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Abstract: Boolean propositional satisfiability (SAT) problem is one of the most widely studied
NP-complete problems and plays an outstanding role in many domains. Membrane computing
is a branch of natural computing which has been proven to solve NP problems in polynomial
time with a parallel compute mode. This paper proposes a new algorithm for SAT problem which
combines the traditional membrane computing algorithm of SAT problem with a classic simplification
rule, the splitting rule, which can divide a clause set into two axisymmetric subsets, deal with
them respectively and simultaneously, and obtain the solution of the original clause set with the
symmetry of their solutions. The new algorithm is shown to be able to reduce the space complexity by
distributing clauses with the splitting rule repeatedly, and also reduce both time and space complexity
by executing one-literal rule and pure-literal rule as many times as possible.
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1. Introduction

Boolean satisfiability problem, namely, SAT problem, is one of the most important problems of
theoretical computer science. Its range of application includes multiple significance areas [1], such as
mathematics, artificial intelligence, data mining, circuit design, etc., and it has attracted much attention
since it was put forward. Since the 1960s, research has produced several models of SAT solvers,
such as conflict driven clause learning [2], CDCL for short, in which its basic structure comes from
the DPLL(Davis-Putnam-Logemann-Loveland) algorithm [3]. This model has made improvements to
conflict analysis, clause learning, and some other aspects and has occupied the main battleground of
SAT competitions. Representative solvers of this model include Mini-SAT [4], Lingeling [5], Chaff [6],
and Glucose [7] all of which have received many achievements in international SAT competitions. With
improvements of the SAT algorithm performance, many application examples can obtain satisfactory
solutions in a given period of time, and SAT solvers are gradually being applied to more and more
actual fields, such as circuit design verification [8,9] and cryptanalysis [10], however, as the first problem
which has been proven as NP problem [11], the primary research direction of SAT problem is to reduce
its computational complexity. Meanwhile, NP problems can transfer between each other in polynomial
time, and therefore previous, current and future studies are also efforts to solve NP problems.

In recently decades, the research of SAT solvers has been mainly focused on three directions,
complete solution algorithm, incomplete solution algorithm, and parallel solution algorithm.
The membrane computing algorithm of SAT problems, which we are going to discuss, is a kind
of parallel algorithm, which can solve any SAT problem in polynomial time but with exponential
space occupation [12]. Among the three types of SAT solvers mentioned above, the complete solution
algorithm is certain to obtain the solution of a given SAT problem, but it takes an unacceptable
amount of time. By comparison, the incomplete solution algorithm uses less time, but it is not able
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to ensure results. The disadvantages of these two algorithms can both be solved by the algorithm of
membrane computing.

Membrane computing is a branch of natural computing, which was proposed in 1998 by professor
Gheorghe Păun when he visited Finland [13]. Five years later, the Institute of Scientific Information
listed it in the fast-growing frontier area of computational science. The membrane computing
system, also known as P system, is a kind of distributed parallel computational model, with good
computational performance by referring to and simulating the way cells, tissues, organs, or other
biological structures process chemical substances, which has been provn to have the computing
power of Turing machine, and a computing power to solve NP problems in polynomial time [14–18].
This characteristic has attracted significant attention from the scientific community who have promoted
its development tremendously. To be specific, because membrane computation is performed at the
cellular level, biochemical reactions and material transfer at the cellular level can be understood as
computational processes. The cell membrane divides the cell into compartments, each compartment
synchronously processes multiple resets of objects (corresponding to evolving compounds in the
cell), the objects permeate through membranes, the membranes are dissolved, split, and produced,
and their penetrability can also be changed. A series of transfers of a system is called a computation,
and the calculation result is defined as the objects that appear in a particular membrane (also known
as the output membrane) at termination. As a typical type of NP problem, solving SAT problems
with membrane computing has a long history [19–23]. Although membrane computing has strong
computational power, it is predicted that there is still an upper limit, and therefore developing a new
model of membrane computing for solving SAT problems that simplifies algorithms’ structure is also
important, which is the aim of this paper.

In this paper, the traditional membrane computing algorithm of SAT problems is combined
with a typical classic simplification rule, the splitting rule, to improve the algorithm’s structure, from
assigning values to all clauses in a membrane to dividing the given clauses into two parts, and deals
with them respectively and simultaneously. Because this divide operation can be executed as many
times as needed, it significantly reduces the space occupation of the algorithm. Meanwhile, it is
obvious that a clause set dealt by the splitting rule must not include tautologies, one literals, and pure
literals, and therefore it is indispensable to operate the following three simplified rules beforehand:
tautology rule, one-literal rule, and pure-literal rule. The tautology rule needs only to be done once,
at the beginning, and it does not make contributions to the simplification of the algorithm, however,
the one-literal rule and pure-literal rule are two rules which can be used repeatedly and intensively,
they can decrease the number of membrane divisions during the assignment process of the clause set,
and can assign more than one value at one time, and therefore both space and time complexity of the
algorithm is reduced.

The remainder of the paper is organized as follows: Section 2 provides some preliminary and
review about P system and the traditional membrane computing algorithm for SAT, Section 3 proposes
a new algorithm for SAT problem by combining the traditional membrane computing algorithm for
SAT with splitting rule, in Section 4 an example is provided to illustrate the proposed algorithm,
and the paper is concluded in Section 5.

2. Preliminaries

This section provides some preliminaries to be used in the present work.

