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Abstract
The advent of silica-based low-cost standard single-mode fibers revolutionized the whole
communication industry. The deployment of optical fibers in the networks induces a paradigm
shift in the communication technologies used for long-haul information transfer. However, the
communication using the optical fibers is affected by several linear and nonlinear effects. The
most common linear effects are attenuation and chromatic dispersion, whereas the dominant
nonlinear effect is the Kerr effect. The Kerr effect induces a power-dependent nonlinear
distortion for the signal propagating in the optical fiber. The detrimental effects of the Kerr
nonlinearity limit the capacity of long-haul optical communication systems. Fiber Kerr
nonlinearity compensation using digital signal processing (DSP) techniques has been well
investigated over several years. In this paper, we provide a comprehensive tutorial, including the
fundamental mathematical analysis, on the characteristics of the optical fiber channel, the origin
of the Kerr nonlinearity effect, the theory of the pulse propagation in the optical fiber, and the
numerical and analytical tools for solving the pulse propagation equation. In addition, we
provide a concise review of various DSP techniques for fiber nonlinearity compensation, such as
digital back-propagation, Volterra series-based nonlinearity equalization, perturbation
theory-based nonlinearity compensation, and phase conjugation. We also carry out numerical
simulation and the complexity evaluation of the selected nonlinearity compensation techniques.

Keywords: digital back-propagation, digital signal processing, Kerr nonlinearity, optical fiber
communications, perturbation theory, phase-conjugation, Volterra equalizer
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1. Introduction

The modern high capacity core communication network uses
optical fibers to transmit information from one point to another

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

as modulated light pulses. The optical fiber is a dielectric cyl-
indrical waveguide made up of low-cost material silica [1].
The basic phenomenon responsible for guiding the light pulses
inside the optical fiber is total internal reflection [1]. The
uncladded optical fibers manufactured in the early 1920s were
not suitable for information transfer at long distances [1]. In
the 1950s, the use of the cladding layer was a starting point for
the field of fiber optics and led to a significant improvement in
the fiber characteristics [1]. During the 1960s, the transmission
of images through the glass fibers demonstrated the significant
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development of the field of fiber optics [1, 2]. The fibers man-
ufactured during that time had a drawback of extreme power
loss of ≫ 1000 dB km−1 while the optical light is trans-
mitted. Further research efforts in the 1970s reduced the loss
of the silica-based fibers below 20 dB km−1 [1]. During the
late 1970s, advancements in fiber fabrication technology sig-
nificantly reduced the fiber loss down to 0.2 dB km−1 in the
1550 nm wavelength range [1]. That eventually led to a break-
through in the field of optical fiber communication systems
[1]. During the 1990s, the optical fibers were doped with rare-
earth elements such as Erbium. That led to the development
of the Erbium-doped fiber amplifiers (EDFAs) and fiber lasers
[1, 3].

The invention of EDFAs and cost-effective manufactur-
ing of standard single-mode fibers (SSMFs) with less than
0.2 dB km−1 attenuation marked the beginning of commer-
cially viable fiber-optic communication systems. Since the
deployment, the optical communication systems underwent
several technical evolutions to fulfil the requirements of high-
speed communications. The emergence of bandwidth-hungry
applications, such as cloud services and virtual reality, has
fueled the global network traffic increase to a large extent
[4–7]. Furthermore, human-centered applications like video
gaming and the exchange of multimedia content via smart-
phones are among the most bandwidth-consuming applica-
tions. That leads to a strong requirement for an increase in
the access network capacity, and consequently, for the core
optical network capacities to meet such ever-increasing traffic
demands [7].

The deployment of wavelength division multiplexing
(WDM) technology, which enables the multiplexing of sev-
eral optical signals in the same fiber, dramatically increases the
fiber capacity [8, 9]. A few years ago, an optical superchannel
system has been introduced for 400 Gb s−1 or 1 Tb s−1 optical
transmission systems [3–16]. This system effectively splits
the given WDM channel into smaller subcarriers separated by
smaller guard-bands and transmitted as a single entity along
the optical network. The superchannel technique has several
benefits over the single-carrier systems [16]. It has lower
requirements in terms of optical signal-to-noise ratio (OSNR)
and analog-to-digital converters/digital-to-analog converters
bandwidth [16]. In comparison with single-carrier 400 Gb s−1

and 1 Tb s−1 transmission systems, the superchannel sys-
tems exhibit better transmission performance. However, the
transmission impairments in the optical fiber degrade the
performance of the high data-rate optical superchannel sys-
tems. For example, the chromatic dispersion (CD) introduces
a frequency-dependent phase shift to the signals and acts as
a primary limiting factor in provisioning a reliable long-haul
optical communication link [17]. It is noteworthy that there are
various optical and electrical techniques available to combat
the adverse effect of the CD in a long-haul optical communic-
ation system [17–21].

Another significant impairment that limits the transmission
performance of the long-haul optical communication system
is the fiber nonlinearity [7]. The nonlinearity effects in the
optical fiber are due to an electro-optic effect, referred to as the

Kerr effect, which arises from the dependence of the optical
fiber refractive index on the transmit signal power [2, 7]. That
makes the optical fiber channel different from other transmis-
sion media used for the information transfer. In a linear trans-
missionmedium, the information signals are usually perturbed
by the additive noise, which generally results in channel capa-
cities monotonically increasing with transmit power, thereby a
corresponding increase in the SNR. However, the detrimental
effects of Kerr-induced signal nonlinear distortions grow at a
faster rate than the SNR capacity gain at higher launch powers.
That in turn leads the channel capacity to be a nonmonotonic
function of the transmit launch power with a maximum value
at a particular launch power termed as optimum launch power.
The achievable transmission rate decreases rapidly beyond the
optimal power point as the launch power increases due to the
corresponding increase in the Kerr-induced signal nonlinear
distortions [2].

The transmission performance of the single-channel optical
communication systems is mainly limited by the intra-channel
Kerr nonlinearity effect. The intra-channel nonlinear inter-
actions can be categorized into three types: (a) self-phase
modulation (SPM), (b) intra-channel cross-phase modulation
(IXPM), and (c) intra-channel four-wave mixing (IFWM). It
is important to mention that the SPM, IXPM, and IFWM
can be compensated well using digital nonlinearity compens-
ation (NLC) techniques. In WDM superchannel systems, a
significant portion of the nonlinear distortion comes from
the nonlinear interaction between the channel under consid-
eration and the co-propagating signals in adjacent channels,
referred to as inter-channel nonlinearity effects [2]. The inter-
channel nonlinear effects can be classified into three types:
(a) XPM, (b) cross-polarization modulation (XPolM), and
(c) FWM [22, 23]. In recent years, the spectral efficiency
of the polarization division multiplexed (PDM) optical com-
munication systems have dramatically improved by introdu-
cing a promising detection technique referred to as coher-
ent detection. The coherent detection also enables the imple-
mentation of the advanced forward error-correction coding
techniques and the adaptive digital signal processing (DSP)
algorithms to combat time-varying transmission impairments
[24]. A plethora of NLC techniques based on DSP has been
developed in the literature to deal with the Kerr nonlinearity
effect.

In this tutorial, we provide a comprehensive description
of the characteristics of the optical fiber channel, the the-
ory behind the origin of the Kerr effect, the development
of the pulse propagation equation, the numerical and analyt-
ical tools used for solving the pulse propagation equation,
and various Kerr-induced nonlinearity effects in the optical
fiber channel. We also provide a concise review of various
state-of-the-art DSP techniques available in the literature to
deal with the detrimental effects of the Kerr-induced fiber
nonlinearity effects. For the maximum benefit of the read-
ers, we adopt a didactic approach with the help of a very
detailed mathematical interpretation for various optical phe-
nomenons, processes, models, and methods covered in this
tutorial.
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The remainder of this tutorial is organized as follows.
Section 2 explains the characteristics of the optical fiber chan-
nel. Section 3 describes the nonlinear susceptibility and the
Kerr effect. Section 4 provides the physics behind the pulse
propagation in optical fiber. Section 5 demonstrates vari-
ous mathematical tools used to solve the pulse propagation
equation. Section 6 details various Kerr-induced fiber non-
linearity effects in the optical fiber. Section 7 outlines vari-
ous nonlinearity compensation techniques used to combat the
Kerr-induced nonlinearity effects in the optical fiber. Section 8
illustrates the numerical simulation results and the compu-
tational complexity evaluation of the selected nonlinearity
compensation techniques. Finally, section 9 concludes the
tutorial.

2. Characteristics of optical fiber channel

The optical fiber consists of a glass core surrounded by a clad-
ding layer to confine themodulated light inside the core region.
The refractive index n2 of the cladding layer is slightly lower
than that of the core index n1 to facilitate the total internal
reflection [1]. Such fibers are generally referred to as step-
index fiber. The step-index optical fibers can be categorized
by two parameters, namely core-cladding index difference ∆
and the V parameter, given as:

∆=
n1 − n2
n1

(1)

and

V= k0a
√
n21 − n22, (2)

V= k0aNA, (3)

respectively, where k0 = 2π
λ , λ is the wavelength of light, a is

the core radius, and NA=
√
n21 − n22 is the numerical aperture.

TheV parameter determines the number of propagationmodes
in the optical fiber. For example, if V < 2.405, then the step-
index fiber supports only one mode. Such fibers are termed as
single-mode fibers [1]. It is important to mention that, in this
tutorial, we consider nonlinearity effects in the single-mode
fibers since they are used to realize the long-haul high data
rate optical communication systems.

Example 1 . The V parameter of a step-index fiber is given by
2.3 at 1550 nm wavelength. Calculate the NA for a core radius
of 5 µm.

Solution. From (3),

NA= V
λ

2πa
= 2.3×

(
1550 nm
2π× 5 µm

)
= 0.11.

2.1. Fiber losses

While the optical signal propagates through the optical fiber
channel, the fiber losses attenuate the signal power as a func-
tion of the transmission distance. The transmitted signal power
considering the fiber attenuation can be represented as [1]:

PT = P0 exp(−αL) , (4)

whereP0 is the power launched at the input of the fiber,α is the
fiber attenuation parameter, and L is the transmission distance.
It is worth mentioning that the fiber attenuation parameter is
usually expressed in units of dB km−1, which can be repres-
ented by using (4), as follows:

αdBkm−1 =−10
L

log10

(
PT

P0

)
= 10log10 (e)α= 4.343α.

