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Abstract

Redundancy is a ubiquitous property of the nervous system.
This means that vastly different configurations of cellular and
synaptic components can enable the same neural circuit
functions. However, until recently, very little brain disorder
research has considered the implications of this characteristic
when designing experiments or interpreting data. Here, we first
summarise the evidence for redundancy in healthy brains,
explaining redundancy and three related sub-concepts: slop-
piness, dependencies and multiple solutions. We then lay out
key implications for brain disorder research, covering recent
examples of redundancy effects in experimental studies on
psychiatric disorders. Finally, we give predictions for future
experiments based on these concepts.
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Ubiquity of redundancy in the nervous
system

Neural circuits have an astronomically large space of po-
tential configurations of their molecular, cellular and syn-
aptic components. Somehow these components must be
arranged to enable the circuit to perform useful compu-
tations. The task is made easier by the ubiquitous phe-
nomenon of redundancy, which is the idea that, within this
enormous space of all possible cellular component con-
figurations, there exists a large subset that achieves
effectively equivalent macroscopic computations [1,2].
The main empirical evidence for redundancy in neural
systems comes from a series of classic studies from Eve
Marder [1,3] on a small neural circuit from the crab and
lobster  stomatogastric  ganglia ~ (STG).  Using
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computational models, they found that very different ar-
rangements of each STG neuron’s ion channels and syn-
aptic conductances could achieve identically sequenced
circuit oscillations [4,5]. Accordingly, in experiments,
these neurons showed twofold to threefold heterogeneity
in cellular properties across animals, despite exhibiting
consistent circuit function [6]. Similar redundancy phe-
nomena have also been described in Hodgkin—Husxley
models [7], mammalian pyramidal neuron models [8],
tadpole neurons [9], rodent neuronal activity # vitro and
i vivo [10,11] and human neuroimaging data [12].
Collectively, these studies, plus theoretical arguments
[2,13—15], suggest that redundancy is a universal property
of the nervous system.

In addition to the core idea of redundancy, we describe
three further sub-concepts: sloppiness,
compensation and multiple solutions. Sloppiness is the
idea that high-level circuit properties are not equally
sensitive to the properties of each of its components.
Perturbations to some of these components may result
in extreme changes to overall function, whereas others
may even vary widely while incurring little effect at the
circuit level. Dependence is a developmental phenom-
enon where multiple circuit parts are co-tuned with
each other, with strong dependencies between their
effects on overall function. We consider multiple solu-
tions as the observation that the various configurations
of cellular components that enable satisfactory circuit-
level functions need not be connected with each
other: multiple functional islands can co-exist in the
parameter space.

Despite the ubiquity of redundancy in the brain,
surprisingly little research on brain disorders has
considered its implications when designing experi-
ments or interpreting data. In the remainder of this
review, we will elaborate these implications and
outline how they can be used to guide future brain
disorder research.

Implications of neural redundancy for brain
disorder research

The phenomenon of redundancy and each of its three
sub-phenomena (sloppiness, dependencies and multi-
ple solutions) have distinct implications for brain
disorders (Figure 1). First, we illustrate the effects of
redundancy itself (Figure 1a) through a measure of the
performance of a hypothetical circuit’s function shown
in a contour plot relative to component parameters, 61
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Box 1. Convergence of brain dysfunction at the level of neural
circuits

