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Abstract: The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home en-
vironments can help therapists ascertain if exercises have been performed as prescribed. Whilst
wearable devices have been shown to provide advantages such as high accuracy and precision during
monitoring activities, disadvantages such as limited battery life and users’ inability to remember
to charge and wear the devices are often the challenges for their usage. In addition, video cameras,
which are notable for high frame rates and granularity, are not privacy-friendly. Therefore, this
paper proposes the use and fusion of privacy-friendly and Unobtrusive Sensing Solutions (USSs)
for data collection and processing during SPAREs in home environments. The present work aims
to monitor SPAREs such as dorsiflexion, plantarflexion, inversion, and eversion using radar and
thermal sensors. The main contributions of this paper include (i) privacy-friendly monitoring of
SPAREs in a home environment, (ii) fusion of SPAREs data from homogeneous and heterogeneous
USSs, and (iii) analysis and comparison of results from single, homogeneous, and heterogeneous
USSs. Experimental results indicated the advantages of using heterogeneous USSs and data fusion.
Cluster-based analysis of data gleaned from the sensors indicated an average classification accuracy
of 96.9% with Neural Network, AdaBoost, and Support Vector Machine, amongst others.

Keywords: unobtrusive sensing; data fusion; data mining; radar sensing; thermal sensing; sprained
ankle; infrared thermopile array; home environment

1. Introduction

Developments in sensing technologies have made positive impacts on many appli-
cations ranging from aerospace to automotive and healthcare. In the medical and health
sectors, biosensors are deployed to monitor patient’s physiological conditions in hospital
environments. Although the hospital environment has advantages such as direct supervi-
sion by specialists, appointment booking, logistical concerns, and a feeling of discomfort
are some of the disadvantages.

Several activities and rehabilitation exercises can be monitored outside the hospital
settings, such as assisted living and home environments [1]. Whilst the assisted living
communities are noted for increased physical activities and socialisation opportunities, the
home environment offers a more relaxed and convenient setting for rehabilitation exercises
such as spinal cord injury rehabilitation exercises [2], cardio rehabilitation [3], post-stroke
rehabilitation exercises [4,5], and Home-Based Ankle Rehabilitation [6].

Sprained ankles are injuries sustained due to inappropriate movement of the ankle.
Although they are generally regarded as common injuries, they can degenerate into lifelong
problems if not adequately treated. Common causes of a sprained ankle include ankle
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twists during a fall, awkward landing during sports activities, and stepping on uneven
surfaces during walking or exercising. Sprained Ankle Rehabilitation Exercises (SPAREs)
include a range of exercises aimed at helping recovery from these injuries [7]. Typical
SPAREs include Range of Motion (RoM), balance, stretching, control, and strengthening
exercises [8,9]. RoM exercises entail trying to move the ankle in all directions or some
specific directions. The sufferer can take a sitting position, place the non-affected foot flat
on the floor while attempting to move the affected foot in predetermined directions [8].
Common examples of RoM include controlled-resistant cycling and cord-assisted stretching.
While RoM can be active, there is also evidence of the performance of passive RoM.

Balance and control exercises can involve the use of wobble boards with supports to
avoid tipping [10]. It is often recommended for those with little or no pain on the sprained
ankle. In addition, the duration of the exercise can span between a minute or more and
up to six times in each session [8]. Balance exercises can include standing on the affected
leg with the hands to the sides of the body or folded across the chest. Stretching exercises,
on the other hand, involve extending the calf muscle and the Achilles tendon by pushing
against a wall with the affected foot stretched out at the back. Strengthening exercises can
include foot dorsiflexion, plantarflexion, inversion, and eversion [10]. Home-based SPAREs
include a range of exercises that can be performed within the home environment to help
recovery. Whilst some of these exercises can be performed using common devices such as
elastic bands, wobble boards, and deformable plastic materials, sophisticated instruments,
namely, treadmills, actuators, and cycling machines, can also be used.

The ability to monitor SPAREs can help to understand if the exercises and activi-
ties have been performed as prescribed. The monitoring devices can include a range of
wearables and non-wearables, such as video cameras, gyroscopes, and accelerometers.
Whilst video cameras pose issues ranging from privacy to storage capacity, accelerometers
and gyroscopes require users to remember to charge and wear the devices. Battery life
problems, data disruption, and a feeling of discomfort due to skin irritations from bands
and cuffs are also common challenges with the use of wearables [11].

This study considers the sprained ankle strengthening exercises involving foot move-
ment in the four fundamental directions. The present work aims to monitor SPAREs such as
dorsiflexion, plantarflexion, inversion, and eversion using Unobtrusive Sensing Solutions
(USSs) such as radar and thermal sensors. The main contributions of this paper include
(i) privacy-friendly monitoring of SPAREs in a home environment, (ii) fusion of SPAREs
data from homogeneous and heterogeneous USSs, and (iii) analysis and comparison of
results from single, homogeneous, and heterogeneous USSs.

The remainder of the paper is organised as follows. Section 2 reviews Sensing Solutions
(SSs) in home-based SPAREs monitoring, Section 3 presents the materials and methods for
data acquisition and analysis, Section 4 presents experimental results, Section 5 discusses
findings from the study, and Section 6 presents the conclusion.

2. Sensing Solutions in Home-Based Sprained Ankle Rehabilitation Exercises Monitoring

This section reviews the state-of-the-art in home-based SPAREs monitoring ranging
from wearables to video-based Sensing Solutions.

