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Abstract A leading theory holds that neurodevelopmental brain disorders arise from imbalances

in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional

model is rich enough to capture the multiple neural circuit alterations underlying brain disorders.

Here, we combined computational simulations with analysis of in vivo two-photon Ca2+ imaging

data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to

test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint

alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly

more sensitive to changes in some cellular components over others; (3) The direction of circuit

alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I

imbalance model should be updated to higher dimensional models that can better capture the

multidimensional computational functions of neural circuits.

DOI: https://doi.org/10.7554/eLife.26724.001

Introduction
The nervous system shows complex organization at many spatial scales: from genes and molecules,

to cells and synapses, to neural circuits. Ultimately, the electrical and chemical signaling at all these

levels must give rise to the behavioral and cognitive processes seen at the whole-organism level.

When trying to understand prevalent brain disorders such as autism and schizophrenia, a natural

question to ask is: where is the most productive level of neuroscientific investigation? Traditionally,

most major disorders are diagnosed entirely at the behavioral level, whereas pharmaceutical inter-

ventions are targeted at correcting alterations at the molecular level. However, even for the most

successful drugs, we have little understanding of how pharmaceutical actions at the molecular level

percolate up the organizational ladder to affect behavior and cognition. This classic bottom-up

approach may even be further confounded if phenotypic heterogeneity in disorders such as autism

turn out not to reflect a unique cellular pathology, but rather ‘a perturbation of the network proper-

ties that emerge when neurons interact’ (Belmonte et al., 2004). These considerations imply that a

more promising level of analysis might be at the level of neural circuits, since the explanatory gap

between circuits and behavior is smaller than the gap between molecules and behavior. This circuit-

level viewpoint argues for a reverse-engineering approach to tackling brain disorders: rather than
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start at the molecular level and working up, we should instead start by asking how cognitive and

behavioral symptoms manifest as alterations at the circuit level, then interpret these changes at the

levels of cells, synapses, and molecules as appropriate.

One prominent circuit-level hypothesis for brain disorders has been the idea of an imbalance in

excitatory and inhibitory signaling. First proposed as a model for autism (Rubenstein and Merze-

nich, 2003), the concept has since been applied to many other brain disorders, including Schizo-

phrenia, Rett syndrome, fragile-X syndrome, tuberous sclerosis, and Angelman Syndrome. However,

a major drawback of this model is that it only considers overall activity, which is one-dimensional. It

implies that either too much excitation or too much inhibition is unhealthy (Figure 1A). Although

several studies have found evidence that the E/I balance is indeed upset in multiple brain disorders

(Bateup et al., 2011; Dani et al., 2005; Gibson et al., 2008; Kehrer et al., 2008; Wallace et al.,

2012), a model’s usefulness should not be judged on whether it is nominally true or false, but on its

explanatory and predictive powers as compared with competing alternative models. In this study,

we argue that that even if the E/I imbalance model proves correct, its unidimensionality might ulti-

mately limit its applicability, for three reasons.

First, by placing all disorders on the same single axis, the E/I imbalance model implicitly lumps

together some vastly different disorders, such as epilepsy, schizophrenia and autism (Figure 1A)

because they share an excess of excitation. By extension it implies that the symptoms of diverse dis-

orders could be normalized solely by either enhancing or reducing the level of, say, GABAergic sig-

naling as appropriate. Although clinical trials for such GABAergic-based interventions are ongoing

(Braat and Kooy, 2015), no treatment for a neurodevelopmental disorder based on this principle

has yet been approved.

A second issue with the unidimensionality of the E/I imbalance model is that it lumps together all

excitatory and inhibitory neural circuit components. In Figure 1B, we show a schematic diagram of a

eLife digest In many brain disorders, from autism to schizophrenia, the anatomy of the brain

appears remarkably unchanged. This implies that the problem may reside in how neurons

communicate with one another. Unfortunately, neuroscientists know little about how brain activity

might differ from normal in these disorders, or how specific changes in activity give rise to

symptoms. One leading theory, first proposed over a decade ago, is that these disorders reflect an

imbalance in the activity of excitatory and inhibitory neurons. Excitatory neurons activate their

targets, whereas inhibitory neurons suppress or silence them. While studies in mice have lent

support to this theory, they have not yet culminated in new treatments for brain disorders.

One limitation of the excitation-inhibition imbalance theory is that it is one-dimensional. It

assumes that there is an optimal balance of excitation and inhibition, and that brain disorders can be

arranged in an imaginary line on either side of this optimum. Disorders to the right of the optimum,

such as epilepsy and some forms of autism, feature too much excitation. Disorders to the left, such

as the developmental disorder Rett syndrome, feature too much inhibition. But can diverse brain

disorders really be classified on the basis of a single property, or do scientists need to consider

other factors?

To find out, O’Donnell et al. analyzed recordings of brain activity from genetically modified mice

with the mutation that causes fragile X syndrome, the most common form of inherited learning

disability and autism. The mice showed changes in their overall brain activity compared to control

animals. Their neurons also tended to fire in a more synchronized manner. A computer simulation

revealed that an imbalance in excitation and inhibition alone could not explain these changes. Yet, a

more complex simulation incorporating extra properties of neural circuits did a better job of

explaining the altered neural activity seen in the mice.

O’Donnell et al. propose that this more advanced multi-dimensional model of changes in neural

circuits could be used to screen candidate drugs before testing them in patients. In principle, the

model could even help with designing drugs or other interventions by making it easier for

researchers to target more precisely the changes in neural circuits that occur in brain disorders.

DOI: https://doi.org/10.7554/eLife.26724.002
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Figure 1. Mismatch between the E/I imbalance model’s unidimesionality and the multiple changes in circuit activity in Fragile-X mouse models. (A)

Schematic of standard E/I imbalance model as a unidimensional axis. Fragile-X Syndrome and autism have been associated with an excess of excitation

(Gibson et al., 2008; Lee et al., 2017; Nelson and Valakh, 2015), while Rett Syndrome has been associated with an excess of inhibition (Dani et al.,

2005). (B) Diagram of a generic neural circuit, showing an excitatory and an inhibitory population of neurons and their interconnections. Although the

E/I imbalance model implicitly groups all components as either excitatory (red) or inhibitory (blue), in principle any component could separately be

altered in brain disorders, and may have a distinct effect on circuit function. (C) Upper left, example Ca2+ imaging dF/F raster plots from a single animal

from each of two genotypes, WT and Fmr1 KO, and three age groups, P9–11, P14–16 and P30–40. In each case, 3 min of data are shown from 40

neurons. Right and lower left, mean firing probability, standard deviation of firing probabilities, and mean pairwise correlation across all neurons. Same

data in scatter plots lower left and bar charts right. * indicates significant difference in group means at p<0.05, by bootstrapping.

DOI: https://doi.org/10.7554/eLife.26724.003
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generic neural circuit with excitatory components colored red and inhibitory components colored

blue. The E/I imbalance model implies that varying any of the excitatory components, such as the

strength of recurrent excitatory synapses or the input resistances of excitatory neurons, would have

the same overall effect on circuit function. In contrast, theorists have found that these equivalences

often do not hold even in very simple circuit models (Wilson and Cowan, 1972).

Third, because the standard E/I imbalance model is given in terms of circuit components, not cir-

cuit function, it does not specify which aspect of a neural circuit’s activity should be maintained for

healthy performance. For example, it leaves unclear which of neuronal firing rates, synchrony, or reli-

ability of responses might be altered if E/I balance is upset.

To motivate our study, we began by investigating which circuit activity properties are altered in a

model brain disorder. We re-analyzed published in vivo two-photon Ca2+ imaging data we previ-

ously recorded from somatosensory cortex in Fmr1 knockout mice (Gonçalves et al., 2013), a well-

studied animal model for fragile-X syndrome (The Dutch-Belgian Fragile X Consortium, 1994). We

compared the data from wild-type (WT) mice with Fmr1 KO mice, across three different develop-

mental time points: just before (P9–11) and after (P14–16) the critical period for heightened activity-

dependent synaptic plasticity in L2/3 barrel cortex, and a more mature timepoint (P30–40). Example

DF/F raster plots from each group are shown in Figure 1C, top left. We binned the data into 1 s

timebins (originally imaged at 4 Hz), then transformed each neuron’s timeseries of DF/F values into a

probabilistic sequence of binary ON/OFF values by assuming a Poisson firing model (Materials and

methods). We then summarized the neural population activity from each animal with three statistics:

the mean ON probability across all recorded neurons, the standard deviation (s.d.) in ON probability

across neurons, and the mean correlation between all pairs of neurons (Figure 1C, bar charts right

and scatter plots lower left). Together these measures capture both the statistics of the bulk popula-

tion activity and some indication of the heterogeneity across neurons.

For mean firing rates, the only change we detected was a decrease in firing probability in WT

between P14–16 and P30–40 (p=0.027), which was coupled with an increased s.d. of firing rates

(p=0.015). We also detected a higher firing rate s.d. in P9–11 KO animals than WT (p=0.031). Finally,

as previously reported (Golshani et al., 2009; Gonçalves et al., 2013; Rochefort et al., 2009), we

found a substantial decrease in pairwise correlations in both genotypes across development, with

slightly higher correlations in KO animals than WT at P9–11 (p=0.029) and P14–16 (p=0.047).

These results show that multiple statistics of cortical circuit activity are altered in Fmr1 KO mice.

However, two questions remain: (1) Which circuit components are responsible for these activity alter-

ations? (2) What aspects of these activity alterations impact circuit computation? In the remainder of

this study, we used computational simulations and further data analysis to ask whether the E/I imbal-

ance model could help address these questions.

