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Abstract 
Uniform random satisfiability (URS) and hard random satisfiability (HRS) are two significant generalizations of random 

satisfiability (RS). Recently, great breakthroughs have been made on stochastic local search (SLS) algorithms for uniform RS, 

resulting in several state-of-the-art algorithms, e.g., Dimetheus, YalSAT, ProbSAT and Score2SAT. However, compared to the 

great progress of SLS on URS, the performance of SLS on HRS lags far behind. In this paper, we propose two global clause 

weighting schemes and a new hybrid scoring function called SA based on a linear combination of a property score and property age, 

and then apply a second-level-biased random walk strategy based on two clause weighting schemes and SA to develop a new SLS 

solver called BRSAP. To evaluate the performance of BRSAP, we conduct extensive experiments to compare BRSAP with 

state-of-the-art SLS solvers and complete solvers on HRS instances and URS instances from SAT Competition 2017 and SAT 

Competition 2018 as well as 4100 generated satisfiable large HRS and URS ones. The experiments illustrate that BRSAP 

obviously outperforms its competitors, indicating the effectiveness of BRSAP. We also analyze the effectiveness of the underlying 

ideas in BRSAP. 
 

Keywords:  Hard random satisfiability (HRS) · Stochastic local search (SLS) ·Linear combination · Property

1 Introduction 

The propositional satisfiability (SAT) problem is one of the 

most widely studied NP-complete problems and plays an 

outstanding role in many domains of computer science and 

artificial intelligence due to its significant importance in both 

theory and applications [1]. The SAT problem is fundamental 

in solving many practical problems in combinatorial 

optimization, statistical physics, circuit verification,  

computing theory [2, 14], and SAT algorithms have been 

widely used to solve real-world applications, such as computer 

algebra systems [9], core computer algebra systems [47], core 

graphs [48], gene regulatory networks [49], automated 

verification [54], model-based diagnosis (MBD)[55], 

scheduling [56], machine induction [57]. 
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There are many optimization algorithms dedicated to 

different SAT solvers to solving SAT problems, which are 

divided into two main classes: one is complete, the other is 

incomplete.  

Complete algorithms are mainly based on Davis-Putnam- 

Logemann-Loveland algorithm (DPLL) [3, 4] and resolution 

principle [5]. DPLL algorithm is based on a binary search tree 

and adopts chronological backtracking, while the 

Conflict-Driven Clause Learning CDCL algorithm [58] 

maintains a stack of assumptions and propagations and adopts 

non-chronological backtracking as well as chronological 

backtracking [60]. The direct improvement on DPLL is to 

extend it into lookahead heuristics, which utilizes global 

heuristics to pick good decisions at the top-level [59]. 

The incomplete SAT solvers are mainly based on stochastic 

local search (SLS) algorithms [6, 7] which are among the 

best-known methods currently available for solving types of 

SAT problems. Although the incomplete SAT solvers cannot 

guarantee either to find the solutions or prove a given Boolean 

formula unsatisfiable, some of them are surprisingly more 

effective than state-of-the-art complete solvers on finding 

models of satisfiable formulae for random k-SAT instances [8]. 

The heuristics used by SLS solvers to solve random SAT 

problems are also potentially useful for solving real-world SAT 

problems [9].  

In this work, we concentrate on the SLS algorithm. SLS 

algorithms are best suited for solving problems required short 

time to solve. [1]. There are more interests in improving the 

performance of SLS algorithms on random SAT instances, 

especially hard random SAT (HRS) ones [46]. From the 

theoretical viewpoint, HRS is a random 3-SAT, which is a 

classic problem in computational complexity research. From 

the practical viewpoint, in addition to being applied to sat 
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solving, heuristic methods have also been applied to solve a 

variety of problems in the field of machine learning and 

artificial intelligence, and it still has great potential in 

application, e.g., generators of HRS with a predefined solution 

can be used in cryptography as one-way functions [10].  

In the beginning, an SLS algorithm generally generates an 

initial assignment of the variables of F. Then it explores the 

search space to minimize the number of unsatisfied clauses. To 

do this, it iteratively flips the truth value of a variable selected 

according to some heuristic at each step until it seeks out a 

solution or timeout. Hence, there are two main factors affecting 

SLS algorithms, one is to generate a clause selection heuristic, 

and the other is a variable selection heuristic.  

In focused random walk (FRW) algorithms, SLS solvers 

generally select a clause from unsatisfied clauses randomly, 

such as ProbSAT [17], YalSAT [20], Dimetheus [16], 

WalkSATlm [18]. Most SLS solvers improve different variable 

selection heuristics to develop algorithms, and they usually use 

make property, break property and score property to decrease 

the current number of unsatisfied clauses, and utilize age 

property to avoid local optima.  

In two-mode SLS algorithms during the last ten decades, the 

most significant development was perhaps “configuration 

checking” strategy (CC) [39] and “weights” strategy [19] 

(similar to “score function” [30]), leading to the effective 

CCASat [39], Swqcc [61], CScoreSAT [30] and DCCASat [19]. 

One of the main features of the CC strategy is that the last 

flipping variable must not be the current flipping variable [39]. 

One of the main features of the weighting schemes is that 

greedily select a best variable to be flipped among the candidate 

variables. 

There have been numerous works on improving the 

performance of SLS algorithms [11-17]. Substantial progress 

has been made in only URS instances with various 

clause-to-variable ratios. However, a family of SAT instances 

includes URS instances and HRS instances, and most SLS 

algorithms on random instances focus on URS. Although URS 

at the phase transition has been cited as the hardest track of 

SAT problems [18, 19], when it comes to the HRS instances, 

which is even harder than URS instances at the solubility phase 

transition for SLS solvers, Dimetheus[13] , ProbSAT[17], 

Yalsat [20] and Score2SAT [22] lost their power and 

effectiveness, as can be seen from the competition results of the 

random track of SAT Competition 20171 and 20182, so their 

performance for solving HRS need be further improved. 

Compared to the great progress of SLS algorithms on solving 

URS, the performance of SLS algorithms on solving HRS lags 

far behind. This motivates us to design a more efficient SLS 

algorithm for solving HRS.  

This paper is devoted to developing an efficient SLS 

algorithm for solving HRS and URS instances. The 

improvement of weighting schemes has become the 

mainstream of optimizing SLS algorithms [51-53]. In this work, 

we propose two ideas about clause weighting schemes. The 

 
1 https://baldur.iti.kit.edu/sat-competition-2017/results/random.csv. 
2 http://sat2018.forsyte.tuwien.ac.at/index.php?cat=results. 

first and most important one is based on an intuition that prefers 

to satisfy frequently becoming unsatisfied or easily keeping 

satisfied clauses during the search. This is done by two new 

clause weighting schemes that work for unsatisfied clauses in 

the total search and is activated to pick a clause. It is worth 

noting that previous SLS algorithm for SAT either do not use 

clause weighting scheme or update clause’ weights when a 

local optimum is reached and utilize the clause weighting 

scheme is to select a variable. Our work develops a 

second-level-biased random walk based on two global clause 

weighting schemes to select a clause. We also propose a new 

scoring function named SA based on a linear combination of 

score property and age property. The SA function differs from 

previous hybrid scoring functions in that it considers one level 

score property distinguishing itself from previous two levels 

score property in SLS algorithms [30]. Based on SA, we design 

a new tie-breaking strategy. Then based on the 

second-level-biased random walk and the scoring function SA, 

we develop a new SLS algorithm called BRSAP (combining 

second-level-biased random walk based on two new clause 

weighting schemes and linear scoring function SA as well as 

the probability strategy). To evaluate the effectiveness of the 

BRSAP algorithm, we conduct extensive experiments on HRS 

instances to compare BRSAP against recent state-of-the-art 

SLS algorithfms, including CSoreSAT [30], Score2SAT [22], 

YalSAT, Sparrow [23], ProbSAT and Dimetheus, and 

state-of-the-art two complete algorithms SparrowToRiss [23] 

and gluhack [24] on HRS instances. The solvers are compared 

on HRS and URS problems from the SAT Competitions in 

2017 and 2018 and on randomly generated HRS and URS 

problems. The experimental results show that BRSAP performs 

remarkably well compared to state-of-the-art algorithms on 

HRS instances. BRSAP also proves to be competitive even 

when it is compared to state-of-the-art algorithms like 

ProbSAT, YalSAT, CscoreSAT, Score2SAT and 

SparrowToRiss on URS with long clauses. Moreover, through 

the analysis on the experimental results, it has proved 

performance superiority of the underlying ideas in BRSAP. 

This paper is organized as follows. In Section 2, we provide 

some necessary basic knowledge. Section 3 reviews the 

definition of polynomial probability. In Section 4, we introduce 

two clause weighting schemes. Section 5 provides the biased 

random walk. In Section 6, we present the new tie-breaking 

based on the new scoring function SA and the BRSAP 

algorithm in detail. The experimental analyses and some 

discussions are performed in Section 7 and Section 8, 

respectively. Finally, we conclude this paper and then give 

some future work in Section 9. 

2 Preliminaries 

A formula F of the SAT is defined by a pair F=(X, C) such that 

X={x1, x2,…, xn} is a set of n Boolean variables (their values 

belong to the set {true, false}) and C={c1, c2, …, cn} is a set of 

m clauses. A clause ci ϵ C is a disjunction of literals and a literal 

is either a variable xi (which is called positive literal) or its 
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negation ¬xi (which is called negative literal). If the size of each 

clause in C is equal to k, then the instance is a k−SAT instance 

and r= m/n is its clause-to-variable ratio. An instance F= 

c1˄c2˄…˄cm is a conjunction of clauses.  
A complete satisfying assignment  for a formula F is an 

assignment to its variables making formula F true.  If xi is true 

by  then xi belongs to  (otherwise ¬xi ϵ ). A literal l is said 

to be satisfied by the current value of the variable  if l ϵ  and 

falsified if ¬l ϵ . A clause is unsatisfied by  if its all literals 

are false literal and satisfied otherwise. A satisfying solution of 

F is a complete assignment that satisfies all the clauses of F.  

In SLS algorithms for HRS, for a variable x and an 

assignment , the mainly variable x properties used by SLS 

algorithms for SAT are make(x) [25] and break(x) [26], which 

are the number of clauses that would become satisfied and 

unsatisfied respectively, if variables x were to be flipped. 

