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Abstract 
Activities of daily living (ADL) systems have been playing an important role in assessing and monitoring 
the quality of life of elderly people for many years. With the recent advancement and integration of 
internet of things (IoT) devices within the ADL systems, the number and quality of services offered has 
increased significantly. One of these vital services is abnormal behaviour detection based on the data 
collected from IoT devices within smart homes. However, the IoT data collected could have enormous 
privacy implications on smart home users if the data is not handled properly. We address this issue by 
analysing a generic ADL system for abnormal behaviour detection, including its entities and their 
interactions. We highlight three major privacy issues: (i) identity privacy, (ii) data confidentiality, and 
(iii) metadata data leakage. These issues are particularly relevant to ADL systems and we propose 
potential countermeasures to tackle them. Finally, we sketch a privacy-preserving version of an 
example ADL system to demonstrate the effectiveness of our proposed countermeasures, before 
suggesting future research directions.

Introduction 
Activities of daily living (ADL) refer to daily self-
care activities of people such as feeding, bathing, 
dressing, grooming and cleaning. A person's 
(in)ability to perform ADL is often seen as a sign 
of their well-being [1]. This is particularly the case 
with elderly citizens or people with disabilities. 
Analysing various ADL of people is a promising 
approach for monitoring their well-being and 
general health status. Such analyses could help to 
detect unusual activities (abnormal behaviour) 
that could be an indicator of a progressive health 
issue taking place (e.g., dementia, osteoporosis, 
arthritis) or an occurrence of a hazardous 
incident (e.g., fall, burn, cut, food or smoke 
intoxication). In the latter case, acting timely 
could be of paramount importance for limiting 
the impact of such life-changing or even life-
threatening incidents. 

With technological advances on the internet of 
things (IoT) domain, smart environments (e.g., 
smart home) populated with a diverse set of IoT 
devices, rich on sensors, are becoming an integral 
part of our daily life, thus making the monitoring 
of ADL of people possible [2]. IoT devices can be 
placed within the environment and appliances of 
interest, hence generating valuable data that can 
be used in the detection and monitoring of ADL. 
Usually, such data is collected (via wireless 
connection) by a local node (gateway) and sent to 
a third-party service provider for data analysis. 

The results are then sent back to authorised users 
(e.g., the monitored users themselves or their 
close relatives). Existing solutions typically rely on 
cloud environments to perform the data analysis. 

However, data collected from IoT devices could 
be very privacy-invasive as one, by analysing the 
data, can reconstruct all the activities performed 
by the users in the smart environment [3]. For 
example, one could infer exactly when a user is 
cooking, taking a bath, entering/exiting the smart 
environment, etc., which is extremely privacy-
invasive. Existing solutions do not consider users' 
privacy as their system model rely on a central 
entity that collects, and has access to, all the IoT 
data generated within the smart environment. 

Hence, privacy-enhancing solutions are needed 
for monitoring and analysing ADL; solutions 
where central entities do not have access to all 
the raw IoT data, but only to a modified version 
of the data (e.g., masked, encrypted), which is 
still useful for ADL monitoring, while at the same 
time does not pose privacy risk to users.  

The contributions of this article are threefold:  
- It analyses a generic system for monitoring 

and detecting ADL to highlight three major 
privacy issues in such systems: (i) identity 
privacy, (ii) data confidentiality, and (iii) 
metadata data leakage. 

- It suggests countermeasures that can be 
applied to address these privacy issues.  



- It shows how privacy-enhancing techniques 
can be applied to a state-of-the-art ADL 
solution to demonstrate that detecting 
abnormal behaviour in ADL can be achieved 
in a privacy-preserving manner. 

The remaining part of this article is organised as 
follows. We present the related work in the area 
of ADL before analysing a generic system model 
of a typical ADL monitoring system. We discuss 
the privacy issues in such systems and suggest 
countermeasures to address them. Finally, we 
present a use-case of a privacy-preserving ADL 
system and suggest future research directions.  

Activity of Daily Living Analysis 
IoT sensor data collected in smart environments 
have already been used for activity recognition in 
ADL to detect and predict abnormal behaviour. 
For example, the model presented in [4] collects 
IoT sensor data from house appliances, generates 
sensor activity patterns and then classifies these 
patterns as regular and irregular, thus predicting 
the behaviour of the elderly occupants of the 
house. The model proposed in [5] collects data 
from home sensors (e.g., movement and door 
entry sensors) and analyses these data using 
neural networks to predict abnormal behaviour 
of elderly occupants suffering from dementia. 