We first built a detailed spiking neural circuit model of mouse L2/3 somatosensory cortex to

explore how its various excitatory and inhibitory components affect the circuit’s spiking output, and

found that the E/I imbalance model was not flexible enough to capture key aspects of this relation-

ship. We then derived an abstract two-dimensional circuit model that captures more features of the

circuit function than the 1-dimensional E/I imbalance model did. Using this new model, we found

that certain sets of circuit components have redundant effects on circuit function, and that circuit

function is vastly more sensitive to changes in some components over others. To ask how this 2D

model could help interpret brain circuit abnormalities in a particular test case, we fit a version of the

model to the Ca2+ imaging data from Fragile-X mouse models presented above. We found that the

model predicts opposite changes in Fmr1 KO circuit properties at different developmental ages.

Finally, we applied a new large-scale neural population analysis method (O’Donnell, 2017b) to the

same Ca2+ imaging data, and found systematic shifts in the distribution of neural circuit activity pat-

terns in Fragile-X that were not predictable from neural firing rates or correlations alone.

Results
Neural circuits consist of many components that typically interact non-linearly to generate complex

circuit activity dynamics. Although many properties of cortical circuit components have been found

to be altered in animal models of brain disorders, it remains extremely difficult to predict the net

effect of varying any one particular parameter on circuit activity. The E/I imbalance model seeks to

simplify this problem by projecting all circuit alterations onto a one-dimensional axis (Figure 1A)
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where the goal is to achieve a ‘healthy’ balance of excitation and inhibition. Under this model, either

too much excitation or too much inhibition leads to improper circuit function.

To explicitly test whether the E/I imbalance model can account for the effects of cellular compo-

nent changes on circuit function, we built a detailed computational model of layer (L) 2/3 mouse

somatosensory cortex. This circuit has been studied in detail by neurophysiologists, and several of

its properties have been found to be altered during development in mouse models of Fragile-X syn-

drome, including parvalbumin-positive interneuron number (Selby et al., 2007), GABA receptor

reversal potential (He et al., 2014), dendritic spine dynamics (Cruz-Martı́n et al., 2010), and L4

excitatory input (Bureau et al., 2008), reviewed by Contractor et al., 2015. We used numerical

computer simulations to perform hypothetical experiments where we perturbed various parameters

of the circuit model and observed the resulting changes in circuit-level activity. Although we focused

on this particular brain circuit for tractability, our general conclusions and methodology should be

readily applicable to other brain circuits (Frye and MacLean, 2016).

The L2/3 computational model we built (Figure 2A, see Materials and methods for details) con-

sisted of four interconnected populations of leaky integrate-and-fire neurons: one group of 1700

excitatory (E) pyramidal neurons and three groups of inhibitory neurons: 115 5HT3AR-expressing

neurons, 70 parvalbumin-expressing (PV) neurons, and 45 somatostatin-expressing (SOM) neurons.

This L2/3 circuit was driven by a separate population of 1500 L4 excitatory neurons. Cellular num-

bers, intrinsic properties, synaptic strengths, and connectivity statistics were taken from published in

vitro data from P17–22 wild-type mice (Avermann et al., 2012; Lefort et al., 2009; Tomm et al.,

2014). We chose this level of detail for the model in order to relate experimentally measureable bio-

physical properties of neurons to their putative role in the circuit at large.

L2/3 neurons of the rodent somatosensory neocortex respond only sparsely to sensory stimula-

tion in vivo. For example, twitching a whisker activates, on average, only ~20% of L2/3 neurons in its

corresponding barrel, each of which typically emits only one action potential (Clancy et al., 2015;

Kerr et al., 2007; Sato et al., 2007). Hence any individual neuron carries very little information

about the stimulus on its own, implying that information must instead be encoded at the circuit level

as the identities of the subset of neurons that respond.

To model whisker stimulation, we simulated a volley of spikes arriving from L4 as input to the

population of L2/3 cells. We chose a random subset of L4 neurons as ON, then sent a single spike

from each of these L4 cells to their target neurons in L2/3, and recorded the responses of all neurons

in L2/3, some of which spiked and some of which did not. We repeated this identical stimulation

multiple times, in order to get an average response probability for each L2/3 neuron, given the

probabilistic vesicle release at synapses in the model. Then, we chose a different random subset of

L4 neurons as ON, and repeated the entire procedure. Finally, we varied the fraction of L4 cells

active and plotted the probability of response for each individual L2/3 neuron as a function of L4

activity level (Figure 2B–C).

We found that the mean response probability of each neuron in the simulation increased from

zero to one monotonically with increasing L4 activity level. This sigmoidal-shaped response profile of

simulated L2/3 neurons mimics the spiking response of mouse L2/3 pyramidal cells to extracellular

L4 stimulation in vitro (Elstrott et al., 2014), while the sparse, noisy and distributed network

responses were reminiscent of in vivo activity following whisker stimulation (Clancy et al., 2015;

Kerr et al., 2007). Neurons of all four cell types in the simulation responded to the L4 stimulus,

including the SOM interneurons which did not receive direct L4 input, but were instead activated by

disynaptic connections via L2/3 excitatory neurons. The detailed shape of the response curve varied

systematically across cell types and was heterogeneous for different neurons of a given cell type. To

quantify these differences, we used logistic regression to fit the response profile of each neuron with

a sigmoid function (Figure 2D, inset), which has just two parameters: the slope (representing the

steepness of the response curve) and threshold (representing the minimal fraction of L4 neurons

needed to activate the cell). When we plotted the fitted slope and threshold values for each neuron

against each other, we found that each cell type falls into a distinct cluster in this two-dimensional

space. For example, all PV inhibitory neurons had a low slope and low threshold, whereas SOM

inhibitory neurons had a steep slope and moderate threshold. We then used these slope-threshold

measurements to summarize the circuit-level input-output function of this ‘default’ model of L2/3

somatosensory cortex. This 2D logistic model has two benefits over the 1-D E/I imbalance model:

first, its extra degree of freedom allows for richer and more flexible fits to data, and second, by
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Figure 2. Computational model of L2/3 mouse somatosensory cortex. (A) Schematic diagram of computational circuit model. (B) Example raster plots

of spiking responses from a subset of neurons from each cell type (colors as in panel A), for varying fractions of L4 activated (black). (C) Probability of

spiking as a function of the fraction of L4 neurons activated. Each curve represents the response probability of a single neuron, averaged over multiple

trials and multiple permutations of active L4 cells. (D) Each circle plots the fitted logistic slope and threshold values for a single neuron in the

simulation. Circle color indicates cell type: red is excitatory, green is PV inhibitory, purple is 5HT3AR inhibitory, blue is SOM inhibitory. Large black

circles indicate mean for each cell-type. Inset shows an example fitted logistic response function (orange) to the noisy simulation results from a single

excitatory neuron (black).

DOI: https://doi.org/10.7554/eLife.26724.004
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describing an input-output mapping for the L2/3 circuit it can capture some aspects of the computa-

tion that the circuit performs for the animal. In contrast, the E/I imbalance model is specified purely

in terms of circuit components, and so is agnostic to the circuit’s computational function.

The biophysical circuit model contained 100 parameters (Materials and methods). How sensitive

is the circuit’s macroscopic input-output function to alterations in its low-level components? To test

this, we varied 76 of the model parameters in turn by ±20%, and repeated the entire set of simula-

tions for each case (Materials and methods). For each individual parameter alteration, we fit a new

logistic response function for each model neuron. We summarize the results by plotting the logistic

slope and threshold parameters and comparing their values to those found with the default model.

The outcomes were hugely varied. We show three examples from the set of 76 in Figure 3A, chosen

to illustrate three qualitatively different effects that neural parameter changes can have on circuit

function. First, when we increased the amplitude of postsynaptic potentials (PSPs) of excitatory syn-

apses from L4 to L2/3 excitatory neurons, we found that the logistic threshold parameter of all cell

types shifted leftwards to lower values (Figure 3A left), implying that fewer L4 neurons were needed

to activate the entire L2/3 circuit. In contrast, when we increased the PSP amplitude of a different

excitatory synapse, the recurrent connections between L2/3 excitatory neurons, we found

(Figure 3A center) that excitatory and SOM inhibitory neurons had increased slope parameters rela-

tive to default, with little change in their threshold parameters. At the same time, 5HT3AR inhibitory

neurons had decreased slopes and thresholds, while PV neurons had little change at all. As a third

example, we increased the probability of inhibitory synaptic connections from L2/3 PV interneurons

to L2/3 excitatory neurons (Figure 3A right). In this case, we found that excitatory neurons had a

marginally lower slope and increased threshold, SOM inhibitory neurons had a lower slope, 5HT3AR

inhibitory neurons had both an increased slope and threshold, and PV neurons showed little change,

even though their outgoing synapses were the parameter that was altered.

To synthesize the findings from all simulations, for each altered parameter we plotted the shift in

mean slope-threshold values for L2/3 excitatory neurons from the mean values found with the

default model (Figure 3B). We focused on excitatory neurons because they constitute 90% of the

neurons in this layer (Lefort et al., 2009) and are the primary output to downstream circuits

(Mao et al., 2011; Petreanu et al., 2007). Overall, we found a very heterogeneous picture. First,

the magnitude of the shift in circuit response varied from parameter to parameter (Figure 3B–C).

