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Abstract

A novel memristive synapse model based on the HP memristor is proposed in

this paper, which can address the problem of synaptic weight infinite modula-

tions. The sliding threshold mechanism of the Bienenstock-Cooper-Munro rule

(BCM) is used to redefine the memristance (i.e. synaptic weight) adjustment

process of the memristive synapse model. Based on the proposed memristor-

based synapse and Leaky Integrate-and-Fire neurons, a spiking neural network

(SNN) hardware fragment is constructed, where spike trains with different fre-

quencies are used to evaluate the stability performance of the proposed SNN

hardware. Results show that compared to other approaches, the network is

stable under different stimuli due to the characteristics of the memristor-based

synapse model, and prove that the proposed synapse model is able to mimic

biological synaptic behaviour and the problem of synaptic weight infinite mod-

ulations is addressed.

Keywords: memristor, BCM theory, spiking neural networks, learning rule

1. Introduction

Bio-inspired solutions have shown great potential for solving real-world engi-

neering problems, and recent approaches have gained inspirations from biology

to improve the reliability of electronic systems [1, 2, 3]. Various approaches
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have been proposed, e.g. using a plastic spiking neural network (SNN) model

to develop a fault-resilient robotic controller [4], which has the potential to be

applied in robotic obstacle avoidance task. Moreover, such fault-resilient sys-

tem can maintain stability even under a synaptic fault density of up to 75%.

In the approach of [5], a bio-inspired online fault detection and self-correction

system for robotic spike-based controller is developed, where the self-detection

and self-correction strategy can detect faults and re-allocate resources to re-

store the controller’s functionality. Similarly, an astrocyte-neuron network for

self-repairing mobile robotic car is proposed in the approach of [6], which can

maintain the system stability through self-repair mechanism of the tripartite

synapse. In the approach of [7], the Lyapunov-Krasovskii functional and linear

matrix inequality framework are used to maintain the stability of the memristive

recurrent neural networks.

In biology, the brain can adapt to external environment changes [8], where

the learning mechanism plays a key role and the neural network can remain

relatively stable (i.e. homeostatic [9]). Particularly, the Hebbian learning rule

is a widely used neural network learning mechanism [10]. However, the con-

ventional Hebbian learning rule has the drawback of unlimited modulation of

synaptic weight, which can cause the system to collapse [10, 11]. Therefore,

this learning rule was modified by introducing a sliding threshold, i.e. the

Bienenstock-Cooper-Munro (BCM) learning rule, which can significantly im-

prove the network stability [11, 12, 13]. Inspired by this, in our previous work

[14], a self-repairing learning rule for spiking astrocyte-neuron networks is pro-

posed. It is a combination of the spike-timing-dependent plasticity (STDP) and

BCM learning rules, which can guarantee the system performance even with a

synaptic fault density approaching 80%. Additionally, memristor is becoming

popular in the biological neural networks. Due to that the characteristics of

nonvolatility, nonlinearity and scalability, memristor device provides an elegant

candidate for building the synapses and hardware neuromorphic systems, and

various mathematical models of the memristor devices have been proposed and

used for the synapse implementations [15, 16, 17, 18, 19]. However, due to the
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physical properties of the memristor, i.e. the synaptic weight changes when it

is stimulated under signals from the pre- or postsynaptic neurons, causing the

memristor-based synapse faces the prominent problem of weight infinite modu-

lation [11, 20, 21]. Considering that, if the synaptic weight of memristor-based

synapse is modulated too high (i.e. memristance is very low), it leads to an over-

stimulated network where the postsynaptic neurons collapse [11]. Conversely,

if the weight is too low (i.e. memristance is very high), the memristor-based

synapse is in an inactive state [11]. Obviously, the synaptic weights affect the

stability of the SNNs [22], but the traditional methods cannot well address the

problem of synaptic weight infinite modulation. For instance, in order to avoid

the synaptic weight modulation problem of the common oxide-based memris-

tor, a binary memristive device of HfO2-based oxide-based resistive memory

(OxRAM) with only two distinct resistive states of low and high is applied

in [20], where OxRAM cannot completely perform the behaviour of biological

synapse in analogue neuromorphic circuit. In addition, some other methods

make the weight modulation process of the memristive synaptic devices follow

the unsupervised learning rules, e.g. STDP rule, through the specific exter-

nal modification signal [21, 23]. Generating these external modified signals

increases the complexity of the hardware implementation of memristive neuro-

morphic system. Therefore, different from these approaches, this paper aims to

provide a more universal and simpler structure of SNN hardware for the memris-

tive neuromorphic systems, and to solve the problem of synaptic weight infinite

modulation of the common oxide-based memristive synapses. In summary, the

main contributions of this work are as follows:

(a). A novel memristor-based synapse model is proposed in this paper which

mimics the synaptic weight modulation process in the biological neural networks.

Different from the conventional memristive synapse model, the proposed model

uses the sliding threshold controlling mechanism to redefine the memristance

adjustment process, which enables memristive synapses to be regulated by neu-

ronal learning rules.

(b). The problem of synaptic weight infinite modulation in the conventional
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memristive synapse is addressed by using the BCM learning rule. Based on

the proposed memristor-based synapse model, a SNN hardware fragment is

developed to show the scalability, where the change in network synaptic weight

depends only on the activity level (i.e. spike rate) of the pre- and postsynaptic

neurons.

(c). Results demonstrate that the proposed SNN architecture can main-

tain stability under the stimuli of continuous input spike trains with different

frequencies, which is beneficial to build analogue hardware SNN circuits, and

provide an elegant method to explore the reliable neuromorphic systems.

The paper is organized as follows. Section 2 gives the definitions of the

learning rule and neuron model. Section 3 presents the memristor-based synapse

model and the proposed SNN hardware architecture. Section 4 provides the

experimental results under various input stimuli. Section 5 summarizes the

paper and discusses the future works.

2. Learning Rule and LIF Neuron Model

This section analyses the constraints of Hebbian learning rule and gives a

detailed definition of BCM learning rule and the LIF neuron model used in

this paper. The Hebbian learning rule is one of the earliest synaptic plasticity

learning rules, and it is described by:

τw
dwij

dt
= υiuj , (1)

where ωij is the synaptic weight between neuron i and j, υi and uj represent the

spike rates of the pre- and postsynaptic neurons, respectively. τw is a time con-

stant that controls the synaptic weight change rate. This conventional Hebbian

learning rule is unstable as there is no decay for the synaptic weight to decrease

[24]. When both pre- and postsynaptic neurons produce activity simultaneously,

the synaptic weight keeps increasing, see the red solid in Fig. 1(a).

The BCM theory introduces the sliding threshold of θm based on Hebbian

learning rule [12]. Its stability has been proved, namely metaplasticity [25, 26].
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Figure 1: SNN learning rule. (a). BCM and Hebbian learning rules. (b). BCM instantaneous

sliding threshold.

According to the BCM theory [27], the synaptic modification ṁ(t) at time t is

given by

ṁ(t) = ηφ(y(t), θm(t))x(t)− ǫm(t), (2)

where η is the constant learning rate, x and y represent the time-average of pre-

and postsynaptic neurons activity, respectively. In this paper, the time-average

of neuronal activity over the history is represented by the spike-count rate (i.e.

mean frequency), and it can be calculated by r = n/T , where r denotes the

spike-count rate, T is the running time and n is the number of spikes that

appear during a trial. θm is the sliding modification threshold, ǫm is the decay

term for synaptic efficacy. φ(·) is the nonlinear activation for y and θm, and its

definition on one-dimensional analysis is given by

φ(y(t), θm(t)) = y(t)(y(t)− θm(t)). (3)

In particular, the sliding threshold θm varies nonlinearly with the continuous

time-weighted average output y(t) over the history of the postsynaptic neurons.

Hence the θm is also a frequency, and y(t) is described by

y(t) =
1

τ

∫ t

−∞

e−(t−t′)/τ dt′, (4)

where τ is the exponential time window. A more stable form of θm was proposed

later in the approach of [28], and described as

θm(t) = yp =
1

τ

∫ t

−∞

yp(t′)e−(t−t′)/τ dt′, (5)
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where the degree of nonlinearity of θm is set by p, and p = 2 in this paper

[26, 27], and θm is the squared activity integrated over the exponential time

window τ which is given by

τ =

∫ t

−∞

e−(t−t′)/τ dt′. (6)

It should be noted that because of the initial dormancy of the synaptic rule

links, y = 0 if t < 0 [26]. Then eqn. (5) can be rewritten as

θm(t) =

∫ t

0
y2(t′)e−(t−t′)/τ dt′
∫ t

0
e−(t−t′)/τ dt′

, (7)

where the change speed of θm affects the activity of postsynaptic neurons. Par-

ticularly, if θm changes too slowly (i.e. τ is too large), it will cause large os-

cillations of postsynaptic neuron activity. θm will become large with rapid

fluctuations if it is updated instantaneously (i.e. τ is too small). Obviously, the

value of τ has a directly effect on the network stability. In order to improve

the network stability, the sensitivity analysis of the parameters η, τ and x is

necessary [29, 30]. Thus, according to the previous work of [27], for a given

learning rate η, the sensitivity description between these parameters of η, τ and

x can be described as ητx<1, where η is experimentally set to η = 10−5 in this

paper.

As shown in Fig. 1(a), the sliding threshold θm oscillates with the level

of postsynaptic activity, according to the BCM theory (see the green solid).

When the postsynaptic activity level is lower than θm, a long-term depression

(LTD) effect occurs on synaptic weights (∆W < 0). If it is greater than θm, a

long-term potentiation (LTP) effect happens, i.e. ∆W > 0. Due to the sliding

threshold and gentle BCM curve, the infinite modulation of the synaptic weight

is prevented and the postsynaptic neurons are finally in a dynamic stabile state.

In combination with the bipolar characteristic of the memristor-based synapse,

for the LTD the memristor-based synapse outputs a negative electrical signal,

which is contrary to the BCM theory. Therefore, the instantaneous sliding

threshold [27] is used in this paper to study the stability of the memristor-based

SNNs.
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One significant feature of the instantaneous sliding threshold is C = mx(t),

where C and x denote the activity levels of pre- and postsynaptic neurons,

respectively, m denotes the current synaptic weight. Note that C is different

from the time-average activity y(t) of the postsynaptic neuron in (3). The

calculation of θm is unchanged and the y(t) in (3) is replaced by C, so eqn. (3)

can be rewritten as

φ(C, θm(t)) = C(C − θm(t)). (8)

Fig. 1(b) shows the only stable point in this case is θm = C = 1. When

θm = 1, the neural network is dynamically stable. This is the key to the

instantaneous sliding threshold combined with the memristor-based synapse,

and the detailed mathematical analysis will be derived in section 3.

Additionally, the LIF neuron model is used in this work due to its simplistic

nature, which can be described by

τm
dv

dt
= −v(t) +Rm

n
∑

k=1

Iksyn(t), (9)

where τm is the neuronal membrane time constant, v is the membrane potential,

Rm is the membrane resistance, Iksyn(t) denotes the current injected by kth

synapse, and n represents the total number of synapses connected to the neuron.

The firing threshold voltage is 9 mv.

3. Memristor-based Synapse and MSNN Architecture

In this section, the characteristics of the memristor-based synapse model and

the SNN hardware architecture with two neurons are provided. The mathemat-

ical definition and characteristic simulations of the memristor are given firstly;

then the combination between memristor and BCM rule is analysed. Finally,

the proposed two-neuron network architecture is presented in detail.

3.1. Memristor model and its combination with BCM rule

The TiO2-based memristor is used as the synapse model in this paper due to

its nonvolatility, nonlinearity and dynamic properties [18]. This type of mem-

ristor model was first proposed by HP Labs in 2008 [31], and its corresponding
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physical model and symbol are shown in Fig. 2(a) and (b) respectively. It is

a two-end component with positive and negative (“+” and “-”), comprising a

doped region with TiO2−x (w) and an undoped region with TiO2 (D − w), re-

spectively. The doped region has high conductivity, while the undoped region

has high insulation, and the total thickness of the two regions is represented by

D as a fixed value of 10 nm. This memristor model is bipolar. If the input is

positive current, the thickness of the doped region increases, and the resistance

of the memristor decreases. If the input is negative current, the thickness of the

undoped region increases and the resistance increases.

Doped

TiO2-x

Undoped

TiO2

D

W D-W

+ - + -

(a) (b)

Figure 2: The T iO2-based memristor [31]. (a). Physical model. (b). Memristor symbol.

The T iO2-based memristor model is given by

Rmem(X(t)) = Roff −X(t)∆R, (10)

where Rmem is the total resistance of the memristor which equals to the sum

of the resistance of the doped and undoped regions, Roff and Ron denote the

maximum and minimum resistances corresponding to the case of w = 0 and w =

D, ∆R = Roff − Ron, and X(t) = w(t)/D. X(t) represents the ratio between

the doped region and the total thickness of the oxide layer. It is always used

as the weight of the memristor-based synapse [32], and X ∈ (0, 1). This TiO2-

based memristor is a charge-controlled model and its voltage can be described

by

v(t) = Rmem(X(t))i(t), (11)

where v(t) and i(t) are the voltage and current, respectively, and the change

rate of X(t) is given by

dX/dt = ki(t)f(X), (12)
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Figure 3: Simulation results of memristor characteristics. The corresponding parameters of

the memristor are: Roff = 20k, Ron = 100, Rinit = 10k, p = 2, D = 10nm. (a). The

memristor current varies with the input voltage. (b). The hysteresis curve of the memristor.

where k = µυRon/D
2, and µυ = 10−14m2s−1v−1 is the average ion mobility,

Ron is the minimum memristor resistance, and f(X) is the Joglekar’s window

function [33] which can be described by

f(X) = 1− (2X(t)− 1)2p, (13)

where p controls the degree of nonlinearity, and p = 2 in this paper.

Fig. 3 shows the simulation results of the memristor characteristics with an

input of v(t) = ±0.8 sin2(2πt). As can be seen by Fig. 3(a), when the input is a

positive voltage, the current changes with the voltage and gradually increases,

indicating that the memristor resistance is decreasing, and vice versa. Fig. 3(b)

shows one of the most significant features of the memristor with this input, i.e.

the hysteresis characteristics.

Memristive devices have been used for the SNN synapse implementation

based on a specific input signal [11, 23]. However, in addition to synapses,

neurons are another key component of biological neural networks. Therefore, a

SNN fragment of two neurons and its hardware architecture is proposed in this

work, where the BCM is used as the learning rule. Specifically, the instantaneous

sliding threshold of the BCM rule is employed to supervise the change process
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of the weight of the memristor-based synapse, so that eqn. (12) is rewritten as

dX

dt
=











ki(t)f(X)θ(|θ̇m|), if |θ̇m| 6= 0

0, if |θ̇m| = 0

, (14)

where θ(·) is a step function, |θ̇m| is the absolute value of the sliding threshold

increment. In particular, |θ̇m| is updated at every iteration, i.e θm changes

with the activity level of the postsynaptic neuron. Obviously, through eqn.

(14), an inherent relationship between the sliding threshold θm, the weight of

memristor-based synapse and the network output is set up.

According to the BCM theory, the sliding threshold changes quickly enough

to catch up the neuron activities, and the postsynaptic neurons keep the output

by adjusting the synaptic weight [27]. When the output approaches stable state,

the instantaneous sliding threshold θm converges to a constant value (i.e. one),

as shown in Fig. 1(b). This property of θm contributes to the stability of the

proposed SNN architecture. As can be seen from eqn. (14), when |θ̇m| 6= 0, the

output is not converged. At this time, θ(|θ̇m|) = 1, then eqn. (14) is equivalent

to eqn. (12), i.e. the convergence process of the memristor-based synapse is

not affected. When |θ̇m| = 0, the neural network is dynamically stable, and

the change rate of the memristor-based synaptic weight is 0, then the output

remains constant. Obviously, by combining the BCM sliding threshold with

the memristor model, the supervision of the synaptic weight change process is

realized.

