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Abstract: The coronavirus pandemic has affected more than 150 million people, while over 3.25 million
people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies
for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically,
the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for
assembly of replication-transcription machinery as well as down-stream viral replication. In the
search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the
biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors.
Over 360 metabolites from the genus were screened using molecular docking calculations. Promising
diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular
mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to
in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro

inhibitors with ∆Gbinding < −33.0 kcal/mol. Binding energy and structural analyses of the most potent
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Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor
that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates
that 340 has a higher binding affinity against Mpro than darunavir with ∆Gbinding values of −43.8 and
−34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed
robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling
genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway
enrichment analysis combined with reactome mining revealed that 340 has the capability to re-
modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These
findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.

Keywords: genus Sarcophyton; cembranoid diterpenes metabolites; SARS-CoV-2 main protease;
molecular docking; molecular dynamics; reactome

1. Introduction

Coronavirus (CoV) belonging to the Coronaviridae family is one of the largest families
of positive-sense, RNA viruses [1]. Based on genomic structure and phylogenetics, CoVs
are subdivided into genera alpha through delta with the alpha- and beta-genera responsible
for currently known diseases in humans [1]. Unlike subtypes of CoVs that cause mild
clinical symptoms, SARS-CoV and MERS-CoV are associated with severe respiratory
symptoms [2]. CoVs are recognized to cause infection in the respiratory, hepatic, enteric and
neurological systems and pandemic conditions have ensued with high infection rates [3].
Since the World Health Organization (WHO) announced this new beta coronavirus in late
2019, cataloged as SARS-CoV-2 (COVID-19) [4], the organization has authorized several
COVID-19 preparations for emergency use immunization including vaccines developed
by Pfizer/BioNTech, Astrazeneca/Oxford, Serum Institute of India, Johnson & Johnson,
Moderna and Sinopharm. Notwithstanding these advances in controlling the pandemic,
with high viral transmission via respiratory droplets from coughing and/or sneezing [5],
there is still an urgency to developing effective antiviral drugs for COVID-19 treatment.

In screening for potential COVID-19 drug candidates, metabolite repurposing can be
used as a starting point to identify metabolites that already have biological activity against
some diseases or infections. Drug repurposing can be achieved by conducting systematic
drug-drug target interaction and drug-drug interaction analyses [6]. Another approach
is to examine a class or source of natural products with established biological activity;
indeed, several in silico studies have been developed to screen for SARS-CoV-2 inhibitors
as prospective anti-COVID-19 drug candidates [7–13]. Natural products play a pivotal role
in designing novel and efficient treatments to conquer the current COVID-19 epidemic.
Among natural products, alkaloids, flavonoids and terpenoids have enticed considerable
attention as potential SARS-CoV-2 drug candidates [14–16].

The basis of such studies is that the main protease (Mpro) that cleaves COVID-19
polyproteins is a point of vulnerability for viral replication. The crystal structure of SARS-
CoV-2 main protease provides the basis for designing small molecules as inhibitors [17].
As a result, inhibitors can be screened for a suitable molecular structure to bind to the
catalytic site of Mpro and interrupt viral replication. Here, we examine cembranoids, a class
of diterpenes isolated predominantly from the soft coral genus Sarcophyton that contain
a considerable reservoir of bioactive natural products [18]. While screening for marine
natural products with pharmacological activity of has led to the discovery of many potent
bioactive metabolites [19], the marine pharmacopeia is still a rich source of biological and
chemical diversity [20–23].

In this Sarcophyton specific study, metabolites identified over the last two decades
(1998–2019) [18] provided the original database for creating a Sarcophyton chemical library;
a subset of those compounds were then virtual screened as Mpro specific inhibitors. Ac-
cording to the anticipated docking scores, the most potent compounds were subjected to
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molecular dynamics (MD) simulations combined with binding energy calculations utiliz-
ing the molecular mechanics-generalized Born surface area (MM-GBSA) approach. The
screen identified a promising anti-SARS-CoV-2 agent. Such in silico screening can provide
promising inhibitor leads for subsequent in vitro and in vivo studies.

2. Results

The unavailability of approved therapies towards COVID-19 disease indicates a crucial
demand to systematically screen and recognize inhibitors that can suppress the SARS-CoV-2
infection and/or replication. Mpro has an indispensable role in the viral reproduction in the
host and is considered one of the most promising drug targets. In seeking small molecules to
prohibit SARS-CoV-2 replication, molecular docking calculations and molecular dynamics
(MD) simulations were applied to scrutinize the potency of a chemical library containing
363 diterpenes as prospective anti-COVID-19 inhibitor candidates.

2.1. Molecular Docking

The molecular docking technique was employed to anticipate the binding affinities
for diterpenes towards Mpro. The predicted docking scores of all investigated diterpenes
metabolites are tabulated in Table S1. What stands out in Table S1 is the wide range of
binding affinities ranging from −4.3 to −10.4 kcal/mol. To evaluate the potency of the
studied metabolites, docking scores were compared to darunavir, an antiretroviral therapy
that has been clinically tested as a COVID-19 drug candidate [24]. Although darunavir has
not shown anti-SARS-CoV-2 activity, darunavir exhibits promising binding affinity against
Mpro based on in silico studies [25–27].

Interestingly, approximately 23% of the screened metabolites (i.e., 59 compounds)
demonstrated higher binding affinity than that of darunavir with a docking score of
−8.2 kcal/mol. 2D docking poses of those fifty-nine diterpenes with the key residues
inside the Mpro active site are presented in Figure S1 (Supplementary Materials). Most
of the investigated metabolites displayed similar Mpro binding modes inside the Mpro’s
binding pocket, exhibiting an essential hydrogen bond with GLU166, resulting in high
binding affinities (Figure S1). Estimated docking scores, 2D chemical structures, in addition
to binding features for the top potent metabolites in complex with Mpro are listed in Table 1.

From the data in Table 1, it is apparent that 363, 340, 347, 345 and 357 demon-
strated solid binding affinities against Mpro with docking scores in the range of –8.7 to
–9.8 kcal/mol. High docking scores are ascribed to the capability of forming hydrogen
bonds, van der Waals, hydrophobic and pi-based interactions with the fundamental amino
acid residues within the Mpro active site. Sarelengan B (363), separated from S. elegans,
demonstrated the highest binding affinity of the diterpenes towards Mpro with a docking
score of −9.8 kcal/mol. Investigating the binding mode of 363 inside the Mpro active site
revealed that two carbonyl groups of (E)-cyclotetradec-9-ene-1,4,8-trione formed three
hydrogen bonds with the imidazole ring backbone of HIS41, SH group of CYS145 and NH
group of GLU166, with bond lengths of 2.01, 2.34 and 2.68 Å, respectively (Figure 1 and
Table 1). Additionally, a hydroxy group of 363 interacts with the backbone carbonyl group
of GLU166 with a bond length of 2.35 Å (Figure 1 and Table 1).

Bislatumlide A (340), separated from S. latum, manifested the second-highest binding
affinity against Mpro with a docking score of −9.6 kcal/mol. Investigating the binding mode
of 340 towards the Mpro showed that the methanol hydroxy group exhibits a hydrogen
bond with the backbone NH of GLY143 with a bond length of 1.88 Å (Figure 1 and Table 1).
While the carbonyl group of dihydrofuranone shares a hydrogen bond with the backbone
NH group of GLU166 with a bond length of 2.68 Å (Figure 1 and Table 1).

