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Abstract—Limited training data, high dimensionality, image
complexity, and similarity between classes are challenges con-
fronting Hyperspectral Image (HSI) classification often resulting
in suboptimal classification performance. The Capsule Network
(CapsNet) preserves the hierarchy between different parts of the
entity in an image by replacing scalar representations with vec-
tors and can address these aforementioned issues. Motivated by
CapsNet, this paper presents a novel end-to-end Deep Learning
(DL) architecture, the Hybrid Capsule Network (HCapsNet), for
HSI classification. HCapsNet employs 2D and 3D Convolutional
Neural Networks (CNNs) to extract higher-level spatial and
spectral features. In order to establish a route between capsules
in the lower layers to the most-related capsule in the higher
layer, dynamic routing (DR) is used to identify several overlapped
objects during training sessions. Hyperparameter optimization is
performed using Nested Cross-Validation (Nested-CV) to ensure
thorough generalisation evaluation. The proposed HCapsNet sig-
nificantly outperformed the state-of-the-art methods in terms of
overall classification accuracy on three widely used hyperspectral
datasets, Indian Pines dataset achieving (> 3%, p < 1× 10−11),
the University of Pavia dataset (> 4%, p < 1×10−9), the Salinas
Valley dataset (> 3%, p < 1 × 10−10) when using only 1%
of the data for training. The performance of all CNN-based
approaches degraded significantly with smaller training sample
sizes. HCapsNet, therefore, is demonstrated to offer significant
advantages in HSI classification problems with low sample sizes.

Index Terms—Capsule Neural Network (CapsNet), Deep
Leraning (DL), Dynamic Routing (DR), Hyperspectral Image
(HSI).

I. INTRODUCTION

HYPERSPECTRAL data acquisition has considerably in-
creased with the continued advances in imaging technol-

ogy [1]. Hyperspectral imaging has shown to be a powerful
tool for various applications, such as agricultural management
[2], [3], environmental protection [4], [5], semiconductor
wafer defect detection [6], [7], and mineral exploration [8],
[9]. A Hyperspectral Image (HSI), unlike images used in
computer vision, is composed of hundreds of two-dimensional
images corresponding to various spectral bands [10]. This
provides a nearly full spectrum of reflected light for each
pixel in the image of a scene and thus allows capturing
crucial spectral information for materials identification and
characterization. Particularly, the remote exploration of the
earth’s surface is possible with the combination of the spectral
and spatial information in these images. In such a framework,
HSI classification is undergoing intense study in remotely
sensed HSI data analysis [11]. The high dimensionality and
lack of sufficient labelled data, large spectrum variability in
the spatial domain, and the existence of mixed pixels due to
low spatial resolution can however decrease HSI classification

accuracy.In addition, despite the efforts of experts in process-
ing and evaluating HSI for various applications, due to an
ever-growing volume of data, it is critical to developing more
intelligent and autonomous approaches.

To date, algorithms applied to HSI classification can be
categorised into two general categories: techniques based on
manually-engineered features and methods based on data-
managed features. In the early stage of HSI classification, tech-
niques based on engineered features focused on investigating
the influence of spectral features in improving performance.
As a result, many pixel classification methods have been
presented, including support vector machine (SVM) [12] and
multinomial logistic regression [13]. Also, in the techniques
based on engineered features, the feature extraction and clas-
sifier section are designed independently. For instance, Tang
et al. [14] proposed a method to reduce the dimension and
feature extraction in HSIs using a discrete 3D scattering
wavelet transform. This study examined different benchmarks
and showed high accuracies by using a low number of labelled
samples. Tatyana et al. [15] transformed the HSI into a linear
separated space with an active extractor for spectral features,
namely regularised linear discriminator.Khodadadzadeh et al.
[16] combined the classic multinomial logistic regression
(MLR) formulation with a class-dependent subspace projec-
tion method to cope with highly mixed hyperspectral data
using limited training samples. In the literature, several tech-
niques have been applied to perform supervised classification
of hyperspectral data [17]. In [12], SVMs and nonparametric
classifiers are compared for a multiclass classification task. It
was concluded that radial basis function RBF-SVM is more
efficient compared with Linear-SVM, k-nearest neighbours
(KNN), and other RBF kernel methods. Two classifiers based
on the Random Forest (RF) methods were investigated in [18]
to enhance generalisation in HSI classification. This study
showed that applying RF ensembles instead of a single tree,
enhance classification accuracy. However, traditional machine
learning methods commonly face challenges due to the com-
plexity in HSI dataset characteristics, including the nonlinear
relationship between elements and their respective spectral
information [19]. Moreover, while these machine learning
methods have been applied and evaluated, the interactions
between the classifiers and feature extraction approaches are
rarely considered.

On the other hand, methods based on data-managed features
involve extracting features during the learning stage. These
methods use DL structures. DL-based structures have gradu-
ally dominated remote sensing image scene classification as
DL theory ,and parallel computing resources have improved

https://orcid.org/0000-0002-7698-3387
https://orcid.org/0000-0002-1830-1990
https://orcid.org/0000-0003-4249-3678
https://orcid.org/0000-0002-4739-1040


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. 2

[20]. Hinton et al. [21] designed a method for initialising the
weights of multilayer neural networks, laying the groundwork
for the later development of DL such as stacked autoencoder
[22], autoencoder [23], and deep belief nets [24]. These
aforementioned methods commonly use Convolutional Neural
Networks (CNNs). In CNNs with a series of matrix multi-
plications (kernels), the mapping between the input data and
the output label is performed, e.g., in [25], a deep contextual
CNN approach is proposed. This study suggested a wide and
deep CNN architecture that employs a combination of state-
of-the-art methods such as GoogLeNet [26] and ResNet [27]
and achieved higher classification accuracy than a shallower
network. To extract spectral and spatial features from HSI
effectively, Chen et al. [28] proposed an end-to-end 3D-
CNN that provides significant accuracy when the training
samples are limited. Li et al. [29] presented a new CNN-
based DL structure for classification, which outperformed
commonly used algorithms. In this method, instead of end-
to-end convolution and deconvolution layers, an optimised
extreme learning machine (ELM) after-layers is employed. An
overview of the shallow and deep techniques with an advanced
feature extraction approach is detailed in [30]. As stated in
[30], the lack of sufficient training data in the remote sensing
community generally requires the use of feature extraction in
both machine learning and DL techniques to overcome this
problem. Autoencoders (AEs) and Recurrent Neural Networks
(RNNs) must vectorize the inputs during spatial feature extrac-
tion, despite the fact that CNNs are genuinely good at spectral-
spatial input processing. Therefore, generally, the integration
of these networks can deliver the full advantage of their various
benefits. This has been done in Stacked Convolutional AE
(SCAE) [31] and Convolutional RNN (CRNN) [32], where
spectral-spatial joint features extraction was proposed. Also,
studies showed that employing only a 2D-CNN may result
in missing data on channel relationships (spatial information),
while using only 3D-CNN may result in a highly complex
model [33]. Therefore, HSI applications may be thoroughly
investigated with both spectral features and spatial patterns
(2D-CNN and 3D-CNN), and classification performance can
be substantially enhanced. In [34], an architecture called
Hybrid Spectral Convolutional Neural Network (HybridSN)
was designed using a combination of 2D and 3D CNNs, which
has achieved higher accuracies compared to the 3D-CNN on
benchmark datasets.