2.1. Wearable Sensing Solutions

The use of wearables such as triaxial accelerometers, gyroscopes, and inertial sensors
to monitor and estimate the orientations of a body has been widely researched [12–16].
The sensors’ usage has included measurement of the acceleration of the upper extremity
post-stroke [17], indoor activity monitoring and classification [18–23], behaviour moni-
toring [24,25], and home-based motor functions rehabilitation [16], amongst others. In
SPAREs, wearables such as foot-mounted inertial sensors have been used to estimate the
orientation of the ankle [26]. Although inertial-based motion sensors can be used to obtain
locomotion parameters, they are sometimes influenced by the temperature of the sensing
environment [16,27].
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Azizi et al. [7] proposed the use of a gyro-based system that included WiFi and
microcontroller modules in determining ankle inclination and orientation. This study
was noted to have provided significant improvement to the patients although it failed to
estimate the percentage at which the participants recovered from the ailment. In [28], the
use of a microcontroller-based system alongside an accelerometer to monitor the angular
inclination of the ankle during SPAREs is proposed. The two degrees of freedom allowed
by this system placed restrictions on the movement of the ankle during the exercises.
The authors in [29] considered the major trends in SPAREs assistive and monitoring
devices. Whilst devices with middle complexity were mostly wearables, high-complexity
devices such as the Biodex multi-joint devices were noted for their bulkiness, high cost,
professionalism requirements, and suitability for use in only clinical environments.

2.2. Video-Based Sensing Solutions

Video-based SS such as Kinect in home-based monitoring has become popular in
recent years [30]. Kinect provides a 3D estimation of users’ postures and allows for real-
time tracking of room occupants. It can also provide information on the joint segments
of targeted persons [16,31,32]. Despite the remarkable usefulness of the Kinect sensors in
games and rehabilitation, sensitivity to external infrared sources and reflective materials
are the main drawbacks of their usage in home-based settings [33]. For these reasons,
amongst others, such as privacy concerns [34], the Kinect sensor was not appropriate for
this study [35].

A further study by [36] proposed a video game-based approach to SPAREs. The
approach, which was measured against traditional exercises, was said to be effective
in restoring the ankle functions based on indexes such as mood, pain perception, and
readiness to return to active sports, amongst others. Furthermore, a game-based solution
by [37] was compared with physical therapy and a controlled group. The study, which
suggested six weeks of treatment, noted significant improvements in pain reduction. The
authors of [38] proposed the use of augmented reality to help patients and physiotherapists
in SPAREs. The study focused on the importance of using autonomous devices during
SPAREs. In all the studies, monitoring processes were either performed using human
observation or a video camera. While the former is prone to optical illusion and error, the
latter requires higher storage space. In addition, video recordings can intrude into the
privacy of the users of these technologies.

A privacy-friendly Sensing Solution (SS) was proposed by [39]. The work involved
the use of a thermal imaging camera to study temperature variations in human ankles by
comparing blood flow on sprained and non-sprained ankles. Although the thermal camera
offered a privacy-friendly solution, parameters such as the range, velocity, and angle of
the movement were not considered in the study. In addition, the extent of recovery was
through human observation. Therefore, to ensure the effectiveness of these rehabilitation
approaches and processes, Data Mining (DM) and Machine Learning (ML) algorithms
should be used for their data analysis for pattern assessment and clustering. A comparison
of the SSs is presented in Table 1.

Table 1. Comparison of Sensing Solutions (SSs) in Sprained Ankle Rehabilitation Exercises (SPAREs) monitoring.

Sensing Solution Parameters Home
Environment Advantages Disadvantages Example Studies

in SPAREs

Wearables, e.g.,
accelerometer,
gyroscope, etc.

Angular
acceleration and
range of motion.

Yes

Excellent sensitivity,
privacy-protected
data, inexpensive,
small, and light
weight.

Wearability,
battery-life issues,
forgetfulness to
wear, data
disruptions.

Gyro-based system
and WiFi-based
monitoring [7].
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Table 1. Cont.

Sensing Solution Parameters Home
Environment Advantages Disadvantages Example Studies

in SPAREs

RGB, e.g., Vicon
Cameras.

Speed, range of
motion, frequency,
angles of motion.

Yes
High frame-rate data
acquisition and
high-quality images.

High storage space
requirement,
expensive, privacy
issues.

Video and
game-based
approach in
SPAREs [36].

Depth, e.g., Kinect.

Posture estimation,
speed, range of
motion, joint
angles of motion.

Yes
Joints and 3D features
reconstruction,
inexpensive.

Reflection
problems,
short-range,
environment
interference.

Joint angles and
posture acquisition
[16,31,32].

Thermal, e.g.,
Infrared
Thermopile Array.

Posture and joint
angles estimation,
anatomical
information.

Yes

Privacy protected
images, illumination
independent,
inexpensive.

Slow response
time, low sample
rate.

Privacy-friendly
SPAREs
monitoring [39].

Radar, e.g., FMCW
Radar.

Speed, range of
motion, frequency,
angles of motion.

Yes

Privacy-protected
data, illumination
independence, no
interference with
legacy systems,
inexpensive.

No images for
low-cost sensors.

Home-based ankle
rehabilitation [6].

Research evidence has suggested that most SPAREs monitored through face-to-face
interaction and supervision of a physiotherapist can be monitored remotely [40,41]. Per-
forming SPAREs in a remote environment, such as the home setting, can include following
a set of instructional guides provided by a therapist [6,42,43]. The home-based approach
can help address problems related to insufficient therapists and cost [44]. Unlike other
rehabilitation exercises, monitoring SPAREs can be difficult owing to smaller angular move-
ments of the ankle and the possibility of occlusion. Whilst video cameras pose privacy
issues, Wearable Sensing Solutions (WeSSs) such as gyroscopes and accelerometers pose
battery life and wearability problems. On the other hand, human observation can be prone
to optical illusions and errors [11].

The present work proposes the use of unobtrusive and privacy-friendly SSs in the
form of thermal and radar sensors to monitor SPAREs in a home environment. It also
considers the use of DM and ML algorithms to perform Classification by Clustering (CbyC)
of thermal images and blobs and other parameters such as range, speed, and the Angle of
Approach or Retreat (AAR).

