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ABSTRACT
Bayesian optimization seeks the global optimum of a black-box, ob-
jective function f (x), in the fewest possible iterations. Recent work
applied knowledge of the true value of the optimum to the Gaussian
Process probabilistic model typically used in Bayesian optimization.
This, together with a new acquisition function called Confidence
Bound Minimization, resulted in a Gaussian probabilistic posterior
in which the predictions were no greater than the known max-
imum (and no less than for minimum). Our novel work applies
Confidence Bound Minimization to Bayesian optimization with
Student’s-t Processes, a probabilistic alternative which addresses
known weaknesses in Gaussian Processes - outliers’ probability and
the calculation of posterior covariance. The new model is applied
to the problem of hyperparameter tuning for an XGBoost classi-
fier. Experiments show superior regret minimization and predictive
accuracy, versus the popular Expected Improvement acquisition
function. Combining Confidence Bound Minimization with a trans-
formed Student’s-t Process probabilistic model and known optima
produces superior training regret minimization and posterior pre-
dictions for the Six-Hump Camel(2D) and Levy(4D) benchmark
problems, which do not fall below true minima.

CCS CONCEPTS
• Theory of computation → Theory and algorithms for ap-
plication domains; Machine learning theory; Kernel meth-
ods; Gaussian processes;
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1 INTRODUCTION
Single-objective optimization seeks the global optimum x∗ to max-
imise a black-box objective function f (x), for input x in a design-
space χ [6]:

x∗ = argmax
x∈χ

f (x)

Bayesian optimization [2, 6, 13] constructs a probabilistic model
to efficiently seek the global maximum (or minimum) of a black-
box, objective function f (x) [5]. It is widely used in applications
that have computationally-expensive non-linear objectives, such as
hyperparameter tuning in machine learning [14, 18], aerostructural
engineering [17] and nuclear science [3]. The probabilistic model
incorporates our prior beliefs about f , updating the prior with
observations sampled from f (x), to obtain a posterior distribution
that better approximates a black-box objective [9].

The two high-level modelling choices in Bayesian optimization
are the probabilistic model and the acquisition function. A multi-
variate probabilistic model (‘surrogate’) is assumed to explain the
joint behaviour of observations sampled [9]. Gaussian Processes
(GPs) are usually chosen and are simply defined, for both prior
and posterior distributions, using just the GP mean and the GP
covariance function [5, 10].

Bayesian optimization combines the predictions for unknown
x values, with predictive uncertainty through an acquisition func-
tion, such as the popular Expected Improvement (EI) acquisition
function [8, 19]. The surrogate defines the acquisition, which then
determines the next observation sampled for f (x) [9]. The surrogate
and acquisition function combine to balance ‘exploration’ (obser-
vation sampling in χ with high uncertainty), versus ‘exploitation’
(sampling around the current, best observations) [2].

Recently, [9] combined knowledge of known optima f ∗ with GP
surrogates. Since the objective function does not exceed the maxi-
mum f ∗, than neither should the maximum of the GP posterior’s

https://doi.org/10.1145/3378184.3378193
https://doi.org/10.1145/3378184.3378193
https://doi.org/10.1145/3378184.3378193


APPIS 2020, January 7–9, 2020, Las Palmas de Gran Canaria, Spain C. Clare et al.

predictions. Two new acquisition functions, Confidence BoundMin-
imization (CBM) and Expected Regret Minimization (ERM) were
derived, with CBM based on the Gaussian Process-Upper Confi-
dence Bound acquisition function [15].

Despite simplicity and flexibility advantages, GP surrogates have
two knownweaknesses [11, 12, 17]. First, low probability is assigned
to remote observations (outliers), despite contrasting, observed data
e.g. aerostructural engineering [17]. Secondly, the GP posterior co-
variance does not depend on the black-box objective function’s
yi -values. Instead, only the location of the training xi ∈ Dn de-
termines the posterior covariance of a GP [11, 12, 17], where the
training set of observations Dn is {(x1,y1), . . . , (xn,yn )} for n = 1,
. . . , N iterations [17].

