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Abstract—The first-order (FO) perturbation theory-based non-
linearity compensation (PB-NLC) technique has been widely
investigated to combat the detrimental effects of the intra-channel
Kerr nonlinearity in polarization-multiplexed (Pol-Mux) optical
fiber communication systems. However, the NLC performance
of the FO-PB-NLC technique is significantly limited in highly
nonlinear regimes of the Pol-Mux long-haul optical transmission
systems. In this paper, we extend the FO theory to second-
order (SO) to improve the NLC performance. This technique
is referred to as the SO-PB-NLC. A detailed theoretical analysis
is performed to derive the SO perturbative field for a Pol-Mux
optical transmission system. Following that, we investigate a few
simplifying assumptions to reduce the implementation complexity
of the SO-PB-NLC technique. The numerical simulations for
a single-channel system show that the SO-PB-NLC technique
provides an improved bit-error-rate performance and increases
the transmission reach, in comparison with the FO-PB-NLC tech-
nique. The complexity analysis demonstrates that the proposed
SO-PB-NLC technique has a reduced computational complexity
when compared to the digital back-propagation with one step
per span.

Index Terms—Coherent detection, digital predistortion, fiber
nonlinearity, optical communications, perturbation theory.

I. INTRODUCTION

IN recent years, the core communication network faces a
dramatic increase in network traffic. That is fueled by the

proliferation of various bandwidth-intensive applications such
as virtual reality and cloud services, as well as Internet-of-
Things [1]-[3]. To accommodate such traffic surges, the optical
fibers, such as the standard single-mode fibers (SSMFs), are
used in the modern high-speed core communication networks
to transmit the broadband information signals over long dis-
tances [4]. The polarization-multiplexing (Pol-Mux) technol-
ogy can double the capacity of SSMF by transmitting inde-
pendent information symbols on the orthogonal polarization
tributaries [5]-[8]. However, the electro-optic nonlinearity ef-
fect, referred to as the Kerr effect, puts a cap on the maximum
achievable transmission reach in the optical communication
systems [5].
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In single-channel systems, the Kerr-induced signal-signal
intra-channel nonlinearity effect is the dominant source of
signal distortion that limits the transmission performance [9],
[10]. A benchmark technique used for the nonlinearity com-
pensation (NLC) in optical transmission systems is the digital
back-propagation (DBP) [11]. It uses a numerical method to
solve the signal propagation equation with appropriate inverted
channel parameters [12]. However, the huge computational
load associated with the numerical method limits the prac-
ticality of DBP [12], [13].

In contrast to the numerical approach, a Volterra series-
based analytical method was proposed in [14] to model the
nonlinear signal propagation in SSMFs. The results in [14]
were later adopted to design a nonlinear equalizer to compen-
sate for the fiber Kerr nonlinearity effect [15]-[19]. However,
for long-haul optical links, many Volterra kernels are required
in the series expansion to obtain a good approximation of
the output optical field. That increases the computational
complexity since an order n frequency-domain Volterra kernel
entails multiple integrals of order n [20].

Alternatively, the solution of the signal propagation equa-
tion can be analytically approximated using the first-order
(FO) perturbation theory [20]. The NLC technique using
this approximate analytical solution is referred to as the FO
perturbation theory-based NLC (FO-PB-NLC) [21]-[32]. It is
interesting to mention that there is an intrinsic relation between
the time-domain perturbation theory and the frequency-domain
Volterra series-based approach. For any integer n, the order
n perturbation solution coincides with order 2n + 1 Volterra
series solution [20]. Thus, the perturbation approach is an effi-
cient way to compute the Volterra kernels by avoiding multiple
integrations. The main advantages of the PB-NLC techniques
are the possibility of a single-stage implementation for the
entire fiber link and the symbol rate processing [32]. However,
when the transmit launch power increases, the higher-order
perturbation terms become significant, and the compensation
performance of the FO-PB-NLC technique decreases [20].

It is worth noting that the Pol-Mux system has become the
norm of transmission in long-haul optical systems. However,
such systems are highly vulnerable to the fiber nonlinearity and
interference from the co-propagating polarization tributary [5].
In this paper, we propose a second-order (SO) PB-NLC tech-
nique, referred to as SO-PB-NLC, to improve the performance
of the FO-PB-NLC technique in a Pol-Mux system. The main
contributions of this paper are summarized as follows:
• We present a rigorous mathematical analysis to derive

the SO nonlinear distortion field expression in a Pol-
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Mux system with a Gaussian shape assumption for the
input pulse shape. Also, we used a symbolic mathematical
software Maple for the sanity check of the formulas and
to generate corresponding Matlab code for the implemen-
tation to avoid any possible error.

• We investigate simplifying assumptions to make the
expression for the SO nonlinear distortion field less
complex.

• We design and implement a digital predistorter using the
simplified SO nonlinear distortion field to compensate for
the fiber nonlinearity in a Pol-Mux system.

• We carry out a complexity analysis and show that the
implementation complexity of the digital predistorter
based on the simplified SO distortion field is less when
compared to the DBP technique.

• We show that the SO-PB-NLC technique provides an
extended transmission reach by 15.6% over the FO-PB-
NLC technique, and is only a bit lower in performance
when compared with DBP, which has a high implemen-
tation complexity.

The remainder of this paper is structured as follows. Section
II presents the Pol-Mux system model used for the study.
Section III explains the theory of the SO-PB-NLC technique
for Pol-Mux systems. Numerical simulations and discussions
are given in Section IV. Section V concludes the paper.
Appendices A and B provide detailed proofs for Lemma 1
and Lemma 2, respectively. Appendix C explains the proof
for Theorem 1.

Notation: Lower case italic typeface letters are used for the
time-domain representation, whereas the frequency-domain is
represented by upper case italic typeface letters. The matrices
and vectors are represented by upper case bold typeface letters
and lower case bold typeface letters, respectively.

II. SYSTEM MODEL

A. High-Level Description

The Pol-Mux system model considered for the study is
shown in Fig. 1.