3. Materials and Methods

The methods employed in this work included data collection through experiments
and preprocessing of the acquired (thermal and radar SSs) data. Others included thermal
and radar sensors data processing using a Sensor Data Fusion (SDF) architecture. The
sensors data were processed as single, homogeneous, and heterogeneous datasets. The
SDF architecture presents two algorithmic pathways: Hierarchical Clustering Algorithm
(HCA) and the K-Means++ Algorithm (KMA). Further analysis of the datasets with KMA
is made to compare the averages of the model.

The statistical analysis method in the present work considered the averaging of model
parameters against selecting the best model in order to aid subsequent computations. This
includes obtaining the row averages of metrics such as Area Under the Curve (AUC),
Classification Accuracy (CA), F1, Precision, and Recall for each model. Then, the row
averages from KMA, HCA, fused homogeneous, and fused heterogeneous datasets are
tabulated for column-wise averages. T-Test and descriptive analysis using ANOVA are
performed on the column data referred to as KMA Averages (KMA-A), HCA Averages
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(HCA-A), data fusion averages from the side-facing and the front-facing ITA-32 sensors
(SF-Fusion), and data fusion averages from the Infrared Thermopile Array (ITA-32) and
Radar sensor (Rad-T Fusion). The averaging method was chosen against the best model
method to avoid bias and present more data points in further analysis, such as T-Test
and ANOVA.

The experimental setup involved the use of multiple sensors to record SPAREs in a lab-
oratory living room that mimics a real-world living room. They included (i) one Frequency
Modulated Continuous Wave (FMCW) radar sensor, (ii) one Multi-Chirp Frequency Modu-
lated Continuous Wave Mono-pulse (MC-FMCW-M) radar sensor, (iii) two ITA-32 sensors,
and (iv) two Shimmer-3 accelerometer (S3BA) SSs. The S3BAs were used for ground truth
measurement of velocity. While the radar and thermal sensors were mounted on tripod
stands and placed for side and frontal views of the ankles, the two S3BAs were attached
to the metatarsal to record the acceleration of each foot in the X, Y, and Z directions. The
rationale for taking measurements from the front and side views was to avoid the effects
of occlusion. The rationale for using multiple sensors was to allow for complementary
monitoring, redundancy, and cross-validation of measurements. The setting of the study,
including the Living Lab in which the study was conducted, the physical location of the
participants, and the SSs are presented in Figure 1.
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Figure 1. Sprained Ankle Rehabilitation Exercise setting: (a) the Living Lab where the study was conducted, and (b) the
Sensing Solutions (SSs) used during the study. In Figure 1a, the red, white, and yellow spots indicted the locations of the
side-facing SSs, the front-facing SSs, and the participants, respectively, during the study.

In Figure 1a, the red and the white spots indicate the location of the side-facing and the
front-facing SS that were used to monitor the SPAREs. The yellow spot indicates where the
participants sat during data collection. Whilst their legs were usually stretched towards the
white spot (front-facing SS), side views of their actions were obtained with the side-facing SS
to avoid occlusion. A total of 15 healthy participants, randomly selected from the School of
Computing, took part in this study. In an upright sitting position, 20 directional movements
were performed by the participants for 20 s on each leg. These included twisting the ankle
in 4 fundamental directions of human ankle movement: (i) dorsiflexion, (ii) plantarflexion,
(iii) eversion, and (iv) inversion. These movements were recorded simultaneously by all
the sensors. The parameters measured included the angular orientation of the ankles and
postures. Other parameters included their ranges and velocities at instances of dorsiflexion,
plantarflexion, eversion, and inversion. However, data from the wearable sensors (S3BAs)
were not considered in the data analysis. The rationale for not considering the S3BA data is
that data analysis involving the S3BAs and the FMWC radar (aimed at comparing their
velocity values) was considered in our previous study [45]. Data obtained by the thermal
sensors were stored in a bespoke time-series database (SensorCentral) [46].

Data collected during this study were analysed using an SDF architecture referred to
as Modified Distributed Sensor Data Fusion and Evaluation Architecture (MDSFEA) [23],
as presented in Figure 2. The MDSFEA is an architecture suitable for data analysis ranging
from homogeneous to heterogeneous datasets.
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In Figure 2, data from thermal and radar SSs can be imported to the architecture
with the help of the image and data import toolkits, respectively [47]. While the radar
sensors data are stored in a CSV file, the thermal sensors data are stored as PNG files.
Information such as the range of participants, speed, and the AAR from the radar SS
were fused to the corresponding thermal images with the help of their timestamps using
the data merging system. After the preliminary feature extraction that took place at the
data merging system, Definitive Feature Extraction (DFE) began automatically. The DFE
leveraged the data embedding toolkit to extract up to 1000 features from the datasets
and represented them as vectors (n0 to n999) [48]. Although the MDSFEA description
(in Figure 2) suits heterogeneous datasets such as those from thermal and radar SSs, it
should be noted that the same architecture was used for the single and homogeneous
datasets analysis.

Two main algorithms were used to further process the sensors datasets after the DFE
stage namely, the HCA and the KMA. While the HCA used the Distance Toolbox (DT) to
access the data embedder, the K-Means toolkit dissected the datasets (from the embedder)
into clusters and conveyed them directly to the Test and Evaluation Toolkit (TET) (see
Figure 2). The DT used Euclidean Distance Matrix (EDM) to further perform feature-based
segregation on the datasets. The rationale for using the EDM includes the ability to perform
distancing on raw data without previous analysis being affected by the addition of new
data [49]. The HCA used Weighted Average Linkage (WAL) on the distanced features
before the TET. The implementation of WAL on the datasets enhances feature prioritisation
and the discriminant ability of the HCA algorithm [50–52]. DM models such as K-Nearest
Neighbours (KNN), Support Vector Machine (SVM), Stochastic Gradient Descent (SGD),
Random Forest (RF), and Neural Network (NN), amongst others, were used to evaluate
the performance of the architecture.