One recently proposed solution to the weaknesses of GPs are
Student-t Processes (STPs), based on the multivariate Student’s-t
distribution [11, 12, 17]. STPs generalize the multivariate Gaussian
distribution. STPs have an additional parameter, ν , which defines
the ‘degrees-of-freedom’ of the STP [11, 12, 17] and controls STP
kurtosis, influencing the size of the tails and hence, the probability
of outliers [1]. This addresses the first weakness of GPs, regarding
low probability of outliers. Further, unlike the GP posterior, the STP
posterior covariance does depend on the black-box objective func-
tion’s yi -values [11, 12, 17], which addresses the second weakness
of GPs.

Motivated by these recent advances, the main contributions of
this paper are:

(1) to make use of knowledge of a known optimum value in
Bayesian optimization with Student’s-t Processes;

(2) to demonstrate the utility of this approach on a range of
benchmark problems and a hyperparameter tuning problem
from machine learning.

2 EXPLOITING KNOWN OPTIMA VALUE FOR
BAYESIAN OPTIMIZATION WITH STPS

2.1 Gaussian Processes
A stochastic process f (x) is Gaussian when observations jointly
sampled have a multivariate Gaussian probability distribution [2,
10]. GPs are parameterized by two functions. The first is the mean
function,m(x), defining the expected value of an input, x. The sec-
ond is the kernel function k(x, x′), which calculates the covariance
between two different inputs x and x′ [17]:

f (x) ∼ GP
(
m(x),k(x, x′)

)
The GP posterior covariance Σ̂GP is given by [10, 17]:

Σ̂GP = Kx∗,x∗ − Kx∗,xK
−1
x,xKx,x∗

where Kx,x is the covariance defined by the kernel between
the observed locations, xi ∈ Dn ; Kx∗,x is the covariance of the
kernel between the unobserved locations and observed locations;
and Kx∗,x∗ is the covariance of the unobserved locations [17]. As
can be seen, the GP posterior covariance does not depend on the
black-box objective function’s values [10].

2.2 Student’s-t Processes
One recently proposed solution to those weaknesses is to instead
use Student-t Processes (STPs), which are based on the multivariate
Student’s-t probability distribution. A stochastic process f (x) is
Student’s-t when observations jointly sampled have a multivariate
Student’s-t probability distribution [11, 12, 17].

f (x) ∼ STP
(
m(x),k(x, x′),ν

)
The STP posterior covariance Σ̂ST P is given by [17]:

Σ̂ST P =
ν + yTK−1

x,xy − 2
ν + |Dn | − 2

(Kx∗,x∗ − Kx∗,xK
−1
x,xKx,x∗ )

(
ν − 2
ν

)
where yTK−1

x,xy is the squared Mahalanobis distance of the train-
ing xi using their covariance. |Dn | is the number of samples in
the training set of observations, Dn [17]. As can be seen, the STP
posterior covariance depends on the black-box objective function’s
values.

2.3 Exploiting Known Optima
[9] combined known optima f ∗ with a GP surrogate, to produce
GP posterior predictions which do not breach known limits. Their
work developed the CBM acquisition function, defined in Eq. 1 for
STPs, as αCBM+f

∗

n (x), to exploit knowledge about known optima
in Bayesian optimization. This paper enhances Bayesian optimiza-
tion by exploiting known optima f ∗, using STPs and the CBM
acquisition function, with µ̂ST P (x) and σ̂ST P (x) the respective STP
posterior mean and STP posterior standard deviation; and βt an
exploration/exploitation trade-off parameter [15]:

α
CBM+f ∗
n (x) = argmax

x∈χ
| f ∗ − µ̂ST P (x)| +

√
βt σ̂ST P (x) (1)

Figure 1: Estimating the Sine function: Bayesian optimiza-
tionwith an STP surrogate (ν = 3) and a squared-exponential
kernel [10], randomly initialized using 2 observations (top);
with the next observation sampled using EI (middle) versus
CBM (bottom).

The Bayesian optimization model is described in Algorithm 1,
where the black-box objective function is f (x); the acquisition func-
tion at iteration n−1 is αn−1(x); and the training set of observations
Dn is {(x1,y1), . . . , (xn,yn )}, for n = 1, . . . , N iterations of Bayesian
optimization.