It is demonstrated in [35] that nonconvex modelling and
optimization is a powerful tool that can be applied to various
areas. This allows for the development of new techniques
and the implementation of interpretable artificial intelligence
(AI) for various hyperspectral remote sensing applications.
Despite the effectiveness of DL in single-modality-dominated
classification tasks, Hong et al. [36] introduced a multimodal
DL structure intending to provide a baseline solution for pixel-
level remote sensing image classification problems using mul-
timodal input. This study uses Fully Connected Networks (FC-
Nets) and CNNs, which can apply to pixel-based and spatial-
spectral classification, respectively. Graph convolutional net-
works (GCNs) have a high computational cost, especially
noticeable in large-scale remote sensing problems. To address

this, a new supervised version of GCNs called miniGCNs
is proposed in [37] that can properly characterize the un-
derlying data structure of HS images in high-dimensional
space. Although it was hypothesised that deeper CNNs might
improve performance and produce better hyperspectral feature
representation, the vanishing gradient problem can occur in the
model, and consequently, failure in parameter convergence and
overfitting may result in the scenario of limited training data
[38]. In order to mitigate the disadvantage of using a deeper
network which may decrease the accuracy due to vanishing
gradient in the model, Spectral-Spatial Residual Network
(SSRN) [39] employs different residual blocks between layers.
These blocks collected abundant spectral and spatial features
in the model.

What is evident from the literature is that there exist a
number of constraints in CNNs, including the invariance
generated by pooling and their inability to determine the
spatial relationship between features due to several fully-
connected layers appended to the final layers. In addition, most
of those models require large amounts of labelled data and
many iterations to train. The high cost of labelling severely
limits their scalability to new categories. Furthermore, this
limits their applicability to a small number of scene types (e.g.,
military zones), which are difficult to capture. Humans, on the
other hand, are capable of distinguishing scenes with little or
no supervision learning [40], [41]. In other words, children
can identify TV scene types based on a single image or image
description. To date, the most advanced scene classification
methods still fall far short of what humans are capable of
doing with only a handful of labelled samples [20].

In the Capsule Network (CapsNet), these limitations are
addressed [42]. In recent years, CapsNet has been proposed
as an alternative and successful approach to DL. Instead of
traditional scalar points, in CapsNet, vectors facilitate the
characterisation of the relationships between the information
available in the features and identify more attributes to enable
class discrimination [43]. CapsNet has been employed in
several research areas such as electroencephalogram (EEG)
classification [43], MRI image classification [44], object de-
tection [45], image segmentation [46], and remote sensing
[47] ,although it is still in the early stages of development.
For HSI classification, CapsNet has been employed in [48]
and compared against CNN methods. The result demonstrated
that the capsule-based architecture, named CAP, can provide
high overall accuracies on benchmark datasets with higher
complexity. Zhang et al. [49] proposed an architecture by
combining CNN and CapsNet to exploit the benefits of both
models. In their model, a DL-based feature extractor is trained
on the ImageNet dataset [50] afterwhich the feature-map is
fed into the new CapsNet model, which is designed for HSI
classification. The results demonstrated that the pre-trained
model on Inception-v3 [51] gained an overall classification
accuracy higher than VGG-16 [52]. Several studies have
demonstrated that CapsNets are able to address the problem
of hyperspectral mixed pixels classification. When an object
in HSI is smaller than the spatial resolution, neighborhood
mixing occurs. While a large number of training samples are
required in DL networks to obtain reliable trained parameters
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and prevent overfitting, CapsNets can be trained from a limited
training data, which is a common constraint in HSI [53].

There are some challenges for the existing capsule-based
networks for HSI classification. First, the feature extraction
section is poorly designed, and it is not considered that this
part should include both spectral and spatial data in a single
classification framework (for example, in [45], [48]). As a
result, the extraction of features using spectral and spatial
patterns (2D-CNN and 3D-CNN) may be investigated entirely.
Since CapsNet is not designed for HSI classification, we
cannot adopt the original structure. For example, in [54],
CAPSNET operated the original architecture of the CapsNet
on HSI datasets with a shallow structure of two 2D-CNN for
organizing the primary capsules. Second, some capsule-based
networks for HSI classification tried to show how their model
can deal with a limited number of parameters; however, deep
learning studies with small test and train sample sizes require
a careful validation process. Without Nested Cross-Validation
(Nested CV), the same data is used to tune model parameters
and evaluate model performance in a model selection. As a
result, information may leak into the model, causing the data
to overfit [55]. For example, in [49] and [54] simple cross-
validation is performed for CapsNet-base models. Here we
promote and demonstrate the use of Nested-CV for improved
hyperparameter optimisation and generalisation.

The motivation of this study is to propose a novel end-to-
end DL architecture involving a hybrid of CNN and CapsNet
(Hybrid CapsNet – HCapsNet) with robust feature learning
while using a limited number of training samples. In addition,
HCapsNet addresses the issue of high dimensionality and class
similarity for HSI classification. Instead of the traditional max-
pooling process, HCapsNet employs dynamic routing (DR) as
a novel routing method in the CNN architecture and combines
2D and 3D CNNs to extract higher-level spatial and spectral
features. These features are, unlike the traditional structure of
the neurons, vectors. This information vector transformation
preserves the entity’s precise posture feature information.
Following that, features are reshaped and employed as an
input vector to the next layer for DR. Finally, the decoder
part, which acts as a regulariser, is added. Since we dealt
with limited training samples, Nested-CV is applied for hy-
perparameter optimization, and the best parameters for the
proposed architecture are reported. The proposed architecture
is evaluated using three widely-used hyperspectral benchmark
datasets collected by the airborne visible infrared imaging
spectrometer (AVIRIS) over the Indian Pines (IP), Indiana
(16 classes), and Salinas Valley (SV), California (16 classes),
and by the reflective optics spectrographic imaging system
(ROSIS) over the city of Pavia (UP), Italy (9 classes). The
method is benchmarked against SVM [12], 2D-CNN [56], 3D-
CNN [57], HybridSN [34], SSRN [39], SCAEs [31], CRNNs
[32], and CAPSNET [54]. The major contributions of the
paper can be summarized as follows:

1) An efficient Hybrid CapsNet is proposed, which can be
applied for the classification of HSIs with a low number
of training samples.

2) A DR technique inspired by CapsNet is incorporated in
our model, which significantly improves the extraction

of spatial-spectral features.
3) A Nested-CV technique is applied to find the best model

parameters. To the best of our knowledge, this is the
first study exploring the Nested-CV for this purpose
and is recommended approach for thorough evaluation
of generalisation performance.

4) A thorough experimental comparison of the presented
approach with other recently proposed advanced DL
techniques using three available benchmark datasets.

The paper is structured as follows: Section II explains meth-
ods (i.e., CNNs, CapsNet approach and a general overview
of DR in terms of structure, routing prediction, and the
procedure). Following that, the proposed HCapsNet and anal-
ysis are described. The experimental results on different HSI
benchmarks, computational time, hyperparameter selection,
and ablation study are provided in section III. The results are
discussed in Section IV, and finally, the paper is concluded in
section V.

II. METHODS

In this section, both 2D and 3D CNN approaches in terms
of the network structure, operations, kernels dimension and
blocks arrangements which are later used in the proposed
HCapsNet architecture are explained. In addition, a compre-
hensive representation of the CapsNet structure with the idea
of neurons vectorization is elaborated. More importantly, the
DR algorithm, which is applied to make the feature prediction
between capsule layers as the principal part of the CapsNet, is
explained. Next, the description of the proposed method and
the datasets is described. Additionally, statistical analysis is
defined.

A. CNNs Approach

The objective of a CNN is to learn how the input data
and the output data are mapped [58]. As the HSI datasets are
volumetric, when designing feature maps, employing 2D-CNN
and 3D-CNN make it possible to achieve the highest accuracy
in the model. For a 2D-CNN, a series of matrix multiplications
named kernel filters with a sample size (Pi, Qi) in the ith

layer are applied followed by a summation operation to the
input images. The objective is to detect parts of that image
with the most relevance [59]. To elaborate, V ab

ij , the output
centred at (a, b) for the jth feature map and the ith layer can
be expressed as:

V ab
ij = tanh(bij +

∑
m

Pi−1∑
x=0

Qi−1∑
y=0

W xy
ijmV

(a+x)(b+y)
(i−1)m ) (1)

where the hyperbolic tangent (tanh) is the non-linearity
operation employed on the kernel output and biases (bij).
W xy

ijm and m are the kernel output centred at (x, y) for the kth

feature map and the indexing parameter over a feature maps
set connected to the current feature map in the (i− 1)

th layer,
respectively. In general, the output of the convolutional layer is
a feature map, which represents several features learned from
the input image. The convolutional block is concluded by a
pooling or subsampling operation. In the pooling operation,
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sections are created for all pixel values, but only the maximum
pixel value is obtained from each section. Finally, the high-
level reasoning is carried out using layers that are fully
connected, following several layers performing convolution
and max pooling. In a fully connected layer, neurons are
connected to every activation in the previous layer. Basic
features such as edges and bright spots are learned in the
convolutional network’s lowest layer. Once these features are
learned, more complex shapes and patterns are learned across
multiple layers to enable the convolutional networks to classify
images.