Varying some parameters, such as the first two examples given above, had large effects, whereas

varying other parameters such as wI5htE (the strength of synapses from 5HT3AR inhibitory neurons to

E neurons) or tmIsom (the membrane time constant of SOM inhibitory neurons) had little effect. Sec-

ond, the direction of shift in 2-D slope-threshold space also depended on parameter (Figure 3C).

Increasing some parameters changed either circuit slope or threshold in isolation, while other param-

eters changed both slope and threshold together. All four quadrants of the slope-threshold plane

could be reached by various subsets of the model parameters. Third, basic knowledge of whether a

component was ‘excitatory’ or ‘inhibitory’ was insufficient to predict the direction of slope-threshold

change. For example, the two glutamatergic projections considered in Figure 3A had distinct effects

on circuit function.

In summary, these simulations indicate that the L2/3 somatosensory cortex circuit has extremely

varied sensitivities to changes in its cellular components and that the eventual circuit-level conse-

quences cannot be predicted from knowledge of the class of the perturbed neurotransmitter alone.

Since the E/I imbalance model groups all excitatory and inhibitory components as respective equals,

it cannot account for these results.

Firing rates and correlations from the logistic model
In the above analysis, we investigated how low-level circuit components affect a high-level circuit

input-output function, as parameterized by the slope and threshold of fitted logistic functions. But

how is this logistic input-output function related to more common measures of neural population

activity, such as firing rates and pairwise correlations between neurons? To investigate this, we con-

sidered the following reduced statistical model of cortical activity. We assumed for simplicity that

the magnitude of the total input to the L2/3 circuit can be described by a Gaussian distributed ran-

dom variable, with zero mean and unit standard deviation (Figure 4A lower left). Then we described

each L2/3 neuron’s input-output as a logistic function as before (Figure 4A upper left), with thresh-

old and slope defined relative to the Gaussian input’s mean and standard deviation, respectively.
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Figure 3. Heterogeneous effects of varying L2/3 parameters on the circuit input-output function. (A) Shifts in the distribution of fitted slope and

threshold parameters as a result of increasing the strength of synapses from L4 to L2/3 E neurons (left), increasing the strength of recurrent synapses

between L2/3 E neurons (center), or increasing the connection probability between L2/3 PV interneurons and E neurons (right). Transparent circles

represent values for default network, heavy circles for altered network. The default and altered group means are large yellow and black open circles,

Figure 3 continued on next page
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Given this model, we can numerically calculate the probability distribution over a neuron’s firing

probability, which in general is skewed and non-Gaussian (Figure 4A upper right). From this func-

tion, we compute (Materials and methods) both the neuron’s mean firing probability and the pair-

wise correlation of two identical neurons following this profile (Figure 4A lower right). Example

samples from the model are illustrated in Figure 4B.

Neural firing rates and correlations had qualitatively different dependencies on the underlying

logistic model’s slope and threshold. Neural firing rate was greatest when threshold was low and

slope was high (top left of phase plot, Figure 4C left), whereas correlations were greatest when

both threshold and slope were high (top right of phase plot, Figure 4C right). This implies that any

change in the circuit’s input-output function slope or threshold will in general have distinct effects on

firing rate versus correlations, and so could not be captured by a 1-dimensional E/I balance model

that sought to, for example, normalize firing rates alone. To illustrate this fact, we plot the calculated

correlation values along a contour where firing probability is fixed at 0.1 (Figure 4D). In the region

of parameter space where both the slope and threshold are low (Figure 4C bottom left), correlations

are low,~0.01. However, as we move along the contour for firing rate = 0.1 toward the region of

parameter space where slope and threshold are high (Figure 4C top right), the pairwise correlations

increase to ~0.4. This shows that a one-dimensional E/I balance rule that exclusively sought to nor-

malize neural firing rates would leave neural correlations free to achieve arbitrary values.

Previous studies have found evidence for an E/I imbalance in ASD (Lee et al., 2017; Nelson and

Valakh, 2015). Fragile-X syndrome is the leading inherited cause of ASD, and also carries alterations

in excitability (Contractor et al., 2015). We aimed to interpret our Fmr1 KO Ca2+ imaging data

(Figure 1C) via the 2D logistic model. Since our earlier analysis found substantial within-animal het-

erogeneity in neural activity levels in both genotypes (Figure 1C), we extended the 2D logistic

model for single neurons to a 5D neural population version that captured cell-to-cell heterogeneity.

The three extra parameters represented the standard deviations and correlation in slope and thresh-

old parameters across the neural population (see Materials and methods for details). We fit the

parameters of the logistic model to reproduce the same neural population Ca2+ imaging data pre-

sented in Figure 1C. Given the three summary statistics from each animal (firing rate mean and s.d.,

and mean pairwise correlation), we used a gradient descent algorithm to find the five parameters of

the population-level version of the logistic model that best matched the activity statistics (see Mate-

rials and methods). The output statistics of the fitted models matched well those of the target data

(Figure 5–figure supplement 1). Example neural population activity patterns drawn from the mean

model fits for each group are shown in Figure 5A, along with the fitted slope-threshold functions

(Figure 5A insets), to be compared with the Ca2+ imaging rasters in Figure 1C. We also plot the full

5D parameter fits for all animals in Figure 5–figure supplement 2. For the rest of the analysis, we

focus on the mean slope and mean threshold parameters, which showed the most prominent

changes. In Figure 5B, we plot the mean slope and mean threshold fits on top of the previously cal-

culated (Figure 4C) 2D slope-threshold maps of firing rate and correlation. We found that in young

animals, P9–11, most points were scattered at high values of both slope and threshold (Figure 5B

left). With age, the parameter fits for both genotypes moved south-west toward the low slope and

low threshold region of parameter space (Figure 5B center and right). The mean location of the

cloud of points at each developmental age differed between WT and KO. We plot the direction of

shift in group mean from WT to KO in Figure 5C. In young animals, P9–11 and P14–16, the KO

group had both higher slope and higher threshold than WT, whereas in adult animals, P30–40, the

KO group had a lower slope and lower threshold than WT. These results demonstrate an opposite

direction of circuit parameter change in young Fragile-X mice compared to adults, which was not be

uncovered by measures of neural firing rates and correlations (Figure 1C).

Figure 3 continued

respectively. (B) Absolute values of mean shifts in threshold (upper plot) and slope (lower plot) for Excitatory neurons arising from increasing the value

of each parameter by +20%. The three example parameters from panel A are labeled and indicated as filled red circles. Note that data are presented

on a log10 scale. (C) The shift in mean slope-threshold parameter values for E neurons from the default network values, in response to each of the 76

circuit parameter alterations. Light red circles indicate +20% increase in parameter value; dark red crosses indicate a �20% decrease in parameter

value.

DOI: https://doi.org/10.7554/eLife.26724.005
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Figure 4. Firing rates and pairwise correlations from the logistic response model. (A) Logistic model components.

We assume a normally distributed input drive (gray distribution, bottom left), which is passed through the neuron’s

probabilistic spike input-output function (red curve, top left), which results in a distribution of spike probabilities

(top right) that are determined by the input-output function’s slope and threshold parameters. From the output

Figure 4 continued on next page
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Earlier we asked how sensitive the logistic model slope and threshold parameters were to altera-

tions in the many underlying neural circuit components (Figure 3). In a similar way, we can also ask

how sensitive the neural firing rates and correlations are to alterations in the logistic slope and

threshold parameters. This is important since inspection of the two-dimensional maps in Figure 3C

shows that these sensitivities will differ depending on starting location within the slope-threshold

Figure 4 continued

distribution, we can directly calculate the mean firing rate and correlation between a pair of such neurons

(Materials and methods). (B) Example spikes from the logistic model. The bottom trace (black) shows examples

inputs over time drawn randomly from the same normal distribution. This is transformed to spike probability at

each time point (red trace). Example spike trains can then be generated from the spike probability trace by

drawing Bernoulli samples with the specified probabilities (red ticks, top). If each neuron’s spike train is

conditionally independent given the same spike probabilities, we can see correlations in their spike trains. (C)

Calculated mean firing rate (left) and pairwise correlation (right) color maps as a function of the logistic threshold

(x-axis) and slope (y-axis) parameters. Contours indicate lines of fixed firing rate or correlation in the 2D slope-

threshold space. (D) Pairwise correlation values along the slope-threshold contour for firing rate = 0.1.

DOI: https://doi.org/10.7554/eLife.26724.006

Figure 5. Fragile-X fits from logistic model. (A) Example samples from the fitted logistic models, corresponding to the six groups shown in panel A.

Inset shows group mean fitted logistic function, dashed vertical line represents zero. (B) Fitted logistic mean slope and mean threshold values for data

from each WT (black circles) and Fmr1 KO (red circles) animal. Values overlaid on same firing rate (top) and correlation (bottom) maps from Figure 4C.

(C) Shift in mean logistic slope and threshold values from WT to KO for P9–11 (orange), P14–16 (red) and P30–40 (brown). Grey ellipses represent 95%

confidence intervals (Materials and methods).

DOI: https://doi.org/10.7554/eLife.26724.007

The following figure supplements are available for figure 5:

Figure 5–figure supplement 1. Agreement between population logistic model activity statistics and raw data statistics.

DOI: https://doi.org/10.7554/eLife.26724.008

Figure 5–figure supplement 2. Variation in population logistic model parameter fits with developmental age group and genotype.