Fig. 1: The system model for the Pol-Mux system. PBC:
polarization beam combiner, SSMF: standard single-mode
fiber, EDFA: erbium-doped fiber amplifier, PBS: polarization
beam splitter, CD: chromatic dispersion.

In each polarization, a sequence of K symbols ax/y =[
a1,x/y, a2,x/y, · · · , aK,x/y

]
∈ ΩK , with x, y as the orthog-

onal polarization tributaries and Ω as the symbol alphabet, is

processed first to generate the predistorted pulse waveform to
combat the nonlinearity effect. Then, the predistorted symbol
pulse ãx/y is shaped using a pulse shaping filter ĝ(t), where t
represents the time. The resultant signal in each polarization is
represented as ux/y(z = 0, t) =

∑K
k̄=1 ak̄,x/y ĝ(t−k̄T ), with z

as the space variable and T as the symbol duration. The pulse
shaper is followed by a PBC at the transmitter. The fiber-
optic link consists of Nspans spans of SSMF and an EDFA
in each fiber span to compensate for the fiber attenuation.
At the receiver, the signal field rx/y(z = L, t), with L as
the transmission length, is demultiplexed using a PBS. The
accumulated CD in each polarization is compensated using
frequency-domain equalizers. Finally, a symbol-by-symbol
maximum likelihood detector is applied, with the resultant
estimated symbol represented as âx/y .

B. Optical Fiber Channel Model

The propagation of the Pol-Mux optical signal through
the SSMF can be modeled by using the Manakov equation
(noiseless), which is represented as [20]:

∂

∂z
u + j

β2

2

∂2

∂t2
u = j

8

9
γ(u∗†uI)u exp (−αz) , (1)

where β2 is the group velocity dispersion, γ is the nonlinearity
coefficient, α is the attenuation, I is the identity matrix and
the input to the optical fiber is a column vector u(z, t) =
[ux(z, t) uy(z, t)]†, with the superscript † as the transpose. In
this study, the split-step Fourier method (SSFM) with a step
size of 0.8 km is used to model the evolution of the modulated
optical fields inside the optical fiber channel.

III. THEORY OF THE SO-PB-NLC TECHNIQUE FOR
POL-MUX SYSTEMS

The Manakov equation governing the evolution of the SO
nonlinear distortion field can be represented as [32]:

∂

∂z
u2,x/y(z, t) = −j β2

2

∂2

∂t2
u2,x/y(z, t)︸ ︷︷ ︸

Linear part

+ exp(−αz)


j2
(∣∣u0,x/y(z, t)

∣∣2 +
∣∣u0,y/x(z, t)

∣∣2) ũ1,x/y(z, t)︸ ︷︷ ︸
Term 1

+j
(
u2

0,x/y(z, t) + u2
0,y/x(z, t)

)
ũ∗1,x/y(z, t)︸ ︷︷ ︸

Term 2


︸ ︷︷ ︸

Nonlinear part

, (2)

where ũ1 is the FO field distorted by CD while evolving
through the optical fiber link. The dispersed FO perturbative
field (or ghost pulse) is used in the calculation of the SO
perturbative field. The linear part in (2) represents the disper-
sion of the SO distortion field u2,x/y when it evolves through
the optical fiber link. The nonlinear part has two terms: Term
1, which represents the intra-channel cross-phase modulation
between the zeroth-order (or linearly dispersed) pulse and the
dispersed FO ghost pulse; and Term 2, which is the intra-
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channel four-wave mixing (FWM) term.
The modulated input pulse sequence can be represented as:

u0(z = 0, t) =
√
P0

∑
k̄

ak̄ĝ(z = 0, t− k̄T ), (3)

where ak̄ is the data information of the k̄th pulse, P0 is the
pulse peak power, and ĝ(z, t) is the pulse temporal waveform
at z. By substituting (3) in Term 1 of (2), we get the expansion
for Term 1 as:

P
5/2
0

∑
m

∑
n

∑
l

∑
k

∑
p

(
am,x/ya

∗
l,x/y + am,y/xa

∗
l,y/x

)
× an,x/y

(
ak,x/ya

∗
p,x/y + ak,y/xa

∗
p,y/x

)
× g̃1,m+n−l(z, t−(m+n− l)T )ĝk(z, t−kT )ĝ∗p(z, t−pT ),

(4)

where m,n, l, k, and p represent the pulse indices, and their
values vary between −Lw

2 to +Lw

2 , with Lw as the symbol
window length to calculate the FO/SO nonlinear distortion
fields. Similarly, by substituting (3) in Term 2 of (2), we get
the expansion for Term 2 as:

P
5/2
0

∑
m

∑
n

∑
l

∑
k

∑
p

(
a∗m,x/yal,x/y + a∗m,y/xal,y/x

)
× a∗n,x/y

(
ak,x/yap,x/y + ak,y/xap,y/x

)
× g̃∗1,m+n−l(z, t− (m+n− l)T )ĝk(z, t−kT )ĝp(z, t−pT ).

(5)

From (4) and (5), it is clear that the SO nonlinear distortion
field is induced by the nonlinear beating between quintuplet
pulses. The schematic diagram shown in Fig. 2 illustrates the
quintuplet interaction to generate the SO nonlinear distortion
field in (4) (i.e., Term 1 of (2)).

Fig. 2: Illustration showing the quintuplet pulse interaction to
generate the SO nonlinear distortion field.

In the FO perturbation theory, the triplet pulses located at
time indices m,n, and l (please see the inset in Fig. 2) induce
a FO ghost pulse at the time index m+n− l according to the
FWM theory [32]-[34]. In congruous with the FO perturbation
theory and based on the FWM theory, the SO ghost pulse
is generated at the time index m + n − l + k − p by the
nonlinear beating between two zeroth-order pulses located at
time indices k and p and the FO ghost pulse located at the time
index m+n− l. For Term 1, the phase-matching condition to
induce the SO ghost pulse at the pulse of interest (assuming
the pulse of interest is located at the zeroth time index) is
m+ n− l + k − p = 0 or p = m+ n− l + k. Similarly, for
Term 2, the phase-matching condition is p = m+ n− l − k.

