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Abstract— The use of robotic swarms in domains, such as 

space exploration, or search and rescue missions, requires that 

the swarms be self-adaptive in order to adjust to newly 

acquired data, and react to unforeseen events. Research on 

swarm self-adaptation tends to focus on the adaptation of 

individual agents, however taking a top-down approach can 

allow for the use of knowledge that is only apparent 

considering the swarm as a whole. This research makes use of 

a centralised Autonomic Manager to modify the behaviour of a 

simulated swarm of foraging robots by adjusting the range 

over which individual robots broadcast help requests. The 

swarm is able to learn its own size and the size of the test area, 

and use that information to guide its decision making, showing 

the potential for a future decentralised approach. First, the 

swarm is tasked with recognising the initial situation. 

Secondly, the swarm must respond to two events which alter 

the scenario parameters, namely the destruction of a 

proportion of the swarm, and a change in effective 

communication range. Performance of the swarm using an 

Autonomic Manager is compared against that using a fixed 

broadcast range suited to the initial circumstances. The results 

show that the swarm can recognise the initial situation and 

select a suitable broadcast range. It is also capable of 

recognising the events that occur, but the effectiveness of its 

response depends on additional parameters in the simulation. 

Keywords- Swarm robotics; Self-adaptation; Autonomic 

Computing; Simulation. 

I.  INTRODUCTION 

A swarm of robots, in which the aggregate behaviour of 
many relatively simple individuals combines to create a 
more complex set of behaviours [1], can have applications in 
areas, such as mine clearance [2], search & rescue [3] and 
space exploration [4][5]. A robot swarm can reduce the 
demands on any single robot, may accomplish the task more 
quickly, and can be deployed where sending humans is too 
dangerous, difficult, or costly. 

The ability to self-adapt, that is to adjust behaviour in 
response to newly acquired information without the need for 
external guidance, is a requirement of a robotic swarm [6]. 
Unforeseen events may occur that require adjustment, and 
factors, such as distance and time, may restrict the ability for 
a human operator to act successfully. Self-adaptation can be 
applied to the swarm in a variety of ways [7], including the 
development of emergent behaviours [8], evolutionary 
systems [9] and swarm-level decision making [10]. 

Autonomic Computing concepts [11][12] can be used for 
swarm-self adaptation. At the swarm level, an Autonomic 
Manager (AM) employing a control loop, such as the 

Monitor, Analyse, Plan, Execute system described by [11] 
can be used to allow the swarm to assess the current situation 
and take any action necessary. This may be implemented in a 
centralised manner, with individual robots communicating 
with a central command unit, or decentralised with each 
robot using its own control loop in order to modify its own 
behaviour in response to shared information and experience. 

The objective of this work is to explore the potential for 
using swarm-level self-adaptation in a swarm of robots to 
improve performance in a foraging task, specifically the time 
it takes the swarm to complete the task which may often be 
an application priority, such as in search & rescue. 

 Robot swarms are typically decentralised in nature [2], 
however here a centralized approach is used as an initial 
exploratory stage to determine if an AM provides any 
benefits, with the work of decentralisation to follow this 
research. As such, the centralised AM here is limited to 
analysing aggregate data and adjusting parameters, rather 
than taking a more active role in coordinating the swarm. 

The AM aims to achieve performance improvement 
through modification of the range at which individual robots 
communicate with neighbouring robots for assistance. The 
swarm is tasked with deciding the appropriate 
communication range, and then two unforeseen events are 
introduced. The first, robot destruction, tests the swarm’s 
ability to react to the sudden change in swarm size, such as a 
loss of robots in a search & rescue task due to the hazardous 
environment. The second, a change to communications 
quality, represents a situation where the ability of the robots 
to communicate with each other may be hampered by a 
change in environmental conditions. 

The rest of this paper is structured as follows. Section II 
discusses related work in swarm-level adaptation. Section III 
describes the simulation used and swarm task, the 
implementation of autonomic behaviour in the swarm, and 
the scenarios tested. Section IV reports these results and 
explores the implications. Section V concludes the paper 
with a summary, and future research directions. 

II. RELATED WORK 

The location where adaptation is applied to a swarm is 

important when considering the intended goal. Much of the 

research in adaptation focuses on the level of the individual 

agent, where the resulting swarm performance is affected by 

the aggregate of these individual behaviours [7]. This level 

of adaptation can have a dramatic impact on performance, 

but it is difficult for any single robot to take advantage of 

information that is only available when viewing the larger 
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picture, or to make decisions affecting the behaviour of 

other members of the swarm, such as cooperation or 

communication. 