2.1. Membrane Computing System (P System)

A membrane computing system [24] can be defined as
∏

= (O,µ,wi,Ri,i0), of which:
O is a finite and nonempty alphabet of objects;
µ is a membrane structure made up by several membranes;
wi denotes the character string inside the nth membrane in the initial state;
Ri is a finite set of the evolutionary rules which are carried out inside the ith membrane;
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i0 is the membrane which stores the final result.

2.2. Tradtional Membrane Computing Algorithm of SAT Problems

Using membrane computing system to solve SAT problem has decades of history. Figure 1 shows
the process diagram of the traditional membrane computing algorithm of SAT problems [24].

Figure 1. Process diagram of the traditional membrane computing algorithm of SAT problems, of
which m is the number of given clauses, n is the number of the given clause set’s atoms.

From the above diagram, shown in Figure 1, it is clear that this algorithm consists of the following
two steps, except the input and output steps:

Step 1: Copy the, then, 2nd membranes by cell division n times and allocate literals xi and yi,
respectively to the two copies of one membrane during the ith copy (ir[1, n]∩,), its time complexity is
O(1), and its once execution makes the space occupation of this algorithm twice as much as before.

Step 2: Assign the allocated literals in each 2nd membrane as true to the given clause set, its time
complexity is O(1), and since it is completed with sending each allocated literal into all membrane Mis
which is inside the same 2nd membrane, the largest increase in space occupation of this algorithm
during its execution process is O(2nn(m− 1)), and the space occupation of this algorithm will decrease
to O(2n) after its execution process.
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To sum up, the time complexity of this algorithm is O(n), and since the biggest initial space
occupation of this algorithm is O(nm), the space complexity of this algorithm is O(2nnm) +

O(2nn(m− 1)) = O(2nnm).

2.3. Simplification Rules

Splitting Rule [25]: Assume a clause set S can be arranged into a form such
as [(A1 ∨ L)∧ · · · ∧ (An ∨ L)] ∧ [(B1 ∨¬L)∧ · · · ∧ (Bm ∨¬L)] ∧ R, of which Ai(i = 1, 2, · · · , n) and
bi(i = 1, 2, · · · , m), R are clauses which exclude literals L and ¬L, then S is unsatisfiable if and
only if A1 ∧ · · · ∧An ∧ R and B1 ∧ · · · ∧ Bm ∧ R are unsatisfiable, A is an assignment which satisfies
A1 ∧ · · · ∧An ∧ R (B1 ∧ · · · ∧ Bm ∧R) if and only if A∪ {¬L = 1}(A∪ {L = 1}) is an assignment which
satisfies S.

Tautology Rule [25]: Delete tautologies, namely the clauses which include complemental pairs of
literals, from a clause set does not change if an assignment satisfies this clause set.

One-literal Rule [25]: Assume a clause set S includes a clause which only contains one literal
L, then L is a single literal of S. Since one-literal clause can only be satisfied by assignments which
assign its single literal as true, if S is empty after deleting the clauses contain S’s single literals from
S, S can be satisfied by any assignments which assign its single literals as true, or else S is satisfied
by assignment A after deleting the clauses contain S’s single literals from it and deleting literal the
negations of S’s single literals from all of its clauses if and only if S is satisfied by an assignment
A∪

{
S’s sin gle literals are all true

}
.

Pure-literal Rule [25]: Assume a clause set S includes literal L but excludes literal ¬L, then L is
a pure literal of S. Since the clause which contains pure literals can only be satisfied by assignments
which assign the pure literals contained by it as true, if S is empty after deleting the clauses contain S’s
pure literals from S, S can be satisfied by any assignments which assign its pure literals as true, or else
S is satisfied by assignment A after deleting the clauses contain S’s pure literals from it if and only if S
is satisfied by an assignment A∪

{
S’s pure literals are all true

}
.

3. Proposed New Algorithm

3.1. Definition

This part is the elements’ definitions of the algorithm’s membrane computing structure as follows:

(1) O: {xi, yi, denote the literals of given clause set;

h, denotes the number of literals in a clause;

ti, fi, are the literal symbols of xi and yi;

g, denotes the number of literals’ symbols;

ai, denote the atoms of the given formulae;

Ti, Fi, are objects in the literal list of 2nd membrane;

ci, ei, are the transitive symbols of ti and fi;

pi, denote the transport sign of membrane Mi;

z, denotes the number of membranes Mi(i = 1, . . . , m);

ti, fi, denote the assignments of literals xi and yi;

λ, δ, are the melting symbol of objects and membrane;

Y, N, a, b, c, d, p, q, s, are aided symbols}.
(2) µ : the initial membrane structure is as Figure 2:
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Figure 2. Initial membrane structure of the algorithm.

where C j denote the jth clause in the given clause set,
∣∣∣C j

∣∣∣ represents the number of literals in
C j( j = 1, . . . , m).

In addition, there’s a literal list inside 2nd membrane which is empty in the initial status, it is used
to store the literals which would be assigned as true in all assignments which satisfy the inside clause
set of 2nd membrane and the given clause set.

(3) w1 = λ;

w2 = p, ai (i = 1, . . . , n);

wMj = z, pj, h, xi, yi (i = 1, . . . , n, j = 1, . . . , m).