Fig. 3 shows a detailed illustration of the SO nonlinear

distortion field generation by the nonlinear interaction be-
tween quintuplet pulses. The middle sub-figure shows the
pulse overlap caused by the CD-induced pulse spreading.
These dispersed quintuplet pulses interact nonlinearly during
its propagation along the fiber to generate the SO nonlinear
distortion field. The bottom sub-figure indicates how the FO
and SO nonlinear distortion fields are added to the pulse of
interest.

Fig. 3: The quintuplet pulses involved in the SO distortion
field calculation, adapted from [32]-[34].

It can be observed from Fig. 3 that the nonlinear interaction
between the FO ghost pulse at an arbitrary time index m +
n − l and the linearly dispersed pulses at the time indices k
and p lead to a three-pulse collision scenario, and its impact
is negligible because of the reduced pulse overlap between
the pulse of interest and the other interacting pulses [33]. In
other words, the pulse interaction is prevalent only for the FO
ghost pulse induced at the symbol under consideration and
the dispersed pulses at the time indices k and p. To reduce
the complexity of the SO-PB-NLC technique, we neglect the
FO fields generated at the time indices other than that of the
pulse at the zeroth index for which the SO distortion field is
calculated. That can be achieved by substituting the phase-
matching condition l = m + n in (4) and (5). That leads to
the SO phase-matching conditions p = k for Term 1 and p =
−k for Term 2. Figs. 4 and 5 show the nonlinear interaction
between the quintuplet pulses in Term 1 and Term 2 of (2),
respectively.

In Fig. 4, the phase-matching condition l = m + n leads
to p = k. The middle sub-figure indicates the nonlinear
interaction between the dispersed FO ghost pulse at the zeroth
time index and the other linearly dispersed pulse. That results
in a two-pulse collision scenario, as given in [33] and [34], and
contributes more to the SO ghost pulse generation at the pulse
of interest. The bottom sub-figure shows the corresponding
SO field generation. On the other hand, in Fig. 5, the phase-
matching condition l = m + n leads to p = −k, which
increases the chance of constructive/destructive interference
caused by the three-pulse collision between the FO ghost pulse
at the zeroth time index and two linearly dispersed pulses at
p = −k and k, as shown in the middle sub-figure [33], [35].
The bottom sub-figure depicts the corresponding SO distortion
field added to the pulse of interest.
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Fig. 4: The quintuplet pulses involved in Term 1 of (2) and
their nonlinear interaction for the phase-matching conditions
l = m+ n and p = k, adapted from [32]-[34].

Fig. 5: The quintuplet pulses involved in Term 2 of (2) and
their nonlinear interaction for the phase-matching conditions
l = m+ n and p = −k, adapted from [32]-[34].

For simplicity of presentation, Term 1 and Term 2 of the
nonlinear part in (2) are first considered separately, and then,
combined.

Lemma 1: By considering Term 1 of the nonlinear part
in (2), the coefficient of the nonlinear interaction be-
tween five input Gaussian pulses

√
P0am/n/l/k/p exp(−(t −

Tm/n/l/k/p)
2/2τ2), where τ is the pulse width, at five time

indices Tm, Tn, Tl, Tk, Tp with the assumption of a symbol
rate operation (i.e., t = 0) and substituting the phase-matching
conditions l = m+ n and p = k, can be expressed as (6).
Proof : Please refer to Appendix A.

It is important to mention that the Gaussian shape assump-
tion for the input pulse shape is adopted to simplify the
mathematical analysis, as in [32]. In the perturbative analysis,
the nonlinear perturbation coefficients are calculated using the
overlap integrals that relate the symbol under consideration to
other symbols that take part in the nonlinear interaction. The
overlap integrals cannot be calculated analytically for non-
Gaussian pulse shapes, such as root-raised cosine (RRC) or
Nyquist pulses. In [36], a stationary-phase approximation is
adopted to circumvent the difficulty in explicitly evaluating
overlap integrals for Nyquist pulses. The results in [37] indi-
cate that using an optimized scaling factor, the Gaussian pulse
shape assumption in the perturbative analysis is reasonably

valid for systems using RRC pulse shape to demonstrate the
proof of concept. It is worth mentioning that in the SO-
PB-NLC technique, the large CD assumption in [32] (i.e.,
β2z � τ2) is relaxed, such that the SO-PB-NLC technique
can reduce the approximation error and improve the NLC
performance gain.

Lemma 2: By considering Term 2 of the nonlinear part
in (2), the coefficient of the nonlinear interaction be-
tween five input Gaussian pulses

√
P0am/n/l/k/p exp(−(t −

Tm/n/l/k/p)
2/2τ2) at five time indices Tm, Tn, Tl, Tk, Tp

with the assumption of a symbol rate operation and substi-
tuting the phase-matching conditions l = m+n and p = −k,
can be expressed as (14).
Proof : Please refer to Appendix B.

Theorem 1: For the case of the transmission of a Pol-Mux
optical signal through the SSMF, the five input Gaussian pulses√
P0am/n/l/k/p,x/y exp(−(t−Tm/n/l/k/p)2/2τ2) at five time

indices Tm, Tn, Tl, Tk, and Tp, with the phase matching
conditions l = m+n and p = k for Term 1 and l = m+n and
p = −k for Term 2, generate the SO ghost pulse at the zeroth
time index; with the assumption of a symbol rate operation,
this can be expressed as:

ũ2,x/y(L, t) =
64

81
γ2εSOP

5/2
0

∑
m

∑
n

∑
k[

2
(
am,x/ya

∗
m+n,x/y + am,y/xa

∗
m+n,y/x

)
an,x/y

×
(
ak,x/ya

∗
k,x/y + ak,y/xa

∗
k,y/x

)
C̃

SO, Term 1
m,n,k

+
(
a∗m,x/yam+n,x/y + a∗m,y/xam+n,y/x

)
×a∗n,x/y

(
ak,x/ya−k,x/y + ak,y/xa−k,y/x

)
C̃

SO, Term 2
m,n,k

]
, (23)

where εSO is a scaling factor account for the Gaussian pulse
shaping assumption and the power uncertainty in the fiber
span and C̃

SO, Term 1
m,n,k and C̃

SO, Term 2
m,n,k are given by (6) and (14),

respectively.
Proof : Please refer to Appendix C.

