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Abstract— Structural Health Monitoring (SHM) systems estimate 

damages that affect structural reliability. Modern SHM requires 

continuous monitoring to detect damage caused by day-to-day 

loading and usage. SHM analyzes structural integrity and 

identifies weaknesses leading to potential building collapse. In 

disaster situations e.g., earthquakes, SHM systems enable early 

assessment of building safety and therefore ensure evacuation and 

prevention of human losses. In an urban area, multi-story 

constructions in congested areas become a hazard if their 

structural health is not well monitored and maintained properly. 

A key challenge is the ability to detect damages in an efficient 

manner for edge computing. In this work, we propose an SNN 

based low-cost, energy-efficient, and standalone damage 

classification model for SHM. The proposed classification model 

is implemented on FPGAs and results show a classification 

accuracy of 99.46% on a sensory dataset for earthquake damage 

on a 7-Story concrete building.  

Keywords— FPGAs, Structural Health Monitoring; Spiking 

Neural Networks; Earthquake. 

I. INTRODUCTION 

      The United Nation’s report on Disaster Risk Reduction 

(UNDRR) [1] shows an increasing trend in the number of 

natural disasters (fire, earthquake, flood etc) over the last 

several decades. Urbanization triggered by the 19th century 

industrial revolution brought economic welfare to the society 

[2]. Rising migration and population has allowed cities to 

construct complex and tall megastructures to accommodate 

increasing residential demands as well as enrich the city 

landscape [3]. The life span of typical building lasts for decades 

but regular maintenance helps to improve structural health and 

life span of important buildings for centuries. Cities hosts large 

portion of population and plays an important role in cultural, 

financial, social, ecological and geopolitical aspects of our 

societies [4]. Any natural disaster like earthquake, hurricane, 

floods etc. in these densely populated areas is catastrophic for 

the local civilization [5]. Megacities constructed close to the 

tectonic fault-lines are more susceptible to devastation by 

earthquakes in the near future [6]. Vibrational movements 

caused by earthquake  shake the building by exerting stress at 

critical structural points causing fractures and collapse [7]. 

Despite modern technology advances and the usage of sensory 

equipment’s when an earthquake will occur is unpredictable. 

The only reliable source to determine its future occurrence is to 

analyze previous seismic data along with geological formation 

of a particular area. Governments have invested in the critical 

infrastructures i.e., hospitals, schools, military bases, bridges, 

dams, and emergency shelters to confront impact of 

unprecedented natural disasters. The structural heath of these 

critical infrastructures must be check periodically to validate 

their endurance, reliability, and usability in any emergency [8]. 

Traditional method requires personal assessments by 

experienced inspectors along with portable sensory equipment. 

These costly manual assessments can be done periodically 

(quarterly, biannually, or annually) as it requires dedicated 

high-spec equipment that further ads in costs [9].  

Modern SHM techniques equipped with complex software 

algorithms that processes real-time structural information to 

automatically diagnose structural changes and damages caused 

by the aging, erosion, and regular load [10]. The recent trend of 

equipping national, cultural, residential, and commercial 

building with an efficient SHM systems, is to evaluate damages 

and aid in reducing any impact from potential human-made or 

natural disasters. [11]. The SHM system installed in the 

building provides real-time information about damages caused 

by the natural disaster or day-to-day work loads thus providing 

decision making information about its safety and usage. The 

sensory data information can be monitored and processed onsite 

or through remotely locations via internet or other 

communication channels. The success of modern real-time 

SHM systems relies broadly on the authenticity, capability, and 

efficiency of the decision-making information processing 

software algorithms. Ideally these algorithms must be adaptive 

to all structural changes caused by damages as well as regular 

repairs. Machine learning algorithms i.e., Neural Networks 

(NNs) have shown significant benefit in detection and 

classification. Especially, 3rd generation neural model i.e., 

Spiking Neural Networks (SNNs) are more biological realistic 

mathematical models that offers an alternative and efficient 

event-based computing. Recent study shows that digital SNNs 

are computationally powerful and require less hardware area as 

compare to an ANN [12]–[14]. In this work propose a hardware 

implementation of an SNN based SHM system to analyze and 

classify structural damages caused by earthquakes. The 

structural damage classification performance of the proposed 

model is evaluated on a sensory dataset generated by execution 

of four historical earthquake ground motions on a full-scale 7-

story concrete building. 
Section II provides background on existing damage 

classification techniques for SHM systems. Section III explains 
hardware implementation of proposed classification model and 
section IV provides experimental setup to analyse performance 
of SNN-based classifier. Section V presents simulation results 



and analysis with existing models.  Section VI concludes this 
research and outlines future work. 

II. BACKGROUND AND LITERATURE REVIEW 

Rapid urbanization was triggered by the eighteenth-century 

industrial revolution that caused massive relocations and the 

migration of peoples towards important trade routes and 

strategic locations such as near seaports, ore or mineral mines, 

or industrial areas etc. [3]. These migrations have not only 

improved socioeconomic condition of local area but also 

provides an opportunity to multi-cultural society to develop 

complex building structures with newer construction material 

and techniques [2]. Local and central government have invested 

in upscaling human development in urban areas by providing 

physical infrastructures (landscape building, libraries, railways, 

roads, business parks, schools, electricity, and other day-to-day 

utilities) and critical infrastructure (hospital, military bases, 

emergency shelter) [15]. These public buildings and 

infrastructure were designed and construct with the resources 

available at the time of construction to fitful their long-term 

usability by withstanding extreme weather, capacity, and load. 

The use of concrete in the construction of buildings and bridges 

is the foremost reason for the existence  of many 19th century 

iconic building across the world [16]. These building requires 

regular structural health monitoring to endure their usage, 

health, and robustness. The constructed infrastructure is not 

only threatened to decay with aging and corrosion but also 

exposed to extreme events (earthquake, Tsunami, floods, 

hurricane etc.).  

There are over 457 volcanoes within 100Km range of 

megacities (cities with pop above 1 million) across the world 

[17]. Due to urbanization, environmental degradation and poor 

infrastructure conditions of commercial and residential 

buildings makes these areas more prone to natural catastrophe 

[6]. The consequences of an earthquake are not limited to the 

instant when it has occurred, but they are also accompanied by 

series of events i.e., landslide, flooding, collapse of power and 

transportation infrastructure etc. which can lasts for years [6], 

[18]. The 1999 Chi-Chi earthquake triggered 10,000 landslides 

across mountainous terrain of Central Taiwan [19]. These 

aftermath events not only restrict emergency response from 

outside the disaster area but also slowed down the rehabilitation 

process in the affected areas. The demand in curbing of the 

socioeconomic effects associated with these natural disasters 

has encouraged the governments to implement standardized 

policies to make infrastructure and communities more durable 

and robust [18].  

Therefore structural health of the critical infrastructures i.e., 

hospital, military bases and emergency shelters should meet the 

required safety, reliability, and  useability standards in the 

disaster-affected areas [20]. These front-line critical 

infrastructures can assist in emergency situations by providing 

instant medical aid, shelter, and human resource to counter 

consequences of natural disaster. The earthquake can produce 

extreme stress causing cracks and deformation at critical 

structural points which ultimately cause collapse of 

infrastructure [11]. The unseen/hidden structural damages 

should be assessed by an efficient structural health monitoring 

system before using critical buildings for emergency response.  

SHM systems follows four discrete steps: signal 

acquisition, signal processing, feature extraction and damage 

classification to assess reliability of any structures. The number 

of sensors i.e., piezoelectric accelerometers with orthogonal 

axis of acceleration or thermometer [21], wavelet [22], 

ultrasonic wave sensor [23], fiber optic sensor [4] etc. are 

attached at critical points of the building to generate structural 

information i.e., acceleration, velocity, displacement etc. to the 

connected computational environment [24]. This sensory 

analogue information is digitized with the help of different 

Analogue to Digital Converters (ADC) supported by signal 

processing tools. Feature extraction and identification methods 

relies on empirical data to differentiate between active features 

formed by the structural changes and momentary noise signals 

generated by the sensors [9]. SHM requires complex feature 

extraction methods i.e., orthogonal decomposition method to 

extract dynamic sparse features caused by the vibrational 

motion of the structure[9]. Once important featured signals are 

extracted from the sensory signal, a classification algorithm is 

used to analyze and categorize damages [25]. The strength of 

an SHM system depends on the accuracy of its classifier. Early 

SHM used K-Mean (KM) clustering techniques to classify 

structural damages into number of categories, however the KM 

technique is sensitive to the input data and sometimes cluster 

requires manual starting point. Other existing classification 

techniques include wavelet-based approaches, Kalman filter-

based methods and edge detection method for SHM [22]. NNs 

have outperformed existing classification methods in terms of 

classification accuracy and precision. NNs requires dataset of 

varying feature patterns to adjust their synaptic weights during 

the training phase. Recent adaptation of ANNs to estimate 

strain responses of building columns under windy condition has 

paved the way for NNs deployment in SHM systems [5]. These 

NNs are complex mathematical models that requires advance 

hardware system to execute computationally intensive 

equations. To enjoy high performance parallel computing with 

customized hardware implementation on programmable 

architecture has urged researcher to explore FPGA based SHM 

systems to boost data processing, feature extraction and 

classification for SHM systems. Number of feature extraction 

techniques including Fast Fourier Transform (FFT) [26], 

Hilbert–Huang Transform (HHT) [27], Bayesian statistics [28], 

non-linear time series analysis [29] and Discrete Wavelet 

Transform (DWT) to record acoustic emission are implemented 

on FPGA to analyze and classify sensory/imagery signals data 

to aid SHM systems. These classifiers require mapping of 

complex mathematical (differential) equations on FPGA thus 

incur hardware area and power. Therefore, a need of an efficient 

(low-cost) SHM classifier is imminent demand to enhance 

performance of existing SHMs during unwanted situations.  

The advancement in high processing power on-chip 

processors has brought life to the hardware implementation of 

SNNs. A recent study has shown SNNs as an efficient and 

powerful classification technique for SHM [9]. Contrary to 

conventional artificial neurons, spiking neurons are spike-



event-driven that utilize energy to process information only at 

the arrival of spike events at the input to neurons. This event-

based discrete phenomenon of spiking neurons makes them 

more energy efficient and appropriate for hardware 

implementations. Therefore, this work proposes an FPGA-

based low-cost SNN classifier to enhance performance and 

lifespan of SHM systems. 

III. SHM HARDWARE CLASSIFIER  

This section outlines the hardware architecture of proposed 

classifier to detect structural damages in critical buildings 

during disaster situation. 

A. SNN Based SHM Classification Model    

The SHM systems capture continuous data of structural 

variations caused by the vibrational motions at key building 

points. The raw sensory data is often transmitted to a central 

SHM system via a wired or wireless medium [30]. Modern 

SHM digitize sensory information to extract feature required 

for structural damage classification. The digital features are 

transformed into temporal patterns before sending it to a 

classifier. In this work we proposed hardware implementation 

of an SNN-based structural health monitoring model to classify 

structural damage.  

SNNs process and encode information in the temporal domain 

by dealing with time of spike instead of amplitude of neural 

spike. The temporal patterns generated during the feature 

extraction process can be directly fed into an SNN for training 

and validation. A conductance-based Hodgkin–Huxley neuron 

model is the most realistic mathematical model that requires 

high hardware resources to solve non-linear differential 

equations [31], whereas the Integrate and Fire (IF) model is a 

more simplified mathematical spiking model of biological 

neurons [32]. Leaky integrate and Fire (LIF) neuron model is 

the modified version of the IF model with the Hodgkin–Huxley 

neuron model-type leaky neural membrane [33]. The LIF 

neuron provides right trade-off between reduced hardware area 

and sufficient spiking performance [34]. This work proposes to 

use the LIF neuron model in the SNN classifier. The 

mathematical model of the LIF neuron can be expressed as  
 

𝜏𝑚

𝑑(𝑢𝑖)

𝑑𝑡
= −𝑢𝑖(𝑡) + 𝑅𝐼𝑖

𝑠𝑦𝑛
(𝑡) (1) 

 

Where 𝐼𝑖
𝑠𝑦𝑛

(𝑡) is synaptic current from presynaptic neurons at 

time (𝑡) , 𝜏𝑚  is the membrane time constant of decaying 

membrane potential in the absence of spikes, and 𝑅 is the neural 

resistance. Synaptic current 𝐼𝑖
𝑠𝑦𝑛(𝑡) is modelled by 
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where 𝑤𝑗  is the weight of 𝑗𝑡ℎ synapse towards post-synaptic 

neuron 𝑖 at time 𝑡. 𝑇 is the spike train time, 𝜏 is the synaptic 

current time constant.  

The proposed classification model is supported with spike-prop 

as a learning algorithm for synaptic weight updates during 

training. Bothe’s spike-prop is an efficient and reliable leaning 

model to adjust synaptic weights when dealing with temporal 

patterns [35].  Spike-prop updates the cost function (𝐸) while 

minimizing Mean Square Error (MSE) between actual  𝑡𝑗
𝑎 and 

desired 𝑡𝑗
𝑑 spike time using  

𝐸 =
1

2
 ∑ (𝑡𝑗

𝑎 − 𝑡𝑗
𝑑)2

𝑗∈𝐽
 (3) 

B. Hardware Architecture    

The proposed SNN based structural health classifier comprising 

up of spike generator, LIF neuron based SNN model and spike 

analyzer. Fig.1 shows hardware architecture of proposed LIF 

based classifier for SHM system to analyze structural health, 

integrity, and reliability. In the feedforward neuron model, each 

presynaptic LIF neuron generates synaptic current for the post 

synaptic neuron. LIF neuron requires temporal input, synaptic 

weights (generated during training) to accurately classify 

structural health.  

The sensors attached to the structure generates floating point 

value thus a Spike Generator is integrated before SNN input 

layer to convert sensory values into temporal fixed-point 

values. A running mean/average algorithm is used to normalize 

incoming sensory values into temporal spike patterns. The 

spike generator continuously updates mean value to keep input 

spike within defined spike time frame 𝑇 ( 𝑇𝑚𝑖𝑛 and  𝑇𝑚𝑎𝑥). Fig. 

2 illustrates working principle of LIF neuron hardware 

components developed to analyze proposed classifier for SHM 
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Fig. 1 Proposed SNN based classifier for SHM system.  



system. These temporal input spikes are fed into SNN to 

classify structural health by spiking at different damaged 

classification times. Neural synapse generator is implemented 

to generate synapse for each postsynaptic neuron in the SNN 

based classifier (as shown in Fig. 2). Each LIF neuron is 

connected to number of post-synaptic neurons and receives 

multiple synapses from pre-synaptic neurons where each 

synapse generates its own synaptic current 𝐼𝑖
𝑠𝑦𝑛

(𝑡)  towards 

post-synaptic neuron 𝑖  arriving at separate time 𝑡  using 

equation (2). A Synaptic current module is used to gather all 

incoming weighted and delayed synapses into a unified 

synaptic current array sized [1x400] for LIF neuron (shown in 

Fig. 2). An array of trained weights [𝑁𝑥𝑆]  is stored inside 

neuron to generate weighted synaptic current for LIF, where the 

size of weight array depends on number of pre-synaptic neurons 

𝑁 and number of synapses 𝑆 from each pre-synaptic neuron. 

This model assumed 10 synaptic connections between each pre-

synaptic and post-synaptic neuron generated using delay 

module shown in Fig. 2. 
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Fig 2. LIF neuron architecture for spike generation and 

propagation 

The LIF neuron has a leaky membrane potential  (𝑉𝑚)  that 

fluctuates between minimum voltage  (𝑉𝑚𝑖𝑛 = −70𝑚𝑉)  and 

threshold voltage (𝑉𝑡ℎ =  −35𝑚𝑉). On arrival of each synaptic 

current, the membrane potential  (𝑉𝑚)   increases towards 

threshold voltage  (𝑉𝑡ℎ) whereas in absence of spike membrane 

potential decreases towards minimum membrane voltage 

 (𝑉𝑚𝑖𝑛) . A Membrane voltage generator and comparator is 

employed using equation (1) to calculate membrane voltage on 

arrival of each synaptic input. The LIF neuron membrane 

potential is fed to voltage comparator (as shown in Fig. 2) to 

continuously compare it with pre-defined threshold voltage 

 (𝑉𝑡ℎ =  −35𝑚𝑉) , if membrane voltage surpasses threshold 

voltage  (𝑉𝑚 > 𝑉𝑡ℎ), voltage comparator sends a signal to spike 

generator to fire a neural sike and record time of spike before 

resetting membrane potential to reset voltage  (𝑉𝑟𝑒𝑠𝑒𝑡 =
−75𝑚𝑉) . Once neuron spikes, spiking neurons go through 

mandatory refractory time  (𝑅𝑡 = 10 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠) that allow 

LIF neurons to resettle membrane potential at  (𝑉𝑚𝑖𝑛) and get 

ready to accept next synaptic input. The time of spike of output 

layer neuron is forwarded to Spike analyzer to classify 

structural health of the building. The proposed classification 

model is trained to classify structural health with respect to pre-

defined spike time (16, 18, 20 and 22) for four damage levels 

(S0, S1, S2 and S3) with 1% tolerance. The output neuron spike 

time is compared with predefined structural health level that 

reflects grade of damages in the building. The classification 

output can be forwarded to SHM system to take appropriate 

actions.  

C.  Neural Model Training   

Neural networks require an efficient learning model to update 

synaptic weights in order to maximize classification accuracy. 

This work considered Spikeprop, a supervised learning model 

for spiking neurons that encodes information by adjusting 

synaptic weight based on the time of first spike and propagate 

neural spike from presynaptic layer neurons to postsynaptic 

layer neurons [35]. Comparably to ANN’s backpropagation 

learning model, Spikeprop adjusts synaptic weights to bring 

output layer neurons spike time close to desire spike time at the 

end of each iteration. Contrary to rate/phase encoding, the main  

advantage of SpikeProp is encoding of structural health 

information at each sensory spiking input. The SNN model is 

trained before the deployment of hardware system, and this was 

done using historical sensory data. Once the model is trained, 

the generated synaptic weights can be used for the hardware 

system.  

C. SNN Based Classifier     

The proposed SNN based structural health classifier is able to 

connect directly with the sensors to read real-time data and 

perform damage classification. The hardware SNN provides 

parallel processing thus enables multiple hardware 

architectures to process sensory data concurrently. 

Furthermore, these devices operate with low-power DC 

requirements and during power failure in disastrous situation 

they can be backup with battery pack or solar power to 

continuously work onsite [26]. Therefore, a single FPGA 

installed on critical infrastructure will be able to monitor real-

time structural health. This configuration helps the proposed 

hardware to work standalone in disaster affected structures i.e., 

building, bridges, dam where human access can be fatal.  

Fig. 2 shows an overview of FPGA hardware blocks for the 

SHM system classifier. The raw sensory input is first 

normalized with average running mean value to generate 

temporal fix-point number for spiking neural hardware 

compatibility. The structure is fed with 45 accelerometer 

sensors therefore we proposed each sensory output data is 

normalized independently to its own running mean value. 

During SNN training, number of network topologies (including 

number of neural layers, number of neurons in each layer, and 

number synaptic connections between two feed-forwarded 

connected neurons) are evaluated to identify compact SNN size 

without compromising classification performance. Fig.2 

illustrates a 3-layer fully connected SNN implementation on 

FPGA, where input layer has 45 neurons (1:1 ratio with number 

of sensors) to read normalized sensory input, 10 hidden layers 

neurons for information encoding and 1 neuron in output layer 

to determine structural health and damage level. A single 



spiking neuron at output layer can be trained to classify number 

of discrete states by varying spike firing time. The time of spike 

of output neuron determine structural health and suggest 

usability and reliability of under observation structure. The 

classification output can be utilized by external hardware or 

SHM systems to take appropriate actions i.e., warning, closure 

of bridge, building or dam etc.  

IV. EXPERIMENTAL SETUP 

This section explains the experimental setup established to 

implement the proposed SNN based fine-grain level congestion 

prediction models. 

A.  Earthquake Data Acquisition   

The effectiveness of SHM can be determined by installing 

sensing devices at critical points of the building to measure 

accuracy of its response on structural damage classification. 

This work has considered a full-scale 7-story structure 

consisting of up of four gravity columns for stability, main wall 

and back wall on each floor, a concrete slab to separate floors 

levels and an auxiliary positioned column [7]. The structure was 

equipped with sensors (45 accelerometers) to transmit data 

signals using a nine-node distributed data acquisition system. 

Between October 2005 to January 2006, a sequence of 68 

dynamic tests (ambient vibration tests, free vibration tests, and 

forced vibration tests) were applied using the UCSD-NEES 

shake table [7]. The structure also undergoes vibratory motions 

to replicate four historical earthquakes records: traversal and 

longitudinal components of 1971 San Fernando earthquake 

(Mw=6.6, Mw=6.6) and longitudinal and 360” component of 

1994 Northridge earthquake (Mw=6.7, Mw=6.7). The building 

undergoes several structural damages during intense and 

realistic earthquake. To minimize reading error, the structure 

was subjected to white noise (WN) base extraction test run for 

8 min followed by 3 min long ambient vibration (AV) test to 

check the instrumentation and data acquisition system used in 

experimentation. The damages recorded in the structure are 

classified in four structural damage state: S0, S1, S2 and S3. 

Where S0 is defined as the undamaged, S1, S2 and S3 are 

damage caused by the first, second and third artificially 

generated earthquake events respectively (as shown in Table 1).  

The raw experimental data samples extracted from the 

sensors are translated to generate mean value samples for 

structural heath classification. The featured temporal dataset 

can be used for training and validation of proposed SNN based 

SHM classifier. 

 
TABLE 1                  DAMAGE CLASSIFICATION  

Damage state Test description 

State-0 (S0) 8 min white noise base excitation process & 3 min 
ambient vibration 

State-1 (S1) After the 1st earthquake excitation, with 8 min 
white noise base excitation process & 3 min 

ambient vibration 

State-2 (S2) After the 2nd earthquake excitation, with 8 min 
white noise base excitation process & 3 min 

ambient vibration 

State-3 (S3) After the 3rd earthquake excitation, with 8 min 
white noise base excitation process & 3 min 

ambient vibration 

B. Simulation Setup 

 To validate classification performance, a three layered fully 

connected SNN was designed and implemented on FPGA using 

VHDL. The proposed SNN used LIF based neurons with 

SpikeProp as a learning algorithm to adjust synaptic weights 

during training phase. 

 The fully connected, feed forwarded SNN has 45 neurons 

in the input layer to obtain data from 45 accelerometer sensors, 

10 neurons in the hidden layer for data encoding and one neuron 

in the output layer to classify damage with spike time. Fig 3 

shows an output layer neuron spike time range used to encode 

structural health using sensory data to classify structural 

damage. If the output neuron fire spike at 16 ± 1% then structure 

is classified at S0 state, else if output neuron spiked at 18 ± 1% 

then structure has State-1 damages from an earthquake, else if 

output neuron generate spike at 20 ± 1% then structure is state-

3 level damages from two earthquakes, else if neuron spike at 

22 ± 1% then structure is in critical condition (State-4) after 

surviving three artificially induced earthquakes. Fig 3 shows 

that for an incoming sensory input data, the output layer neuron 

of SHM-SNN spiked at 20 ± 1% range therefore the SHM 

system classifies under-observation building as state-3 level 

damage structure caused by two earthquakes.     
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Fig. 3: Timing diagram of structural health classifier 

The featured temporal mean value samples are fed directly 

into the SNN for training and testing. The model is trained on 

70% random dataset and was simulated for 2,000 epochs to 

adjust synaptic weights to achieve <1% MSE. Once trained, 

proposed classification model was fed with 30% unseen dataset 

to analyze the classification of structural health according to 

damage states (S0, S1, S2 and S3). The success of proposed 

model relies on how accurately it classifies damages using 

mean valued feature dataset.  

The model is analyzed against prediction accuracy(𝑃𝑎), model 

Sensitivity (𝑃𝑠𝑒) and Precision (𝑃𝑝)  on mean valued dataset 

generated by the vibrational motion of under observation seven-

story structure.   

𝑃𝑎 =
(∑ 𝑇𝑃 +  ∑ 𝑇𝑁)

𝑆
 (4) 

𝑃𝑠𝑒 =
(∑ 𝑇𝑁)

𝑆
 (5) 

𝑃𝑝 =
(∑ 𝑇𝑃)

𝑆
 (6) 



where correct classification is termed as True Positive (𝑇𝑃), 

incorrect classifications are labelled as True Negative (𝑇𝑁) 

and (𝑆) is total sample dataset size used for analysis.  

V. RESULTS AND ANALYSIS   

A. Simulation Analysis 

Simulation results shows that proposed SNN based structural 

health classifier has correctly identified damages in the 7-story 

concrete structure with  an accuracy of 99.46%. Table 2 shows 

classification accuracy for each damage category. It is depicted 

that the damage levels S0, S1, S2 and S3 are classified with 

100%, 99.90%,99%. 100% and 99.61% accuracy using 

proposed SHM system. 

 TABLE 2                  CLASSIFICAITON ACCURACY  

           Actual 
Predict 

S0 S1 S2 S3 

S0 99.68 % 0.32 % 0 0 

S1 1% 99 % 0 0 

S2 0 0 100 % 0 

S3 0.38 % 0 0 99.62 % 
 

Table 3 shows that proposed model is able to detect and classify 

structural damage with 99.46% accuracy. Furthermore, 

proposed SNN classifier has shown classification sensitivity 

and classification precision of 99.9%. The classification 

sensitivity and precision determine the ability of proposed 

classification model to correctly identify and classify structural 

health damages across all damage categories.     

 
TABLE 3                  SHM CLASSIFICATION PERFORMANCE  

 Accuracy Sensitivity Precision 

Average  99.46% 99.9 % 99.9 % 

B. Hardware analysis: 

The proposed model is implemented using the Xilinx Artix-7 

(xc7a200t ffv1156-1L) FPGA board. The FPGA performs 

multiple operations in parallel to provide real-time solution at a 

low hardware and power cost [36]. In an event of natural 

disasters, the power loss across an area restricts computer 

backed SHM system to generate and send structural health 

report for damage classification and analysis. The FPGA 

devices utilize low power and can be backed up with portable 

batteries or solar power to classify sensory data and send 

structural health report to remote server/operation unit thus 

allowing to perform systematic analysis without endangering 

human lives [21].  

      TABLE 4                  HARDWARE OVERHEAD  

Resource Estimation  Available Utilization (%) 

LUT 72403 303600 23.848156 

FF 94606 607200 15.580699 

DSP 6 2800 0.2142857 

Table 4 outlines that the proposed classification model (45 

input, 10 hidden-layer and one output neurons) requires 23.85% 

of Look-Up-Table (LUT), 15.58% Flipflop (FF) and 0.21% of 

DSP resources available on Xilinx Artix-7 board.  

C. Comparison to Existing Techniques: 

This work implemented a damage classifier to process data 

of all accelerometer sensors installed at 7-story building to 

observe and record vibrational motion caused by the 

earthquake. The existing low-cost FPGA based classifiers for 

SHM has proposed an exclusive FPGA for each sensor to 

perform signal processing, filtration, and feature extraction 

processes on sensory data. Table 5 illustrates an estimated 

hardware requirement for Discrete Wavelet Transform (DWT) 

[37] and Hilbert Transform (HT) [29] based damage classifier 

for 7-story concrete structure. It is evident that SNN-classifier 

requires 78.65% less Look-Up-Table (LUTs), 77.33% less 

Flip-flops (FFs) and 87.33% (static and dynamic) power saving 

at 5 MHz operating frequency when compared to DWT-

classifier. Moreover, proposed classification model has saved 

88.40% LUTs and 85.79% FFs hardware resources as 

compared to HT-classifier for SHM system. Therefore, SNN-

based classifier is a low-cost solution for SHM system with the 

structural damage classification accuracy of 99.48% on 

earthquake dataset.  
TABLE 5                 HARDWARE OVERHEAD COMPARISON  

      Technique 
 
Resource 

Discrete Wavelet 
Transform 
(DWT) [37] 

Hilbert 
Transform 
(HT) [29] 

Proposed  Available 

LUT 339120 623925 72403 303600 

FF 417330 665685 94606 607200 

Power 60W N/A 5.27W N/A 

VI. CONCLUSION 

The SHM system requires robust classifier that helps in 
identification of structural damages that may affect structural 
integrity of building. This work proposed hardware 
implementation of SNN based damage classifier to enhance 
efficacy of SHM system. The proposed model is implemented 
on Artix-7 FPGA board and requires fraction of hardware 
resources to detect structural damages with caused by 
earthquake 99.46% accuracy, 99.9% sensitivity and 99.9% 
precision. Furthermore, the SNN-based classifier for SHM 
system requires least hardware resources as compared to 
existing state-of-the-art DWT-based classifier and HT-based 
classifier for SHM systems. The FPGA based models are power 
efficient and able to analyse structural health in extreme 
disastrous conditions without compromising health monitoring 
performance [26]. Future work includes deployment of FPGA 
based SNN on critical structures including bridges, hospital, 
school and community hall buildings to monitor damage 
performance on day-to-day load as well as under disaster 
condition.  
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