DOI: https://doi.org/10.7554/eLife.26724.009
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space. To quantify this effect, we calculated the sensitivity of both the firing rate and correlations to

small changes in the slope and threshold (Figure 6A–B, see Materials and methods), quantified as

the partial derivatives local to the fitted logistic parameter values for each animal (black and red

circles in Figure 5B). In general, increasing the slope or decreasing the threshold always increased

both firing rates and correlations, as can be predicted from Figure 5B. However, the magnitude of

sensitivities varied across animals. We found only minor differences in sensitivities between geno-

types (Figure 6C–D), and as a result we pooled the sensitivity measurements across genotypes to

test for statistical differences in sensitivity with developmental age. In young animals, P9–11,

changes in the logistic threshold (solid bars in Figure 6) had substantial effects on both firing rates

and correlation. This sensitivity decreased with age (p�0.013 for firing rates, p<0.01 for correlations

from P9–11 to P14–16), so that in adult animals, P30-40, changes in threshold had relatively little

effect on neural activity statistics. A different picture emerged for the logistic slope parameter

(striped bars in Figure 6). There, the firing rate sensitivity increased from P9–11 to P14–16 (p<1e-6)

(Figure 6C), while correlation sensitivity stayed approximately constant (p�0.18) (Figure 6D). These

results show that the quantitative relationships between neural activity statistics and the parameters

of the logistic model, and perhaps also the underlying circuit components, are not fixed across

development.

What are the functional implications of these alterations in firing rates and correlations in Frag-

ile-X mice across development? To address this, we calculated the entropy of the neural population

activity for the data from each animal. Entropy is a quantity from information theory, measured in

bits, that puts a hard upper bound on the amount of information that can be represented by any

coding system (Cover and Thomas, 2006). Intuitively, the entropy measures how uniform the neural

population activity pattern distribution is: it is large if the circuit exhibits many different activity pat-

terns over time, and small if only a few activity patterns dominate. Entropy is an appealing measure

for the present problem because it is sensitive both to neural firing rates and to correlations at all

orders. It is typically highest when firing rates are high and correlations are low. Although entropy is

notoriously difficult to calculate for large neural populations because most estimation methods

require impractically long data recordings (Quian Quiroga and Panzeri, 2009), we recently devel-

oped a new statistical method for this purpose, called the population tracking model, that scales

well to large numbers of neurons, even for limited data (O’Donnell, 2017b). This model matches

both the synchrony distribution for the number of neurons simultaneously active, and the variations

in individual cell-to-cell firing rates. We fit this population tracking model to the same Ca2+ imaging

data as analyzed above (Figure 7). An intermediate step in estimating the neural entropy involves

calculating a low-parameter approximation of the entire probability distribution over all 2N neural

population activity patterns, where N is the number of neurons. The cumulatives of these probability

distributions calculated for 50-neuron subsets of the recordings are shown in Figure 7A. In young

animals P9–11, a small number of activity patterns accounts for a large fraction of the probability

mass (Figure 7A left). For example, based on these curves, 50% of the time we would expect to see

the same 1000–10,000 patterns out of a possible total 250 » 1015 patterns. In contrast, in older ani-

mals P14–16 and P30–40 the cumulative distributions shift rightwards so that more patterns are typi-

cally observed (Figure 7A center, right). In these cases, around 1,000,000 patterns are needed to

account for 50% probability mass.

Instead of attempting to quantify these shifts by asking how many patterns are needed to cross

an arbitrary threshold of probability mass, we instead calculated the entropy, which takes into

account the shape of the entire probability distribution. The entropy depends on the number of neu-

rons analyzed, so we normalized all estimates to calculate the entropy per neuron (Figure 7B–C).

Since we are treating neurons as binary, the entropy/neuron was bounded between 0 and 1 bits. For

all age groups, and for both WT and Fmr1 KO animals, entropy/neuron progressively decreased

with the number of neurons analyzed (Figure 7B). Because each imaging session captured a differ-

ent number of neurons (range 40–198, median 97), we fit the entropy/neuron versus number of neu-

rons data with a double exponential function (see Materials and methods) and use the fit to provide

a standardized estimate of the entropy/neuron for 100-neuron populations (Figure 7C). In WT ani-

mals, entropy/neuron showed a non-monotonic trajectory across development (O’Donnell, 2017b).

At P9–11 it was low, 0.38 bits (95% c.i. [0.35:0.41]), before increasing at P14–16 (p<0.001) to 0.50

bits (95% c.i. [0.48:0.52]), before decreasing again at P30–40 (p=0.028) to 0.45 bits (95% c.i.

[0.42:0.48]). We found a different entropy trajectory in Fmr1 KO animals. There, although entropy/
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Figure 6. Sensitivity of firing rate and correlations with respect to logistic model parameters, local to the

parameter fit for each animal. (A–B) Sensitivity to a parameter is calculated about a given point in parameter

space. In this hypothetical example, we plot a slope-threshold parameter fit at the red circle on the firing rate

contour map (A). The firing rate varies non-linearly if the threshold is varied away from this point (B). Sensitivity is

Figure 6 continued on next page
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neuron also began low at 0.34 bits (95% c.i. [0.30:0.39]), not different from WT (p=0.19), when it

increased at P14–16 (p<0.001) to 0.465 bits (95% c.i. [0.45:0.48]) it remained lower than for WT

(p=0.048). Finally, instead of decreasing as in the WT case, entropy continued to increase in P30–40

Fmr1 KO animals (p=0.033) to 0.51 bits (95% c.i. [0.47:0.55]), higher than WT (p=0.034). These

entropy values estimated directly from Ca2+ imaging data agreed well with entropy estimates for

synthetic data sampled from the previously fit logistic models (Figure 7–figure supplement 1). In

summary, unlike WT animals, Fmr1 KO mice showed a monotonically increasing entropy/neuron

from P9–11 to P30–40. Furthermore, the direction of change in entropy between P14–16 and P30–

40 was opposite for WT and Fmr1 KO animals, decreasing in the former and increasing in the latter.

Figure 6 continued

calculated as the local derivative, or slope of the tangent, about the target point. (C–D) Sensitivity of firing

probability (C) and pairwise correlations (D) to change in threshold (solid bars) and slope (striped bars) parameters

of logistic model, about the fitted parameter values for each animal (circles) displayed in Figure 5B. Bars

represent group means. Each statistical test compares the mean values between adjacent pairs of age groups,

where the data were pooled between genotypes.

DOI: https://doi.org/10.7554/eLife.26724.010

Figure 7. Differing trajectories of WT and KO entropy across development. (A) Cumulative probability mass as a function of the number of patterns.

Patterns ordered from most probable to least probable. Thin lines are mean across many randomly-chosen 50-neuron subsets from a given animal, and

thick lines represent means across all animals of a given genotype. (B) Entropy per neuron as a function of the number of neurons analyzed. Thin lines

are mean across many randomly chosen subsets for a given animal, thick lines are group mean of double exponential fits to the data (see Materials and

methods). Age groups (left to right) are as in panel A. (C) Estimated entropy/neuron for 100 neuron populations. Circles represent individual animals,

bars are group means.

DOI: https://doi.org/10.7554/eLife.26724.011

The following figure supplement is available for figure 7:

Figure 7–figure supplement 1. Agreement between entropy estimated from raw data with entropy estimated from samples from fitted logistic

models.

DOI: https://doi.org/10.7554/eLife.26724.012
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Discussion
The one-dimensional E/I imbalance model has been widely used for interpreting neural circuit

changes observed in animal models of diverse brain disorders (Bateup et al., 2011; Dani et al.,

2005; Gibson et al., 2008; Kehrer et al., 2008; Wallace et al., 2012). In the case of Fragile-X syn-

drome, the hyperexcitability prediction of the E/I imbalance model is consistent with many of the

symptoms of the disease (e.g. seizures, hyperarousal, hyperactivity, hypersensitivity to sensory stim-

uli) and the known pathogenic defects implicated in Fmr1 KO mice (diminished GABA signaling,

exaggerated intrinsic excitability, increased neuronal firing rates; reviewed by Contractor et al.,

2015). Here, we tested the hypothesis that the E/I imbalance model can account for alterations in

other neural activity statistics beyond the mean firing rates; however, our results demonstrated that

it was inadequate. The model was too inflexible to account for the joint alterations in both neural fir-

ing rates and correlations observed in Fragile-X model mice. This suggests that future studies of

brain disorders may need to consider higher-dimensional models of neural circuit dysfunction.

To test how cellular components affect their circuit function, we built computational models of

mouse L2/3 somatosensory cortex at two levels of abstraction: a detailed, 100-parameter biophysical

model, and a two-parameter logistic response model. The purpose of the detailed model was to

build a representation of the circuit where each parameter has a one-to-one mapping with some-

thing that could be experimentally measured in a real animal - indeed many of these parameters

have been shown to be altered in Fmr1 KO mice. The purpose of the logistic model was different: it

simple enough to be both derivable from the complex model, and provide a direct link with measur-

able activity variables in our in vivo Ca2 +imaging data, firing rates and correlations. The disadvan-

tages of detailed models are that they contain many parameters, and so are hard to constrain to

data – in this case it was only possible because of the large dataset from Petersen et al., for P17-22

WT mice (Avermann et al., 2012; Lefort et al., 2009; Tomm et al., 2014). The disadvantages of

the simple 2D model is that its logistic input-output structure implies a very strong and specific

assumption about the functional purpose of the circuit – to generate single spikes across a subset of

neurons. Although this may be a physiologically relevant computation for this particular brain circuit

(Clancy et al., 2015; Kerr et al., 2007; Sato et al., 2007), it is not immediately obvious how to

extend this approach to include temporal correlations, for example, or to apply it to other brain cir-

cuits where we may have less insight into their natural computations. Nevertheless, our approach

demonstrates a new way to tackle such problems.