Fig. 6: Block diagram of SO-PB-NLC technique using (23).

It is worth mentioning that the nonlinearity coefficients
C̃

SO, Term 1
m,n,k and C̃

SO, Term 2
m,n,k are same as those derived for single-

polarization systems. However, for the Pol-Mux system, the
SO nonlinear distortion field in (23) has an additional cross-
polarization interference (cross-talk) term and a scaling factor
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C̃
SO, Term 1
m,n,k = −τ4

L∫
0

z∫
0

exp(−α(z + s))√
−Ã(z, s)B̃(s)

exp

{
T 2

Ã(z, s)B̃(s)

[
Ǎm,n,kτ

6 + 2jβ2(B̌m,n,kz

+ Čm,n,ks)τ
4 + 3β2

2(Ďm,n,kz
2 − Ěm,n,ksz + k2s2)τ2 −5jmnsz2β3

2

]}
ds dz, (6)

where

Ã(z, s) = (jτ6 − 3β2 (s+ 2/3z) τ4

− 6jβ2
2 (s− 7/6z) zτ2 − 5sz2β3

2), (7)
B̃(s) = (jτ2 + β2s), (8)
Ǎm,n,k = (k2 +m2 + nm+ n2), (9)

B̌m,n,k = (m2 + (−2k + n)m
− 2kn+ n2), (10)

Čm,n,k = (k2 − 3/2nm), (11)
Ďm,n,k = (m2 − 1/3nm+ n2), (12)
Ěm,n,k = (4/3((k − 3/2n)m+ kn)). (13)

C̃
SO, Term 2
m,n,k =

√
3τ4

L∫
0

z∫
0

√
Â(z, s) exp(−α(z + s))√

B̂(z, s)Ĉ(z)

(√
−B̃(s)D̂(z, s)

)∗ exp

{
−jT 2

τ2B̂(z, s)Ê(s)

[
Ǎm,n,kτ

6

− jβ2(Ăm,n,kz + B̆m,n,ks)τ
4 + β2

2s(C̆m,n,kz + 3k2s)τ2 +2jk2s2zβ3
2

]}
ds dz, (14)

where

Â(z, s) = (j τ4 + jszβ2
2 + 3τ2β2(s− z)), (15)

B̂(z, s) = (τ4 − 3j(s− 7/3z)β2τ
2

+ 5szβ2
2), (16)

Ĉ(z) = (jτ2 + β2z), (17)
D̂(z, s) = (τ4 + szβ2

2 + j3 τ2β2(s− z)), (18)

Ê(s) = (jτ2 − β2s), (19)
Ăm,n,k = (−6k2 + 4(m+ n)k

− 3m2 + nm− 3n2), (20)
B̆m,n,k = (2k2 − 3nm), (21)
C̆m,n,k = (−4k2 + 4k(m+ n)− 5nm). (22)

8
9 for γ when compared to the single-polarization case. Fig.
6 shows the block diagram of the SO-PB-NLC technique
using (23) for Pol-Mux systems. The 3-D nonlinearity coeffi-
cient matrices C̃

SO, Term 1
m,n,k and C̃

SO, Term 2
m,n,k are calculated offline

and stored in look-up tables (LUTs). Then, the nonlinear
distortion field is calculated using (23), which is followed
by the subtraction of the calculated field from the input
field to generate the predistorted signal. In the proposed SO-
PB-NLC technique, the nonlinearity coefficients in C̃

SO, Term 1
m,n,k

and C̃
SO, Term 2
m,n,k are truncated by a threshold value given as

20 log10

(∣∣∣C̃SO, Term 1/Term 2
m,n,k

∣∣∣ / ∣∣∣C̃SO, Term 1/Term 2
0,0,0

∣∣∣) < µ dB [32].
In this work, a coefficient truncation threshold of µ = −40

Fig. 7: The impact of the SO coefficient truncation threshold
µ on the performance of the SO-PB-NLC technique.

dB is used to reduce the effective number of the perturbation
terms to reduce the implementation complexity. The selection
of the truncation threshold µ = −40 dB is based on the results
in Fig. 7.

In implementing the SO-PB-NLC technique, we consider
a symbol window size of Lw = 100 to calculate the SO
nonlinear distortion field added to the symbol under consider-
ation. For the first/last symbol in a given frame, the magnitude
of the symbols outside the selected window to the left/right
of the symbol under consideration is considered as zero. It
is important to mention that this assumption does not affect
the accuracy of the bit-error-rate (BER) calculation since we
neglect several symbols from the beginning and the end of
a given frame to account for the filter-induced delays in the
transmission link. In Fig. 7, it is observed that the signal-to-
noise ratio (SNR) improvement for the SO-PB-NLC technique
with a coefficient truncation threshold higher than µ = −40
dB is negligibly small. Based on this observation, we select
a truncation threshold µ = −40 dB in the implementation
of the SO-PB-NLC technique with a symbol window size of
Lw = 100. Fig. 7 also shows the complexity in terms of
the number of real-valued multiplications/symbol. It is also
observed from Fig. 7 that the increase in the number of
perturbation terms beyond the truncation threshold of µ = −40
dB is negligibly small for a selected symbol window size of
Lw = 100.

To count the frequency of occurrence of nonlinearity coef-
ficients in C̃

SO, Term 1
m,n,k and C̃

SO, Term 2
m,n,k that satisfy the threshold
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Fig. 8: The number of occurrences of the magnitude of the
nonlinearity coefficients in C̃

SO, Term 1
m,n,k and C̃

SO, Term 2
m,n,k .

condition, we plot the histogram of the coefficient magnitudes
in Fig. 8. It is interesting to note that the number of occurrence
of coefficients in C̃

SO, Term 2
m,n,k above the truncation threshold is

significantly lower than that in C̃
SO, Term 1
m,n,k . Also, the magnitudes

of the coefficients are close to zero, with a significantly lower
variance. That may be due to the constructive/destructive
interference caused by the three-pulse collision between the
FO ghost pulse and the linearly dispersed pulses [33], [35].
We investigate the performance of the SO-PB-NLC technique
with and without considering Term 2 of (2) through numerical
simulations in Section IV.