It is worth noting that the five potent metabolites containing a cyclotetradecane-trione
ring revealed the vital role of the chemical nucleus in the binding affinity of cembranoids
with Mpro.
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Table 1. Calculated binding affinities (in kcal/mol), 2D chemical structures and binding features for darunavir and the top
five most promising cembranoid diterpenes against SARS-CoV-2 main protease (Mpro) a.

Compound Name
(Number) Genus 2D Chemical Structure Docking Score

(kcal/mol) Binding Features b

Darunavir —
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Figure 1. 3D and 2D representations of predicted binding modes of Sarcophyton cembranoid diterpenes metabolites
(i) sarelengan B (363), (ii) bislatumlide A (340) and (iii) darunavir against SARS-CoV-2 main protease (Mpro).

Darunavir demonstrated a satisfactory binding affinity (−8.2 kcal/mol), exhibiting
three hydrogen bonds with LEU167 and GLU166 with bond lengths of 1.96, 2.88 and 1.94 Å,
respectively (Figure 1 and Table 1). More precisely, the NH2 of the aniline ring forms two
hydrogen bonds with the carboxylate group of GLU166 and carbonyl group of LEU167
with bond lengths of 1.94 and 1.96 Å, respectively. Furthermore, the oxygen atom of the
tetrahydrofuran ring exhibits a hydrogen bond with the backbone NH of GLU166 with
a bond length of 2.88 Å. A docking comparison of darunavir with 363 and 340 disclosed
promising binding affinities of the two metabolites as Mpro inhibitors.
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2.2. MD Simulations and Binding Energy Calculations

Molecular dynamics (MD) simulations provide structural details, stability of the
ligand-enzyme complexes, conformational flexibilities and the reliability of ligand-enzyme
binding affinities [28,29]. The most potent diterpenes (59 compounds with docking scores
<−8.2 kcal/mol) in complex with Mpro were subjected to MD simulations and binding free
energy calculations. To lessen the computational cost and time, the MD simulations were
executed in the implicit water solvent for 250 ps in addition to the MM-GBSA approach was
used to compute the corresponding binding free energies (see computational methodology
section for details). The calculated MM-GBSA binding affinities for the selected metabolites
are listed in Table S2. As shown in Table S2, five inhibitors demonstrated lower binding
energies (∆Gbinding) than that of darunavir (calc. −31.0 kcal/mol). Generally, the computed
MM-GBSA binding energy values were lower than the corresponding docking scores,
which might be ascribed to the different evaluation functions of the two employed methods.
An over estimation of binding energy using a MM-GBSA approach can occur when not
considering the contribution due to entropy [30,31]. To gain more reliable binding affinities
of diterpene metabolites in complex with Mpro, those metabolites were further submitted to
10 ns MD simulations in an explicit water solvent. In addition, the corresponding binding
energies were calculated (Figure 2).
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Figure 2. Average MM-GBSA binding energies for darunavir and the most potent diterpenes in
complex with SARS-CoV-2 (Mpro) over 250 ps MD simulation in an implicit water solvent and 10 ns,
50 ns and 100 ns MD simulations in an explicit water solvent.

What is interesting about the data in Figure 2 is that all investigated metabolites
revealed lower binding energies (∆Gbinding) than that of darunavir (calc. −30.4 kcal/mol).
Therefore, those potent metabolites were selected and subjected to 50 ns MD simulations in
the explicit water solvent, followed by MM-GBSA binding energy calculations (Figure 2).
As shown in Figure 2, only 340 demonstrated steady diminution in the binding energies
over the simulation times. However, the other investigated molecules exhibited a slight rise
in MM-GBSA binding energies throughout the MD simulations. For instance, the evaluated
MM-GBSA binding energies for 340 towards Mpro were −45.1, −39.8 and −43.8 kcal/mol
throughout 250 ps implicit-solvent MD, 10 ns explicit-solvent MD and 50 ns explicit-solvent
MD simulations, respectively. This displays the significance of long MD simulations to
anticipate reliable binding affinity of the diterpenes with Mpro. MD simulation for 340
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complexed with Mpro was then elongated to 100 ns. In addition, the corresponding MM-
GBSA binding energy was evaluated (Figure 2).

What is striking about Figure 2 is that there was no appreciable variation between the
estimated MM-GBSA binding energy for 340 complexed with Mpro over the 50 and 100 ns
MD simulations. Comparing the binding affinities of 340 and darunavir, 340 demonstrated
strong binding affinity throughout the 100 ns MD simulation against Mpro with an average
∆Gbinding of −34.8 kcal/mol. The outstanding potency of 340 was attributed to its capability
of exhibiting significant hydrogen bonds, hydrophobic, pi-based interactions and van der
Waals interactions with the key amino acid residues within the Mpro active site. The
average structures for 340 and darunavir inside the active site throughout the 100 ns MD
simulations are depicted in Figure 3. The most exciting finding was that 340 preserved
three hydrogen bonds with the fundamental amino acid residues of Mpro throughout the
100 ns MD simulation (Figure 3). Darunavir also showed satisfactory binding energy over
the 100 ns MD simulation towards Mpro with an average ∆Gbinding of −34.8 kcal/mol,
exhibiting only two hydrogen bonds with the key amino acid residues of Mpro (Figure 3).
In conclusion, the MM-GBSA binding energy calculations displayed a remarkably higher
binding affinity of 340 compared to darunavir.
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Figure 3. 3D and 2D representations of binding modes of (i) bislatumlide A (340) and (ii) darunavir
in complex with SARS-CoV-2 main protease (Mpro) on the basis of the average structure throughout
the 100 ns MD simulation.

The MM-GBSA scheme identifies different components the participate in the total
binding energy (∆Gbinding), including van der Waals interactions (∆Evdw), electrostatic
interactions (∆Eele), electrostatic solvation free energy evaluated from the generalized
Born equation (∆EGB), the nonpolar component of the solvation energy (∆ESUR), total
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gas-phase energy (∆Ggas) and solvation free energy (∆GSolv). All these binding free energy
components of 340 and darunavir with SARS-CoV-2 Mpro are summarized in Table 2.

Table 2. Components of the MM-GBSA binding energies for 340- and darunavir- SARS-CoV-2 main protease (Mpro)
complexes over 100 ns MD simulations.

Compound Name Estimated MM-GBSA Binding Energy (kcal/mol)

∆Evdw ∆Eele ∆EGB ∆ESUR ∆Ggas ∆GSolv ∆Gbinding

Bislatumlide A (340) −56.1 −27.7 45.6 −6.6 −83.8 39.0 −44.8
Darunavir −47.4 −15.1 33.8 −6.2 −62.5 27.7 −34.8

Based on the evaluated MM-GBSA binding energies, van der Waals interactions
(∆Evdw) were found to be the prime force inducing molecular complexation with Mpro for
both bislatumlide A (∆Evdw of −56.1 kcal/mol) and darunavir (∆Evdw of −47.4 kcal/mol).
Additionally, electrostatic interactions (Eele) were an appropriate contributor for 340- and
darunavir-Mpro binding affinities with an average value of −27.7 and −15.1 kcal/mol,
respectively. It is noted that Evdw is approximately two-fold more robust than the ∆Eele. To-
gether these results provide quantitative data of the binding affinities of 340 and darunavir
as putative Mpro inhibitors.