After building the detailed computational model of L2/3 of mouse somatosensory cortex (Fig-

ure 2), we asked how sensitive the spiking responses of the overall circuit were to changes in its

underlying neural components, many of which are known to be altered in Fmr1 KO mice

(Bureau et al., 2008; Gibson et al., 2008; Gonçalves et al., 2013; Harlow et al., 2010; Hays et al.,

2011; Paluszkiewicz et al., 2011; Patel et al., 2013; Testa-Silva et al., 2012). We found that while

changing some neural parameters did have a large effect, changing other parameters had little or

no effect on circuit function (Figure 3B). This redundancy property has been reported as widely

prevalent in computational models of biological systems (Gutenkunst et al., 2007; O’Leary et al.,

2015). Its existence has two important implications for studies of brain disorders: first, many of the

physiological component changes discovered in animal models may be entirely benign at the circuit

level. Second, any treatment designed to correct circuit function is free to push the system by arbi-

trary amounts along insensitive directions in parameter space without consequence, as long as it

makes the correct perturbations along the sensitive directions. The insensitive directions form a null

space, which is a subspace of the parameter space.

An important caveat to our parameter sensitivity analysis is that it was linear and local to a partic-

ular point in the high-dimensional model parameter space, corresponding to WT P17-22 mice. Since

the circuit dynamics are nonlinear, it is likely that the particular parameter sensitivities would be dif-

ferent in other parts of parameter space, especially near bifurcations where qualitatively different

dynamics emerge (Hirsch et al., 2013). However, as long as the redundancy property is widely pre-

served, as suggested by studies on computational models of other biological systems (Fisher et al.,

2013; Gutenkunst et al., 2007; Machta et al., 2013; Panas et al., 2015), then our conclusions for

brain disorders remain valid.

In addition to the varying magnitudes of circuit components’ effect on circuit function, we also

found that different components shifted the circuit input-output function in different directions, as
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defined by our 2D logistic response model (Figures 1 and 2). Even circuit parameters that are nomi-

nally of the same type, such as the strength of glutamatergic synapses between excitatory (E) neu-

rons in L4 to E neurons in L2/3 or synaptic strength between E neurons within L2/3, had qualitatively

different effects on the circuit response to stimulation (Figure 3). According to the standard E/I

imbalance model (Rubenstein and Merzenich, 2003), both of these parameters should have similar

effects on circuit function; but according to the logistic response model we studied, their differing

effects on slope and threshold parameters must necessarily lead to different magnitudes of change

in neural firing rates and correlations (Figure 4C). Indeed, no 1-dimensional model of circuit function

could ever capture the heterogeneity in parameter sensitivities that we observed (Figure 3B).

Next, we fit the parameters of the logistic response model to match the in vivo firing statistics of

neural populations from WT and Fmr1 KO mice of varying age (Figure 5). Previous studies had

found that neural correlations decrease during development (Golshani et al., 2009;

Rochefort et al., 2009), and that early postnatal Fmr1 KO mice had higher correlations and firing

rates than WT mice (Gonçalves et al., 2013; La Fata et al., 2014). Circuit hypersynchrony may be a

general defect in autism disorders, as it is also found in mouse models of Rett syndrome (Lu et al.,

2016). However, the relationship between these changes in firing statistics and the underlying neural

circuit components were unclear. Our logistic model helps bridge this gap, leading to two findings:

first, the direction of circuit parameter change from WT to KO was opposite in young (P9–11 and

P14–16) versus mature (P30–40) animals (Figure 5C). Similar opposing switches in sensory cortex

properties with age were also recently reported in Fmr1 KO and WT rats (Berzhanskaya et al.,

2016). Second, we found that the sensitivity of neural firing rates and correlations to changes in

underlying circuit components depends on developmental age (Figure 6). Taken together, these

findings imply that qualitatively different interventions may be needed at different stages of devel-

opment in Fragile-X, and perhaps other neurodevelopmental disorders, to shift cortical circuit func-

tion towards typical wild-type operation.

Spontaneous, intrinsic activity is ubiquitously present in mammalian cerebral cortex. It is highly

structured at multiple spatiotemporal scales (Mitra et al., 2015; Ringach, 2009) and interacts

strongly with the signals evoked by sensory stimulation (Ringach, 2009). Cellular-resolution record-

ings in animals have shown that the patterns of spontaneous activity in neural populations are repre-

sentative of the ensemble of activity patterns used by the brain to represent sensory stimuli

(Berkes et al., 2011; Luczak et al., 2009; Miller et al., 2014). Here, we found that the entropy of

spontaneous activity in WT mouse somatosensory cortex follows an inverted-U shaped trajectory

across development, and that this trajectory is dramatically altered in the Fmr1 KO mouse model of

Fragile-X (Figure 7). Although we saw no reliable differences across genotypes in early postnatal ani-

mals (P9–11), Fmr1 KO animals showed lower entropy than WT after the second postnatal week

(P14–16), while surprisingly switching to show higher entropy than WT in adult (P30–40). Notably,

this switch in the direction of entropy change from WT to KO during development mirrors the

reversing we saw in logistic model parameter changes in Figure 5C. Together, these findings sug-

gest a perturbed trajectory of cortical development during the critical period in Fmr1 KO mice

(Meredith et al., 2012). However, our results cannot distinguish whether the observed perturbation

in L2/3 activity statistics reflects a developmental delay, or a permanently altered developmental tra-

jectory. Further studies at later developmental time points are needed.

What is the functional significance of these shifts in population entropy? Previous work suggested

that the entropy of neural circuit activity may be optimally tuned at intermediate levels as a trade-off

between maximizing representational capacity at high entropy, versus maintaining error correction

and regularization at low entropy (Schneidman et al., 2006). These properties can also be thought

of as trading off between discrimination and generalization, respectively (Qian and Lipkin, 2011). If

we assume that WT mice are optimally tuned, our findings predict that young Fmr1 KO mice should

show poorer somatosensory discrimination in behavioral tasks than wild-type animals, while in con-

trast adult Fmr1 KO mice should perform more poorly on tasks involving generalization across

somatosensory stimuli.

If the unidimensional E/I imbalance model is not sufficiently rich to capture the circuit changes

observed in neurodevelopmental disorders, what should replace it? How many dimensions or

degrees of freedom should a working model for a brain disorder have? Theoretical neuroscientists

have long studied E/I balance in generic models of recurrent neural circuits (Brunel and Brunel,

2000; Tsodyks and Sejnowski, 1995). These models have uncovered important distinctions
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between ‘loose’ balanced regimes, where E and I inputs to a neuron are equal only on average, and

fine-tuned ‘tight’ balanced regimes where E and I inputs to a neuron track each other closely on fast

timescales (Denève and Machens, 2016; Hennequin et al., 2017). In principle, these generic mod-

els could be used to investigate multidimensional E/I imbalances in brain disorders (Vogels and

Abbott, 2007). However, it is currently difficult to directly fit these many-parameter network models

to data (although see Arakaki et al., 2017; Fisher et al., 2013; Stringer et al., 2016), and they are

agnostic to circuit function. Instead we suggest an alternative, complementary approach: start by

assuming a computational function for the particular neural circuit under study, then work backwards

to design a model that is both sophisticated enough to capture the key information processing fea-

tures of the circuit, but simple enough to interpret and link to physiological data. In this study, we

considered a two-parameter model of L2/3 somatosensory cortex’s input-output function, which

could account for both neural firing rates and correlations. Other brain circuits may demand models

with more degrees of freedom. Crucially, the most informative models need not be those that

include the highest level of physiological detail. All models are ultimately wrong in the sense that

they make abstractions about their underlying parts, and detailed models carry the additional bur-

den of fitting many parameters, which may be difficult to adequately constrain (O’Leary et al.,

2015). Nonetheless, some models are useful (Box, 1979).

One potential use of simple parametric circuit models such as the ones we employed here may

be as a tool for rationally designing candidate intervention compounds and then screening their

effects on neural population activity. For example, the current study could have been extended to fit

the logistic model to neural activity data from another cohort of Fmr1 KO mice that had received a

candidate treatment, then ask if the fitted model parameters were closer in value to those from WT

animals or Fmr1 KO controls. Approaches like this could complement the traditional strategy of

designing drugs based on reversing molecular deficits and then assessing the drug’s impact on ani-

mal model behavior. Indeed, our results suggest that given the multi-dimensionality of circuit prop-

erties, it may prove difficult or impossible to find a single compound that can correctly reverse

deficits at any age. This scenario might require a combination of drugs chosen to push circuit-level

properties towards the ‘correct’ region of parameter space. The framework we have introduced in

this study can facilitate this type of high-dimensional intervention analysis for diverse neurodevelop-

mental disorders.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

strain, strain background
(mus musculus)

c57bl/6J strain of wild type mice Jackson Labs IMSR_JAX:000664

genetic reagent
(mus musculus)

Fmr1 knockout mouse on
a c57 background

William Greenough
(originally from Dutch-Belgian Fragile X Consortium)

RRID:MGI:2665400

chemical compound, drug OGB1 AM
(Oregon Green BAPTA-1 AM)

Molecular Probes
(ThermoFisher Scientific)

Software, algorithm ImageJ NIH RRID:SCR_003070

software, algorithm BRIAN Simulator http://briansimulator.org RRID:SCR_002998

software, algorithm MATLAB http://www.mathworks.com/products/matlab RRID:SCR_001622