In the implementation of the SO-PB-NLC technique, we
adopt a quantization and combination method proposed in [38]
to reduce the computational complexity further. It is important
to mention that the nonlinearity coefficients in C̃

SO, Term 1
m,n,k and

C̃
SO, Term 2
m,n,k are very similar, in particular for those with large

indexes. Based on this fact, we round the real and imaginary
parts of the nonlinearity coefficients to the nearest integer. The
FO/SO coefficient quantization and the triplet/quintuplet com-
bination dramatically reduce the computational complexity.

Fig. 9: Quantized SO nonlinearity coefficients for a transmission distance
of 2800 km.

Fig. 9 shows the results of the coefficient quantization for
the SO perturbative nonlinear coefficients. It is clear from
Fig. 9 that the number of distinct nonlinearity coefficients
is dramatically reduced after the quantization process since
several of the similar coefficients are approximated to the
same quantized coefficient. Fig. 10 illustrates the number of
SO coefficients kept after truncation, quantization, and com-

bination when compared to the actual number of coefficients
as a function of the transmission distance for a fixed window
size of Lw = 100.

Fig. 10: Number of SO nonlinearity coefficients kept after
truncation, quantization, and combination (blue curve) as a
function of the transmission distance. The red curve shows
the percentage of coefficients retained after truncation, quan-
tization, and combination.

The results in Fig. 10 indicate that the number of SO
coefficients kept after truncation, quantization, and combina-
tion linearly increases as the transmission distance increases.
However, the percentage of the SO coefficients over the
total number of coefficients exponentially decreases as the
transmission distance increases for a fixed window size of
Lw = 100. For example, for a transmission distance of 2800
km, the number of SO perturbation terms with a coefficient
truncation threshold of µ = −40 dB is 160606, which is
reduced to 900 after the coefficient quantization and combining
the perturbation terms that have the same coefficients, as in
[38]. In other words, only 0.56% of coefficients are kept after
the truncation, quantization, and combination to carry out the
SO distortion field calculation, which significantly reduces the
implementation complexity of the SO-PB-NLC technique.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

We consider a single-channel Pol-Mux optical transmission
system and the SO-PB-NLC technique is applied as a predis-
tortion at the transmitter. After RRC pulse shaping, the predis-
torted signal is up-converted to optical domain and transmitted
over the long-haul optical fiber link. The simulation parameters
used for the study are listed in Table 1.

TABLE I: Simulation Parameters [10], [31], [32], [40].

Parameter Value

RRC filter roll-off factor 0.1

µ −40 dB
Fiber span length 80 km

α 0.2 dB/km
β2 −20.47 ps2/km
γ 1.22 (1/W)/km

Polarization mode dispersion coefficient 0.1 ps/
√

km
Noise figure of EDFA 5.5 dB
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(a) (b)

Fig. 11: (a) SNR vs. launch power with p = m+ n− l + k and p = k; (b) SNR vs. launch power with Term 1+Term 2 and
only Term 1 of (1).

(a) (b)

Fig. 12: (a) BER vs. launch power; and (b) Maximum reach vs. launch power.

The modulation format considered is 16-quadrature ampli-
tude modulation. The data transmission rate is 32 Gbaud.
The polarization state, carrier phase, and symbol timing are
assumed perfectly known at the receiver [39]. The amplified
spontaneous emission (ASE) noise of EDFA is added to the
signal after each fiber span to capture the nonlinear interaction
between the signal and the ASE noise [31].

A. Simulation Results

It is observed from Fig. 11(a) that neglecting the FO ghost
pulse at arbitrary time indices m + n − l 6= 0 only slightly
affects the received SNR of the SO-PB-NLC technique. That is
because the CD-induced pulse overlap between the FO ghost
pulse at arbitrary time indices m+ n− l 6= 0 and the zeroth-
order pulses is significantly less, and thereby, the magnitude of
the corresponding nonlinearity coefficient is negligibly small.
Similarly, results in Fig. 11(b) show that the received SNR
of the SO-PB-NLC is only slightly affected when Term 2
of (2) is neglected. Based on these considerations, we select
the implementation of the SO-PB-NLC technique with phase-
matching conditions l = m+ n and p = k and by taking into
account only Term 1 of (2) for further numerical investigations.

Fig. 12(a) shows BER as a function of the launch power
for the single-channel Pol-Mux optical transmission system
at a transmission distance of 2800 km. In Fig. 12(a), the
performance of the DBP technique is included along with

the FO-PB-NLC and the electronic dispersion compensation
(EDC) techniques for comparison. It is worth mentioning that,
in this work, we chose the conventional DBP technique as a
benchmark to compare the performance with our proposed
SO-PB-NLC technique. The transmission distance considered
is 2800 km. We observe from Fig. 12(a) that the BER
performance of the SO-PB-NLC technique is significantly
better than that of the FO-PB-NLC and EDC techniques. It is
observed that the optimal launch power for the SO-PB-NLC
technique is increased by ∼ 2 dB and ∼ 1 dB when compared
to the EDC and FO-PB-NLC techniques, respectively. Another
observation is that the BER performance of the DBP technique
is higher than that of the proposed SO-PB-NLC technique.
That is because the DBP is a numerical method that uses
the SSFM, and so it compensates for the nonlinearity effects
span-by-span [12]. On the other hand, the PB-NLC techniques
use an analytical approximation for the solution of the NLSE
with the assumption that the fiber link has only one span
[32]. That is a general assumption considered in the design
of the PB-NLC techniques. It is important to mention that the
single span assumption of the PB-NLC techniques allows the
compensation of the nonlinearity effect in a single computation
step, thus reducing the computational effort required [32].

