br>Male C57BL/6J mice/<br>4 weeks                                                                   | Assessed: 4/5 = glucose, TG, HDL,<br>obesity, Met: 3/5 = reduced Body<br>weight, Abdominal circumference,<br>FBG and improved OGTT, no effect<br>on insulin levels. Reduced TG but no<br>effect on HDL-c and LDL-c.<br>Reduced TC.                                                                               | Increased CDKAL1 expression in the<br>liver, visceral and subcutaneous<br>adipose tissues increased, improved<br>islet cell function to secrete more<br>insulin                           | 1                                                                       | 0                                                                                 | Yes                    | No                                               | No                         | Gao et al.<br>(2015)   |

| S.<br>No | Polyherbal<br>combination                                                                                                                                                                                                                                                                                                                                                                                                       | Model/animal/<br>treatment duration                                                                                                                                                                                                            | Parameters assessed:<br>5 = glucose/FBG, TG, HDL-C, BP<br>and central obesity (weight, BMI,<br>HC and WC). Parameters met:<br>BMI [WC, HC], BP, HDL, TG, FBG.<br>Additional: TC, LDL                                                  | Other parameters related to<br>MetS                                                                                                                                                                                                          | Score of<br>study MetS<br>parameters<br>assessed<br>>3 = 1; ≤3 = 0 | Score for<br>effects (3/5:<br>Good) = score<br>1; <3/5 (not so<br>good) = score 0 | Concentration<br>given | Quality<br>control                                                              | Chemical<br>classification | References                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------|
| 11       | CPQ: Curcumin,<br>Piperine and<br>Quercetin in a ratio (94<br>:1:5)                                                                                                                                                                                                                                                                                                                                                             | HFD and Low-Dose<br>Streptozotocin (8<br>weeks)/Albino female<br>Wistar rats/28 days                                                                                                                                                           | Assessed: 4/5 = body weight,<br>Glucose, TG, HDL (LDL and TC also<br>assessed), Met: 3/5, improved<br>glucose tolerance, reduced TG and<br>increased HDL. LDL-c and TC<br>reduced                                                     | Increased catalase, glutathione, and<br>SOD. Decreased granular<br>degeneration in diabetic liver                                                                                                                                            | 1                                                                  | 1                                                                                 | yes                    | yes                                                                             | Yes                        | Gao et al.<br>(2015)      |
| 2        | Extracts of Salvia<br>miltiorrhiza+ Gardenia<br>jasminoides                                                                                                                                                                                                                                                                                                                                                                     | HFD/SD male rats/<br>4 weeks                                                                                                                                                                                                                   | Assessed: 4/5 = Body weight, Serum<br>glucose levels, TG, HDL-c (TC, and<br>LDL-C). Met: 3/5 = Reduced serum<br>TC, TG, body weight (reduced<br>visceral fat mass), glucose, enhanced<br>insulin sensitivity. TC and LDL-c<br>reduced | Reduced Serum non-esterified fatty acids, ALT and AST, adipokines, $TNF$ - $\alpha$ and IL-6. Increased leptin in adipose tissue. Enhanced leptin expression                                                                                 | 1                                                                  | 0                                                                                 | Yes                    | Yes                                                                             | Yes                        | Tan et al.<br>(2013)      |
| 3        | SUB885C: Fructus<br>Crataegi, Folium<br>Nelumbinis, Folium<br>Apocyni, Flos <i>Rosa</i><br><i>rugosae</i> , Radix et<br>Rhizoma Rhei,<br>Depuratum<br>mirabilitum, Thallus<br>Sargassi, and honey<br>fried Radix<br>Glycyrrhizae                                                                                                                                                                                                | ApoE'3Leiden.CETP<br>transgenic mice with<br>mild<br>hypercholesterolemia<br>on semi-synthetic<br>modified Western-type<br>diet (0.2% cholesterol,<br>15% saturated fat and<br>40% sucrose; Cell line:<br>3T3-L1 preadipocyte/<br>Mice/4 weeks | Assessed: 3/5 = Body Weight, TG,<br>HDL-c. also TC, Met: 2/5 = Reduced<br>TG, increased HDL-c. Also<br>reduced TC                                                                                                                     | Reduced CETP, vLDL-c and TGs.<br>Stimulated lipolysis and inhibited<br>adipogenesis in 3T3-L1 cells                                                                                                                                          | 0                                                                  | 0                                                                                 | Yes                    | Yes                                                                             | No                         | Wei et al.<br>(2012)      |
| 4        | Bofu-tsu-shosan<br>formula: <i>Glycyrrhizae</i><br>radix, <i>Schizonepetae</i><br><i>spica</i> , Ephedrae<br>herba, Forsythiae<br>fructus) Others:<br>Platycodi radix,<br>Gypsum fibrosum<br>Atractyloids rhizoma,<br>Rhei rhizoma,<br>Scutellariae radix,<br>Gardeniae fructus,<br>paeoniae radix, cnidii<br>rhizoma, Angelicae<br>radix, Menthae herba,<br>Ledebouriellae radix,<br>Zingilberis rhizoma,<br>Kadinium, Natrium | KKAy mice 9 weeks of<br>age/mice/8 weeks<br>4.7% BOF (Chronic<br>model), 14 weeks<br>KKAy mice/male mice/<br>5,000 mg/kg BOF<br>dissolved in 1ml of<br>distilled water per<br>100 g of body weight<br>for 1 day (Acute model)                  | Assessed: 4/5 = obesity with marked<br>visceral fat, blood glucose, HDL and<br>BP, Met: 2/5 = Lowered Body<br>weight, obesity, BP. LDL reduced.<br>No effect on non-FBG, TC, HDL.                                                     | Food intake reduced; White adipose<br>tissue (weight and cell size<br>decreased); expression of genes<br>increased: adiponectin and PPAR<br>receptors; reduction in plasma<br>acylated-ghrelin genes expression<br>(antihypertensive effect) | 1                                                                  | 0                                                                                 | Yes                    | No, but<br>ingredients<br>were recruited<br>from<br>commercial<br>manufacturers | No                         | Azushima<br>et al. (2013) |

| S.<br>No | Polyherbal<br>combination                                                                                                                                                                                     | Model/animal/<br>treatment duration                                                                                                                    | Parameters assessed:<br>5 = glucose/FBG, TG, HDL-C, BP<br>and central obesity (weight, BMI,<br>HC and WC). Parameters met:<br>BMI [WC, HC], BP, HDL, TG, FBG.<br>Additional: TC, LDL                                                                        | Other parameters related to<br>MetS                                                                                                                                                                                                              | Score of<br>study MetS<br>parameters<br>assessed<br>>3 = 1; ≤3 = 0 | Score for<br>effects (3/5:<br>Good) = score<br>1; <3/5 (not so<br>good) = score 0 | Concentration<br>given                                                              | Quality<br>control                                                                                                                                                      | Chemical<br>classification | References             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
| 15       | Tang-Nai-Kang:<br>Fructus <i>Ligustri Lucidi</i> ,<br><i>Spica Prunellae</i><br>vulgaris, <i>Saururus</i><br><i>chinensis</i> , <i>Psidium</i><br><i>guajava</i> and Radix<br>ginseng (25:10:15:10            | SHR. Cg-Lepr <sup>cp</sup> /ND <sub>mcr</sub><br>(SHR/cp) for disease<br>and WKY rats for<br>control/male rat<br>7 weeks//low and high<br>dose 2 weeks | Assessed: 4/5 = BP, sugar, SBP,<br>bodyweight and fat, TG, Met: 4/5 =<br>reduced SBP, body weight and fat<br>mass, FBG, insulin levels. Insulin<br>resistance (OGTT and ITT) was<br>reduced. TC levels did not reduce<br>significantly                      | AST, ALT, FFA reduced. Gene<br>expression of NAD+ -dependent<br>deacetylase E10 and genes related<br>to fatty acid oxidation were markedly<br>up- regulated in the muscle, liver and<br>adipose tissues                                          | 1                                                                  | 1                                                                                 | Yes                                                                                 | No but the<br>process was<br>carried out by<br>Sichuan Medco<br>Pharmaceutical<br>Limited<br>Corporation<br>(Deyang, China),<br>hence some<br>validation is<br>expected | Yes                        | Li et al.<br>(2015)    |
| 16       | Wendan decoction:<br>Radix Glycyrrhizae (3g),<br>Pericarpium Citri<br>Reticulatae (9g), Poria<br>Coccos (4.5g), Citrus<br>Aurantium (6g), <i>Pinella</i> ,<br><i>ternata</i> (6g) and Caulis<br>Bambusae (6g) | High-sugar-fat-diet<br>(15 weeks) and high-<br>fat emulsion (2 weeks)/<br>Wistar male rat/<br>2 weeks                                                  | Assessed:3/5 = abdominal<br>perimeters, serum insulin HOMA-IR,<br>HDL. Met: 3/5 = decrease in<br>abdominal perimeters and serum<br>insulin levels, increases in HDL levels,<br>Recovered the HOMA-IR to the<br>control level                                | pathway analysis and molecular<br>docking simulation                                                                                                                                                                                             | 0                                                                  | 1                                                                                 | Yes                                                                                 | Yes                                                                                                                                                                     | Yes                        | Chen et al.<br>(2017)  |
| 17       | MCC: Mcmordica<br>charantia, the<br>pericarpium of Citri<br>reticulate and<br>L-carnitine Dosage:<br>6 g/kg                                                                                                   | HFD/female ICR mice/<br>8 weeks                                                                                                                        | Assessed: 4/5 = weight gain, FPG<br>and glucose intolerance, insulin<br>sensitivity, TG, HDL (LDL also<br>assessed). Met: 2/5 = reduced TG,<br>FPG, glucose intolerance and Insulin<br>sensitivity index, LDL/HDL ratio and<br>TC levels also reduced       | Mitochondrial coupling efficiency of<br>skeletal muscle was improved and<br>reduced carnitine palmitoyl CoA<br>transferase activity                                                                                                              | 1                                                                  | 0                                                                                 | Yes                                                                                 | No, but<br>commercial<br>preparation was<br>manufactured<br>and supplied by<br>Infinitus (China)<br>Company Ltd.,<br>Guangzhou,<br>China                                | No                         | Leong et al.<br>(2013) |
| 18       | SK0506: Gynostemma<br>pentaphyllum, Coptis<br>chinensis and Salvia<br>miltiorrhiza (gypenosides,<br>berberine and<br>tanshinone)                                                                              | HFD/Male SD rats/<br>4 weeks                                                                                                                           | Assessed: 3/5 = Body weight, FBG,<br>TG, TC. Parameters met: 3/5 =<br>Lowered body weight, visceral fats,<br>TG, slightly reduced FBG. (Reduced<br>insulin level and NAFA, improved<br>impaired glucose tolerance and<br>glucose infusion rate). TC reduced | Enhanced GLUT4 expression in<br>adipose tissue, enhanced insulin<br>mediated glucose uptake in red<br>quadriceps and white gastroonemius<br>skeletal muscles, enhanced<br>glycogen synthesis                                                     | 0                                                                  | 1                                                                                 | No (but yield is<br>given. It seems all<br>powders were<br>taken in equal<br>ratio) | Yes                                                                                                                                                                     | Yes                        | Tan et al.<br>(2011)   |
| 19       | Yi Tang Kang: sugar,<br>poria cocos,<br>Atractylodes, radix<br>Astragali, red ginseng<br>and other drugs                                                                                                      | MS spleen deficiency<br>syndrome rats with<br>HFD and low dose<br>intraperitoneal injection<br>of streptozocin/Male<br>Wistar rats/10 weeks            | Assessed: 4/5 = weight gain, FBG,<br>TG, HDL-c. Met: 3/5 = Reduced FBG<br>and TG and increased HDL-c.<br>Reduced insulin levels, insulin<br>resistance (IR) and ISI                                                                                         | Upregulation of Carboxylesterase<br>and retinal guanylate cyclase 2<br>precursors. Downregulation of IgG,<br>carnitine acetyltransferase, tubulin<br>beta 5, and Gan Lu sugar binding<br>protein C. protein tyrosine kinase,<br>beta glucosidase | 1                                                                  | 1                                                                                 | No                                                                                  | No                                                                                                                                                                      | No                         | Liu and Shi,<br>(2015) |