Similarly, considering that Ri is the third dimension of the
kernels in 3D-CNN, the output centred at (a, b, c) for the jth

feature map and the ith layer is formulated in (2), where W xyz
ijm

is the kernel output centred at (x, y , z) for the kth feature map
and m indicates feature maps indexes.

V abc
ij = tanh(bij+

∑
m

Pi−1∑
x=0

Qi−1∑
y=0

Ri−1∑
z=0

W xyz
ijm V

(a+x)(b+y)(c+z)

(i−1)m )

(2)

B. The CapsNet Approach

In terms of the structure of the neurons, the architecture of
the network, propagation, and inter-layer distribution meth-
ods, there is a significant difference between CapsNet and
traditional CNN models [42]. The capsule neuron is a critical
formation in CapsNet. The parameters used as input and output
in CapsNet are, in contrast with the traditional structure of the
neuron, vectors. Hence, the inside parameters correspond to
vectors, with differences in the employed activation functions.
To elaborate, the neuron input and output vectors in the
capsule indicate the parameters employed for the instantiation
of a particular type of entity i.e., the vector length represents
the probability for entity existence, and the vector direction
indicates the presence of the entity attribute.

In a general description, capsule networks are networks
designed to obtain inverse graphics. Capsules receive an
image and identity of its containing objects as well as their
instantiation parameters [42]. Therefore, capsules are defined
as functions capable of predicting instantiation parameters for
any designated object at a specific location. The estimated
probability of an object is represented via the length of an ac-
tivation vector. Also, the activation vector’s orientation reveals
the instantiation parameters of the object. Since the CapsNet
is robust to affine transformations and can interpret them, the
instantiation parameters can be rotation, skewed, stretched,
thickness, etc. Since the length of the vectors represent a
probability that should be less than or equal to 1, a squashing
function can be utilised. In each layer, the capsule’s objective
is to anticipate the output of the subsequent layers according
to the previous layer. In order to perform such a prediction,
the dot product is employed. The hierarchy is obtained easily
through monitoring the activation pathways and comprehend
the parts that belong together with high precision.

The structure proposed for CapsNet is straightforward. The
model for the original CapsNet, as demonstrated in Fig. 1,
includes various layers, namely convolution layers, Primary

capsule, DigitCaps (second capsule), and fully connected lay-
ers. A handwritten digit image is fed into the model and each
layer comprises a Convolution (Conv1 and Conv2 with the
same kernels and different strides). The Rectified Linear Unit
(ReLU) is used to activate the classic convolution layers in
the Convolution layers. As a consequence, Conv1 and Conv2
produce different feature maps. The primary capsule layer is
formed by reshaping the feature maps and is responsible for
constructing the corresponding vector structure and acts as
the Capsule input layer. Moreover, this layer is responsible
for reshaping, which is then applied as an input vector to
the following layer. Similarly, the DigitCaps layer represents
the output layer for the capsule. The loss function for the
classification objective (encoder part) is determined after the
DigitCaps, while the fully connected layers are to reconstruct
the images (decoder part) to act as network regularisations that
prevent overfitting. The DR algorithm is employed between the
primary capsules and the DigitCaps to update the calculations
and the parameters necessary between the full connections.
As for updating the parameters, in CapsNets, DR is employed
along with the traditional back-propagating method [42].

C. Dynamic Routing Algorithm

As in (3), the primary capsule ui (i = 1, . . . , 1152) in the
DR algorithm is multiplied by a weighted matrices Wij to pre-
dict the next level capsule output ûji in the next ten (since the
network is going to classify 10 digit numbers 0 to 9) different
DigitCaps (j = 1, . . . , 10). The 16D capsules output ûji (4) is
determined by multiplying the weighted matrix multiplication
Wij and 8D primary capsules ui. Therefore, the dimension of
Wij is [16× 8]. In other words, the transformation matrix in
the same capsule level speculates the instantiation parameters
of the capsules at higher levels.

ûji = wi,j . ui (3)
ûji (1)

...

...
ûji (16)


16×1

=


wi,j(1) · · · wi,j(8)

...

...

. . .
...
...

wi,j(120) · · · wi,j(128)


16×8

.

ui(1)...
ui(8)


8×1

(4)
To elaborate, calculations for the first capsule (i = 1) and the
last (i = 1152) are shown in (5).

û11 = w1,1 . u1 . . . û101,152 = w1152,10 . u1152(5)

These calculations are performed with element-wise matrix
multiplications, where all matrices hold the same dimensions
[1152× 10].

The process for the algorithm in CapsNets, with the pres-
ence of a routing agreement, can be seen in Algorithm 1. In the
training session, one batch of the input image at each iteration
is fed to the input layer. Next, following two convolutional
layers and reshaping, ûji is performed. Then, at the first
iteration (r = 1), the log probability bij (i.e., the primary
capsule i should be transmitted to DigitCaps j) is set to 0
(raw routing weight) for each predicted output ûji . After that,
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Fig. 1. Structure of the CapsNet (encoder). The model receives as an input image a handwritten digit (MNIST database of handwritten digit [60]) with
size 28×28×1 and learns to encode it into a 16D vector of instantiation parameters (DigitCaps) for 10 different classes. The Convolution layers are classic
convolution layers with a Rectified Linear Unit (ReLU) activation function to implement the extraction of local features. There are two convolutional layers
(Conv1 has 9x9 convolutional kernel with a stride of 1 and ReLU and Conv2 has 9×9 convolutional kernel with a stride of 2). Conv1 results in 256 20×20
features maps and the second results in 256 6×6 (32×8×6×6) feature maps which contain scalars. This output is reshaped to get 32 6×6 maps, including
8D vectors. In total, we have 1152 capsules resulting in a list of 11520 predictions: 1152 prediction × 10 classes = 11520 weighted matrices Wij .

the softmax function (6) is implemented on these raw weights
for each primary capsule.

cij =
exp (bik)∑
k exp (bik)

(6)

Next, a weighted sum of the predictions is measured (7), for
each capsule in the subsequent layer, along with applying the
squashing function (8). The squashing function, which com-
presses and non-linearizes the vectors, performs the capsule
neuron’s activation function. In other words, this activation
function includes two-parts: the unit length (right part) that is
responsible for preserving the length of the vectors between 0
and 1, and the additional scaling (left part) that is responsible
for preserving the direction of the vectors.

sj =
∑
i

cij ûj|i (7)

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(8)

Next, by applying the dot product (9), the prediction (strong
agreement) between the lower and upper capsule is performed.
After mostly two or three iterations, the routing weight demon-
strated in (10) is updated.