CBM for Bayesian optimization with STPs APPIS 2020, January 7–9, 2020, Las Palmas de Gran Canaria, Spain

Algorithm 1: Bayesian optimization [6]:

(1) Input: black-box objective function f (x)
(2) Construct D0, a set of randomly-sampled input-output

pairs (xi ,yi ), where xi ∈ χ , yi = f (xi );
(3) for: n = 1, . . . ,N iterations do
(4) Train surrogate using Dn−1
(5) select: xn = argmaxx∈χ αn−1(x);
(6) query the objective f at xn to obtain yn ;
(7) augment data: Dn = Dn−1 ∪ {(xn,yn )};
(8) end for
(9) Return: xn = argmaxxn ∈Dn yn

3 APPLICATIONS
Three applications of Bayesian optimization, combining the CBM
acquisition function with STPs (ν = 3), are programmed in the
Python language, using the ‘pyGPGO’ package [7]. Application 3.1,
3.2 and 3.3 use Algorithm 1 for model training and training regret
comparison purposes, with the difference between known optima
f ∗ and the best y-value defining training regret at each iteration
of Bayesian optimization. Application 3.2 and 3.3 also use [9] to
transform the surrogate estimate of f (x) and create STP posterior
predictions for f (x)which do not fall below known optima, f ∗ [16].
Algorithm 1 models applications with global minima (rather than
global maxima), by simply multiplying both f (x) and f ∗ by -1, in
Applications 3.2 and 3.3.

3.1 Hyperparameter Tuning - XGBoost
Classification

Eq. 1 is applied to the "Skin Segmentation"1 dataset, to tune six XG-
Boost hyperparameters for classification [9] (Table 1). The dataset
is split into 85% for training and 15% for testing. The objective
function is logistic, with 5 random initialization [4] and 30 itera-
tions used for training [9]. 3-fold cross-validation of the XGBoost
classifier is averaged to measure y. The kernel is Matérn 3/2 [10].
The best, known accuracy is f ∗ = 100% [9]. The difference between
known optima f ∗ and the best classification accuracy defines XG-
Boost classification accuracy regret at each iteration. The STP CBM
model (ν = 3) minimizes classification accuracy regret (Figure 2).

The hyperparameters chosen to train the STP EI (ν = 3) and STP
CBM (ν = 3) XGBoost classifiers, correspond to the ‘Best y-value’
of 99.4508% for STP EI (ν = 3) versus 99.5891% for STP CBM (ν = 3)
(Table 1). GP ERM [9] is also considered, together with STP ERM
(ν = 3). Three acquisition functions - CBM, ERM and EI - are used
with two surrogates - GP and STP (ν = 3) - to create 6 Bayesian op-
timization models. The STP CBM model (ν = 3) minimizes XGBoost
classification accuracy regret in fewer iterations (marginally) than
the other 5 Bayesian optimization models (Figure 2). The remaining
15% of the ‘Skin Segmentation’ dataset is used to test the posterior
predictive accuracy of the 6 Bayesian optimization models, with
posterior classification accuracy results shown in Table 2. GP CBM
(99.6164%) performs best, followed by GP ERM (99.6137%) with
STP CBM (ν = 3) and GP EI next (both 99.6110%). STP ERM (ν =

1https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation

Figure 2: Comparing XGBoost classification accuracy regret
on the ‘Skin Segmentation’ dataset, using Algorithm 1. The
best, known accuracy is f ∗ = 100% [9], with minimized XG-
Boost classification accuracy regret for STP CBM (ν = 3).

3) and STP EI (ν = 3) perform the worst (99.5919% and 99.5838%,
respectively).

Table 1: Hyperparameter tuning for XGBoost classification
with Bayesian optimization [9], using STP EI (ν = 3) versus
STP CBM (ν = 3).

Optimal Hyperparameter STP EI (ν = 3) STP CBM (ν = 3)

alpha 7.328311 1.788172
gamma 7.938542 3.497682
max_depth 13.999830 9.315171
subsample 0.501892 1.000000
min_child_weight 9.000008 2.475225
colsample 1.000000 1.000000
Best y-value 99.4508% 99.5891%

Table 2: Posterior predictive accuracy forXGBoost classifica-
tion, with GP CBM and GP ERM performing best. Although
STP CBM (ν = 3) has minimized XGBoost classification ac-
curacy regret, GP CBM and GP ERM achieve comparable re-
sults in less iterations (Figure 2).