Usually, SLS algorithms for random k-SAT instances select a 

variable x to be flipped based on its properties of score(x) 

[27-30] and age(x) [31-35]. A scoring function which can be a 

simple property or any mathematical expression with one or 

more properties measures the increase in the number of 

satisfied clauses by flipping x, and score(x) is defined as 

make(x)−break(x). age(x) is defined as the number of steps that 

have occurred since the variable x was last flipped [30].  

The hard random SAT (HRS) is particularly interesting 

because it turns out to be one of the hardest for all solvers [10]. 

Moreover, the HRS instances generated are especially difficult 

for SLS algorithms [36]. Parameter optimization tool SMAC 

[37], has been successful in improving the performance of SAT 

solvers, especially SLS solvers. However, the recent successful 

generator is based on the clause distribution control method [38] 

and SMAC with the opposite purpose to slow down SAT 

solvers and can be automatically configured to generate hard 

benchmarks based on Dimetheus, ProbSAT and so on [10].  

HRS was added for the first time to the random track of SAT 

Competition in 2016 in order to evaluate and improve SAT 

solvers, especially for SLS solvers. As witnessed in SAT 

competitions since 2016, it has become a mainstream for SLS 

solvers, for example, apart from URS instances, most (nearly 

65% of) instances in the benchmark of the random SAT track in 

the SAT Competition 2018 are HRS, which are classified into 

three types based on clause-to-variable ratios (r): r=4.3, 

r=5.206 and r=5.5. However, the performance of existing SLS 

algorithms lags far behind on HRS especially for ratios of 

r=5.206 and 5.5. 

Clause selection heuristic and variable selection heuristic are 

two main factors in affecting SLS algorithms. In order to 

develop SLS algorithms for HRS, we focus on clause and 

variable selection. 

3 Reviewing probability strategy 

In this section, we briefly review the probability strategy in 

ProbSAT [26]. 

Probability strategy has presented success on applying in 

SLS algorithms. In the context of SAT, the first definition of 

probability strategy based on the combination of break and 

make has been introduced in the literature [26]. An alternative 

notion of probability strategy [17, 26] base on only break has 

been proposed, and in the literature [26] probability strategy 

based break has shown the superiority on solving SAT problem. 

The probability strategy based only break leads several SLS 

algorithms for SAT [13, 15, 17, 20, 26]. In this work, we adopt 

the definition of probability strategy based only break [17]. 

The probability strategy called f(x, ) [26] including a 

polynomial or exponential uses only the break values of a 

variable x  under a complete assignment a as listed below. 

f(x, ))=(0.9+break(x, )))-2.06 

f(x, ))=(cb))-break(x,a) 

According to the criterion of the algorithm based on 

probability strategy f(x, ), given a selected clause c, the 

algorithms utilize 
𝑓(𝑥,)

∑ 𝑓(𝑧,)𝑧∈𝐶
 to probabilistically select variables 

that have smaller break values [17]. 

4 Two clause weighting schemes 

In this section, we introduce two new clause weighting 

schemes in the total search. Based on these clause weighting 

schemes, we define some new types of clauses. 

 Clause weighting schemes have been used prominently in 

SLS algorithms for solving SAT [22, 30, 31], such as SWT [39], 

DLM [40], PAWS [41], SAPS [42]. Although these clause 

weighting SLS algorithms differ in the manner clause’ weights 

should be updated (probabilistic or deterministic), they all 

choose to increase the weights of all the unsatisfied clauses or 

reduce the weights of all the satisfied clauses as soon as a local 

minimum is encountered. Recent studies, mainly including 

CCASat [39] CSCCSat [21], Score2SAT as well as their variant 

considered that the algorithm should be forced to satisfy more 

clauses, and the weights of clauses should be updated when the 

search is stuck in a part [39, 43]. These clause weighting 

techniques turn out to be essentially ineffective for solving 

HRS instances. 

But better weighting techniques can be derived by taking a 

global scheme. It happens that the algorithm without using the 

clause weighting scheme has loss some clauses that are difficult 

to satisfy before it gets stuck in a "stuck" state. Therefore, 

forcing the algorithm to satisfy more clauses will mislead the 

algorithm to obtain worse quality allocation. To avoid this 

situation happening, we consider two global schemes named 

GWU and GWAC that update the clause’ weights in the total 

search process respectively. 

4.1 The clause weighting scheme GWU 

 The first clause weighting scheme is denoted by GWU 

(Global Weight based on Unsatisfied clauses) and works as 

follows. For each clause c in step s, we associate an integer 

number GWU (c, s) as its weight. Whenever a variable is 

selected to be flipped, then clause’ weights are updated as  
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follow: 

▪ In the beginning of the SLS algorithm, for each clause c, 

if c is unsatisfied under the initial assignment a, c’s 

weight is initialized to 1 (i.e., GWU (c, 0) =1); otherwise, 

c’s weight is initialized to 0 (i.e., GWU (c, 0) =0). 

▪ When SLS algorithm searches to step s, and if a clause c 

is unsatisfied, the clause c’s weight is activated, then 

GWU (c, s) is equal to GWU (c, s-1) + 1; otherwise, 

GWU (c, s) is equal to GWU (c, s-1). 

Thus, in the implementation of the proposed GWU scheme, a 

clause c’s weight has been changed if c is unsatisfied whenever 

a variable is picked to be flipped. 

Although there is similar idea between GWU and SWT 

[39], they have important differences.  If the clause is 

unsatisfied, then the clause’ weights based GWU is initialized 

as 1, otherwise, clause’ weights is initialized to 0, while all 

clauses’ weights based on SWT are initialized as 1. Moreover, 

whenever a variable is selected to be flipped, then GWU is 

called, i.e., the weights of all unsatisfied clauses increased by 

one, while when the algorithm falls into local optimum, the 

SWT is only called, i.e., the weights of all unsatisfied clauses 

increased by one, but if the average weight exceeds a threshold, 

it needs to smooth all clause’ weights. 

Previous algorithms select a clause from the unsatisfied 

clauses with equal probability [13,16, 17, 20, 26] i.e., simply 

categorizing clauses into unsatisfied ones and satisfied ones is 

not informative enough to guide the SLS, especially for HRS 

instances.  

Thus, suggested by “deceasing” variables (comprehensively  

decreasing variables) variables [30] in SLS algorithms, we 

develop two sets of HSC-GWU (hard satisfiable clauses based 

on GWU) and ESC-GWU (easily satisfiable clauses based on 

GWU) to distinguish unsatisfied clauses. The formal 

definitions of HSC-GWU and ESC-GWU are given as follows: 

Definition 1. For a CNF formula F, a positive integer 

parameter β, when SLS algorithm runs to step s, a clause c is a 

HSC-GWU in step s if and only if c is unsatisfied and GWU(c, 

s)/100≥β. 

Definition 2. For a CNF formula F, a positive integer 

parameter β, when SLS algorithm runs to step s, a clause c is a 

ESC- GWU in step s if and only if c is unsatisfied and GWU (c, 

s)/100<β. 

Note that the purpose of the GWU (c, s) modules 100 is to 

prevent the setting of positive integer parameter β from being 

too large. 

In this work, when SLS algorithm searches to any step s, we 

use the notation HSC-GWU(s) to denote the set of all HSCs- 

GWU in step s and ESC-GWU(s) to denote the set of all ESCs- 

GWU in step s. In the step s, the union of HSC-GWU(s) and 

ESC-GWU(s) is the set of all unsatisfied clauses at step s. 

The intuition that clauses with larger GWU values are harder 

to keep satisfied in the search process. Thus, it is beneficial for 

SLS algorithms to prefer satisfying HSCs-GWU, and we use 

GWU to guide clause selection.  

HSCs-GWU are regarded as the good candidates of clauses 

to be selected in the clause selection heuristic for solving SAT, 

that means HSCs-GWU are put higher priority to be satisfied in 

each search step. 

 Based on the notions of HSCs-GWU and ESCs-GWU, until 

at least β*100 steps, all the unsatisfied clauses are ESCs-GWU 

in each step, and then the same problem is that the algorithm 

cannot distinguish the unsatisfied clauses in the clause selection. 

Thus, this motivates us to design the second new clause 

weighting scheme which could distinguish ESCs-GWU. 

4.2 The clause weighting scheme GWAC 
 As the age property of variables is diversification mode, 

which may be able to better handle local minimum. We propose 

a new clause weighting scheme based on the age property of 

clauses.  

The second clause weighting scheme is denoted by GWAC  

(Global Weight based on Age property of Clause) and works as 

follows. For each clause c in step s, we associate an integer 

number GWAC (c, s) as its weight. Whenever a clause is 

selected by heuristics, then clause’ weights are updated as 

follow: 

▪ In the beginning of the SLS algorithm, for each clause c, 

c’s weight is initialized to 0 (i.e., GWAC (c, 0) =0). 

▪ When SLS algorithm searches to step s, GWAC (c, s) is 

the number of steps that have occurred since the clause c 

was last selected. 

Thus, in the implementation of the proposed GWAC scheme, 

a clause c’s weight has been changed in each step. 

 Although there is similar idea between age and GWAC, 

they are an important difference. The GWAC is adjusted for 

clause, while the age property [30] is for variable.  

Based on the GWAC, we also develop two sets of 

LAC-GWAC (long age clause based on GWAC) and 

SAC-GWAC (short age clause based on GWAC) to 

distinguish ESCs-GWU. The formal definitions of LAC 

-GWAC and SAC-GWAC are given as follows: 

Definition 3. For a CNF formula F, a positive integer 

parameter η, when SLS algorithm runs to step s, a clause c is a 

LAC-GWAC in step s if and only if c is ESC-GWU and 

GWAC(c, s)≥η. 

Definition 4. For a CNF formula F, a positive integer 

parameter η, when SLS algorithm runs to step s, a clause c is a 

SAC- GWAC in step s if and only if c is ESC-GWU and GWAC 

(c, s) <η. 

Note that the parameter η is positive integer. 

