
 1

Abstract
Uniform random satisfiability (URS) and hard random satisfiability (HRS) are two significant generalizations of random

satisfiability (RS). Recently, great breakthroughs have been made on stochastic local search (SLS) algorithms for uniform RS,

resulting in several state-of-the-art algorithms, e.g., Dimetheus, YalSAT, ProbSAT and Score2SAT. However, compared to the

great progress of SLS on URS, the performance of SLS on HRS lags far behind. In this paper, we propose two global clause

weighting schemes and a new hybrid scoring function called SA based on a linear combination of a property score and property age,

and then apply a second-level-biased random walk strategy based on two clause weighting schemes and SA to develop a new SLS

solver called BRSAP. To evaluate the performance of BRSAP, we conduct extensive experiments to compare BRSAP with

state-of-the-art SLS solvers and complete solvers on HRS instances and URS instances from SAT Competition 2017 and SAT

Competition 2018 as well as 4100 generated satisfiable large HRS and URS ones. The experiments illustrate that BRSAP

obviously outperforms its competitors, indicating the effectiveness of BRSAP. We also analyze the effectiveness of the underlying

ideas in BRSAP.

Keywords: Hard random satisfiability (HRS) · Stochastic local search (SLS) ·Linear combination · Property

1 Introduction

The propositional satisfiability (SAT) problem is one of the

most widely studied NP-complete problems and plays an

outstanding role in many domains of computer science and

artificial intelligence due to its significant importance in both

theory and applications [1]. The SAT problem is fundamental

in solving many practical problems in combinatorial

optimization, statistical physics, circuit verification,

computing theory [2, 14], and SAT algorithms have been

widely used to solve real-world applications, such as computer

algebra systems [9], core computer algebra systems [47], core

graphs [48], gene regulatory networks [49], automated

verification [54], model-based diagnosis (MBD)[55],

scheduling [56], machine induction [57].

This work is supported by the National Natural Science Foundation of China
(Grant No.61673320) and the Fundamental Research Funds for the Central

Universities (Grant No.2682017ZT12, 2682016 CX119).

 H. Fu is with the Key Laboratory of National-Local Joint Engineering
Laboratory of System Credibility Automatic Verification of China, School of

Information Science and Technology, Southwest Jiaotong University, Chengdu,
China (email: fhm6688@my.swjtu.edu.cn)

*Corresponding author. Guangfeng Wu is with the Key Laboratory of

National-Local Joint Engineering Laboratory of System Credibility Automatic

Verification of China, School of Mathematic, Chengdu, China (email:
wuguanfengfeng@126.com)

 J. Liu is with the Key Laboratory of National-Local Joint Engineering

Laboratory of System Credibility Automatic Verification of China, and also
with the School of Computing, Ulster University, Northern Ireland, UK (email:
j.liu@ulster.ac.uk)

Y. Xu is with the Key Laboratory of National-Local Joint Engineering

Laboratory of System Credibility Automatic Verification of China, School of

Mathematic, Chengdu, China (email: xuyang@swjtu.edu.cn)

There are many optimization algorithms dedicated to

different SAT solvers to solving SAT problems, which are

divided into two main classes: one is complete, the other is

incomplete.

Complete algorithms are mainly based on Davis-Putnam-

Logemann-Loveland algorithm (DPLL) [3, 4] and resolution

principle [5]. DPLL algorithm is based on a binary search tree

and adopts chronological backtracking, while the

Conflict-Driven Clause Learning CDCL algorithm [58]

maintains a stack of assumptions and propagations and adopts

non-chronological backtracking as well as chronological

backtracking [60]. The direct improvement on DPLL is to

extend it into lookahead heuristics, which utilizes global

heuristics to pick good decisions at the top-level [59].

The incomplete SAT solvers are mainly based on stochastic

local search (SLS) algorithms [6, 7] which are among the

best-known methods currently available for solving types of

SAT problems. Although the incomplete SAT solvers cannot

guarantee either to find the solutions or prove a given Boolean

formula unsatisfiable, some of them are surprisingly more

effective than state-of-the-art complete solvers on finding

models of satisfiable formulae for random k-SAT instances [8].

The heuristics used by SLS solvers to solve random SAT

problems are also potentially useful for solving real-world SAT

problems [9].

In this work, we concentrate on the SLS algorithm. SLS

algorithms are best suited for solving problems required short

time to solve. [1]. There are more interests in improving the

performance of SLS algorithms on random SAT instances,

especially hard random SAT (HRS) ones [46]. From the

theoretical viewpoint, HRS is a random 3-SAT, which is a

classic problem in computational complexity research. From

the practical viewpoint, in addition to being applied to sat

More efficient stochastic local search for

satisfiability

Huimin Fu, Guanfeng Wu*, Jun Liu and Yang Xu

mailto:fhm6688@my.swjtu.edu.cn
mailto:wuguanfengfeng@126.com
mailto:j.liu@ulster.ac.uk

 2

solving, heuristic methods have also been applied to solve a

variety of problems in the field of machine learning and

artificial intelligence, and it still has great potential in

application, e.g., generators of HRS with a predefined solution

can be used in cryptography as one-way functions [10].