Adaptation at the swarm level can counter some of these 

problems. [13] describes an approach to moderating the size 

of the swarm in order to reduce degraded performance due 

to congestion. Robots keep track of the conflicts that occur 

when two robots attempt to occupy the same cell. If the 

number of conflicts crosses a threshold, virtual pheromones 

can be deposited at the entrance in order to instruct robots to 

leave or join the area. Hence, the swarm can adjust its size 

based on the combination of each robot’s collision tracking 

data. 

In [14], a group of unmanned aerial vehicles (UAVs) are 

patrolling an area defined by a set of cells, with the aim of 

ensuring that cells are visited often enough during the 

mission. Individual UAVs decide their next target on the 

basis of values assigned to the cells by a central system 

based on UAV visitation. Different strategies for assigning 

those values are explored, and so the central system 

becomes an effective behaviour adaptation method for the 

group. 

As discussed in Section I, autonomic concepts may be 

used for swarm self-adaptation. [15] describes an adaptation 

pattern in which one robot in the swarm takes on the role of 

an AM, running a control loop with visibility of the whole 

system. In the case study presented, the swarm was tasked 

with exploring an unknown area. Robots communicate their 

positional and explorational information with the AM, 

which can direct them to underexplored areas. Recognising 

that a centralised system may be a bottleneck, a 

decentralised variant is also used in which the robots share 

the information with their neighbours. Both approaches 

perform much better than a basic pheromone-based 

approach. 

A partially distributed approach described in [16] uses a 

group of UAVs, together with communication base stations 

taking on the role of AMs, engaged in a search task. If one 

of the UAVs leaves the active area and loses the 

communication link, the base stations are able to recognise 

the failure and reposition themselves in order to retrieve the 

UAV, while also minimising disruption to the rest of the 

swarm. 

In a previous paper [7], cooperation strategies for swarms 

were investigated to determine the potential for using an 

AM to select between them based on the situation. This 

research builds on that by using a centralised AM is 

employed to modify the broadcast range parameter to 

explore how an AM can improve performance over using a 

fixed strategy. 

III. SIMULATION SETUP 

The following subsections introduce the simulation setup 

and describe the specific task the swarm must carry out. 

This is followed by details of how the autonomic 

management of the swarm functions, and a description of 

the test scenarios run. 

A. Simulation and Task Description 

This research employs a time-stepped simulation of a 
heterogeneous swarm of agents engaged in a variant of a 
foraging task, as reported in previous work [7]. 

The simulation creates a world with a rectangular grid of 
cells, seeded with several items with an associated type, and 
several robots with corresponding types, as shown in Figure 
1. Only one item may be generated on a single cell, however 
any number of robots may stack. A cell can be considered to 
represent a much larger area than the footprint of a single 
robot, leaving plenty of room for multiple robots per cell, 
thus allowing the simulation to ignore potential collisions. 
The simulation proceeds in a time-stepped manner – each 
tick of the simulation, all robots are updated in turn. 

Each map is seeded with several items, which have an 
associated type, and several robots with corresponding types. 
Robots will initially search for items using a wander 
behaviour, selecting a random, valid direction each update to 
move, and moving one cell in that direction. On finding an 
item, the robot will forage if it matches the type, however if 
the types differ the robots may broadcast a help message to 
recruit a suitable robot within range. Foraging is carried out 
in-situ, rather than returning an item to a base. The process 
may be considered analogous to applications, such as mine 
deactivation, analysis of mineral deposits, or environmental 
clean-up. 

The cooperation process is the Help Recruitment strategy 
as described in the previous work [7] – the robot broadcasts 
the help message and waits for responses. If multiple 
responses are received, the nearest robot is selected and 
assigned the task. While a robot waits for responses or task 
assignment, it remains stationary until the process is 
complete. 

Communication messages are queued and processed at 
the end of each simulation tick. First, each message is sent to 
all robots within range. After all messages are sent, each 
robot shuffles the list of unread messages, and then processes 
each in turn – in this way, the simulation can avoid the 
update order being a factor in the behaviour of the robots. 
Without shuffling, if a robot was to receive two help requests 
in a single tick, it would always respond only to the first one. 

 

Figure 1.  A portion of the world state during a simulation. The 

colour of a robot (face) or item (cross) indicates its type. 

12Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems



Communications are affected by a global quality setting, 
which acts as a multiplier on the range of each message sent 
– a value of 50%, for example, results in a message intended 
to be sent 10 cells to only reach robots within 5 cells. 

A measure of energy expended by each robot is tracked 
by assigning actions an energy cost. Each robot incurs an 
upkeep cost of one unit per tick, in addition to the cost of 
actions taken. Foraging an item costs 1 unit, and movement 
costs 1 unit per cell moved, and 1.41 units for diagonal 
movement. Communication cost depends on the maximum 
range of the broadcast according to the power law stated in 
(1), where r is the range of the broadcast in cells. 

 
 cost = 0.01 × r2 (1) 

 

Energy is measured in arbitrary units and is designed as 

a means of exploring the potential impact on a swarm of 

using increased broadcast ranges. 

B. Autonomic Robots 

Each robot contains an autonomic management 
component to gather and process information local to the 
robot, which is then sent to a centralised AM to make 
swarm-wide decisions, which occurs every 32 simulation 
ticks. This value was chosen to balance the need to react to 
situations with the desire to avoid an increase in 
communications needed to allow for higher AM update rates. 

Each robot keeps track of the rectangular region of the 
map it has so far explored, and sends a synchronisation 
message to the central AM containing that, and the robot’s 
type. The central AM uses the aggregate data of all robots to 
estimate the total map size as a rectangle containing all 
individually explored regions, as well as the swarm size and 
composition by totalling individual robot types. 

Additionally, each robot sends a pulse message with the 
same period as the central AM message. This pulse is sent to 
other robots within a fixed range of 8 cells to allow 
identification of neighbours. Before sending the message to 
the central AM, the robot calculates the maximum distance 
from which it received a pulse message from other robots, 
and sends this to the central AM, which in turn records the 
maximum distance received by any robot. This can be used 
together with the known pulse range of 8 cells to detect any 
possible changes in communications quality. 

The central AM uses the information received to 
determine the best range at which to broadcast help requests, 
seeking to balance the need for a broadcast to reach a 
recipient, with the increased energy requirements of 
broadcasting at higher ranges and the impact on the swarm 
performance as more robots receive and respond to help 
requests. 

To do this, the swarm uses the map size and swarm 

composition to calculate the density, , of the robots of each 
type within the world, as in (2), 

 
   = r / a, (2) 

 
where r is the number of robots of a given type, and a is the 
total area of the map. 

The ideal broadcast range was determined by measuring 
the number of simulation ticks it takes the swarm to 
complete the task under a selection of broadcast ranges and 
swarm sizes, and selecting the ranges with the shortest ticks 
to completion for each size, as shown in Figure 2. Fitting an 
approximate trend line to the plot leads to an equation for 
determining the broadcast range based on the lowest density 
of any given robot type, as in (3). 

 
 range = 2.6594 × min

-0.46 (3) 
   

The ideal range can then be divided by the estimated 
communications quality in order to determine a suitable 
range to counter its effects. Finally, the range used is 
clamped between 1 and 128 before being communicated to 
the individual robots.  

If necessary, the central AM can also decide to halt any 
attempt at cooperation. If communications quality drops to 
zero, there is no need to spend time sending messages and 
waiting for replies when those messages will never arrive. 

C. Test Scenarios 

Three sets of tests were conducted. First, the central AM 

performance was measured in set of fixed scenarios. 

Second, the ability of the AM to react to the sudden 

destruction of a proportion of the robots was tested. The 

third test tested the AM’s ability to react to a change in 

communications quality. 

Each test was carried out with a 128x128 map, seeded 

with 256 items, equally distributed between two types. Each 

scenario within a test was run 100 times to obtain a sample, 

and performance has been measured based on simulation 

ticks to complete the task. Additionally, the energy cost 

during the task has been measured. 

1) Central AM Performance: To test the hypothesis that 

the AM is capable of selecting a suitable broadcast range 

and perform no worse than the best fixed setting, three sets 

of scenarios were used, consisting of 64, 128 and finally 256 

robots, equally distributed between the two item types. Each 

scenario was run with a set of 9 fixed help recruitment 

broadcast ranges set at 4, 8, 16, 24, 32, 40, 48, 56 and 64 

 

Figure 2.  Derivation of the ideal broadcast range function. The 
points indicate the best performing broadcast range tested for the 

given density, based on mean simulation ticks to completion. 
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cells. Finally, each scenario was run with an active 

autonomic management system to select the best broadcast 

range. 