Fig. 12(b) shows the plot of the maximum transmission
reach as a function of the launch power for DBP, SO-PB-
NLC, FO-PB-NLC, and EDC techniques at 20% overhead
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soft-decision forward error-correction limit with a BER value
of 2× 10−2 [41] for a single-channel Pol-Mux optical trans-
mission system. It is observed that the maximum transmission
reach for DBP, SO-PB-NLC, FO-PB-NLC, and EDC is 6000
km, 5200 km, 4500 km, and 3200 km, respectively. These
results indicate that the SO-PB-NLC technique provides an
extended transmission reach by 62.5% and 15.6% when com-
pared to EDC and the FO-PB-NLC techniques, respectively.
Further, it is also observed that the nonlinearity threshold of
the SO-PB-NLC technique is improved by ∼ 4.7 dB and ∼ 1.7
dB when compared to the EDC and FO-PB-NLC techniques,
respectively.

B. Complexity Evaluation
In this section, the computational complexities of the DBP,

SO-PB-NLC, FO-PB-NLC, and EDC techniques are evaluated
based on the number of real-valued multiplications per symbol
for the Pol-Mux optical transmission system. It is important
to mention that the nonlinearity coefficient matrices of the
FO-/SO-PB-NLC techniques are truncated at a threshold of
µ=-40 dB [32]. Also, in the implementation, the nonlinearity
coefficient matrices are quantized according to the method
given in [38]. For DBP with Nsteps per span, the expression
for the number of real-valued multiplications per symbol is
given as 8NstepsNspansNFFT(log2(NFFT) + 10.5)/Ns, where
Nspans is the number of fiber spans, NFFT is the fast Fourier
transform size, and Ns is the number of samples [5]. In
case of the FO-/SO-PB-NLC techniques, the triplet/quintuplet
symbols in the nonlinear distortion calculation can be stored
in LUT; therefore, the number of real-valued multiplications
per symbol can be represented as 2(4M + 3) [10], where M
is the number of significant perturbation coefficients in the
nonlinearity coefficient matrix CFO

m,n

/
C̃

SO, Term 1
m,n,k . It is worth

noting that the value of M increases with increasing the num-
ber of fiber spans because of the corresponding increase in the
number of coefficients in the nonlinearity coefficient matrix,
satisfying the truncation threshold. For the EDC technique, the
number of real-valued multiplications per symbol is given as
8NFFT(log2(NFFT) + 1)/Ns [5].

Fig. 13: Number of real-valued multiplications/symbol for
DBP, SO-PB-NLC, FO-PB-NLC, and EDC techniques as a
function of the number of fiber spans Nspans.

Fig. 13 depicts the number of real-valued multiplications per
symbol as a function of the number of fiber spans, Nspans

for DBP, SO-PB-NLC, FO-PB-NLC, and EDC techniques.
The results indicate that the complexity of the DBP technique
increases rapidly as Nspans increases, which is attributed to the
corresponding increase in the computation steps for the SSFM
technique [5]. On the other hand, the complexity increase
for the FO-/SO-PB-NLC techniques is due to the increase
in the number of quantized nonlinearity coefficients as the
number of fiber span increases. The result in Fig. 13 shows
that the computational complexity of the proposed SO-PB-
NLC technique is less than that of the DBP technique. For
example, at Nspans= 35 (i.e., at 2800 km), the required number
of real-valued multiplications for the SO-PB-NLC technique
is 1550 fewer than that of the DBP technique with 1 step/span.
It is important to note that the nonlinearity coefficients of the
FO-/SO-PB-NLC techniques can be calculated beforehand and
stored in LUT. That is the key factor that makes the proposed
SO-PB-NLC technique less complex than the conventional
DBP technique.

Fig. 14: Q-factor gain as a function of the number of fiber
spans and the computational complexity.

Fig. 14 shows the plot of the Q-factor gain ∆Q, defined
as ∆Q = QFO−PB−NLC/SO−PB−NLC/DBP − QEDC , as
a function of the number of fiber spans. The corresponding
computational complexity value is shown in parentheses. Fig.
14 indicates that even though the proposed SO-PB-NLC
technique is computationally efficient when compared with
DBP, its implementation complexity is large when compared
to FO-PB-NLC. While the SO-PB-NLC approach appears to
be complex, we believe it would be possible to further reduce
the complexity by using dimensionality reduction techniques,
such as the principal component analysis. This represents the
focus of future work.

V. CONCLUSION

In this paper, we have designed the SO-PB-NLC technique
for single-channel Pol-Mux systems. We have shown through
numerical simulations that the NLC performance of the de-
signed SO-PB-NLC technique is improved in comparison
with the FO-PB-NLC technique. We have demonstrated that
the SO-PB-NLC technique provides an extended transmission
reach compared with the EDC and FO-PB-NLC, respectively,
for a single-channel Pol-Mux optical link. We have also shown
that the computational burden of the SO-PB-NLC technique is
lower than that of the DBP technique with one step per span.
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APPENDIX A
PROOF OF LEMMA 1

The differential equation governing the SO distortion field
for the Pol-Mux signal by considering only Term 1 of the
nonlinear part in (2) can be represented as:

∂

∂z
u2,x/y(z, t) = −j β2

2

∂2

∂t2
u2,x/y(z, t) + j2ũ1,x/y(z, t)(∣∣u0,x/y(z, t)

∣∣2 +
∣∣u0,y/x(z, t)

∣∣2) exp(−αz). (24)

By taking the Fourier transform of (24) and integrating with
respect to z from 0 to L with the assumption of an ideal
dispersion compensation at z = L, we get the solution in
frequency-domain as:

UTerm 1
2,x/y (L,w) =

64

81
γ2

L∫
0

2F Term 1
x/y (z, w)

× exp

(
−j w

2β2z

2

)
exp(−αz)dz. (25)

Note that 64
81γ

2 in (25) is the nonlinearity scaling factor for
the SO distortion field that is obtained from the perturbation
series representation of the output optical field, as shown in
[20]. The F Term 1

x/y (z, w) in (25) is given as:

F Term 1
x/y (z, w) =

∞∫
−∞

(∣∣u0,x/y(z, t)
∣∣2 +

∣∣u0,y/x(z, t)
∣∣2)