A probabilistic spatio-temporal model is used in 
[6]. The model collects data from motion, door 
and pressure sensors to build the ‘normal’ daily 
behaviour of occupants. It then classifies as 
‘abnormal’ any behaviour that is considerably 
different from the built ‘normal’ behaviour. Petri 
nets are utilised in [7] to model three ADL: 
preparing tea, coffee and pasta. The model flags 
up abnormal behaviour if any of these ADL is 
incomplete. A unified approach for detecting 
(ab)normal behaviour based on the analysis of 
ADL is proposed in [8]. 

A probabilistic approach based on cumulative 
distribution function for the temporal analysis of 
ADL is proposed in [9]. The authors demonstrate 
that their methodology could be an efficient and 
effective way to classify a certain ADL as normal 
or abnormal behaviour based on its duration. The 

same approach is applied also to analyse ADL 
with respect to step sequences [10].  

System Model and ADL Phases 
Below we present a generic system model for 
ADL analysis (see Figure 1), including the system 
entities and an overview of the main ADL phases. 

System model 
Users are the people interacting with the smart 
environment, and whose ADL we want to detect 
and analyse. They could be grouped in two 
categories: hosts and visitors. Hosts (e.g., people 
who live there) regularly interact with the smart 
environment. Visitors occasionally interact with 
the smart environment, for example, people who 
visit the occupants of the smart environment.  

Sensors are the sources of the IoT data collected 
and analysed for the purpose of ADL analyses. 
They can sense various types of (physiological) 
data and make this data available for analysis. 
There are two types of sensors: environmental 
and wearable. The former (cameras, locks, TVs, 
contact/dense sensors) are embedded to the 
environment (i.e., attached to various objects: 
door, kettle, mug), hence they are (relatively) 
static. On the other hand, wearable sensors 
(wristband, smart watches, smart clothes, smart 
phones) are attached to users (i.e., to their body 
or clothes) and typically measure movements 
and physiological values. 

Gateway is a device located in the smart 
environment that collects IoT data from the 
sensors to (i) either analyse the data locally, or (ii) 
send the data to third-party service providers for 
further analyses. 

Service providers (SPs) are third-party companies 
that collect and analyse IoT data to extract 
valuable information for beneficiaries.  

Beneficiaries are the entities interested in the 
results of the IoT data analysis. One category of 
beneficiaries includes the users themselves and 
their close family members and relatives. Other 
categories include the medical staff (doctors, 
nurses), researchers and other third-party 
companies.   



 

Figure 1: A generic system model for analysing ADLs in smart environments.

ADL analyses phases 
Below we give an overview of the main phases of 
a typical ADL system (see Figure 2). 

System setup is the initial phase during which the 
system is set up, that is environmental IoT 
sensors are connected to the gateway (and to 
each other). This phase usually takes place only 
once. 

 

Figure 2: Overview of ADL phases in smart environments. 

User registration is the phase when users register 
with SPs and their wearables/smart devices are 
connected and paired with the system. This 
phase usually takes place only for the host users, 
and only once per user. Visitors may not register 
with the system; they are treated as guest users. 

Data collection is the phase when users interact 
with the smart environment while carrying on 
with their daily activities. During this phase, 
various sensor data are collected and sent to the 
gateway or the SPs for data analysis. 

Data analysis is the phase when the collected 
sensor data are analysed to identify any ADL, and 
then extract useful information such as detection 
of abnormal behaviour. 

Beneficiary notification is the phase when the 
outcome of the analysis is sent to beneficiaries. 
The outcome can be continuously fed to (some 
of) the beneficiaries or only specific results under 
specific conditions could be made available (e.g., 
only if abnormal behaviour has been detected).    

Privacy Issues in ADL Systems and 
Potential Countermeasures 
ADL systems could be beneficial for monitoring 
the well-being of (elderly) people to detect any 
abnormal behaviour and act on a timely manner. 
However, monitoring people at all times pose a 
serious threat to their privacy. We discuss several 
privacy issues that arise from the ADL analysis 
and propose potential countermeasures to 
address these issues. 

Identity privacy 
Identity privacy in the context of ADL systems 
relates to the protection of the identity of the 
users whose activities are being monitored. If the 
identity of the users is known to the SPs who have 
access to the IoT sensor data, the SPs can 
correlate the data (and any identified medical 
conditions) to specific users, which may not be 
strictly necessary. In addition, they could also 
share some of the findings with unauthorised 
third parties, which is illegal without explicit user 
consent. The findings might also be obtained by 
criminals if the SPs’ databases are breached.  