2) Robot Destruction: To test the central AM’s ability to 

recognise a sudden change in swarm composition, the 256-

robot scenario was run with an event scheduled to occur 

after 300 simulation ticks, in which a given percentage of 

robots – equally split between the two types – is destroyed. 

The percentages employed in the test were 25%, 50%, 75% 

and 90%. Tests were run with the best performing fixed help 

broadcast range, as identified during the Central AM 

Performance test above, and then again with the active AM. 

3) Communications Quality Change: To test the central 

AM’s ability to recognise a change in the communications 

quality, the 256-robot scenario was run with an event 

scheduled to occur after 300 simulation ticks, in which the 

communication quality changes. The changes employed 

were 100-25%, 25-100%, 100-0% and 0-100%. As before, 

tests were run with the best performing fixed broadcast 

range, and then again with the AM. 

IV. RESULTS 

The following subsections discuss the results of the three 

main test scenarios, followed by an overall summary. 

A. Central AM Performance 

Figure 3 shows the performance of the swarm in each 

strategy for the three swarm sizes tested, while Figure 4 

shows the total energy cost during the test for a swarm of 

256 robots. 

Independent t-tests were performed between the 

identified best broadcast range for each swarm size, against 

the performance of the central AM. The results of this are 

summarised in Table I. 

The results show that a swarm using a central AM, 

making decisions based on the aggregate data collected by 

individual robots, is capable of selecting an appropriate 

broadcast range for the Help Recruitment strategy used. It 

can be seen from the t-test results that there is no statistical 

difference between the best performing fixed range, and the 

use of an AM, at a 95% confidence level. This applies for 

all three swarm sizes tested. 

Figure 3 (c) and Figure 4 show that while broadcast 

ranges of 16 cells and higher show similar performance 

when measured on completion time alone, the energy 

demands on the swarm increase when the range grows 

beyond 24 cells. Therefore, it is not sufficient to set the 

swarm to operate with a higher broadcast range in order to 

cover any eventuality, as the swarm would become less 

efficient. 

These findings show that in situations where the swarm 

size and operating area cannot be predicted ahead of time, 

the ability to determine a suitable broadcast range during the 

task can prove beneficial to overall swarm performance. 

 
(a) 64 robots 

 
(b) 128 robots 

 
(c) 256 robots 

Figure 3.  Simulation ticks to complete foraging task for each 

broadcast range tested, and with an AM, for three different swarm sizes: 

(a) 64 robots, (b) 128 robots, and (c) 256 robots. Circles and crosses 

indicate outliers in the data. 
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B. Robot Destruction 

Figure 5 shows the performance of the swarm under 

each test scenario. Independent t-tests were run comparing 

the fixed range performance with that where the AM is 

active, and the results are summarised in Table II.  

The results here are not so clear cut. In the cases where 

75% and 90% of robots are destroyed, the AM’s ability to 

adjust the broadcast range to compensate for the decreased   

swarm density proves beneficial to the overall swarm 

performance. In situations where robots may be lost due to 

hazardous environments, this would prove useful.  

However, the t-test results in Table II show that at the 

50% level, the AM actually reduces overall performance. 

This result is surprising given destroying 50% of the robots 

leads to a remaining swarm of 128 robots, and the results of 

the Central AM Performance tests show that the AM 

performs as well as the case with a fixed broadcast range of 

24 cells. Further investigation was conducted by running the 

fixed range and AM tests in this case a further 500 times 

each. The results of that test show no statistical difference 

between the two cases, suggesting random chance was 

responsible for the results in Table II for the 50% 

destruction test. 

C. Communications Quality Change 

Figure 6 shows the performance of the swarm and the 

energy cost for each communications quality change 

scenario. 

Independent t-tests were run comparing the fixed range 

performance with that where the AM is active, and the 

results are summarised in Table III. The equivalent tests 

comparing energy usage are shown in Table IV. 

The results show that the AM only improves in both 

performance and efficiency in the situation where the 

communications quality drops from 100% to 25%. The AM 

is able to adjust the broadcast range to compensate for the 

decreased communications range. 