Thermal blobs from the ITA-32 thermal sensors were automatically binarised using a
sequence of codes in MATLAB. To remove excess blobs from heating and electrical devices,
a blob-based background subtraction algorithm was used [53–55]. Hence, the clear and
distinct thermal blobs are presented in Figure 3a,b. The RGB equivalents demonstrating
similar actions by the ITA thermal SS are shown in Figure 4.
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ments on the right leg, as presented in Figure 3. To aid description, the last two digits of the
thermal images’ timestamps are used for the analysis in this work. For example, thermal
images code-named 20200311T145144_145211 and 20200311T145144_145222 (Figure 3a) are
represented as T-11 and T-22, respectively.

In Figure 3, T-11 and T-49 indicated instances of eversion; T-12, T-22, and T-48 pre-
sented instances of inversion. Furthermore, plantarflexion is observed in T-37, T-38, and
T-49, while dorsiflexion is indicated in T-23 and T-24. The background subtraction and
image binarisation algorithms utilised in this study enhanced the granularity of the images,
thus helping to clarify the direction of the ankle and foot by eliminating heat blobs from
other individuals and devices [53,55]. A comparison of instances of eversion and inversion
of the ankle as recorded by an RGB and the ITA (thermal) sensors are presented in Figure 5.
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4.1. Single Dataset Analysis

On a single dataset analysis such as data from the front-facing ITA-32 thermal sensor,
image embedding took place automatically after data import. This was followed by
data distancing using the Inception-v3 Architecture (IV3A). The rationale for using IV3A
included low computational requirements [56] and high performance in image analysis [57].
KMA and HCA were used simultaneously to perform CbyC on the datasets, and their
results were evaluated using separate TETs. Moreover, while the K-Means toolbox was
initialised with KMA to a maximum of 300 iterations, the hierarchical clustering toolkit
used a 10-fold cross-validation function based on a 66% training set. The results of these
analyses are presented in Tables 2 and 3.

Table 2. Evaluation results showing the accuracies of data mining models during Classification-by-
Clustering of a set of sprained ankle rehabilitation exercises data using K-Means++ Algorithm (KMA).

Stratified 10-Fold Cross-Validation of Side-Facing ITA-32 Sensor Data with K-Means++
Model AUC (%) CA (%) F1 (%) Precision (%) Recall (%)

KNN 98.2 93.0 93.0 93.1 93.0
Decision Tree 91.4 90.1 90.1 90.1 90.1

SVM 99.9 98.2 98.2 98.2 98.2
SGD 99.5 99.3 99.3 99.3 99.3
RF 98.0 89.5 89.5 89.5 89.5
NN 99.7 98.6 98.6 98.6 98.6

Naïve Bayes 92.9 80.5 80.7 81.4 80.5
LR 99.9 98.9 98.9 98.9 98.9

CN2 Rule Inducer 85.6 71.8 71.9 72.3 71.8
AdaBoost 90.5 87.3 87.3 87.3 87.3
Average 95.6 90.7 90.7 90.9 90.7

Legend: KNN = K-Nearest Neighbours, LR = Logistic Regression, NN = Neural Network, RF = Random Forest,
SGD = Stochastic Gradient Descent, SVM = Support Vector Machine, CA = Classification Accuracy, and AUC =
Area under the Curve.

A close comparison of Tables 2 and 3 indicated that the best average accuracies of
the metrics were obtained using the HCA. Although KMA with four models—NN, SVM,
SGD, and LR—obtained an accuracy of more than 98% for AUC, CA, F1, Precision, and
Recall, the accuracies obtained in CN2 inducer and AdaBoost affected the overall accuracy
of KMA. CN2 rule inducer had the least accuracy values for all the metrics in both KMA
and HCA, as presented in Tables 2 and 3.
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Table 3. Evaluation results showing the accuracies of data mining models during Classification-by-
Clustering of a set of sprained ankle rehabilitation exercises data using the Hierarchical Clustering
Algorithm (HCA).

Stratified 10-Fold Cross-Validation of Side-Facing ITA-32 Sensor Data with HCA
Model AUC (%) CA (%) F1 (%) Precision (%) Recall (%)

KNN 99.5 95.6 95.6 95.7 95.6
Decision Tree 90.6 89.7 89.7 89.7 89.7

SVM 99.6 95.1 95.2 95.5 95.1
SGD 99.2 98.9 98.9 98.9 98.9
RF 99.3 94.9 94.9 94.9 94.9
NN 99.4 98.1 98.1 98.1 98.1
LR 100 99.6 99.6 99.6 99.6

CN2 Rule Inducer 84.8 71.4 71.4 71.4 71.4
AdaBoost 91.9 89.2 89.2 89.2 89.2
Average 96.0 92.5 92.5 92.6 92.5

Legend: KNN = K-Nearest Neighbours, LR = Logistic Regression, NN = Neural Network, RF = Random Forest,
SGD = Stochastic Gradient Descent, SVM = Support Vector Machine, CA = Classification Accuracy, and AUC =
Area under the Curve.

4.2. Homogeneous Sensor Data Fusion

On homogeneous data fusion involving the front-facing and side-facing thermal sen-
sors, data from the sensors were fused using a Matching Pairs of Rows Method (MPoRM).
The rationale for using the MPoRM is that it allows for the proper fusion of homogenous
data without information mismatch [47,58]. With the help of the image-embedding toolkit
and its SqueezeNet architecture, a lightweight convolutional neural network model for
image recognition [23], the merged data were routed to the Louvain Clustering Toolbox
(LCT). The LCT automatically discovered eight clusters from the fused dataset by perform-
ing Euclidean distancing and Principal Component Analysis (PCA). The rationale for using
EDM includes the ability to perform distancing on raw data without previous analysis
being affected by the addition of new data [49]. On the other hand, using PCA helps to
improve the clustering of the dataset. It differs from Linear Discriminant Analysis (LDA)
because it is a variance-based algorithm, whereas LDA is based on class information [59,60].
Moreover, PCA is best suited for unsupervised data clustering, such as that used in this
analysis [23].