Moreover, to explore the key residues that exhibit essential contributions to 340- and
darunavir-Mpro interactions, the per-residue decomposition of the binding free energy
calculations was executed. All the residues with energetic contributions <−0.50 kcal/mol
were considered and presented in Figure 4. It is apparent that HIS41, GLY143, MET165,
GLU166 and GLN189 amino acid residues contributed to the interactions of 340 and
darunavir with Mpro. A considerable contribution of the GLU166 amino acid residue to
the total binding free energy was observed with values of −2.9 and −1.2 kcal/mol for
340- and darunavir-Mpro complexes, respectively. In addition, the hydrophobic residues
participate in higher binding affinity as a result of hydrophobic interactions between 340
and the hydrophobic residues.
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Mining of naturally occurring plant-based compounds and marine-derived metabo-
lites has evoked an upsurging interest in discovering potential SARS-CoV-2 Mpro inhibitors.
A comparison of the binding affinity of 340 with those previously reported as SARS-CoV-2
Mpro inhibitors would give an informative insight into the preferential inclination of 340 as
a prospective drug candidate. Towards an adequate comparison, only natural products
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and marine metabolites identified by employing a similar in silico technique were consid-
ered. Among the explored natural products, salvanolic acid and curcumin accentuated
appreciable MM-GBSA binding energies against Mpro over 40 ns MD course with values of
−44.8 and −34.2 kcal/mol, respectively [11]. Notably, rutin, a flavonol glycoside molecule,
exhibited a debilitated binding affinity against Mpro (∆Gbinding = −28.4 kcal/mol over
150 ns MD simulation) [7]. Two flavone nominees dubbed as PubChem-129-716-607 and
PubChem-885-071-27 showed considerable binding affinities against Mpro, over 150 ns MD
course, with ∆Gbinding values of −69.0 and −68.1 kcal/mol, respectively [7]. Erylosides B, a
terpene marine natural product, demonstrated preferential MM-GBSA binding energy with
Mpro over 100 ns MD simulation (calc. −51.9 kcal/mol) [8]. Comparing the MM-GBSA
binding affinity of 340 to the earlier identified compounds robustly unveiled its competing
binding affinity as a prospective Mpro inhibitor. As a consequence, further investigation of
the structural and energetic stability of 340 over 100 ns MD simulation is desired.

2.3. Post-MD Analyses

Structural and energetic analyses were conducted throughout the 100 ns MD sim-
ulations, as well as compared to those of darunavir to further emphasized the stability
and behavior of 340 in complex with Mpro. For structural and energetic analyses, four
characteristics were evaluated from respective simulation trajectories: root-mean-square
deviation (RMSD), hydrogen bond length, binding energy per frame and center-of-mass
(CoM) distance.

2.3.1. Binding Energy per Frame

The correlation between single-trajectory MM-GBSA binding energy and time was
used to evaluate the comprehensive structural stability of 340 and darunavir in complex
with Mpro throughout the 100 ns MD simulations (Figure 5). An interesting aspect of
this graph is the general stabilities for 340 and darunavir with average binding energies
(∆Gbinding) of −44.8 and −34.8 kcal/mol, respectively. The most obvious finding to emerge
from the analysis is that all complexes maintained stability over 100 ns MD simulations.
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2.3.2. Hydrogen Bond Length

Hydrogen bonds have a vital role in preserving the binding of investigated com-
pounds with a protein. Consequently, hydrogen bond analysis was carried out for 340 and
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darunavir in complex with Mpro throughout the 100 ns MD simulations (Table 3). Table 3
demonstrated that the two inhibitors manifested stable hydrogen bonds with GLU166
with H-bond occupancy values of 90.3% and 85.7% for bislatumlide A and darunavir,
respectively. The high H-bond occupancy confirms the significant role of GLU166 within
the active site of Mpro. A comparison of the data, summarized in Table 3, reveals a higher
stability for 340 than darunavir. More exactly, 340 exhibited three stable hydrogen bonds
with HIS41, GLU166 and GLN189 with an average H-bond distance of 2.9, 2.8 and 2.6 Å,
respectively. However, darunavir formed only a stable hydrogen bond with GLU166
with an average H-bond distance of 2.7 Å. The high stability for the bislatumlide A-Mpro

complex compared to darunavir-Mpro complex is clearly supported by the current findings.

Table 3. Hydrogen bond distance, angle and occupancy for bislatumlide A (340) and darunavir with essential Mpro amino
acid residues throughout 100 ns MD simulations.

Compound Name Acceptor Donor Angle
(Degree) a

Distance (Å)
a

Occupied
(%) b

Bislatumlide A (340)
HIS41@ND1 Bislatumlide A@O-H16 164 2.9 67.9
GLU166@O Bislatumlide A@O2-H25 142 2.8 90.3
GLN189@O Bislatumlide A@O3-H47 145 2.6 88.9

Darunavir GLU166@O Darunavir @O5-H36 151 2.8 85.7
a The hydrogen bonds are investigated via the acceptor-donor atom distance of <3.5 Å and acceptor-H-donor angle of >120◦. b Only
hydrogen bonds with occupancy higher than 50% were illustrated.

2.3.3. Center-of-Mass Distance

Center-of-mass (CoM) distances were adopted to allow a deeper insight into the
stability of inhibitor-Mpro complexes over the 100 ns MD simulations (Figure 6). From the
data, it is apparent that CoM distances were more consistent for 340 complexed with Mpro

compared to darunavir with average values of 6.0 and 12.1 Å, respectively. The current
results propose that 340 bound more tightly to the Mpro complex compared to darunavir.
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Figure 6. Center-of-mass (CoM) distances (in Å) between bislatumlide A (black) and darunavir (red)
and GLU166 of Mpro throughout 100 ns MD simulations.

2.3.4. Root-Mean-Square Deviation

The root-mean-square deviation (RMSD) of the whole complex backbone atoms were
plotted as a function of time to examine the structural stability of the 340 and darunavir-
Mpro complexes throughout the simulation time (Figure 7). RMSD analysis demonstrated
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that the scrutinized complexes initiated stabilization after 20 ns and kept their stabilities
until the end of the 100 ns MD simulations. The evaluated RMSD values for these complexes
stayed beneath 0.26 nm throughout the MD simulation time. Overall, the current results
demonstrated that 340 is tightly bonded and does not influence the structural stability of
the Mpro, as well as conserved structural integrity.
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Figure 7. Root-mean-square deviation (RMSD) of the backbone atoms from the initial structure of
bislatumlide A (black) and darunavir (red) with Mpro over a 100 ns MD simulations.

2.4. In Silico Drug-Likeness

The efficiency of curative drugs fundamentally relies on the molecular property and
bioactivity of the molecules [32] was examined. To consider the drug-likeness in addition
to bioactivity of 340, in silico molecular features were evaluated using a SwissADME web
server and compared to those of darunavir. The predicted properties are shown in Table 4.

Table 4. Predicted physiochemical parameters and structural descriptors of bislatumlide A (340) and
darunavir as prospective SARS-CoV-2 Mpro inhibitors.

Compound Name mLogP TPSA nON nOHNH Nrotb MWt %ABS

Bislatumlide A (340) 4.3 119.4 8 2 3 694.9 67.8%
Darunavir 1.2 148.8 8 3 13 547.7 57.7%

The permeability through the cell membrane, as inspected by the mlogP value, was
less than five (4.3 and 1.2 for bislatumlide A and darunavir, respectively), proposing
that these inhibitors have adequate membrane permeability. Additionally, the number of
hydrogen bond donors (nOHNH) and acceptors (nON) were less than 5 and 10, respectively.
Moreover, the molecular weights for bislatumlide A and darunavir were 694.9 and 547.7,
respectively, suggesting that these inhibitors are readily transported and/or diffused in
the absorption process. Another parameter pointing out the molecular bio-absorption
is the topological polar surface area (TPSA). The TPSA of 340 and darunavir were 119.4
and 148.8 Å, respectively, indicating a satisfactory cell membrane permeability and oral
bioavailability level.

2.5. Molecular Target Prediction and Network Analysis

One hundred and seventeen genes for severe acute respiratory syndrome diseases
(SARS, C1175175) were recorded utilizing DisGeNET online tools. Using Venn diagram
comparison analysis, frequently participated genes for 340 involved PRKCA, PRKCB,
MAPK1 and MAPK14. A STRING database was utilized to recognize protein-protein inter-
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actions for 340 included the biochemical signaling genes AR, MAPK1, MAPK3, MAPK8,
LYN, JAK2, SRC, MDM2 PTPN1 and JUN as an in silico natural-product inhibitor towards
Mpro and supplies a ligand lead for in vitro enzyme investigations (Figure 8 and Table S3).
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2.6. Pathway Enrichment Analysis (PEA)

Toward better genome-wide mining for 340, stimulated targets and their interactors,
were determined using pathway enrichment analysis (PEA) and Boolean network analysis
(BNA). A genome-wide hierarchy map representation of the pathways affected by 340
treatment was constructed (Figure S2). The hierarchy map showed that among the most
stimulated pathways was the “disease” pathway, particularly the potential therapeutic for
the SARS pathway. In addition, a reacfoam tree of the top targeted/influenced pathways
by the top 10 gene targets stimulated by 340 treatment against SARS-CoV-2 infection was
constructed (Figure 9). Although the PEA results revealed that the top 10 gene targets
stimulated by 340 were identified in 833 reactome pathways (each pathway was hit by
at least one of them), the top three significantly enriched major pathways are (A) signal
transduction pathway, (B) disease pathway and (C) immune system pathway, with a false
discovery rate (FDR) of <0.00001%. Under these pathways, the interaction between the top
10 genes/signals stimulated with 340 treatment was visualized and mapped (Figure S3).
Additionally, interactors with these top 10 genes are listed (Table S4).

Remarkably, under the most enriched major pathway (signal transduction), it was
found that the MAPK family signaling cascades pathway was on the top of the most
enriched pathway influenced by 340 within the human biological system (Figure 10).
Mining of the PEA analysis outcomes indicated that a set of five genes (MAPK1, MAPK3,
JAK2, JUN and SRC) were significantly modulated as biological targets to 340 as potent
SARS-CoV-2 inhibitor. Furthermore, the interactome results showed that these five genes
were found to interact with other 48 genes/interactors (Table S4).

Previous studies show that various alterations in a few signaling pathways can control
many central biological functions of the cell after SARS-CoV-2 infection [33,34]. Recently,
several research reports found that the p38 mitogen-activated protein kinase (MAPK),
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and epidermal
growth factor receptor (EGFR) signaling pathways are altered following coronavirus infec-
tion. These pathways play a crucial role in oppressing the host antiviral response and are
essential for coronavirus entry, replication and apoptosis [35].
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Indeed, accumulated evidence confirmed that the p38 MAPK signaling pathway can
operate various essential biological activities depending on the stimuli and the type of
stimulated tissue. Therefore, modulation of p38 MAPK signaling was found to raise cell
death and survival [36]. Additionally, many reports emphasized the critical role of p38
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MAPK signaling in several viral infections targeting the respiratory system; in HCoV-229E,
the triggering of p38 MAPK is required to induce cytopathic effect (CPE), as well as the
viral replication process. In addition, the upregulation of p38 MAPK may also promote the
viral entry through the ACE2 endocytosis and cause subsequent inflammations, thrombosis
and could initiate multi-organ failure in COVID-19 patients [37].

Notably, one of the most common consequences of SARS-CoV-2 infection is pulmonary
injury. In COVID-19 patients, the p38 MAPK signaling pathway, via p53, or its alterna-
tives TGF-β1, or syntenin, drives apoptosis and ends with lung injury, which means that
SARS-CoV-2 is likely to modulate the p38 MAPK signaling pathway to provoke the apop-
tosis and lung damage. Here, based on the Reactome mining, we found that 340 showed
a potential therapeutic effect (Hit:32/144 with FDR:9.17E-1) against SARS-CoV-2 viral
infection (Figure S4). This potentiality may be attributed to 340 capability to re-modulate
the p38 MAPK signaling pathway hijacked by SARS-CoV-2 viral infection and antagonize
its harmful effects. This speculation was supported by recent reports that demonstrated
the possibility of inhibiting the p38 MAPK signaling pathway as a promising therapeutic
strategy against the SARS-CoV-2 pandemic [38,39].

3. Materials and Methods
3.1. Mpro Preparation

A high-resolution (2.16 Å) biological unit for the X-ray crystallographic structure of
SARS-CoV-2 main protease (Mpro) deposited in Protein Data Bank by Jin et al.
(PDB ID: 6LU7 [17]) in complex with peptidomimetic inhibitor (N3) was retrieved and
utilized as a template for all molecular docking calculations and molecular dynamics (MD)
simulations. The protein structure was prepared by eliminating all crystallographic water
molecules, heteroatoms and ions, keeping only the amino acid residues. H++ webserver
was applied to assign the protonation states of Mpro [40]. Additionally, all missing hydro-
gen atoms were added. In H++ calculations, physiologic conditions of external dielectric
constant = 80, pH = 7, salinity = 0.15 and internal dielectric constant = 10 were used to
evaluate the pKa values of Mpro amino acid residues.

3.2. Inhibitor Preparation

A chemical library containing metabolites from the genus Sarcophyton reported over
the last twenty years (1998–2019) [18] was assembled. Structures were retrieved from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov) in SDF format, except for 2D
structures of bislatumlides A and B that were taken from the original article [41]. Omega2
software was used to generate three-dimensional (3D) structures of the investigated com-
pounds [42,43]. Geometrical structures were minimized with the assistance of Merck
Molecular Force Field 94 (MMFF94S), implemented inside SZYBKI software [44,45]. Unde-
fined stereocenters were enumerated with the help of flipper application inside Omega2
software. A conformational search was performed to generate all conformers within the
energy window value of 10 kcal/mol. The lowest energy conformer was subjected to mini-
mization with the assistance of Merck Molecular Force Field 94 (MMFF94S), implemented
inside SZYBKI software [44,45]. The protonation state and tautomer enumeration of the
compounds were examined by fixpka and tautomer applications, respectively, included in
the QUACPAC software [46]. Two-dimensional (2D) structures are presented in Table S1.

3.3. Molecular Docking

In the current study, AutoDock4.2.6 software was applied to perform all molecular
docking calculations [47]. According to AutoDock protocol [48], the pdbqt file of SARS-
CoV-2 main protease (Mpro) was prepared. In AutoDock4.2.6, the maximum number of
energy evaluations (eval) and the number of genetic algorithm (GA) run variables were
set to 250 and 25,000,000, respectively. All other docking parameters were preserved at
their default settings. The size of the box (60 Å × 60 Å × 60 Å) was specified to encompass
the SARS-CoV-2 Mpro active site appropriately. The binding site of SARS-CoV-2 Mpro

https://pubchem.ncbi.nlm.nih.gov
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was precisely located based on the availability of resolved structures of Mpro in complex
with inhibitors [49]. An AutoGrid4.2.6 program was applied to generate maps with a
grid spacing value of 0.375 Å. The coordinates of the grid center were placed at −13.069,
9.740 and 68.490 (XYZ assignments, respectively). The Gasteiger method was utilized
to compute the atomic partial charges of the studied compounds [50]. The anticipated
binding modes for each compound were handled using the built-in clustering analysis
(1.0 Å RMSD tolerance) and conformation with the lowest energy within the largest cluster
was opted as a representative pose.

3.4. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were carried out for the most potent diterpenes
in complex with Mpro using AMBER16 software [51]. An AMBER force field of 14SB was
employed to describe the Mpro catalytic site [52], while the general AMBER force field
(GAFF2) [53] was used to characterize individual metabolites. Both implicit-solvent and
explicit-solvent MD simulations were performed. In the implicit-solvent MD simulations,
an AM1-BCC method with the assistance of the Antechamber tool implemented inside
AMBER16 software was used to assign the atomic partial charges of the diterpenes [54].
Neither cutoff distance for nonbonded nor periodic boundary conditions were applied.
Furthermore, the solvation influence was considered by utilizing igb = 1 solvent model [55].
Energy minimization was initially executed on the docked diterpene in complex with Mpro

for 500 steps. Gentle heating was carried out as well on the minimized complexes from 0 K
to 300 K over 10 ps NVT MD simulations. The production stage was then performed over
250 ps, in addition to snapshots recorded every 1 ps. Therefore, 250 snapshots were derived
from each MD simulation. Herein, the CPU version of pmemd (pmemd.MPI) implemented
inside AMBER16 software was employed to conduct all implicit-solvent MD simulations.

In explicit-solvent MD simulations, atomic partial charges of the investigated metabo-
lites were assigned at the HF/6-31G* level with assistance of Gaussian09 software with
the restrained electrostatic potential (RESP) fitting approach [56,57]. A water-solvated
cubic box was constructed using a TIP3P water model with a minimum distance to the
box edge of 15.0 Å (1.5 nm). All solvated systems were neutralized by adding Na+ or Cl−

counter-ions [58]. The maximum number of energy minimization steps were adjusted
to 5000 utilizing combined steepest and conjugate gradient algorithms. The minimized
systems were thereafter heated gradually to 300 K over 50 ps in the NVT ensemble. Ad-
ditionally, the systems were sufficiently equilibrated for 1 ns under NPT conditions. The
production stages were subsequently executed under an NPT ensemble for each studied
Mpro-metabolite complex over simulation times of 10 ns, 50 ns and 100 ns. Snapshots were
gathered every 10 ps for post-MD analyses. The long-range electrostatic interactions were
estimated using the Particle Mesh Ewald (PME) method. A short-range nonbonded inter-
action cutoff distance of 12 Å was applied [59]. The gamma_ln collision frequency applied
was 1.0 ps−1; in addition, the Langevin thermostat was utilized to maintain the temperature
at 298 K [60]. The pressure was controlled using a Berendsen barostat with a pressure
relaxation time of 2 ps [61]. All bonds, including hydrogen atoms, were constrained using
a SHAKE algorithm with a time step of 2 fs [62]. All explicit-solvent MD simulations were
executed with the help of a GPU version of pmemd (pmemd.cuda) implemented inside an
AMBER16 package. All in silico calculations, including molecular docking calculations,
quantum mechanics calculations and MD simulations, were executed on the CompChem
GPU/CPU hybrid cluster (hpc.compchem.net). Molecular graphics and analyses were
executed with the assistance of BIOVIA DS Visualize 2020 [63].

3.5. MM-GBSA Binding Energy Calculations

The binding free energies for the most potent metabolites that complexed with Mpro

were computed using molecular mechanical-generalized Born surface area (MM-GBSA)
approach implemented inside AMBER16 software [64]. The MM-GBSA (∆Gbinding) bind-
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ing free energy calculations were estimated based on the snapshots collected from MD
simulations. The average binding free energy (∆Gbinding) was evaluated as follows:

∆Gbinding = Gcomplex − (GSarcophyton + GMpro) (1)

where the energy term (G) is estimated as:

G = Eele + Evdw + GSA + GGB (2)

Eele and Evdw are electrostatic and van der Waals energies, respectively. GSA stands
for the nonpolar solvation-free energy, generally estimated via a linear function of the
solvent-accessible surface area (SASA) using a LCPO algorithm [65]. GGB is the electrostatic
solvation free energy computed from the generalized Born equation. The polar component
of the desolvation energy was assigned via Onufriev’s GB [66] (igb = 2). The solvent
(exterior) and solute (interior) dielectric constants were set to 80 and 1, respectively. A
single-trajectory method was applied, in which the coordinates of each metabolite-Mpro,
Mpro and metabolite were obtained from a single trajectory. The configurational entropy
(TS) is typically neglected due to the higher computational costs [30,31].

3.6. Drug-Likeness Properties

For the identified cembranoids, physicochemical properties including molecular weight
(MW), octanol/water partition coefficient (LogP), hydrogen bond acceptor (HBA), topologi-
cal polar surface area (TPSA), rotatable bond count (RB) and hydrogen bond donor (HBD)
were estimated with assistance of SwissADME web server (http://www.swissadme.ch/).

3.7. Protein Interactions Network and Pathway Enrichment Analysis (PEA)

Cembranoids were screened via an online website-based tool of SwissTargetPredici-
tion (http://www.swisstargetprediction.ch) to recognize the possible targets for each
ligand. InteractiVenn online tool was applied to design Venn Diagram [67] for acces-
sible database for severe, acute respiratory syndrome diseases (DisGeNET database;
https://www.disgenet.org). The top 100 genes for the most potential metabolite were
retrieved. A functional database of STRING for top anticipated targets was then used to
generate protein-protein interaction (PPI) [68].

Cytoscape 3.8.2 was used to inspect all probable target-function relations according
to a network topology [69]. Furthermore, to explore all potential target-functions relation-
ships for the top 10 targeted genes, pathway enrichment analysis was accomplished using
Cytoscape 3.8.2 [69]. In addition, to investigate the impact of bislatumlide A (340) as a
COVID-19 inhibitor candidate on human biological pathways computationally, Boolean-
network modeling was implemented. The fuzzy logic simulation approach [70] was
implemented to mimic Boolean-network dynamic behavior, which consequently trans-
formed from Reactome pathways by extending two-state Boolean variables to variables
with values ranging from zero to one. In addition, a FoamTree representation based on
Voronoi tessellation analysis for the top 10 gene targets stimulated by 340 was constructed.
Finally, a Reactome FIViz plugin tool was utilized for genome-wide visualization of all
possible drug-targets interactions [71].

4. Conclusions

COVID-19 is a universal risk for positive human health and economic losses continue
to build unabated. A rapid proceed, especially in vaccine and drug development, is substan-
tial to conquer the further outbreak in prevalence and loss of human life from COVID-19
disease. Herein, Sarcophyton cembranoid diterpenes were screened as prospective Mpro

inhibitors using combined molecular docking and molecular dynamics approaches. Based
on molecular docking calculations, MD simulations, as well as molecular mechanics-
generalized born surface area (MM-GBSA) binding energy calculations, 340 manifested a
convenient binding affinity with ∆Gbinding < −44.0 kcal/mol against Mpro. The energetic

http://www.swissadme.ch/
http://www.swisstargetprediction.ch
https://www.disgenet.org
https://www.disgenet.org
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and structural analyses throughout 100 ns MD simulations emphasized the high stability of
340. Drug-likeness properties for 340 were evaluated and demonstrated favorable physic-
ochemical properties. The compound has the potential to re-modulate the p38 MAPK
signaling pathway. In vitro and in vivo explorations are predicted to further identify the
role of 340 as a potential inhibitor therapeutic for COVID-19 treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19070391/s1, Figure S1: 2D representations of interactions of darunavir and the top 59
potent Sarcophyton cembranoid diterpenes metabolites with the proximal amino acid residues of
SARS-CoV-2 main protease (Mpro), Figure S2: A genome-wide overview of the Reactome Pathway
Analysis (RPA) results for the top 20 genes targets stimulated by bislatumlide A (340) against SARS-
CoV-2, Figure S3: Pathway digram analysis for enzymes/signals of the top 10 genes products/targets
stimulated by bislatumlide A (340), Figure S4: A diagrammatic model shows the potential therapeutic
level of bislatumlide A (340) against SARS-CoV-2 viral infection, Table S1: Estimated docking score (in
kcal/mol) for darunavir and the investigated Sarcophyton cembranoid diterpenes metabolites towards
SARS-CoV-2 main protease (Mpro), Table S2: Computed Autodock and MM/GBSA binding energies
(in kcal/mol) for darunavir and the top 58 potent Sarcophyton cembranoid diterpenes metabolites
against SARS-CoV-2 main protease (Mpro) over 250 ps implicit solvent MD simulations, Table S3:
Network topological analysis for the predicted targets for bislatumlide A (340), Table S4: Interactors
list showing the top 10 genes stimulated by bislatumlide A (340), their UniProt Ids and list of genes
Ids which Interacts with SARS-CoV-2.

Author Contributions: Conceptualization, M.A.A.I. and M.-E.F.H.; Data curation, A.H.M.A.; Formal
analysis, A.H.M.A. and M.A.M.A.; Investigation, A.H.M.A., M.A.M.A. and M.-E.F.H.; Methodology,
M.A.A.I.; Project administration, M.A.A.I. and M.-E.F.H.; Resources, M.A.A.I.; Software, M.A.A.I.
and M.A.M.A.; Supervision, M.A.A.I.; Visualization, A.H.M.A. and M.A.M.A.; Writing—original
draft, A.H.M.A., M.A.M.A. and T.A.M.; Writing—review & editing, M.A.A.I., M.A.M.A., M.F.M.,
A.R.H., S.A.M.K., F.A.A., F.A., S.H.A., K.S.A., T.E., M.E.S., P.W.P., H.R.E.-S. and M.-E.F.H. All authors
have read and agreed to the published version of the manuscript.

Funding: Mahmoud F. Moustafa extends his appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work under grant No. (R.G.P.1/143/42). The computational
work was completed with resources supported by the Science and Technology Development Fund,
STDF, Egypt, Grants No. 5480 & 7972 (Granted to Ass. Mahmoud A. A. Ibrahim). Mohamed-Elamir
F. Hegazy gratefully acknowledges the financial support from Alexander von Humboldt Foundation
“Georg Foster Research Fellowship for Experienced Researchers”.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article/supplem-
entary material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015, 1282, 1–23.

[CrossRef]
2. Yin, Y.; Wunderink, R.G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2017, 23, 130–137. [CrossRef]
3. Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92,

418–423. [CrossRef]
4. Parrish, R.M.; Hohenstein, E.G.; Sherrill, D. Tractability gains in symmetry-adapted perturbation theory including coupled

double excitations: CCD+ST(CCD) dispersion with natural orbital truncations. J. Chem. Phys. 2013, 139, 174102. [CrossRef]
[PubMed]

5. Dhand, R.; Li, J. Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. Am. J.
Respir. Crit. Care Med. 2020, 202, 651–659. [CrossRef] [PubMed]

6. Wang, J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug
Repurposing Study. J. Chem. Inf. Model. 2020, 60, 3277–3286. [CrossRef] [PubMed]

7. Ibrahim, M.A.; Mohamed, E.A.; Abdelrahman, A.H.; Allemailem, K.S.; Moustafa, M.F.; Shawky, A.M.; Mahzari, A.; Hakami, A.R.;
Abdeljawaad, K.A.; Atia, M.A. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug
discovery study. J. Mol. Graph. Model. 2021, 105, 107904. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/md19070391/s1
https://www.mdpi.com/article/10.3390/md19070391/s1
http://doi.org/10.1007/978-1-4939-2438-7_1
http://doi.org/10.1111/resp.13196
http://doi.org/10.1002/jmv.25681
http://doi.org/10.1063/1.4826520
http://www.ncbi.nlm.nih.gov/pubmed/24206282
http://doi.org/10.1164/rccm.202004-1263PP
http://www.ncbi.nlm.nih.gov/pubmed/32543913
http://doi.org/10.1021/acs.jcim.0c00179
http://www.ncbi.nlm.nih.gov/pubmed/32315171
http://doi.org/10.1016/j.jmgm.2021.107904
http://www.ncbi.nlm.nih.gov/pubmed/33798836


Mar. Drugs 2021, 19, 391 18 of 20

8. Ibrahim, M.A.; Abdelrahman, A.H.; Mohamed, T.A.; Atia, M.A.; Al-Hammady, M.A.; Abdeljawaad, K.A.; Elkady, E.M.; Moustafa,
M.F.; Alrumaihi, F.; Allemailem, K.S.; et al. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main
Protease (M(pro)) Inhibitors. Molecules 2021, 26, 2082. [CrossRef]

9. Ibrahim, M.A.; Abdeljawaad, K.A.; Abdelrahman, A.H.; Hegazy, M.E.F. Natural-like products as potential SARS-CoV-2 M(pro)
inhibitors: In-silico drug discovery. J. Biomol. Struct. Dyn. 2020, 1–13. [CrossRef]

10. Ibrahim, M.A.; Abdelrahman, A.H.; Hegazy, M.E.F. In-silico drug repurposing and molecular dynamics puzzled out potential
SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2020, 1–12. [CrossRef]

11. Ibrahim, M.A.; Abdelrahman, A.H.; Hussien, T.A.; Badr, E.A.; Mohamed, T.A.; El-Seedi, H.R.; Pare, P.W.; Efferth, T.; Hegazy,
M.E.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput. Biol. Med. 2020,
126, 104046. [CrossRef]

12. Sencanski, M.; Perovic, V.; Pajovic, S.B.; Adzic, M.; Paessler, S.; Glisic, S. Drug Repurposing for Candidate SARS-CoV-2 Main
Protease Inhibitors by a Novel In Silico Method. Molecules 2020, 25, 3830. [CrossRef]

13. Keretsu, S.; Bhujbal, S.P.; Cho, S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular
dynamics simulation and free energy calculation. Sci. Rep. 2020, 10, 17716. [CrossRef]

14. Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol. 2017,
162, 2539–2551. [CrossRef]

15. Cherrak, S.A.; Merzouk, H.; Mokhtari-Soulimane, N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease
inhibitors: A molecular docking and simulation studies. PLoS ONE 2020, 15, e0240653. [CrossRef]

16. Jo, S.; Kim, S.; Kim, D.Y.; Kim, M.-S.; Shin, D.H. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J. Enzym. Inhib.
Med. Chem. 2020, 35, 1539–1544. [CrossRef]

17. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M pro from SARS-CoV-2
and discovery of its inhibitors. Nature 2020, 582, 289–293. [CrossRef]

18. Elkhawas, Y.A.; Elissawy, A.M.; El-Naggar, M.; Mostafa, N.M.; Al-Sayed, E.; Bishr, M.M.; Singab, A.N.B.; Salama, O.M. Chemical
Diversity in Species Belonging to Soft Coral Genus Sacrophyton and Its Impact on Biological Activity: A Review. Mar. Drugs
2020, 18, 41. [CrossRef]

19. Carté, B.K. Biomedical Potential of Marine Natural Products: Marine organisms are yielding novel molecules for use in basic
research and medical applications. BioScience 1996, 46, 271–286. [CrossRef]

20. Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical
Industries: Tips for Success. Mar. Drugs 2014, 12, 1066–1101. [CrossRef]

21. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products
in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [CrossRef]

22. Hegazy, M.-E.F.; Mohamed, T.; Abdel-Latif, F.F.; Alsaid, M.S.; Shahat, A.; Paré, P.W. Trochelioid A and B, new cembranoid
diterpenes from the Red Sea soft coral Sarcophyton trocheliophorum. Phytochem. Lett. 2013, 6, 383–386. [CrossRef]

23. Hegazy, M.-E.F.; El-Beih, A.A.; Moustafa, A.Y.; Hamdy, A.A.; Alhammady, M.A.; Selim, R.M.; Abdel-Rehim, M.; Paré, P.W.
Cytotoxic Cembranoids from the Red Sea Soft Coral Sarcophyton glaucum. Nat. Prod. Commun. 2011, 6, 1809–1812. [CrossRef]

24. Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol. 2020, 38, 379–381. [CrossRef]
25. Ibrahim, M.A.; Abdelrahman, A.H.; Allemailem, K.S.; Almatroudi, A.; Moustafa, M.F.; Hegazy, M.E.F. In Silico Evaluation of

Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors. Protein J. 2021, 40, 296–309.
[CrossRef]

26. Chen, J.; Xia, L.; Liu, L.; Xu, Q.; Ling, Y.; Huang, D.; Huang, W.; Song, S.; Xu, S.; Shen, Y.; et al. Antiviral Activity and Safety of
Darunavir/Cobicistat for the Treatment of COVID-19. In Open Forum Infectious Diseases; Oxford University Press: New York, NY,
USA, 2020; Volume 7, p. ofaa241. [CrossRef]

27. Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for
SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [CrossRef]

28. De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med.
Chem. 2016, 59, 4035–4061. [CrossRef]

29. Kerrigan, J.E. Molecular dynamics simulations in drug design. In In Silico Models for Drug Discovery; Kortagere, S., Ed.; Humana
Press: Totowa, NJ, USA, 2013; pp. 95–113. [CrossRef]

30. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area
and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.
J. Comput. Chem. 2011, 32, 866–877. [CrossRef]

31. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA
and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [CrossRef]

32. Shen, M.; Tian, S.; Li, Y.; Li, Q.; Xu, X.; Wang, J.; Hou, T. Drug-likeness analysis of traditional Chinese medicines: 1. property
distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines.
J. Cheminform. 2012, 4, 31. [CrossRef]

33. Hemmat, N.; Asadzadeh, Z.; Ahangar, N.K.; Alemohammad, H.; Najafzadeh, B.; Derakhshani, A.; Baghbanzadeh, A.; Baghi, H.B.;
Javadrashid, D.; Najafi, S.; et al. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and
MERS-CoV. Arch. Virol. 2021, 166, 675–696. [CrossRef] [PubMed]

http://doi.org/10.3390/molecules26072082
http://doi.org/10.1080/07391102.2020.1790037
http://doi.org/10.1080/07391102.2020.1791958
http://doi.org/10.1016/j.compbiomed.2020.104046
http://doi.org/10.3390/molecules25173830
http://doi.org/10.1038/s41598-020-74468-0
http://doi.org/10.1007/s00705-017-3417-y
http://doi.org/10.1371/journal.pone.0240653
http://doi.org/10.1080/14756366.2020.1801672
http://doi.org/10.1038/s41586-020-2223-y
http://doi.org/10.3390/md18010041
http://doi.org/10.2307/1312834
http://doi.org/10.3390/md12021066
http://doi.org/10.1038/s41573-020-00114-z
http://doi.org/10.1016/j.phytol.2013.05.005
http://doi.org/10.1177/1934578X1100601205
http://doi.org/10.1038/d41587-020-00003-1
http://doi.org/10.1007/s10930-020-09945-6
http://doi.org/10.1093/ofid/ofaa241
http://doi.org/10.1016/j.apsb.2020.02.008
http://doi.org/10.1021/acs.jmedchem.5b01684
http://doi.org/10.1007/978-1-62703-342-8_7
http://doi.org/10.1002/jcc.21666
http://doi.org/10.1021/acs.chemrev.9b00055
http://doi.org/10.1186/1758-2946-4-31
http://doi.org/10.1007/s00705-021-04958-7
http://www.ncbi.nlm.nih.gov/pubmed/33462671


Mar. Drugs 2021, 19, 391 19 of 20

34. Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B
betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [CrossRef] [PubMed]

35. Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Moller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.;
et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e1039. [CrossRef]

36. Yosimichi, G.; Nakanishi, T.; Nishida, T.; Hattori, T.; Takano-Yamamoto, T.; Takigawa, M. CTGF/Hcs24 induces chondrocyte dif-
ferentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-
signal regulated kinase (ERK). JBIC J. Biol. Inorg. Chem. 2001, 268, 6058–6065. [CrossRef] [PubMed]

37. Xiao, L.; Sakagami, H.; Miwa, N. ACE2: The key Molecule for Understanding the Pathophysiology of Severe and Critical
Conditions of COVID-19: Demon or Angel? Viruses 2020, 12, 491. [CrossRef] [PubMed]

38. Grimes, J.M.; Grimes, K.V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J. Mol. Cell. Cardiol. 2020, 144,
63–65. [CrossRef]

39. Kono, M.; Tatsumi, K.; Imai, A.M.; Saito, K.; Kuriyama, T.; Shirasawa, H. Inhibition of human coronavirus 229E infection in
human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK. Antivir. Res. 2008, 77, 150–152. [CrossRef]
[PubMed]

40. Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A. H++: A server for estimating pKas and adding missing
hydrogens to macromolecules. Nucleic Acids Res. 2005, 33, W368–W371. [CrossRef] [PubMed]