Where quality increases from 25% to 100%, the AM 

does not show any performance advantage. This is likely 

TABLE I.  CENTRAL AM PERFORMANCE T-TEST RESULTS 

Swarm 

Size 

Ideal 

Range 

Fixed Range AM Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

64 56 4151.59 1031.553 4153.54 1044.386 198 -0.013 0.989 

128 40 2022.26 564.917 2024.05 596.051 198 -0.022 0.983 

256 24 936.90 267.334 983.77 248.969 198 -1.283 0.201 

TABLE II.  ROBOT DESTRUCTION T-TEST RESULTS 

Destroyed 

Robots / % 

Fixed Range AM  Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

25 1187.51 342.602 1150.36 303.995 198 0.811 0.418 

50 1630.59 617.813 1811.13 606.876 198 -2.085 0.038 

75 3664.05 1709.930 3041.41 1226.075 179.516 2.959 0.004 

90 11196.18 5458.347 7974.65 2753.011 146.305 5.270 0.000 

 

 

Figure 4.  Energy cost for the swarm of 256 robots during the 
foraging task, for each broadcast range tested, and with an AM. 

Circles and crosses indicate outliers in the data. 

 

Figure 5.  Simulation ticks to complete foraging task for each robot 

destruction scenario, with an without an AM. Circles and crosses 

indicate outliers in the data 
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due to the higher number of items during the earlier stages 

of the task. As help requests cause robots to stop the search 

for a while to participate in the recruitment process, higher 

ranges cause more robots to halt what would otherwise be a 

fruitful random search. In this scenario, the AM is also less 

efficient, a consequence of broadcasting at a higher range. 

In the cases where the communications quality begins or 

ends at 0%, no statistical differences can be seen between 

the AM and a fixed broadcast range. This is likely because 

at 0% communications quality, no cooperation is possible, 

and the performance of the swarm is dominated by the 

random search for items. 

D. Summary 

The results above show that the presence of an 

Autonomic Manager can have benefits for the performance 

of the swarm, however it is possible for the AM to reduce 

performance in some circumstances. These situations will 

require further investigation, and the AM may need to be 

improved in order to take into account further variables in 

order to counter their effects. For example, if estimates of 

the density of items in the world can be made, this could be 

used to reduce communication range when the density is 

high, avoiding the interruptions that may lead to the poorer 

performance in this period.   

V. CONCLUSION AND FUTURE WORK 

This research used a simulation of a robotic swarm 
equipped with a centralised Autonomic Manager capable of 
managing performance through the adjustment of the intra-
swarm communication range. 

The findings show that an AM is capable of finding an 
appropriate communication range when given a task where 
the map size and number of robots in the swarm is not 
initially known to the AM and must be deduced from 
information gathered by individual robots. 

When a robot destruction event occurs, the AM proves 
beneficial to the swarm when the robot loss is high, capable 

TABLE III.  COMMUNICATIONS QUALITY CHANGE T-TEST RESULTS - TICKS 

Quality 

Change 

Fixed Range AM  Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

100 – 25% 1314.86 518.360 944.96 239.680 139.481 6.477 0.000 

25 – 100% 1015.27 268.303 980.89 286.952 198 0.875 0.383 

100 – 0% 1663.61 706.816 1724.27 625.697 198 -0.643 0.521 

0 – 100% 1108.01 276.859 1132.90 302.442 198 -0.607 0.545 

TABLE IV.  COMMUNICATIONS QUALITY CHANGE T-TEST RESULTS - ENERGY 

Quality 

Change 

Fixed Range / 1000 AM / 1000  Deg. of 

Freedom 
t-statistic p-value 

Mean Std. Dev. Mean  Std. Dev. 

100 – 25% 746.49 292.797 563.98 136.668 140.184 5.648 0.000 

25 – 100% 574.95 151.535 730.59 163.040 198 -6.993 0.000 

100 – 0% 943.32 399.203 986.42 356.575 198 -0.805 0.422 

0 – 100% 627.33 156.363 646.28 172.379 198 -0.814 0.417 

 

 
 

(a) Simulation ticks to complete 

 

 
 

(b) Energy cost 

Figure 6.  Performance of the swarm in the communications quality 
change scenarios, with and without an AM: (a) simulation ticks to 

complete, and (b) energy cost. Circles and crosses indicate outliers in 

the data. 
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of completing the task faster than using a fixed broadcast 
range. No benefit is seen when the robot loss is low. 

In the event of a change in communications quality, the 
AM is capable of improving performance when the quality 
drops from high to low without dropping out entirely, but not 
when the quality starts low and increases. This is likely due 
to the increased item density during the early stages of the 
task, and it is worth exploring this factor to see how the AM 
might measure and take item density into account. 