Recent high-powered genetic studies have uncovered myriad mu-
tations that correlate with statistical risk for neurodevelopmental and
psychiatric disorders [16]. For example, ~100 distinct genetic mu-
tations have been found that elevate risk for schizophrenia [17], as
well as another ~100 that increase risk for autism spectrum disorder
(ASD) [18], including overlapping risk gene sets across different
psychiatric disorders [19,20]. Despite this heterogeneity at the ge-
netic level, patients may present overlapping symptoms at the
cognitive level, and so receive the same umbrella diagnoses. This
implies that there must be points of phenotypic convergence within
the levels of organisation in the nervous system, which span from
molecules to cells, circuits, cognition and behaviour. Neural circuits
are a promising focus for analysis for two reasons: first, if molecular-,
synaptic- or cellular-level alterations in a brain disorder do not lead to
alterations in neural circuit function, then they cannot be contributing
to cognitive symptoms. Second, because neural circuits are closer
to behaviour than cellular components are, circuit-level interventions
may have more predictable effects on cognitive symptoms,
compared with cellular- or molecular-level interventions. This argues
that in a symptom-targeted approach, we should bias our efforts
towards understanding, diagnosing and treating brain disorders at
the neural circuit level rather than the cellular or molecular level, as
is common in drug development today [21—-24].

and 6,. Darker shades of pink correspond to better
performance of the circuit. Real systems actually contain
thousands of key components, so the parameter space
would be much higher-dimensional: our two-dimen-
sional plot is an oversimplification to aid visualisation.
Because of evolutionary pressure, we can assume mea-
surements from wild-type animals or neurotypical
people will be located near the peak (blue circles) [25].
As an example, two different genetic mutations linked
to the same brain disorder may lead to changes in both
parameters, drifting affected individuals to different
points in the parameter space. Although each genetic
mutation may shift the mean parameter changes in a
different direction away from the neurotypical case,
redundant disorders end up on roughly the same contour
line with respect to circuit function. This implies that
from the circuit point of view, these distinct mutations
manifest with the same phenotype, even if their pa-
rameters differ.

Importantly, however, despite their similarity in circuit
function, the two clusters of individuals with brain
disorders might be differentially susceptible to pertur-
bations. In the example of the crustacean STG, indi-
vidual animals may have distinctive sensitivities
to changes in temperature, pH or neuromodulators [26—
29]. In our example (Figure 1a), we can imagine some
environmental effector such as a drug or stressful life
event that causes a small increase in 1, corresponding to
a rightward shift in all the data points. For both neuro-
typical people and those with genetic disorder A, this
effect would be benign as it would not cause a change in
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circuit function. In contrast, the same effector could
push those with mutation B into even worse values.
Alternatively, a different effector that increased 6,
would not cause a circuit function change in either
genetically typical people or those with genetic disorder
B, but would have a deleterious effect on those with
mutation A. This also illustrates a phenomenon with
proposed treatments—they may work to rescue symp-
toms in one group of patients but not another, even if
both groups appear superficially similar. In this sense,
redundancy might not only be hiding latent vulnerabil-
ities in the system but also heterogeneities in those
vulnerabilities across patient groups.

Second, molecular or cellular alterations observed in
tissue from human patients or animal models may not
actually be affecting the circuit-level function—they
may be benign. The circuit may be robust to changes in
these components over some tolerable range. This
property is referred to by different names, according to
the research field or author. We will refer to it here as
sloppiness [30,31]. Within the same schematic as
before, sloppiness can be seen on another hypothetical
contour plot (Figure 1b). In this case, the circuit func-
tion is relatively insensitive to the exact value of one
parameter (f1), so it may vary horizontally in the plot
across a large range without causing much change in
circuit function. In contrast, small changes to the other
parameter () will induce large changes in circuit
function. In this case, 6, is the sloppy parameter. If we
consider a brain disorder where a genetic mutation tends
to increase both parameters f#iand 6, in the brains of
affected individuals, the change in 6, would be the
primary driver of dysfunction, although 6;’s value would
still be correlated with disease severity. If an experi-
mental scientist measured the value of 41 in both wild-
type and brain disorder animal models, they may see a
clear difference in the group mean values of #; and a
parallel change in circuit function. They may conclude
that the changes in ) are responsible for the circuit-
level deficits and design an intervention to reverse the
molecular level change in 61; however, the treatment
would not be successful.