In this work, when SLS algorithm searches to any step s, we 

use the notation LAC- GWAC(s) to denote the set of all LACs- 

GWAC in step s and SAC-GWAC(s) to denote the set of all 

SACs-GWAC in step s. In the step s, the union of LAC- GWAC 

(s) and SAC-GWAC(s) is the set of ESCs-GWU at step s. 

The intuition that clauses with larger GWAC values are 

easier to keep satisfied in the search process, and GWAC is a 

supplement to GWU. If the algorithm only depends on GWU to 
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pick a clause, it will easily fall into local optimization. Thus, if 

there is no HSCs-GWU, it is beneficial for SLS algorithms to 

select a LAC-GWAC. We use GWAC to guide clause 

selection.  

If there is no HSCs-GWU, LACs-GWAC are regarded as the 

good candidates of clauses to be selected in the clause selection 

heuristic for solving SAT, that means LACs-GWAC are put the 

second higher priority to be satisfied in each search step. 

Here we utilize the GWU and GWAC for picking a clause, 

distinguishing itself from previous clause weighting schemes in 

SLS algorithms for picking a variable [15,17,19,21,22, 39]. 

5 Second-level-biased random walk based on 
GWU and GWAC 

The random walk strategy is a standard component designed for 

SAT. However, the standard random walk strategy may not be 

suitable for SLS algorithms for HRS, because it does not 

distinguish between HSCs-GWU and ESCs-GWU, or between 

LACs-GWAC and SACs-GWAC. Since HSCs-GWU and 

LACs-GWAC are put higher priority to be selected for SAT in 

the proposed algorithm, thus it is reasonable for us to develop a 

second-level-biased random walk component. The second- 

level-biased random walk strategy is suggested by the idea 

from [45] and described as follows: 

▪ When the second-level-biased random walk is called, if 

there exists HSCs-GWU, the algorithm selects an 

HSC-GWU randomly; 

▪ Otherwise, if there exists LACs-GWAC, the algorithm 

selects an LAC-GWAC randomly; 

▪ If there is no LACs-GWAC, the algorithm picks an 

ESC-GWU or SAC-GWAC randomly; 

▪ Then, the algorithm picks a variable to be flipped in the 

chosen clause. In this work, this is accomplished by a 

variable selection strategy which is described in the 

subsequent section. 

Although there is similar idea between second-level- 

biased random walk strategy and biased random walk 

strategy, they are an important difference. The 

second-level- biased random walk strategy is utilized to select a 

clause from two higher priority of sets, while the biased random 

walk strategy is used to select a clause for one higher priority of 

set. 

By combining HSCs-GWU harder to keep satisfied and 

LACs-GWAC easier to keep satisfied, the second-level-biased 

random walk can maintain a balance between intensification 

and diversification, making the SLS algorithm more widely 

applicable. 

6 The scoring function SA and BRSAP algorithm 

In this section, we first propose a new scoring function named  

SA which combines a score (greedy property) and an age  

(diversification property) in a linear combination, and then we  

utilize the SA to develop a new tie-breaking strategy. 

6.1 The scoring function SA 

Heuristics in SLS algorithms for SAT mainly include 

two-mode SLS algorithms [1, 21, 22, 23, 30] and focused 

random walk (FRW) algorithms [16, 17, 18, 20, 25, 26]. FRW 

algorithms always select a variable to be flipped from an 

unsatisfied clause chosen randomly in each step [7]. Based on 

Section 4 and Section 5, our algorithm belongs to FRW 

algorithms. 

 For SLS algorithms, there is one important issue that is tie- 

breaking –In SLS algorithm, tie-breaking strategy makes the 

algorithm select a variable to flip when faced with multiple 

candidate variables.) [1, 7, 50]. However, in FRW algorithms, 

there is still other important issue - that generally may result in 

the same variable being selected in consecutive steps (we also 

call this issue tie-breaking). Actually, there is almost no 

previous work devoted to handling this problem for FRW 

algorithms. To avoid this, inspired by the previous tie-breaking 

in Ref. [1, 30], we employ a new tie-breaking based on a new 

scoring function named SA combining greedy property score 

and diversification property age. The definition of SA is given 

below. 

Definition 5 Given a CNF formula F, for a variable x, in search 

step s, when the assignment is , the scoring function, denoted 

as SA, is defined as: 

SA (x, s, ) = score (x, ) + age (x, s)/μ, 

where μ is a positive integer parameter, which is used to control 

the role of the age value played in the scoring function. 

The new tie-breaking based on a linear scoring function SA 

can also maintain a balance intensification and diversification. 

6.2 The BRSAP algorithm 

In this subsection, we utilize the second-level-biased random 

walk based on two new clause weighting schemes and linear 

scoring function SA as well as the probability strategy to 

develop a new SLS algorithm called BRSAP. 

 The pseudo-code of the BRSAP algorithm is outlined in 

Algorithm 1 and it can be described in detail as follows. 

At the start of the algorithm, BRSAP performs the first loop 

until it finds a satisfying assignment or reaches the first limited 

steps denoted by MaxSteps (line 2 in Algorithm 1). Then 

BRSAP generates a complete assignment  randomly as the 

initial solution (line 3). bestVar is used to record which variable 

was flipped in the last step (line 4). Then we initialize GWU(c,0) 

and GWAC(c,0) as 0 for each clause c as well as HSC-GWU (0), 

ESC-GWU (0), LAC-GWAC (0) and SAC- GWAC (0) as 0 (line 

5 in Algorithm 1). 

After the initialization, BRSAP executes the second loop 

until a satisfying solution is found or exceeds the second 

limited steps MaxTries (line 7). In each search step, BRSAP 

selects a variable to be flipped. 

Firstly, BRSAP picks a clause based on the second-level-  



 6 

Agorithm 1:  BRSAP algorithm 

Input: CNF-formula F, MaxTries, MaxSteps, μ, β, η 

Output: A satisfying assignment  of F, or “UNKNOWN” 

1  begin 

2         for i = 1 to MaxTries do 

3                 :=a generated truth assignment randomly for F;  

4     bestVar :=null; 

5           Initialize GWU(c,0) and GWAC(c,0) for each clause c and HSC- 

 GWU (0), ESC-GWU (0), LAC-GWAC (0) and SAC-GWAC(0) 

 as 0. 

6      compute score (x, a); 

7                 for j = 1 to MaxSteps do                         

8                          if  satisfies F then Return ; 

9                          if HSC-GWU(j) is not empty then  

10       C := a clause randomly chosen from HSC-GWU(j); 

11        else 

12              if LAC-GWAC(j) is not empty then  

13         C := a clause randomly chosen from LAC-GWAC(j); 

14          else 

15         C := a clause randomly chosen from SAC-GWAC(j); 

16        update GWAC; 

17                        v :=  x∈C selected according to probability 
𝑓(𝑥,)

∑ 𝑓(𝑧,)𝑧∈𝐶
; 

18         If v :==bestVar then 

19                           bestVar := x∈C, x≠v, with the greatest SA (x, j, ); 

20        else 

21       bestVar := v; 

22        :=  with bestVar flipped; 

23        update GWU and age (x, j) for each variable x; 

24        Return “UNKNOWN”; 

25 end 

 

biased random walk strategy as detailed in Section 5. If 

HSC-GWU (j) is not empty in any step j, a clause is picked 

randomly from HSC-GWU (j) (lines 9 and 10); otherwise, if 

LAC-GWAC (j) is not empty in any step j, a clause is picked 

randomly from LAC-GWAC (j)( (lines 11-13), and if the 

LAC-GWAC (j) is empty, a clause is picked randomly from 

SAC-GWAC (j) (or ESC-GWU (j)) (lines 14 and 15), and then 

updates the clause’ weights based on the weighting scheme 

GWAC detailed Section 4.2 (line 16). 

 Then BRSAP tries to pick a variable to be flipped according 

to the probability based on f and the new tie-breaking strategy 

as detailed in Section 6.1 (lines 17-21 in Algorithm 1): BRSAP 

first picks a variable by the probability based on f (if k=3, f uses 

polynomial strategy, otherwise, f uses exponential strategy) 

(line 17 in Algorithm 1), and then if the variable is the same as 

the last flipped variable (line 18), BRSAP picks a variable by 

preferring the variable with the greatest SA value (lines 19). 

After the variable is selected, the BRSAP flips the selected 

variable (line 22) and then updates the clause’ weights based on 

the weighting scheme GWU detailed Section 4.1 (line 23), then 

the BRSAP algorithm starts the next search step. 

Finally, once the search process terminates, the BRSAP 

reports  as the solution; otherwise, BRSAP reports 

UNKNOWN (line 24). 

7 Experimental evaluation 

In this section, in order to present the effectiveness of the 

BRSAP algorithm, we conduct extensive experiments to 

evaluate BRSAP on HRS and URS instances, and compare 

BRSAP against six state-of-the-art SLS solvers including 

CSoreSAT, Score2SAT, YalSAT, ProbSAT, Sparrow and 

Dimetheus as well as two state-of-the-art complete solvers 

SparrowToRiss and gluhack on the same instances. 

 We first introduce the benchmarks, the competitors and 

experimental preliminaries. Then we compare BRSAP with 

state-of-the-art SLS solvers and complete solvers on all testing 

HRS and URS benchmarks. 

7.1 Experimental evaluation on HRS 

7.1.1 The HRS benchmarks 
All the HRS instances used in our experiments are generated 

according to the HRS tool [10]. We adopt the following seven 

testing benchmarks. 

1) 4.3HRS SAT2017: all HRS instances with r=4.3 from 

SAT Competition 2017 3  (n=400, 420, …, 540, 40 

instances, 5 for each size) 

2) 4.3HRS Random: HRS instances generated randomly by 

the HRS tool (r=4.3, n=600, 700, …,1000, 1000 instances, 

200 for each size) 

3) 5.206HRS SAT2017: all HRS instances with r=5.206 

from SAT Competition 2017 (n=400, 420, …, 540, 40 

instances, 5 for each size) 

4) 5.206HRS Random: HRS instances generated randomly 

by the HRS tool (r=5.206, n= 600, 700, …,1000, 1000 

instances, 200 for each size) 

5) 5.5 HRS SAT2017: all HRS instances with r=5.5 from 

SAT Competition 2017 (n=400, 420, …, 540, 40 instances, 

5 for each size) 

6) 5.5HRS Random: HRS instances generated randomly by 

the HRS tool (r=5.5, n= 600, 700, …,1000, 1000 instances, 

200 for each size) 

7) 5.699HRS Random: HRS instances generated randomly 

by the HRS tool (r=5.699, n=200, 300, …,1000, 900 

instances, 100 for each size) 

7.1.2 The competitors 
We compare the BRSAP algorithms with six state-of-the-art  

SLS solvers including CSoreSAT [30], Score2SAT [22], 

YalSAT [20], ProbSAT [17], Sparrow [23] and Dimetheus [16] 

as well as two state-of-the-art complete solvers SparrowToRiss 

[23] and gluhack [24] on the same instances. 