The KMA involving up to eight clusters and 300 iterations was used for clustering
the unified data. The rationale for using K-Means included simplicity and the ability to
increase similarities within clusters and reduce the same outside the group [61,62]. This
includes defining and associating k centroids for each cluster. Therefore, with the help of
the KMA, the DM models related to the TET were capable of computing the accuracies of
the processes based on a 10-fold cross-validation and average over classes, as presented in
Table 4.

From Table 4, it can be observed that SGD and NN scored more than 98% in all the
parameters such as AUC, CA, F1, Precision, and Recall. An accuracy of more than 90%
was obtained in KNN, Decision Tree, SVM, SGD, RF, NN, and LR in all their parameters
presented in Table 4. While SGD had the highest accuracy of more than 99% in all the
parameters, the CN2 rule inducer scored the least. A further breakdown of the latter
indicated the least accuracy of 85.6% for AUC and approximately 72% in CA, F1, Precision,
and Recall. The average accuracies for all parameters were more than 90%.
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Table 4. Evaluation results of the front and side-facing ITA-32 thermal sensor data using a 10-fold
cross-validation and the average of classes. The fused data were obtained during sprained ankle
rehabilitation exercises.

Data Fusion of Side-Facing and Front-Facing ITA-32 Sensors (SF-Fusion)
Model AUC (%) CA (%) F1 (%) Precision (%) Recall (%)

KNN 98.2 93.0 93.0 93.1 93.0
Decision Tree 91.4 90.1 90.1 90.1 90.1

SVM 99.9 98.2 98.2 98.2 98.2
SGD 99.3 99.1 99.1 99.1 99.1
RF 98.0 91.5 91.5 91.5 89.5
NN 99.7 98.6 98.6 98.6 98.6

Naïve Bayes 92.9 80.5 80.7 81.4 80.5
LR 99.9 98.9 98.9 98.9 98.9

CN2 Rule Inducer 85.6 71.8 71.9 72.3 71.8
AdaBoost 90.4 87.3 87.3 87.3 87.3
Average 95.5 90.9 90.9 91.1 90.7

Legend: KNN = K-Nearest Neighbours, LR = Logistic Regression, NN = Neural Network, RF = Random Forest,
SGD = Stochastic Gradient Descent, SVM = Support Vector Machine, CA = Classification Accuracy, and AUC =
Area under the Curve.

4.3. Heterogeneous Sensor Data Fusion

Heterogeneous sensor data such as those from the side-facing ITA-32 thermal and
radar sensors were also fused using the data merging toolkit. These data were first
uploaded and processed using the import toolkits before being merged using the matching
row appending rule. The fusion outcome was trained using the VGG-19, which is a-19-layer
image recognition algorithm [63]. The merged data were normalised and distanced using
the Manhattan Distance Metric (MDM). The rationale for using the MDM instead of others
such as the cosine rule, included the grid-like behaviour of the former, which is a useful
characteristic when dealing with heterogeneous data [64]. The accuracies of the CbyC with
respect to heterogeneous data fusion are presented in Table 5.

Table 5. Evaluation results of ITA-32 thermal and FMCW radar sensor data using a stratified 10-fold
cross-validation and the average of classes. The fused data were obtained during sprained ankle
rehabilitation exercises.

Data Fusion of ITA-32 Thermal and Radar Sensors (Rad-T Fusion)
Model AUC (%) CA (%) F1 (%) Precision (%) Recall (%)

KNN 99.5 99.3 99.3 99.3 99.3
Decision Tree 99.7 99.5 99.5 99.5 99.5

SVM 99.6 95.1 95.1 95.5 95.1
SGD 99.1 98.8 98.8 98.8 98.8
RF 99.0 94.4 94.4 94.4 94.4
NN 99.7 97.4 97.4 97.4 97.4

Naïve Bayes 98.9 95.6 95.7 95.8 95.6
CN2 Rule Inducer 99.6 99.5 99.5 99.5 99.5

AdaBoost 90.8 87.8 87.8 87.8 87.8
Average 98.4 96.4 96.4 96.4 96.4

Legend: KNN = K-Nearest Neighbours, NN = Neural Network, RF = Random Forest, SGD = Stochastic Gradient
Descent, SVM = Support Vector Machine, CA = Classification Accuracy, and AUC = Area under the Curve.

As presented in Table 5, Stratified Cross-Validation (SCV) involved dividing the data
into smaller sub-groups (strata). The rationale for using the SCV includes their ability
to identify shared attributes in a dataset [64–66]. Moreover, all the metrics returned an
average accuracy of more than 96%.

A further test on the averages of the models from Tables 2–5 represented as KMA-A,
HCA-A, SF-Fusion, and Rad-T Fusion, respectively, is presented in Table 6. The models
considered were KNN, Decision Tree, SVM, SGD, RF, NN, Naives Bayes, and AdaBoost.
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However, models that were not common to the tested models in a column were excluded
from the test. The rationale for excluding them was to achieve a balanced and unbiased
dataset at each instance. Considering the averages presented in Table 6, the highest average
accuracy value was obtained in Rad-T Fusion as 96.9%.

Table 6. Model averages from KMA (Table 2), HCA (Table 3), SF-Fusion (Table 4), and Rad-T (Table 5).