ûj|i. vj (9)

bij = bij + ûj|i vj (10)

Hence, in the top layer, an image classifier can be designed
with one capsule per class. Then, it is necessary to append a
measuring layer to calculate the length of the top layer acti-
vation vectors, which obtains the estimated class probabilities.
In standard classification neural networks, training is carried
out via minimising the cross-entropy loss. However, Hinton
[42] applied margin loss Lk (11) to enable detecting multiple
classes in the image. According to this equation, if an object,
within class k, can be detected in the image, the output for the

Algorithm 1 Training and Backpropagation
for numbers of epochs do

for iterations (batches) do
for numbers of routing(r) do

bi,j (initialized)
(r=1)

= 0
bi,j → ci,j . Coupling coefficient (Softmax)
Sj

(r) =
∑

i ci,j .û
j
i
(r) . Weighted sum

Vj
(r) = Squash(Sj

(r)) . Product vector
= Squash(

∑
i ci,j .û

j
i
(r))

Dot Product: ûji . Vj
(r)

bi,j
Updated ← bi,j + ûji . Vj

(r)

← bi,j + ûji
T . Vj

(r)

← bi,j+ ûji
T . Squash(

∑
i ci,j .û

j
i
(r))

return Vj (end for routings)

The loss function for the correct category:
LJ = k. max(0, 0.9− ||Vj ||)

Backpropagation starts:
Weighted matrices: wi,j

updated ← wi,j

Convolution layers: filtersupdated ← filters

end for (iterations)
end for (epochs)

corresponding capsule length in the top-level should be more
than or equal to 0.9. On the other hand, if such an object
cannot be detected, then the output of the capsule should be
a short vector with a length of less than 0.1.

Lk = Tk max(0,m+−||vk||)2+λ(1−Tk)max(0, ||vk||−m−)2
(11)

To allow multiple classes, the margin loss Tk = 1 is minimised
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if and only if class k is present. In this equation, m− = 0.1,
m+ = 0.9 and λ = 0.5. Once the routing weights bi,jUpdated

are updated, the backpropagation will initiate. Using the Adam
optimiser [61] in TensorFlow, by agreement in this stage, the
gradient of loss in the network is generated, and weighted
matrices and filters in convolution layers are updated without
route checking. After this step is concluded, we can proceed
to the next batch of image sets.

In the original CapsNet after three fully-connected layers
are derived, they are combined as a decoder network to the
top of the CapsNet [see Fig. 2].

Fig. 2. Reconstruction in CapsNet (Decoder). The decoder contains three
fully connected layers with the number of neurons 784, 1024, 512.

To learn the input image reconstruction, the squared differ-
ence between the reconstructed image, and the input image
should be minimized. The overall loss (12) is the summation
of the margin loss and the reconstruction loss. To ensure that
the dominating loss in the training stage is the margin loss, the
reconstruction loss is scaled down with a significantly small
coefficient (α = 0.0005).

Loss = margin loss+ (α.reconstruction loss) (12)

D. The Proposed Hybrid Capsule Neural Network

Here, we explained the formation of our proposed architec-
ture. Although architectures in computer vision with deeper
layers can yield better feature extraction, this is not the case
in HSI and, often model performance will be decreased with
deeper layers [39]. In the original CapsNet, since the model is
designed for conventional computer vision images, it cannot
be applied directly to HSI. Hence, to obtain a suitable model
for HSI classification, the leading workflow of the proposed
HCapsNet is divided into the following three sections [see Fig.
3].These three sections are explained below:

Fig. 3. The proposed HCapsNet block diagram.

1) Dimension Reduction: First, principal components anal-
ysis (PCA) is applied on labelled dataset to decrease spectrum
redundancy. It compresses the HSI that reduces the number of
spectral bands. Then, without feature engineering, the corre-
sponding image is divided into patches labelled with respect
to the central pixel. Finally, 2D-3D CNNs are implemented to
extract the spectral-spatial feature map [see Fig. 4].

2) Capsule Network: In this step, the output is first re-
shaped into nD vectors ui(i = 1, . . . , I) as a vector length
n for a single capsule in the CapsNet structure. Then, it is
multiplied by weighted matrices Wij to predict the capsules
for the next level (called ClassCapsule ûji (j = 1, . . . , J)),
where I and J are the number of primary capsules and classes,
respectively. Here m is the vector length for one ClassCapsule.
Then, as explained in section II, the weighted sum Sj will be
calculated, followed by the squash function. After that, the DR
process will be performed to send the most related capsule
in PrimaryCaps to the ClassCapsule. Finally, a classifier can
be designed in the top layer with one capsule per class. It
means that the characteristics and feature spatial relationships
are encoded correctly[see Fig. 5].

3) Decoder: In the decoder, an additional reconstruction
loss is applied to drive the next level capsule called Class-
Capsule to encode the instantiation parameters from input
data. Although the decoder functions similarly to a regulariser,
adding the margin loss to prevent overfitting during training,
it is not dominant in the margin loss because of the scaling
factor applied (0.0005).

Tables I and II show the final selected architecture for the
datasets used. In this case, to show the structure of different
layers with different input and output shapes, 25 principal
components (PCs) are selected for the IP dataset and 15 for
the SA and UP datasets. 3D-CNN and 2D-CNN are employed
to form the output .After that, the output is reshaped into
capsules (PrimaryCaps) which is then sent to the most relevant
ClassCapsule in the next layer by the DR algorithm for the
classification. The decoder is also added to the final stage of
the model. Dataset and analysis description are described in
subsections below. Also, the effect of different number of PCs
is analysed in the following section.

E. Data Description

To evaluate and compare the performance of the proposed
method, three widely-used HSI datasets, (i.e., Indian Pines
(IP), Salinas Valley (SV) and University of Pavia (UP) [62])
were employed in this research. The dataset statistics and
information regarding different environmental frameworks are
described in table III.

TABLE III
DATASET STATISTICS AND DESCRIPTION.

Spatial Spectral Wavelength No. No.
Datasets DimensionDimension Range LabelsClasses Location

(Pixels) (Bands) (nm)
Indian Indian Pines,
Pines 145 × 145 200 400 - 2500 10,249 16 North-western
(IP) Indiana

Salinas Salinas
Valley 512 × 217 204 360 - 2500 5,4129 16 Valley, California
(SV) California

University Pavia
of Pavia 610 × 340 103 430 - 860 50,232 9 Northern

(UP) Italy

All the datasets are obtained using aerial sensors. HSI is
very well known to be prone to atmospheric conditions, which
can cause difficulty in processing. Therefore, applying band
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Fig. 4. Feature extraction in the proposed architecture. As demonstrated here, a hyperspectral cube dimension is reduced following PCA, patch windowing,
and CNNs. All the parameters used for dimension reduction is completely explained in the hyperparameters settings.

Fig. 5. Capsule network in the proposed HCapsNet architecture. The different arrows demonstrated a vector with different length and orientation, which
means different parts of the feature are identified in that specific part of the data. The number of the Primary Caps (I) depends on the dimension of the
feature map in the last convolution layer—the number of the ClassCapsule (J) is equal to the number of the classes in the specific dataset.

TABLE I
SUMMARY OF DIFFERENT LAYERS EMPLOYED IN THE PROPOSED HCAPSNET FOR 25× 25 WINDOW SIZE WITH PCS=25 FOR IP DATA PATCHES.

Datasets Layers Shape Output Stride BN Padding Activatin Parameters
Function

Input Layer - (25, 25, 25, 1) - - - - 0
Conv3D-1 (9, 9, 7) (17, 17, 18, 8) 1 Yes No LeakyReLU 4544
Conv3D-2 (9, 9, 5) (9, 9, 16, 16) 1 No No LeakyReLU 51856

IP Conv2D (3,3) (7, 7, 64) 1 Yes Yes LeakyReLU 184384
PrimaryCaps & reshape & squash - (392, 8) - - - LeakyReLU & Squash 0

ClassCapsule - (16, 16) - - - - 802816
Mask - (256) - - - - 0

Decoder - (25, 25, 30, 1) - - - - 19875646
Total trainable parameters: 20,919,246

TABLE II
SUMMARY OF DIFFERENT LAYERS EMPLOYED IN THE PROPOSED HCAPSNET FOR 25× 25 WINDOW SIZE WITH PCS=15 FOR UP & SV DATA PATCHES.