41. Yan, X.-H.; Gavagnin, M.; Cimino, G.; Guo, Y.-W. Two new biscembranes with unprecedented carbon skeleton and their probable
biogenetic precursor from the Hainan soft coral Sarcophyton latum. Tetrahedron Lett. 2007, 48, 5313–5316. [CrossRef]

42. Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer Generation with OMEGA: Algorithm and
Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model.
2010, 50, 572–584. [CrossRef]

43. OMEGA 2.5.1.4; OpenEye Scientific Software: Santa Fe, NM, USA, 2013.
44. SZYBKI, 1.9.0.3; OpenEye Scientific Software: Santa Fe, NM, USA, 2016.
45. Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 1999, 20, 720–729. [CrossRef]
46. QUACPAC, 1.7.0.2; OpenEye Scientific Software: Santa Fe, NM, USA, 2016.
47. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:

Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef] [PubMed]
48. Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug

screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [CrossRef] [PubMed]
49. Gervasoni, S.; Vistoli, G.; Talarico, C.; Manelfi, C.; Beccari, A.R.; Studer, G.; Tauriello, G.; Waterhouse, A.M.; Schwede, T.; Pedretti,

A. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining
Pocket and Docking Searches as Implemented in Pockets 2.0. Int. J. Mol. Sci. 2020, 21, 5152. [CrossRef] [PubMed]

50. Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron
1980, 36, 3219–3228. [CrossRef]

51. Case, D.A.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Homeyer, N.;
et al. AMBER16; University of California: San Francisco, CA, USA, 2016.

52. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.; Simmerling, C. ff14SB: Improving the Accuracy of Protein
Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [CrossRef]

53. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput.
Chem. 2004, 25, 1157–1174. [CrossRef]

54. Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization
and validation. J. Comput. Chem. 2002, 23, 1623–1641. [CrossRef]

55. Roux, B.; Simonson, T. Implicit solvent models. Biophys. Chem. 1999, 78, 1–20. [CrossRef]
56. Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for

deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [CrossRef]
57. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;

Petersson, G.A.; et al. Gaussian 09; Revision E01; Gaussian Inc.: Wallingford, CT, USA, 2009.
58. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating

liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]
59. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys.

1993, 98, 10089–10092. [CrossRef]
60. Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys. 2001, 114,

2090–2098. [CrossRef]
61. Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external

bath. J. Chem. Phys. 1984, 81, 3684–3690. [CrossRef]
62. Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput.

Chem. 1992, 13, 952–962. [CrossRef]
63. Dassault Systèmes BIOVIA, B.D.S.V.; Version 2019; Dassault Systèmes BIOVIA: San Diego, CA, USA, 2019.

http://doi.org/10.1038/s41564-020-0688-y
http://www.ncbi.nlm.nih.gov/pubmed/32094589
http://doi.org/10.1016/j.cell.2020.04.026
http://doi.org/10.1046/j.0014-2956.2001.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/11732999
http://doi.org/10.3390/v12050491
http://www.ncbi.nlm.nih.gov/pubmed/32354022
http://doi.org/10.1016/j.yjmcc.2020.05.007
http://doi.org/10.1016/j.antiviral.2007.10.011
http://www.ncbi.nlm.nih.gov/pubmed/18055026
http://doi.org/10.1093/nar/gki464
http://www.ncbi.nlm.nih.gov/pubmed/15980491
http://doi.org/10.1016/j.tetlet.2007.05.096
http://doi.org/10.1021/ci100031x
http://doi.org/10.1002/(SICI)1096-987X(199905)20:7&lt;720::AID-JCC7&gt;3.0.CO;2-X
http://doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://doi.org/10.1038/nprot.2016.051
http://www.ncbi.nlm.nih.gov/pubmed/27077332
http://doi.org/10.3390/ijms21145152
http://www.ncbi.nlm.nih.gov/pubmed/32708196
http://doi.org/10.1016/0040-4020(80)80168-2
http://doi.org/10.1021/acs.jctc.5b00255
http://doi.org/10.1002/jcc.20035
http://doi.org/10.1002/jcc.10128
http://doi.org/10.1016/S0301-4622(98)00226-9
http://doi.org/10.1021/j100142a004
http://doi.org/10.1063/1.445869
http://doi.org/10.1063/1.464397
http://doi.org/10.1063/1.1332996
http://doi.org/10.1063/1.448118
http://doi.org/10.1002/jcc.540130805


Mar. Drugs 2021, 19, 391 20 of 20

64. Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict
ligand binding. Perspect. Drug Discov. Des. 2000, 18, 113–135. [CrossRef]

65. Weiser, J.; Shenkin, P.S.; Still, W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput.
Chem. 1999, 20, 217–230. [CrossRef]

66. Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified
generalized born model. Proteins 2004, 55, 383–394. [CrossRef] [PubMed]

67. Heberle, H.; Meirelles, G.V.; Da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets
through Venn diagrams. BMC Bioinform. 2015, 16, 169. [CrossRef] [PubMed]

68. Li, R.; Ma, X.; Song, Y.; Zhang, Y.; Xiong, W.; Li, L.; Zhou, L. Anti-colorectal cancer targets of resveratrol and biological molecular
mechanism: Analyses of network pharmacology, human and experimental data. J. Cell. Biochem. 2019, 120, 11265–11273.
[CrossRef]

69. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

70. Morris, M.K.; Saez-Rodriguez, J.; Clarke, D.; Sorger, P.K.; Lauffenburger, U.A. Training Signaling Pathway Maps to Biochemical
Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli. PLoS Comput. Biol.
2011, 7, e1001099. [CrossRef] [PubMed]

71. Blucher, A.; McWeeney, S.K.; Stein, L.; Wu, G. Visualization of drug target interactions in the contexts of pathways and networks
with ReactomeFIViz. F1000Research 2019, 8, 908. [CrossRef] [PubMed]

http://doi.org/10.1023/A:1008763014207
http://doi.org/10.1002/(SICI)1096-987X(19990130)20:2&lt;217::AID-JCC4&gt;3.0.CO;2-A
http://doi.org/10.1002/prot.20033
http://www.ncbi.nlm.nih.gov/pubmed/15048829
http://doi.org/10.1186/s12859-015-0611-3
http://www.ncbi.nlm.nih.gov/pubmed/25994840
http://doi.org/10.1002/jcb.28404
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1371/journal.pcbi.1001099
http://www.ncbi.nlm.nih.gov/pubmed/21408212
http://doi.org/10.12688/f1000research.19592.1
http://www.ncbi.nlm.nih.gov/pubmed/31372215

	Blue biotechnology: Computational screening of sarcophyton cembranoid diterpenes for SARS-CoV-2 main protease inhibition
	Authors

	Introduction 
	Results 
	Molecular Docking 
	MD Simulations and Binding Energy Calculations 
	Post-MD Analyses 
	Binding Energy per Frame 
	Hydrogen Bond Length 
	Center-of-Mass Distance 
	Root-Mean-Square Deviation 

	In Silico Drug-Likeness 
	Molecular Target Prediction and Network Analysis 
	Pathway Enrichment Analysis (PEA) 

	Materials and Methods 
	Mpro Preparation 
	Inhibitor Preparation 
	Molecular Docking 
	Molecular Dynamics Simulations 
	MM-GBSA Binding Energy Calculations 
	Drug-Likeness Properties 
	Protein Interactions Network and Pathway Enrichment Analysis (PEA) 

	Conclusions 
	References