| S.<br>No | Polyherbal<br>combination                                                                                                                                                                                                                                                                                       | Model/animal/<br>treatment duration                                                                  | Parameters assessed:<br>5 = glucose/FBG, TG, HDL-C, BP<br>and central obesity (weight, BMI,<br>HC and WC). Parameters met:<br>BMI [WC, HC], BP, HDL, TG, FBG.<br>Additional: TC, LDL                                                                                                                                                                                                                  | Other parameters related to<br>MetS                                                                                                                                                                                                                                                                                                                | Score of<br>study MetS<br>parameters<br>assessed<br>$>3 = 1; \le 3 = 0$ | Score for<br>effects (3/5:<br>Good) = score<br>1; <3/5 (not so<br>good) = score 0 | Concentration<br>given | Quality<br>control | Chemical<br>classification | References                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|--------------------|----------------------------|---------------------------|
| 20       | SCH: Pharbitish<br>semen,<br>Trogopterorumh<br>faeces, Cyperih<br>Rhizoma (2:1:1)                                                                                                                                                                                                                               | HFD mouse model,<br>3T3-L1and HepG2<br>cells/Male C57BL/6J/<br>mice/15 weeks                         | Assessed: 3/5 = Glucose and insulin,<br>TG and TC levels. Parameters met: 3/<br>5 = Reduced glucose levels and<br>insulin levels (HOMA-IR index<br>reduced), Reduced TC and TG.                                                                                                                                                                                                                       | Regulated adipogenic gene<br>expression, proteins involved in<br>energy metabolism (in maturated<br>3T3-L1 cells). Increased<br>phosphorylated AMP activated<br>protein, as well as attenuated insulin<br>resistance and hepatic steatosis,<br>improved glucose facilitation by<br>GLUT2 externalization. in FFA-<br>induced steatotic HepG2 cells | 0                                                                       | 1                                                                                 | Yes                    | No                 | No                         | Lim et al.<br>(2019)      |
| 21       | Marjoram and chicory<br>Marjoram dry leaves<br>( <i>Origanum majorana</i> )<br>and chicory dry leaves<br>( <i>Cichorium intybus</i> ) (1:<br>5 w/v in water)                                                                                                                                                    | HFD/female SD albino<br>rats/4 weeks                                                                 | Parameters assessed: 3/5 = Body<br>weight gain, TG, HDL-c (Additional:<br>TC, LDL-c, VLDL-c, adipose tissue<br>weight). Parameters met: 3/5 =<br>lowered weight gain (Adiposity index<br>and FER), reduced TG, and<br>increased HDL-c; Adipose tissue<br>weight, TC, LDL-c, VLDL-c also<br>reduced                                                                                                    | decreased ALT and AST. increased<br>serum free T4 and T3 hormones                                                                                                                                                                                                                                                                                  | 0                                                                       | 1                                                                                 | Yes                    | No                 | No                         | A. Ahmed<br>et al. (2009) |
| 22       | Gambihwan (GBH1):<br>Ephedrae Herba;<br>Coicis semen;<br>Menthae herba<br>Gypsum; Alismatis<br>Rhizoma; Crataegi<br>fructus; Arecae<br>semen; Hordei fructus<br>germinatus GBH2:<br>Ephedrae herba;<br>Coicis semen; Typhae<br>pollen; Castaneae<br>semen; Sinomeni<br>Caulis et Rhizoma;<br>Scutellariae radix | Model: HFD-induced<br>obese mice/C57BL/6<br>mice (4 weeks old)/<br>8 weeks                           | Assessed: 4/5 = Body weight<br>Glucose, TG, HDL Met: 2/5 =<br>Reduced body weight, FBG, insulin<br>levels, Improved OGTT. No effect on<br>HDL. Decrease in TC, liver and fat<br>weight                                                                                                                                                                                                                | serum inflammatory and hepatic<br>enzyme levels diminished.<br>suppressed lipid accumulation                                                                                                                                                                                                                                                       | 1                                                                       | 0                                                                                 | Yes                    | No                 | No                         | Jang et al.<br>(2018)     |
| 23       | Sylimarin,<br>Schisandrae Fructus,<br>Crataegus Fructus<br>and Momordica<br>charantia (1:1:1:1)                                                                                                                                                                                                                 | HFD and Cell lines:<br>3T3-L1, Caco-2 and<br>HepG2 cell line/C57Bl/<br>6 male mice/8 and<br>12 weeks | Assessed: 4/5 = body weight (fat pad<br>weight to body weight ratios; liver<br>weight to body weight ratios); TG,<br>glucose, insulin. TC, LDL-c also<br>assessed. Met: 1/5 = reduced diet-<br>induced increase in body weight and<br>fat pad mass, reduced diet-induced<br>increase in liver weight, liver lipid, and<br>plasma lipid. No Effect on glucose<br>and insulin. reduced liver TC and TG. | Improved Plasma adiponectin level,<br>reduced inflammation (reduced mac-<br>3 expression) in liver. Inhibitory<br>effects on 3T3-L1 preadipocytes<br>differentiation inhibited the glucose<br>uptake Inhibited fatty acid uptake<br>prevented the cholesterol uptake                                                                               | 0                                                                       | 0                                                                                 | Yes                    | Yes                | Yes                        | Wat et al.<br>(2018)      |

|                              | treatment duration                          | Parameters assesse:<br>5 = glucose/FBG, TG, HDL-C, BP<br>and central obesity (weight, BM,<br>HC and WC). Parameters met<br>BMI [WC, HC], BP, HDL, TG, FBG.<br>Additional: TC, LDL                                                                                             | Other parameters related to<br>MetS                                                                                                                    | Score of<br>study MetS<br>parameters<br>assessed<br>>3 = 1; ≤3 = 0 | Score for<br>effects (3/5:<br>Good) = score<br>1; <3/5 (not so<br>good) = score 0 | Concentration<br>given | Guairty<br>control                | Chemical<br>classification | References            |
|------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|-----------------------------------|----------------------------|-----------------------|
| a<br>s soja<br>s,<br>ne soja | HFD-low dose STZ-<br>induced diabetes/Pat/- | Assessed: 2/5 = Body weight, food invitro assay: a-glucosidase inhibition intake and food efficiency ratio, FBG, (antidiabetic mechanism); protein OGTT. Met: 2/5 = Decrease body tyrosine phosphatase 1¢ weight, improved OGTT and (antidiabetic and antiobesity reduced FBG | invitro assey: a-glucosidase inhibition<br>(antidiabetic mechanism); protein<br>tyrosine phosphatase 1β<br>(antidiabetic and antiobesity<br>mechanism) | 0                                                                  | 0                                                                                 | Yes                    | Not known<br>(Korean<br>language) | Yes                        | Park et al.<br>(2009) |

sterol regulatory element-binding transcription factor; PPAR-y/a, Peroxisome proliferator-activated receptor gamma/alpha; SD Rats: Sprague Dawley rats; SGOT: Serum glutamic diabetic KK and lethal yellow; LDL, low density lipoprotein; Monocyte chemoattractant protein-1; MUVMA microalbuminuia; MDA, malondialdehyde; NAFA, non-esterified fatty acids; NF-KB, Nuclear Factor kappa-light-chain-enhancer of total cholesterol; TG, triglycerides; TNF, Tumor necrosis factor; vLDL, very low density lipoprotein; UACR, urea creatinine albumin atio: WKv. Wistar Kvoto ŢĊ, superoxide dismutase; waist hip I circumference: WHR. SOD, Serum glutamic pyruvic transaminase; waist activated B cells; PI3K Phosphoinositide 3-kinase SREBP, WC. adhesion molecule 1: anal DELISION oxaloacetic transaminase; SGPT: ce/ 5 ratio: vCAM-I, Vascular modulation of MetS parameters. Studies which were able to modulate 4-5 parameters were considered as very effective, whereas studies that modulated three or less than 3 parameters were marked as not so good. This, however, does not reflect on the quality of review. For the quality of review, we devised an 8question checklist and marked one point for meeting the criteria and 0 for no meeting the criteria. The overall score was 8.

From the effect point of view, different combinations were identified as very effective in animal based studies. They included combination of Curcuma longa, Salacia reticulate, Gymnema sylvestre, Emblica officinalis, Terminalia chebula (Thota et al., 2014), Glycyrrhizae uralensis Fischer, Rheum undulatum Linne, Prunus persica Linne, Cinnamomum cassia Presl and Natrii Sulfas (Sung et al., 2014), Rhizoma coptidis, Radix scutellariae, Cortex phellodendri and Fructus gardeniae (Li et al., 2013), Red ginseng and Polygoni Multiflori Radix (Kho et al., 2016) and modified lingguizhugan decoction (Yao et al., 2017a). These combinations modulated all the five parameters of MetS including reduction in body weight/obesity, BP, TG, and fasting blood glucose (FBG) and increase in HDL. Additionally, combination of soybean meal and probiotics (Bifidobacterium longum) (Mounts et al., 2015), Fu Fang Zhen Zhu Tiao Zhi formula (Hu et al., 2014), Curcuma Longa and Nigella Sativa (Amin et al., 2015a) and mixed extracts of Artemisia iwayomogi and Curcuma longa (Lee et al., 2015a) improved 4/5 MetS parameters and can be further considered for clinical trials.

These studies however exhibited certain limitations. For example, Lee et al. (2015a), comprehensively studied effect of Artemisia iwayomogi and Curcuma longa extract on metabolic markers along with fine mechanistic details but did nto use positive controls in their study. Similarly, Yao et al. (2017a) did not use positive controls in their study when studying effect of modified Lingguizhugan decoction (MLD) and only selected one dose for intervention. Hence, dose dependent effect couldn't be assessed. Besides, they did not study the effect mediated by MLD alone and only showed results of MLD with dietary restriction and exercise; additional group of MLD should have been added for confidently claiming the effect of MLD in the study. Amin et al., presented their findings comprehensively about use of combined Curcuma longa and Nigella sativa in MetS models but despite of mention of measuring body weight fortnightly, there were no results about effect on body weight (Amin et al., 2015a).

Some studies showed reduced effect on Met S parameters, but their focus was more on mechanistic details. For instance, study by Gao et al. (2015) on effect of Erchen decoction (ECD) exhibited effect on 3 parameters of MetS including FBG, TG and body weight and abdominal circumference. One of the appreciable aspects of this study is that the researchers reported abdominal circumference and body weight simultaneously. Limited animal studies consider abdominal circumference, which is the actual predictor of MetS. Additionally, molecular mechanisms of ECD on diabetic parameters have been elaborated at genetic level, where expression of CDK5 regulatory subunit associated protein 1 TABLE 4 | Qualitative scoring of studies on polyherbal combinations used in animals of Metabolic Syndrome models.

|    | References                | Dosage<br>of herb<br>provided | Components<br>and rationale<br>for dosing | animal<br>ethical<br>approval,<br>Yes = 1,<br>No = 0 | Euthanasia<br>protocol<br>mentioned/<br>followed,<br>Yes = 1, No = 0 | Model<br>validated<br>for MetS | Positive<br>control<br>used,<br>Yes = 1,<br>No = 0 | Met S<br>parameters<br>assessed<br>>3 = 1; <3 = 0 | Effect 3/5<br>parameters<br>met = good<br>effect (score 1)<br><3/5 = not so<br>good (score 0) | Total<br>score for<br>Quality,<br>8 | Link                                                                                                                                                                |
|----|---------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Thota et al.<br>(2014)    | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 0                                                  | 1                                                 | 1                                                                                             | 7                                   | https://citeseerx.ist.psu.edu/viewdoc/download?<br>doi=10.1.1.637.1093&rep=rep1&type=pdf                                                                            |
| 2  | Sung et al.<br>(2014)     | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 0                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC4193160/                                                                                                           |
| 3  | Li et al.<br>(2013)       | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC3695866/                                                                                                           |
| 4  | Kho et al.<br>(2016)      | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC4784406/pdf/12906_2016_Article_<br>1063.pdf                                                                        |
| 5  | Yao et al.<br>(2017b)     | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 0                                                  | 1                                                 | 1                                                                                             | 7                                   | https://link.springer.com/article/10.1186/<br>s12906-017-1557-y                                                                                                     |
| 6  | Amin et al.<br>(2015a)    | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 1                                                 | 1                                                                                             | 7                                   | https://journals.lww.com/cardiovascularpharm/<br>Abstract/2015/02000/Coadministration_of_<br>Black_Seeds_and_Turmeric_Shows.12.aspx                                 |
| 7  | Mounts et al.<br>(2015)   | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 0                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.researchgate.net/publication/<br>281189904_Feeding_Soy_with_Probiotic_<br>Attenuates_Obesity-Related_Metabolic_<br>Syndrome_Traits_in_Obese_Zucker_Rats |
| 8  | Lee et al.<br>(2015b)     | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 0                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC4609822/                                                                                                           |
| 9  | Hu et al.<br>(2014)       | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC3943467/                                                                                                           |
| 10 | Gao et al.<br>(2015)      | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 1                                                  | 1                                                 | 0                                                                                             | 7                                   | https://www.hindawi.com/journals/ecam/2015/<br>501272/                                                                                                              |
| 11 | Kaur and C,<br>(2012)     | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 1                                                 | 1                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC3317057/                                                                                                           |
| 12 | Tan et al.<br>(2013)      | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 1                                                  | 1                                                 | 0                                                                                             | 7                                   | https://www.ncbi.nlm.nih.gov/pmc/articles/<br>PMC3588405/pdf/ECAM2013-306738.pdf                                                                                    |
| 13 | Wei et al.<br>(2012)      | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 1                                                  | 0                                                 | 0                                                                                             | 6                                   | https://journals.plos.org/plosone/article?id=10.<br>1371/journal.pone.0030332                                                                                       |
| 14 | Azushima<br>et al. (2013) | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 0                                                  | 1                                                 | 0                                                                                             | 6                                   | https://journals.plos.org/plosone/article/<br>comments?id=10.1371/journal.pone.<br>0075560                                                                          |
| 15 | Li et al.<br>(2015)       | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 0                                                  | 1                                                 | 1                                                                                             | 6                                   | https://journals.plos.org/plosone/article?id=10.<br>1371/journal.pone.0122024                                                                                       |
| 16 | Chen et al.<br>(2017)     | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 0                                                 | 1                                                                                             | 6                                   | https://pubs.rsc.org/en/content/articlepdf/2017/<br>ra/c7ra09779dSupplementary reference: http://<br>www.rsc.org/suppdata/c7/ra/c7ra09779d/<br>c7ra09779d1.pdf      |
| 17 | Leong et al.<br>(2013)    | 1                             | 1                                         | 1                                                    | 1                                                                    | 1                              | 0                                                  | 1                                                 | 0                                                                                             | 6                                   | https://pdfs.semanticscholar.org/670a/<br>eb206f240938b3299e6a18e2fdd97c43ae70.pd                                                                                   |
| 18 | Tan et al.<br>(2011)      | 1                             | 1                                         | 1                                                    | 0                                                                    | 1                              | 1                                                  | 0                                                 | 1                                                                                             | 6                                   | https://www.researchgate.net/publication/<br>47447592_Chinese_herbal_extracts_SK0506_<br>as_a_potential_candidate_for_the_therapy_of_<br>the_metabolic_syndrome     |

(Continued on following page)

Polyherbals in Metabolic Syndrome

| References                | Dosage<br>of herb<br>provided | Components<br>and rationale<br>for dosing | animal<br>ethical<br>approval,<br>Yes = 1,<br>No = 0 | Euthanasia<br>protocol<br>mentioned/<br>followed,<br>Yes = 1, No = 0 | Model<br>validated<br>for MetS | Positive<br>control<br>used,<br>Yes = 1,<br>No = 0 | Met S<br>parameters<br>assessed<br>>3 = 1; <3 = 0 | Effect 3/5<br>parameters<br>met = good<br>effect (score 1)<br><3/5 = not so<br>good (score 0) | Total<br>score for<br>Quality,<br>8 | Link                                                                                                                                                                              |
|---------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liu and Shi,<br>(2015)    | -                             | 0                                         | 0                                                    | 0                                                                    | -                              | -                                                  | -                                                 | -                                                                                             | Q                                   | https://pubmed.ncbi.nlm.nlh.gov/25902033/                                                                                                                                         |
| (2019)<br>(2019)          | -                             | ÷                                         | -                                                    | 0                                                                    | -                              | 0                                                  | 0                                                 | -                                                                                             | Ŋ                                   | https://www.nature.com/articles/s41598-019-<br>45099-x                                                                                                                            |
| A. Ahmed<br>et al. (2009) | ۲                             | ۲                                         | 0                                                    | -                                                                    | ٣                              | 0                                                  | 0                                                 | -                                                                                             | Q                                   | http://citeseerx.ist.psu.edu/viewdoc/download?<br>doi=10.1.1.321.1771&rep=rep1&type=pdf                                                                                           |
| Jang et al.<br>(2018)     | ÷                             | 0                                         | -                                                    | 0                                                                    | ÷                              | 0                                                  | -                                                 | 0                                                                                             | 4                                   | https://www.hindawi.com/joumals/ecam/2018/<br>5614091/                                                                                                                            |
| Wat et al.<br>(2018)      | F                             | -                                         | -                                                    | -                                                                    | F                              | 0                                                  | 0                                                 | 0                                                                                             | 4                                   | https://pubmed.ncbi.nlm.nlh.gov/29655677/                                                                                                                                         |
| Park et al.<br>(2009)     | 0                             | 0                                         | 0                                                    | 0                                                                    | <del></del>                    | <del></del>                                        | 0                                                 | 0                                                                                             | 0                                   | https://www.researchgate.net/publication/<br>288976056_Effects_of_herbal_complex_on_<br>blood_glucose_in_streptozotocin-induced_<br>diabetic_rats_and_in_mice_model_of_metabolic_ |

like 1 (CDAK1) has been shown and correlated with improved islet cell function. Since this preparation did not have effect on LDL and HDL, combining it with antidyslipidemic herb, such as Curcuma longa and/or Nigella sativa coupled with low dose of ECD may be a good combination for future studies. Like this, extracts of Salvia miltiorrhiza and Gardenia jasminoides (Tan et al., 2013), showed effect on 3 parameters of Met S, but gave an elaborate mechanism for their antiobesity effect including enhanced leptin expression. Amongst the studies reported in this review, limited studies assessed BP (Thota et al., 2014; Amin et al., 2015a); whereas, most of them did not assess blood pressure in their models, and therefore the studies which have either met 3 or 4 out of 5 parameters of MetS are majorly the ones which did not assess BP in their animal models (Mounts et al., 2015). One of the reasons for this could be that BP monitoring in animals is technically challenging, and assessing it for number of animals, which usually are 40-50 altogether, is highly tedious and time consuming.

The other part of our review focussed on clinical trials in the last 15 years which used polyherbal formulations for the management of MetS. Amongst the combinations reviewed the most effective considered were the ones which met maximum MetS parameters. The maximum parameters modified were 4 out of 5 by 3 combinations including Yiqi Huazhuo Gushen herbal formula (Tian-zhan et al., 2019), Yiqi Huaju Qingli Formula (Wang et al., 2013), and Sesame oil and vitamin E combination (Farajbakhsh et al., 2019). However, these studies were assessed for short period of time ranging from 8 to 12 weeks, which may be helpful in determining the acute effect but not long-term effect and side-effects.

From this perspective a study by Yadav et al. (2014) is worth mentioning who studied the effects of herbal combination "Diabegon" till 1.5 years and monitored the effect on liver and kidney parameters, which showed no toxic effects on these organs. In fact, the combination reduced uric acid and effectively reduced FBG, TG and increased HDL, although BP was not monitored. Another worthy study in this regard was controlled clinical trial which used Keishibukuryogan, a traditional Japanese (Kampo) formula (Nagata et al., 2012) in MetS patients in a cross over design. Although, it did not reduce any MetS parameters, its main outcome was improvement in endothelial function which has a preventive role towards atherosclerosis. Such study designs should be adopted for formulas which have shown promising results in small scale studies.

Some studies design was flawed and therefore the effects could not be validated. For instance, study by Yang et al. (2014a) on MLD along with weekend fasting tested the combination on MetS patients but no comparative control was used. We could not determine whether the effect was due to MLD or weekend fasting. Aims of the study were also not clearly written in the write-up. Similarly, a combination of nutraceuticals with dietary interventions very efficiently reflected the improvement in MetS parameters to an extent that the patients no longer fulfilled the MetS criteria after treatment (10/15) (Rozza et al., 2009). Nevertheless, with

TABLE 5 | Summary of meta-analysis of polyherbal combinations used in Clinical studies in patients with MetS according to SPIDER model, concentration, quality control and chemical classifications reports.