Datasets Layers Shape Output Stride BN Padding Activatin Parameters
Function

Input Layer - (25, 25, 15, 1) - - - - 0
Conv3D-1 (9, 9, 2) (17, 17, 9, 8) 1 Yes No LeakyReLU 4544
Conv3D-2 (9, 9, 2) (9, 9, 5, 16) 1 No No LeakyReLU 51856

UP & SV Conv2D (3,3) (7, 7, 64) 1 Yes Yes LeakyReLU 46144
PrimaryCaps & reshape & squash - (392, 8) - - - LeakyReLU & Squash 0

ClassCapsule - (9, 16) - - - - 451584
Mask - (144) - - - - 0

Decoder - (25, 25, 14, 1) - - - - 19875646
Total trainable parameters: 20,429,774
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selection and normalisation is necessary. Particularly, spectrum
dynamics transform due to sensors conditions. Therefore, to
enhance classifier robustness, water absorption band and low
signal to noise ratio bands are excluded. Moreover, PCA
and mutual information can remove uninformative bands and
reduce spectrum redundancy [63], [64]. There are 16 classes
in IP and SV with the total number of the samples 10249
and 5,4129, respectively. The total number of the samples in
the UP dataset is 50,232 with 9 different classes. The natural
composite images and labels for each dataset are illustrated in
Figs. 6-8.

Although DL networks require a large number of train-
ing samples to achieve valid trained parameters and avoid
overfitting, CapsNet-based models can be trained with limited
training data. Therefore, to determine the performance of
the approaches, we adjusted training samples to evaluate
performance when 30%, 10%, 5%, and 1% are used for each
dataset. In the training phase of HCapsNet, the transformation
matrix, neuron weights, and biases are optimised.

F. Analysis Description
The representation of a data cube in HSI can be denoted by

C ∈ RW×H ×B where W is the width, H is the height, and
B is the depth so that, each pixel in C represents a vector with
a length of B (the number of bands) from a set of different
elements of the matrix W × H . To elaborate, each of these
vectors forms a particular element in the captured scene with
individual spectral specifications and can be considered a high
dimensional dataspace. We first split the input data into 3D-
patches (w × h × b), with the label centred pixel at [w2 +
1, h

2 + 1].
In HSI processing, we are generally dealing with limited

training samples. Therefore, to set up the hyperparameters
to obtain higher accuracy and estimate the correct error
unbiasedly, we utilised Nested-CV. Although Nested-CV is
applied to models in case of a limited dataset, we cannot
overlook the fact that it is computationally expensive in larger
datasets [65]. However, it can be applied to model training
where optimisation is required on hyperparameters. If Nested-
CV is not employed to choose the model, the related data
will be used to fit the model parameters and evaluate the
performance of the model, which may cause overfitting due
to data leakage into the model [66]. The model stability and
the size of the dataset are two factors that influence overfitting.
Therefore, Nested-CVs involving a set of train, validation, and
tests is applied to eliminate such an occurrence [67]. There
are two loops in this algorithm. In outer and inner loops, data
is split into five parts. Fig. 9 illustrates how the inner and
outer loops operate for optimizing parameters set a and b. As
can be seen, in the inner loop, by fitting the model to each
training dataset, it attempts to maximise the accuracy. Then
the hyperparameters are maximised by fitting the data to the
validation set. Finally, the generalisation error estimation in
the outer loop is obtained using the average outer loop test
set scores which are reported in the results section and use to
compare approaches.

The classification results for our HCapsNet method are
compared with other classic classification methods available

in literature, including spectral-based classifiers: SVM [12],
spatial-based classifier: 2D-CNN [56], spatial-spectral clas-
sifier: 3D-CNN [57], HybridSN [34], SSRN [39], SCAE
[31], CRNN [32], and CAPSNET [54] as the state-of-the-art
methods. For all networks, we selected architectures derived
from their original structure. For each method we optimised
hyperparameters within the Nested-CV as shown in table
IV. For HCapsNet to determine the best parameters, vector
lengths n and m are selected between (n : 6, 8, 10) and (m :
14, 16, 18). The number of filters implemented in the 2D-CNN
and 3D-CNN classifiers is chosen between 16, 32, 64. The
same number of filters are examined for spatial and spectral-
spatial filters in HybridSN. In our experiment, kernel filters for
the SVM are searched for a range of gamma (1, 5, 15, 20), C
(0.0001, 0.001, ..., 1000). SCAE employs three convolutional
layers and three deconvolutional layers with kernels sizes se-
lected between (3, 4, 5). The number of the kernels in the first,
second, and third convolutional layers are set between (32, 64,
and 128). In CRNN, two recurrent layers with convolutional
LSTM units are used. For both recurrent layers, convolutional
kernels are selected between (3, 4, 5). The first and second
recurrent layers’ kernel numbers are set between (16, 32, 64).
For all DL approaches the number of training epochs and the
mini-batch sizes were fixed to 100 and 64, respectively.To
enable a fair comparison for all methods the number of HSI
cubes in the train and test datasets are consistent.

TABLE IV
HYPERPARAMETERS SETTINGS USING NESTED-CV.

Methods
HPs

Parameter 1 Parameter 2

HCapsNet n : 6, 8, 10 m : 14, 16, 18

CAPSNET

HybridSN # Spatial 2D filter: # Spectral- Spatial 3D filter:
(16, 32, 64) (16, 32, 64)

2D-CNN The first layer filters The last layer filters
3D-CNN (16, 32, 64) (16, 32, 64)

SVM gamma: C:
(1, 5, 15, 20) (0.0001, 0.001, ..., 1000)

SCAE kernels sizes: # Kernels:
(3, 4, 5) (32, 64, 128)

CRNN Convolutional kernel sizes: # kernels for recurrent layers:
(3, 4, 5) (16, 32, 64)

Also, PCA is used for dimensionality reduction and the
optimal number of PCs are selected from the validation data
ranging from 15 – 30 PCs. A network structure’s performance
can also be measured by the computation time, which directly
measures its computational efficiency. The computational com-
plexity of deep learning models is heavily influenced by net-
work parameters. Therefore, we compared computational time
of HCapsNet with other methods. Furthermore, an ablation
study is performed to demonstrate the effectiveness of each
part of HCapsNet. Since the reconstruction part drives the
network to push all the necessary information to the top layer
of the HCapsNet, it is important to compare HCapsNet with
and without the reconstruction section (Decoder). Also, to
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Fig. 6. The natural composite images and labels for Indian Pines (IP).

Fig. 7. The natural composite images and labels for Salinas.
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Fig. 8. The natural composite images and labels for University of Pavia.

Fig. 9. Inner and outer loops operation in Nested-CV. To begin, the data is divided into k parts (k-1 train datasets and 1 test dataset). The test dataset is
kept in the outer-loop for testing. The remaining k-1 parts are then used to create an inner-loop. A validation accuracy is collected for each hyperparameter
combination once the inner-loop data has been separated again into k parts. As a result of this, k values for the model validation accuracy are obtained for
each parameter specified in the hyperparameter space. The ideal set of hyperparameters is determined by calculating the mean validation accuracy for each
HP combination across all inner parts. Then based on the summation of all inner-loop validation accuracy, a single set of hyperparameters is chosen. The
optimised hyperparameters are then applied to the final model, which is trained on outer-loop train parts and tested on outer-loop test parts, with the resulting
classification accuracy employed to indicate model performance.
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show the efficacy of other components, HCapsNet with and
without Conv2D and Conv3D is analysed.

G. Statistics

To evaluate the performance of the model, we employ
Overall Accuracy (OA) and Average Accuracy (AA) quanti-
tative metrics. Specifically, OA represents the average correct
classification item across all classes, while AA specified the
number of correct classification samples per class for all
test samples. Also, the Kappa statistic, the estimation for
the agreement between labels of classified instances in the
machine and ground truth labels, are reported.

Analysis of variance (ANOVA) is used to determine the
significance of differences between the results of each method
(p < 0.05 ). In addition, the Tukey method as an ANOVA post-
hoc analysis is used to compare the pairwise combinations of
the methods.

III. RESULTS

This section presents the accuracy of methods, computa-
tional time, hyperparameter selection, and ablation study.

A. Accuracy of Methods

The classification results of all methods are presented in
table V-VII. Although there are no significant differences (p <
0.05) between the proposed method and state-of-the-art DL
methods with larger training set sizes (> 1%), the HCapsNet
provided higher accuracies using the least training data.

For example, for the SV dataset and 1% training samples
sizes, ANOVA revealed significant differences in performance
across all methods (F 8,26 = 32.4,p < 1×10−10). A post-
hoc analysis indicated that HCapsNet performed significantly
better than all other approaches. Also, with 85.54% overall ac-
curacy, SSRN outperformed all other CNN-based approaches,
including CRNN, SCAE, HybridSN, 2D-CNN, and 3D-CNN
but not HCapsNet.

Similarly, for IP and UP datasets, HCapsNet achieved
90.67% and 95.57% in comparison to the second-best method
(CAPSNET) with 87.56% and 90.55% overall accuracies,
respectively. The ANOVA test indicated significant differences
for IP (F8,26 = 39.5,p < 1×10−11) and UP (F8,26 =
23.8,p < 1×10−9) with smaller(1%) sample sizes. For IP,
CRNN and SCAE outperformed all other CNN-based methods
with 85.25% and 87.11% (for UP 90.42% and 90.25%) overall
accuracy. Although HCapsNet overall accuracy is significantly
higher than SSRN and CRNN (p < 0.05), the Tukey post-
hoc tests did not indicate a significant difference between
HCapsNet, CAPSNET and SCAE (p > 0.05) for the IP
dataset. Also, because CNN based models may fail to gen-
eralise with fewer training samples, both 2D and 3D CNNs
achieved 80.33% and 74.41%, respectively, whereas the SVM
model performed better with 83.19% overall accuracy.

B. Computational Time

The computational efficiency of HCapsNet compared to
other models are shown in table VIII. HCapsNet’s training
times are approximately 40(s) longer than its counterpart
(CAPSNET), owing to the fact that both 2D and 3D CNNs
are used in HCapsNet. CAPSNET, on the other hand, employs
only 2D CNNs. Furthermore, when comparing HCapsNet to
HybridSN, which used similar 2D and 3D CNNs, HCapsnet
acquired more trainable parameters because of the use of
dynamic routing in HCapsNet. In other words, the dynamic
routing method in the HCapsNet demands a significantly
greater amount of computational resources than its CNN
counterparts.

C. Hyperparameter Selection

The hyperparameters selected for methods are reported in
table IX. In the case of the HCapsNet, optimal vector lengths
were selected as n = 8 and m = 16 using Nested-CV. These
are the optimal length for one single Primary capsule and one
ClassCapsule.

TABLE IX
HYPERPARAMETERS SELECTED USING NESTED-CV.

Methods
HPs

Parameter 1 Parameter 2

HCapsNet, CAPSNET n : 8 m : 16

HybridSN 2D filter: 16 3D filter: 32

2D-CNN , 3D-CNN 1st layer filters: 64 1st layer filters: 32

SVM gamma: 5 C: 0.001

SCAE kernels sizes: 3 # kernels: 64, 128

CRNN kernel sizes:3 #1st and 2nd kernels: 32, 64

In addition, the impact of employing a different number
of PCA on datasets was analysed. The classification results
for HCapsNet for 15, 20, 25 and 30 PCs reported in such a
way that all the framework settings were retained as before.
It can be seen in Fig. 10 that the classification results on the
SV dataset did not increase significantly (p > 0.05) due to
using more information from the data. Therefore, the DR is
not sensitive to the number of PCs, and the computational cost
in DR will be relatively increased by using a higher number
of PCs without additional accuracy gains.

Since the patches’ windows sizes and convolution filter
sizes play a pivotal role in the HCapsNetarchitecture, as they
determine the number of the capsules in the primary capsule
layer, these parameters are also examined in the presented
structure. For this, we fixed the number of PCs to 25 for the IP
dataset and 15 for SA and UP datasets, respectively. In order
to analyse the window sizes, the size of 3D-Conv filters is
set to (9, 9, 7) and (9, 9, 5), and (3, 3) for the 2D-Conv. The
classification results are reported in table X, while only 1%
data is used for training. As can be seen in table X, for the
best performance of the network 25 is the best window size
for IP and SA, and 19 for UP.

The quality of the classification results shows the effec-
tiveness of the different classification methods. The classifi-
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TABLE V
CLASSIFICATION RESULTS FOR IP DATASET.

Training Samples Methods SVM [56] 2D-CNN [56] 3D-CNN [57] HybridSN [34] SSRN [39] SCAE [31] CRNN [32] CAPSNET [54] HCapsNet

OA (%) 90.30 ± 2.8 89.48 ± 0.2 91.10 ± 0.4 99.75 ± 0.1 99.18± 0.1 99.32± 0.3 99.89± 0.4 99.85± 0.1 99.86± 0.1
30% AA (%) 91.03 ± 2.7 86.14 ± 0.8 91.58 ± 0.2 99.63 ± 0.2 98.94± 0.0 98.44± 0.2 99.58± 0.7 99.74± 0.1 99.92± 0.0

Kappa (%) 92.10 ± 3.2 87.96 ± 0.5 89.98 ± 0.5 99.71 ± 0.1 99.02± 0.1 99.65± 0.1 99.45± 0.3 99.77± 0.1 99.04± 0.2

OA (%) 88.22 ± 1.05 80.27± 0.2 82.62± 0.5 98.39± 0.6 98.40± 0.2 98.68± 0.3 96.78± 0.5 98.00± 0.2 98.55± 0.1
10% AA (%) 91.40 ± 2.60 68.32± 0.3 76.51± 0.7 98.01± 0.6 86.14± 1.5 97.83± 0.8 94.47± 0.8 97.29± 0.1 98.37± 0.1

Kappa (%) 86.86 ± 1.19 78.26± 0.5 76.25± 0.4 98.00± 0.3 98.33± 1.1 98.49± 0.1 96.33± 0.4 96.44± 0.1 97.35± 0.3

OA (%) 86.07 ± 1.52 75.32± 0.2 75.85± 0.1 95.02± 0.7 95.33± 1.5 96.61± 0.5 94.15 ± 0.8 95.30± 0.0 97.34± 0.1
5% AA (%) 88.07 ± 2.27 73.04± 0.6 73.90± 0.7 94.89± 0.4 93.54± 2.2 94.58± 1.5 90.30 ± 4.1 94.45± 0.1 96.57± 0.2

Kappa (%) 84.46 ± 1.71 72.25± 0.5 73.74± 0.8 94.31± 0.1 95.42± 1.4 96.13± 0.1 93.50 ± 1.0 94.12± 0.2 96.24± 0.3

OA (%) 81.01 ± 2.10 68.05± 0.1 70.69± 0.6 76.25± 0.1 85.18± 3.4 87.11± 1.4 85.25± 0.2 87.56± 0.1 90.67± 0.2
1% AA (%) 80.79 ± 4.69 69.65± 0.5 71.99± 0.2 79.44± 0.4 80.02± 3.7 84.78± 0.5 82.33± 1.4 81.33± 0.1 89.21± 0.2

Kappa (%) 78.77 ± 2.34 69.08± 0.1 71.08± 0.4 76.05± 0.5 85.60± 2.5 86.73± 0.1 82.13± 0.3 86.21± 0.1 89.12± 0.3

TABLE VI
CLASSIFICATION RESULTS FOR UP DATASET.

Training Samples Methods SVM [56] 2D-CNN [56] 3D-CNN [57] HybridSN [34] SSRN [39] SCAE [31] CRNN [32] CAPSNET [54] HCapsNet

OA (%) 94.34 ± 1.2 97.86 ± 0.2 96.53 ± 0.1 99.98 ± 0.0 99.89± 0.1 99.87± 0.5 99.10± 0.1 99.99± 0.0 99.99± 0.0
30% AA (%) 92.98 ± 0.4 96.55 ± 0.0 97.57 ± 1.3 99.97 ± 0.0 99.90± 0.1 99.68± 0.1 99.20± 0.1 99.94± 0.0 99.98± 0.1

Kappa (%) 92.50 ± 2.7 97.16 ± 0.5 95.51 ± 0.2 99.98 ± 0.0 99.88± 0.0 99.65± 0.2 98.77± 0.2 99.97± 0.1 99.98± 0.1

OA (%) 91.04± 1.5 96.63± 0.2 96.34± 0.5 99.72± 0.6 99.62± 0.2 99.88± 0.6 96.00± 0.4 98.12± 0.3 98.54± 0.2
10% AA (%) 90.64± 3.9 94.84± 0.3 97.03± 0.8 99.20± 0.1 99.49± 0.0 99.65± 0.1 97.18± 0.6 97.33± 0.2 97.74± 0.3

Kappa (%) 91.77± 1.4 95.53± 0.2 94.90± 0.1 99.64± 0.6 99.50± 0.5 99.75± 0.1 95.18± 1.0 96.53± 0.1 96.94± 0.1

OA (%) 87.23± 1.7 88.24± 0.4 86.22± 0.6 75.54± 0.8 98.22± 0.6 99.41± 0.1 97.11± 0.5 98.63± 0.0 96.75± 0.2
5% AA (%) 88.88± 2.2 86.25± 0.6 85.45± 0.8 74.24± 0.6 97.59± 0.3 99.01± 0.3 98.27± 0.7 97.79± 0.1 95.82± 0.1

Kappa (%) 86.99± 1.3 85.67± 0.6 83.24± 0.6 73.22± 0.8 98.43± 1.3 99.21± 0.1 96.09± 1.2 95.01± 0.1 95.91± 0.1

OA (%) 70.03± 2.7 75.24± 0.7 78.01± 0.2 68.05± 0.8 88.78± 1.3 90.25± 0.2 90.42± 0.4 90.55± 0.0 95.57± 0.3
1% AA (%) 82.73± 1.9 74.98± 0.1 77.22± 0.1 67.55± 0.7 82.08± 2.6 85.88± 0.1 87.50± 0.6 84.41± 0.1 91.39± 0.1

Kappa (%) 70.70± 1.7 74.55± 0.5 78.74± 0.3 66.98± 0.5 87.70± 2.5 89.52± 0.2 89.89± 0.1 89.11± 0.0 94.09± 0.2

TABLE VII
CLASSIFICATION RESULTS FOR SV DATASET.

Training Samples Methods SVM [56] 2D-CNN [56] 3D-CNN [57] HybridSN [34] SSRN [39] SCAE [31] CRNN [32] CAPSNET [54] HCapsNet

OA (%) 98.95 ± 0.3 97.38 ± 0.0 99.96 ± 0.2 99.99 ± 0.0 99.97± 0.1 99.82± 0.6 99.38± 1.1 99.81± 0.0 99.98± 0.0
30% AA (%) 98.60 ± 0.3 98.84 ± 0.1 97.01 ± 0.6 99.99 ± 0.0 99.96± 0.1 99.75± 0.4 98.86± 0.4 99.92± 0.0 99.99± 0.0

Kappa (%) 98.11 ± 0.2 97.08 ± 0.1 98.32 ± 0.5 99.99 ± 0.0 99.96± 0.0 99.83± 0.3 99.21± 0.9 99.79± 0.1 99.98± 0.0

OA (%) 95.10± 0.1 92.67± 0.2 98.38± 0.0 99.88± 0.1 99.63± 0.1 99.75± 0.7 98.29± 0.9 99.96± 0.0 99.98± 0.0
10% AA (%) 97.50± 0.2 92.06± 0.4 97.91± 0.1 99.88± 0.1 99.77± 0.2 99.71± 0.8 97.77± 1.3 99.97± 0.1 99.99± 0.0

Kappa (%) 93.53± 0.3 91.15± 0.3 96.14± 0.1 99.88± 0.1 99.50± 0.3 99.73± 0.1 98.10± 1.0 99.95± 0.0 99.97± 0.0

OA (%) 87.51± 0.8 86.12± 0.1 88.11± 0.2 95.36± 0.2 91.12± 1.7 97.98± 0.3 96.12 ± 0.4 95.02± 0.2 97.12± 0.1
5% AA (%) 88.77± 1.2 87.32± 0.4 89.01± 0.5 94.21± 0.3 93.50± 2.5 98.41± 0.3 94.91 ± 0.8 94.40± 0.1 96.50± 0.2

Kappa (%) 86.88± 1.4 85.50± 0.2 87.36± 0.2 93.22± 0.1 90.87± 1.2 97.76± 0.1 95.68 ± 0.5 95.00± 0.1 97.03± 0.3

OA (%) 83.19± 1.3 80.33± 0.2 74.41± 0.3 77.25± 0.2 85.54± 3.6 85.18± 0.2 85.10± 0.3 86.01± 0.0 90.01± 0.1
1% AA (%) 84.80± 1.9 81.45± 0.6 75.44± 0.4 76.98± 0.7 82.98± 2.3 80.98± 0.1 79.81± 0.7 83.80± 0.1 89.86± 0.3

Kappa (%) 82.95± 0.9 80.70± 0.2 74.21± 0.1 76.90± 0.6 84.55± 3.1 84.02± 0.1 83.66± 0.2 85.60± 0.2 90.65± 0.2
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TABLE VIII
THE NUMBER OF THE NETWORK PARAMETERS AND TIME CONSUMPTION.

Methods HCapsNet CAPSNET CRNN SCAE SSRN HybridSN 3D-CNN 2D-CNN SVM
No. of trainable 20,919,246 10,864,846 76,864 88,254 54,769 5,122,176 553,152 155,568 -

Parameters for IP
Time consumption (s) 139.9 103.2 58.3 60.6 41.1 89.6 39.3 56.5 208.3

Train:
Time consumption (s) 6.9 5.1 2.9 3.3 2.0 4.4 1.9 2.8 1.4

Test:

Fig. 10. The effect of different principal components (PCs) on different
datasets.

TABLE X
THE IMPACT OF DIFFERENT PATCHING WINDOW SIZES AND CNN KERNEL

SIZES.

Dataset

Window
Size 19 23 25 27

OA (%) for IP 90.01±0.4 90.23±0.3 90.67±0.2 89.33±0.4

OA (%) for UP 95.57±0.3 95.01±0.1 95.12±0.1 94.50±0.1

OA (%) for SA 89.25±0.2 90.00±0.1 90.01±0.1 89.65±0.2

cation maps for the different trained models after optimiz-
ing parameters are shown in Figs. 11-13. The ground truth
and classification maps comparison show that the HCapsNet
architecture with dynamic routing has better performance
than the other spectral-spatial methods. Results also indicated
that HybridSN performed significantly better than 2D and
3D CNNs due to use of spatial-spectral feature extraction
in their structure. Also, in the boundaries of the classes in
the 2D-CNN, some artefacts can be observed which suggest
the spatial information is not sufficient for classification in
boundaries. Since only spectral information is employed in
classical methods such as SVM, a number of noise issues
are obvious. Therefore, a reasonable approach can be found
in models using both spatial-spectral information with more
consistency of the classes. HCapsNet achieved higher overall
accuracy as it missed fewer pixels than other methods in the
entire image, including boundaries.

D. Ablation Study

To better demonstrate the effectiveness of each part of
HCapsNet, the performance of the model without the recon-

struction part (Decoder), Conv2D, and Conv3D are analysed.
The experimental results on datasets are summarised in table
XI. When compared to other methods, HCapsNet using a
Decoder yield higher classification accuracies (F3,11 = 7.9,p
< 1×10−3). As a result, the number of trainable parameters
and the time consumption is increased. Since there was no
decoder used in without-Decoder, the Margin loss has been
used instead of Total loss. To determine the significance of
CNNs in our proposed architecture, we compared the effects
of each 2D and 3D CNN. HCapsNet (With-Decoder) achieved
a significantly higher overall accuracy than Without 2D-CNN
and 3D-CNNs (p < 0.02, p < 0.01). These results indi-
cate that efficient spectral-spatial feature extraction is critical
for enhancing HCapsNet classification performance. There
are insignificant differences in performance when comparing
HCapsNet Without 2D-CNN to HCapsNet Without 3D-CNNs
(p > 0.05) indicating that advantages of the Hybrid approach
is realised with combined 2D and 3D CNN decoders.

IV. DISCUSSION

Here we presented the HCapsNet and thoroughly evaluated
its performance on three commonly used HSI benchmarks.
The results supported the assertion that DL methods as a
data-managed features technique and, particularly, HCapsNet,
are incredibly performant in the situation of small training
sample sizes. In terms of encoding the characteristics and
feature spatial relationships, the proposed architecture is a
novel and unique method in HSI processing. HCapsNet dealt
with the challenging issue of natural complexity in HSI, which
is caused by the high spectral resolution. To elaborate, in the
proposed model, management of the spatial-spectral features
is possible with the extraction of more relevant information in
the hierarchy of part of the image.

In addition, as can be seen in the results for all three
datasets, CapsNet-based and CNN-based models performed
better than SVM - a manually-engineered features technique.
Although the result for SVM showed that the accuracy di-
minished considerably when smaller training samples were
used, the HCapsNet maintained stable accuracy. Results for
HCapsNet and CAPSNET also indicated less uncertainty
arising from performance variability in comparison to the
other approaches compared as evident from lower and less
variable standard deviation. Furthermore, the classification
maps displayed more misclassification for SVM, 2D-CNN and
3D-CNN, especially in the boundary regions, which is not the
case for HCapsNet. This weakness is more evident for the
UP dataset because this dataset has more complicated class
borders than the others.
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Fig. 11. The classification maps for IP dataset: ground truth (a), the predicted output for HCapsNet, CAPSNET, CRNN, SCAE, SSRN, HybridSN, 3D-CNN,
2D-CNN, and SVM (b)-(j).
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Fig. 12. The classification maps for UP dataset: ground truth (a), the predicted output for HCapsNet, CAPSNET, CRNN, SCAE, SSRN, HybridSN, 3D-CNN,
2D-CNN, and SVM (b)-(j).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 13. The classification maps for SV dataset: ground truth (a), the predicted output for HCapsNet, CAPSNET, CRNN, SCAE, SSRN, HybridSN, 3D-CNN,
2D-CNN, and SVM (b)-(j).

TABLE XI
THE ABLATION STUDY ON COMPONENTS OF HCAPSNET: THE PERFORMANCE OF THE DIFFERENT DESIGNS, LOSS, THE NUMBER

OF TRAINABLE PARAMETERS, AND COMPUTATIONAL TIME.

Models
Factors

IP (OA%) UP (OA%) SV (OA%) Loss No. of trainable Parameters Computational Time (s)

HCapsNet 90.67± 0.2 95.57± 0.3 90.01± 0.1 Total Loss UP , SV: 20,429,774 139.9
IP: 20,919,246 153.3

HCapsNet Without-Decoder 84.39± 0.8 87.45± 0.6 82.33± 0.5 Margin Loss UP , SV: 554,128 86.1
IP: 1,043,600 98.1

HCapsNet Without 2D-CNN 83.23± 0.2 86.52± 0.1 82.33± 0.1 Total Loss UP , SV: 20,383,630 128.5
IP: 20,734,862 150.2

HCapsNet Without 3D-CNNs 82.56± 0.1 85.55± 0.0 81.01± 0.0 Total Loss UP , SV: 20,373,374 127.5
IP: 20,864,846 150.3
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Since we deal with limited datasets in remote sensing [68],
the most suitable parameters are achieved by using Nested-CV
which helps to prevent the leakage of the data into the model,
but it does require much more computational effort. Therefore,
in order to overcome the computational overhead and represent
the input patches properly, we chose the fixed patch sizes of
25. This also helped us to have a fair comparison with other
methods. In addition, the learning process is stabilized by BN
as a regularization method in the model and can result in
higher accuracy [69]. As suggested in the literature the higher
number of labelled input cubes will improve the performance
of the models, in order to compare different models, the
same size of the training samples should be considered [70].
Regarding this, we believe that with an equal standard of
comparison, the HCapsNet can outperform other models.

In terms of computation time, CapsNet-based architectures
are more time consuming than other approaches. The CapsNet-
based models require approximately double the time to train
compared to the CNN-based models, indicating that the Cap-
sNet is more computationally expensive. This is because their
architecture incorporates an iterative dynamic routing. When
we are dealing with limited training samples, the parameter
number in CapsNet-based architectures is much higher than
CNN-based models; however, adopting a deeper CNN-based
model with more trainable parameters may cause overfitting,
which is not the case the CapNet approaches.

Also, as shown in the ablation study, HCapsNet with a
Decoder achieves higher classification accuracy; as a result,
the number of trainable parameters and the amount of time
required to train the network increases. Comparing the results
for different parts of the HCapsNet confirmed that efficient
spectral-spatial feature extraction is crucial for improving the
classification performance of the HCapsNet.

The architecture currently used in HCapsNet is relatively
strict. In this structure, a vector representation of the instanti-
ation parameters is applied and there is only one capsule layer
(Primary Caps) before the final ClassCapsule layer. Therefore,
for generalisation and applying the raw HSI format in case
of limited training sample sizes, the latest version of the
CapsNet referred to as matrix capsule, which transforms the
vector formation to matrix formation of the capsules, may be
considered [71].

In addition, there are some restraints in the design of neural
networks or learning frameworks. For example, unlimited
design choices and constrained receptive fields to particular
contexts due to geometric restrictions with CNN kernels.
Although numerous studies have examined practical limits in
the remote sensing community for regularising HSI datasets
in diverse applications such as spectral unmixing, sampling
strategy [72], [73], constraints on architecture spaces to avoid
prohibitively expensive neural architecture search has not been
addressed. Recently transformer neural networks [74] which
use the attention mechanism have sparked interest across a
wide variety of problems, including HSI. For example, Zhong
et al. [75] presented a framework for architecture search that
combines neural architecture search and experts’ knowledge
to alleviate the computational cost of architecture search.
Therefore, to generalize spectral-spatial features and reduce

the computational cost, which was the main drawback in
our method, an architecture search framework in HCapsNet,
should be developed and evaluated in future research.

V. CONCLUSION

In this paper, a review of the fundamental CapsNet with
the DR algorithm was presented. In addition, an end-to-
end DL architecture (HCapsNet) for HSI classification in
situations with limited training data was proposed so that the
combination of 2D and 3D CNNs was employed in the feature
extractor. Generally, DL methods in HSI rely on CNNs to
extract spatial and spectral features. However, since CNNs are
often used in conjunction with pooling, they cause the loss of
valuable information in the image. In addition to mistreating
information, pooling also eliminates the hierarchy of parts. In
HCapsNet, the instantiation parameters which form a vector
are determined by estimating the probability of the presence
of the spatial-spectral features in the HSI data cube. These
features are preserved efficiently in DR. Furthermore since the
hyperparameter tuning is a challenging issue with respect to
limited training data, Nested-CV was applied to prevent data
leakage into the models and ensure generalisation capability is
thoroughly evaluated. The significantly better performance of
HCapsNet using limited training data (e.g., 1% of entire data)
is demonstrated on three widely used hyperspectral image
datasets. Smaller training sample size impacted the classifi-
cation results and raised the risk of overfitting in the non-
CapsNet models such as 2D-CNN, 3D-CNN, and HybridSN;
however, the consistency in the classification results provided
by HCapsNet architecture regardless of the amount of training
data is evidence of the potential for the proposed HCapsNet
architecture.
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