(4) Ri(i = 1, 2, Mj) specific as described in the part of algorithm, and they are made up by three types
of evolutionary rules:

(a) [a]i → [b]i[c]i , copy the membrane i into two copies when it or them contains object a, turn
a in two copies into b and c respectively;

(b) a→ b|c or ¬c , turn a into b when c is existent or inexistent;

(c) a→ b
(
c, inj or out

)
, turn a into b and c, meanwhile, send c into the membrane i or out the

membrane which a was inside.

(5) i0 = 1.

3.2. Compiling

As stated in the Introduction, the new membrane computing algorithm, proposed in this paper,
is specifically based on the splitting rule and uses tautology rule, one-literal rule and pure-literal rule,
and therefore for clarity this section compiles the simplified rules with membrane computing language,
first, as follows:

(1) Tautology rule:

This rule is executed on the only 2nd membrane at the beginning of the calculation.

Pick tautologies from the clauses inside membrane Mis, and mark the membrane Mis which
contain tautologies with a delete symbol, r1 = (zpjh

2xiyi → s, 1
)

;

Delete all contents inside the membrane Mis which are marked with a delete symbol:
r2 = (hxi → λ

∣∣∣s, 1)
r3 = (hyi → λ

∣∣∣s, 1
) ;

Delete the membrane Mis which are marked with a delete symbol, r4 = (s→ δ, 1).
(2) One-literal rule:

This rule is executed on each 2nd membrane.

Pick the one-literal clauses from the clauses inside membrane Mis, mark the literals of these selected
one-literal clauses with one-literal symbols ti, fi, send these symbols outside their original membranes.
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r1 = (zpjxi → xi

(
zpjgti, out

)∣∣∣∣¬h2, 4
)

r2 = (zpjyi → yi

(
zpjgfi, out

)∣∣∣∣¬h2, 4
)

r3 =
(
zpj, out, 5

) ;

Then, judge if its inside clause set has complementary pairs of single literals with the one-literal
symbols, if so, this clause set is unsatisfiable, so what we need to do is to delete this 2nd membrane
and all its contents:

r4 =
(
g2tifi → N

∣∣∣¬N, 1
)
;

r5 =
(
zpj →

(
szpj, inMj

)∣∣∣∣N, 1
)

r6 = (hxi → λ
∣∣∣s, 1)

r7 = (hyi → λ
∣∣∣s, 1

)
r8 = (s→ δ, 1)
r9 = (ai → λ|N, 1)
r10 =

(
gti → λ

∣∣∣N, 1
)

r11 =
(
gfi → λ

∣∣∣N, 1
)

r12 = (p→ λ
∣∣∣N, 1)

r13 = (N→ δ, 1)

If not, since all assignments which satisfy the inside clause set assign these single literals as true,
add these one-literal symbols into the literal list of this 2nd membrane:

r14 = (g2ti
2
→ gti, 2

)
r15 = (g2fi

2
→ gfi, 2

)
r16 = (gaiti → btiTi

∣∣∣¬ti
2, 2

)
r17 = (gaifi → bfiFi

∣∣∣¬fi
2, 2

)
then package these one-literal symbols and copy this symbol pack into as many copies as membrane
Mis inside this 2nd membrane, then send each copy into one membrane Mi:

r18 = (bp→ bq[ ]3
∣∣∣¬g, 1)

r19 = (bti → (ti, in3), 1)
r20 = (bfi,→ (fi, in3), 1)

r21 =
(
[ ]3zpj → [ ]3([ δ ]3zpj, inMj)

∣∣∣∣¬b, 1
)

r22 = (q→ p(s, in3)
∣∣∣¬z, 1)

r23 = (ti → λ
∣∣∣s, 1)

r24 = (fi → λ
∣∣∣s, 1)

;

Next execute following three operations respectively on the membrane Mis which contain different
types of clauses:

For the membrane Mi whose inside clause includes some of these single literals, the inside clause
can be satisfied by any assignment which assigns these single literals as true, so what needs to be done
is delete it and all of its contents:

r25 = (tizpjhxi → s, 1
)

r26 = (fizpjhyi → s, 1
) ;

For the membrane Mi whose inside clause excludes these single literals, but includes some of
their negations, the inside clause can be satisfied by an assignment which assigns these single literals
as true if and only if it can still be satisfied by this assignment after deleting the negations of these
single literals from it, so delete these negations:
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r27 = (tihyi → λ, 2
)

r28 = (fihxi → λ, 2)
, for the same reason, if the inside clause is built only by the negations of

single literals, the clause set inside this 2nd membrane is unsatisfiable, delete this membrane and all of
its contents:

r29 = (zpj → δ(N, out)
∣∣∣∣¬h, 3

)
r30 = (Ti → λ|N, 1)
r31 = (Fi → λ|N, 1)
r32 = (ti → λ

∣∣∣h, 3
r33 = (fi → λ

∣∣∣h, 3

, or else delete the left one-literal symbols in the end:

For the membrane Mi whose inside clause excludes single literals and their negations, we can just
delete the one-literal symbols from this membrane Mi.