Third, we comment on redundant dependencies:
altered components may individually have large effects
on circuit function when perturbed genetically or
experimentally, but homeostatic processes during
development may restore high-level function by
compensating with changes in other circuit components.
In a simple case, this could be a straight pairing of
opposing factors, such as increased expression of sodium
channels that depolarise the cell being counteracted by
increased expression of potassium channels that hyper-
polarize it. However, in intact brains, there are so many
nonlinear interactions that the compensatory relation-
ships might not be obvious from raw measurements. In
(Figure 1c¢), we depict this idea with another
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Forms of redundancy. The performance of a hypothetical neural circuit is shown as a contour map in pink as a function of the values of two of its

components, 61 and 2. Darker hues of pink represent better circuit performance. Symbols show possible measured values of 81 and 6, for genetically
typical people (blue circles) and two different genetic brain disorders A and B (green squares and diamonds, respectively). Panels A—D show different
versions of the contour map illustrating various forms of redundancy: (a) generic redundancy, (b) sloppiness, (¢) dependencies and (d) multiple solutions.

hypothetical contour map on a two-dimensional
parameter space. In this case, proper circuit function
requires jointly low or jointly high values of ; and 6,
together, so if one parameter is low while the other is
high, then circuit function is impaired. A genetic mu-
tation could cause a direct increase in #;, but be
developmentally compensated by a corresponding in-
crease in 6. In this situation, an experiment may yield
clear group-level differences in ¢; between wild-type
and brain-disorder animal models, but they may not
measure parallel changes in ,. If a scientist neverthe-
less found a behavioural phenotype due to unobserved
alterations elsewhere in the brain, they might go on to
design an intervention to bring the value of 67 in the
animal model back down to wild-type values without
altering 6,, which might inadvertently make the circuit
function worse, not better.

Last, there may be multiple distinct optima to the cir-
cuit design (Figure 1d), appearing as multiple islands.
Although it is likely that these peaks may be connected
via some paths in the full high—dimensional parameter
space of all circuit components [32,33], any

experimental measurement of a small subset of param-
eters or therapeutic intervention may have access to
only a low-dimensional subspace, where such local
optima are likely to persist. Even though the phenom-
enon of multiple solutions complicates our attempts to
understand how brains work, it could paradoxically end
up simplifying our search for brain disorder in-
terventions. It implies that fixing circuit function does
not require a direct reversal of the original alteration.
Depending on how many solutions exist, it may instead
be more practical to find a new configuration that re-
stores the circuit operating mode, rather than trying to
undo all the various component changes that have
accumulated across development—most of which are in
any case likely to be hidden to the experimentalist or
clinician. We illustrate the phenomenon of multiple
solutions schematically in (Figure 1d). The nearest part
of parameter space that rescues circuit function in the
brain disorder case is not the same as for the genetically
typical case. In addition, the intervention that imple-
ments this correction would involve changing only 6,
even though 6, was the parameter altered by the original
genetic mutation. Therefore, the phenomenon of
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multiple solutions may open up counterintuitive options
for therapeutics.

Empirical examples of redundancy in brain
disorders

Although few studies have directly explored the conse-
quences of redundancy in brain disorders, many have
found evidence for homeostatic compensation where
changes in one brain component seemed to be counter-
balanced by changes in others, a form of redundancy
[34—39]. There are also evidence for disrupted homeo-
static plasticity [40—42] and proposals for how global
brain perturbations could lead to deficits only in select
neural circuits [43,44]. However, one recent study by
Antoine et al. [45] found explicit evidence for circuit
redundancy in mouse models of autism (Figure 2). The
authors used patch-clamp electrophysiology to measure
excitatory and inhibitory synaptic inputs from layer 4
onto single-layer 2/3 pyramidal neurons in brain slices of
the primary somatosensory cortex from wild-type mice
and from four different genetic mouse models of autism.
Nominally, their aim was to ask if the ratio of synaptic
excitation to inhibition (E/I balance) was altered in the
autism mouse models, a common theory for autism
[46,47]. Indeed, they found that in each of the four
autism models, inhibition was decreased more than
excitation, implying an increase in the E/I ratio compared
with wild-type mice, but surprisingly, they also found
that in each case, the amplitude of postsynaptic poten-
tials (PSPs) and spiking responses to stimulation was