The CSoreSAT solver utilizes two scoring functions and 

 
3https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/  
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clause weighting scheme PAWS [41]. The Score2SAT adopts 

two scoring functions and two clause weighting schemes SWT 

[19] and PAWS.  Score2SAT is the third place in SAT 

Competition 2017. YalSAT wins the random track of SAT 

Competition 2017. ProbSAT wins the random track of SAT 

Competition 2013, and is the second place among the SLS 

algorithms in SAT Competition 2018. Dimetheus is the winner 

of random SAT track of SAT Competition 2014 and SAT 

Competition 2016 respectively, and is the first place among the 

SLS algorithms in random SAT track of SAT Competition 

2018. Sparrow uses the clause weighting scheme PAWS, and is 

the first place in the random SAT track of SAT Competition 

2011. SparrowToRiss is a combination of Sparrow and Riss 

[23], and is the first place on the random SAT track of SAT 

Competition 2018. The gluHack is an efficient complete solver  

and wins the silver of SAT Competition 2018. 

7.1.3 Experiment preliminaries 
The BRSAP algorithm is implemented in C/C++. The BRSAP 

algorithm is involved in three parameters, i.e., β controlling 

the number of HSCs-GWU, η controlling the number of 

LACs-GWAC, γ controlling the balance between the score and 

age.  

We tuned the β, η and γ parameters of BRSAP on HRS 

according to our experience in Table 1. For cb, we utilize the 

default parameter setting tuned in the literature [17]. 

Table 1: Parameter settings of BRSAP for HRS instances 

 μ 
r=4.3 r=5.206/5.5 r=5.699 

η, β=9 β, η=312 β, η=312 

n≤400 

900 

321 800 

500 400<n 

<600 276 
1081 

n≥600 1255 661 

 

 The binary of CScoreSAT is provide by its author. For the 

YalSAT and Score2SAT solvers, we adopt the two codes 

submitted to SAT Competition 20174. The binaries of ProbSAT, 

Dimetheus, Sparrow, SparrowToRiss and gluhack can be 

downloaded online5 and we use the parameter setting as the one 

used in SAT Competition 2018.  

Experiments on the seven benchmarks are carried out on 

Intel(R) Core (TM) i5-8265U 1.60 1.80GHz CPU with 8GB 

RAM, running the 64-bit Ubuntu Linux operating system. Each 

run that terminates in finding a satisfying assignment within the 

cutoff time is a successful run. The cutoff time is set to 600 

seconds (as in the literature [36]) for 4.3HRS random 

benchmark, 5.206 HRS random benchmark, 5.5HRS random 

benchmark and 5.699HRS random benchmark, and 5000 

seconds (as in SAT Competitions 2017 and 2018) for the rest 

benchmarks. For all benchmarks, each solver is executed 10 

times for each instance. In this paper, for each solver on each 

instance group, we report the number of success runs (#suc) for 

the top seven benchmarks as well as “par 2”, which is a 

penalized average run time where an unsuccessful run of a 

 
4https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=downloads 
5http://sat2018.forsyte.tuwien.ac.at/index.php?cat=downloads 

solver is penalized as 2 times cutoff time, and “Overall” 

symbols averaged over all instances with each run per instance. 

Note that PAR 2 is adopted in SAT Competitions and has been 

widely used in the literature [30]. The best results for an 

instance class are highlighted in bold. If a solver has no 

successful run on an instance class, the corresponding “par 2” is 

marked with “-”. 

7.1.4 Experimental results 
In this subsection, we conduct extensive experiments of 

BRSAP and its state-of-the-art SLS and state-of-the-art 

complete competitors on all testing benchmarks, i.e., the 

4.3HRS SAT17, 4.3HRS Random, 5.206HRS SAT17, 

5.206HRS Random, 5.5HRS SAT17, 5.5HRS Random, and 

5.699HRS Random. 

7.1.4.1 Results on the 4.3HRS Random benchmark 

Table 2 presents the comparative performance results of 

BRSAP and its state-of-the-art SLS competitors CSoreSAT, 

Score2SAT, YalSAT, ProbSAT, Dimetheus as well as Sparrow 

and complete competitors gluHack and SparrowToRiss on the 

HRS instances with r=4.3 from SAT Competition 2017. On the 

overview of the results, BRSAP provides a better performance 

than gluHack and SparrowToRiss in terms of metrics. Overall,  

although BRSAP is slower than Score2SAT, YalSAT, 

ProbSAT and Sparrow in terms of par 2, BRSAP and its 

competitors solve the same number of instances, indicating 

BRSAP is competitive with state-of-the-art SLS solvers, i.e., 

CSoreSAT, Score2SAT, YalSAT, ProbSAT, Dimetheus and 

Sparrow. 

7.1.4.2 Results on the 4.3HRS Random benchmark 

Table 3 reports the comparative performance results of BRSAP 

and its state-of-the-art SLS competitors including CSoreSAT, 

Score2SAT, YalSAT, ProbSAT, Dimetheus as well as Sparrow 

and complete competitors containing gluHack as well as 

SparrowToRiss. According to Table 3, BRSAP significantly 

outperforms its complete competitors gluHack and 

SparrowToRiss in terms of metrics. Although BRSAP 

performances slightly worse than CSoreSAT, Score2SAT, 

YalSAT, ProbSAT, Dimetheus and Sparrow in terms of par 2, 

BRSAP and its SLS competitors show the same performance in 

terms of successful runs. Overall, BRSAP outperforms 

SparrowToRiss in terms of par 2. 

7.1.4.3 Results on the 5.206HRS SAT2017 benchmark 

The comparative results of BRSAP and its state-of-the-art SLS 

competitors CSoreSAT, Score2SAT, YalSAT, ProbSAT, 

Dimetheus as well as Sparrow, and complete competitors 

gluHack as well as SparrowToRiss on the HRS instances with 

r=5.206 from SAT Competition 2017 are summarized in Table 

4. Overall, BRSAP and SparrowToRiss succeed in all runs, 

while Score2SAT, Sparrow and gluHack only succeed in 80, 80 

and 380 runs (out of 400 runs) respectively, and also CSoreSAT, 

YalSAT, ProbSAT and Dimetheus fail to solve any instance on 

this benchmark. According to the empirical results presented in 

Table 4, BRSAP solves each instance within one second. More 
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Table 2: Experimental results on the 4.3HRS SAT2017 benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

par2 

Score2SAT 

#suc 

par2 

YalSAT 

#suc 

par2 

ProbSAT 

#suc 

par2 

Dimetheus 

#suc 

par2 

Sparrow 

#suc 

par2 

gluHack 

#suc 

par2 

SparrowToRiss 

#suc 

par2 

BRSAP 

#suc 

par2 

n=400 
50 

0.006 

50 

0.000 

50 

0.010 

50 

0.004 

50 

0.014 

50 

0.002 

50 

328.5 

50 

0.068 

50 

0.016 

n=420 
50 

0.018 

50 

0.002 

50 

0.008 

50 

0.002 

50 

0.028 

50 

0.002 

50 

619.1 

50 

0.059 

50 

0.014 

n=440 
50 

1.766 

50 

0.022 

50 

0.072 

50 

0.004 

50 

0.331 

50 

0.192 

30 

4702 

50 

0.338 

50 

0.052 

n=460 
50 

0.022 

50 

0.010 

50 

0.014 

50 

0.006 

50 

0.009 

50 

0.002 

50 

1521 

50 

0.058 

50 

0.044 

n=480 
50 

0.000 

50 

0.008 

50 

0.002 

50 

0.000 

50 

0.011 

50 

0.000 

40 

2410 

50 

0.067 

50 

0.024 

n=500 
50 

0.002 

50 

0.000 

50 

0.000 

50 

0.000 

50 

0.009 

50 

0.000 

20 

6461 

50 

0.060 

50 

0.012 

n=520 
50 

0.004 

50 

0.006 

50 

0.008 

50 

0.000 

50 

0.010 

50 

0.000 

30 

4891 

50 

0.072 

50 

0.026 

n=540 
50 

0.004 

50 

0.010 

50 

0.004 

50 

0.000 

50 

0.010 

50 

0.000 

20 

6910 

50 

0.075 

50 

0.022 

Over all 
400 

0.228 

400 

0.007 

400 

0.015 

400 

0.002 

400 

0.053 

400 

0.025 

290 

3480 

400 

0.100 

400 

0.026 

Table 3: Experimental results on the 4.3HRS Random benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

par2 

Score2SAT 

#suc 

par2 

YalSAT 

#suc 

par2 

ProbSAT 

#suc 

par2 

Dimetheus 

#suc 

par2 

Sparrow 

#suc 

par2 

gluHack 

#suc 

par2 

SparrowToRiss 

#suc 

par2 

BRSAP 

#suc 

par2 

n=600 
2000 

0.006 

2000 

0.006 

2000 

0.004 

2000 

0.000 

2000 

0.010 

2000 

0.002 

400 

979.9 

2000 

0.063 

2000 

0.026 

n=700 
2000 

0.012 

2000 

0.022 

2000 

0.024 

2000 

0.012 

2000 

0.037 

2000 

0.004 

0 

- 

2000 

0.177 

2000 

0.050 

n=800 
2000 

0.026 

2000 

0.056 

2000 

0.018 

2000 

0.032 

2000 

0.059 

2000 

0.002 

0 

- 

2000 

0.394 

2000 

0.320 

n=900 
2000 

0.084 

2000 

0.046 

2000 

0.030 

2000 

0.080 

2000 

0.024 

2000 

0.006 

0 

- 

2000 

0.159 

2000 

0.050 

n=1000 
2000 

0.030 

2000 

0.018 

2000 

0.010 

2000 

0.002 

2000 

0.024 

2000 

0.000 

0 

- 

2000 

0.187 

2000 

0.064 

Over all 
10000 

0.032 

10000 

0.030 

10000 

0.017 

10000 

0.025 

10000 

0.031 

10000 

0.003 

400 

1156 

10000 

0.196 

10000 

0.102 

Table 4: Experimental results on the 5.206HRS SAT2017 benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