|          | S                                                                              | Р                                                | I                                                                                                                                                                                                                                                                                  | D                                                |                                                                                                                                                              | E                                                                                                            | R                                                  | Other                                                                   | References                   | Concentration | Quality                                    | Chemical             |
|----------|--------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|------------------------------|---------------|--------------------------------------------|----------------------|
| S.<br>No | Sample<br>(size)                                                               | Population                                       | Intervention/<br>Phenomenon<br>of interest                                                                                                                                                                                                                                         | Study<br>Design                                  | Evaluation<br>[MetS<br>parameters<br>assessed<br>out of<br>5]                                                                                                | Evaluation<br>Outcome<br>(Parameters<br>met)                                                                 | Research<br>Type<br>(quantitative/<br>qualitative) | targets                                                                 |                              |               | control<br>reported                        | analysis<br>reported |
| 1        | 100 (50<br>control, 50<br>treatment)                                           | Subjects with<br>MetS<br>complicated<br>with MAU | Yiqi Huazhuo Gushen<br>herbal formula ( <i>Optis</i><br><i>chinensis, Pollen</i><br><i>typhae</i> , the rhizome of<br>oriental water plantain,<br>Mung bean peel, <i>Serissa</i><br><i>serissoides</i> , Radix<br>Aconiti <i>lateralis</i><br><i>praeparata</i> )+ valsartan       | Double-<br>blinded and<br>placebo-<br>controlled | <b>5/5:</b> BMI,<br>FPG, 2hPG,<br>HbA1c,<br>(HOMA-IR),<br>SBP and<br>DBP, MABP,<br>TC, TG,<br>LDL, HDL                                                       | <b>4/5:</b> reduced<br>BMI, WHR,<br>SBP, MAP,<br>FPG, 2hPPG,<br>HbA1c, reduce<br>TG, increased<br>HDL, LDL-c | Quantitative                                       | Reductions in<br>MAP, UACR,<br>24hTP and<br>urinary β2<br>microglobulin | Tian-zhan<br>et al. (2019)   | Yes           | No                                         | No                   |
| 2        | 60<br>(treatment =<br>30; control<br>group = 30)                               | Subjects with<br>MetS                            | Yiqi Huaju Qingli<br>Formula with western<br>medicine: Radix<br>Astragali, Rhizoma<br>Coptidis, <i>Pollen Typhae</i> ,<br>Artemisiae Rhizoma<br>Alismatis, Testa Vignae<br>Radiatae, <i>Serissa</i><br><i>Japonica</i> , and Radix<br>Aconiti <i>Lateralis</i><br><i>Preparata</i> | Randomized<br>placebo-<br>controlled             | 5/5: BMI, WC,<br>WHR, FPG, 2-<br>hPPG,<br>HbA1c,<br>homeostasis<br>model<br>assessment<br>for insulin<br>resistance<br>(HOMA-IR),<br>TC, LDL, TG,<br>HDL, BP | <b>4/5:</b><br>decreased<br>BMI, WC,<br>WHR, FPG, 2-<br>hPPG, HbA1c,<br>TG,<br>increased HDL                 | Quantitative                                       | reduced<br>Urinary MA,<br>UACR                                          | Wang et al.<br>(2013)        | Yes           | No                                         | No                   |
| 3        | 75<br>(Sesame+<br>vitamin E =<br>25, Sesame<br>= 25;<br>Sunflower<br>oil = 25) | Subjects with<br>MetS (aged<br>30–70 years)      | Sesame oil and vitamin E                                                                                                                                                                                                                                                           | Randomized,<br>single-blind<br>controlled        | <b>4/5</b> = dietary<br>intake, BP,<br>FBG, serum<br>insulin, TC,<br>TG, HDL                                                                                 | <b>4/5</b> = reduced<br>TC, TG, FBG,<br>HOMA-IR,<br>SBP, DBP.<br>increased<br>HDL-c                          | Quantitative                                       | MDA,<br>Hs-CRP,                                                         | Farajbakhsh<br>et al. (2019) | Yes           | No but it was<br>recruited from<br>company | No                   |
| 4        | 250 (63 per<br>group; 4<br>groups                                              | Subjects with<br>MetS                            | <i>Curcuma longa</i> and<br><i>Nigella sativa</i>                                                                                                                                                                                                                                  | Double blind<br>randomized<br>controlled         | 5/5: BMI, BF<br>%, WC, HC,<br>BP, TC, HDL-<br>c LDL-c,<br>TG, FBG                                                                                            | <b>3/5:</b> reduced<br>BMI (weight,<br>HC, BF%)<br>FBG, TG, TC,<br>LDL-c                                     | Quantitative                                       | CRP.                                                                    | Amin et al.<br>(2015b)       | Yes           | No                                         | No                   |

TABLE 5 | (Continued) Summary of meta-analysis of polyherbal combinations used in Clinical studies in patients with MetS according to SPIDER model, concentration, quality control and chemical classifications reports.

| S                                                  | Р                                                                                                         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>(size)                                   | Population                                                                                                | Intervention/<br>Phenomenon<br>of interest                                                                                                                                                                                                                                                                                                                                                                                                                     | Study<br>Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evaluation<br>[MetS<br>parameters<br>assessed<br>out of<br>5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evaluation<br>Outcome<br>(Parameters<br>met)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Research<br>Type<br>(quantitative/<br>qualitative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | control<br>reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | analysis<br>reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N =<br>116divided<br>in 5 different<br>groups      | Type 2<br>diabetic<br>subjects with<br>MetS                                                               | Diabegon, (Momordica<br>charantia, Swertia<br>chirata, Gymnema<br>sylvestre, Trigonella<br>foenumgraecum,<br>Plumbago zeylanica,<br>Eugena jambolana,<br>Aegle marmelos,<br>Terminalia chebula,<br>Terminelia balerica,<br>Emblica officinalis,<br>Curcuma longa,<br>Pterocarpus<br>marsupium, Berberis<br>aristata, Cytrullus<br>culocynthis, Cyperus<br>rotondus, Piper longum,<br>root of Piper longum,<br>Zingiber officinale, and<br>Asphaltum punjabinum | Double-<br>blinded and<br>placebo-<br>controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4/5: BMI,<br>FBG, TC, TG,<br>LDL, HDL,<br>VLDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3/5:</b> reduction<br>in FBG,<br>reduced TC,<br>LDL, TG,<br>increase HDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quantitative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | reduction in<br>uric acid,<br>creatinine.<br>Maintained<br>LFTs (SGOT<br>and SGPT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yadav et al.<br>(2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 21                                                 | Subjects with<br>MetS (17–70<br>years)                                                                    | Modified Lingguizhugan<br>decoction (MLD)+<br>weekend fasting: (MLD<br>= Poria, Ramulus<br>Cinnamomi, Rhizoma<br><i>Atractylodis</i><br><i>Macrocephalae</i> , and<br>Radix Glycyrrhizae)                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>5/5:</b> FPG, 2-h post-prandial blood glucose, fasting serum insulin (FINS), BP, BMI, WC, HOMA-IR, TG, TC, LDL-C, HDI -C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>3/5:</b> reduced<br>FPG, HOMA-<br>IR, PG, SBP,<br>DBP, BMI,<br>WC, LDL-C,<br>decreased<br>significantly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quantitative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yang et al.<br>(2014b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No but<br>Pharmaceutical<br>company<br>provided it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 450<br>(treatment =<br>225,<br>Metformin<br>= 225) | Type 2<br>diabetes                                                                                        | Dahuang Huanglian<br>Xiexin Decoction (JTTZ):<br>Aloe vera, <i>Coptis</i><br><i>chinensis</i> , Rhizoma<br><i>Anemarrhenae</i> , red<br>yeast rice, <i>Momordica</i><br><i>charantia</i> , <i>Salvia</i><br><i>miltiorrhiza</i> , <i>Schisandra</i><br><i>chinensis</i> , and dried                                                                                                                                                                            | Positive-<br>Controlled,<br>Open-label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C, HDL-C<br><b>3/5:</b> BMI,<br>weight, WC,<br>HC HbA1c,<br>Total<br>cholesterol,<br>TG, FPG,<br>2 h PG,<br>HOMA-IR,<br>(HOMA-β),<br>TC, LDLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3/5:</b><br>decreased<br>HbA1c, FPG<br>levels, TG and<br>LDL-C levels,<br>BMI, WC, HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantitative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yu et al.<br>(2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. established<br>formula. Dose<br>and duration<br>given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    | Sample<br>(size)N =<br>116divided<br>in 5 different<br>groups2121450<br>(treatment =<br>225,<br>Metformin | Sample<br>(size)PopulationN =<br>116divided<br>in 5 different<br>groupsType 2<br>diabetic<br>subjects with<br>MetS21Subjects with<br>MetS (17–70<br>years)450<br>(treatment =<br>225,<br>MetforminType 2<br>diabetes                                                                                                                                                                                                                                           | Sample<br>(size)PopulationIntervention/<br>Phenomenon<br>of interestN =<br>116divided<br>in 5 different<br>groupsType 2<br>diabetic<br>subjects with<br>MetSDiabegon, (Momordica<br>charantia, Swertia<br>chirata, Gymnema<br>sylvestre, Trigonella<br>foenumgraecum,<br>Plumbago zeylanica,<br>Eugena jambolana,<br>Aegle marmelos,<br>Terminalia chebula,<br>Terminelia balerica,<br>Emblica officinalis,<br>Curcuma longa,<br>Pterocarpus<br>marsupium, Berberis<br>aristata, Cytrullus<br>culocynthis, Cyperus<br>rotondus, Piper longum,<br>Zingiber officinale, and<br>Asphaltum punjabinum21Subjects with<br>MetS (17-70<br>years)Modified Lingguizhugan<br>decoction (MLD)+<br>weekend fasting: (MLD<br>= Poria, Ramulus<br>Cinnamomi, Rhizoma<br>Atractylodis<br>Macrocephalae, and<br>Radix Glycyrrhizae)450<br>(treatment =<br>225,<br>Metformin<br>= 225)Type 2<br>Lahuang Huanglian<br>Xiexin Decoction (JTTZ):<br>Aloe vera, Coptis<br>chinensis, Rhizoma<br>Anemarthenae, red<br>yeast rice, Momordica<br>charantia, Salvia<br>miltiorrhiza, Schisandra | Sample<br>(size)PopulationIntervention/<br>Phenomenon<br>of interestStudy<br>DesignN =<br>116divided<br>in 5 different<br>groupsType 2<br>diabetic<br>subjects with<br>MetSDiabegon, (Momordica<br>charantia, Swertia<br>chirata, Gymnema<br>sylvestre, Trigonella<br>foenumgraecum,<br>Plumbago zeylanica,<br>Eugena jambolana,<br>Aegle marmelos,<br>Terminalia chebula,<br>Terminalia chebula,<br>Terminalia chebula,<br>Terminalia chebula,<br>Terminelia balerica,<br>Ernblica officinalis,<br>Curcuma longa,<br>Plerocarpus<br>marsupium, Berberis<br>aristata, Cytrullus<br>culocynthis, Cyperus<br>rotondus, Piper longum,<br>rot of Spiper longum,<br>rot of Piper longum,<br>rot of Piper longum,<br>rot of Spiper longum,<br>rot of Spiper longum,<br>rot of Piper longum,<br>rot of Piper longum,<br>rot of Piper longum,<br>rot of Spiper longum,<br>rot of Spiper longum,<br>rot of Piper longum<br>rot of Piper | Sample<br>(size)PopulationIntervention/<br>Phenomenon<br>of interestStudy<br>DesignEvaluation<br>[MetS]<br>parameters<br>assessed<br>out of<br>s]N =<br>116divided<br>in 5 different<br>groupsType 2<br>diabetic<br>subjects with<br>MetSDiabegon, (Momordica<br>chrantia, Swertia<br>chirata, Gymnema<br>sylvestre, Trigonella<br>foenumgraecum,<br>Plumbago zeylanica,<br>Eugena jambolana,<br>Aegle marmelos,<br>Terminalia chebula,<br>Terminalia chebula,<br>Solica, colocitia, (MLD)<br>= Poria, Ramulus<br>Cinnamom, Rhizoma<br>Aractydois<br>Macr | Sample<br>(size)         Population         Intervention/<br>Phenomenon<br>of interest         Study<br>Design         Evaluation<br>(MetS<br>parameters<br>assessed<br>out of<br>s]         Evaluation<br>Outcome<br>(Parameters<br>met)           N =<br>116divide<br>in 5 different<br>groups         Type 2<br>diabetic<br>subjects with<br>MetS         Diabegon, (Momorica<br>charanta, Swertia<br>chirata, Gymnema<br>sylvestre, Trigonella<br>foenungraecum,<br>Plumbago zeylanica,<br>Eugena jambolana,<br>Aegle mamelos,<br>Terminalia chebula,<br>Terminalia che | Sample<br>(size)         Population         Intervention/<br>Phenomenon<br>of interest         Study<br>Design         Evaluation<br>(MetS<br>parameters<br>out of<br>5]         Evaluation<br>(MetS<br>parameters<br>exclusion)         Evaluation<br>(Parameters<br>met)         Research<br>type           N =<br>116dwided<br>in 5 different<br>groups         Type 2<br>diabetic<br>subjects with<br>MetS         Diabegon, (Momoridea<br>chranta, Synertia<br>chrata, Gymmena<br>sylvester, Triponella<br>foenumgraecum,<br>Plumbago zeylanica,<br>Eugera jambolana,<br>Aegle marnelos,<br>Terminela baterica,<br>Emblica officinalis,<br>Curcuma longa,<br>Pterocarpus<br>marsuplum, Berberis<br>anistata, Oytrulius<br>culcoynthis, Oper longum,<br>Zingiber officinale, and<br>Asphaltum punjabinum<br>Atractybodis<br>Macrocephalea, and<br>Rack Glycyrrhizae)         N/A         5/5: FPG, 2-h<br>(S: FPG, 2-h<br>(DL, HDL,<br>VLDL         3/5: reduced<br>no FPG, HOMA-<br>biode         Quantitative<br>parameters<br>(DL, HDL,<br>VLDL         Quantitative<br>(Duale, TC,<br>increase HDL         Quantitative<br>(Duale, TC,<br>increased<br>(FPG, HOMA-<br>IR, PG, SBP,<br>BBP, BMI, WC,<br>HOMA-IR,<br>TC, TC, LDL-<br>C, HDL-C         Quantitative<br>(Duale, TC,<br>insulin (FINS),<br>issulin (FINS),<br>ispoliticantity<br>(Duale, C, HDL-C)         Quantita | Sample<br>(size)         Population         Intervention/<br>Phenomenon<br>of interest         Study<br>Design         Evaluation<br>(MetS<br>parsa         Evaluation<br>(MetS<br>parsa         Research<br>Type<br>(qualitative)<br>qualitative)         Research<br>Type<br>(qualitative)         targets           N =<br>116d/ided<br>is 0 different<br>groups         Type 2<br>diabetic<br>thista, Gymmetra,<br>Swigets with<br>MetS         Diabegon, (Momoroica<br>charante, Sweria<br>sylester, Tigonella<br>forumgraceum,<br>Plemago zeylenica,<br>Eugena jambolana,<br>Aegle nametos,<br>Terminate babula,<br>Terminate babula,<br>Ter | Sample<br>(size)         Population         Intervention/<br>Phenomenon<br>of interest         Study<br>Design         Evaluation<br>(MetS<br>parameters<br>out of<br>1         Evaluation<br>(MetS<br>parameters<br>out of<br>1         Research<br>(Parameters<br>net)         Tespe<br>(quantitative)         targets           N =<br>116d/wdd<br>in 5 different<br>groups         Type 2<br>diabetic<br>subjects with<br>MetS         Diabegon, (Momordica<br>otrizante, Sweiter, Figorella<br>chirata, Gymmena<br>sylester, Figorella<br>controlled         Duale-<br>placebo-<br>controlled         Duale-<br>placebo-<br>controlled         Diabegon, (Momordica<br>otrizante, Sweiter,<br>Parameters,<br>sylester, Figorella<br>controlled         Outlot-<br>trizante, Sweiter,<br>Parameters,<br>Terminolia balerica,<br>Eugena jambolana,<br>Aggie narmetics,<br>Terminolia balerica,<br>Eugena jambolana,<br>Aggie narmetics,<br>Terminolia balerica,<br>Eugena jambolana,<br>Aggie narmolana,<br>Aggie narmola,<br>Paramutas         9/5: reduced<br>to Figorella<br>controlled         Quantitative<br>uic acid,<br>LDL, TIG,<br>in FEG, TC,<br>VDL         Quantitative<br>uic acid,<br>LDL, TIG,<br>increase HDL         Value vic all<br>uic acid,<br>cracuma log<br>and SGPT)         Yadav et al.<br>(2014)           21         Subjects with<br>weekend testing; (MLD<br>= Point, Ramutas<br>dinarmorn, Finzoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramorn, Finzoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Paramutas<br>dinarmorn, Finzoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Prizoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Prizoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Swie<br>maxupum,<br>atractyotis<br>chiramar, Prizoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Swie<br>maxupum,<br>atractyotis<br>chiramar, Prizoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Prizoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>chiramar, Prizoma<br>Atractyotis<br>maxupum,<br>atractyotis<br>maxupum,<br>atractyotis<br>maxupum,<br>atractyotis<br>maxupum,<br>atractyot | Sample<br>(size)         Population<br>(size)         Intervention/<br>Phenomenon<br>of interest         Study<br>Design<br>(size)         Evaluation<br>(MetS)<br>parameters<br>(graumetative)         Research<br>(graumitative)         requests           N =<br>116dvided<br>in 5 different<br>groups         Type 2<br>(babec)<br>NetS, respective<br>parameters<br>(groups)         Dobele-<br>thind 4 data<br>babec,<br>parameters<br>(groups)         Dobele-<br>thind 4 data<br>babec,<br>parameters<br>(groups)         Dobele-<br>thind 4 data<br>babec,<br>parameters<br>(groups)         Dobele-<br>thind 4 data<br>babec,<br>controlled<br>(groups)         2/5. FPG, 2-h<br>(groups)         Goantitative<br>(groups)         reduction in<br>pacebor<br>(groups)         Value et al.<br>(Q14)         Yes           21         Subjects with<br>Mets (17-7)<br>years)         Subjects with<br>Mets (17-7)<br>years)         NA<br>(groups)         S/5. FPG, 2-h<br>(groups)         3/5. reduced<br>(groups)         Quantitative<br>(groups)         Yang et al.<br>(2014b)         Yes           21         Subjects with<br>Mets (17-7)<br>years)         Subjects with<br>Mets (17-7)<br>years)         NA<br>(group et al.<br>(D1-C)<br>(group)         NA<br>(group et al.<br>(Q14b)         Yes           21         Subjects with<br>Mets (17-7)<br>years)         Dobule<br>(Moconceptalaa, and<br>Aphatum punpinium<br>Aracytodis<br>Aracytodis<br>Aracytodis<br>(groups)         Posther<br>(Groups), Rive<br>(Groups), Rive<br>(Groups), Rive<br>(Groups), Rive<br>(Groups), Rive<br>(Groups), Rive<br>(Groups), | Sample<br>(size)         Population         Intervention/<br>Phenomenon<br>of interest         Study<br>Design         Evaluation<br>(Memory<br>assessed)         Evaluation<br>(Memory<br>met)         Research<br>Study<br>(autitative)         targets         Lurgets         Lurgets <thlurgets< th=""> <th< td=""></th<></thlurgets<> |