It is noted that this work was conducted using a 
centralised AM that makes global decisions on behalf of the 
swarm. Such a system introduces problems that have not 
been replicated in this work, such as the potential for the 
central AM to be a bottleneck on performance, the presence 
of a single point of failure, the need for individual robots to 
maintain that link, and reduced autonomy of any one robot. 
Future work will include producing a decentralised 
autonomic layer within the swarm, where individual robots 
run their own AMs that make decisions based on local data 
and swarm-level information that can be shared through the 
regular pulse messages. 

Future work may also explore other situations that may 
affect performance, such as more complex maps containing 
obstacles, differing distributions of robots, more complexity 
in the foraging task, on-board batteries that drain and require 
recharging, and further events that may occur to 
unexpectedly change the world state. 

REFERENCES 

[1] H. Hamann, Swarm robotics: A formal approach. Springer 

International Publishing, Cham, Switzerland, 2018. 

[2] I. Navarro and F. Matía, "An Introduction to Swarm 

Robotics", ISRN Robot., vol. 2013, pp. 1–10, 2013. 

[3] L. Bayindir, "A review of swarm robotics tasks", 

Neurocomputing, vol. 172, pp. 292–321, Jan. 2016. 

[4] R. Sterritt, G. Wilkie, C. Saunders, M. D. C. Gama, G. 

Hawe, and L. McGuigan, "Inspiration for Space 2.0 from 

Autonomic-ANTS (Autonomous NanoTechnology Swarms) 

Concept missions", presented at the Reinventing Space 

Conference, 2019. 

[5] A. Farahani, G. Cabri, and E. Nazemi, "Self-* properties in 

collective adaptive systems", in Proceedings of the 2016 

ACM International Joint Conference on Pervasive and 

Ubiquitous Computing: Adjunct, Heidelberg, Germany, 

Sep. 2016, pp. 1309–1314. 

[6] G. Beni, "From Swarm Intelligence to Swarm Robotics", in 

Swarm Robotics, Berlin, Heidelberg, 2005, pp. 1–9. 

[7] L. McGuigan, C. Saunders, R. Sterritt, and G. Wilkie, 

"Cooperation Strategies in a Time-Stepped Simulation of 

Foraging Robots", in The Twelfth International Conference 

on Adaptive and Self-Adaptive Systems and Applications 

(ADAPTIVE 2020) IARIA, Oct. 2020, p. 8. 

[8] J. Prasetyo, G. De Masi, and E. Ferrante, "Collective 

decision making in dynamic environments", Swarm Intell., 

vol. 13, no. 3, pp. 217–243, Dec. 2019. 

[9] N. Bredeche, E. Haasdijk, and A. Prieto, "Embodied 

evolution in collective robotics: A review", Front. Robot. 

AI, vol. 5, p. 12, 2018. 

[10] C. Saunders, R. Sterritt, and G. Wilkie, "Collective 

Communication Strategies for Space Exploration", J. Br. 

Interplanet. Soc., vol. 72, no. 12, pp. 416–430, 2019. 

[11] J. O. Kephart and D. M. Chess, "The vision of autonomic 

computing", Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003. 

[12] E. Vassev, R. Sterritt, C. Rouff, and M. Hinchey, "Swarm 

Technology at NASA: Building Resilient Systems", IT 

Prof., vol. 14, no. 2, pp. 36–42, Mar. 2012. 

[13] J. Zelenka, T. Kasanický, and I. Budinská, "A Self-adapting 

Method for 3D Environment Exploration Inspired by 

Swarm Behaviour", in Advances in Service and Industrial 

Robotics, Cham, 2018, pp. 493–502. 

[14] K. S. Kappel, T. M. Cabreira, J. L. Marins, L. B. de 

Brisolara, and P. R. Ferreira, "Strategies for Patrolling 

Missions with Multiple UAVs", J. Intell. Robot. Syst., vol. 

99, pp. 499–515, Sep. 2019. 

[15] M. Puviani, G. Cabri, and F. Zambonelli, "Agent-based 

Simulations of Patterns for Self-adaptive Systems":, in 

Proceedings of the 6th International Conference on Agents 

and Artificial Intelligence, ESEO, Angers, Loire Valley, 

France, 2014, pp. 190–200. 

[16] M. Allison, M. Robinson, and G. Rusin, "An Autonomic 

Model-Driven Architecture to Support Runtime Adaptation 

in Swarm Behavior", in Advances in Information and 

Communication, Cham, 2020, pp. 422–437. 

 

 

 

 

 

17Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems


