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ABSTRACT 
Student’s-t Processes were recently proposed as a probabilistic 

alternative to Gaussian Processes for Bayesian optimization. 

Student’s-t Processes are a generalization of Gaussian Processes, 

using an extra parameter 𝜈, which addresses Gaussian Processes’ 

weaknesses. Separately, recent work used prior knowledge of a 

black-box function’s global optimum 𝑓∗ , to create a new

acquisition function for Bayesian optimization called Expected 

Regret Minimization. Gaussian Processes were then combined 

with Expected Regret Minimization to outperform existing 

models for Bayesian optimization. No published work currently 

exists for Expected Regret Minimization with Student’s-t 

Processes. This research compares Expected Regret Minimization 

for Bayesian optimization, using Student’s-t Processes versus 

Gaussian Processes. Both models are applied to four problems 

popular in mathematical optimization. Our work enhances 

Bayesian optimization by showing superior training regret 

minimization for Expected Regret Minimization, using Student’s-t 

Processes versus Gaussian Processes. 

CCS Concepts 
• Theory of computation➝Theory and algorithms for

application domains➝Machine learning theory➝Kernel

methods➝Gaussian processes

Keywords 
Bayesian optimization; Supervised machine learning; Student’s-t 
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1. INTRODUCTION
Bayesian optimization [1-3] uses supervised machine learning [4] 

to efficiently seek the global optimum 𝐱∗ of a black-box, objective

function 𝑓(𝐱) within a design-space 𝜒 [2, 5]: 

𝐱∗ = argmax
𝐱∈𝜒

𝑓(𝐱) 

Bayesian optimization is widely-used in applications that have a 

computationally-expensive non-linear objective, such as 

hyperparameter tuning of machine learning algorithms [6, 7] and 

aerostructural engineering [8]. A probabilistic model is chosen to 

incorporate our prior beliefs about 𝑓 . Bayesian optimization 

updates the prior with targets from 𝑓(𝐱) , corresponding to 

locations 𝐱 , creating a posterior distribution that better 

approximates 𝑓(𝐱) [9]. 

There are two high-level modelling choices in Bayesian 

optimization - a probabilistic model and an acquisition function. 

The probabilistic model is also called the surrogate and uses a 

multivariate probability distribution. The surrogate models the 

joint-behaviour of the locations 𝐱 [9]. Gaussian Processes (GPs) 

use the Gaussian multivariate distribution and are usually chosen 

as the Bayesian optimization surrogate. GPs are simply defined, 

using mean and covariance functions [4, 5]. 

Bayesian optimization uses an acquisition function at each 

iteration to determine where to sample next in design space 𝜒. 

Acquisition functions can combine the surrogate posterior mean 

with the surrogate posterior standard deviation, to balance 

exploitation and exploration. A common acquisition function 

combined with GPs is Expected Improvement (EI), introduced 

first by [10] and popularized by [11]. 

In some optimization problems, we have prior knowledge [9, 12] 

of what the objective function value 𝑓∗ = 𝑓(𝐱∗) is at the global

optimum, even though we do not know where (𝐱∗) it occurs in

design space 𝜒. For example, for some classification problems we 

may know in advance that the optimum F-score is 1 [9] (optimal 

precision and recall), but we do not know what algorithm settings 

(e.g. hyperparameter values) give this performance. In this case, 

𝐱∗ represents the unknown algorithm settings and 𝑓∗ = 𝑓(𝐱∗) has

a value of 1 [9] (the known optimal F-score).

Jones investigated this setting almost 20 years ago [13], using so-

called "one-stage" approaches to locate 𝐱∗ based on the credibility

of the Gaussian Processes that pass through ( 𝐱∗ , 𝑓∗ ). More

recently, [9] utilised knowledge of the value 𝑓∗  to ensure the

Gaussian Process posterior mean did not exceed 𝑓∗ (in the case of

maximization problems) and derived two new acquisition 

functions, Confidence Bound Minimization (CBM) and Expected 

Regret Minimization (ERM) for use with a bounded GP surrogate. 

GP CBM and GP ERM both outperformed GP EI for Bayesian 

optimization [9].

GPs have two known weaknesses [8, 14, 15]. First, low 

probability is assigned to remote outlier locations in 𝐱, despite 

some applications, such as aerostructural engineering design 

problems [8], indicating otherwise. Secondly, the GP posterior 

covariance does not depend on the black-box function’s 𝑦𝑘-targets.

Instead, only the location of the training set 𝐱𝑘 ∈ 𝒟𝑁 determines

GP posterior covariance [8, 14, 15], where the training set of 

observations 𝒟𝑁  is { (𝐱1, 𝑦1), … , (𝐱𝑁 , 𝑦𝑁) } for 𝑘  = 1, … , 𝑁
iterations [8].
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One recently proposed solution to the weaknesses of GPs are 

Student-t Processes (STPs), which use the multivariate Student’s-t 

distribution [8, 14, 15]. STPs generalize the multivariate Gaussian 

distribution. STPs have an additional scalar parameter 𝜈 (𝜈 > 2), 

which defines the ‘degrees-of-freedom’ of the STP [8, 14, 15] and 

controls STP kurtosis, influencing the size of the tails and hence, 

the probability of outliers [16]. This addresses the first weakness 

of GPs, regarding low probability of outliers. Further, unlike the 

GP posterior, the STP posterior covariance does depend on the 

black-box function’s 𝑦𝑘-targets [8, 14, 15], which addresses the 

second weakness of GPs. 

Bayesian optimization with STPs is currently under-explored, 

with existing work mainly focused on the EI acquisition function 

using STPs [8, 14, 15]. Research on other acquisition functions 

using STPs is still embryonic, with no publications on the STP 

ERM acquisition function. Motivated by this knowledge gap, the 

main contributions of this paper are:   

(1) exploiting prior knowledge of a global optimum 𝑓∗  for  

       Bayesian optimization with Student’s-t Processes;  

(2)  a derivation of the Expected Regret Minimization acquisition         

       function for Student’s-t Processes;  

(3)  comparing Expected Regret Minimization, using Student’s-t           

       Processes versus Gaussian Processes, on four problems      

       popular in  mathematical optimization.  

2. BAYESIAN OPTIMIZATION 

SURROGATES 

2.1 Gaussian Processes 
A stochastic process 𝑓(𝐱) is Gaussian when observations jointly 

sampled have a multivariate Gaussian probability distribution [1, 

4]. GPs are simply defined by two functions. The first is the mean 

function, 𝑚(𝐱), defining the expected value of a location, 𝐱. The 

second is the kernel function 𝑘(𝐱, 𝐱′) , which calculates the 

covariance between two different locations 𝐱 and 𝐱′ [4]:  

 𝑓(𝐱) ∼ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) 

The GP posterior covariance Σ̂𝐺𝑃 is given by [4, 8]:  

 Σ̂𝐺𝑃 = 𝐾𝐱∗,𝐱∗ − 𝐾𝐱∗,𝐱𝐾𝐱,𝐱
−1𝐾𝐱,𝐱∗ 

where: 𝐾𝐱,𝐱 is the covariance defined by the kernel between the 

observed training locations, 𝐱𝑘 ∈ 𝒟𝑁 ; 𝐾𝐱∗,𝐱  is the covariance of 

the kernel between the unobserved prediction locations and 

observed training locations; and 𝐾𝐱∗,𝐱∗  is the covariance of the 

unobserved prediction locations [8]. As can be seen, the GP 

posterior covariance does not depend on the black-box function’s 

𝑦-targets [4]. 

2.2 Student’s-t Processes 
One recently proposed solution to these GP weaknesses is to 

instead use Student-t Processes (STPs), which uses the 

multivariate Student’s-t probability distribution [8, 14, 15]. Like 

GPs, STPs are simply defined by two functions and a third scalar 

parameter, 𝜈  (𝜈  > 2). As with GPs, the mean function, 𝑚(𝐱) , 

defines the expected value of a location, 𝐱. The kernel function 

𝑘(𝐱, 𝐱′) calculates the covariance between two different locations 

𝐱  and 𝐱′  [8]. A stochastic process 𝑓(𝐱)  is Student’s-t when 

observations jointly sampled have a multivariate Student’s-t 

probability distribution [8, 14, 15]:  

𝑓(𝐱) ∼ 𝒮𝒯𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′), 𝜈) 

The STP posterior covariance Σ̂𝑆𝑇𝑃 is given by [8]:  

Σ̂𝑆𝑇𝑃 =
𝜈 + 𝑦𝑇𝐾𝐱,𝐱

−1𝑦 − 2

𝜈 + |𝐷𝑁| − 2
(𝐾𝐱∗,𝐱∗ − 𝐾𝐱∗,𝐱𝐾𝐱,𝐱

−1𝐾𝐱,𝐱∗) 

where: 𝑦𝑇𝐾𝐱,𝐱
−1𝑦  is the squared Mahalanobis distance of the 

training locations 𝐱𝑘 using their covariance [8]. As can be seen, 

the STP posterior covariance depends on the black-box function’s 

𝑦-targets. 

Common kernels widely-used in Bayesian optimization include 

the squared-exponential covariance function [4] and the Matérn 

class of covariance functions e.g. Matérn 3/2 and Matérn 5/2 [4]. 

Both GPs and STPs can use these kernels. 

3. EXPLOITING PRIOR KNOWLEDGE OF 

A GLOBAL OPTIMUM 

3.1 ERM for Gaussian Processes 
With the optimum objective function value 𝑓∗  known, we can 

define the regret of evaluating 𝐱 as 𝑟(𝐱) = 𝑓∗ − 𝑓(𝐱). Therefore 

the goal of optimization is achieved if we minimize regret, i.e. 

find 𝐱∗  such that 𝑓(𝐱∗) = 𝑓∗ , so that 𝑟(𝐱∗) = 0 . Nguyen and 

Osborne combined prior knowledge about a global optimum 𝑓∗ 
with a GP surrogate, to enhance Bayesian optimization by 

minimizing the expected regret 𝔼[𝑟(𝐱)]  [9]. The surrogate’s 

posterior mean is now closer to the known 𝑓∗  and has low 

variance to ensure the surrogate’s estimation at the chosen 𝐱 is 

correct [9]. ERM selects 𝐱  to minimize expected regret - in 

contrast, EI chooses 𝐱 to balance exploration and exploitation [10, 

11]. The GP ERM acquisition function 𝛼𝐺𝑃
𝐸𝑅𝑀(𝐱) is [9]:  

𝛼𝐺𝑃
𝐸𝑅𝑀(𝐱) = �̂�𝐺𝑃(𝐱)𝜙(𝑧) + [𝑓∗ − �̂�𝐺𝑃(𝐱)]Φ(𝑧) 

where: �̂�𝐺𝑃(𝐱) and �̂�𝐺𝑃(𝐱) are the respective GP posterior mean 

and GP posterior standard deviation; 𝑧 =
𝑓∗−�̂�𝐺𝑃(𝐱)

�̂�𝐺𝑃(𝐱)
; with 𝜙(𝑧) and 

Φ(𝑧) the standard normal probability density function (PDF) and 

cumulative distribution function (CDF) respectively. The [𝑓∗ −
�̂�𝐺𝑃(𝐱)]Φ(𝑧) term is low for (i.e. favours) 𝐱  for which 𝑓(𝐱)  is 

predicted to be close to the known optimum 𝑓∗ , whilst the 

�̂�𝐺𝑃(𝐱)𝜙(𝑧)  term is low for (again, favours) 𝐱  for which the 

uncertainty in 𝑓(𝐱) is low. 

3.2 ERM for Student’s-t Processes 
Now consider the univariate Student’s-t PDF, with mean 𝜇 , 

standard deviation 𝜎  and degrees-of-freedom 𝜈 . For simplicity, 

define 𝐶 as [8]:  

      𝐶 =
Γ(

𝜈+1

2
)

√𝜈𝜋Γ(
𝜈

2
)
 

The Student’s-t PDF becomes [8]:  

𝒯(𝜇, 𝜎, 𝜈) =
𝐶

𝜎
× (1 +

[(𝑦 − 𝜇)/𝜎]2

𝜈
)

−
𝜈+1
2

−∞ < 𝑦 < +∞ 

Define the STP expected likelihood of regret as [9]:  

      ∫ 
∞

0

𝑟𝐶

�̂�𝑆𝑇𝑃(𝐱)
(1 +

[(𝑓∗−�̂�𝑆𝑇𝑃(𝐱)−𝑟(𝐱))/�̂�𝑆𝑇𝑃(𝐱)]
2

𝜈
)
−
𝜈+1

2
𝑑𝑟(𝐱)   (1) 
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The STP ERM acquisition function 𝛼𝑆𝑇𝑃
𝐸𝑅𝑀(𝐱) minimizes the STP 

expected regret in Eq. 1 and is [8, 9] 1:  

𝛼𝑆𝑇𝑃
𝐸𝑅𝑀(𝐱) = �̂�𝑆𝑇𝑃(𝐱) (

𝜈

𝜈 − 1
)(1 +

𝑧𝑠
2

𝜈
)𝜙𝑠(𝑧𝑠) + [𝑓∗ − �̂�𝑆𝑇𝑃(𝐱)]Φ𝑠(𝑧𝑠) 

where: �̂�𝑆𝑇𝑃(𝐱)  and �̂�𝑆𝑇𝑃(𝐱)  are respectively the STP posterior 

mean and STP posterior standard deviation; 𝑧𝑠 =
𝑓∗−�̂�𝑆𝑇𝑃(𝐱)

�̂�𝑆𝑇𝑃(𝐱)
; with 

𝜙𝑠(𝑧𝑠)  and Φ𝑠(𝑧𝑠)  the standard Student’s-t PDF and CDF 

respectively. As for GP ERM, the [𝑓∗ − �̂�𝑆𝑇𝑃(𝐱)]Φ𝑠(𝑧𝑠) term is 

low for 𝐱 for which 𝑓(𝐱) is predicted to be close to the known 

optimum 𝑓∗ , whilst the �̂�𝑆𝑇𝑃(𝐱) (
𝜈

𝜈−1
) (1 +

𝑧𝑠
2

𝜈
)𝜙𝑠(𝑧𝑠)  term 

favours 𝐱 for which the uncertainty in 𝑓(𝐱) is low. Algorithm 1 

defines Bayesian optimization [1-3], with the surrogate trained at 

each iteration using Algorithm 2.1 of [4].    

_____________________________________________________   
Algorithm 1: Bayesian optimization [1-3]: 

_____________________________________________________ 
(1) 𝐈𝐧𝐩𝐮𝐭: black − boxobjectivefunction𝑓(𝐱) , 𝑛  random- 

initializationiterations, 𝑁 post − initializationiterations.  
(2) Construct𝒟0 , a randomly-sampled, location-target  
pairs′set(𝐱i, yi), where 𝐱𝑖 ∈ 𝜒, 𝑦𝑖 = 𝑓(𝐱𝑖), 𝑖 = 1…𝑛 

(3)  𝐟𝐨𝐫: 𝑘 = 1,… ,𝑁 iterations do  
(4)  Trainsurrogateusing𝒟𝑘−1 [4]  
(5)  select: 𝐱𝑘 = argmin𝐱∈𝜒𝛼(𝐱)  
(6)  querytheobjective𝑓 at  𝐱𝑘  to obtain 𝑦𝑘   
(7)  augmentdata: 𝒟𝑘 = 𝒟𝑘−1 ∪ {(𝐱𝑘 , 𝑦𝑘)}  
(8)  𝐞𝐧𝐝𝐟𝐨𝐫  
(9)  𝐑𝐞𝐭𝐮𝐫𝐧: 𝐱𝑘 = argmax𝐱𝑘∈𝒟𝑘

𝑦𝑘   
_____________________________________________________ 

4. EXPERIMENTS 
Four Bayesian optimization experiments are programmed in the 

Python language, using the ‘pyGPGO’ package [17] 2. Each uses 

[4] to train a surrogate to estimate 𝑓(𝐱). The difference between a 

global optimum 𝑓∗ and the best 𝑦-sampled value, defines training 

regret at each iteration of Bayesian optimization. The natural 

logarithm of training regret is then calculated and used for 

comparison between different Bayesian optimization models [8]. 

Algorithm 1 can efficiently seek a global minimum (rather than a 

global maximum), by multiplying both 𝑓(𝐱) and 𝑓∗ by -1.  