par2 

Score2SAT 

#suc 

par2 

YalSAT 

#suc 

par2 

ProbSAT 

#suc 

par2 

Dimetheus 

#suc 

par2 

Sparrow 

#suc 

par2 

gluHack 

#suc 

par2 

SparrowToRiss 

#suc 

par2 

BRSAP 

#suc 

par2 

n=400 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

50 

45.30 

50 

2.102 

50 

0.258 

n=420 
0 

- 

40 

2000 

0 

- 

0 

- 

0 

- 

30 

4008 

50 

19.43 

50 

0.988 

50 

0.590 

n=440 
0 

- 

10 

8000 

0 

- 

0 

- 

0 

- 

30 

4007 

50 

44.65 

50 

0.652 

50 

0.648 

n=460 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

20 

6002 

50 

238.0 

50 

0.982 

50 

0.810 

n=480 
0 

- 

10 

8000 

0 

- 

0 

- 

0 

- 

0 

- 

50 

504.0 

50 

14.65 

50 

0.698 

n=500 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

50 

284.1 

50 

1.498 

50 

0.762 

n=520 
0 

- 

10 

8000 

0 

- 

0 

- 

0 

- 

0 

- 

40 

2686 

50 

17.97 

50 

0.766 

n=540 
0 

- 

10 

8000 

0 

- 

0 

- 

0 

- 

0 

- 

40 

3183 

50 

9.179 

50 

0.836 

Over all 
0 

- 

80 

8000 

0 

- 

0 

- 

0 

- 

80 

8002 

380 

875.6 

400 

6.003 

400 

0.671 

Table 5: Experimental results on the 5.206HRS Random benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

Score2SAT 

#suc 

YalSAT 

#suc 

ProbSAT 

#suc 

Dimetheus 

#suc 

Sparrow 

#suc 

gluHack 

#suc 

SparrowToRiss 

#suc 

BRSAP 

#suc 
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par2 par2 par2 par2 par2 par2 par2 par2 par2 

n=600 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

400 

965.1 

400 

968.0 

2000 

11.94 

2000 

0.890 

n=700 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

2000 

12.11 

2000 

1.140 

n=800 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1600 

274.4 

2000 

1.388 

n=900 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1200 

505.6 

2000 

1.410 

n=1000 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1200 

504.9 

2000 

1.560 

Over all 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

400 

1153 

400 

1154 

8000 

261.8 

10000 

1.278 

Table 6: Experimental results on the 5.5HRS SAT2017 benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

par2 

Score2SAT 

#suc 

par2 

YalSAT 

#suc 

par2 

ProbSAT 

#suc 

par2 

Dimetheus 

#suc 

par2 

Sparrow 

#suc 

par2 

gluHack 

#suc 

par2 

SparrowToRiss 

#suc 

par2 

BRSAP 

#suc 

par2 

n=400 
10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

9.507 

50 

164.8 

50 

0.332 

n=420 
20 

6000 

20 

6000 

20 

6000 

20 

6000 

20 

6000 

20 

6000 

50 

4.088 

50 

109.1 

50 

0.932 

n=440 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

50 

7.289 

50 

205.5 

50 

1.118 

n=460 
10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

37.34 

50 

166.3 

50 

1.184 

n=480 
10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

33.63 

50 

158.0 

50 

0.908 

n=500 
20 

6001 

20 

6000 

20 

6000 

20 

6000 

20 

6000 

20 

6000 

50 

51.75 

50 

130.4 

50 

1.230 

n=520 
10 

8002 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

39.30 

50 

173.1 

50 

1.274 

n=540 
0 

- 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

42.69 

50 

190.9 

50 

1.396 

Over all 
80 

8000 

90 

7750 

90 

7750 

90 

7750 

90 

7750 

90 

7750 

400 

28.20 

400 

162.3 

400 

1.047 

 

encouragingly, Table 4 shows that BRSAP is over 9 times 

faster than SparrowToRiss in overall 5.206HRS instances, 

indicating that BRSAP is the comprehensive best algorithm in 

this comparison. On the other hand, SparrowToRiss is the first 

place on the random SAT track of SAT Competition 2018 and 

gluHack also exhibits good performance on this benchmark, 

thus it is challenging to improve such performance over 

SparrowToRiss, indicating that BRSAP algorithm achieves the 

state-of-the-art performance on HRS instances with r=5.2. 

7.1.4.4 Results on the 5.206HRS Random benchmark 

To evaluate the performance of these solvers on large 

random HRS instances, we conduct the experiment of BRSAP 

and its state-of-the-art SLS competitors CSoreSAT, 

Score2SAT, YalSAT, ProbSAT, Dimetheus as well as Sparrow, 

and complete competitors gluHack as well as SparrowToRiss 

on the large random HRS ones with r=5.206. The experimental 

results are illustrated in Table 5. It is encouraging to see the 

performance of BRSAP remains surprisingly good on these 

5.206HRS random benchmark, where its competitors show 

rather poor performance, especially for SLS solvers. It is 

apparent that BRSAP stands out as the best algorithm on this 

benchmark. According to Table 5, BRSAP consistently solves 

all HRS instances with up to 1000 instance, although the 

competitor SparrowToRiss solves 1600, 1200, 1200 runs on the  

 

n800, n900 and n1000 class respectively, whereas other all 

competitors fail to find a solution for any of these instances 

(CSoreSAT, Score2SAT, YalSAT, Dimetheus, ProbSAT, 

Sparrow and gluHack), indicating the scalability of the BRSAP 

algorithm. Indeed, to the best of our knowledge, all 5.206HRS 

random benchmark are solved for the first time. Given the good 

performance of BRSAP on the 5.206HRS Random with 1000 

variable, it is very likely it could be able to solve larger HRS 

instances with r=5.206.  

7.1.4.5 Results on the 5.5HRS SAT2017 benchmark 

Table 6 shows experimental results on the HRS instances with 

r=5.5. As is clear from Table 6, BRSAP shows significantly 

better performance than other competitors on the whole 

instances in terms of both successful runs and par 2. For the 

whole benchmark, BRSAP and SparrowToRiss succeed in all  

runs, while gluHack succeeds in 290 runs (out of 400 runs), and 

CSoreSAT succeeds in 80 runs, and Score2SAT, YalSAT, 

ProbSAT, Dimetheus, and Sparrow 90 runs respectively. 

Particularly, the par 2 of BRSAP is about 155 times less than of  

SparrowToRiss, and about 7402 orders of magnitudes less than 

those of other state-of-the-art SLS competitors, indicating the 

effectiveness of BRSAP algorithm. 

7.1.4.6 Results on the 5.5HRS Random benchmark 
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The experimental results for solving the large HRS instance  

with r=5.5 are presented in Table 7. It is clear that BRSAP 

shows significantly better performance than all its competitors 

on the whole benchmark. BRSAP is the only solver that solves 

these HRS instances with up to 1000 variables consistently (i.e., 

with 100% success rate), whereas all its competitors fail to find 

a solution for any of these instances with n=1000, and BRSAP 

outperforms its competitors in terms of par 2, which indicates 

the scalability of the BRSAP algorithm. 

7.1.4.7 Results on the 5.699HRS Random benchmark 

We conduct more empirical evaluations of BRSAP and its 

state-of-the-art SLS competitors CSoreSAT, Score2SAT, 

YalSAT, ProbSAT, Dimetheus as well as Sparrow, and 

complete competitors gluHack as well as SparrowToRiss on 

HRS instances with r=5.699. The benchmark is generated by 

HRS tool [36]. 

The experimental results on the 5.699HRS benchmark are 

presented in Table 8. For n200 class, BRSAP is worse than 

gluHack, but BRSAP and gluHack solve the same number of 

instances. For n300, n400, n500, and n700 class, 

SparrowToRiss, gluHack and BRSAP show the same 

performance in terms of successful run, but BRSAP has less 

accumulative run time. For n800, n900 and n1000 instances, 

BRSAP stands out as the best solver in this comparison. 

Especially, BRSAP shows significantly superior performance 

than its competitors on n900 and n1000 class, where it solves 

all instances, while other competitors fail to find a solution for 

any of these instances. Overall, BRSAP solves 9000 instances, 

compared to 0, 0, 0, 0, 0, 0, 6000 and 2600 instances for 

CSoreSAT, Score2SAT, YalSAT, ProbSAT, Dimetheus, 

Sparrow, gluHack and SparrowToRiss    respectively, which 

clearly demonstrates the superiority of BRSAP over its SLS 

and complete competitors on solving HRS instances with 

r=5.699. 

Table 7: Experimental results on the 5.5HRS Random benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

par2 

Score2SAT 

#suc 

par2 

YalSAT 

#suc 

par2 

ProbSAT 

#suc 

par2 

Dimetheus 

#suc 

par2 

Sparrow 

#suc 

par2 

gluHack 

#suc 

par2 

SparrowToRiss 

#suc 

par2 

BRSAP 

#suc 

par2 

n=600 
0 

- 

400 

960.0 

400 

960.0 

400 

960.0 

400 

960.0 

400 

960.0 

1600 

299.2 

2000 

307.6 

2000 

1.376 

n=700 
400 

963.3 

400 

960.0 

400 

960.0 

400 

960.0 

400 

960.0 

400 

960.0 

1200 

596.2 

800 

760.8 

2000 

1.732 

n=800 
0 

- 

400 

960.0 

400 

960.0 

400 

960.0 

400 

960.0 

400 

960.0 

0 

- 

400 

960.3 

2000 

1.854 

n=900 
400 

986.2 

400 

960.0 

400 

960.0 

0 

- 

400 

960.0 

400 

960.0 

0 

- 

800 

816.8 

2000 

2.062 

n=1000 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

2000 

2.202 

Over all 
800 

1110 

1600 

1008 

1600 

1008 

1200 

1056 

1600 

1008 

1600 

1008 

2800 

899.1 

4000 

758.7 

10000 

1.845 

Table 8: Experimental results on the 5.699HRS Random benchmark.  