(5)

The attenuation in optical fiber is caused by several mech-
anisms, including absorption, scattering, and geometric effects
[1]. The material impurity in the silica core fiber causes the
absorption of the light energy. The hydroxyl ion (OH) absorp-
tion is one of the main absorptions in the case of glass fibers
[1]. The OH absorption causes the multiple absorption peaks
in the wavelength range from visible to the infrared band [25].
The main source of the scattering loss in optical fiber is due
to the Rayleigh scattering [25]. During the fabrication of the
optical fiber, the variation of the refractive index is caused by
the microscopic variations of fiber material component dens-
ity, randomly distributed material defects, and inhomogeneous
material structure [25]. The scale of this index variation is
much smaller than the wavelength of interest. The energy scat-
tering when the propagating light interacts with such small
index variation causes the Rayleigh scattering [25]. The sig-
nificance of the Rayleigh scattering in optical fiber is reduced
as the wavelength increases.

The physical bending of the fiber is the main source of
the geometric effect causing the signal power attenuation.
There are two types of bending loss, including macroscopic
and microscopic loss. The macroscopic bending loss is pro-
duced whenever the optical fiber is subjected to a significant
amount of bending beyond a critical value of curvature [1, 2].
The microscopic bending loss is comparatively weaker and is
caused by the strain or stress distributed along the length of
the fiber [1, 2].

Example 2 . A single-mode optical fiber exhibits an atten-
uation of 0.5 dB km−1 and 0.22 dB km−1 at wavelengths
1310 nm and 1550 nm, respectively. Assuming that two optical
signals, one at 1310 nm with an optical power of 120 µW and
the other at 1550 nmwith an optical power of 80 µWare trans-
mitted through the given fiber. Calculate the power levels in
µW of these two signals at transmission distances: (a) 15 km
and (b) 80 km.

Solution. Since the attenuation values are given in dB km−1,
we need to convert the given power levels from µW to dBm,
as follows:
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P [80 µW] = 10log

(
80 µW
1 mW

)
= 10log(0.08)

=−10.97 dBm

P [120 µW] = 10log

(
120 µW
1 mW

)
= 10log(0.12)

=−9.2 dBm.

(a) At 15 km, we have the following power levels:

P1310 [15 km] =−9.2 dBm−
(
0.5 dBkm−1 × 15 km

)
=−16.7 dBkm−1 = 21.34 µW

P1550 [15 km] =−10.97 dBm−
(
0.22 dBkm−1 × 15 km

)
=−14.27 dBkm−1 = 37.41 µW.

(b) At 80 km, we have the following power levels:

P1310 [80 km] =−9.2 dBm−
(
0.5 dBkm−1 × 80 km

)
=−49.2 dBkm−1 = 0.01 µW

P1550 [80 km] =−10.97 dBm−
(
0.22 dBkm−1 × 80 km

)
=−28.57 dBkm−1 = 1.4 µW.

2.2. Chromatic dispersion

In general, the response of a medium to the incident electro-
magnetic wave depends on the optical frequency of ω. This
property of the medium is referred to as the CD [1]. The
CD has two parts: material dispersion and the waveguide dis-
persion [26]. The material dispersion part of CD effect in
optical fiber manifests through the frequency dependence of
the refractive index n(w). In the case of the short optical pulses
used in the optical communication system, the material dis-
persion plays a critical role since the optical pulse consists
of several frequency components. In the presence of material
dispersion, the different spectral components associated with
the pulse travel at different speeds given by c/n(w), where c
is the speed of light. That will induce pulse broadening [1].
In the weakly nonlinear regime, the dispersion-induced pulse
broadening is the dominant impairment and causes severe pen-
alties to the optical communication systems. In the presence of
strong nonlinearity, the interplay between dispersion and non-
linearity is quite complicated, which results in quantitatively
different behaviour for the pulse distortions in the optical fiber
channel [1].

The effect of dispersion can be quantitatively accounted by
expanding the mode-propagation constant β in a Taylor series
about the frequencyw0 at which the pulse spectrum is centered
as [1]:

β(w) = n(w)
w
c
= β0 +β1(w−w0)+

1
2
β2(w−w0)

2 + · · · ,
(6)

where

βm =

(
dmβ
dwm

)∣∣∣∣
w=w0

m= 1,2, . . . ,∞. (7)

From (6), β2 can be represented as:

β2 =
1
c

(
2
dn
dw

+w
d2n
dw2

)
. (8)

In reality, the envelope of the optical pulse moves at the
group velocity, and the parameter β2 causes the dispersion of
the group velocity, which leads to the pulse broadening [1].
This effect is called the group-velocity dispersion (GVD), and
β2 is termed as the GVD parameter [1].

In the optical fiber, a part of the optical signal propag-
ates through the cladding, referred to as the dielectric wave-
guiding, which causes a slight reduction in the effective mode
index n(w) of the core. That results in the waveguide disper-
sion and must be added to the material dispersion [26]. In
general, the contribution of the waveguide dispersion is relat-
ively small when compared to the material dispersion except
near the zero-dispersion wavelength λ0. For standard fibers,
the effect of the waveguide dispersion is to shift λ0 slightly
towards the longer wavelengths, such as λ0 ≈ 1.31 µm. It is
important to mention that the quantity dispersion parameter D
is related to β2 as [26]:

D=−2πc
λ2

β2 ≈
λd2n
cdλ2

. (9)

Example 3 . An optical signal of wavelength 1550 nm is
transmitted trough a single-mode fiber having a GVD of
−25.509× 103 fs2m−1. Calculate the dispersion parameter.

Solution. Using (9),

D=−2πc
λ2

β2

=−
(
2π× 3× 108ms−1

15502 nm2

)
×
(
−25.509× 103 fs2m−1

)
= 20 ps(nm · km)−1.

It is worth mentioning that the waveguide dispersion is
dependent on the fiber design parameters such as the core
radius a, and the core-cladding index difference ∆. The zero-
dispersion wavelength λ0 can be shifted to the vicinity of
1.55 µm by using this feature of the waveguide dispersion. It
is also worthy of mentioning that the fiber loss is minimum at
1.55 µmwavelength range [26]. Such dispersion-shifted fibers
are commonly used in communication systems.

The nonlinearity in optical fiber exhibits a different
response behaviour depending on the sign of the GVD para-
meter. For example, for wavelengths λ < λ0, the fiber exhib-
its normal dispersion regime where β2 > 0. In this regime,
the low-frequency components travel faster than the high-
frequency components of the same optical pulse. The fiber is
said to be in an anomalous dispersion regime when β2 < 0. In
silica-based optical fibers, the anomalous dispersion regime
occurs when the light wavelength exceeds the zero-dispersion
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Figure 1. Classical electron oscillator model. (a) in equilibrium and (b) in the presence of an external field. © 2014 John Wiley & Sons, Ltd
Reprinted, with permission, from [27].

wavelength, i.e. λ > λ0. The anomalous dispersion regime is
of particular interest in optical communication systems since
it supports the existence of solitons through a balance between
the dispersive and nonlinear effects [1].

The CD-induced mismatch in the group velocities of the
optical pulses at different wavelengths causes a different speed
for those pulses in the optical fiber [1]. This feature leads to an
important effect referred to as the walk-off effect [1]. More
specifically, when the fast-moving pulse completely walks
through the slower moving pulse, the nonlinear interaction
between two optical pulses ceases to occur [1]. That is gov-
erned by a walk-off parameter defined as [1]:

d12 = β1(λ1)−β1(λ2) = v−1
g (λ1)− v−1

g (λ2), (10)

where λ1 and λ2 are the centre wavelengths of the two pulses
and vg = 1

β1
is the group velocity and is calculated using (7).

For pulses of width τ , the walk-off length can be defined as
[1]:

Lw =
τ

|d12|
. (11)

3. Nonlinear susceptibility and the Kerr effect in
optical fibers

3.1. Nonlinear susceptibility

For intense electromagnetic fields, the response of the optical
fiber is nonlinear. The origin of the nonlinear response is due to
the anharmonic motion of bound electrons under the influence
of the applied electromagnetic field [27]. The electric field of
the incident light interacts with the electron and makes it oscil-
late in accordance with Coulomb’s law [27]. The oscillating
charge resembles an antenna and radiates the electromagnetic
energy at the same frequency as the incident field with a differ-
ent phase shift. The dynamics of the displaced electron under

the influence of the applied electric field is a fundamental field
of study in quantum mechanics [27].

On the other hand, in the classical electron oscillator model,
the electron is modelled as a charged cloud surrounding the
nucleus, as shown in figure 1(a). Figure 1(b) shows that the
electron charge cloud is displaced when an electric field Ex
is applied [27]. According to Newton’s law, the equation of
motion for the center of the electron charge cloud can be rep-
resented as [27]:

m
d2x
dt2

= Fext = qeEx, (12)

where m is the electron mass, x(t) is the displacement, and
qe is the electron charge. There exists a force of attraction
between the nucleus and the electron charge cloud when the
electron charge cloud moves away for the equilibrium posi-
tion [27]. For a small displacement x(t), the restoration force
can be approximated as [27]:

Frestoration =−Kx, (13)

where K is a constant.
The negative sign in (13) indicates that the restoration force

acts in a direction opposite to the external force [27]. This situ-
ation is similar to the case of a simple pendulum pushed away
from the equilibrium position by an external force [27]. The
restoration force due to the gravitation pulls back the pendu-
lum to the equilibrium position. The net force acting on the
electron can be represented as [27]:

Fnet = Fext +Frestoration = qeEx−Kx. (14)

Next, by combining (12) and (14), we obtain [27]:

m
d2x
dt2

= Fnet = qeEx−Kx (15)
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or

d2x
dt2

+w2
0x=

(qe
m

)
Ex, (16)

where w0 =
√
K/m is the natural frequency of oscillation.

Assume that the applied electric field is of the form as given
below [27]:

Ex = E0 exp(−jwt) . (17)

The displacement x(t) due to the applied field also change har-
monically in the steady state and try a trial solution as [27]:

x(t) = Bexp(−jwt) . (18)

Substituting (17) and (18) in (16), we get [27]:

B=
E0qe

m(w2
0 −w2)

, (19)

and

x(t) =
qe

m(w2
0 −w2)

Ex. (20)

The dipole moment of an atom is given as [27]:

px = qex(t) =
q2e

m(w2
0 −w2)

Ex. (21)

In general [27]:

p=
q2e

m(w2
0 −w2)

E. (22)

If we define P= Np as the dielectric polarization, (22) can be
written as [27]:

P=
Nq2e

m(w2
0 −w2)

E (23)

where N is the number of atoms per unit volume.
For the weak incident electromagnetic field, we can relate

the dielectric polarization P to the electric field intensity E as
[27]:

P= ε0χ
(1)E, (24)

where ε0 is the electric permittivity of free space and ε0χ(1) is
the first-order susceptibility or linear susceptibility [27], and:

χ(1) =
Nq2e

m(w2
0 −w2)ε0

. (25)

It is important to mention that if the medium is not isotropic,
the susceptibility depends on direction as well and (24) is mod-
ified as [27]:

Pj = χ
(1)
jx Ex+χ

(1)
jy Ey+χ

(1)
jz Ez, j= x,y,z (26)

or

P= ε0χ
(1).E, (27)

where χ(1) is a 3× 3 matrix and · denotes dot product.
If the incident electromagnetic field is intense, the relation

between the restoration force and the displacement is nonlin-
ear, and thereby, the electron cloud oscillation is not harmonic
[27]. In this case, the relation between the dielectric polariz-
ation P and the electric dipoles are nonlinear, which can be
generalized as [27]:

P= ε0

(
χ(1)·E+χ(2) : EE+χ(3)...EEE+ . . .