(3) Pure-literal rule:

This rule is executed on each 2nd membrane as follows:

Send all literals in the inside clause set outside from their original membranes:

r1 = (
[
zpj

]
Mi
→ [ ]Mi

[c]Mi

(
zpj, out

)
, 1

)
r2 = (h→ λ

∣∣∣c, 1)
r3 = (c→ δ, 1)

, then delete the repetitive literals:
r4 = (x2

i → xi, 1
)

r5 = (y2
i → yi, 1

) ,

finally delete the complemental pairs of literals:
r6 =

(
xi → gti

∣∣∣¬x2
i , 1

)
r7 =

(
yi → gfi

∣∣∣¬y2
i , 1

)
r8 =

(
g2tifi → λ, 1

)
At this point, the left literals are all pure literals of the inside clause set, since all assignments

which satisfy the inside clause set assign these pure literals as true, what needs to be done is that

add the symbols of them into the literal list of this 2nd membrane:
r9 = (gaiti → btiTi, 2

)
r10 = (gaifi → bfiFi, 2

) , then

package these one-literal symbols and copy these symbols into as many copies as membrane Mis inside
this 2nd membrane, then send each copy into one membrane Mi:

r11 = (bp→ bq[ ]3
∣∣∣¬g, 1)

r12 = (bti → (ti, in3), 1)
r13 = (bfi → (fi, in3), 1)

r14 =
(
[ ]3zpj → [ ]3([ δ ]3zpj, inMj)

∣∣∣∣¬b, 1
)

r15 = (q→ p(s, in3)
∣∣∣¬z, 1)

r16 = (hxi → λ
∣∣∣s, 1)

r17 = (hyi → λ
∣∣∣s, 1

)
r18 = (ti → λ

∣∣∣s, 1)
r19 = (fi → λ

∣∣∣s, 1)
r20 = (s→ δ, 1)

Next execute following three operations, respectively, on the membrane Mis which contain
different types of clauses:

For the membrane Mi whose inside clause includes some of these pure literals, the inside clause
can be satisfied by any assignment which assigns these pure literals as true, therefore what needs to be

done is delete it and all of its contents:
r21 =

(
tizpjhxi → s, 1

)
r22 = (fizpjhyi → s, 1

) ;

For the membrane Mi whose inside clause excludes single literals and their negations, we can just

delete the one-literal symbols from this membrane Mi:
r23 = (ti → λ, 2)
r24 = (fi → λ, 2)

.
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(4) Splitting rule:

This rule is executed on each 2nd membrane whose inside clause set has no one-literal clause and
pure-literal clause.

Splitting rule is supposed to be distributing the clauses in the given clause set into two parts
which excludes a specified literal and its negation separately, and putting them into two new second
membranes, but this operation is too complicated for the membrane computing program language,
so we transpose the order of processes:

First, we copy the 2nd membrane and its contents into two copies and allocate a specified literal
and its negation to two copies, respectively, the allocated literal of each copy is the literal which its
negation and the clauses contain it should be excluded by the inside clause set of this copy, since all
assignments which satisfy the inside clause set of one of two copies and the inside clause of the original
2nd membrane assign the allocated literal of this copy as true, add the symbol of the allocated literal

into the literal list of each copy:
r1 =

(
zpj, out, 4

)
r2 =

([
aizj

]
2
→

[
tj
iTi

]
2

[
fj
iFi

]
2

∣∣∣∣ j ∈ Q+, 1
) , then send the literal symbols

into each membrane Mi which inside two copies respectively:
r3 = (tipj→(tizpj, inMj), 1;
r4 = (fipj→(fizpj, inMj), 1
Next execute following three operations, respectively, on the membrane Mis which contain

different types of clause.
For the membrane Mi whose inside clause includes the allocated literal of the 2nd membrane

which contains it, this inside clause should be excluded by the inside clause set of this 2nd membrane,

so what needs to be done is delete it and all of its contents:

r5 = (tizpjhxi → s, 1
)

r6 = (fizpjhyi → s, 1
)

r7 = (hxi → λ
∣∣∣s, 1)

r8 = (hyi → λ
∣∣∣s, 1

)
r9 = (s→ δ, 1)

;

For the membrane Mi whose inside clause includes the negation of the allocated literal of the
2nd membrane which contains it, this negation should be excluded by the inside clause, so delete this

negation:
r10 = (tihyi → λ, 2

)
r11 = (fihxi → λ, 2)

;

For the membrane Mi whose inside clause excludes the allocated literal of the 2nd membrane
which contains this membrane Mi and its negation, we can just delete the literal symbol from this

membrane Mi:
r12 = (ti → λ, 3)
r13 = (fi → λ, 3)

;

Since these four program modules have a lot of overlap, we can concordance them to realize the
algorithm of this paper. The flowing chart of the new algorithm is shown in Figure 3.
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Figure 3. Flow chart of the algorithm.

From the above diagram (Figure 3), it is clear that this algorithm is completed by repeat executing
the following two steps, in the ith (1th < n) repeat:

Step 1: Filtrate single literals and pure literals from the clause set in each 2nd membrane
simultaneously, its time complexity is O(1), the largest increase in space occupation of this algorithm
during its execution process is no more than O

(
2i−1(m + 1− i)(n + 1− i)

)
, and this increase will

decrease to no more than O
(
2i−1(n + 1− i)

)
after its execution process.
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Step 2: Execute one of the following three substeps on each then 2nd membrane simultaneously
based on the type of the 2nd membrane’s inside clause set:

For the 2nd membrane whose inside clause set has no single literals and pure literals, copy this 2nd
membrane into two copies and allocate an atom of this inside clause set and its negation, respectively,
to the two copies, then in each copy, delete the clauses which contains its allocated literal from its
inside clause set and the negation of its allocated literal from the clauses inside its inside clause set;

For the 2nd membrane whose inside clause set contains a complemental pair of single literals,
delete this 2nd membrane and its contents;

For the 2nd membrane whose inside clause set has single literals or pure literals and excludes any
complemental pair of single literals, assign these single literals and pure literals as true to its inside
clause set.