Polyherbals in Metabolic Syndrome

TABLE 5 | (Continued) Summary of meta-analysis of polyherbal combinations used in Clinical studies in patients with MetS according to SPIDER model, concentration, quality control and chemical classifications reports.

|          | S                                                              | Р                      | I                                                                                                                    | D                                                                               |                                                                                                                                                       | E                                                                                                                                                      | R                                                  | Other                                                                                                                | References                  | Concentration                                                                                              | Quality             | Chemical             |
|----------|----------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| S.<br>No | Sample<br>(size)                                               | Population             | Intervention/<br>Phenomenon<br>of interest                                                                           | Study<br>Design                                                                 | Evaluation<br>[MetS<br>parameters<br>assessed<br>out of<br>5]                                                                                         | Evaluation<br>Outcome<br>(Parameters<br>met)                                                                                                           | Research<br>Type<br>(quantitative/<br>qualitative) | targets                                                                                                              |                             |                                                                                                            | control<br>reported | analysis<br>reported |
| 8        | 30 (placebo<br>= 15;<br>treatment<br>= 15)                     | Subjects with<br>MetS  | Nutraceuticals<br>(Armolipid Prev,<br>Rottapharm, Monza,<br>Italy) + dietary<br>intervention                         | Randomized,<br>controlled,<br>double-blind,<br>parallel-group,<br>single-centre | <b>5/5: B</b> MI,<br>FBG, TG,<br>HDL, SBP<br>and DBP,<br>TC, LDL                                                                                      | <b>3/5:</b> Reduce<br>SBP and DBP,<br>TG, LDL-C,<br>TC, Increase<br>HDL. MetS<br>prevalence<br>reduced from<br>15 to 5                                 | Quantitative                                       | N/A                                                                                                                  | Rozza et al.<br>(2009)      | registered drug<br>so<br>concentration<br>may be in fixed<br>preparation.<br>Authors have<br>not mentioned | No                  | No                   |
| 9        | 100<br>(treatment =<br>50; placebo<br>= 50                     | Subjects with<br>MetS  | Altilix <sup>®</sup> Supplement<br>Containing Chlorogenic<br>Acid and Luteolin                                       | Randomized,<br>Double-Blind                                                     | <b>4/5:</b> Body<br>weight and<br>BMI, FBG,<br>HbA1c, Insulin<br>resistance,<br>pancreatic<br>b cell function<br>(HOMA-IR),<br>TC, TG, LDL-<br>C, HDL | <b>3/5:</b> Weight<br>and BMI,<br>improved<br>Glycemic<br>variables<br>(HbA1c,<br>HOMA-IR, and<br>HOMA- $\beta$ ),<br>reduced TC,<br>TG, and<br>LDL-C) | Quantitative                                       | ALT, AST,<br>GGT and<br>AST/ALT ratio<br>improved FLI,<br>FMD, and<br>cIMT<br>improved,<br>ghrelin levels<br>reduced | Castellino<br>et al. (2019) | No (prepared<br>supplement-<br>registered)                                                                 | No                  | No                   |
| 10       | 117<br>(treatment =<br>59; placebo<br>= 58)                    | subjects with<br>MetS  | Curcuminoids (95%<br>curcuminoids, of which<br>at least 70% is<br>curcumin) + piperine to<br>enhance bioavailability | Randomized<br>double-blind<br>placebo-<br>controlled                            | <b>2/5:</b> weight and BP                                                                                                                             | <b>2/5</b> = reduction<br>in Weight,<br>height,<br>SBP, DBP,                                                                                           | Quantitative                                       | SOD, MDA,<br>hs-CRP,                                                                                                 | Panahi et al.<br>(2015)     | Patented ratio is<br>mentioned but<br>exact<br>concentration<br>not given                                  | No                  | No                   |
| 11       | 100<br>(placebo =<br>50;<br>treatment<br>= 50                  | Subjects with<br>MetS  | Curcuminoids (95%<br>curcuminoids, of which<br>at least 70% is<br>curcumin) + piperine to<br>enhance bioavailability | Randomized<br>double-blind<br>placebo-<br>controlled<br>parallel-group          | <b>2/5:</b> TC, LDL-<br>C, HDL-C,<br>TG, LDL,<br>lipoprotein<br>and non-<br>HDL-C                                                                     | 2/5: Reduced<br>TG, elevated<br>HDL-c,<br>reduced TC,<br>LDL-C, non-<br>HDL-C                                                                          | Quantitative                                       |                                                                                                                      | Panahi et al.<br>(2014)     | 1000 mg<br>curcuminoids<br>per day with<br>10 mg piperine                                                  | No                  | No                   |
| 12       | 50 (placebo<br>= 26;<br>treatment<br>= 24)                     | Subjects with<br>MetS  | Red yeast rice and olive extract                                                                                     | Double blind<br>placebo<br>controlled<br>randomized                             | 5/5                                                                                                                                                   | 2/5                                                                                                                                                    | Quantitative                                       | CK elevation,<br>ApoA1,<br>ApoB, HbA1c<br>and oxLDL                                                                  | Verhoeven<br>et al. (2015)  | commercially<br>available food<br>supplement                                                               | Yes                 | Yes                  |
| 13       | 30 healthy<br>males; 45<br>obese<br>divided into<br>two groups | Centrally<br>Obese men | Yiqi Sanju Formula                                                                                                   | Randomized<br>controlled                                                        | <b>2/5</b> = Insulin<br>Resistance,<br>BMI                                                                                                            | <b>2/5</b> = HOMA-<br>IR and BMI<br>reduced                                                                                                            | Quantitative                                       | high levels of<br>CRP, FFA<br>and PAI, t-PA<br>was low                                                               | He et al.<br>(2007)         |                                                                                                            |                     |                      |