 
Figure 1. Optimizing the Sine function using Algorithm 1: The 

surrogate is STP (𝝂 = 3) [18] and the kernel is squared-

exponential [4]. The model is randomly-initialized using 𝒏 = 2 

locations (top). The first location 𝐱 after random-initialization 

                                                                 

1 https://www.researchgate.net/publication/342201306_Appendix_

Derivation_of_Expected_Regret_Minimization_for_Bayesian_Op

timization_with_Student’s-t_Processes  

2 https://github.com/CPJClare/ERM-for-BayesOpt-with-STPs 

is shown (light-blue, vertical line), using two acquisition 

functions: STP (𝝂 = 3) EI (middle) versus STP (𝝂 = 3) ERM 

(bottom). This is the first iteration using lines 4-7 of Algorithm 

1. 

4.1 Synthetic Functions 
Three synthetic functions popular in mathematical optimization 

are chosen, namely SixHumpCamel, Rosenbrock and Hartmann3 

[12]. Each problem’s global optimum is sought by Bayesian 

optimization with ERM, using STPs versus GPs. Both use a 

squared-exponential covariance kernel [4]. 𝜈 = 5 [8] is chosen for 

each STP surrogate. Each model is randomly-initialized with 𝑛 = 

5 iterations [19] and 𝑁 = 100 post-initialization iterations [8] for 

each of the three synthetic functions. 

The results are shown in Figures 2, 3 and 4, with experiments 

independently repeated 20 times [9] for each problem. The natural 

logarithm of training regret (’ln(Regret)’) is shown on the 𝑦-axis, 

with total iterations N shown on the 𝐱 -axis. The interquartile 

range (IQR) for the natural logarithm of training regret is shaded 

red for GP ERM and blue for STP (𝜈 = 5) ERM. The red curved 

lines represent the median for GP ERM, while the blue curved 

lines show the median for STP (𝜈 = 5) ERM. The 25th and 75th 

percentiles are the upper and lower bounds of the red shaded area 

for GP ERM and blue shaded area for STP (𝜈 = 5) ERM. For each 

experiment, the training regret IQR for STP (𝜈 = 5) ERM is lower 

than the IQR for GP ERM. 

 

Figure 2. Comparing the SixHumpCamel function [12]: The 

training regret IQR for STP (𝝂 = 5) [8] ERM is lower than the 

IQR of GP ERM. 

 

Figure 3. Comparing the Rosenbrock function [12]: The 

training regret IQR for STP (𝝂 = 5) [8] ERM is lower than the 

IQR of GP ERM. 
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Figure 4. Comparing the Hartmann3 function [12]: The 

training regret IQR for STP (𝝂 = 5) [8] ERM is lower than the 

IQR of GP ERM. 

4.2 Application: XGBoost Hyperparameter 

Tuning 
Recently, [9] applied Bayesian optimization with GP ERM to 

hyperparameter tuning [9] for XGBoost classification [20]. The 

data was "Skin Segmentation" 3 . Our work enhances Bayesian 

optimization by comparing STP (𝜈 = 5) ERM versus GP ERM [9]. 

The data is split 85/15 between training and testing [18]. 3-fold 

cross-validation of the XGBoost classifier is averaged to measure 

𝑦 [9, 18]. We use a logistic objective function [9, 18], with 5 

random initializations [19] and 𝑁  = 30 post-initialization 

iterations [9, 18]. The surrogacy training results are shown in 

Figure 5 and independently repeated 20 times [9] for both STP (𝜈 

= 5) ERM and GP ERM. XGBoost classification hyperparameters 

chosen using STP ( 𝜈  = 5) ERM outperform GP ERM. The 

training regret IQR for STP (𝜈 = 5) ERM (blue shading) is lower 

than the IQR for GP ERM (red shading). 

 

Figure 5. Hyperparameter tuning for XGBoost classification 

[20] training accuracy [9, 18]. The training regret IQR for 

STP (𝝂 = 5) [8] ERM is lower than the IQR of GP ERM [9]. 

5. CONCLUSIONS 
This paper exploits prior knowledge of a global optimum 𝑓∗ [9] to 

derive the STP ERM acquisition function and compares Bayesian 

                                                                 

3 https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation 

optimization with ERM, using STPs (𝜈 = 5) versus GPs. Our work 

enhances Bayesian optimization by showing STP (𝜈 = 5) ERM 

outperforms GP ERM on three popular synthetic problems [12] 

and one real-world application [9] in mathematical optimization. 

Rather than choosing 𝜈 = 5 [8], future work will consider STP 

ERM with prior 𝜈 chosen using Kullback-Leibler divergence [21]. 
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