The time complexity of this step is O(1), and if the ith repeat is not the finial repeat, in the worst
case, namely, in the case that all 2nd membranes’ inside clause sets exclude single literals and pure
literals, the largest increase in space occupation of this algorithm during the execution process of
this step is no more than O

(
2i−1(m + 1− i)(n + 1− i)

)
+ O

(
2i(m− i)

)
, and the space occupation of this

algorithm will decrease to no more than O
(
2i(m− i)(n− i)

)
after its execution process; if not, all 2nd

membranes’ inside clause set has single literals or pure literals and excludes any complemental pair of
single literals, the largest increase in space occupation of this algorithm during the execution process of
this step is no more than O

(
2i−1(m + 1− i)

)
, and the space occupation of this algorithm will decrease

to 0 after its execution process.
Since the upper bound of this algorithm’s repeat time is Min(n,m), the time complexity of this

algorithm is O(Min(n, m)), the space complexity of this algorithm is:

Maxia[1,Min(n,m)]∩,(Max(O(2i−1(m + 1− i)(n + 1− i)) + O(2i−1(m + 1− i)(n + 1− i))
+O(2i(m− i))), O(2i−1(m + 1− i)(n + 1− i)) + O(2i−1(m + 1− i))(n + 1− i)),
O(2i−1(m + 1− i)(n + 1− i)) + O(2i−1(n + 1− i)) + O(2i−1(m + 1− i)))
= Maxia[1,Min(n,m)]∩,

(
O
(
2i(m− i)(n− i)

))
< O(2nnm).

It is clear that the new algorithm is more efficient than the traditional algorithm. To be noted,
the new algorithm’s computing complexity is worked out based on its worst case, which almost never
happens, such as assuming that no pure-literal and one-literal clause exist before the final repeat,
but the traditional algorithm’s computing complexity is worked out based on the general change of the
time and space which it occupies, and therefore, in practice, the difference between the two algorithm
will be much more significant.

In order to describe the difference between the new algorithm’s computing complexity and its
general time and space occupation, work out the three situations of the time and space occupation of
the step 2’s execution on a 2nd membrane in the ith repeat, of which the ith repeat is not the finial
repeat as follows:

If the 2nd membrane whose inside clause set has no single literals and pure literals, the time
complexity is O(1), the largest increase in space occupation of this 2nd membrane, during the execution
process, is no more than O((m + 1− i)(n + 1− i)) + O(2(m− i)), and the space occupation of this
2nd membrane will decrease to no more than O(2(m− i)(n− i)) after the execution process, the new
algorithm’s computing complexity is worked out based on this situation;

If the 2nd membrane whose inside clause set contains a complemental pair of single literals, the
time complexity is O(1), the largest increase in space occupation of this 2nd membrane during the
execution process is 0, and the space occupation of this 2nd membrane will decrease to 0 after the
execution process;

If the 2nd membrane whose inside clause set has single literals or pure literals and excludes
any complemental pair of single literals, the time complexity is O(1), the largest increase in space
occupation of this 2nd membrane during the execution process is no more than O((m− i)(n + 1− i)),
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and the space occupation of this 2nd membrane will decrease to no more than O((m− i)(n− i))
after the execution process. In this situation, assume the inside clause set of this 2nd membrane
has k (k ≤ n + 1− i) single literals and pure literals, then k atoms of it have been assigned values
simultaneously by this step.

Since the upper bound of the new algorithm’s rest repeat time is no more than the biggest number
of unassigned atoms of the then 2nd membranes’ inside clause sets, the above step makes a contribution
to reducing the repeat time of the new algorithm, namely reducing the time complexity of the new
algorithm in the second and the third situations.

According to the above flow chart and program modules, we get the program of the
object algorithm:

RMi : r1 = (zpjh
2xiyi → s, 1

)
r2 = (tizpjhxi → s, 1

)
r3 = (fizpjhyi → s, 1

)
r4 = (hxi → λ

∣∣∣s, 1)
r5 = (hyi → λ

∣∣∣s, 1
)

r6 = (ti → λ
∣∣∣s, 1)

r7 = (fi → λ
∣∣∣s, 1)

r8 = (c→ λ|s, 1)
r9 = (s→ δ, 1)
r10 = (tihyi → λ, 2

)
r11 = (fihxi → λ, 2)
r12 = (ti → λ

∣∣∣h, 3)
r13 = (fi → λ

∣∣∣h, 3)

r14 = (zpj → δ(N, out)
∣∣∣∣¬h, 3

)
r15 = (h→ λ

∣∣∣c, 4)
r16 = (c→ δ|¬s, 4)

r17 = (xi → xi
(
gti, out

)∣∣∣∣¬h2, 5
)

r18 = (yi → yi
(
gfi, out

)∣∣∣∣¬h2, 5
)

R2 : r19 =
(
g2tifi → N

∣∣∣¬N, 1
)

r20 = (tipj →
(
tizpj, inMj

)∣∣∣∣¬z, 1
)

r21 = (fipj →
(
fizpj, inMj

)∣∣∣∣¬z, 1
)

r22 = (bp→ bq[ ]3
∣∣∣¬g, 1)

r23 = (bti → (ti, in3), 1)
r24 = (bfi → (fi, in3), 1)

r25 =
(
[ ]3zpj → [ ]3([ δ ]3zpj, inMj)