In addition, the current synaptic efficacy m(t) in eqn. (2) is considered as

the input of the memristor-based synapse at time t, which is used to analyse

the regulation of the BCM mechanism on the memristive synapse. The current

i(t) of (14) can be calculated by

i(t) =
m(t)

Roff −X(t)∆R
, (15)

where ∆R = Roff − Ron. From eqn. (2), (14) and (15), it can be clearly seen

that the weight change of the memristor-based synapse depends on the activity

levels of the pre- and postsynaptic neurons, which is biologically plausible [34].

10



At the same time, the change of θm has a direct impact on the passing current

i(t) of the memristor-based synapse which is used to modulate the synaptic

weights (i.e. memristance). By adjusting the synaptic weights, the infinite

modulation of the synapse is prevented, and the stability of the network is

achieved.

3.2. Memristor-based SNN architecture

Fig. 4 illustrates the structure of the proposed SNN fragment. It contains

two LIF neurons (i.e. input neuronN1 and output neuronN2) and a memristor-

based synapse (excitatory). When the presynaptic neuron N1 is excited by

the injected current Iin, it outputs a spike train. The rate of the spike train

is the input to the synapse, which is denoted by x in (2). Due to the high

initial weight, the output current Im of the synapse can induce activity of the

postsynaptic neuron N2. Then the activity level of N2, i.e. the rate of the

output spike train y, is fed back to the memristor-based synapse, and the change

rate of synaptic weight is adjusted by BCM learning rule. Because the sliding

modification threshold θm moves quickly enough to catch up with the activity

of the neurons, and it eventually converges to a certain value (i.e. one). At

this time, the synaptic weight change rate of memristor-based synapse is 0, as

shown in eqn. (14). This causes the output spike frequency of N2 to converge,

indicating that the system is dynamically stable. By combining the BCM rule

with the memristor model, the problem of synaptic infinite modulation under the

continuous stimulus is solved, which provides an alternative method to improve

N1 Memristor 

model

BCM mechanism

N2

Injected current 

(Iin)

Postsynaptic 

activity (y)

Feedback activity level

Input neuron Output neuron

Synapse

Presynaptic 

activity (x)

Synaptic output 

current (Im)

Figure 4: A SNN fragment.
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the stability of SNNs. This structure has the potential to be scaled to large

networks, i.e. multiple synapses and neurons.

4. Results

This section provides the results of the proposed SNN architecture where

the stability is analysed under input spike trains with various frequencies. The

Matlab simulation platform is used for all simulations and the memristor mod-

elling. The time step of simulation is set as a fixed value of 1ms which is same

as the time step of Euler method of integration. The corresponding parameters

of the memristor-based synapse are Roff = 10k, Ron = 100, Rinit = 5k, p = 2,

D = 10nm, i.e. the initial synaptic weight value is 0.5. According to the BCM

instantaneous sliding threshold, the synaptic weight increases in proportion to

1/x [27], where x is the spike frequency of the presynaptic neuron. A spike

train with low frequency is more likely to enhance synaptic efficacy, which is

also detailed in [11]. Based on this, the stability of the network is firstly anal-

ysed, where the memristor model does not incorporate BCM learning rule. In

this case, the memristor-based synaptic weight is changed according to (12), i.e.

the BCM rule cannot modulate the synaptic weight change process. The corre-

sponding simulation results are shown in Fig. 5(a)-(d). The spike-count rate is

considered as the activity levels of neuron N1, N2, see Fig. 4. When N1 has a

continuous stimulus and produces a spike train of ∼10Hz, the sliding threshold

θm can still self-adjust and eventually converge to one, see Fig. 5(a) and (b).

However, the synaptic weight is not modulated by the BCM, and it grows indef-

initely with the continuous stimulus x(t), and eventually exceeds the variation

range (X ∈ (0, 1)) of the memristor-based synapse, i.e. X = 1 (Fig. 5(c)). The

infinite modulation of the synapse causes the N2 output spike train frequency

to increase continuously indicating that the system is unstable, see Fig. 5(d).

In order to prevent the infinite modulation of the synapse, the BCM is adopted

to modulate the synaptic weight by combining θm with the memristor model

in (14). The experiment is repeated again. As shown by Fig. 5(f), the output

12



y(t) of N2 tends to stabilize at ∼345Hz as the sliding threshold θm converges.