Mouse in vivo calcium imaging recording
All Ca2+ imaging data were published previously (Gonçalves et al., 2013). Briefly, data were col-

lected from male and female C57Bl/6 wild-type and Fmr1 KO mice at P9–40. For each group the ani-

mal numbers were: P9-11, n = 13 WT and n = 9 Fmr1 KO; P14-16, n = 8 WT and n = 10 Fmr1 KO;

P30-40, n = 7 WT and n = 6 Fmr1 KO. There were variations in the number of cells recorded from

each animal. The range of cell numbers for each group were: P9-11, 49–198 cells in WT and 84–144

cells in Fmr1 KO; P14-16, 65–119 cells in WT and 40–149 cells in Fmr1 KO; P30-40, 60–114 cells in

WT and 69–105 cells in Fmr1 KO. Mice were anesthetized with isoflurane, and a cranial window was
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fitted over primary somatosensory cortex by stereotaxic coordinates. Mice were then transferred to

a two-photon microscope and headfixed to the stage while still under isoflurane anesthesia. 2–4

injections of the Ca2+ sensitive Oregon-Green BAPTA-1 (OGB) dye and sulforhodamine-101 (to visu-

alize astrocytes) were injected 200 um below the dura. Calcium imaging was performed using a Ti-

Sapphire Chameleon Ultra II laser (Coherent) tuned to 800 nm. Imaging in unanesthetized mice

began within 30–60 min of stopping the flow of isoflurane after the last OGB injection. Images were

acquired using ScanImage software (Pologruto et al., 2004) written in MATLAB (MathWorks; RRID:

SCR_001622). Whole-field images were collected using a 20 � 0.95 NA objective (Olympus) at an

acquisition speed of 3.9 Hz (512 � 128 pixels). Several 3 min movies were concatenated and brief

segments of motion artifacts were removed (always <10 s total). Data were corrected for x–y drift.

Cell contours were automatically detected and the average DF/F signal of each cell body was calcu-

lated at each time point. The baseline F for each cell was calculated as the mean ROI fluorescence

across the entire 3 min timeseries. Neuronal and neuropil signals were analyzed separately and

astrocytic signals were excluded from analysis. Each DF/F trace was low-pass filtered using a Butter-

worth filter (coefficient of 0.16) and deconvolved with a 2 s single-exponential kernel (Yaksi and Frie-

drich, 2006). To remove baseline noise, the standard deviation of all points below zero in each

deconvolved trace was calculated, multiplied by two, and set as the positive threshold level below

which all points in the deconvolved trace were set to zero. Estimated firing rates of the neurons, ri(t),

were then obtained by multiplying the deconvolved trace by a factor of 78.4, previously derived

empirically from cell-attached recordings in vivo (Golshani et al., 2009).

Computational methods
Data analysis and logistic model calculations were done using MATLAB (Mathworks; RRID:SCR_

001622). All simulation codes are available online at https://github.com/cianodonnell/ODonnelletal_

2017_imbalances (copy archived at https://github.com/elifesciences-publications/ODonnelletal_

2017_imbalances), and the population tracking model code (O’Donnell et al., 2017) is available at

https://github.com/cianodonnell/PopulationTracking. (copy archived at https://github.com/elifes-

ciences-publications/PopulationTracking)

Detailed layer 2/3 model simulations
Layer 2/3 model simulations (Figures 1 and 2) were implemented with the Python-based simulator

Brian 2 (http://briansimulator.org; RRID:SCR_002998) (Goodman and Brette, 2009), and results ana-

lyzed with MATLAB (Mathworks; RRID:SCR_001622). The model consisted of four populations of

reciprocally connected leaky integrate-and-fire neurons representing a L2/3 somatosensory barrel

circuit: 1700 excitatory neurons, 70 PV inhibitory neurons, 115 5HT3AR inhibitory neurons, and 45

SOM inhibitory neurons, driven by a separate population of 1500 excitatory spike sources represent-

ing input from L4. Cell numbers were estimated by combining layer-specific excitatory and inhibitory

cell count information from (Lefort et al., 2009) with the approximate percentages of the three

inhibitory cell groups given by (Petersen and Crochet, 2013). The voltage V of each neuron evolved

as

dV

dt
¼ Rin ge Erev;e � V

� �

þ gi Erev;i � V
� �� �

� V �Vrestð Þ
� �

=tm

where Rin is the input resistance, Erev;e andErev;i are the excitatory and inhibitory synaptic reversal

potentials respectively, tm is the membrane time constant, and ge andgi are the summed excitatory

and inhibitory synaptic input conductances, respectively. Between input events the total excitatory

synaptic condunctance ge evolved in time according to the equation

dge

dt
¼�ge=tsyn;e

where tsyn,e is the excitatory synaptic time constant. Similar equations governed the inhibitory

conductances. When a spike arrived at a synapse, a Bernoulli random number was drawn with

release probability set according to the particular synaptic connection type. If this number was equal

to one, then the total synaptic conductance for that neuron was instantaneously incremented by the

specific amplitude of the chosen conductance for that individual synapse, indexed j: ge ! ge þ g
�
j.
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All synaptic connections were formed probabilistically by drawing independent random Bernoulli

variables with connection type-specific probabilities. Synaptic PSP amplitudes were drawn indepen-

dently for each synapse from a log-normal distribution constrained by the experimentally reported

mean and median values for each particular connection type. The maximum post-synaptic potential

amplitude was set to 8 mV. Synapses in the model were conductance-based, but since synaptic

strengths reported in the literature were typically in terms of EPSP/IPSP amplitude, in accordance

with how the experiments were performed (Avermann et al., 2012), we set each maximal synaptic

conductance as the value needed to generate a PSP of the desired amplitude when the target neu-

ron started at resting potential in the case of EPSPs or �55 mV in the case of IPSPs, which we com-

puted analytically. Refractory periods were calculated as the inter-spike-interval corresponding to

the maximal experimentally reported firing rate. Release probability and synaptic strength values for

unconnected neurons are excluded from Table 1. Excitatory synaptic time constants were set at 2

ms, which is typical for the fast component of AMPA receptor responses, but could not be estimated

from the PSP statistics in (Avermann et al., 2012) because of masking by the slower membrane

time constant. The mathematical form of our model meant that inhibitory synaptic time constants

needed to be equal for all incoming inhibitory synapses to a neuron. We set these to 40 ms for E,

5HT3AR and SOM neurons and 16 ms for PV neurons, which were the typical values of the IPSP

decay time constants in the (Avermann et al., 2012) dataset. Due to lack of direct data for this cir-

cuit, connection probabilities for synapses from L4 E neurons to E, PV and SOM L2/3 neurons was

set to a reasonable cortical value of 0.15, while 5HT3AR neurons did not receive any input from L4

(Gentet et al., 2012). Similarly due to a lack of direct data, we set synaptic release probabilities for

connections from L4 to L2/3 neurons to a typical cortical value of 0.25, while mean and median L4

excitatory PSP amplitudes onto L2/3 PV and SOM were set to 0.8 and 0.48 mV, respectively, to

match reported data for L4 EPSP amplitudes onto L2/3 E neurons (Lefort et al., 2009). The differen-

tial equations were solved using the forward Euler method with an integration timestep of 0.01 ms.

Each simulation run was 50 ms long, during which we recorded whether or not each neuron

responded. In the rare cases where a neuron spiked more than once, we disregarded the extra

spikes. L4 neuron dynamics were not explicitly simulated, but instead modeled only as a set of out-

put spike trains. After selecting the subset of active L4 neurons, spike times were drawn randomly

from a Gaussian distribution with standard deviation of 2 ms. We repeated the simulations 10 times

for this identical input pattern to average over the noise due to probabilistic vesicle release. We

repeated this procedure further 10 times for different random allocations of the ‘ON’ inputs. Then, a

neuron’s ON probability was defined as the fraction of these 10� 10 ¼ 100 simulations for which it

responded with one or more spikes. Finally, we repeated the entire procedure for varying levels of

L4 input sparsity.

For the simulations presented in Figure 3 we varied only 76 model parameters, which is 24 less

than the total number of 100 model parameters listed in Table 1. We excluded the four neuronal

refractory periods (because in almost all simulations each neuron spiked a maximum of once, making

the refractory period irrelevant), and the six connection probabilities that were fixed at zero. Finally,

we grouped together the mean and median PSP amplitudes for each of the fourteen non-zero syn-

aptic connections, so that both parameters were increased or decreased by the same fraction in tan-

dem. Together these choices reduced the number of test parameters from 100 to 76.

For all parameters that naturally range from 0 upwards, such as the number of neurons or release

probability, we increased or decreased their values during testing in the most intuitive way, by

adding ±20% of the baseline value. However, this method was less useful for other parameters, such

as cell resting voltage, for which we reasoned it made more sense to scale relative to another param-

eter, such as spike threshold. As a result, we varied (1) resting voltage relative to its difference from

spike threshold; (2) spike threshold relative to its difference with resting voltage; (3) excitatory synap-

tic reversal potentials relative to resting voltage; (4) inhibitory synaptic reversal potentials relative to

spike threshold.

Source [1] is (Lefort et al., 2009), [2] is (Avermann et al., 2012), [3] is (Fanselow et al., 2008), [4]

is (Kinnischtzke et al., 2012), [5] is (Fino and Yuste, 2011). N is number of neurons, Vrest is resting

potential, Vth is spike voltage threshold, Rin is input resistance, tref is refractory period, tm is the

membrane time constant, tsyn is the synaptic time constant with the first subscript indicating the

postsynaptic neuron type and the second subscript the neurotransmitter type of the presynaptic

neuron (e or i), Erev is the synaptic reversal potential, pcon is the synaptic connection probability,
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Table 1. L2/3 computational circuit model parameters and mean slope and threshold shifts.