∣∣∣∣¬b, 1
)

r26 = (q→ p(s, in3)
∣∣∣¬z, 1)

r27 = (xi → ci|¬ci, 1)
r28 =

(
yi → ei

∣∣∣¬ei, 1
)

r29 = (xi → λ
∣∣∣ci, 1)

r30 = (yi → λ
∣∣∣ei, 1

)
r31 = (ciei → λ, 1)
r32 = (ci → gti

∣∣∣¬ei, 1
)

r33 = (ei → gfi

∣∣∣¬ci, 1
)

r34 = (zpj → (szpj, inMj)
∣∣∣∣N, 1

)
r35 = (ai → λ

∣∣∣N, 1)
r36 = (gti → λ

∣∣∣N, 1
)

r37 = (gfi → λ
∣∣∣N, 1

)
r38 = (p→ λ

∣∣∣N, 1)
r39 = (Ti → λ

∣∣∣N, 1)
r40 = (Fi → λ

∣∣∣N, 1)
r41 = (N→ δ, 1)
r42 = (ai → λ

∣∣∣Y, 1)
r43 = (Y→ δ, 1)
r44 = (gti → λ

∣∣∣Ti, 1
)

r45 = (gfi → λ
∣∣∣Fi, 1

)
r46 = (gaiti → btiTi

∣∣∣¬Ti, 2
)

r47 = (gaifi → bfiFi
∣∣∣¬Fi, 2

)
r48 = (

[
zpj

]
Mi
→ [ ]Mi

[c]Mi

(
zpj, out

)
, 2

)
r49 =

([
aizj

]
2
→

[
tj
iTi

]
2

[
fj
iFi

]
2

∣∣∣∣∣ j ∈ Q+, 3
)

r50 = (p→ q(d, out), 4)

R1 : r51 = (d→ a|¬a, 1)
r52 = (d→ λ|a, 1)
r53 =

(
[p]2 → [N]2

∣∣∣Y, 1
)

r54 =
(
[q]2 → [N]2

∣∣∣Y, 1
)

r55 =
(
a[q]2 → Y[Y]2, 2

)
r56 = (Y→ λ, 3)

The following is the explanation:
First, delete the membrane Mis which contain tautologies and their content with a delete symbol

s: r1 = (zpjh
2xiyi → s

∣∣∣∣¬s, 1
)
, this is how delete symbol s works in this algorithm:

r4 = (hxi → λ
∣∣∣s, 1)

r5 = (hyi → λ
∣∣∣s, 1

)
r6 = (ti → λ

∣∣∣s, 1)
r7 = (fi → λ

∣∣∣s, 1)
r8 = (c→ λ|s, 1)
r9 = (s→ δ, 1)

;
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Then filtrate single literals and pure literals from the clause set in each 2nd membrane
respectively. First, execute the 22th rule to copy each membrane Mi and its contents into two

copies, r48 = (
[
zpj

]
Mi
→ [ ]Mi

[c]Mi

(
zpj, out

)
, 2

)
, then for copy with mark c, release all literals of its

inside clause to the 2nd membrane which contains it and generate literal symbols of all pure literals of

this 2nd membrane’s inside clause set with these released literals:

r15 = (h→ λ
∣∣∣c, 4)

r16 = (c→ δ|¬s, 4)
r27 = (xi → ci|¬ci, 1)
r28 =

(
yi → ei

∣∣∣¬ei, 1
)

r29 = (xi → λ
∣∣∣ci, 1)

r30 = (yi → λ
∣∣∣ei, 1

)
r31 = (ciei → λ, 1)
r32 = (ci → gti

∣∣∣¬ei, 1
)

r33 = (ei → gfi

∣∣∣¬ci, 1
)

, and for

the copy without mark c, if its inside clause is a one-literal clause, mark the literal of this inside clause

with one-literal symbol and send the one-literal symbol outside:
r17 = (xi → xi

(
gti, out

)∣∣∣∣¬h2, 5
)

r18 = (yi → yi

(
gfi, out

)∣∣∣∣¬h2, 5
) ;

Now execute following three operations on the 2nd membranes which contain different types of
clause sets respectively:

(a) For the 2nd membrane whose inside clause set has no single literals and pure literals, pick one of the
atoms of the inside clause set which the splitting rules of it hasn’t been executed in the calculation
process, and copy this 2nd membrane and its contents into two copies, allocate the picked literal
and its negation to two copies, then add the picked atom and its negation into the literal list

of two copies respectively, r49 =
([

aizj
]
2
→

[
tj
iTi

]
2

[
fj
iFi

]
2

∣∣∣∣ j ∈ Q+, 3
)
, then for each membrane Mi

inside these two copies, judge the type of its inside clause:
r20 = (tipj →

(
tizpj, inMj

)∣∣∣∣¬z, 1
)

r21 = (fipj →
(
fizpj, inMj

)∣∣∣∣¬z, 1
) ,

if its inside clause contains the allocated literal of the 2nd membrane which contains it, delete
the membrane Mi and its contents, if its inside clauses exclude the allocated literal of the 2nd
membrane which contains this membranes Mi, but contain its negation, delete this negation:

r2 = (tizpjhxi → s, 1
)

r3 = (fizpjhyi → s, 1
)

r10 = (tihyi → λ, 2
)

r11 = (fihxi → λ, 2)
r12 = (ti → λ

∣∣∣h, 3)
r13 = (fi → λ

∣∣∣h, 3)