Instance 

Class 

CSoreSAT 

#suc 

par2 

Score2SAT 

#suc 

par2 

YalSAT 

#suc 

par2 

ProbSAT 

#suc 

par2 

Dimetheus 

#suc 

par2 

Sparrow 

#suc 

par2 

gluHack 

#suc 

par2 

SparrowToRiss 

#suc 

par2 

BRSAP 

#suc 

par2 

n=200 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

0.028 

1000 

46.19 

1000 

0.224 

n=300 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

0.459 

1000 

101.4 

1000 

0.256 

n=400 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

2.589 

1000 

229.2 

1000 

0.338 

n=500 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

42.08 

1000 

249.8 

1000 

0.402 

n=600 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

800 

275.7 

800 

470.6 

1000 

0.442 

n=700 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

244.9 

400 

875.3 

1000 

0.786 

n=800 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

200 

1070 

0 

- 

1000 

0.876 

n=900 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

0.976 

n=1000 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

1000 

1.056 

Over all 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

6000 

448.4 

2600 

619.2 

9000 

0.595 

 



 11 

Table 9: The instances numbers, ratio and sizes for each HRS and URS with long clauses in the SAT2017 benchmark 

 HRS 

URS 

5-SAT 7-SAT 

medium huge medium huge 

#inst. 40 40 40 40 20 40 20 

ratio 4.3 5.206 5.5 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0} 

size 𝑛 ∈ {400, 420,… ,540} 𝑛 ∈ {200, 210, …, 590} 250000 𝑛 ∈ {90, 92, …, 168} 50000 

Table 10: The instances numbers, ratio and sizes for each HRS and URS with long clauses in the SAT2018 benchmark 

 HRS 

URS 

5-SAT 7-SAT 

medium huge medium huge 

#inst. 55 55 55 10 20 10 20 

ratio 4.3 5.206 5.5 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0} 

size 𝑛 ∈ {200, 220,… ,400} 250 250000 120 50000 

 

7.2 Experimental evaluation on URS and HRS 

In order to show the generality and applicability of the 

proposed BRSAP algorithm, additional experiments on the 

URS and HRS benchmarks are carried out and the results are 

summarized in the following parts. Most (nearly 66.7% of) 

uniform instances in the benchmark of the random SAT track in 

SAT Competition 2017 are the ones at the phase transition. 

However, the performance of existing SLS algorithms on 

random k-SAT instances at the phase transition is still 

unsatisfactory. Thus, results of extensive experiments to 

evaluate BRSAP on uniform k-SAT instances at the phase 

transition and with long clauses are provided. 

7.2.1 Benchmarks and Experiment Preliminaries 
All the URS instances used in our experiments are generated 

according to the and k-SAT generator6 . We adopt the following 

4 testing benchmarks. 

1) SAT2017: all 120 HRS instances and all 120 medium and 

huge random k-SAT instances with long clauses from SAT 

Competition 2017, and each k-SAT, the instances contains  

various sizes and ratios. The details of the benchmark are 

given in Table 9. 

2) URS 5-SAT: Random 5-SAT problems generated by the 

k-SAT generator. Medium 5-SAT instances at the 

threshold ratio of phase transition (r=21.115, 100 instances, 

n=200, 250, 300, 350, 400, 20 instances for each size) 

3) URS 7-SAT: Random 7-SAT problems generated by the 

k-SAT generator. Medium 7-SAT instances at the 

threshold ratio of phase transition (r=87.79, 100 instances, 

n=110, 120,130, 140, 150, 20 instances for each size) 

4) SAT2018: all 165 HRS instances and all 60 medium and 

huge random k-SAT instances with long clauses from SAT 

Competition 20187. The details of the benchmark are given 

in Table 10. 

We tuned the β, η and γ parameters of BRSAP on URS 

according to our experience in Table 11. 

 
6https://sourceforge.net/projects /ksat generator/  
7http://sat2018.forsyte.tuwien.ac.at/  

 

Table 11: Parameter settings of BRSAP for URS instances 

scale 5-SAT 7-SAT 

medium instances β=100000 

μ=1000 

η=1000 

     β=5000 

μ=50 

η=50 

huge instances 

 

The complete solvers did not solve any instances for the 

medium and huge instances of the SAT competition in 2018 

(except the champion solver SparrowToRiss), thus, gluHack 

was not applied to solve the medium and huge random k-SAT  

instances in the following experiments. In order to evaluate the 

relative effectiveness and efficiency of BRSAP, we compare 

BRSAP with SparrowToRiss, CScoreSAT, Score2SAT, 

YalSAT and PobSAT on URS and HRS benchmarks. 

Experiments on the four benchmarks are carried out on 

Intel(R) Core (TM) i7-6700U 3.4 GHz CPU with 16GB RAM, 

running the 64-bit Ubuntu Linux operating system. The CPU 

time limit is 5000 seconds. For all benchmarks, each solver is 

executed 10 times for each instance. we report average solved 

instances at ten run “AverS” for these benchmarks as  

well as “par 2”. The best results for an instance class are 

highlighted in bold. If a solver has no successful run on an 

instance class, the corresponding “par 2” is marked with “-”. 

7.2.2 Experimental Results 
In the following, we present the comparative experimental 

results of BRSAP and its competitors on each benchmark. 

7.2.2.1 Results on the SAT2017 benchmark 

Table 12 presents the results of the performance of BRSAP 

compared with state of the art SLS solvers on all HRS and URS 

with long clauses from SAT Competition 2017. The results 

show that for 5-SAT instances with r=21.117, the performance 

of BRSAP, Score2SAT and CScoreSAT are similar and better 

than that of other competitors, and for the remaining instances 

class, BRSAP significantly outperforms its competitors in 

terms of metrics.  

Especially, BRSAP succeeds in a few more average runs 

than its competitors on random 7-SAT instances at phase  
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Table 12: Experimental results on the SAT2017 benchmark. 

Random 

SAT 
r 

SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP 

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 

HRS 

4.3 40 0.117 40 0.009 40 0.008 40 0.017 40 0.057 40 0.115 

5.206 40 5.709 0 - 0 - 0 - 0 - 40 0.594 

5.5 40 151.0 6 8500 9 7750 9 7750 9 7750 40 0.980 

URS  

<21.117 4 8083 10 5250 8 6231 12 4147 11 4526 13 3805 

21.117 9 7760 15 6476 14 6655 13 6880 13 6829 14 6667 

<87.79 9 5602 11 4839 11 5756 9 5517 11 4514 12 4082 

87.79 16 6035 18 5931 19 5582 17 5957 18 5552 21 4993 

Overall/240 158 3466 100 5992 101 5997 100 5903 102 5775 180 2801 

Table 13: Experimental results on the URS 5-SAT benchmark. 

Ratio 
Variable SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP 

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 

r=21.117 

n=200 11 4516 11 4506 11 4523 11 4513 11 4513 11 4502 

n=250 9 5582 10 5069 9 5502 10 5247 10 5142 10 5112 

n=300 3 8525 8 6298 9 6078 10 5283 8 6122 9 5894 

n=350 8 6091 12 4166 13 3749 13 3734 13 3734 13 3721 

n=400 1 9510 3 8667 3 8728 2 9216 3 8613 3 8602 

Table 14: Experimental results on the URS 7-SAT benchmark. 

Ratio 
Variable SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP 

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 

r=87.79 

n=110 10 5087 10 5141 11 4592 11 4749 11 4559 11 4532 

n=120 9 5626 9 5780 10 5248 10 5451 9 5969 10 5261 

n=130 10 5123 10 5518 13 3981 13 4412 12 4380 11 4774 

n=140 

n=150 

10 

0 

5087 

- 

11 

3 

4829 

8594 

13 

4 

4048 

8327 

10 

5 

5397 

8119 

10 

5 

5597 

7965 

13 

7 

4019 

7394 

Table 15: Experimental results on the SAT2018 benchmark. 

Random 

SAT 
Ratio 

SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP 

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 

HRS 

4.3 55 0.052 55 0.009 55 0.001 55 0.001 55 0.013 55 0.012 

5.206 55 1.020 8 8591 33 4000 9 8387 12 7858 55 0.324 

5.5 55 136.4 11 8000 12 7818 12 7818 12 7818 55 0.516 

URS  

<21.117 3 8570 9 5706 11 4683 12 4079 11 4524 13 3941 

21.117 7 3111 8 2495 7 3015 8 2326 7 3404 9 1523 

<87.79 9 5657 10 5129 11 4720 9 5520 11 4522 12 4118 

87.79 8 2262 5 5224 8 2453 6 4488 8 2967 8 2692 

Overall/225 192 1537 106 5362 137 3968 111 5117 116 4919 207 784.3 

transition. BRSAP succeeds in 21 average runs, compared to 19 

for Score2SAT, and 18 for both ProbSAT and CScoreSAT, and 

17 for YalSAT, and 16 for SparrowToRiss. Further observation 

shows that BRSAP succeeds in 179 average runs, compared to 

158 for SparrowToRiss, and 102 for ProbSAT, and 101 for 

Score2SAT, and 100 for both CScoreSAT and YalSAT. Overall, 

BRSAP succeeds in 180 average runs, whereas none of its 

competitors succeeds in more than 160 average runs with the 

half cutoff time, which illustrates its robustness and scalability. 

7.2.2.2 Results on the URS 5-SAT benchmark 

To measure the performance of BRSAP on URS instances at 

phase-transition more accurately, we additionally test BRSAP 

on the medium 5-SAT instances. The results are presented in 

Table 13. According to the Table 13, BRSAP has similar 

performance with ProbSAT, CScoreSAT, YalSAT and 

Score2SAT on this benchmark. 