)
, (28)

where χ( j) ( j= 1,2, . . .) is the jth order susceptibility. χ( j) is
also a tensor of rank j+ 1. χ(1) is the first-order susceptibil-
ity and is related to the linear refractive index. The second-
order susceptibility χ(2) generates the second-harmonic and
the sum-frequency terms [27]. However, since SiO2 is a sym-
metric molecule, χ(2) vanishes for the silica glasses [27]. As a
result, the optical fibers do not exhibit the χ(2)-induced non-
linear effects [27].

3.2. The Kerr effect

The nonlinearity effects in optical fiber originate from the
third-order susceptibility χ(3). One of the primary sources of
the nonlinearity effect in optical fiber is the χ(3)-induced non-
linear refraction, theKerr effect, a phenomenon referring to the
light intensity-dependent refractive index [27]. Assume that
the electromagnetic field incident on the optical fiber core has
only Ex and Hy components. Then, the tensor equation in (28)
can be simplified for a centrally symmetric dielectric material
as [27]:

Px = ε0χ
(1)
xx Ex+ ε0χ

(3)
xxxxE

3
x , (29)

whereχ(3)
xxxx is a component of the fourth-rank tensorχ(3). Sup-

pose, the incident optical field is a monochromatic wave given
as:

Ex = E0 exp(−jwt) . (30)

To find E3
x , we should first find the real part of Ex, i.e.

Re[Ex] =
1
2
[E0 exp(−jwt)+E∗

0 exp( jwt)] , (31)

{Re[Ex]}3 =
1
8

{
E3
0 exp(−j3wt)+E∗3

0 exp( j3wt)

+ 3 |E0|2 [E0 exp(−jwt)+E∗
0 exp( jwt)]

}
.

(32)

In the absence of the special phase-matching techniques, the
third harmonic terms in (32) can be neglected [27].

Let the polarization at frequency w be:

Px = P0 exp(−jwt) , (33)
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Then,

Re[Px] =
1
2
[P0 exp(−jwt)+P∗

0 exp( jwt)] . (34)

From (29), we have:

Re[Px] = ε0χ
(1)
xx Re[Ex] + ε0χ

(3)
xxxxRe[Ex]

3, (35)

where the imaginary parts of the susceptibility are ignored.
Substituting (31) and (32) into (35), collecting the terms that
are proportional to exp(−jwt), and comparing it with (34), we
obtain:

P0 = ε0

(
χ(1)
xx +

3 |E0|2

4
χ(3)
xxxx

)
E0 = ε0χeffE0, (36)

where χeff is the effective susceptibility that includes both lin-
ear and nonlinear susceptibilities [27].

We can represent the electric field density D as [27]:

D= ε0E0 +P0. (37)

Substituting (36) in (37), we can write:

D= ε0

[
1+χ(1)

xx +
3 |E0|2

4
χ(3)
xxxx

]
E0. (38)

In general, we can represent the electric flux density as [27]:

D= ε0εrE0, (39)

where εr is the relative permittivity. From (38) and (39), we
can represent εr as:

εr = 1+χ(1)
xx +

3 |E0|2

4
χ(3)
xxxx. (40)

Since the relative permittivity εr and refractive index n are
related by n2 = εr, we can write:

n2 = 1+χ(1)
xx +

3 |E0|2

4
χ(3)
xxxx

= n20 +
3 |E0|2

4
χ(3)
xxxx, (41)

where n0 is the linear refractive index and the second term
of (41) represents the nonlinear contribution to the refractive
index.

From (41), we can represent:

n= n0

(
1+

3 |E0|2

4n20
χ(3)
xxxx

)1/2

∼= n0 + n2 |E0|2 , (42)

where

n2 =
3χ(3)

xxxx

8n0
. (43)

In (43), the term n2 is called the Kerr coefficient [27]. For
silica based fiber, the typical value of n2 varies between 1.2×
10−20 m2W−1 and 3.2× 10−20 m2W−1 [27]. From (42), it is
clear that the nonlinear part of the refractive index n is propor-
tional to the optical intensity |E0|2. This effect is termed as the
Kerr effect [27].

4. Pulse propagation in optical fibers

The wave propagation in dispersive nonlinear media is gov-
erned by the fundamental theory of electromagnetic wave
propagation underpinned by the Maxwell’s equations [1].
Using Maxwell’s equations, one can easily show that:

∇×∇×E=− 1
c2

∂2E
∂t2

−µ0
∂2P
∂t2

, (44)

where µ0 is the permeability of the free space.
For the Kerr effect-based nonlinearity in optical fiber, the

induced dielectric polarization P(r, t) consists of two parts
such as [1]:

P(r, t) = PL(r, t)+PNL(r, t), (45)

where PL and PNL are the linear and nonlinear parts which are
given as:

PL(r, t) = ε0

∞̂

−∞

χ(1)(t− t ′).E(r, t ′) dt ′, (46)

and

PNL(r, t) = ε0

∞̂

−∞

∞̂

−∞

∞̂

−∞

χ(3)(t− t1, t− t2, t− t3)
...E(r, t1)

×E(r, t2)E(r, t3) dt1dt2dt3. (47)

4.1. Nonlinear Schrödinger equation

From (44) and (45), we can represent the wave equation as:

∇2E− 1
c2

∂2E
∂t2

= µ0
∂2PL

∂t2
+µ0

∂2PNL

∂t2
, (48)

where PL and PNL are given by (46) and (47), respectively. To
solve the wave equation in (48), we adopt several simplifying
assumptions including [1]:

(a) The nonlinear part of the dielectric polarization PNL is
treated as a small perturbation to the linear part PL;

(b) A scalar approach is adopted, i.e. the optical field is
assumed to maintain the polarization along the length of
the fiber; and

(c) A quasi-monochromatic assumption for the optical field.

By adopting the slowly varying envelop approximation, we
can represent the electric field E(r, t) as [1]:

E(r, t) =
1
2
x̂ [E0(r, t)exp(−jw0t)+E∗

0(r, t)exp( jw0t)] ,

(49)
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where x̂ is the polarization unit vector and w0 is the center fre-
quency of the optical pulse spectrum. The dielectric polariza-
tion components PL and PNL can also be expressed in similar
form as [1]:

PL(r, t) =
1
2
x̂ [PL(r, t)exp(−jw0t)+P∗

L(r, t)exp( jw0t)] ,

(50)

and

PNL(r, t) =
1
2
x̂ [PNL(r, t)exp(−jw0t)+P∗

NL(r, t)exp( jw0t)] .

(51)

The linear component PL can be calculated by substituting
(50) in (46) as [1]:

PL(r, t) = ε0

∞̂

−∞

χ(1)
xx (t− t ′)E0(r, t ′)exp( jw0(t− t ′)) dt ′

=
ε0
2π

∞̂

−∞

χ̃(1)
xx (w)Ẽ0(r,w−w0)exp(−j(w−w0)t) dw,

(52)

where Ẽ0(r,w) is the Fourier transform of E0(r,w).
The nonlinear component PNL is obtained by substituting

(51) in (47) and after some simplifications we obtain:

PNL(r, t) = ε0χ
(3)...E(r, t)E(r, t)E(r, t). (53)

When (49) is substituted in (53) and following the analysis
given in section 3.1, we can approximate PNL as [1]:

PNL(r, t)≈ ε0εNLE0(r, t), (54)

where

εNL =
3χ(3)

xxxx

4
|E0(r, t)|2 . (55)

For simplicity, we adopt a frequency-domain analysis to
derive the wave equation for the slowly varying amplitude
E0(r, t). Substituting (49)–(51) in (48), the Fourier transform
Ẽ0(r,w−w0) can be defined as:

Ẽ0(r,w−w0) =

∞̂

−∞

E0(r, t)exp( j(w−w0)t) dt, (56)

which is found to satisfy the Helmholtz equation as given
below [1]:

∇2Ẽ+ ε(w)k20Ẽ= 0, (57)

where k0 = w
c and

ε(w) = 1+ χ̃(1)
xx (w)+ εNL. (58)

Equation (57) can be solved using the method of separation of
variables. Assuming the solution of the form:

Ẽ0(r,w−w0) = F(x,y)Q(z,w−w0)exp( jβ0z) , (59)

where Q(z,w) is a slowly varying function of z and β0 is
the wave number. From (57), we can write two equations for
F(x,y) and Q(z,w) as:

∂2F
∂x2

+
∂2F
∂y2

+
[
ε(w)k20 − β̃2

]
F= 0, (60)

and

2jβ0
∂Q
∂z

+
(
β̃2 −β2

0

)
Q= 0. (61)

The dielectric constant ε(w) can be approximated as:

ε= (n0 +∆n)2 ≈ n20 + 2n0∆n, (62)

where ∆n is a small perturbation given by:

∆n= n2 |E0|2 +
jα̃
2k0

, (63)

where α̃ is the absorption coefficient.
The first-order perturbation theory can be used to solve

(60). After solving using the first-order perturbation theory,
the value of β̃ can be represented as [1]:

β̃(w) = β(w)+∆β, (64)

where

∆β =
k0
´∞
−∞
´∞
−∞∆n |F(x,y)|2 dxdy´∞

−∞
´∞
−∞ |F(x,y)|2 dxdy

. (65)

Similarly, the electric field E(r, t) can be written as [1]:

E(r, t) =
1
2
x̂ [F(x,y)q(z, t)exp( j(β0z−w0t))

+F∗(x,y)q∗(z, t)exp(−j(β0z−w0t))] , (66)

where q(z, t) is the slowly varying pulse envelop [1].
The Fourier transform Q(z,w−w0) of q(z, t) satisfies (61),

which can be represented as [1]:

∂Q
∂z

= j [β(w)+∆β−β0]Q. (67)

The propagation equation for q(z, t) is obtained by taking the
inverse Fourier transform of (67). In (67), the exact functional
form of the mode-propagation constant β(w) is rarely known
and therefore, it is useful to expand β(w) in Taylor series as in
(6) [1]. Because of the quasi-monochromatic assumption for
the optical field, the cubic and higher-order terms in (6) can be
neglected [1]. Next, substitute (6) in (67) and take the inverse
Fourier transform, we obtain:

∂

∂z
q(z, t) =−jβ2

2
∂2

∂t2
q(z, t)+ j∆βq(z, t). (68)

8
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The term ∆β in (68) includes the effect of loss and the non-
linearity [1]. Next, evaluate ∆β using (63) and (65), and sub-
stitute in (68), we obtain the nonlinear Schrödinger equation
(NLSE) as:

∂

∂z
q(z, t)+

α

2
q(z, t)+ j

β2

2
∂2

∂t2
q(z, t) = jγ |q(z, t)|2 q(z, t),

(69)

where z is the propagation distance, β2 is the GVD parameter,
α is the signal attenuation parameter, and γ is the nonlinearity
coefficient given as [1]:

γ =
n2w0

cAeff
, (70)

where Aeff is the effective area of the fiber and is given as:

Aeff =

(´∞
−∞
´∞
−∞ |F(x,y)|2 dxdy

)2
´∞
−∞
´∞
−∞ |F(x,y)|4 dxdy

. (71)

Using (70), one can calculate the peak nonlinear phase shift
accumulated over the link as:

φNL = γLeffP0, (72)

where P0 is the peak power and Leff =
1−exp(−αL)

α , with L as
the fiber span length.

Example 4 . For a given single-mode fiber with Kerr
coefficient n2 = 2.6× 10−20m2W−1 and the effective area
Aeff = 80µm2, calculate the nonlinearity coefficient γ at a
wavelength of 1550 nm.

Solution.

γ =
n2w0

cAeff
=
n22πf0
cAeff

=
2πn2
λ0Aeff

=
2π× 2.6× 10−20m2W−1

1550 nm× 80µm2

= 1.32× 10−3W−1m−1.

The evaluation of Aeff requires the use of modal distribu-
tion F(x,y) for the fundamental fiber mode [1]. It is worth
mentioning that the typical value of Aeff varies in the range
20− 100 µm2 in the 1550 nm region depending on the fiber
design [1]. As a result, the nonlinearity coefficient γ takes val-
ues in the range 1−10 W−1 km−1 if n2 ≈ 2.6× 10−20 m2W−1

[1].
The NLSE in (69) can be simplified by applying the

transformation q(z, t)≜ u(z, t)exp(−α
2 z), where u(z, t) is the

normalized field, and the simplified form can be written as [1]:

∂

∂z
u(z, t)+ j

β2

2
∂2

∂t2
u(z, t) = jγ |u(z, t)|2 u(z, t)exp(−αz).

(73)

Example 5 . The long-haul optical fiber transmission sys-
tem has following parameters: attenuation coefficient α=
0.2 dBkm−1, fiber span length L= 80 km, Kerr coefficient

n2 = 2.6× 10−20m2W−1, wavelength λ0 = 1550 nm, and the
peak power P0 = 2 dBm. For a transmission distance of
1200 km, calculate lower limit on the effective area Aeff of the
fiber in which the peak nonlinear phase shift φNL accumulated
over the link should be less than 0.5 rad. Ignore β2.

Solution. The first step is to convert α from dB km−1 to 1/km
as follows:

α1/km = αdBkm−1

(
ln(10)
10

)
= 0.2 dBkm−1 × 0.23

= 0.046 1/km

Leff =
1− exp(−αL)

α

=
1− exp(−0.046 1/km× 80 km)

0.046 1/km

= 21.2 km.

The number of fiber spans is given by:

1200 km
80 km

= 15.

The total nonlinear phase shift = 15φNL.

P0 = 102 dBm/10mW= 1.58 mW.

As per the requirement 15φNL < 0.5.

15φNL < 0.5

15× γ× 21.2× 103 × 1.58× 10−3 < 0.5

γ < 1× 10−3W−1m−1

γ =
2πn2
λ0Aeff

< 1× 10−3W−1m−1

Aeff >
2π× 2.6× 10−20m2W−1

1550 nm× 1× 10−3W−1m−1

Aeff > 105.34µm2.

Therefore, the effective area Aeff should be higher than
105.34µm2 to have the peak nonlinear phase shift φNL less
than or equal to 0.5 rad.

4.2. Manakov equation

For dual-polarization transmission systems, the coupledNLSE
(CNLSE) provides an accurate model for the nonlinear pulse
propagation in optical fiber [1]. It includes the polarization
mode dispersion (PMD) effects in the fiber along with the dis-
persive and nonlinearity effects. In general, similar to NLSE,
the CNLSE also needs to be solved numerically [1]. However,
the different length scales associated with PMD, GVD, and
nonlinearity effects make the numerical evaluation cumber-
some. The dispersive and nonlinearity effects vary on a length
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scale from 10 to 100 km, while the birefringence in optical
fiber varies on a length scale of 10–100 m [1]. Therefore, the
step size used in the numerical evaluation of CNLSE must
be less than 1 m [1]. That increases the computation time.
Based on this fact, we adopt an approximation method to solve
the CNLSE. It is observed that the birefringence fluctuation
changes the state of polarization (SOP) of the optical field
on a short length scale that the field covers the entire Poin-
caré sphere after a few kilometers [1]. As a result, the non-
linearity terms in CNLSE can be averaged over the birefrin-
gence fluctuations [1]. The resultant propagation equation is
referred to as the Manakov equation and can be represented
as:

∂

∂z
u(z, t)+ j

β2

2
∂2

∂t2
u(z, t) = j

8
9
γ |u(z, t)|2u(z, t)exp(−αz) ,

(74)

where u(z, t) = [ux(z, t) uy(z, t)]
† and the superscript † repres-

ents the transpose [1]. It is clear from (74) that the rapid ran-
dom variations in the SOP of the optical field reduce the effect
of the nonlinearity parameter γ by a factor of 8

9 .
For WDM systems, the optical field u(z, t) in (74) consists

of the sum of all the multiplexed channels, which can be rep-
resented as:

u(z, t) =
∑
n ′

un(z, t)exp( jwnt) . (75)

The Manakov equation for the WDM system consists of
both intra- and inter-channel nonlinearity effects such as
SPM, XPM, and FWM [1]. By substituting (75) in (74), we
can represent the propagation equation for the ith channel
as:

∂

∂z
ux/y,i = uCDx/y,i+ uSPMx/y,i+ uXPMx/y,m ̸=i+ uFWM

x/y,k ̸=l,m,l̸=i,m ̸=i, (76)

where x and y in this context represent the horizontal and
vertical polarizations, respectively, ux/y represents the optical
field transmitted on x/y polarization tributaries, m, l, and k
denote the symbol indices. It is important to note that in (76),
the evolution of the optical field envelop of the ith channel
along the optical fiber link consists of the CD part arising from
the pulse dispersion, the SPM part generating from the nonlin-
ear interaction of the ith channel to itself, XPM term inducing
from the nonlinear interaction of the ith channel with one other
co-propagating channel, and the FWM term originating from
the nonlinear interaction of the ith channel with two or more
co-propagating channels.

In (76), the definitions uCDx/y,i, uSPMx/y,i, uXPMx/y,m̸=i, and

uFWM
x/y,k̸=l,m,l ̸=i,m̸=i can be represented as:

uCDx/y,i =−jβ2

2
∂2

∂t2
ux/y,i, (77)

uSPMx/y,i = j
8
9
γ exp(−αz)

(∣∣ux/y,i∣∣2 + ∣∣uy/x,i∣∣2)ux/y,i, (78)

uXPMx/y,m̸=i = j
8
9
γ exp(−αz)


∑
m ̸=i

(
2
∣∣ux/y,m∣∣2 + ∣∣uy/x,m∣∣2)ux/y,i︸ ︷︷ ︸

Coherent XPM

+
∑
m̸=i

(
u∗y/x,mux/y,m

)
uy/x,i︸ ︷︷ ︸

Incoherent XPM


(79)

uFWM
x/y,k̸=l,m,l̸=i,m ̸=i = j

8
9
γ exp(−αz)

∑
p ′,q ′,r ′

×
∑
k ̸=l,m

∑
l̸=i

∑
m ̸=i

u∗p ′,kuq ′,lur ′,m, (80)

where p ′,q ′, andr ′ takes the x and y polarization tributaries.
For simplicity, the space and time variables z, t are not shown
in equations (77)–(80).

5. Mathematical tools for solving the propagation
equation

5.1. Numerical approximation method

The analytical solution of NLSE in (73) is not available other
than for some exceptional cases [1]. Numerical approxima-
tions are typically used to solve the propagation equation in
(73). The most commonly used numerical method to solve the
pulse propagation problem in nonlinear and dispersive media
is the split-step Fourier method (SSFM) [1].

5.1.1. The split-step Fourier method. By separating the lin-
ear and nonlinear parts, the NLSE in (73) can be written as [1]:

∂

∂z
u(z, t) =

(
D̂+ N̂

)
u(z, t) (81)

D̂=−jβ2

2
∂2

∂t2
(82)

N̂= jγ |u(z, t)|2 exp(−αz), (83)

where D̂ and N̂ represent the linear and nonlinear operators,
respectively [1].

The SSFM is an iterative signal propagation modelling
method in which the optical fiber span is divided into small
segments, each having a length of h. More specifically, the sig-
nal propagation from z to z+ h is carried out in two separate
steps [1]. First, the linear operator D̂ is set to zero, and only
the nonlinearity is taken into account. Second, the nonlinear
operator N̂ is set to zero, and only the dispersion is taken into
account.

10



J. Opt. 23 (2021) 123502 Tutorial

Mathematically:

u(z+ h, t)≈ exp
(
hD̂
)
exp
(
hN̂
)
u(z, t). (84)

In (84), the step size h is selected in such a way that the linear
and the nonlinear sections in each fiber segment can be mod-
elled as independent operations [1].

Example 6 . Show that the SSFM in (84) is accurate to the
second-order in h.