;

(b) For the 2nd membrane whose inside clause set contains a complemental pair of single literals,

delete this 2nd membrane and its contents with a unsatisfiable symbol N: r19 =
(
g2tifi → N

∣∣∣¬N, 1
)
,

this is how unsatisfiable symbol N works in this algorithm:

r34 =
(
zpj →

(
szpj, inMj

)∣∣∣∣N, 1
)

r35 = (ai → λ|N, 1)
r36 =

(
gti → λ

∣∣∣N, 1
)

r37 =
(
gfi → λ

∣∣∣N, 1
)

r38 = (p→ λ
∣∣∣N, 1)

r39 = (Ti → λ|N, 1)
r40 = (Fi → λ|N, 1)
r41 = (N→ δ, 1)

,

if all 2nd membranes have been deleted, there’s no rule can be executed, the membrane structure
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has only the membrane which stores the final result left and this membrane is empty at this point,
it means that S is unsatisfiable;

(c) For the 2nd membrane whose inside clause set has single literals or pure literals and excludes any
complemental pair of single literals, first add these single literals and pure literals into the literal

list of this 2nd membrane:

r44 = (gti → λ
∣∣∣Ti, 1

)
r45 = (gfi → λ

∣∣∣Fi, 1
)

r46 = (gaiti → btiTi
∣∣∣¬Ti, 2

)
r47 = (gaifi → bfiFi

∣∣∣¬Fi, 2
) , then for each membrane Mi inside this

2nd membrane, judge the type of its inside clause:

r22 = (bp→ bq[ ]3
∣∣∣¬g, 1)

r23 = (bti → (ti, in3), 1)
r24 = (bfi → (fi, in3), 1)

r25 =
(
[ ]3zpj → [ ]3([ δ ]3zpj, inMj)

∣∣∣∣¬b, 1
)

r26 = (q→ p(s, in3)
∣∣∣¬z, 1)

,

if its inside clause contains one of these single literals and pure literals, delete the membrane

Mi and its contents:
r2 = (tizp jhxi → s, 1

)
r3 = ( fizp jhyi → s, 1

) , or else delete the negations of single literals

from the clauses inside the left membrane Mis:

r10 = (tihyi → λ, 2
)

r11 = (fihxi → λ, 2)
r12 = (ti → λ

∣∣∣h, 3)
r13 = (fi → λ

∣∣∣h, 3)

, if there’s a membrane

Mi whose inside clause is empty at this point, delete this 2nd membrane and its contents:

r14 = (zpj → δ(N, out)
∣∣∣∣¬h, 3

)
.

If there’s a 2nd membrane in which all membrane Mis have been deleted, S is satisfied by S’s
assignments which assign all literals in the literal list of this 2nd membrane as true, so what needs to
be done is that pick a 2nd membrane like this, and delete all 2nd membrane and their contents except

the literal list of the picked 2nd membrane

r50 = (p→ q(d, out), 4)
r51 = (d→ a|¬a, 1)
r52 = (d→ λ|a, 1)
r53 =

(
[p]2 → [N]2

∣∣∣Y, 1
)

r54 =
(
[q]2 → [N]2

∣∣∣Y, 1
)

r55 =
(
a[q]2 → Y[Y]2, 2

)
r56 = (Y→ λ, 3)
r42 = (ai → λ|Y, 1)
r43 = (Y→ δ, 1)

.

4. Example Illustration

In this section, we use an example to show how to solve a SAT problem with this new algorithm,
we use clause set

{
x1, y1x2y3, x3x4, y1y3y4

}
:

Figure 4 show the initial membrane structure of the given clause set.

Figure 4. The initial membrane structure of the given clause set.

Delete tautologies from the given clause set (r1):
{
x1, y1x2y3, x3x4, y1y3y4

}
includes no tautology.
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Filtrate single literals and pure literals from the clause set in each 2nd membrane respectively:

1. Copy each membrane Mi and its contents into two copies (r48), Figure 5 shows the membrane
structure of this time.

Figure 5. The membrane structure during calculation (1).

2. Then for copy with mark c, release all literals of its inside clause to the 2nd membrane which
contains it and generate literal symbols of all pure literals of this 2nd membrane’s inside clause
set with these released literals

(
r(15,16,27–33)

)
, and for the copy without mark c, if its inside clause

is a one-literal clause, mark the literal of this inside clause with one-literal symbol and send the
one-literal symbol outside

(
r(17,18)

)
, Figure 6 shows the membrane structure of this time.

Figure 6. The membrane structure during calculation (2).

Execute the following operations on the 2nd membrane bases on the type of its inside clause set:

1. Add these single literals and pure literals into the literal list of this 2nd membrane
(
r(44–47)

)
,

Figure 7 shows the membrane structure of this time.

Figure 7. The membrane structure during calculation (3).

2. Then for each membrane Mi inside this 2nd membrane, judge the type of its inside clause
(
r(22–26)

)
,

Figure 8 shows the membrane structure of this time.

Figure 8. The membrane structure during calculation (4).



Symmetry 2019, 11, 1412 15 of 21

At this time, two of the S’s atoms have been assigned, the membrane structures of the tradition
algorithm which reach the same assign effect is as Figure 9.