Parameter Value Source +20% effect on slope, thresh Parameter Value Source +20% effect on slope, thresh

NE 1700 [1] slope: 6.4 � 10�3

thresh: 5.16
pconI5htE 0.465 [2] slope: �3.25 � 10�3

thresh: �0.103

NIpv 70 [1] slope: 4.3 � 10�3

thresh: �1.51
pconI5htIpv 0.38 [2] slope: �7.13 � 10�3

thresh: �0.298

NI5ht 115 [1] slope: �0.0104
thresh: �0.58

pconI5htI5ht 0.38 [2] slope: 6.07 � 10�4

thresh: 0.175

NIsom 45 [1] slope: �0.001
thresh: �0.83

pconI5htIsom 0 No data Not tested

NEL4 1500 [1] slope: �0.106
thresh: 3.43

pconIsomE 0.5 [5] slope: �6.29 � 10�3

thresh: �0.8919

VrestE �68 mV [2] slope: 0.049
thresh: �6.09

pconIsomIpv 0 No data Not tested

VrestIpv �68 mV [2] slope: �0.016
thresh: �0.963

pconIsomI5ht 0 No data Not tested

VrestI5ht �62 mV [2] slope: �9.48 � 10�4

thresh: 0.205
pconIsomIsom 0 No data Not tested

VrestIsom �57 mV [3] slope: 3.58 � 10�3

thresh: 0.034
prelEL4E 0.25 No data slope: �0.112

thresh: 4.21

VthE �38 mV [2] slope: �3.76 � 10�3

thresh: �0.381
prelEL4Ipv 0.25 No data slope: 0.0103

thresh: 0.682

VthIpv �37.4 mV [2] slope: 3.87 � 10�3

thresh: 0.221
prelEL4Isom 0.25 No data slope: �2.06 � 10�3

thresh: �0.537

VthI5ht �36 mV [2] slope: �1.12 � 10�3

thresh: 0.013
prelEE 0.25 No data slope: 4.99 � 10�3

thresh: 6.074

VthIsom �40 mV [3] slope: �3.26 � 10�3

thresh: �0.083
prelEIpv 0.25 No data slope: �4.04 � 10�4

thresh: 0.163

RinE 160 MW [2] slope: 1.95 � 10�3

thresh: �0.283
prelEI5ht 0.25 No data slope: �9.32 � 10�3

thresh: �0.532

RinIpv 100 MW [2] slope: �8.38 � 10�3

thresh: �0.283
prelEIsom 0.25 No data slope: �7.32 � 10�3

thresh: �0.3847

RinI5ht 200 MW [2] slope: �3.87 � 10�3

thresh: �0.653
prelIpvE 0.25 No data slope: 1.03 � 10�2

thresh: �0.941

RinIsom 250 MW [4] slope: 7.55 � 10�3

thresh: 0.465
prelIpvIpv 0.25 No data slope: 1.21 � 10�3

thresh: �0.061

tmE 28 ms [2] slope: �9.59 � 10�3

thresh: 0.268
prelIpvI5ht 0.25 No data slope: �4.73 � 10�3

thresh: 0.011

tmIpv 21 ms [2] slope: 4.82 � 10�3

thresh: 0.027
prelI5htE 0.25 No data slope: �1.63 � 10�3

thresh: �0.379

tmI5ht 10 ms [2] slope: �5.09 � 10�3

thresh: �0.302
prelI5htIpv 0.25 No data slope: �3.41 � 10�3

thresh: �0.262

tmIsom 30 ms [4] slope: �2.89 � 10�3

thresh: �0.159
prelI5htI5ht 0.25 No data slope: 3.05 � 10�3

thresh: 0.123

trefE 55.5 ms [2] Not tested prel,IsomE 0.25 No data slope: �2.13 � 10�4

thresh: �0.65

trefIpv 5.4 ms [2] Not tested wEL4E,mean 0.8 mV [1] slope: �0.142
thresh: 0.342

trefI5ht 21.3 ms [2] Not tested wEL4E,median 0.48 mV [1] slope: �0.142
thresh: 0.342

trefIsom 20 ms [3] Not tested wEL4Ipv,mean 0.8 mV =wELEL4E slope: 3.61 � 10�3

thresh: 6.54 � 10�3

tsynE,e 2 ms Typical slope: 1.37 � 10�2

thresh: �1.79
wEL4Ipv,median 0.48 mV =wELEL4E slope: 3.61 � 10�3

thresh: 6.54 � 10�3

tsynE,i 40 ms [2] slope: �7.29 � 10�3

thresh: 0.48
wEL4Isom,mean 0.8 mV =wELEL4E slope: 5.05 � 10�3

thresh: �0.329

Table 1 continued on next page
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prel is the synaptic release probability, w is the mean or median post-synaptic potential amplitude

as indicated. For all neuronal parameters, the subscript indicates the neuron type: E is L2/3 excit-

atory neurons, Ipv is PV neurons, I5ht is 5HT3AR neurons, Isom is SOM neurons, and EL4 is L4 excit-

atory neurons. For synaptic parameters, the first and second subscripts indicate the pre- and post-

synaptic neuron types, respectively.

Table 1 continued

Parameter Value Source +20% effect on slope, thresh Parameter Value Source +20% effect on slope, thresh

tsynIpv,e 2 ms Typical slope: �9.79 � 10�3

thresh: �0.477
wEL4Isom,median 0.48 mV =wELEL4E slope: 5.05 � 10�3

thresh: �0.329

tsynIpv,i 16 ms [2] slope: 1.56 � 10�3

thresh: �0.097
wEE,mean 0.37 mV [2] slope: 7.44 � 10�3

thresh: 5.34

tsynI5ht,e 2 ms Typical slope: 4.52 � 10�3

thresh: �0.047
wEE,median 0.2 mV [2] slope: 7.44 � 10�3

thresh: 5.34

tsynI5ht,i 40 ms [2] slope: �3.82 � 10�3

thresh: �0.387
wEIpv,mean 0.82 mV [2] slope: �3.77 � 10�4

thresh: �0.297

tsynIsom,e 2 ms Typical slope: �0.0126
thresh: �8.82 � 10�3

wEIpv,median 0.68 mV [2] slope: �3.77 � 10�4

thresh: �0.297

tsynIsom,i 40 ms [2] slope: �4.88 � 10�3

thresh: �0.301
wEI5ht,mean 0.39 mV [2] slope: �6.81 � 10�3

thresh: �0.46

Ereve 0 mV Typical slope: �0.056
thresh: 1.53

wEI5ht,median 0.19 mV [2] slope: �6.81 � 10�3

thresh: �0.46

ErevEi �68 mV =VrestE slope: 3.2 � 10�3

thresh: �3.77
wEIsom,mean 0.5 mV No data slope: �3.61 � 10�3

thresh: �0.359

ErevIpvi �68 mV =VrestIpv slope: �0.010
thresh: �0.617

wEIsom,median 0.4 mV No data slope: �3.61 � 10�3

thresh: �0.359

ErevI5hti �62 mV =VrestII5ht slope: 3.8 � 10�3

thresh: 0.132
wIpvE,mean 0.52 mV [2] slope: 6.41 � 10�3

thresh: �1.47

ErevIsomi �57 mV =VrestIsom slope: �4.2 � 10�3

thresh: �0.088
wIpvE,median �0.29 mV [2] slope: 6.41 � 10�3

thresh: �1.47

pconEL4E 0.15 No data slope: �0.121
thresh: 2.99

wIpvIpv,mean �0.56 mV [2] slope: �2.52 � 10�3

thresh: �0.345

pconEL4Ipv 0.15 No data slope: 1.38 � 10�3

thresh: 0.029
wIpvIpv,median �0.44 mV [2] slope: �2.52 � 10�3

thresh: �0.345

pconEL4I5ht 0 No data Not tested wIpvI5ht,mean �0.83 mV [2] slope: �4.24 � 10�3

thresh: �0.266

pconEL4Isom 0.15 No data slope: 7.62 � 10�3

thresh: �0.245
wIpvI5ht,median �0.6 mV [2] slope: �4.24 � 10�3

thresh: �0.266

pconEE 0.17 [2] slope: 5.86 � 10�3

thresh: 6.084
wI5htE,mean �0.49 mV [2] slope: �3.61 � 10�4

thresh: �0.018

pconEIpv 0.575 [2] slope: �1.17 � 10�3

thresh: �0.099
wI5htE,median �0.3 mV [2] slope: �3.61 � 10�4

thresh: �0.018

pconEI5ht 0.24 [2] slope: �6.44 � 10�3

thresh: �0.541
wI5htIpv,mean �0.49 mV [2] slope: �1.77 � 10�3

thresh: �0.187

pconEIsom 0.5 [5] slope: �4.37 � 10�3

thresh: �0.27
wI5htIpv,median �0.15 mV [2] slope: �1.77 � 10�3

thresh: �0.187

pconIpvE 0.6 [2] slope: 7.16 � 10�3

thresh: �1.049
wI5htI5ht,mean �0.37 mV [2] slope: �4.12 � 10�3

thresh: �0.416

pconIpvIpv 0.55 [2] slope: �2.61 � 10�3

thresh: �0.0456
wI5htI5ht,median �0.23 mV [2] slope: �4.12 � 10�3

thresh: �0.416

pconIpvI5ht 0.24 [2] slope: �2.81 � 10�3

thresh: �0.458
wIsomE,mean �0.5 mV No data slope: �0.013

thresh: �0.984

pconIpvIsom 0 No data Not tested wIsomE,median �0.4 mV No data slope: �0.013
thresh: �0.984

DOI: https://doi.org/10.7554/eLife.26724.013
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An important caveat is that although this model may be considered detailed by some measures,

it also simplifies many aspects of L2/3 circuit. For example, we assumed that all 5HT3AR cells were

homogeneous, even though they likely separate into different subclasses with type-specific connec-

tivity (Gentet, 2012; Petersen and Crochet, 2013). Layer 2 and layer 3 may also consist of distinct

cell populations (Petersen and Crochet, 2013). Not all likely connections were included in the

model (Dalezios et al., 2002; Pfeffer et al., 2013), and connectivity was assumed to be random,

even though it is likely non-random (Tomm et al., 2014). Although these choices will likely not affect

the conclusions of the current study, they may be important to consider for future work that seeks to

understand the biological function of the L2/3 somatosensory microcircuit.