(Continued on following page)

Polyherbals in Metabolic Syndrome

|          | S                                              | Р                              | I                                                                                                         | D                                                                                                        |                                                                | E                                            | R                                                  | Other                                                                                                                             | References              | Concentration | Quality                              | Chemical             |
|----------|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|--------------------------------------|----------------------|
| S.<br>No | Sample<br>(size)                               | Population                     | Intervention/<br>Phenomenon<br>of interest                                                                | Study<br>Design                                                                                          | Evaluation<br>[MetS<br>parameters<br>assessed<br>out of<br>5]  | Evaluation<br>Outcome<br>(Parameters<br>met) | Research<br>Type<br>(quantitative/<br>qualitative) | targets                                                                                                                           |                         |               | control<br>reported                  | analysis<br>reported |
| 14       | 106<br>(treatment =<br>54; placebo<br>= 52)    | Adult<br>subjects with<br>MetS | Red yeast rice, bitter<br>gourd, chlorella, soy<br>protein, and licorice                                  | double-<br>blinded study                                                                                 | <b>5/5</b> = BMI,<br>BP, FBG,<br>OGTT, TC,<br>TGs,<br>HDL, LDL | <b>2/5</b> = reduced<br>TG, BP, TC,<br>LDL-c | Quantitative                                       | No changes<br>in LFT (ALT,<br>AST, ALK-P)<br>and renal<br>functions test<br>(serum<br>creatinine,<br>urea nitrogen,<br>uric acid) | Lee et al.<br>(2012)    | Yes           | Not mentioned<br>but<br>manufactured | No                   |
| 15       | 100<br>(placebo =<br>46;<br>treatment<br>= 46) | subjects with<br>MetS          | Keishibukuryogan:<br>Cinnamomi Cortex,<br>Paeoniae Radix, Moutan<br>Cortex, Persicae<br>Semen, and Hoelen | controlled<br>clinical trial<br>with crossover<br>design. Open<br>labelled study;<br>Quasi<br>randomized | <b>5/5</b> = BMI,<br>HDL, LDL,<br>FBG, TG, BP                  | 0/5                                          | Quantitative                                       | L RHI<br>increased,<br>serum NEFA,<br>MDA, and<br>soluble<br>vCAM1<br>decreased                                                   | Nagata et al.<br>(2012) | Yes           | No                                   | No                   |

TABLE 5 (Continued) Summary of meta-analysis of polyherbal combinations used in Clinical studies in patients with MetS according to SPIDER model, concentration, quality control and chemical classifications reports.

Abbreviations: 24hTP, 24 h total urinary protein; 2hPPG, 2 h post prandial glucose; AST, aspartate aminotransferase; ALT, alanine transaminase; ALP, alkaline phosphatase; BP, blood pressure; BMI, body mass index; CDKAL = CDK5 Regulatory Subunit Associated Protein 1 Like 1); CETP, cholesteryl ester transfer protein; CRP, C-reactive protein; FBG: fasting blood glucose; FFA, free fatty acid; GLUT-4, glucose transporter 4; GGT, glutamyl-transferase; HC, hip circumference; HDL-C, high density lipoproteins; HFD, high fat diet; HOMA-IR, homeostatic model assessment for insulin resistance; ICAM-1, intercellular adhesion molecules; IRS-1, Insulin receptor substrate 1; KKAy, cross between diabetic KK and lethal yellow; LDL, low density lipoprotein; Monocyte chemoattractant protein-1; MAU/MA, microalbuminuria; MDA, malondialdehyde; NAFA, non-esterified fatty acids; NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; PI3K phosphoinositide 3-kinase SREBP, sterol regulatory element-binding transcription factor; PPAR-<sub>1</sub>/a, Peroxisome proliferator-activated receptor gamma/alpha; SD Rats, Sprague Dawley rats; SGOT, Serum glutamic oxaloacetic transaminase; SQPT, Serum glutamic pyruvic transaminase; SOD, superoxide dismutase; TC, total cholesterol; TG, triglycerides; TNF, Tumor necrosis factor; vLDL, very low density lipoprotein; UACR, urea creatinine albumin ratio; vCAM-I, Vascular cell adhesion molecule 1; WC, waist circumference; WHR, waist hip ratio; WKy, Wistar Kyoto. 
 TABLE 6 | Qualitative scoring of clinical trials.

| Code: Yes = 1; No                                         | -                                           | -                                                |                                      |                                          |                                                                                          |                                                                                           |                                                                                            |                                                        |                                                                                                        |                                                                                                              | Link                                                                                               |
|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| References                                                | Addressed<br>clearly<br>focused<br>question | Subjects to<br>treatment<br>groups<br>randomised | An adequate<br>concealment<br>method | Subjects and<br>investigators<br>"blind" | The<br>treatment<br>and control<br>groups are<br>similar at<br>the start of<br>the trial | The only<br>difference<br>between<br>groups is the<br>treatment<br>under<br>investigation | All relevant<br>outcomes<br>are<br>measured in<br>a standard,<br>valid and<br>reliable way | Dropped out<br>before study<br>completion              | All the<br>subjects are<br>analysed in<br>the groups<br>to which<br>they were<br>randomly<br>allocated | Where the<br>study is carried<br>out at more<br>than one site,<br>results are<br>comparable<br>for all sites |                                                                                                    |
| Wang et al., 2019<br>(Tian-zhan et al.,<br>2019)          | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 0                                                      | 1                                                                                                      | 2                                                                                                            | https://www.ajol.info/index.php/<br>tjpr/article/view/183342                                       |
| Wang et al.<br>(2013)                                     | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 3                                                      | 1                                                                                                      | 2                                                                                                            | https://pubmed.ncbi.nlm.nih.<br>gov/23743161/                                                      |
| Mazloomi et al.,<br>2019<br>(Farajbakhsh<br>et al., 2019) | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 5 (6%)                                                 | 1                                                                                                      | 2                                                                                                            | https://pubmed.ncbi.nlm.nih.<br>gov/31089253/                                                      |
| Amin et al.<br>(2015b)                                    | 1                                           | 1                                                | 1                                    | 2                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | rate was low                                           | 1                                                                                                      | 2                                                                                                            | https://www.sciencedirect.com/<br>science/article/abs/pii/<br>S0965229915000096?via%<br>3Dihub     |
| Yadav et al.<br>(2014 <b>)</b>                            | 1                                           | 3                                                | 3                                    | 3                                        | 2                                                                                        | 2                                                                                         | 1                                                                                          | 3                                                      | 1                                                                                                      | 2                                                                                                            | https://www.ncbi.nlm.nih.gov/<br>pmc/articles/PMC4202628/                                          |
| Yang et al.<br>(2014b)                                    | 2                                           | 2                                                | 2                                    | 3                                        | 2                                                                                        | 1                                                                                         | 1                                                                                          | 3                                                      | 1                                                                                                      | 2                                                                                                            | https://pubmed.ncbi.nlm.nih.<br>gov/25102690/                                                      |
| Yu et al. (2018)                                          | 1                                           | 1                                                | 1                                    | 2                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 10/225<br>(treatment); 26/<br>225 (metformin<br>group) | 1                                                                                                      | 2                                                                                                            | https://www.hindawi.com/<br>journals/ije/2018/9519231/                                             |
| Rozza et al.<br>(2009)                                    | 1                                           | 1                                                | 3                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 0                                                      | 1                                                                                                      | 2                                                                                                            | https://pubmed.ncbi.nlm.nih.<br>gov/23334909/                                                      |
| Castellino et al.<br>(2019)                               | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 0                                                      | 1                                                                                                      | 2                                                                                                            | https://www.ncbi.nlm.nih.gov/<br>pmc/articles/PMC6893885/                                          |
| Panahi et al.<br>(2015)                                   | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | curcuminoids<br>(9/59) placebo<br>(8/58)               | 1                                                                                                      | 2                                                                                                            | panahi2015.pdfhttps://pubmed<br>ncbi.nlm.nih.gov/25618800/                                         |
| Panahi et al.<br>(2014)                                   | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | curcuminoids<br>(9/59) placebo<br>(8/58)               | 1                                                                                                      | 2                                                                                                            | https://pubmed.ncbi.nlm.nih.<br>gov/25440375/                                                      |
| Verhoeven et al.<br>(2015)                                | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 1/25 from<br>intervention<br>group                     | 1                                                                                                      | 2                                                                                                            | https://<br>bmccomplementmedtherapies.<br>biomedcentral.com/articles/10.<br>1186/s12906-015-0576-9 |
| Wang et al., 2007<br>(He et al., 2007)                    | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | N/A                                                    | 1                                                                                                      | 2                                                                                                            | http://www.jcimjournal.com/EN<br>10.3736/jcim20070307                                              |
| Lee et al. (2012)                                         | 1                                           | 1                                                | 1                                    | 1                                        | 1                                                                                        | 1                                                                                         | 1                                                                                          | 2/54<br>(treatment) and<br>8/52 (placebo)              | 1                                                                                                      | 2                                                                                                            | https://pubmed.ncbi.nlm.nih.<br>gov/22348456/                                                      |
| Nagata et al.<br>(2012)                                   | 1                                           | 1                                                | 2                                    | 2                                        | 2                                                                                        | 1                                                                                         | 1                                                                                          | 19/46 in Group<br>A; 24/46<br>Group B                  | 1                                                                                                      | 2                                                                                                            | https://www.hindawi.com/<br>journals/ecam/2012/359282/                                             |

Palla et al.

small sample size, the magnitude of impact could not be extrapolated and needs to be studied further. Some clinical studies assessed only limited parameters of MetS and therefore in terms of effectiveness those combinations are considered as not so good. Nevertheless, that's not completely true, because the authors did not measure the remaining parameters (He et al., 2007; Panahi et al., 2014; Panahi et al., 2015). Reason for this could be that the main objective of those studies was to explore additional mechanisms of MetS. For instance, Panahi et al., (Panahi et al., 2015) report curcuminoids to reduce 2 out of 5 MetS parameters because they assessed only BP and BMI. Their main finding was anti-inflammatory and antioxidant activities, whereas antidyslipidemic effect was reported in their preceding study (Panahi et al., 2014).

The current review has certain limitations. One of the factors to be considered for future reviews should be to differentiate the polyherbal combinations according to different ethnicities and cultures in which the herb is famously used such as Asian, Chinese and Japanese traditional medicine. The current review can be used by researchers for idnetifying different polyherbal combinations by considering which herbs could simultaneously target many or all risk factors for MetS. For future studies some known anti-obesity and/or antihypertensive herbs shall be considered as an add-on with those polyherbal combinations that predominantly exhibited anti-hyperglycaemic and antidyslipidemic effect, to be able to manage multiple MetS parameters simultaneously. This is one of the advantages of such reviews that researchers could identify the missing targets and add herb accordingly for future studies.

### REFERENCES

- A. Ahmed, L., S. Ramadan, R., and A. Mohamed, R. (2009). Biochemical and Histopathological Studies on the Water Extracts of Marjoram and Chicory Herbs and Their Mixture in Obese Rats. *Pakistan J. Nutr.* 8, 1581–1587. doi:10.3923/pjn.2009.1581.1587
- Alcántara, M., Serra-Aracil, X., Falcó, J., Mora, L., Bombardó, J., and Navarro, S. (2011). Prospective, Controlled, Randomized Study of Intraoperative Colonic Lavage versus Stent Placement in Obstructive Left-Sided Colonic Cancer. World J. Surg. 35 (8), 1904–1910. doi:10.1007/s00268-011-1139-y
- Amin, F., Gilani, A. H., Mehmood, M. H., Siddiqui, B. S., and Khatoon, N. (2015). Coadministration of Black Seeds and Turmeric Shows Enhanced Efficacy in Preventing Metabolic Syndrome in Fructose-Fed Rats. J. Cardiovasc. Pharmacol. 65 (2), 176–183. doi:10.1097/FJC.000000000000179
- Amin, F., Islam, N., Anila, N., and Gilani, A. H. (2015). Clinical Efficacy of the Coadministration of Turmeric and Black Seeds (Kalongi) in Metabolic Syndrome a Double Blind Randomized Controlled Trial - TAK-MetS Trial. Complement. Ther. Med. 23 (2), 165–174. doi:10.1016/j.ctim.2015.01.008
- Anderson, J. G., and Taylor, A. G. (2012). Use of Complementary Therapies by Individuals with or at Risk for Cardiovascular Disease: Results of the 2007 National Health Interview Survey. J. Cardiovasc. Nurs. 27 (2), 96–102. doi:10.1097/JCN.0b013e31821888cd
- AuH, Gilani. (1998). Novel Developments from Natural Products in Cardiovascular Research. Phytotherapy Research: Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Product. Derivatives 12 (S1), S66–S9.
- Aziz, N., Mehmood, M. H., and Gilani, A. H. (2013). Studies on Two Polyherbal Formulations (ZPTO and ZTO) for Comparison of Their Antidyslipidemic,

# DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding authors.

# **AUTHOR CONTRIBUTIONS**

AG contributed to conception and along with AP and FA contributed in the design of the study. AP, FA, and AG organized the database and filtered the relevant articles. FA, BF, AS NR, and IH performed the analysis of their respective articles. AP wrote the first draft of the manuscript. FA, BF, AS, NR, and IH wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

## ACKNOWLEDGMENTS

We would like to acknowledge Dr. Rizwan Khan, Dean Faculty of Computer Science, Salim Habib University for reflecting ideas about systematic research methodologies.

# SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.752926/full#supplementary-material

Antihypertensive and Endothelial Modulating Activities. BMC Complement. Altern. Med. 13 (1), 371. doi:10.1186/1472-6882-13-371

- Azushima, K., Tamura, K., Wakui, H., Maeda, A., Ohsawa, M., Uneda, K., et al. (2013). Bofu-tsu-shosan, an oriental Herbal Medicine, Exerts a Combinatorial Favorable Metabolic Modulation Including Antihypertensive Effect on a Mouse Model of Human Metabolic Disorders with Visceral Obesity. *PLoS ONE* 8 (10), e75560. doi:10.1371/ journal.pone.0075560
- Bodeker, G., and Kronenberg, F. (2002). A Public Health Agenda for Traditional, Complementary, and Alternative Medicine. Am. J. Public Health 92 (10), 1582–1591. doi:10.2105/ajph.92.10.1582
- Booth, A. (2006). Clear and Present Questions: Formulating Questions for Evidence Based Practice. *Libr. hi tech* 24 (3), 355–368. doi:10.1108/ 07378830610692127
- Castellino, G., Nikolic, D., Magán-Fernández, A., Malfa, G. A., Chianetta, R., Patti, A. M., et al. (2019). Altilix<sup>®</sup> Supplement Containing Chlorogenic Acid and Luteolin Improved Hepatic and Cardiometabolic Parameters in Subjects with Metabolic Syndrome: A 6 Month Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 11 (11). doi:10.3390/nu11112580
- Chen, M., Yang, F., Kang, J., Gan, H., Lai, X., and Gao, Y. (2017). Metabolomic Investigation into Molecular Mechanisms of a Clinical Herb Prescription against Metabolic Syndrome by a Systematic Approach. RSC Adv. 7 (87), 55389–55399. doi:10.1039/c7ra09779d
- Cleyle, S., and Booth, A. (2006). Clear and Present Questions: Formulating Questions for Evidence Based Practice. *Libr. hi tech.* 24(3):355–368. doi:10.1108/07378830610692127
- Cooke, A. D., Smith, D., and Booth, A. (2012). Beyond PICO: The SPIDER Tool for Qualitative Evidence Synthesis. *Qual. Health Res.* 22 (10), 1435–1443. doi:10.1177/1049732312452938

- Devalaraja, S., Jain, S., and Yadav, H. (2011). Exotic Fruits as Therapeutic Complements for Diabetes, Obesity and Metabolic Syndrome. *Food Res. Int.* 44 (7), 1856–1865. doi:10.1016/j.foodres.2011.04.008
- Farajbakhsh, A., Mazloomi, S. M., Mazidi, M., Rezaie, P., Akbarzadeh, M., Ahmad, S. P., et al. (2019). Sesame Oil and Vitamin E Co-administration May Improve Cardiometabolic Risk Factors in Patients with Metabolic Syndrome: a Randomized Clinical Trial. *Eur. J. Clin. Nutr.* 73 (10), 1403–1411. doi:10.1038/s41430-019-0438-5
- Gao, B. Z., Chen, J. C., Liao, L. H., Xu, J. Q., Lin, X. F., and Ding, S. S. (2015). Erchen Decoction Prevents High-Fat Diet Induced Metabolic Disorders in C57BL/6 Mice. Evid. Based Complement. Alternat Med. 2015, 501272. doi:10.1155/2015/ 501272
- Gilani, A. H., and Rahman, A. U. (2005). Trends in Ethnopharmocology. J. Ethnopharmacol 100 (1-2), 43–49. doi:10.1016/j.jep.2005.06.001
- He, C. Y., Wang, W. J., Li, B., Xu, D. S., Chen, W. H., Ying, J., et al. (2007). Clinical Research of Yiqi Sanju Formula in Treating central Obese Men at High Risk of Metabolic Syndrome. *Zhong Xi Yi Jie He Xue Bao* 5 (3), 263–267. doi:10.3736/ jcim20070307
- Hu, X., Wang, M., Bei, W., Han, Z., and Guo, J. (2014). The Chinese Herbal Medicine FTZ Attenuates Insulin Resistance via IRS1 and PI3K *In Vitro* and in Rats with Metabolic Syndrome. *J. Transl Med.* 12, 47. doi:10.1186/1479-5876-12-47
- Huang, P. L. (2009). A Comprehensive Definition for Metabolic Syndrome. Dis. Model. Mech. 2 (5-6), 231–237. doi:10.1242/dmm.001180
- Jang, J-W., Lim, D-W., Chang, J-U., and Kim, J-E. (2018). The Combination of Ephedrae Herba and Coicis Semen in Gambihwan Attenuates Obesity and Metabolic Syndrome in High-Fat Diet–Induced Obese Mice. *Evidence-Based Complement. Altern. Med.* doi:10.1155/2018/5614091
- Kaur, G., and C, M. (2012). Amelioration of Obesity, Glucose Intolerance, and Oxidative Stress in High-Fat Diet and Low-Dose Streptozotocin-Induced Diabetic Rats by Combination Consisting of "curcumin with Piperine and Quercetin". ISRN Pharmacol. 2012, 957283. doi:10.5402/2012/957283
- Keith, C. T., Borisy, A. A., and Stockwell, B. R. (2005). Multicomponent Therapeutics for Networked Systems. *Nat. Rev. Drug Discov.* 4 (1), 71–78. doi:10.1038/nrd1609
- Kho, M. C., Lee, Y. J., Park, J. H., Cha, J. D., Choi, K. M., Kang, D. G., et al. (2016). Combination with Red Ginseng and Polygoni Multiflori Ameliorates Highfructose Diet Induced Metabolic Syndrome. BMC Complement. Altern. Med. 16, 98. doi:10.1186/s12906-016-1063-7
- Khowaja, L. A., Khuwaja, A. K., and Cosgrove, P. (2007). Cost of Diabetes Care in Out-Patient Clinics of Karachi, Pakistan. BMC Health Serv. Res. 7 (1), 189. doi:10.1186/1472-6963-7-189
- Lee, I. T., Lee, W. J., Tsai, C. M., Su, I. J., Yen, H. T., and Sheu, W. H. (2012). Combined Extractives of Red Yeast rice, Bitter Gourd, Chlorella, Soy Protein, and Licorice Improve Total Cholesterol, Low-Density Lipoprotein Cholesterol, and Triglyceride in Subjects with Metabolic Syndrome. *Nutr. Res.* 32 (2), 85–92. doi:10.1016/j.nutres.2011.12.011
- Lee, S-J., Han, J-M., Lee, J-S., Son, C-G., Im, H-J., Jo, H-K., et al. (2015). ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model. *Evidence-Based Complement. Altern. Med.* 2015. doi:10.1155/2015/352647
- Lee, S. J., Han, J. M., Lee, J. S., Son, C. G., Im, H. J., Jo, H. K., et al. (2015). ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model. *Evid Based. Complement. Altern. Med.* doi:10.1155/2015/352647
- Leong, P. K., Leung, H. Y., Wong, H. S., Chen, J., Ma, C. W., and Yang, Y. (2013). Long-term Treatment with an Herbal Formula MCC Reduces the Weight Gain in High Fat Diet-Induced Obese Mice. *Chin. Med.* 04 (03), 63–71. doi:10.4236/ cm.2013.43010
- Li, C. B., Li, X. X., Chen, Y. G., Gao, H. Q., Bu, P. L., Zhang, Y., et al. (2013). Huang-Lian-Jie-Du-Tang Protects Rats from Cardiac Damages Induced by Metabolic Disorder by Improving Inflammation-Mediated Insulin Resistance. *PLoS ONE* 8 (6), e67530. doi:10.1371/journal.pone.0067530
- Li, L., Yoshitomi, H., Wei, Y., Qin, L., Zhou, J., Xu, T., et al. (2015). Tang-Nai-Kang Alleviates Pre-diabetes and Metabolic Disorders and Induces a Gene Expression Switch toward Fatty Acid Oxidation in SHR.Cg-Leprcp/NDmcr Rats. *PLoS ONE* 10 (4), e0122024. doi:10.1371/journal.pone.0122024
- Lim, D. W., Kim, H., Kim, Y. M., Chin, Y. W., Park, W. H., and Kim, J. E. (2019). Drug Repurposing in Alternative Medicine: Herbal Digestive Sochehwan Exerts

Multifaceted Effects against Metabolic Syndrome. Sci. Rep. 9, 9055. doi:10.1038/s41598-019-45099-x

- Liu, X. X., and Shi, Y. (2015). Intervention Effect of Traditional Chinese Medicine Yi Tang Kang on Metabolic Syndrome of Spleen Deficiency. Asian Pac. J. Trop. Med. 8 (2), 162–168. doi:10.1016/S1995-7645(14)60309-6
- Lu, J. J., Pan, W., Hu, Y. J., and Wang, Y. T. (2012). Multi-target Drugs: the Trend of Drug Research and Development. *PLoS ONE* 7 (6), e40262. doi:10.1371/ journal.pone.0040262
- Ma, X. H., Zheng, C. J., Han, L. Y., Xie, B., Jia, J., Cao, Z. W., et al. (2009). Synergistic Therapeutic Actions of Herbal Ingredients and Their Mechanisms from Molecular Interaction and Network Perspectives. *Drug Discov. Today* 14 (11-12), 579–588. doi:10.1016/j.drudis.2009.03.012
- Maraolo, A. E. (2021). Una bussola per le revisioni sistematiche: la versione italiana della nuova edizione del PRISMA statement. *BMJ* 372, n71.
- Mohamed, S. (2014). Functional Foods against Metabolic Syndrome (Obesity, Diabetes, Hypertension and Dyslipidemia) and Cardiovasular Disease. *Trends Food Sci. Techn.* 35 (2), 114–128. doi:10.1016/j.tifs.2013.11.001
- Mounts, L., Sunkara, R., Shackelford, L., Ogutu, S., T. Walker, L., and Verghese, M. (2015). Feeding Soy with Probiotic Attenuates Obesity-Related Metabolic Syndrome Traits in Obese Zucker Rats. *Fns* 06 (09), 780–789. doi:10.4236/ fns.2015.69081
- Nagata, Y., Goto, H., Hikiami, H., Nogami, T., Fujimoto, M., Shibahara, N., et al. (2012). Effect of Keishibukuryogan on Endothelial Function in Patients with at Least One Component of the Diagnostic Criteria for Metabolic Syndrome: a Controlled Clinical Trial with Crossover Design. *Evid. Based Complement. Alternat Med.* 2012, 359282. doi:10.1155/2012/359282
- Ni, Y., Mu, C., He, X., Zheng, K., Guo, H., and Zhu, W. (2018). Characteristics of Gut Microbiota and its Response to a Chinese Herbal Formula in Elder Patients with Metabolic Syndrome. *Drug Discov. Ther.* 12 (3), 161–169. doi:10.5582/ ddt.2018.01036
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T., Mulrow, C. D., et al. (2019). *Research Repository*.
- Panahi, Y., Hosseini, M. S., Khalili, N., Naimi, E., Majeed, M., and Sahebkar, A. (2015). Antioxidant and Anti-inflammatory Effects of Curcuminoid-Piperine Combination in Subjects with Metabolic Syndrome: a Randomized Controlled Trial and an Updated Meta-Analysis. *Clin. Nutr.* 34 (6), 1101–1108. doi:10.1016/j.clnu.2014.12.019
- Panahi, Y., Khalili, N., Hosseini, M. S., Abbasinazari, M., and Sahebkar, A. (2014). Lipid-modifying Effects of Adjunctive Therapy with Curcuminoids-Piperine Combination in Patients with Metabolic Syndrome: Results of a Randomized Controlled Trial. *Complement. Ther. Med.* 22 (5), 851–857. doi:10.1016/ j.ctim.2014.07.006
- Park, H-S., Lee, Y-S., Choi, S-J., Kim, J-K., Lee, Y-L., Kim, H-G., et al. (2009). Effects of Herbal Complex on Blood Glucose in Streptozotocin-Induced Diabetic Rats and in Mice Model of Metabolic Syndrome. *Korean J. Pharmacognosy* 40 (3), 196–204.
- Reilly, M. P., and Rader, D. J. (2003). The Metabolic Syndrome: More Than the Sum of its Parts. *Circulation* 108 (13), 1546–1551. doi:10.1161/ 01.CIR.0000088846.10655.E0
- Rhee, M. K., Herrick, K., Ziemer, D. C., Vaccarino, V., Weintraub, W. S., Narayan, K. M., et al. (2010). Many Americans Have Pre-diabetes and Should Be Considered for Metformin Therapy. *Diabetes care* 33 (1), 49–54. doi:10.2337/dc09-0341
- Robinson, J. G., Ballantyne, C. M., Hsueh, W. A., Rosen, J. B., Lin, J., Shah, A. K., et al. (2013). Age, Abdominal Obesity, and Baseline High-Sensitivity C-Reactive Protein Are Associated with Low-Density Lipoprotein Cholesterol, Non-highdensity Lipoprotein Cholesterol, and Apolipoprotein B Responses to Ezetimibe/ simvastatin and Atorvastatin in Patients with Metabolic Syndrome. J. Clin. Lipidol. 7 (4), 292–303. doi:10.1016/j.jacl.2013.03.007
- Rozza, F., de Simone, G., Izzo, R., De Luca, N., and Trimarco, B. (2009). Nutraceuticals for Treatment of High Blood Pressure Values in Patients with Metabolic Syndrome. *High Blood Press. Cardiovasc. Prev.* 16 (4), 177–182. doi:10.2165/11530420-000000000-00000
- Samir, N., Mahmud, S., and Khuwaja, A. K. (2011). Prevalence of Physical Inactivity and Barriers to Physical Activity Among Obese Attendants at a Community Health-Care center in Karachi, Pakistan. BMC Res. Notes 4 (1), 174. doi:10.1186/1756-0500-4-174

- Sever, P. S., Dahlöf, B., Poulter, N. R., Wedel, H., Beevers, G., Caulfield, M., et al. (2003). Prevention of Coronary and Stroke Events with Atorvastatin in Hypertensive Patients Who Have Average or lower-Than-average Cholesterol Concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a Multicentre Randomised Controlled Trial. *Lancet* 361 (9364), 1149–1158. doi:10.1016/S0140-6736(03) 12948-0
- Su, D., and Li, L. (2011). Trends in the Use of Complementary and Alternative Medicine in the United States: 2002-2007. J. Health Care Poor Underserved 22 (1), 296–310. doi:10.1353/hpu.2011.0002
- Sung, Y. Y., Kim, D. S., Choi, G., Kim, S. H., and Kim, H. K. (2014). Dohaekseunggi-tang Extract Inhibits Obesity, Hyperlipidemia, and Hypertension in High-Fat Diet-Induced Obese Mice. *BMC Complement. Altern. Med.* 14 (1), 372. doi:10.1186/1472-6882-14-372
- Tan, Y., Kamal, M. A., Wang, Z. Z., Xiao, W., Seale, J. P., and Qu, X. (2011). Chinese Herbal Extracts (SK0506) as a Potential Candidate for the Therapy of the Metabolic Syndrome. *Clin. Sci. (Lond)* 120 (7), 297–305. doi:10.1042/ CS20100441
- Tan, Y., Lao, W., Xiao, L., Wang, Z., Xiao, W., Kamal, M. A., et al. (2013). Managing the Combination of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome with Chinese Herbal Extracts in High-Fat-Diet Fed Rats. *Evid Based. Complement. Altern. Med.* doi:10.1155/2013/306738
- Thota, R. N., Paruchuru, D., Naik, R., Metlakunta, A. S., Benarjee, G., and Puchakayala, G. (2014). Effect of Polyherbal Formulation on Metabolic Derangements in Experimental Model of High Fructose Diet Induced Metabolic Syndrome. *Int. J. Appl. Biol. Pharm. Techn.* 5 (3).
- Tian-zhan, W., Qing-ping, H., Bing, W., Wen-jian, W., Xiaodong, F., Yan-ming, H., et al. (2019). Synergistic Effects of Yiqi Huazhuo Gushen Herbal Formula and Valsartan on Metabolic Syndrome Complicated with Microalbuminuria. *Trop. J. Pharm. Res.* 18 (1), 101–108. doi:10.4314/tjpr.v18i1.15
- Verhoeven, V., Van der Auwera, A., Van Gaal, L., Remmen, R., Apers, S., Stalpaert, M., et al. (2015). Can Red Yeast rice and Olive Extract Improve Lipid Profile and Cardiovascular Risk in Metabolic Syndrome?: a Double Blind, Placebo Controlled Randomized Trial. BMC Complement. Altern. Med. 15 (1), 52–58. doi:10.1186/s12906-015-0576-9
- Wang, T. Z., Chen, Y., He, Y. M., Fu, X. D., Wang, Y., Xu, Y. Q., et al. (2013). Effects of Chinese Herbal Medicine Yiqi Huaju Qingli Formula in Metabolic Syndrome Patients with Microalbuminuria: a Randomized Placebo-Controlled Trial. J. Integr. Med. 11 (3), 175–183. doi:10.3736/ jintegrmed2013032
- Wang, Y., Liu, Z., Li, C., Li, D., Ouyang, Y., Yu, J., et al. (2012). Drug Target Prediction Based on the Herbs Components: the Study on the Multitargets Pharmacological Mechanism of Qishenkeli Acting on the Coronary Heart Disease. Evidence-Based Complement. Altern. Med. doi:10.1155/2012/698531
- Wat, E., Wang, Y., Chan, K., Law, H. W., Koon, C. M., Lau, K. M., et al. (2018). An In Vitro and In Vivo Study of a 4-herb Formula on the Management of Diet-Induced Metabolic Syndrome. *Phytomedicine* 42, 112–125. doi:10.1016/ j.phymed.2018.03.028
- Wei, H., Hu, C., Wang, M., van den Hoek, A. M., Reijmers, T. H., Wopereis, S., et al. (2012). Lipidomics Reveals Multiple Pathway Effects of a Multi-Components

Preparation on Lipid Biochemistry in ApoE\*3Leiden.CETP Mice. *PLoS ONE* 7 (1), e30332. doi:10.1371/journal.pone.0030332

- Yadav, D., Tiwari, A., Mishra, M., Subramanian, S. S., Baghel, U. S., Mahajan, S., et al. (2014). Anti-hyperglycemic and Anti-hyperlipidemic Potential of a Polyherbal Preparation "Diabegon" in Metabolic Syndrome Subject with Type 2 Diabetes. Afr. J. Tradit Complement. Altern. Med. 11 (2), 249–256. doi:10.4314/ajtcam.v11i2.4
- Yang, Y., Li, Q., Chen, S., Ke, B., Huang, Y., and Qin, J. (2014). Effects of Modified Lingguizhugan Decoction Combined with Weekend Fasting on Metabolic Syndrome. J. Tradit Chin. Med. 34 (1), 48–51. doi:10.1016/s0254-6272(14) 60053-4
- Yang, Y., Li, Q., Chen, S., Ke, B., Huang, Y., and Qin, J. (2014). Effects of Modified Lingguizhugan Decoction Combined with Weekend Fasting on Metabolic Syndrome. J. Tradit Chin. Med. 34 (1), 48–51. doi:10.1016/s0254-6272(14)60053-4
- Yao, L., Wei, J., Shi, S., Guo, K., Wang, X., Wang, Q., et al. (2017). Modified Lingguizhugan Decoction Incorporated with Dietary Restriction and Exercise Ameliorates Hyperglycemia, Hyperlipidemia and Hypertension in a Rat Model of the Metabolic Syndrome. *BMC Complement. Altern. Med.* 17 (1), 132. doi:10.1186/s12906-017-1557-y
- Yao, L., Wei, J., Shi, S., Guo, K., Wang, X., Wang, Q., et al. (2017). Modified Lingguizhugan Decoction Incorporated with Dietary Restriction and Exercise Ameliorates Hyperglycemia, Hyperlipidemia and Hypertension in a Rat Model of the Metabolic Syndrome. *BMC Complement. Altern. Med.* 17, 132. doi:10.1186/s12906-017-1557-y
- Yu, X., Xu, L., Zhou, Q., Wu, S., Tian, J., Piao, C., et al. (2018). The Efficacy and Safety of the Chinese Herbal Formula, JTTZ, for the Treatment of Type 2 Diabetes with Obesity and Hyperlipidemia: a Multicenter Randomized, Positive-Controlled, Open-Label Clinical Trial. *Int. J. Endocrinol.* 2018, 9519231. doi:10.1155/2018/9519231
- Zimmermann, G. R., Lehár, J., and Keith, C. T. (2007). Multi-target Therapeutics: when the Whole Is Greater Than the Sum of the Parts. *Drug Discov. Today* 12 (1-2), 34–42. doi:10.1016/j.drudis.2006.11.008

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Palla, Amin, Fatima, Shafiq, Rehman, Haq and Gilani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

29