Meanwhile, compared to the previous result in Fig. 5(c), the synaptic weight is

maintained at 0.59, see Fig. 5(e).
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Figure 5: System stability simulation results when the output spike frequency of presynaptic

neuron is ∼10Hz.
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Figure 6: System stability simulation results when the output spike frequency of presynaptic

neuron is ∼20Hz (a-d) and ∼30Hz (e, f), respectively.

To further evaluate the stability performance of the proposed architecture, it
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is verified by using different input spike trains of ∼20Hz and ∼30Hz respectively.

Fig. 6(a)-(d) show the results under the N1 output spike train of ∼20Hz. Similar

to the previous discussions, both the synaptic weight X and the output activity

level y(t) are gradually stabilized at 0.53 and ∼172Hz, respectively, as the sliding

threshold θm converges. A similar profile can also be observed when the input

spike train is ∼30Hz as presented in Fig. 6(e) and (f), where the corresponding

final weight value X and y(t) are 0.52 and ∼104Hz, respectively. Based on the

results in Fig. 5 and Fig. 6, it can be seen that the greater the activity intensity

of the presynaptic neuron N1, the smaller the final synaptic weight value. This

is consistent with the biological experimental results in the approach of [27]. In

addition, the proposed structure contains the neuron and synapse components,

which is more complete and adaptable compared to other approaches, e.g. the

approaches of [11, 23] are based on one device to mimic biological behaviours

of synapse.

In this paper, we aim to address the synaptic weight infinite modulation

problem of the common oxide-based analogue memristive synapse, and provide

a stable SNN framework for neural network hardware implementations. table I

shows the comparison between different methods for neural network implemen-

tations on three different aspects including synapse model, network architecture

and learning rule/synthesis methodology (LR/SM). The proposed SNN is con-

structed by using the analogue memristive synapse model, and can perform

the synaptic behaviours of biological synapse, while the approach of [20] uses

multiple parallel binary HfO2-based OxRAM cells to model the biological synap-

tic behaviour at the expense of increased area consumption [21]. In addition,

the regulation signal of the proposed memristor-based synapse model is spike

trains, while the device programming in the approaches of [21, 23] requires ex-

tra circuit elements for monitoring the state of the memristor and shaping the

spike accordingly, which consume more area and power. Other approaches of

[35, 36, 37] use hybrid algorithm, STEERAGE and SCANN synthesis method-

ology, to synthesize efficient artificial neural networks for forecasting [35] and

pattern recognition [36, 37] tasks. Compared to these approaches [35, 36, 37],
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the memristive neuromorphic networks show advantages for hardware imple-

mentations [17, 21, 23], especially the high system integration as the memristor

is nanodevice with very small area overhead and power consumption [17, 18].

Particularly, due to the fast information processing capability of the hardware

circuit system (especially the reaction time of the memristor device can reach the

nanosecond level [17]), the memristive SNN hardware circuit has the potential

of processing information at the biological time scale.

Table I: Comparison between different methods for neural network implementations

Approaches Synapse model Network architecture LR/SM

[20] OxRAM CNN STDP

[21] HfO2-based SNN STDP

[23] Iron oxide-based – STDP & BCM

[35] – Hybrid networks Hybrid algorithm

[36] – ANN SCANN

[37] – FFNN & CNN STEERAGE

This work TiO2-based SNN BCM

5. Conclusion

An optimized memristor-based synapse model is proposed in this work. By

using the proposed synapse and LIF neuron models, a SNN hardware is devel-

oped which employs the BCM mechanism as learning rule. The stability of the

proposed SNN hardware is evaluated under the input spike trains with differ-

ent frequencies from 10Hz to 30Hz. Results demonstrate that the SNN has a

stable network output and can maintain stability under a continuous excitatory

stimulus (represented by spike trains). The proposed memristor-based synapse

model is able to mimic biological synaptic behaviour and address the problem

of synaptic weight infinite modulations. It has the potential to be scaled to

large neural networks due to its compact structure. Future works will explore

15



the stability of networks on the architecture level and the analogue hardware

architecture modelling.
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