A potential solution to this threat is the use of 
pseudonyms instead of user identities, so that the 
link between the users’ data and identity is 
hidden. Frequent changes of these pseudonyms 
are recommended in order to reduce the risk of 
an external attacker linking the compromised IoT 
sensor data to a single user. Note that the use of 
pseudonyms is usually not sufficient, especially if 
there is a need to protect users' identity against 
malicious SPs. In such situations, the use of 
pseudonyms combined with group signatures is 
recommended. 

Group signatures allow a verifier (in this case SPs) 
to verify that a user belongs to a group of 
legitimate users without learning the identity of 
the user. However, the size of the group would 
result in implications with respect to the privacy 
protection of users. If a group contains only a 
single and/or few members, the SPs would be 
able to deanonymize the group members. 
Advanced cryptographic techniques such as 
anonymous credentials and zero-knowledge 
proofs could also be used. However, these 
techniques might not be suitable for resource-
constrained IoT devices.  

Another promising line of research is called 
frictionless (a.k.a. seamless or collaborative) 
authentication that allows users to authenticate 
themselves towards SPs by just using wearables 
with minimum human interaction [11-13]. The 
main idea behind frictionless authentication is to 
deploy multiple user devices (e.g., smartphone, 
smartwatch, wristband) and use them as multiple 
collaborating provers towards a verifier in a 
challenge-response protocol. The signing key of a 
user is split into shares and each user device 
stores a single share. The advantage of this type 
of authentication is that the signing key is never 
stored on a single device nor is reconstructed. 
Instead, the user devices use their shares of the 
key to generate shares of the signature, which 
are then combined to reconstruct the user 
signature on the challenge. 

To mitigate the threat of one or more user 
devices being lost or stolen, as well as to 
accommodate a dynamic set of wearables (a user 
may not always carry the same set of wearables), 
threshold cryptography could be used. Threshold 
cryptography protects a secret by sharing it 
amongst a number of entities in such a way that 

only a subset of minimal size, namely a threshold 
t (out of, say n, n > t), can recover the secret. No 
information about the secret can be learnt from t 
- 1 or less shares. This allows user authentication 
as long as at least t shares (i.e., user devices) are 
present. In case a new device is added, or existing 
devices are lost or damaged, the user signing key 
can be re-shared without being reconstructed. 

Furthermore, if some of the user devices do not 
have a sufficient size of secure storage, they can 
instead generate their respective share on the fly 
with the help of fuzzy extractors using biometric 
data of the user. Figure 3 shows an overview of 
such authentication protocols.  

 

Figure 3: Overview of frictionless authentication protocol. 

If users do not possess wearable devices, they 

can use their smart phones (which would hold a 

copy of their signing key) to authenticate 

themselves to the SPs (via the gateway). It is 

worth mentioning that the system would be able 

to authenticate only the host users who had been 

registered with the system beforehand. Visitors 

would be treated as guest users whose data 

could be gathered and analysed by comparing it 

to a global (average) user behaviour. If abnormal 

behaviour is detected, the system could then 

notify the host of the premise that there is an 

unusual behaviour occurring at their premises.  

Furthermore, inevitably, in some cases, some 

SPs, for example the ISP, will know the identity of 

the users. In these cases, it is important to apply 

the principle of separation of concerns, which 

advocates dividing the access privileges of SPs. In 

this particular case, if the ISP has access to user 

identities, it is important to block its access to 

users’ sensitive data such as IoT sensor data.   



Data confidentiality 
Data collected from smart environments contain 
user-specific information. If an unauthorised 
entity has access to these data, it can infer user 
sensitive information such as who does what at 
what time and how often. Such an access could 
be extremely privacy-intrusive; thus, information 
needs to be protected. As most smart 
environments use wireless networks to send 
data, protecting the confidentiality of data 
becomes of a paramount importance, especially 
in ADL, as the collected sensor data might be 
directly linkable to some medical conditions of 
users.    

The obvious countermeasure is the use of 
encryption. However, as IoT devices are usually 
resource-constrained, the use of lightweight 
encryption schemes designed for deployment at 
IoT devices is recommended. To prevent the 
intermediate nodes in the system (e.g., gateway) 
to be a potential point of leak, end-to-end 
encryption should be deployed. In such schemes, 
only the sender (i.e., IoT device) and the receiver 
(e.g., medical doctor) will have access to the data. 