Solution.We can start with the Baker–Hausdorff formula [28]
for two non-commutating operators µA and µB as:

exp(µA)exp(µB) = exp

(
µA+µB+

µ2

2
[A,B]

+
µ3

12
[A−B, [A,B]] + · · ·

)
, (85)

where [A,B] = AB−BA. By substituting µ= h, A= D̂, and
B= N̂ in (85), we can write:

exp
(
hD̂
)
exp
(
hN̂
)
= exp

(
hD̂+ hN̂+

h2

2

[
D̂, N̂

]
+
h3

12

[
D̂− N̂,

[
D̂, N̂

]]
+ · · ·

)
. (86)

By substituting (86) in (84), we get:

u(z+ h, t)≈ exp

(
hD̂+ hN̂+

h2

2

[
D̂, N̂

]
+
h3

12

[
D̂− N̂,

[
D̂, N̂

]]
+ · · ·

)
expu(z, t). (87)

By examining (87), we understand that the dominant error

term is the commutator term h2

2

[
D̂, N̂

]
. From this, we can con-

firm that the SSFM in (84) is accurate to the second-order in
h.The accuracy of the SSFM can be improved by writing the
symmetric form of exponential operators in (84). This method
is referred to as symmetric SSFM. The symmetric SSFM can
be represented as follows [1]:

u(z+ h, t)≈ exp

(
h
2
D̂

)
exp

 z+hˆ

z

N̂(z ′)dz ′


× exp

(
h
2
D̂

)
u(z, t). (88)

In this method, the nonlinearity is included in the middle of the
fiber segment rather than at the segment boundaries, as shown
in figure 2. It is important to mention that for small values of

step size h, the term exp
(´ z+h

z N̂(z ′)dz ′
)
can be approximated

as exp
(
hN̂
)
[1].

Figure 2. Schematic illustration of the symmetric SSFM.

Example 7 . Show that the symmetric SSFM in (88) is accur-
ate to the third-order in h.

Solution. Using the Baker–Hausdorff formula in [28], we can
write:

exp
(µ
2
A
)
exp(µB)exp

(µ
2
A
)
=

(
exp

(µ
2
A
)
exp(µB)

)
exp

(µ
2
A
)

= exp

(
µ

2
A+µB+

µ2

4
[A,B]

+
µ3

24

[
A
2
−B, [A,B]

]
+ · · ·

)
× exp

(µ
2
A
)
. (89)

By the substitutionC= A
2 +B+ µ

4 [A,B] +
µ2

24

[
A
2 −B, [A,B]

]
+

· · · , (89) can be rewritten as:

exp
(
µ

2
A
)
exp(µB)exp

(
µ

2
A
)
= exp(µC)exp

(
µ

2
A
)

= exp

(
µC+

µ

2
A+

µ2

4
[C,A]

+
µ3

24

[
C− A

2
, [C,A]

]
+ · · ·

)
.

(90)

Considering the part of (90) corresponds to the term µ2 and
substituting the expression for C, we obtain:

µ2

4
[C,A] =

µ2

4

[(
A
2
+B+

µ

4
[A,B]

+
µ2

24

[
A
2
−B, [A,B]

]
+ · · ·

)
,A

]
. (91)

By expanding (91) following the substitution of µ= h, A= D̂,
B= N̂ and considering only the dominant error term by ignor-
ing all other terms (note that this assumption is only to isol-
ate the dominant error term for the mathematical simplicity

of explanation), we obtain the term h3

16

[
D̂,
[
D̂, N̂

]]
. From this,

we can conclude that the symmetric SSFM is accurate to the
third-order in h, especially for small values of h.

The symmetric SSFM in (88) has some important advant-
ages over the SSFM implementation in (84), including:

11
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(a) The integral in the nonlinear section (i.e. the middle expo-
nential) is useful to incorporate the z dependence of N̂,
especially for large step size h. Also, it can be approxim-

ated as exp
(
hN̂
)
for small values of h.

(b) The symmetric SSFM is accurate to the third-order in the
step size h compared to the SSFM in (84), which is accur-
ate only to the second-order in h. This fact is evident from
examples 6 and 7.

The implementation of the symmetric SSFM is relatively
straightforward [1]. The fiber span is divided into a large num-
ber of segments of size h. The optical signal is propagated from
segment to segment as formulated in (88). More specifically,
the optical field envelop u(z, t) is first propagated for a dis-
tance h/2 with only dispersion effect. At the midplane, the
optical field is multiplied by the nonlinear term that repres-
ents the nonlinearity effect for the whole segment of length h.
Finally, the optical field is propagated the remaining distance
of length h/2 with only dispersion effect to obtain the optical
field u(z+ h, t) [1].

5.2. Analytical approximation methods

The SSFM-based numerical solution of the NLSE provides an
accurate model for the linear and nonlinear signal propagation
in the optical fiber; however, its computational complexity is
impractically high [1]. This drawback of the SSFM motivates
the research community to search for approximation methods
to solve the NLSE analytically. The most commonly used ana-
lytical approximations used for the solution of NLSE are the
Volterra series-based and the regular perturbation (RP) series-
based methods.

5.2.1. Volterra series-based method. The Volterra series-
based analysis is a well-established tool used in the non-
linear systems theory and extensively used to solve non-
linear problems in the field of communications engineering
[29–35]. The seminal work of Peddanarappagari and Brandt-
Pearce in [34] to analytically approximate the solution of
NLSE opens the door of further research interests in the
approximate solutions of the fiber propagation equation. These
research efforts initiate the adaptation of known commu-
nication theory results, such as the equalization techniques
for nonlinear channels, for use in the nonlinear optical fiber
channels [32].

The Volterra series-based approach can be used to approx-
imate the solution of NLSE analytically. In this approach,
the relation between the input and the output of the optical
fiber can be represented as a series of transfer func-
tion kernels, referred to as Volterra series transfer func-
tions (VSTFs) [29–35]. The VSTF provides the relation-
ship between the Fourier transforms of the input to the
fiber X(w) and the output at the end of the fiber link Y(w),
as [29–35]:

Y(w) = H1(w)X(w)+
∞∑
n=2

ˆ
· · ·
ˆ
Hn(w1, . . . ,wn−1,w)

×X(w1) · · ·X(wn−1)X(w−w1 − ·· ·−wn−1)

× dw1 · · ·dwn−1, (92)

whereHn(w1, . . . ,wn−1,w) is the nth order VSTF kernel in the
frequency-domain. Due to the symmetries in the silica-based
optical fiber, the even-ordered Volterra kernels are zero. The
Volterra series is similar to the Taylor series; however, the
former captures the memory effect of the nonlinear system,
and the latter does not. The VSTF in (92) includes the memory
effects caused by the fiber CD and the CD-nonlinearity inter-
play. More specifically, the VSTF kernel labeled H1 rep-
resents the linear or CD-only response of the fiber chan-
nel, and the higher-order kernel terms H2,3,...,n defines the
higher-order nonlinear transfer functions, including the CD-
nonlinearity interplay. It is important to mention that the
VSTF kernels up to third-order provide an acceptable level of
accuracy for the typical values of peak launch power and the
transmission distance used in the optical fiber communication
systems.

For a PDM transmission system, the VSTF kernels up to
third-order can be represented as [29–35]:

Ux(z,w) = H1(z,w)Ux(w)+

∞̂

−∞

∞̂

−∞

H3(z,w1,w2,w)

×
[
Ux(w1)U

∗
x (w2)+Uy(w1)U

∗
y (w2)

]
×Ux(w−w1 +w2)dw1dw2, (93)

where Ux/y(w)≜ Ux/y(z= 0,w) represents the Fourier trans-
form of the field envelop ux/y(z, t) and VSTF kernels can be
given as:

H1(z,w) = exp

(
−α

2
− jw2β2

2

)
z, (94)

H3(z,w1,w2,w) = j
8
9

γ

4π2H1(z,w)

× 1− exp(−(α+ jβ2(w−w1)(w1 −w2))z)
α+ jβ2(w−w1)(w1 −w2)

.

(95)

Substituting (94) and (95) in (93) and detachingH1(z,w) from
H3(z,w1,w2,w), we can modify (93) as [29–35]:

Ux(z,w) = H1(z,w)Ux(w)+H1(z,w)

∞̂

−∞

∞̂

−∞

K3(z,w1,w2,w)

×
[
Ux(w1)U

∗
x (w2)+Uy(w1)U

∗
y (w2)

]
×Ux(w−w1 +w2)dw1dw2, (96)
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where K3 is defined as:

K3(z,w1,w2,w) = j
8
9

γ

4π2

× 1− exp(−(α+ jβ2(w−w1)(w1 −w2))z)
α+ jβ2(w−w1)(w1 −w2)

.

(97)

It is understood from (96) that the pulse propagation in
SSMF is modelled by the combination of a linear kernel and a
third-order nonlinear kernel. The linear kernel H1(z,w) mod-
els the dispersion and attenuation effect in the optical fiber;
whereas, the third-order nonlinear kernel H3(z,w1,w2,w)
models the beating of various frequency components present
in the input signal. It is important to mention that, for long-
haul links, the complexity of the Volterra series-based method
increases corresponding to the increase in the number of spans
[29–35].

5.2.2. Perturbation theory-based method. The RP theory-
based approach has been proposed to analytically approxim-
ate the solution of NLSE with a reduced complexity when
compared to the Volterra series-based approach. The RP-based
solution provides a detailed insight into the complex interac-
tion between the Kerr nonlinearity and the accumulated CD
in the optical fiber. In this method, the signal field u(z, t) is
expanded in a power series of γ as u(z, t) =

∑∞
k ′=0 γ

k ′uk ′(z, t),
where k

′
is the order of the solution. Then, substituting u(z, t)

in (73), we get [36]:

∞∑
k ′=0

γk
′ ∂

∂z
uk ′(z, t) =−

∞∑
k ′=0

γk
′
j
β2
2

∂2

∂t2
uk ′(z, t)

+ jγ
∞∑
m=0

∞∑
l=0

∞∑
n=0

γm+l+n× um(z, t)u
∗
l (z, t)

× un(z, t)exp(−αz), (98)

where γ represents the nonlinearity coefficient,m, n, l indicate
the symbol indices, α denotes the attenuation coefficient, and
z stands for the transmission distance. We obtain a set of linear
differential equations by equating the terms in (98) that have
equal powers of γ on both sides of the equal sign. Accordingly,
the differential equation for the k

′
th order solution is given as

[36]:

∂

∂z
uk ′(z, t) =−jβ2

2
∂2

∂t2
uk ′(z, t)

+ j
∑ ∑

m+l+n=k ′−1

∑
um(z, t)u

∗
l (z, t)un(z, t)

× exp(−αz). (99)

5.2.3. Zeroth-order (or linear) solution. By substituting
k ′ = 0 in (99), the differential equation for the zeroth-order
(or linear) solution can be written as [37, 38]:

∂

∂z
u0(z, t) =−jβ2

2
∂2

∂t2
u0(z, t). (100)

By solving (100), the zeroth-order solution at z=L can be
written as [37, 38]:

u0(L, t) = u(0, t)⊗ hL(t), (101)

where ⊗ represents the convolution, hL(t) = F−1{exp
(−jw

2β2L
2 )}= 1√

−2πjβ2z
exp
(

−jt2

2β2z

)
with w as the angular fre-

quency and F−1{.} as the inverse Fourier transform function.