× ũ1,x/y(z, t) exp (−jwt) dt. (26)

By substituting (3) in (26), the equation for F Term 1
x/y (z, w) can

be represented as:
F Term 1
x/y (z, w) = P

5/2
0

∑
m

∑
n

∑
l

∑
k

∑
p(

am,x/ya
∗
l,x/y + am,y/xa

∗
l,y/x

)
an,x/y(

ak,x/ya
∗
p,x/y + ak,y/xa

∗
p,y/x

) ∞∫
−∞

g̃1,m+n−l(z, s, t−

(m+ n− l)T )ĝk(z, t− kT )ĝ∗p(z, t− pT ) exp (−jwt) dt.
(27)

Next, substituting the simplifying assumptions l = m+n and
p = k in (27), we get:
F Term 1
x/y (z, w) = P

5/2
0

∑
m

∑
n

∑
k

(
am,x/ya

∗
m+n,x/y

+am,y/xa
∗
m+n,y/x

)
an,x/y

(
ak,x/ya

∗
k,x/y + ak,y/xa

∗
k,y/x

)
×
∞∫
−∞

g̃1,0(z, s, t)ĝk(z, t−kT )ĝ∗k(z, t−kT ) exp (−jwt) dt.

(28)

In (28), g̃1,0(z, s, t) is the FO distortion field at the zeroth time
index affected by CD, which is obtained by the convolution
between the temporal CD term 1√

−2πjβ2z
exp

(
−jt2
2β2z

)
and

the FO nonlinearity coefficient in [32]. In our analysis, we
consider Gaussian shape assumption for the input pulses, i.e.,
ĝ(z = 0, t) = exp

(
− t2

2τ2

)
, where τ represents the pulse

width. With this Gaussian shape assumption, the FO distortion
field g̃1,0(z, s, t) can be represented as:

g̃1,0(z, s, t) =
1√

−2πjβ2z
exp

(
−jt2

2β2z

)

⊗

 exp(
−t2

6τ2
)

z∫
0

exp(−αs)√
1 + 2jβ2s/τ2 + 3(β2s/τ2)2

× exp

{
− 3[2t/3−nT ][2t/3−mT ]

τ2(1+3jβ2s/τ2)

− (n−m)2T 2

τ2[1+2jβ2s/τ2+3(β2s/τ2)2]

}
ds


= jτ3

z∫
0

exp(−αs)√
−jB(s)D̂(z, s)

exp

{
−j

B(s)D̂(z, s)[
(

....
Am,nT

2 − 2t
....
B m,nT +

3

2
t2)τ4 − jβ2((m2z

+ (3s− z)mn+ n2z)T 2 + 2st
....
C m,nT + st2)τ2

−(mnzT 2 − 1

2
st2)β2

2s

]}
ds, (29)

where
....
Am,n = (m2 + mn + n2),

....
B m,n = (m+ n), and....

C m,n = (m+ n− 2).
Next, substituting (29) in (28) and the resultant equation in
(25), we obtain the SO nonlinear distortion field corresponding
to Term 1 with the simplifying assumptions l = m + n and
p = k as:

ŨTerm 1
2,x/y (L,w) =

64

81
γ2P

5/2
0

∑
m

∑
n

∑
k

2
(
am,x/ya

∗
m+n,x/y + am,y/xa

∗
m+n,y/x

)
an,x/y

×
(
ak,x/ya

∗
k,x/y + ak,y/xa

∗
k,y/x

)
G̃Term 1
m,n,k(z, s, w), (30)

where G̃Term 1
m,n,k(z, s, w) is given by:

G̃Term 1
m,n,k(z, s, w) =

L∫
0

exp(−αz)

 ∞∫
−∞

g̃1,0(z, s, t)

ĝk(z, t− kT )ĝ∗k(z, t− kT ) exp (−jwt) dt


× exp

(
−j w

2β2z

2

)
dz. (31)

It is clear from (30) that the function G̃Term 1
m,n,k(z, s, w) cal-

culates the coefficient of nonlinear interaction between the
quintuplet pulses in frequency-domain. The corresponding
time-domain nonlinearity coefficient is obtained by taking the
inverse Fourier transform of (31), which can be represented
as:

g̃Term 1
m,n,k(z, s, t) =

L∫
0

exp(−αz)



10

(
g̃1,0(z, s, t) ĝk(z, t− kT )ĝ∗k(z, t− kT )

)
⊗
(

1√
−2πjβ2z

exp

(
−jt2

2β2z

))
dz. (32)

Next, substituting the expression for zeroth-order (or linearly
dispersed) pulse ĝk(z, t− kT ) = τ√

τ2−jβ2z
exp

(
(kT−t)2

2(jβ2z−τ2)

)
and (29) in (32) with the assumption of a symbol rate operation
(i.e., t = 0), we obtain (6), i.e.,

C̃
SO, Term 1
m,n,k = g̃Term 1

m,n,k(z, s, t)
∣∣
t=0

. (33)

APPENDIX B
PROOF OF LEMMA 2

By considering Term 2 of the nonlinear part in (2), the prop-
agation equation governing the evolution of the SO distortion
field can be represented as:

∂

∂z
u2,x/y(z, t) = −j β2

2

∂2

∂t2
u2,x/y(z, t) + j exp(−αz)

×
(
u2

0,x/y(z, t) + u2
0,y/x(z, t)

)
ũ∗1,x/y(z, t). (34)

The solution of (34) in frequency-domain can be obtained as:

UTerm 2
2,x/y (L,w) =

64

81
γ2

L∫
0

F Term 2
x/y (z, w) exp

(
−j w

2β2z

2

)
× exp(−αz)dz, (35)

where F Term 2
x/y (z, w) is given as:

F Term 2
x/y (z, w) =

∞∫
−∞

(
u2

0,x/y(z, t) + u2
0,y/x(z, t)

)
× ũ∗1,x/y(z, t) exp (−jwt) dt. (36)

By substituting (3) in (36), we obtain:

F Term 2
x/y (z, w) = P

5/2
0

∑
m

∑
n

∑
l

∑
k

∑
p

a∗n,x/y(
a∗m,x/yal,x/y + a∗m,y/xal,y/x

)(
ak,x/yap,x/y + ak,y/xap,y/x

)
×
∞∫
−∞

g̃∗1,m+n−l(z, s, t− (m+ n− l)T )

× ĝk(z, t− kT )ĝp(z, t− pT ) exp (−jwt) dt. (37)

Next, substituting the simplifying assumptions l = m+n and
p = −k in (37), we get:

F Term 2
x/y (z, w) = P

5/2
0

∑
m

∑
n

∑
k(

a∗m,x/yam+n,x/y + a∗m,y/xam+n,y/x

)
a∗n,x/y

(
ak,x/ya−k,x/y + ak,y/xa−k,y/x

) ∞∫
−∞

g̃∗1,0(z, s, t)ĝk(z, t−kT )

× ĝk(z, t− kT ) exp (−jwt) dt. (38)

Next, substituting (29) in (38) and the resultant equation in
(35), we obtain the SO nonlinear distortion field corresponding
to Term 2 with the simplifying assumptions l = m + n and
p = −k as:

ŨTerm 2
2,x/y (L,w) =

64

81
γ2P

5/2
0

∑
m

∑
n

∑
k(

a∗m,x/yam+n,x/y + a∗m,y/xam+n,y/x

)
a∗n,x/y

×
(
ak,x/ya−k,x/y + ak,y/xa−k,y/x

)
G̃Term 2
m,n,k(z, s, w), (39)

where G̃Term 2
m,n,k(z, s, w) is given by:

G̃Term 2
m,n,k(z, s, w) =

L∫
0

exp(−αz)

 ∞∫
−∞

g̃∗1,0(z, s, t)

ĝk(z, t− kT )ĝk(z, t− kT ) exp (−jwt) dt


× exp

(
−j w

2β2z

2

)
dz. (40)

The time-domain nonlinearity coefficient is obtained by taking
the inverse Fourier transform of (40), which can be represented
as:

g̃Term 2
m,n,k(z, s, t) =

L∫
0

exp(−αz)

(
g̃∗1,0(z, s, t) ĝk(z, t− kT )ĝk(z, t− kT )

)
⊗
(

1√
−2πjβ2z

exp

(
−jt2

2β2z

))
dz. (41)

Substituting ĝk(z, t−kT ) = τ√
τ2−jβ2z

exp
(

(kT−t)2
2(jβ2z−τ2)

)
and

(29) in (41) with the assumption of a symbol rate operation
(i.e., t = 0), we obtain (14), i.e.,

C̃
SO, Term 2
m,n,k = g̃Term 2

m,n,k(z, s, t)
∣∣
t=0

. (42)

APPENDIX C
PROOF OF THEOREM 1

The solution of (2) in frequency-domain with the simpli-
fying assumptions l = m + n and p = k for Term 1 and
l = m+ n and p = −k for Term 2 can be represented as:

Ũ2,x/y(L,w) =
64

81
γ2

L∫
0

Fx/y(z, w)

× exp

(
−j w

2β2z

2

)
exp(−αz)dz, (43)
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where

Fx/y(z, w) = 2F Term 1
x/y (z, w) + F Term 2

x/y (z, w). (44)

By substituting (28) and (38) in (44), we get:

Fx/y(z, w) = P
5/2
0

∑
m

∑
n

∑
k2

(
am,x/ya

∗
m+n,x/y + am,y/xa

∗
m+n,y/x

)
an,x/y

×
(
ak,x/ya

∗
k,x/y + ak,y/xa

∗
k,y/x

)
∞∫
−∞

g̃1,0(z, s, t)ĝk(z, t− kT )× ĝ∗k(z, t− kT ) exp (−jwt) dt

+
(
a∗m,x/yam+n,x/y + a∗m,y/xam+n,y/x

)
a∗n,x/y

×
(
ak,x/ya−k,x/y + ak,y/xa−k,y/x

) ∞∫
−∞

g̃∗1,0(z, s, t)

×ĝk(z, t− kT )ĝk(z, t− kT ) exp (−jwt) dt

 . (45)

Next, substituting (45) in (43) and substituting the expres-
sions for the FO ghost pulse and the linearly dispersed pulses,
we obtain the SO distortion field as:

Ũ2,x/y(L,w) =
64

81
γ2P

5/2
0

∑
m

∑
n

∑
k[

2
(
am,x/ya

∗
m+n,x/y + am,y/xa

∗
m+n,y/x

)
an,x/y

×
(
ak,x/ya

∗
k,x/y + ak,y/xa

∗
k,y/x

)
G̃Term 1
m,n,k(z, s, w)

+
(
a∗m,x/yam+n,x/y + a∗m,y/xam+n,y/x

)
a∗n,x/y

×
(
ak,x/ya−k,x/y + ak,y/xa−k,y/x

)
G̃Term 2
m,n,k(z, s, w)

]
, (46)

where G̃Term 1
m,n,k(z, s, w) and G̃Term 2

m,n,k(z, s, w) are given by (31)
and (40), respectively.

By calculating the inverse Fourier transform of (46) and
assuming the symbol rate operation (i.e., t = 0), we obtain
the SO nonlinear distortion field for the Pol-Mux system in
time-domain as:

ũ2,x/y(L, t) =

(
64

81
γ2P

5/2
0

∑
m

∑
n

∑
k[

2
(
am,x/ya

∗
m+n,x/y +am,y/xa

∗
m+n,y/x

)
an,x/y(

ak,x/ya
∗
k,x/y + ak,y/xa

∗
k,y/x

)
g̃Term 1
m,n,k(z, s, t)

+
(
a∗m,x/yam+n,x/y + a∗m,y/xam+n,y/x

)
a∗n,x/y

×
(
ak,x/ya−k,x/y + ak,y/xa−k,y/x

)
g̃Term 2
m,n,k(z, s, t)

])∣∣∣∣∣
t=0

.

(47)

After some simplifications, we obtain (23).
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