Figure 2
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unchanged relative to wild-type controls. The authors
explained this mismatch via computational modelling,
which showed that a range of different synaptic E/I ratios
would be consistent with any given PSP amplitude
(Figure 2). The contour plot in (Figure 2¢) shows the
PSP amplitude as a function of excitatory (y-axis) and
inhibitory (x-axis) synaptic strengths. The mean wild-
type values are marked by the open circle, and the blue
curve shows the region in this two-dimensional param-
cter space where wild-type PSP amplitude is preserved,
analogous to the dark pink regions in the plots in
(Figure 1). Results from all four autism mouse models sat
along the blue curve, with the Cntnap2 KO values shown
in (Figure 2¢) as the black square. Although the autism-
related genetic mutations were causing real shifts in
synaptic properties, their net effects were redundant,
causing no change in the neuron’s response to synaptic
stimulation. Overall, the result suggested that the autism
field’s decade-long search for E/I imbalance may have
been misguided because redundancy nullified its
apparent effect on circuit function.

Anotherrecent study, by O’Donnell et al. [48], found using
a computational model of the same brain region, the
mouse L[.2/3 somatosensory cortex, that circuit-level
function shows extreme differences in sensitivity to per-
turbations in some components over others, correspond-
ing to sloppiness (Figure 1b). In line with previous studies
[49], the authors also found that neural correlations were
altered in a mouse model of fragile-X syndrome, but this
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Redundancy in mouse models of autism. a: Example excitatory (red) and inhibitory (blue) synaptic conductance time series from a basic computational
model of pyramidal cell voltage. The top ‘native’ plot shows the case when synaptic conductances are set to the values estimated from layer 4 to layer 2/3
synapses in wild-type mice. In Cntnap2 knockout animals, a model for autism, excitatory and inhibitory synaptic conductances (GE and Gl) were
decreased to 35% and 15% of wild-type values, respectively, implying an increase in the excitation/inhibition ratio. The middle plot shows traces of both
conductances were scaled equally to 35% of wild-type values; the bottom plot shows situation that matches the data, where inhibition is decreased more
than excitation. b: Compound postsynaptic potentials (PSPs) corresponding to the three scenarios shown in panel A. Note that the PSP amplitude is
decreased relative to the native case if the E-I ratio is kept fixed, whereas the increased E-| ratio keeps the PSP amplitude matched to native. b: The
contour map of the peak PSP amplitude as a function of the scaling factor on excitatory and inhibitory synaptic strengths. The open circle is the mean
value from wild-type control animals. The red line corresponds to the fixed E-I ratio; the blue line corresponds to the fixed PSP peak. The black square
symbol is the mean value of synaptic strengths in Cntnap2 knockout mice, whereas the black circle symbol is where values would lie if the E-I ratio was
stable. The figure was adapted with permission from Ref. [45].
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circuit-function—level property did not map neatly onto
any one distinct circuit model component, implying both
redundancies and dependencies between parameters (as
in (Figure 1c). Together, these two examples of redun-
dancy illustrate the crucial importance of considering the
functional properties of neural circuits when interpreting
the results of experiments measuring circuit component
changes in brain disorders.