Logistic model
From the L2/3 circuit model simulations, we numerically estimated the probability q that each neu-

ron in the model fires a spike as a function of the fraction of L4 inputs that were active, f. We then

used the generalized linear model regression tool ‘glmfit’ in MATLAB to find the best fit of the two

logistic model parameters for each neuron:

q fð Þ ¼ 1

1þ exp �b f � f1=2
� �� �

where the parameter b represents the slope, and the parameter f1=2 represents the fraction of active

L4 neurons at which the response probability q¼ 0:5. For clarity of presentation, in the main text we

converted this f1=2 parameter to what we termed the ‘threshold’, fthresh, which we defined as the frac-

tion of L4 neurons needed to reach a specified spike probability, qthresh. Throughout the study, we

fixed qthresh ¼ 0:01. The threshold is related to qthresh via the inverse of the logistic function

fthresh ¼ f1=2 þ log
qthresh

1� qthresh

� �

=b

We computed firing rates and pairwise correlations from the logistic model (Figures 4–5) in the

following way. First, we assumed that the fraction of active L4 neurons is described by a normally

distributed random variable with zero mean and unit variance:

p fð Þ ¼ exp �f 2=2ð Þ
ffiffiffiffiffiffi

2p
p ¼N 0;1ð Þ

We defined the b and f1=2 parameters relative to the mean and standard deviation of the input

distribution. Since q is a monotonically increasing function of f , the probability distribution for q is

p qð Þ ¼ p f qð Þð Þ df
dq

�

�

�

�

�

�

�

�

where f qð Þ is the inverse of the logistic function q fð Þ and
df

dq
¼ exp �b f�f1=2ð Þð Þþ1ð Þ2

b exp �b f�f1=2ð Þð Þ . We calculate a neuron’s mean firing rate � as the expectation of q,

�¼E q½ � ¼
Z

1

0

q� p qð Þ½ �dq¼
Z

1

0

q� p f qð Þð Þ df
dq

�

�

�

�

�

�

�

�

� �

dq

We calculate the pairwise covariance of two homogeneous neurons driven by a common input f

as

cov ¼ E q2½ � � E q½ �ð Þ2¼ E q2½ � � �2 ¼
R

1

0
q2 � p f qð Þð Þ df

dq

�

�

�

�

�

�

h i

dq� �2, then find the pairwise correlation

by normalizing the covariance by the neurons’ shared variance,var ¼ � 1� �ð Þ.
For fitting the logistic model to the recorded neural firing rates and correlations (Figure 5), we

considered a population model where the joint probability distribution across threshold and slope

was specified by a 2D Gaussian, which has five parameters: threshold mean and s.d., slope mean

and s.d., and slope-threshold correlation. The three constraint statistics we considered from the neu-

ral population data were the mean neural ON probability, the s.d. of neural ON probabilities, and

the mean pairwise correlations. We found the best-fit model parameters for each dataset using
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stochastic gradient descent (code available at https://github.com/cianodonnell/ODonnelletal_2017_

imbalances). Briefly, the fitting procedure followed: (1) initialize the parameters at a starting guess

points, (2) compute the predicted three output firing statistics via numerical integration over the

model’s probability distributions, (3) compute the fitting error as the summed squared difference

between the model output predictions and the target values, (4) generate a new set of parameter

values by adding a small perturbation of a zero-mean Gaussian random number to each parameter,

(5) compute the new output statistics, (5) recompute the fitting error, (6) if the new error is smaller

than the old error, accept the updated parameter values, otherwise reject them and revert to the

old parameters, (7) return to step 4 unless the error is lower than the desired tolerance. We checked

for fit convergence by sampling a large number of logistic model parameters from the fitted 2D

Gaussian, drawing binary samples from these logistic model neurons and computing the ON proba-

bility mean and s.d., and mean pairwise correlation from the synthetic binary samples, and compar-

ing the computed statistical values to the original data statistics (Figure 5 – figure supplement 1).

For the sensitivity analysis presented in Figure 6, we numerically computed the partial derivative in

mean firing rate and pairwise correlation with respect to the mean slope and mean threshold param-

eters in the population logistical model, using standard finite difference methods.

Statistical tests
To avoid parametric assumptions, all statistical tests were done using standard bootstrapping meth-

ods with custom-written MATLAB scripts. For example, when assessing the observed difference

between two group means D�obs we performed the following procedure to calculate a p-value. First,

we pool the data points from the two groups to create a null set Snull. We then construct two hypo-

thetical groups of samples S1 and S2 from this by randomly drawing n1 and n2 samples with replace-

ment from Snull, where n1 and n2 are the number of data points in the original groups 1 and 2

respectively. We take the mean of both hypothetical sets D�1 and D�2 and calculate their difference

D�null ¼ D�1 � D�2. We then repeat the entire procedure 107 times to build up a histogram of D�null.

This distribution is always centered at zero. After normalizing, this can be interpreted as the proba-

bility distribution f ðD�nullÞ for observing a group mean difference of D�null purely by chance if the

data were actually sampled from the same null distribution. Then the final p-value for the probability

of finding a group difference of at least D�obs in either direction is given by

p ¼
R�D�obs

�¥ f D�nullð ÞdD�null þ
R

¥

D�obs
f D�nullð ÞdD�null.

For Figure 5C, we estimated two-dimensional 95% confidence ellipses for the shift in mean

slope-threshold parameters between Fmr1 KO and WT by computing the sample error variances

and covariance through bootstrapping. Then, the 95% confidence ellipse can be computed using

the Chi-squared distribution. We plotted the confidence interval ellipse using the MATLAB function

error_ellipse.m, downloaded from https://www.mathworks.com/matlabcentral/fileexchange/4705-

error-ellipse.

Conversion from firing rate to ON/OFF probabilities for Ca2+ imaging
data
For the Ca2+ imaging data, we began with estimated firing rate time series ri(t) for each neuron i

recorded as part of a population of N neurons. For later parts of the analysis we needed to convert

these firing rates to binary ON/OFF values. This conversion involves a choice. One option would be

to simply threshold the data, but this would throw away information about the magnitude of the fir-

ing rate. We instead take a probabilistic approach where rather than deciding definitively whether a

given neuron was ON or OFF in a given time bin, we calculate the probability that the neuron was

ON or OFF by assuming that neurons fire action potentials according to an inhomogeneous Poisson

process with rate ri(t). The mean number of spikes li(t) expected in a time bin of width Dt is li(t)

=ri(t)Dt. We choose Dt = 1 s. Under the Poisson model the actual number of spikes m in a particular

time bin is a random variable that follows the Poisson distribution P(m = k) = l
k exp(-l)/k!. We con-

sidered a neuron active (ON) if it is firing one or more spikes in a given time bin. Hence, the proba-

bility that a neuron is ON is pon(t) = 1- P(m=0) = 1-exp(l). This approach has two advantages over

thresholding: (1) it preserves some information about the magnitude of firing rates and (2) it acts to

regularize the probability distribution for the number of neurons active by essentially smoothing

nearby values together.
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Entropy estimation for large numbers of neurons
Entropy was estimated by fitting a statistical model we recently developed, called the population

tracking model (O’Donnell, 2017a), to the binarized Ca2+ imaging data. Briefly, the population

tracking model fits two aspects of the data: the probability distribution for the number of neurons

synchronously active in the population, and also the conditional firing probability that each individual

neuron is active given the population count. Hence, the model captures both some aggregate statis-

tics of the population activity, and some aspects of the heterogeneity across neurons. See

O’Donnell, 2017b) for complete details and validation of the method. Code for fitting the model to

data is available at https://github.com/cianodonnell/PopulationTracking.

The entropy/neuron generally decreased with the number of neurons considered as result of the

population correlations (Figure 7B), so we needed to control for neural population size when com-

paring data from different experimental groups. On the one hand, we would like to study as large a

number of neurons as possible, because we expect the effects of collective network dynamics to be

stronger for large population sizes and this may be the regime where differences between the

groups emerge. On the other hand, our recording methods allowed us to sample only typically

around ~100 neurons at a time, and as few as 40 neurons in some animals. Hence, we proceeded by

first estimating the entropy/neuron in each animal by calculating the entropy of random subsets of

neurons of varying size from 10 to 100 (if possible) in steps of 10. For each population size we sam-

pled a large number of independent subsets, calculated the entropy of each. Finally, for each data-

set we fit a double exponential function to the estimated entropy/neuron as a function of the

number of neurons: H/N = A*exp(-b*N)+C*exp(-d*N)+e, and used this fit to estimate H/N for 100

neurons.
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