5.2.4. First-order solution. The differential equation for the
first-order solution is obtained by substituting k ′ = 1 in (99)
and can be represented as [37, 38]:

∂

∂z
u1(z, t) =−jβ2

2
∂2

∂t2
u1(z, t)+ j |u0(z, t)|2 u0(z, t)exp(−αz).

(102)

The first-order distortion field at a transmission distance z=L
is obtained by solving (102) and assuming an ideal dispersion
compensation at z=L, we get [37, 38]:

u1(L, t) = jγ

Lˆ

0

(
hz(t) ⊗[|u0(z, t)|2 u0(z, t)]

)
exp(−αz)dz.

(103)

The frequency-domain distortion field at z=L is obtained by
taking the Fourier transform of (103) and the result is given as
[37, 38]:

U1(L,w) = jγ

Lˆ

0

F(z,w)exp(−jw
2β2z
2

)exp(−αz)dz, (104)

where F(z,w) is written as [37, 38]:

F(z,w) =

∞̂

−∞

|u0(z, t)|2 u0(z, t)exp(−jwt) dt. (105)

The signal input to the optical fiber can be represented as
[37, 38]:

u(z= 0, t) =
√
P0

∑
akg(z= 0, t− kT), (106)

where P0 is the peak launch power, ak is the data symbol of
the kth pulse, g(z, t) is the pulse temporal waveform at trans-
mission distance z, and T is the symbol duration. Therefore,
the product |u0(z, t)|2 u0(z, t) in (105) can be represented as
[37, 38]:

|u0(z, t)|2 u0(z, t) = P3/2
0

∑
m

∑
l

∑
n

amg(z, t−mT)a∗l

× g∗(z, t− lT)ang(z, t− nT)

= P3/2
0

∑
m

∑
l

∑
n

amg(z)a
∗
l g

∗(z)ang(z).

(107)
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Substituting (107) in (105), we obtain [36]:

F(z,w) = P3/2
0

∞̂

−∞

(∑
m

∑
l

∑
n

amg(z)a
∗
l g

∗(z)ang(z)

)
× exp(−jwt) dt

= P3/2
0

∑
m

∑
l

∑
n

ama
∗
l an(Gm(z,w)⊗G∗

l (z,−w)

⊗Gn(z,w))

= P3/2
0

∑
m

∑
l

∑
n

ama
∗
l an exp

(
j
w2β2z
2

)
× exp(−jw(Tm−Tl+Tn))

×
ˆ ˆ

G(0,w1 +w)G∗(0,w1 +w−w2)

×G(0,w−w2)exp( jβ2zw1w2)

× exp(−j(w1(Tm−Tl)+w2(Tl−Tn))) dw1dw2,
(108)

where G(z,w) = G(0,w)exp
(
jw

2β2z
2

)
with G(0,w) is the

Fourier transform of g(0, t).
Substituting (108) in (104), we get first-order perturbation

kernel term in frequency-domain as [37, 38]:

U1(L,w) = jγP3/2
0

∑
m

∑
l

∑
n

ama
∗
l an exp(−jw(Tm− Tl+ Tn))

×
Lˆ

0

exp(−αz)

(ˆ ˆ
G(0,w1 +w)G∗

× (0,w1 +w−w2)G(0,w−w2)

× exp(−j(w1(Tm−Tl)+w2(Tl−Tn)))

×exp( jw1w2β2z) dw1dw2

)
dz. (109)

Next, by taking the inverse Fourier transform of (109), the
time-domain first-order kernel term can be represented as
[37, 38]:

u1(L,(t+ Tm− Tl+ Tn))

= jγP3/2
0

∑
m

∑
l

∑
n

ama
∗
l an

Lˆ

0

exp(−αz)

×
(ˆ ˆ ˆ

G(0,w1 +w)G∗(0,w1 +w−w2)

×G(0,w−w2)exp(−j(w1(Tm− Tl)+w2(Tl− Tn)))

×exp( jw1w2β2z)exp( jwt) dw1dw2dw

)
dz. (110)

For Gaussian pulse shape assumption, i.e. G(0,w) =√
2πτ 2 exp(−w2τ 2

2 ), with τ as the pulse width, the triplet
product in (110) can be calculated as [37, 38]:

G(0,w1 +w)G∗(0,w1 +w−w2)G(0,w−w2)

=
(√

2πτ 2
)3

exp

(
−3τ 2w2

2

)
× exp(−τ 2[w2

1 +w2
2 + 2(w1 −w2)w−w1w2]). (111)

It is important to mention that with the Gaussian shape
assumption for the input pulse shape, the first-order nonlinear-
ity coefficients can be calculated using analytic expressions,
which involve the exponential integral function [39]. This will
explain in detail in section 7.3.

Substituting (111) in (110) and integrating w.r.t w, we get
[37, 38]:

u1(L,(t+ Tm− Tl+ Tn)) = jγP3/2
0

2πτ 2

√
3

exp

(
− t2

6τ 2

)
×

∑
m

∑
l

∑
n

ama
∗
l an

×
Lˆ

0

ˆ ˆ
exp(−αz)

× exp

(
−1
3
τ 2(w2

1 +w2
2 +w1w2)

)
× exp

(
−j

(
2
3
(w1 −w2)t+w1(Tm− Tl)

+w2(Tl− Tn)−w1w2β2z

)
×dw1dw2dz

)
. (112)

Next, integrating (112) and carrying out some algebraic sim-
plifications, we obtain the first-order distortion field (or first-
order ghost pulse) as [37, 38]:

u1(L, t+ kT) = jγP3/2
0

∑
m

∑
l

∑
n

ama
∗
l an exp

(
− t2

6τ 2

)

×
Lˆ

0

exp(−αz)√
1+ 2jβ2z/τ 2 + 3(β2z/τ 2)2

× exp


−
3
[
2
3 t+(m− l)T

][
2
3 t+(n− l)T

]
τ 2(1+ 3jβ2z/τ 2)

− (n−m)2T2

τ 2 [1+ 2jβ2z/τ 2 + 3(β2z/τ 2)2]

dz,

(113)

where Tm, Tl, andTn can be represented as mT, lT, andnT,
respectively, k= m+ n− l, m, n, l are the symbol indices,
am/l/n is the symbol complex amplitude, and τ is the pulse
width.

In the PDM optical system, the input signal field to the fiber
is a column vector u(z, t) = [ux(z, t) uy(z, t)]†, where x, y are
the polarization tributaries, and † is the transpose. The vector
field propagation in the optical fiber is governed by the Man-
akov equation, which is given as [40]:

∂

∂z
u+ j

β2

2
∂2

∂t2
u= j

8
9
γ(u∗†uI)uexp(−αz) , (114)
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Figure 3. Fiber nonlinearity effects. SPM: self-phase modulation, (I)XPM: (intra-channel) cross-phase modulation, XPolM:
cross-polarization modulation, (I)FWM: (intra-channel) four-wave mixing, ASE: amplified spontaneous emission, and NSNI: nonlinear
signal-noise interaction.

where I is the identity matrix. It is important to note that (114)
is the same as the Manakov equation given in (74), in which
(114) is written in a more compact form by omitting the space
and time variables z, t for the sake of simplicity. By solving
(114), the zeroth- and first-order solutions can be written as
[40]:

u0,x/y(L, t) = ux/y(0, t)⊗ hL(t), (115)

and

u1,x/y(L, t) = jγ

Lˆ

0

(
hz(t) ⊗[

∣∣u0,x/y(z, t)∣∣2 u0,x/y(z, t)])
× exp(−αz)dz. (116)

Following the steps from (104) to (113), we get the first-order
ghost pulse for the PDM transmission system as [37, 38]:

u1,x/y(L, t+ kT) = j
8
9
γP3/2

0

∑
m

∑
l

∑
n

[am,x/ya
∗
l,x/yan,x/y

+ am,y/xa
∗
l,y/xan,x/y]

× exp(−
t2

6τ 2
)

Lˆ

0

exp(−αz)√
1+ 2jβ2z/τ 2 + 3(β2z/τ 2)2

× exp


−
3
[
2
3 t+(m− l)T

][
2
3 t+(n− l)T

]
τ 2(1+ 3jβ2z/τ 2)

−
(n−m)2T2

τ 2 [1+ 2jβ2z/τ 2 + 3(β2z/τ 2)2]

dz.

(117)

6. Kerr-induced fiber nonlinearity effects

As stated in section 3, the nonlinearity effects in the optical
fiber are due to the Kerr effect, which arises from the depend-
ence of the optical fiber refractive index on the transmit signal

power [1]. Figure 3 illustrates different types of Kerr nonlin-
earity effects in the optical fiber. The nonlinearity effects can
be divided into two types: signal-signal and signal-amplified
spontaneous emission (ASE) noise nonlinear interaction [7].
In single-channel systems, the intra-channel signal-signal non-
linear interactions can be categorized into three types: (a)
SPM, (b) IXPM, and (c) IFWM. The SPM results in a phase
modulation induced by the refractive index, which increases
with the increase in the input power level. This leads to a fre-
quency chirping effect [7, 41–43], which interacts with the CD
and causes the spectral broadening of the optical pulse. The
IXPM is the result of the refractive index change proportional
to the intensity of the neighbouring pulses in the same chan-
nel [7, 41–43]. The IXPM yields a timing jitter between the
co-propagating pulses, which leads to performance degrada-
tion. The IFWM is caused by the nonlinear interaction between
two or more pulses of the same channel [7, 41–43]. That gen-
erates echo or ghost pulses in the time domain, and thus,
results in interference between the signal pulses of the same
channel. It is important to mention that the SPM, IXPM, and
IFWM can be compensated well using digital NLC techniques
[7, 41–43].