Depending on the threat model used, end-to-end 
encryption may not be enough to protect users' 
privacy. For example, in some scenarios the SPs 
that analyse the sensor data might be seen as an 
adversary (an entity with malicious intentions or 
behaviour), hence even they should not have 
access to the raw IoT data. The obvious solution 
is to use local processing, that is ADL monitoring 
and abnormal behaviour detection takes place 
within the premises of the smart environment. In 
other words, the prediction models of the SPs run 
on local devices – data are collected, processed 
and analysed locally without leaving the physical 
boundaries of the smart environment. Assuming 
that access to the smart environment is restricted 
only to legitimate users, the IoT data would be 
protected. The role of the SP in this case would 
be simply to allow their prediction model to run 
on local devices and verify the correctness of the 
result produced by the model without having 
access to the IoT data, nor the results.  

However, some prediction models might need to 
be run on cloud environments. In such cases, the 
IoT data also need to be protected from cloud 
providers. The data should be modified such that 

secure computations can be performed on the 
data. There are two main cryptographic 
techniques that allow secure computation: 
homomorphic encryption and secure multiparty 
computation. Both techniques allow various 
operations to be performed on encrypted data. 
IoT devices could play the role of data providers 
that pre-process the data and then let the 
computational parties (i.e., SPs, gateway or cloud 
providers) run the prediction model on the 
encrypted data.   

Metadata data leakage 
Metadata is all the side data that provides extra 
information about the core (primary) data. For 
example, the time/frequency of data generation, 
communication and processing is metadata, and 
it may leak sensitive information about the core 
data. In other words, hiding the content of the 
data may not be enough to protect users' privacy. 
For example, even if (i) pseudonyms, instead of 
user identity, are used, and (ii) the IoT sensor 
data are encrypted, attackers might still learn 
private information about users just by analysing 
the communication patterns within the smart 
environment and with the SPs. A potential 
countermeasure against this leakage is the use of 
padding, so that the communication patterns 
have constant parameters. 

Privacy-enhancing ADL System 
We present an overview of a simple yet effective 
probabilistic approach for temporal analysis of 
ADL [9] and demonstrate how this approach can 
be realised in a privacy-preserving manner. 

Use-case: analysis of kitchen ADLs 
Let us take the probabilistic approach for 
temporal analysis of ADL proposed by Garcia-
Constantino et al. [9]. It aims to demonstrate that 
a relatively simple probabilistic approach could 
be very effective in classifying the execution of 
certain ADL as normal or abnormal behaviour 
based on the duration of these ADL. 

Kitchen ADL 
Two kitchen ADL (coffee and tea preparation) 
which a person can perform multiple times a day 
are investigated. In their experiment, volunteers 
perform any of these two ADL the way they 
prefer.



Table 1: Activities and Stages Duration (in seconds). 

Vol. ID Entering Preparation Drinking Exiting Total Time 

1 5 144 670 21 840 

2 44 110 481 21 656 

… … … … … … 

29 56 84 356 20 516 

30 8 170 759 4 941 

Average 35.07 150.27 577.47 16.27 779.08 

Standard Deviation 19.26 43.93 240.28 8.09 231.99 

 
The only restrictions placed on the volunteers are 

as follows: (i) each participant prepares only one 

drink, (ii) coffee/tea is drunk at the table, and (iii) 

the cup is placed in the sink. They also follow a 

concrete scenario: enter kitchen, prepare tea or 

coffee, sit at the table while drinking, leave the 

cup in the sink and exit the kitchen. For the ADL 

analysis, this scenario is broken down into four 

main stages: (i) enter kitchen, (ii) prepare a drink, 

(iii) drink, and (iv) exit kitchen. The aim is to 

associate the duration of each stage or of the 

entire ADL with potential abnormal behaviour. 

Abnormal behaviour is defined as a value (i.e., 

duration of stages) that deviates considerably 

from the average sample values and lies outside 

a predetermined value range that defines the 

spectrum of all users' behaviour. 