Model KMA-A (%) HCA-A (%) SF-Fusion (%) Rad-T Fusion (%)

KNN 94.1 96.4 94.1 99.3
Tree 90.1 89.9 90.4 99.5
SVM 98.5 96.1 98.5 96.1
SGD 99.3 99.0 99.1 98.9
RF 91.2 95.8 92.4 95.3
NN 98.8 98.4 98.8 97.9

Naive Bayes 83.2 NA 83.2 96.3
CN2 Rule Inducer 74.7 74.1 74.7 99.5

AdaBoost 87.9 89.7 87.9 88.4
Average 91.9 92.4 92.0 96.9

KNN = K-Nearest Neighbours, NN = Neural Network, RF = Random Forest, SGD = Stochastic Gradient Descent,
SVM = Support Vector Machine, CA = Classification Accuracy, and AUC = Area under the Curve. NA = Not
available.

A two-sample T-Test of the KMA-A values and the HCA-A values at 95% confidence
interval indicated that there was no significant difference (p = 0.448) between the samples.
This implied that the accuracy values obtained in Tables 2 and 3 were within a close range.
On the other hand, a two-sample T-Test of the KMA-A and the Rad-T Fusion values (Table 6)
indicated a significant difference between the values (p = 0.032). Similarly, a two-sample
T-Test between SF-Fusion and Rad-T values also showed a significant difference between
the values (p = 0.034). The significant differences (p = 0.032 and p = 0.034) obtained in the
two instances involving Rad-T indicated that the accuracy values of the heterogeneous
sensor fusion datasets (in Table 5) were distinct and different from those obtained from the
homogenous and single datasets. Hence, a descriptive analysis of the parameters in Table 6
(KMA-A, HCA-A, SF-Fusion, and Rad-T Fusion) based on one-way ANOVA is presented
in Table 7. The row containing Naive Bayes was not included in the computation of the
mean because of the non-availability of a value for HCA-A.

Table 7. Descriptive analysis of KMA-A, HCA-A, SF-Fusion, and Rad-T Fusion average values.

Descriptive Analysis of the Parameters

Parameters N Mean StDev 95% CI

KMA-A 8 91.9 8.2 (86.6, 97.2)
HCA-A 8 92.4 8.2 (87.1, 97.7)

SF-Fusion 8 92.0 8.1 (86.7, 97.3)
Rad-T Fusion 8 96.9 3.9 (91.6, 100.0)

Legend: N = total number of rows used for the analysis, CI = Confidence Interval, StDev = Standard Deviation.

In Table 7, one-way ANOVA involving KMA-A, HCA-A, SF-Fusion, and Rad-T Fusion
indicated the latter (Rad-T Fusion) as the parameter with the highest range of values at
95% confidence interval. From the result, Rad-T Fusion still maintained its highest average
value. It also has the least standard deviation of 3.9, which further indicated the proximity
of its values.

5. Discussion
5.1. Discussion on Research Findings

The average results in Tables 6 and 7 indicated that the highest average percentage
accuracy was obtained in the heterogeneous datasets involving thermal and radar SS as
96.9%. Hence, it can be suggested that complementary monitoring involving heterogeneous
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SSs, such as the approach demonstrated in this study, yields higher accuracy compared
with a single or homogeneous monitoring solution.

SPAREs using USSs such as the MC-FMCW-M radar and ITA-32 thermal SSs offers
the ability to visualise the movement of the ankle in the four fundamental movements
of the human ankle. The level of details such as the direct computation of the speed and
range of motion of the ankle presents the FMCW radar variants as better alternatives to
wearables such as the S3BAs, which are not capable of direct computation of speed. In
addition, the privacy-friendly images obtained from the ITA-32 thermal SS are best suited
for home-based monitoring compared with the RGB images produced by video cameras,
which can negatively affect their users’ privacy.

5.2. Comparison of the Present Work with Related Work

Data gleaned from the USSs in this work required less storage space, less computa-
tional time, and fewer resources compared with the RGB-based approach proposed in [36].
Additionally, our approach is privacy-friendly compared with the work in [38]. Compared
to similar research in [67,68], our work utilised a cluster-based approach; it computes the
accuracy of the clustered datasets and compares results from single, homogeneous, and
heterogeneous datasets using statistical methods such as T-Test and ANOVA. Although the
use of wearables in SPAREs proposed in [7,26] has been shown to provide high usability
and accuracy, our approach featured additional information such as participants’ postures,
which can help therapists determine if SPAREs have been performed as prescribed. Addi-
tionally, frequent (re)charging processes, which can result in data loss or disruption, were
not required in our work, since the sensors were plugged in to AC supply. Hence, the
proposed USSs are better candidates for home-based monitoring of SPAREs compared
with wearables such as the battery-powered gyro-based systems.

Whilst some research [8,29,69] in SPAREs has been through human observation with-
out a clear indication of the monitoring accuracy, the present work indicated the accuracy of
the monitoring processes. Another advantage of this work is the use of heterogeneous USSs
compared with wearables proposed in [7,26,70], which could be a source of discomfort to
the technology users.

The MDSFEA proposed in the present work offered added advantages in feature
extraction, visualisation, and model evaluation compared with the widely used method
in [26,71]. Instead of processing each model separately, which can be time consuming, the
models all learnt from the TETs and simultaneously produced comprehensive results on
the TETs. The fusion of data from the SSs gives useful and additional information such as
the speed and the AAR of the ankle at every second during the exercise. Information such
as the posture, speed, range, and the AAR related to the ankle movement during SPARE
can help physiotherapists ascertain if exercises have been performed as prescribed.

5.3. Limitations of the Present Work

One of the limitations of this study is that homogeneous data fusion involving the
front-facing and the side-facing ITA-32 thermal sensors did not produce evaluation results
with HCA when the datasets were fused with MPoRM. This issue was resolved by using
the “instance IDs” of the datasets for results scoring and evaluation. Another limitation is
that ML models such as LR and Naive Bayes were not computed for all dataset types. The
rationale for this exclusion included their incompatibility with the datasets and the data
fusion algorithms.

6. Conclusions

This paper presented the use of privacy-friendly USSs such as thermal and radar
sensors to monitor SPAREs in home environments. Data gleaned from the USSs were
analysed and fused using the MDSFEA on instances involving single, homogeneous, and
heterogeneous SS. Experimental results from model averages indicated mean accuracy
values of 91.9%, 92.4%, 92.0%, and 96.9% for KMA-A, HCA-A, SF-Fusion, and Rad-T Fusion,
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respectively, with models such as KNN, Decision Tree, SVM, SGD, RF, NN, Naïve Bayes,
and CN2 inducer. Descriptive analysis of the model averages further indicated that the
highest average percentage accuracy was obtained in the heterogeneous datasets involving
thermal and radar sensors, demonstrating the added advantages of using heterogeneous
USSs and data fusion in home-based SPAREs.
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39. Kozarski, Ł.; Kuźma, T.; Pisz, A.; Łabuz-Roszak, B.; Kozarska, M.; Szindler, M.; Roszak, M. Visualisation of Ankle Injury Using a
Thermal Imaging Camera. Arch. Mater. Sci. Eng. 2016, 80, 59–63. [CrossRef]

40. Bleakley, C.M.C.M.; Taylor, J.B.J.B.; Dischiavi, S.L.S.L.; Doherty, C.; Delahunt, E. Rehabilitation Exercises Reduce Reinjury Post
Ankle Sprain, But the Content and Parameters of an Optimal Exercise Program Have Yet to Be Established: A Systematic Review
and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 1367–1375. [CrossRef]

41. McKeon, P.O.; Donovan, L. A Perceptual Framework for Conservative Treatment and Rehabilitation of Ankle Sprains: An
Evidence-Based Paradigm Shift. J. Athl. Train. 2019, 54, 628–638. [CrossRef]

http://doi.org/10.1080/15412550701480158
http://www.ncbi.nlm.nih.gov/pubmed/17729069
http://doi.org/10.3109/17483101003718112
http://doi.org/10.1109/EMBC44109.2020.9175896
http://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00158
http://doi.org/10.1249/MSS.0000000000002233
http://www.ncbi.nlm.nih.gov/pubmed/31876665
http://doi.org/10.3390/app8112032
http://doi.org/10.3390/s91008349
http://doi.org/10.1016/j.ridd.2011.07.002
http://www.ncbi.nlm.nih.gov/pubmed/21784612
http://doi.org/10.1016/j.eaef.2018.02.005
http://doi.org/10.1109/IROS.2014.6943155
http://doi.org/10.3390/s19204565
http://doi.org/10.1007/978-3-319-08651-4_1
http://doi.org/10.1123/jsr.2017-0135
http://www.ncbi.nlm.nih.gov/pubmed/30676209
http://doi.org/10.1111/sms.12509
http://www.ncbi.nlm.nih.gov/pubmed/26076737
http://doi.org/10.5604/18972764.1229635
http://doi.org/10.1016/j.apmr.2018.10.005
http://doi.org/10.4085/1062-6050-474-17


Sensors 2021, 21, 7560 15 of 16

42. Gustafsson, K.; Fältström, A.; Öberg, U.; Kammerlind, A.S.A.-S. Written Instructions versus Physiotherapist-Supervised Rehabili-
tation after Acute Ankle Sprain. Eur. J. Physiother. 2017, 19, 76–83. [CrossRef]

43. Delahunt, E.; Bleakley, C.M.; Bossard, D.S.; Caulfield, B.M.; Docherty, C.L.; Doherty, C.; Fourchet, F.; Fong, D.T.; Hertel, J.; Hiller,
C.E.; et al. Clinical Assessment of Acute Lateral Ankle Sprain Injuries (ROAST): 2019 Consensus Statement and Recommendations
of the International Ankle Consortium. Br. J. Sports Med. 2018, 52, 1304–1310. [CrossRef] [PubMed]

44. Chin, L.C.; Basah, S.N.B.; Yaacob, S.B.; Juan, Y.E. Conceptual Design and Implementation for Visual Tracking Ankle Rehabilitation
System. J. Mech. Eng. Sci. 2014, 7, 1208–1218. [CrossRef]

45. Ekerete, I.; Giggins, O.M.; Garcia-Constantino, M.; Nugent, C.; Mclaughlin, J. Unobtrusive Measurement of Upper Extremity
Velocity during Post-Stroke Rehabilitation Exercises. In Proceedings of the 2019 IEEE EMBS International Conference on
Biomedical & Health Informatics (BHI 2019), Chicago, IL, USA, 19–22 May 2019.

46. Cleland, I.; McClean, S.; Rafferty, J.; Synnott, J.; Nugent, C.; Ennis, A.; Catherwood, P.; McChesney, I. A Scalable, Research
Oriented, Generic, Sensor Data Platform. IEEE Access 2018, 6, 45473–45484. [CrossRef]

47. Hosseini, S.; Sardo, S.R. Data Mining Tools—A Case Study for Network Intrusion Detection. Multimed. Tools Appl. 2021, 80,
4999–5019. [CrossRef]

48. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360.

49. Bora, M.D.J.; Gupta, D.A.K. Effect of Different Distance Measures on the Performance of K-Means Algorithm: An Experimental
Study in Matlab. arXiv 2014, arXiv:1405.7471.

50. Ackerman, M.; Ben-David, S.; Brânzei, S.; Loker, D. Weighted Clustering. Proc. Natl. Conf. Artif. Intell. 2012, 2, 858–863.
51. Leng, L.; Zhang, J.; Khan, M.K.; Chen, X.; Alghathbar, K. Dynamic Weighted Discrimination Power Analysis: A Novel Approach

for Face and Palmprint Recognition in DCT Domain. Int. J. Phys. Sci. 2010, 5, 2543–2554.
52. Leng, L.; Li, M.; Kim, C.; Bi, X. Dual-Source Discrimination Power Analysis for Multi-Instance Contactless Palmprint Recognition.