7.2.2.3 Results on the URS 7-SAT benchmark 

In order to measure the performance of BRSAP on 7-SAT 

instance at phase transition, we compare BRSAP with 

ProbSAT, CScoreSAT, YalSAT, SparrowToRiss which is the 

best SLS solver in the random track of SAT Competitions in 

2018, and Score2SAT which is the best SLS solver on URS at 

phase-transition in the random track of SAT Competitions in 

2017. The results are reported in Table 14. As can be seen from 

Table 14, BRSAP does not give the best performance on the 

only 7-SAT instance with n=130, but BRSAP has similar 

performance to the solvers SparrowToRiss and Score2SAT. 

7.2.2.4 Results on the SAT2018 benchmark 

To investigate the performance of BRSAP on URS and HRS 

benchmarks with various ratio, we compare it with ProbSAT, 

CScoreSAT, YalSAT, SparrowToRiss and Score2SAT on all 

HRS instances and URS instances with long clauses from SAT 
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Competition 2018. Table 15 summarizes the experimental 

results on the SAT2018 benchmark. 

BRSAP gives the best performance for all random SAT 

instances except for the HRS instances with r=4.3 and URS 

instances with r=87.79, and especially it solves more HRS 

instances than all SLS competitors and more URS instances 

with long clauses than all competitors. For the URS instances 

with r=87.79, BRSAP solves as many instances as 

SparrowToRiss, but the par 2 is a little more than 

SparrowToRiss’s.  Overall, BRSAP solves 207 instances on 

average, and SparrowToRiss solves 192 instances on average, 

and Score2SAT solves 137 instances on average, and ProbSAT 

solves 116 instances on average, and YalSAT solves 111 

instances on average, and CScoreSAT solves 106 instances on 

average. BRSAP significantly outperforms SparrowToRiss on 

all random SAT instances. SparrowToRiss is the first place on 

the random SAT track of SAT Competition 2018, thus it is 

challenging to improve such performance over SparrowToRiss, 

indicating that BRSAP algorithm achieves the state-of-the-art 

performance on random SAT instances, which illustrates the 

robustness and scalability of BRSAP algorithm on HRS 

instances and URS instances with long clauses. 

7.3 Summary of experimental results 

According to these experiments including in Tables 2-8, 

BRSAP is significantly better than the state-of-the-art SLS 

solvers and complete solvers on a broad range of instances, and  

shows the efficiency and the robustness on solving all testing 

HRS instances with up to 1000 variables. This experiment 

clearly demonstrates that the superiority of BRSAP becomes 

more significant over its competitors as the size of HRS 

instances increases.  As can be seen from Tables 12-15, BRSAP 

is quite competitive for solving URS with long clauses. Thus, 

BRSAP can effectively solve both URS problems with long 

clauses and HRS problems (The current state-of-the-art SLS 

solvers can only effectively solve URS instances, and complete 

solvers can only effectively solve HRS instances. There is no 

solver that can effectively solve both HRS and URS).  

Moreover, the heuristics used by SLS solvers to solve 

random SAT problems are also potentially useful for solving 

real-world SAT problems.  The SAT instances encoded from 

real-world applications may be of large size. Therefore, it is of 

great significance to develop a fast and efficient SAT solver 

solving theories and methods. Also, SLS is an efficient method 

for solving graphs, gene regulatory networks, automated 

verification, scheduling and computing theory. In this work, 

our BRSAP algorithm is able to solve large HRS instances with 

up to 1000 variables within five seconds and can effectively 

solve URS with long clauses, and thus can provide support for 

solving problems from the application domain. 

8 Discussions 

Some further discussions are given below to clarify some issues 

and highlight some important cases. 

8.1 Effectiveness of the BRSAP components 

In this section, we present a detailed discussion on each 

underlying component of BRSAP algorithm, namely GWU, 

GWAC, second-level-biased random walk strategy, the new 

tie-breaking strategy, the score property and the age greed 

property. Since almost all state-of-the-art SLS solvers can 

effectively solve all HRS instances with r=4.3, we do extensive 

experiments for following alternative versions on all testing 

HRS benchmarks expect for the HRS instances with r=4.3. The 

computing environments for these experiments are the same as 

those used for experiments in Section 7.1. 

8.1.1 Effectiveness of GWU 

In order to demonstrate the effectiveness of clause weighting 

scheme GWU in the BRSAP algorithm, we conduct 

experiments to compare BRSAP with its an alternative version 

named BRSAP_alt1, which does not utilize the GWU, i.e., 

removing update clause’ weights GWU of lines 9-11 and 

removing update GWU of line 23 in Algorithm 1.  We use the 

default value of BRSAP as the parameter settings of η and γ. 

The BRSAP_alt1 algorithm solves six testing benchmarks and 

performs ten times for each instance with the cutoff time of 600 

seconds. The experimental results on the six benchmarks are 

shown in Table 16. 

 From the results in Table16, it is apparent that BRSAP_alt1 

fails to solve any instance with r=5.206 and r=5.699, and 

BRSAP_alt1 succeeds in solving 50 runs (out of 400), 400 runs 

(out of 10000) and 760 runs (out of 1650). The performance of 

BRSAP significantly outperforms that of BRSAP_alt1, 

demonstrating the significance of the clause weighting scheme 

GWU (i.e., the significance of HSCs-GWU) 

8.1.2 Effectiveness of GWAC 

The BRSAP algorithm does not use the new clause weighting 

scheme GWAC, i.e., removing lines 12-14 and 16 in Algorithm 

1. We obtain an alternative degenerating version called 

BRSAP_alt2. We use the default value of BRSAP as the 

parameter settings of β and γ. 

We conduct extensive experiments to show the effectiveness 

of GWAC on all testing instances. The BRSAP_alt2 also 

performs ten times for each instance with the cutoff time of 

600 seconds. The experimental results on the six benchmarks 

are reported in Table 16. 

In terms of success runs, BRSAP significantly outperforms 

BRSAP_alt2 on all six benchmarks. The instance class for 

which BRSAP does not give the best performance is HRS 

instances with r=5.206 and r=5.5 in terms of par2. Although 

BRSAP_alt2 spends less time than BRSAP, BRSAP and 

BRSAP_alt2 solve the same instances with r=5.206 and 

r=5.699. For the HRS instances with r=5.5, we observe that 

BRSAP significantly outperforms BRSAP_alt2. The 

improvement of BRSAP over BRSAP_alt2 is small, but the gap 

is still considerable on the HRS instances with r=5.5. Overall, 

the comparison between BRSAP and BRSAP_alt2 shows that 

updating the clause’ weights in BRSAP is of great significance 

for solving HRS instances with r=5.5. 
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Table 16: Comparison among BRSAP and its alternative degenerating versions on the six testing benchmarks. Each solver is performed 10 times 

on each class, and the results in bold indicate the best performance for each class. 

Benchmarks 

BRSAP BRSAP_alt1 BRSAP_alt2 BRSAP_alt3 BRSAP_alt4 BRSAP_alt5 BRSAP_alt6 BRSAP_alt7 

suc 

par2 

suc 

par2 

suc 

par2 

suc 

par2 

suc 

par2 

suc 

par2 

suc 

par2 

suc 

par2 

5.206HRS 

SAT2017 

400 

0.671 

0 

- 

400 

0.545 

0 

- 

400 

0.884 

390 

30.64 

400 

0.675 

0 

- 

5.206HRS 

Random 

10000 

1.278 

0 

- 

10000 

0.989 

0 

- 

10000 

1.498 

8400 

193.2 

10000 

1.287 

0 

- 

5.5HRS 

SAT2017 

400 

1.047 

50 

1050 

380 

60.72 

90 

930.0 

130 

810.2 

370 

90.92 

370 

90.93 

90 

930.0 

5.5HRS 

Random 

10000 

1.845 

400 

1152 

9200 

97.38 

800 

1104 

1200 

1056 

8400 

193.5 

9200 

97.69 

1200 

1056 

HRS 

SAT2018 

1650 

0.173 

760 

652.5 

1600 

36.50 

770 

647.2 

1300 

254.7 

1580 

51.06 

1590 

43.80 

760 

648.6 

5.699HRS 

Random 

9000 

0.595 

0 

- 

9000 

0.480 

0 

- 

8200 

107.3 

8600 

53.89 

8400 

80.57 

0 

- 

 

8.1.3 Effectiveness of the second-level-biased random 

walk 

By removing all clause weighting schemes, i.e., removing the 

GWU (i.e., removing update clause’ weights GWU  of line 23 

in Algorithm 1) and GWAC (i.e., removing update clause’ 

weights GWU of line 16 in Algorithm 1), i.e., replacing the 

biased random walk component, i.e., lines 9-15 in Algorithm 1, 

with the standard random walk component, i.e., line 15 in 

Algorithm 1), we obtain this alternative version named 

BRSAP_alt3. BRSAP_alt3 utilizes the default value of BRSAP 

as the parameter settings of γ. 

We conduct a large number of experiments to show the 

effectiveness of biased random walk on the six benchmarks, 

and the results are summarized in Table 16. The BRSAP_alt3 

performs ten times for each instance with the cutoff time of 600 

seconds.  

The experimental results show that BRSAP obviously 

outperforms BRSAP_alt3. Specifically, BRSAP_alt3 fails to 

solve any instance with r=5.206 and r=5.699, which indicates 

that the importance of the biased random walk based on GWU 

and GWAC. 

8.1.4 Effectiveness of the new tie-breaking strategy 

In this subsection, we do more experiments to analyze the 

effectiveness of the new tie-breaking strategy (lines 18-20 in 

Algorithm 1) in the BRSAP algorithm. To demonstrate the 

effectiveness of the new tie-breaking strategy, we do not utilize 

the tie-breaking strategy, i.e., removing lines 18-20 in 

Algorithm 1. We obtain an alternative degenerating version 

called BRSAP_alt4, which allows the same variable to be 

selected in successive steps. We use the default value of 

BRSAP as the parameter settings of η and β. 

We evaluate BRSAP_alt4 on six testing benchmarks and the 

results are shown in Table 16, where each solver performs 10 

times with a cutoff time of 600 seconds.  

BRSAP shows significantly better performance than 

BRSAP_alt4 on the all six benchmarks in terms of both 

successful runs and average run time. Particularly, on the 

5.5HRS SAT2017, 5.5HRS Random, HRS SAT2018 and 

5.699HRS Random benchmarks, the runtime of BRSAP is 

about 774 times, 572 times, 1472 times and 180 times less than 

of BRSAP_alt5 respectively. The results confirm the 

effectiveness of the new tie-breaking as does in BRSAP on 

solving HRS instances. 

8.1.5 Effectiveness of the greedy property score 

This alternative version of BRSAP utilizes the tie-breaking 

strategy, but the SA function only uses age (i.e., replacing the 

SA function, i.e., SA of line 19 in Algorithm 1, with the age). 

Thus, we obtain this alternative version called BRSAP_alt5, 

which uses the default value of BRSAP as the parameter 

settings. BRSAP_alt5 is executed ten times on each instance 

with the cutoff time of 600 seconds.  

From the results of Table 16, it is clear that BRSAP 

significantly outperforms BRSAP_ alt4 on all HRS instances, 

which indicates that if we do not utilize the greedy property 

score as does in BRSAP, the algorithm performs much worse 

than BRSAP. 

8.1.6 Effectiveness of the diversification property age 

By removing the age in the BRSAP algorithm, i.e., replacing 

SA with only score in line 19 in Algorithm 1, we obtain an 

alternative degenerating version named BRSAP_alt6, which 

uses the default value of BRSAP as the parameter settings of η 

and β. BRSAP_alt6 is executed ten times on each instance with 

the cutoff time of 600 seconds.  

 According to the results of Table 16, the performance of 

BRSAP significantly outperforms that of BRSAP_ alt6 on all 

six HRS benchmarks. Specially, BRSAP_ alt6 succeeds in 

solving 8400 runs on 5.699HRS Random benchmark, whereas 

BRSAP_ alt5 and BRSAP succeed in solving 8600 runs and 

9000 runs on 5.699HRS Random benchmark respectively, 

which indicates that the importance of property age. 

8.1.7 Effectiveness of clause weighting schemes and 

tie-breaking strategy 

This alternative version of BRSAP does not use GWU, GWAC 

and the new tie-breaking strategy. i.e., does not utilize biased 

random walk strategy and the SA (i.e., removing lines 9-14, 16, 
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18-20 and 23 in Algorithm 1, i.e., only using the polynomial 

probability and standard random walk). This alternative version 

is named BRSAP_alt7, which is no parameter to be set. 

We evaluate BRSAP_alt7 on all six benchmarks, where each 

solver performs ten tines with a cutoff time of 600 seconds. 

Table 16 presents that BRSAP_alt7 fails to solve any 

instances with r=5.206 and r=5.699; even on the 5.699HRS 

Random benchmark including instances with n=200. The 

performance of BRSAP is obviously better than that of 

BRSAP_alt7, conforming the significance of the new clause 

weighting schemes and the new tie-breaking strategy. 

8.2 Approximate Implementation of BRSAP 

In this paper, the implementation of BRSAP described in 

Sections 4-6. 

Inspired by the approximate implementation of the SWT 

strategy [39], we firstly propose an accurate implementation of 

GWU scheme, which updates the weights of unsatisfied clauses 

during the search process. The maintenance of the accurate 

implementation is described as follows: whenever a variable x 

is flipped during the search, each clause c ϵ C(x) (C(x)={c | c is 

a clause which x appears in c}) is checked whether c’s state is 

changed (from unsatisfied to satisfied, from satisfied to 

unsatisfied) by flipping a variable x (the implementation of 

checking clauses’ state on BRSAP is equal to one on 

probability SLS algorithms like ProbSAT [17]).  If it is the case 

(c’s state is unsatisfied by flipping the variable y), c’s GWU 

value is updated. 

Note that the discussions below are based on the condition 

that F is a random k-SAT instance with n variables and m 

clauses (r=m/n).   For each clause c, the number of all variables 

is equal to k, i.e., E(|c|) =k. We use F(s) to denote the number of 

unsatisfied clauses in step s, thus E(|F(s)|) < m. 

For the accurate implementation of GWU scheme, the time 

complexity of computing the unsatisfied clauses’ GWU at step 

s is O(E(|F(s)|)) < O(m). 

 Inspired by the approximate implementation of the age 

function [30], we propose an accurate implementation of 

GWAC scheme, which updates the weights of clause selected 

during the search process, i.e., only one clause's GWAC value 

is updated at each step, thus for the accurate implementation of 

GWAC scheme, the time complexity of computing the selected 

clause’ GWAC at each step is O(1). 

The second-level-biased random walk strategy is based on 

the idea of biased random walk strategy [45]. However, the 

second-level-biased random walk strategy is utilized to select a 

clause from two sets (HSCs-GWU and LDCs-GWAC) in the 

worst case. HSCs-GWU and LDCs-GWAC are updated by the 

unsatisfied clauses at each step. For the accurate 

implementation of second-level-biased random walk strategy 

described in Section 5, the worst-case time complexity of 

selecting an unsatisfied clause at step s is O(E(|F(s)|)) + 

O(E(|F(s)|)) = O(E(|F(s)|)). 

The probability strategy is utilized to select a variable from 

the unsatisfied clause c selected based on the 

second-level-biased random walk strategy. The approximate 

implementation of probability strategy on BRSAP is equal to 

one on SLS algorithms based on probability strategy like 

ProbSAT. The new tie-breaking strategy based on the new 

function SA is that the last flipping variable must not be the 

current flipping variable. The tie-breaking strategy is also used 

to select a variable from the unsatisfied clause c selected based 

on the second-level-biased random walk strategy.  Thus, for the 

accurate implementation of variable selection heuristic, the 

worst-case time complexity of computing the probability 

strategy and tie-breaking strategy is O(E(|c|)) + O(E(|c|)) = 

O(E(|c|)) = O(k). 

Compared with SLS algorithms only based probability 

strategy like ProbSAT, the additional implementations of 

BRSAP are the second-level-biased random walk strategy and 

the new tie-breaking strategy. Thus, the worst-case time 

complexity of adding the implementations is O(E(|F(s)|)) + 

O(E(|c|)) = O(E(|F(s)|)) + O(k)< O(m)+ O(k). 

 According to the literature [62], it shows that all the time 

complexities of SLS algorithms only based probability strategy 

(like PrboSAT) are about O(k*r). Thus, all the time 

complexities of the approximate implementation of BRSAP are 

about O(E(|F(s)|)) + O(E(|c|))+O(k*r)= O(E(|F(s)|))+ O(k)+ 

O(k*r)= O(E(|F(s)|))+ O(k*r). If the number of unsatisfied 

clauses is not greater than k*r in step s, then the time 

complexities of the approximate implementation of BRSAP are 

about O(k*r). Otherwise, the time complexities of the 

approximate implementation of BRSAP are greater than O(k*r). 

According to our experience, when the algorithm executes after 

larger than a certain step s, the number of unsatisfied clauses 

must be less than or equal to k*r (This conclusion needs to be 

proved later). Thus, the time complexities of the approximate 

implementation of probability strategy are close to those of the 

approximate implementation of BRSAP.  

The existing probability strategy is ineffective when solving 

to HRS, while the second-level-biased random walk strategy 

and the new tie-breaking strategy shows effectiveness when 

applying to probability strategy, and the related empirical 

analyzes have be shown in Sections 8.1-8.8. The possible 

reason is that second-level-biased random walk strategy and the 

new tie-breaking strategy help probability algorithms to 

decrease blind unreasonable search and thus leads probability 

SLS algorithms to promising search spaces. 

9 Conclusions and future work 

In this work, we proposed two new global clause weighting 

schemes GWU and GWAC and a new scoring function SA 

based on greedy property score and diversification property 

age for improving SLS algorithms on SAT instances, resulting 

in an effective SLS algorithm namely BRSAP, which shows 

excellent performance on HRS instances and URS instances. 

The main results are summarized below:  

1) Firstly, only considering unsatisfied clauses, we proposed 

a global clause weighting scheme named GWU, which aims to 

distinguish unsatisfied clauses. We also defined hard satisfiable 

clauses and easy satisfiable clauses accordingly.  
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2) In order to distinguish easy satisfiable clauses, based on 

the current clauses selected, we further proposed another global 

clause weighting scheme called GWAC. Then we also defined 

long age clauses and short age clauses accordingly.  

3) Based on the GWU and GWAC, we developed a 

second-level-biased random walk strategy to select a clause. 

4) Finally, in order to prevent the same variable to be 

selected in consecutive steps, we adopted the tie-breaking 

strategy, but the previous tie-breaking strategy is not suitable 

for HRS instances. Thus, we proposed the SA function 

combining the score (greedy property) and age (diversification 

property), which is utilized to break ties. Finally, 

second-level-biased random walk strategy based on two global 

clause weighting schemes and a new scoring function were 

used to develop the BRSAP algorithm.  

BRSAP’s effectiveness has been demonstrated on random 

SAT problems from the SAT Competitions in 2017 and 2018, 

and on randomly generated HRS and URS with long clauses 

problems. The results show that BRSAP outperforms 

state-of-the-art SLS solvers and the state-of-the-art complete 

solver in most cases. Moreover, BRSAP can effectively solve 

both URS problems and HRS problems. 

Further investigations show that the effectiveness of BRSAP 

is attributed to second-level-biased random walk strategy based 

on two global clause weighting schemes and the tie-breaking 

strategy based on a linear scoring function SA, especially the 

clause weighting scheme GWU. 

The heuristics used by SLS solvers to solve random SAT 

problems are also potentially useful for solving real-world SAT 

problems [47-49]. The SAT instances encoded from real-world 

applications may be of large size. As our BRSAP algorithm is 

able to solve large HRS instances quickly with up to 1000 

variables within five seconds, and may be beneficial to solving 

cryptography instances, and thus we believe the experimental 

results of BRSAP on HRS instances and URS instances may 

provide support for solving problems from the application 

domain. 

 For future work, we plan to combine the global clause 

weighting schemes and the new tie-breaking strategy with other 

algorithmic techniques, such as linear make [25] and 

configuration checking [1], [3].  Also, inspired by the success 

of two global clause weighting schemes based on GWU and 

GWAC, we would like to explore more global clause weighting 

schemes, and thus employ them to develop more efficient SLS 

algorithms for random SAT. Additionally, we would like to 

apply the GWU, GWAS, the scoring function SA to improving 

performance of SLS algorithms on solving the structured 

instances in SAT competition. 
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