Volunteers selection 

For the experiments, 30 volunteers (16 males and 
14 females) are recruited, the youngest and 
oldest being 22 and 43 years old, respectively. 
Two of them (one male and one female) are 
known to have a chronic medical condition. The 
experiments are conducted in the smart kitchen 
lab of the Smart Environments Research Group 
(SERG)1 at Ulster University (see layout in Figure 
4). Data from three types of sensors (contact, 
thermal and accelerometer) attached to the 
objects of interest (doors, cups, cupboards, 
tea/coffee/sugar/milk containers, refrigerator, 
worktop, table and sink) are collected by a sensor 
data platform called SensorCentral [14]. The 
contact sensors are represented in Figure 4 as 
rectangles. The colour codes in the legend 
indicate the objects to which these sensors are 
attached.  

                                                           
1https://www.ulster.ac.uk/research/institutes/comp
uter-science/groups/smart-environments 

The IoT sensor data are collected, pre-processed 
and analysed. The average and standard 
deviation of the durations are calculated to 
define the average time of execution per stage 
and the range under which a behaviour can be 
considered as normal for each stage and activity. 
The range given by the average value and the 
standard deviation denotes the durations that 
correspond to normal behaviour. Then, when the 
durations of the stages of each user's ADL activity 
are compared to this range, it was detected that 
on average the durations of the ADL of two 
volunteers fall outside the set range for normal 
behaviour - exactly the number of volunteers 
who have chronic medical conditions. 

 

Figure 4: Smart kitchen layout at SERG. 

Privacy-preserving Analysis of Kitchen 
ADL 
Although the approach proposed in [9] accurately 
detects abnormal behaviour by analysing two 



kitchen ADL, it uses a central entity, the 
SensorCentral platform, that has access to all the 
users' data. We propose ways to realise the same 
approach achieving the same level of accuracy in 
a more privacy-preserving manner, by applying 
some of the countermeasures discussed earlier. 

Use multiple ADL session-specific 
pseudonyms per user 
To address the user identity privacy issue, 
multiple session-specific pseudonyms per user 
should be used. The real identity should be used 
only when the user registers with the SP, and 
user-specific credentials are issued. To protect 
the user’s privacy further, this identity can be 
kept local and only a static pseudonym can be 
shared with the SP. The SP then will know a 
specific user only by this static pseudonym, but 
never by the real identity. When users perform a 
specific ADL, they will need to authenticate. 
However, this authentication takes place within 
the smart environment, between the users and 
the gateway (details to follow). 

For any communication between the user and 
the SP, the user employs an ADL session-specific 
pseudonym, so that the SP cannot link two 
sessions of the same user, and cannot determine 
whether any given two sessions have been 
completed by the same user. The link between 
the real identity and the session pseudonym 
should be revealed only to the authorised 
beneficiaries. In other words, even if the SP's 
analysis determines that the user's behaviour is 
abnormal, the SP should still not know the real 
identity of the user. If such detection happens, 
the SP should only reveal the session-specific 
pseudonym of the user to the beneficiaries. The 
beneficiaries then could use this session-specific 
pseudonym to identify the real identity of the 
user by communicating directly with the smart 
environment.  

Use of group signatures 
As mentioned above, each user should always 
authenticate to the system before the start of any 
ADL. This is necessary to link the outcome of the 
ADL analysis to that specific user. However, to 
protect users' identity privacy, a group signature 
scheme should be used when authenticating. 
Group signature schemes allow a member of the 
group (i.e., a user) to prove to the verifier (i.e., 

the SP) that she is a valid member of the group 
without revealing her real identity. Therefore, 
every time a user performs an ADL session, the 
IoT sensor data related to this session will be 
processed and analysed by the SP, as it comes 
with a proof that it belongs to a legitimate user, 
but without revealing the real identity of the 
user; a session-specific pseudonym is used 
instead. In addition, to enhance usability and 
convenience, the user could utilise the IoT sensor 
data coming from her wearables to perform the 
authentication in a frictionless way [13].    

Use lightweight encryption schemes 
To provide data confidentiality, all the 
communication between the IoT sensors and the 
gateway should be encrypted. Given that, most 
IoT sensors are resource-constrained devices, the 
encryption scheme used should be lightweight, 
specifically designed for use in the IoT domain.     