Figure 9. The membrane structure during calculation (5).

3. Next execute following three operations respectively on the membrane Mis which contain different

types of clauses
(
r(2,3,10–13)

)
, Figure 10 shows the membrane structure of this time.

Figure 10. The membrane structure during calculation (6).

Filtrate single literals and pure literals from the clause set in each 2nd membrane respectively:

1. Copy each membrane Mi and its contents into two copies (r48), Figure 11 shows the membrane
structure of this time.

Figure 11. The membrane structure during calculation (7).

2. Then for the copy with mark c, release all literals of its inside clause to the 2nd membrane which
contains it and generate literal symbols of all pure literals of this 2nd membrane’s inside clause
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set with these released literals
(
r(15,16,27–33)

)
, and for the copy without mark c, if its inside clause

is a one-literal clause, mark the literal of this inside clause with one-literal symbol and send the
one-literal symbol outside

(
r(17,18)

)
, Figure 12 shows the membrane structure of this time.

Figure 12. The membrane structure during calculation (8).

Execute the following operations on the 2nd membrane bases on the type of its inside clause set:

1. Pick one of the atoms of the inside clause set which the splitting rules of it hasn’t been executed in
the calculation process, and copy this 2nd membrane and its contents into two copies, allocate the
picked literal and its negation to two copies, then add the picked atom and its negation into the
literal list of two copies respectively (r49), Figure 13 shows the membrane structure of this time.

Figure 13. The membrane structure during calculation (9).

At this time, two of the S’s atoms have been assigned, the membrane structures of the tradition
algorithm which reach the same assign effect is as Figure 14.

2. Then for each membrane Mi inside these two copies, judge the type of its inside clause
(
r(20,21)

)
,

Figure 15 shows the membrane structure of this time.
3. Next execute following three operations respectively on the membrane Mis which contain different

types of clauses
(
r(2,3,10–13)

)
, Figure 16 shows the membrane structure of this time.
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Figure 14. The membrane structure during calculation (10).

Figure 15. The membrane structure during calculation (11).



Symmetry 2019, 11, 1412 18 of 21

Figure 16. The membrane structure during calculation (12).

Filtrate single literals and pure literals from the clause set in each 2nd membrane respectively:

1. Copy each membrane Mi and its contents into two copies (r48), Figure 17 shows the membrane
structure of this time.

Figure 17. The membrane structure during calculation (13).

2. Then for the copy with mark c, release all literals of its inside clause to the 2nd membrane which
contains it and generate literal symbols of all pure literals of this 2nd membrane’s inside clause
set with these released literals

(
r(15,16,27–33)

)
, and for the copy without mark c, if its inside clause

is a one-literal clause, mark the literal of this inside clause with one-literal symbol and send the
one-literal symbol outside

(
r(17,18)

)
, Figure 18 shows the membrane structure of this time.

Figure 18. The membrane structure during calculation (14).

Execute the following operations on the 2nd membrane bases on the type of its inside clause set:

1. Add these single literals and pure literals into the literal list of this 2nd membrane
(
r(44–47)

)
, then

for each membrane Mi inside this 2nd membrane, judge the type of its inside clause
(
r(22–26)

)
,

Figure 19 shows the membrane structure of this time.
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Figure 19. The membrane structure during calculation (15).

At this time, two of the S’s atoms have been assigned, the membrane structures of the tradition
algorithm which reach the same assign effect is as Figure 20.

Figure 20. The membrane structure during calculation (16).

2. Next execute following three operations respectively on the membrane Mis which contain different

types of clauses
(
r(2,3,10–13)

)
, Figure 21 shows the membrane structure of this time.

Figure 21. The membrane structure during calculation (17).
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3. Pick a 2nd membrane like this, and delete all 2nd membrane and their contents except the

literal list of the picked 2nd membrane
(
r(50–56,42,43)

)
, Figure 22 shows the membrane structure of

this time.

Figure 22. The membrane structure during calculation (18).

So we get the calculation result: the given clause set
{
x1, y1x2y3, x3x4, y1y3y4

}
is satisfied by

assignment
{
x1 = 1; x2 = 1; y3 = 1; x4 = 1

}
.

5. Conclusions

Membrane computing is a type of natural computing, similar to the neural algorithm which has
been widely used, however, unlike the neural algorithm, membrane computing is still not a reality,
because its infinite parallel computing mode cannot be realized under current technical conditions,
Nevertheless, calculating it as the way living bodies deal with data is desired, and therefore work
towards it has never stopped as it is still just a fantasy. Even if it is realized and it works as well as our
body cells, simplifying the algorithms based on it is still necessary because of their unimaginable but
still limited computational power and the predictable crazy growing scale and needs of data treatment
in the future. The work in this paper combines the membrane computing system with the traditional
SAT problem simplification rules and obtains a fairly good effect, which has certain promotion and
reference significance for the research field of membrane computing model and SAT problem solving
model, and therefore has research value for related research fields. Meanwhile, this research indicates
a feasible direction to improve membrane computing systems for different practice problems, which
is to optimize the theoretical basis of this problem based on the character of P system. In addition,
with respect to this research, in order to realize the membrane computing system, the strategy could
be changed. Because membrane computing is a compute process which imitates the way cells work,
the use of cells to simulate the compute process of SAT problems altogether should be considered.
Although this has not been considered in this paper because of a lack of biological knowledge, it is a
method that should be undertaken.
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