In WDM systems, the inter-channel signal-signal nonlin-
ear effects can also be classified into three types: (a) XPM, (b)
XPolM, and (c) FWM. The XPM effect is due to the refractive
index change proportional to the intensity of the pulse in the
co-propagating channel. The XPM induces frequency chirp-
ing and pulses overlapping between channels [7, 41–43]. The
XPM effect consists of two parts, the coherent and incoherent
XPM, as given in (79). The coherent XPM is the same as the
usual XPM effect, which involves the interaction of twoWDM
channels. The incoherent XPM results in polarization cross-
talk, and the cross-talk coefficient is determined by the polar-
ization cross-product u∗y/x,mux/y,m of the interfering channel
[7]. The XPolM occurs in PDM-WDM transmission systems
when the SOP of a transmitted channel depends on the SOP
of other co-propagating channels through Kerr effect. That is
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due to the random propagation of SOP inside the optical fiber
caused by PMD [7, 41–43] and causes channel cross-talk for
PDM-WDM systems [7, 41–43]. The FWM in the multichan-
nel system is generated by the nonlinear interaction between
two or more co-propagating wavelength channels [7, 41–43].
The FWM results in significant performance degradation
due to cross-talk among different wavelength channels
[7, 41–43].

Another nonlinearity effect is the Kerr-induced signal-ASE
noise interaction, referred to as the Gordon–Mollenauer effect
[44, 45], which leads to the generation of the nonlinear signal-
noise interaction (NSNI) [44, 45]. The modeling of the impact
of NSNI is important because it can contribute to answering
the questions regarding the fundamental limits of the perform-
ance improvement provided by the NLC techniques [44, 45].

7. Fiber nonlinearity compensation techniques

The impairments due to the Kerr effect degrade the transmis-
sion performance of optical systems using higher-order mod-
ulation formats. Therefore, NLC is a hot research topic to
increase fiber capacity. Several digital and optical techniques
have been reported in the literature to combat the effects of
fiber nonlinearity. Such techniques are applied either at the
transmitter side or in the optical link, or at the receiver side.
The introduction of coherent detection in optical communic-
ations initiates the use of DSP algorithms to compensate for
fiber impairments. Usually, DSP algorithms are implemen-
ted either at the transmitter side or at the receiver side, or a
combination of both like split nonlinearity compensation tech-
niques [7]. Implementing DSP algorithms in the optical fiber
link requires optical-to-electrical/electrical-to-optical conver-
sions at the locations where the DSP modules are deployed.
That increases the signal latency in the optical fiber link and
the overall cost of the link.

Digital NLC techniques represent a key technology and a
cost-effective approach to increase the data rate, being adopted
for the next generationWDMoptical transmission systems [7].
In this section, we provide a concise review of themost popular
NLC techniques in the literature.

7.1. Digital back-propagation

The digital back-propagation (DBP) is based on the SSFM,
which represents an effective numerical technique to solve the
signal propagation equation. The idea of the DBP technique
is to digitally model a fictitious fiber with exactly opposite
characteristics when compared to the real fiber used for the
transmission [7]. In this technique, the optical fiber is first
divided into small segments, and the signal propagation in
each segment is modelled as a concatenation of linear and
nonlinear operations [7]. There are different DBP implement-
ations available depending on the order of the linear and non-
linear sections in a given fiber segment [7]. The most com-
monly used approach is the application of linear compensation
first because nonlinear effects are more important at high input

powers, which is the case at the end of the fictitious fiber [7].
The receiver side DBP implementation is shown in figure 4,
where Ns is the number of steps.

Using SSFM, the output of the CD (or linear) compensation
section is given by [7]:

UCD
x/y(z,w) = Ux/y(z,w)exp(−jh(

α

2
+

β2

2
ω2)), (118)

where h is the length of each step, w is the frequency variable
and z is the transmission distance. Following that, the nonlin-
ear section is carried out in time-domain as [7]:

u ′
x/y(z, t) = uCDx/y(z, t)exp(−jφγ

′h(|uCDx |2 + |uCDy |2)), (119)

where 0< φ< 1 is a real-valued optimization parameter.
Single-channel DBP (SC-DBP) has been more widely

researched because it is typically considered to be more real-
istic with the current hardware limitations [7]. Since a single-
wavelength channel is back-propagated, SC-DBP only com-
pensates for intra-channel nonlinearity, e.g. SPM. In WDM
superchannel systems, one way of overcoming the inter-
channel nonlinear distortions like XPM and FWM induced by
the co-propagating subchannels is to use a multi channel-DBP
(MC-DBP). The MC-DBP back-propagates the entire WDM
channel [7]. However, the implementation of the MC-DBP is
limited to point-to-point links, and its computational complex-
ity is considered impractical due to the need for massively
parallel processing computer systems to implement [7]. There
are a few reduced complexity DBP implementations are avail-
able, such as weighted DBP [7] and correlated DBP [7]. How-
ever, their computational complexity is still considered high.
Even though the DBP implementation complexity is high, it is
considered a benchmark to measure the effectiveness of other
NLC techniques.

7.2. Volterra series-based nonlinear equalizer

The VSTF can be effectively used to model the fiber nonlin-
earity effects [7]. In this technique, after modelling the optical
channel as a series of VSTFs, the pth order theory proposed in
[33] is adopted to design the inverse VSTF (IVSTF) kernels.
These IVSTF kernels can be used to compensate for the fiber
Kerr nonlinearity and its interplay with CD. One of the fea-
tures of the Volterra series-based nonlinear equalizer (VNLE)
is that the compensation operation can be performed in paral-
lel [7]. That reduces the computational complexity when com-
pared to DBP [7]. The principle of the parallel implementation
of VNLE is depicted in figure 5, where Nspans corresponds to
the number of fiber spans.

For each polarization, the compensation operation can be
divided into two parts; one is linear, and the other is non-
linear. The linear part consists of CD compensation, and
the nonlinear part compensates for the nonlinearity effect.
In this technique, the nonlinearity compensation for each
span can be carried out in parallel. We obtain the output
compensated signal by combining the output of the linear
section and the output of each nonlinear stage, as shown
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Figure 4. Principle of digital back-propagation (DBP) implementation. (I)FFT: (inverse) fast Fourier transform.

Figure 5. Parallel implementation of VNLE.

in figure 5. In the literature, there are different variants
of VNLE have been proposed, such as modified VNLE
(MVNLE) and weighted Volterra series nonlinear equalizer
(W-VSNE), to improve the compensation performance and
reduce the implementation complexity [7]. It is worth not-
ing that the VNLE, MVNLE, and W-VSNE are based on the
third-order Volterra series approximation. A fifth-order VNLE
has also been proposed in the literature to compensate for
the Kerr nonlinearity effect; however, it involves much higher
implementation complexity when compared to its third-order
counterpart [7].

7.3. Perturbation theory-based NLC

The first-order perturbation theory-based NLC (PB-NLC)
technique adopts some simplifying assumptions, including
[38, 40, 46–49]:

• The full electronic compensation of CD at the receiver.
• The Gaussian shape assumption for input pulses.

According to the first-order theory, three input Gaussian
pulses

√
P0am/l/n,x/y exp(−(t−Tm/n/l)2/2τ 2), at time indices

Tm, Tl, Tn interact nonlinearly and generate a ghost pulse, as
shown in (117). Figure 6 shows the schematic of the triplet
interaction to generate the first-order field. Without loss of
generality, the nonlinear distortion field induced at index
k= 0, i.e. l= m+ n is calculated at t= 0 by considering the
symbol rate operation [38, 40, 46–49]. Accordingly, (117) can
be further simplified as [37, 38, 40, 46–49]:

u1,x/y(L, t) = j
8
9
γP3/2

0

∑
m

∑
n

[
am,x/ya

∗
m+n,x/yan,x/y

+am,y/xa
∗
m+n,y/xan,x/y

]
Cm,n,

(120)
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Figure 6. Triplet pulses in the PB-NLC technique.

Figure 7. Principle of operation of the PB-NLC technique.

where ∗ represents the complex conjugate operation and Cm,n

is the first-order perturbation coefficient matrix, which is given
as [37, 38, 40, 46–49]:

Cm,n =

Lˆ

0

exp(−αz)√
1+ 2jβ2z/τ 2 + 3(β2z/τ 2)2

× exp

(
−3

mnT2

τ 2(1+ 3jβ2z/τ 2)

− (m− n)2T2

τ 2[1+ 2jβ2z/τ 2 + 3(β2z/τ 2)2]

)
dz. (121)

In a typical dispersion uncompensated system, the pulse
spreading due to CD is much higher than the symbol duration,
i.e. β2z≫ τ 2 [38]. Using this assumption and following the
simplification steps in [38], the first-order perturbation coeffi-
cient matrix Cm,n can be written as [37, 38, 40, 46–49]:

Cm,n =



τ 2
√
3|β2|

´ L
0 dz

1√
τ 4/(3β2

2)+z
2
, m= n= 0

τ 2
√
3|β2|

1
2E1(

(n−m)2T2τ 2

3|β2|2L2
), morn= 0

τ 2
√
3|β2|

E1(−jmnT
2

β2L
), m ̸= n ̸= 0,

(122)

where E1(x) =
´∞
x

e−t

t dt is the exponential integral function
[38].

In the PB-NLC technique, the perturbation coefficients are
calculated beforehand and saved in a look-up table. The pre-
distortion technique is implemented by calculating the first-
order distortion field u1,x/y using (120) and subtract it from

the symbol of interest a0,x/y to generate ã0,x/y, as shown in
figure 7.

7.4. Phase conjugation-based NLC

A few years ago, a digital phase conjugation (DPC) based
technique, referred to as the phase-conjugated twin wave
(PCTW), was proposed for the mitigation of the first-order
nonlinear distortions in PDM optical transmission systems.
However, the performance improvement of the PCTW tech-
nique comes at the expense of 50% spectral efficiency reduc-
tion [50, 51]. Figure 8 shows the PCTW scheme applied for
a coherent optical orthogonal frequency-division multiplex-
ing (CO-OFDM) system. The data and its phase-conjugate
are transmitted on the same subcarrier frequency of the
x- and y-polarizations. At the receiver side, the coherent
superposition of the phase-conjugate pairs is carried out
to cancel the first-order nonlinear distortion, as illustrated
in figure 8.

A time-domain implementation of the generalized PCTW
was reported in [52], and this method is referred to as conjug-
ate data repetition (CDR). In the CDR technique, each time-
domain signal datum is followed by its conjugate pairs, and
the received signals in the adjacent time slots are coherently
superimposed at the receiver. Since the nonlinearity interfer-
ence coefficients change slowly in a highly dispersive chan-
nel, the nonlinear distortions generated by conjugate repeti-
tion data can be self-canceled by superimposing [52]. In [52],
a theoretical explanation based on time-domain perturbation
analysis has been provided for the nonlinear distortion can-
cellation with the CDR technique. It is also shown that the
PCTW and the CDR techniques have similar performance,
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Figure 8. Principle of the PCTW technique. N is the total number of OFDM subcarriers.

with a limitation of halving the overall capacity of the coher-
ent optical communication system. The PCTW technique for
the CO-OFDM system utilizing the Hermitian symmetry has
been proposed in [53] at the expense of 50% spectral efficiency
loss.

7.4.1. DPC techniques with improved spectral efficiency. In
[54], a spectrally efficient DPC technique for nonlinearity
compensation in the CO-OFDM system has been proposed.
This technique is based on the transmission of the phase-
conjugated pilots (PCPs) and the coherent superposition at the
receiver. In this scheme, a portion of the OFDM subcarriers
is transmitted as PCPs of the other subcarriers. These phase
conjugate pairs are used at the receiver to estimate and com-
pensate for the nonlinear distortions introduced by the channel.
In this technique, the spectral redundancy can be adjusted up to
50% according to the targeted performance gain. That can be
achieved through the proper selection of the number of PCPs
in each OFDM band. In [55], a novel technique is proposed
based on the joint processing of two pairs of PCTWs, referred
to as dual-PCTW, to avoid the loss of spectral efficiency asso-
ciated with the use of PCTWs.

In [56], a frequency-domain coding technique, termed
as phase-conjugated subcarrier coding (PCSC), combined
with electronic dispersion pre-compensation (pre-EDC), has
been demonstrated for nonlinearity mitigation in CO-OFDM

system. This technique extends the idea of the dual-PCTW
concept to process the neighboring OFDM subcarriers jointly.
The benefit of this nonlinearity mitigation technique comes
from the fact that the nonlinear distortions on neighboring
OFDM subcarriers are highly correlated [56]. The PCSC
scheme cancels the first-order distortion field through coherent
superposition without losing spectral efficiency. In [57], two
DPC approaches have been proposed to overcome the spec-
tral efficiency issue associated with the CDR and PCTW tech-
niques and the pre-EDC requirement of the PCSC technique.
These techniques are referred to as themodified-16-quadrature
amplitude modulated (QAM)-CDR (MOD-16-QAM-CDR)
and MOD-16-QAM-PCTW techniques.

Table 1 demonstrates a list of the state-of-the-art fiber NLC
techniques available in the literature to deal with the adverse
effect of the Kerr nonlinearity effect. It also shows the type,
location, system, and fiber nonlinearity they compensate for,
along with the corresponding list of references.

8. Numerical simulations and discussions

In this section, we carry out numerical simulations of the
selected nonlinearity compensation techniques discussed in
section 7. The selected techniques are: (a) DBP, (b) VNLE,
(c) PB-NLC, (d) PCSC, and (e) MOD-16-QAM-CDR/MOD-
16-QAM-PCTW techniques. In the numerical simulation, we
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Table 1. State-of-the-art fiber NLC techniques.

Technique Type Location Nonlin. compensated System References

VNLE Digital Tx/Rx Intra-subcarrier Nyquist/OFDM [31–35]
PB-NLC Digital Tx/Rx Intra-subcarrier/XPM Nyquist/OFDM [36–40, 44, 58]
O/DPC Optical/Digital Link/Rx Nonlinear phase Nyquist/OFDM [50–57, 59–61]
SC-DBP Digital Tx/Rx Intra-subcarrier Nyquist/OFDM [62–67]
MC-DBP Digital Tx/Rx Intra-/inter subcarrier Nyquist/OFDM [68–72]

Table 2. Simulation parameters [38, 48, 49, 57].

Parameter Value

Root-raised cosine filter roll-off factor 0.1
Fiber span length 80 km
α 0.2 dB km−1

β2 −20.47 ps2 km−1

γ 1.2 (1/W) km−1

Noise figure of EDFA 5.5 dB

Figure 9. Q-factor as a function of the launch power for DBP, VNLC, PB-NLC, and EDC techniques for a quasi-Nyquist single-carrier
system at a transmission distance of 2800 km.

consider both quasi-Nyquist single-carrier and CO-OFDM
systems to evaluate the performances of the selected tech-
niques. Specifically, the single-carrier system is used to eval-
uate the performance of the DBP, VNLE, and PB-NLC
techniques. On the other hand, the CO-OFDM system is
used to evaluate the performance of the PCSC and MOD-
16-QAM-CDR/MOD-16-QAM-PCTW techniques. For more
details on the system setup for the quasi-Nyquist single-
carrier system, please refer to [49]. Similarly, refer to [57]
for details on the CO-OFDM system setup. The general

parameters used for the numerical simulation are listed in
table 2.

Figure 9 shows the Q-factor plotted as a function of the
launch power for the DBP, VNLE, PB-NLC, and EDC tech-
niques for the quasi-Nyquist single-carrier system at a trans-
mission distance of 2800 km. It is observed that the DBP tech-
nique improves the Q-factor performance by ∼1.8 dB when
compared to the EDC technique. Also, it can be seen from
figure 9 that the VNLE and the PB-NLC techniques show sim-
ilar Q-factor performances [48, 49].
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Figure 10. Q-factor as a function of the launch power for MOD-16-QAM-CDR/MOD-16-QAM-PCTW, PCSC, and EDC techniques for a
CO-OFDM system at a transmission distance of 2800 km.

Figure 10 shows the Q-factor performances of the MOD-
16-QAM-CDR/MOD-16-QAM-PCTW and PCSC techniques
with and without considering the pre-EDC for a CO-OFDM
system at a transmission distance of 2800 km. The result of
the 4-QAM with EDC having the same spectral efficiency
is also included for the comparison. Results indicate that
the MOD-16-QAM-CDR/MOD-16-QAM-PCTW techniques
improve the Q-factor performance when compared to the EDC
and PCSC techniques at the nonlinear regime of the optical
fiber [48, 57]. The results also indicate that the MOD-16-
QAM-CDR/MOD-16-QAM-PCTW techniques show consid-
erable Q-factor improvement in the nonlinear regime without
using pre-EDC when compared to the PCSC technique, which
shows negligible performance improvement in this scenario
[57].

Table 3 shows the complexity expressions to compute the
number of multiplications/symbol for the considered NLC
techniques. In table 3, the parameters Nspan is the number of
fiber spans, Nsteps is the number of steps/span, NFFT is the fast
Fourier transform size, Pn is the number of significant perturb-
ation coefficients, and M is the modulation cardinality.

Figure 11 shows the plot of the number of real-valued mul-
tiplications/symbol for DBP, VNLE, PB-NLC, and EDC tech-
niques as a function of the number of fiber spans Nspan for
a quasi-Nyquist single-carrier system. In figure 11, NFFT =
4096, and Nsteps = 1. It is observed that the complexity of the
VNLE is slightly higher than the complexity of the PB-NLC
technique [7, 48].

Figure 12 shows the number of real-valued multiplication-
s/symbol for MOD-16-QAM-CDR/MOD-16-QAM-PCTW,

Table 3. Complexity expressions [48, 49, 57].

Algorithm Complexity expression

DBP NspanNsteps(8log2(NFFT)+ 21)
VNLE NspanNsteps(4log2(NFFT)+ 8.5)
PB-NLC 2(4Pn+ 3)
MOD-16-QAM-CDR/MOD-
16-QAM-PCTW

8log2(NFFT)+ 4M+ 9

PCSC 8(log2(NFFT)+ 1)+ 1
CDC 8(log2(NFFT)+ 1)

PCSC, and EDC techniques as a function of the number
of fiber spans Nspan for a CO-OFDM system. It is evident
from figure 12 that the performance benefit of the MOD-16-
QAM-CDR/MOD-16-QAM-PCTW techniques comes with
an increase in the computational complexity [48, 57]. It is
important to note that the MOD-16-QAM-CDR/MOD-16-
QAM-PCTW and the PCSC techniques are comparatively low
complexity NLC techniques, and their complexity is inde-
pendent of the number of fiber spans Nspan [48, 57].

It is important to mention that the NLC techniques imple-
mented in this section do not consider the effects of the PMD
and the laser phase noise to clearly understand the ability
of the selected NLC techniques to deal with the fiber non-
linearity effect. However, in reality, the performance of the
NLC techniques may be impacted by such impairments. Sev-
eral works in the literature carried out the investigation on
the impact of the PMD on the NLC techniques. In [73], an
investigation of the impact of PMD on the performance of
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Figure 11. The number of real-valued multiplications/symbol for DBP, VNLE, PB-NLC, and EDC techniques as a function of the number
of fiber spans Nspan for a quasi-Nyquist single-carrier system.

Figure 12. The number of real-valued multiplications/symbol for MOD-16-QAM-CDR/MOD-16-QAM-PCTW, PCSC, and EDC
techniques as a function of the number of fiber spans Nspan for a CO-OFDM system.
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DBP has been carried out. The results indicate that the non-
deterministic distributed PMD impairs the DBP performance
larger than the Kerr-induced signal-ASE stochastic nonlinear
effect and manifests as a fundamental limitation to the achiev-
able fiber channel capacity. In [74], the impact of PMD on
the performance of the in-line phase-conjugation technique
has been studied. The study results indicate that a more close
installation of the in-line phase-conjugation devices signific-
antly improves the NLC performance. Similar to PMD, sev-
eral research works have been conducted in the literature to
investigate the impact of laser phase noise on NLC perform-
ance. In [75], analytical modeling of the equalization enhanced
phase noise (EEPN) has been developed for evaluating the per-
formance of the optical transmission systems. The findings in
[75] demonstrate the importance of considering EEPN in the
design of the long-haul optical transmission system. In [76],
an experimental study on the impact of EEPN on the optical
transmission system has been carried out. The results indic-
ate that the blind phase search algorithm used to recover the
carrier phase can partially mitigate the effect of EEPN in an
optical transmission system.

9. Conclusion

In this tutorial, we have elucidated the impact of Kerr-induced
fiber nonlinearity effects on long-haul coherent optical trans-
mission systems. Using the classical electron oscillator model,
we have explained the origin of the nonlinear susceptibility
and the Kerr effect in a silica-based optical fiber. We have dis-
cussed the mechanism of the optical pulse propagation in the
optical fiber medium using the nonlinear Schrödinger equation
derived fromMaxwell’s equations. Then, we have investigated
the numerical and analytical methods commonly used to solve
the pulse propagation equation, such as the SSFM, the Vol-
terra series-based analysis, and the regular perturbation series-
based analysis. Following that, we have demonstrated various
state-of-the-art fiber NLC techniques available in the literat-
ure to deal with the detrimental effects of fiber Kerr nonlin-
earity. We have also carried out the performance comparison
and the complexity evaluation of the selected NLC techniques
for quasi-Nyquist single-carrier and CO-OFDM transmission
systems.
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