Conclusion and outlook

In summary, because redundancy appears to be a ubiqg-
uitous feature of the nervous system, we argue that it
should be highlighted when trying to understand or
develop treatments for brain disorders. How should these
concepts be applied at a practical level to enhance
treatment prospects? One general prescription is to aim
to simultaneously measure as many circuit components
in the same individual as possible, to discover their joint
effects on circuit function. However, given the enormous
number of candidate neural components to measure, and
the complexity of the mapping between circuit compo-
nents and circuit function, this is currently a challenge
even in animal models of brain disorders, never mind
individual human patients. Although recording technol-
ogies will undoubtedly improve over time, there are no
easy solutions to these immense technical obstacles. A
second practical problem is that if interventions to tackle
selected circuit-function symptoms are designed based
on redundancy principles, they may risk knock-on effects
on other aspects of circuit function. In general, these
effects may be hard to predict a priori, but nonclinical
neurobiology considerations and quantitative computer
modelling simulations may be used to pre-screen treat-
ments and narrow the empirical search space. Despite
these challenges, we argue that it is better to acknowl-
edge redundancy phenomena early and factor them into
our research programmes and experimental designs,
rather than running the risk of wasting time, funding and
chasing flawed hypotheses that could be later under-
mined by redundancy.

On a more positive note, we also believe redundancy
offers hope because it means that we may not need to
classify and measure every last detail of every form of
disorder to develop effective treatments for symptoms.
It may turn out that there are generic principles of
neural circuit dysfunction that allow us to generalise our
insights across the ever-growing list of molecularly
distinct brain disorders. These principles may in turn
allow us to derive rational treatment strategies that
enable correction of common, systems-level symptoms,
rather than painstakingly attempting to correct each
molecular-level perturbation one at a time.

As this is a very general framework, we anticipate that many
predictions follow. We end by giving one example predic-
tion for redundancy and each of its three sub-phenomena.

e Redundancy itself predicts that the magnitude of the
differences in measures of neural circuit components
between genotypes is greater than the magnitude of
differences of measures of functional activity in the
same circuits. However, this superficial similarity may
hide heterogeneity in response to perturbations,
across groups of related disorders.

e Sloppiness predicts that the degree of within- or
across-animal heterogeneity in a circuit component
parameter should be inversely proportional to the
magnitude of its effect on circuit function. If a
particular component shows low heterogeneity across
wild-type animals, and it is altered in a brain disorder,
then it likely also plays a causal role in any circuit-
function—level alterations.

e Dependence predicts that any set of cellular compo-
nents that strongly co-vary within wild-type animals
are unlikely to be causally contributing to circuit-
function—level alterations in brain disorders.
Reversing the changes of any subset of these com-
ponents in isolation might even exacerbate circuit-
function symptoms.

e Multiple solutions predict that the individual animals
from a genetically modified cohort that are most
similar to the wild-type animals at the circuit function
or behavioural level will not necessarily have the most
wild-type—like circuit components.

Box 2. Insights from deep learning

The phenomena of redundancy and multiple optima have also been
extensively explored in the field of deep learning and artificial neural
networks, where large brain-inspired models are trained to perform
computational tasks by iteratively tuning the weights of connections
between units, analogous to the synaptic strengths of neural con-
nections in the brain. Deep learning researchers have a key
advantage compared with neuroscientists: they can mathematically
calculate an unambiguous measure of task performance, unlike in
neurobiology where a circuit’s performance quality may usually only
be guessed. As a result, researchers have explored the actual
shapes of deep neural network parameter optimality landscapes in
some detail [50]. Their two main relevant findings are as follows:
first, these systems tend to have many local optima, but in
high—dimensional parameter space, the optima are almost always
connected by continuous paths along some small subset of di-
mensions [33]. The corresponding implication for neuroscience is
that there may be some small, special combinations of neural circuit
parameters that can be targeted for interventions, which can effec-
tively move the system towards optima while minimising the risk of
severe detriments. Second, some optima are wide while others are
narrow, with parameters in wide optima resulting in better general-
isation performance for new input signals [51,52]. In neuroscience,
wide optima may also be desirable from a robustness point of view:
they would be more tolerant to biological noise or drift in circuit pa-
rameters over time. Wide optima could be selectively targeted when
designing brain disorder interventions by probing a range of different
parameter values near the optimum, analogous to the ways deep
neural network training algorithms are modified to bias the search
process towards wide optima.
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