Multimed. Tools Appl. 2017, 76, 333–354. [CrossRef]
53. Albawendi, S.G. Automated Human Fall Recognition from Visual Data. Ph.D. Thesis, Nottingham Trent University, Nottingham,

UK, 2019.
54. Rasoulidanesh, M.S.M.S.; Payandeh, S. A Novel Change-Detection Scheduler for a Network of Depth Sensors. J. Vis. Commun.

Image Represent. 2020, 66, 102733. [CrossRef]
55. Rakibe, R.S.; Patil, B.D. Background Subtraction Algorithm Based Human Motion Detection. Int. J. Sci. Res. Publ. 2013, 3, 3–6.
56. Wahed, R.B.; Nivrito, A.K. Comparative Analysis between Inception-V3 and Other Learning Systems Using Facial Expressions

Detection. Ph.D. Thesis, BRAC University, Dhaka, Bangladesh, 2016; pp. 1–48.
57. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826. [CrossRef]

58. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining; Morgan Kaufmann: Burlington, MA, USA, 2011; ISBN 9780123748560.
59. Jolliffe, I.T.; Cadima, J.; Cadima, J. Principal Component Analysis : A Review and Recent Developments Subject Areas. Phil. Trans.

R. Soc. A 2016, 374, 1–16. [CrossRef] [PubMed]
60. Lu, L.; Jiashu, Z.; Gao, C.; Muhammad, K.K.; Khaled, A. Two-Directional Two-Dimensional Random Projection and Its Variations

for Face and Palmprint Recognition. In Computational Science and Its Applications—ICCSA 2011; LNCS; Springer: Berlin/Heidelberg,
Germany, 2011; Volume 6786, pp. 458–470, ISBN 9783642219337.

61. Morissette, L.; Chartier, S. The K-Means Clustering Technique: General Considerations and Implementation in Mathematica.
Tutor. Quant. Methods Psychol. 2013, 9, 15–24. [CrossRef]

62. Elbattah, M.; Molloy, O. Data-Driven Patient Segmentation Using K-Means Clustering: The Case of Hip Fracture Care in Ireland.
ACM Int. Conf. Proceeding Ser. 2017, 3–10, 1–8. [CrossRef]

63. Mateen, M.; Wen, J.; Nasrullah; Song, S.; Huang, Z. Fundus Image Classification Using VGG-19 Architecture with PCA and SVD.
Symmetry 2019, 11, 1. [CrossRef]

64. Han, J.; Kamber, M.; Pei, J. Data Mining: Data Mining Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2014;
ISBN 9780769550138.

65. Lui, J.; Menon, C. Would a Thermal Sensor Improve Arm Motion Classification Accuracy of a Single Wrist-Mounted Inertial
Device? Biomed. Eng. Online 2019, 18, 53. [CrossRef]

66. Huang, J.; Ling, C.X. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17,
299–310. [CrossRef]

67. Fraser, J.J.; Hart, J.M.; Saliba, S.F.; Park, J.S.; Tumperi, M.; Hertel, J. Multisegmented Ankle-Foot Kinematics during Gait Initiation
in Ankle Sprains and Chronic Ankle Instability. Clin. Biomech. 2019, 68, 80–88. [CrossRef]

68. Abassi, M.; Bleakley, C.; Whiteley, R. Athletes at Late Stage Rehabilitation Have Persisting Deficits in Plantar- and Dorsiflexion,
and Inversion (but Not Eversion) after Ankle Sprain. Phys. Ther. Sport 2019, 38, 30–35. [CrossRef] [PubMed]

69. Kern-Steiner, R.; Washecheck, H.S.S.; Kelsey, D.D.D. Strategy of Exercise Prescription Using an Unloading Technique for
Functional Rehabilitation of an Athlete with an Inversion Ankle Sprain. J. Orthop. Sports Phys. Ther. 1999, 29, 282–287. [CrossRef]

http://doi.org/10.1080/21679169.2016.1251966
http://doi.org/10.1136/bjsports-2017-098885
http://www.ncbi.nlm.nih.gov/pubmed/29886432
http://doi.org/10.15282/jmes.7.2014.20.0118
http://doi.org/10.1109/ACCESS.2018.2852656
http://doi.org/10.1007/s11042-020-09916-0
http://doi.org/10.1007/s11042-015-3058-7
http://doi.org/10.1016/j.jvcir.2019.102733
http://doi.org/10.1109/CVPR.2016.308
http://doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://doi.org/10.20982/tqmp.09.1.p015
http://doi.org/10.1145/3014812.3014874
http://doi.org/10.3390/sym11010001
http://doi.org/10.1186/s12938-019-0677-7
http://doi.org/10.1109/TKDE.2005.50
http://doi.org/10.1016/j.clinbiomech.2019.05.017
http://doi.org/10.1016/j.ptsp.2019.04.015
http://www.ncbi.nlm.nih.gov/pubmed/31042613
http://doi.org/10.2519/jospt.1999.29.5.282


Sensors 2021, 21, 7560 16 of 16

70. Farjadian, A.B.; Nabian, M.; Holden, M.K.; Mavroidis, C. Development of 2-DOF Ankle Rehabilitation System. In Proceedings of
the 2014 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 25–27 April 2014; pp. 1–2.

71. Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait Partitioning Methods: A Systematic Review. Sensors 2016, 16, 66. [CrossRef]

http://doi.org/10.3390/s16010066

	Introduction 
	Sensing Solutions in Home-Based Sprained Ankle Rehabilitation Exercises Monitoring 
	Wearable Sensing Solutions 
	Video-Based Sensing Solutions 

	Materials and Methods 
	Results 
	Single Dataset Analysis 
	Homogeneous Sensor Data Fusion 
	Heterogeneous Sensor Data Fusion 

	Discussion 
	Discussion on Research Findings 
	Comparison of the Present Work with Related Work 
	Limitations of the Present Work 

	Conclusions 
	References