Use local computation 
To protect IoT sensor data from being leaked to 
the SP, all the data should be analysed locally, 
whenever this is feasible. In the approach 
proposed in [9], the operations are relatively 
simple consisting of (i) determining the durations 
of the kitchen ADL stages, (ii) calculating the 
average duration and standard deviation of these 
stages, thus determining the range of durations 
that define a normal behaviour, and (iii) checking 
whether the durations of the ADL stages of each 
user falls within the defined range. These 
computations are lightweight and could be 
performed at a local device that has more 
resources than a typical IoT device (e.g., the 
gateway or another user-owned trusted device). 
In other words, the IoT sensor data are processed 
locally; they never leave the physical borders of 
the smart environment. Note that this local 
device could recalculate and update the average 
ADL stage duration as well as standard deviation 
after each ADL session. Ideally, this should be 
done on a per user basis, so that the approach 
proposed can provide more accurate results. In 
addition, the system should be set such that it 
notifies the beneficiaries (and maybe the SP) only 
if abnormal user behaviour is detected. This way, 
as long as the user ADL are classified as expected, 
the SP will not know who has performed the ADL, 
at what time and for how long, hence further 
enhancing the privacy protection of users. 



It is worth noting, however, that processing the 
data locally is only possible if the computations 
required for the data analysis are relatively 
simple (as in the approach proposed in [9]) or a 
device with relatively powerful computational 
capabilities (such as server or desktop PC) is 
available locally within the premises of the user.   

In case the operations in the analysis stage are 
not possible to be performed locally due to the 
limited computation capabilities available, these 
operations can be outsourced to the SP's servers 
without revealing any IoT sensor data. This is 
possible due to the powerful properties of 
homomorphic encryption, as demonstrated by 
Preuveneers et al. [15], and secure multiparty 
computation schemes that allow computations 
to be performed on encrypted data. These 
techniques could also be deployed when using 
relatively simple machine learning techniques.  

Use padding for constant communication 
patterns 
To protect against metadata data leakage, the 
ADL system could be set such that it generates 
constant communication patterns. For example, 
the IoT sensors could be set to transmit their data 
at certain intervals of time, regardless if they 
have new measurements or not. This way, an 
eavesdropper will not be able to determine if the 
observed communication is due to ADL or 
redundant data. Note that, although these 
constant-time communication patterns provide 
extra protection for users' privacy, they come 
with additional overheads. 

Another approach would be the IoT sensors to 
store all their data for a certain period of time 
(e.g., one day) and then send them in batches. 
This approach could be more efficient. However, 
it adds delays in the ADL system, which might 
have fatal consequences when acting timely is of 
paramount importance.      

In summary, a combination of techniques (i.e., 
session-specific pseudonyms, group signatures, 
lightweight encryption scheme, local processing 
and padding) allows a design of a privacy-
preserving system for analysis of ADLs. 

Future research directions 
We highlight some of the remaining challenges 
and possible future research directions. 

Practical seamless authentication: Although 
frictionless authentication has seen some recent 
advancements, they still lack high accuracy and 
precision. Further research is needed to improve 
the process in terms of the false positive and 
negative rates. To be widely deployed, such 
authentication schemes should be more reliable.  

Efficient secure computation: Techniques such as 
homomorphic encryption and secure multiparty 
computation are already, to a certain degree, 
practical and deployed in real-world applications. 
However, deploying them on resource-
constrained IoT devices is still not possible.  
Further research is needed to design techniques 
targeted for deployment on IoT devices.  

Artificial intelligence (AI) and Machine learning 
(ML) on encrypted data: AI has been deployed in 
almost every aspect of our lives as it can boost 
significant improvements in systems. ADL are no 
exception. Many ADL systems use AI/ML models 
at their core. As pointed out earlier, the data used 
in these systems are privacy-invasive. Hence, we 
need to develop practical and reliable AI/ML 
models that operate on encrypted data. There 
are already developments in this area; however, 
these are still far away from being practical for 
deployment in IoT devices. 

Conclusions 
We analysed generic ADL systems for detecting 
abnormal behaviour and highlighted the lack of 
appropriate protection of users' privacy in such 
systems. More specifically, we identified three 
major privacy issues - identity privacy, data 
confidentiality and metadata data leakage - that 
are particularly relevant to the ADL systems. To 
address these issues, we proposed several 
potential countermeasures. To show the 
effectiveness of our countermeasures, we took a 
simple yet effective ADL system and suggested 
concrete countermeasures to design a system 
that offers the same (or similar) level of accuracy 
in ADL analyses but with much higher level of 
user privacy protection.  

We also suggested three future research 
directions – practical frictionless authentication, 
efficient secure computation and AI/ML on 
encrypted data – that needs further exploration 
before the suggested countermeasure are fully 
practical and deployable in real-word scenarios.  
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