Model Posterior Accuracy

GP CBM 99.6164%
GP ERM 99.6137%
STP CBM (ν = 3) 99.6110%
GP EI 99.6110%
STP ERM (ν = 3) 99.5919%
STP EI (ν = 3) 99.5838%

https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation
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Figure 3: Comparing Six-Hump Camel(2D) training accu-
racy, using Algorithm 1. The best, known minimum f ∗ = -
1.0316 [16], with minimized training regret for STP CBM (ν
= 3) and GP CBM.

3.2 Benchmark Problem - Six-Hump
Camel(2D)

Bayesian optimization with STP surrogates estimated training re-
gret for the popular Six-Hump Camel(2D) benchmark problem [16].
The difference between known optima f ∗ and the best y-value,
defines training regret at each iteration of Bayesian optimization.
Three acquisition functions - CBM, ERM and EI - are combined
with two surrogates - GP and STP (ν = 3) - to create 6 Bayesian
optimization models. Each experiment has 5 random initialization
[4] and 20 iterations (input d-dimension × 10 = 20) [4]. The kernel is
Matérn 5/2 [10]. The 6 Bayesian optimization models are compared,
with results shown in Figure 3. Combining the CBM acquisition
function with a transformation of the original STP surrogate [9] and
the known minimum f ∗, produces STP posterior predictions for
Six-Hump Camel(2D) which do not fall below the known minimum
f ∗ = -1.0316 [16].

3.3 Benchmark Problem - Levy(4D)
Bayesian optimization with STP surrogates estimated training re-
gret for the popular Levy(4D) benchmark problem [16]. The dif-
ference between known optima f ∗ and the best y-value, defines
training regret at each iteration of Bayesian optimization. Three
acquisition functions - CBM, ERM and EI - are combined with two
surrogates - GP and STP (ν = 3) - to create 6 Bayesian optimization
models. Each experiment has 5 random initialization [4] and 40
iterations (input d-dimension × 10 = 40) [4]. The kernel is Matérn
5/2 [10]. The 6 Bayesian optimization models are compared, with
results shown in Figure 4. Combining the CBM acquisition func-
tion with a transformation of the original STP surrogate [9] and
the known minimum f ∗, produces STP posterior predictions for
Levy(4D) which do not fall below the known minimum f ∗ = 0 [16].

4 CONCLUSIONS
Bayesian optimization with STP CBM (ν = 3) is applied to a hyper-
parameter tuning problem for XGBoost classification [9], showing

Figure 4: Comparing Levy(4D) training accuracy, using Algo-
rithm 1. The best, known minimum f ∗ = 0 [16], with mini-
mized training regret for STP CBM (ν = 3).

superior regret minimization (Figure 2) and greater posterior predic-
tive accuracy (Table 2), versus the STP EI (ν = 3) acquisition function.
STP CBM (ν = 3) also shows superior training regret minimization
versus STP EI (ν = 3) and GP EI for the Six-Hump Camel(2D) and
Levy(4D) benchmark problems (Figures 3 and 4). Combining Confi-
dence Bound Minimization with a transformed Student-t Processes’
surrogate [9] and known optima, produces Student-t Processes’
posterior predictions for the Six-Hump Camel(2D) and Levy(4D)
benchmark problems [16] which do not fall below known minima
[9].

STP CBM (ν = 3) outperforms both GP ERM and STP ERM (ν =
3) for Application 3.3, with comparable traning performance for
Application 3.1 and 3.2. Interestingly, the performance of both STP
CBM (ν = 3) and GP CBM is broadly equivalent for hyperparameter
tuning (Application 3.1) and Six-Hump Camel(2D) (Application 3.2),
suggesting that exploiting known optima f ∗ is more important
than surrogate choice for CBM outperforming EI.

5 FUTUREWORK
The ERM acquisition function [9] for Bayesian optimization with
STPs will be explored further by the authors in a separate paper.
The CBM and ERM acquisition functions both use known optima f ∗
as an input, however f ∗ is not always known and in such scenarios,
must be estimated. Future work will consider repeated sampling
algorithms (e.g. Markov chainMonte Carlo) to simulate f ∗ posterior
distributions [14] for the CBM and ERM acquisition functions used
in Bayesian optimization.
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