In the beginning, an SLS algorithm generally generates an

initial assignment of the variables of F. Then it explores the

search space to minimize the number of unsatisfied clauses. To

do this, it iteratively flips the truth value of a variable selected

according to some heuristic at each step until it seeks out a

solution or timeout. Hence, there are two main factors affecting

SLS algorithms, one is to generate a clause selection heuristic,

and the other is a variable selection heuristic.

In focused random walk (FRW) algorithms, SLS solvers

generally select a clause from unsatisfied clauses randomly,

such as ProbSAT [17], YalSAT [20], Dimetheus [16],

WalkSATlm [18]. Most SLS solvers improve different variable

selection heuristics to develop algorithms, and they usually use

make property, break property and score property to decrease

the current number of unsatisfied clauses, and utilize age

property to avoid local optima.

In two-mode SLS algorithms during the last ten decades, the

most significant development was perhaps “configuration

checking” strategy (CC) [39] and “weights” strategy [19]

(similar to “score function” [30]), leading to the effective

CCASat [39], Swqcc [61], CScoreSAT [30] and DCCASat [19].

One of the main features of the CC strategy is that the last

flipping variable must not be the current flipping variable [39].

One of the main features of the weighting schemes is that

greedily select a best variable to be flipped among the candidate

variables.

There have been numerous works on improving the

performance of SLS algorithms [11-17]. Substantial progress

has been made in only URS instances with various

clause-to-variable ratios. However, a family of SAT instances

includes URS instances and HRS instances, and most SLS

algorithms on random instances focus on URS. Although URS

at the phase transition has been cited as the hardest track of

SAT problems [18, 19], when it comes to the HRS instances,

which is even harder than URS instances at the solubility phase

transition for SLS solvers, Dimetheus[13] , ProbSAT[17],

Yalsat [20] and Score2SAT [22] lost their power and

effectiveness, as can be seen from the competition results of the

random track of SAT Competition 20171 and 20182, so their

performance for solving HRS need be further improved.

Compared to the great progress of SLS algorithms on solving

URS, the performance of SLS algorithms on solving HRS lags

far behind. This motivates us to design a more efficient SLS

algorithm for solving HRS.

This paper is devoted to developing an efficient SLS

algorithm for solving HRS and URS instances. The

improvement of weighting schemes has become the

mainstream of optimizing SLS algorithms [51-53]. In this work,

we propose two ideas about clause weighting schemes. The

1 https://baldur.iti.kit.edu/sat-competition-2017/results/random.csv.
2 http://sat2018.forsyte.tuwien.ac.at/index.php?cat=results.

first and most important one is based on an intuition that prefers

to satisfy frequently becoming unsatisfied or easily keeping

satisfied clauses during the search. This is done by two new

clause weighting schemes that work for unsatisfied clauses in

the total search and is activated to pick a clause. It is worth

noting that previous SLS algorithm for SAT either do not use

clause weighting scheme or update clause’ weights when a

local optimum is reached and utilize the clause weighting

scheme is to select a variable. Our work develops a

second-level-biased random walk based on two global clause

weighting schemes to select a clause. We also propose a new

scoring function named SA based on a linear combination of

score property and age property. The SA function differs from

previous hybrid scoring functions in that it considers one level

score property distinguishing itself from previous two levels

score property in SLS algorithms [30]. Based on SA, we design

a new tie-breaking strategy. Then based on the

second-level-biased random walk and the scoring function SA,

we develop a new SLS algorithm called BRSAP (combining

second-level-biased random walk based on two new clause

weighting schemes and linear scoring function SA as well as

the probability strategy). To evaluate the effectiveness of the

BRSAP algorithm, we conduct extensive experiments on HRS

instances to compare BRSAP against recent state-of-the-art

SLS algorithfms, including CSoreSAT [30], Score2SAT [22],

YalSAT, Sparrow [23], ProbSAT and Dimetheus, and

state-of-the-art two complete algorithms SparrowToRiss [23]

and gluhack [24] on HRS instances. The solvers are compared

on HRS and URS problems from the SAT Competitions in

2017 and 2018 and on randomly generated HRS and URS

problems. The experimental results show that BRSAP performs

remarkably well compared to state-of-the-art algorithms on

HRS instances. BRSAP also proves to be competitive even

when it is compared to state-of-the-art algorithms like

ProbSAT, YalSAT, CscoreSAT, Score2SAT and

SparrowToRiss on URS with long clauses. Moreover, through

the analysis on the experimental results, it has proved

performance superiority of the underlying ideas in BRSAP.

This paper is organized as follows. In Section 2, we provide

some necessary basic knowledge. Section 3 reviews the

definition of polynomial probability. In Section 4, we introduce

two clause weighting schemes. Section 5 provides the biased

random walk. In Section 6, we present the new tie-breaking

based on the new scoring function SA and the BRSAP

algorithm in detail. The experimental analyses and some

discussions are performed in Section 7 and Section 8,

respectively. Finally, we conclude this paper and then give

some future work in Section 9.

2 Preliminaries

A formula F of the SAT is defined by a pair F=(X, C) such that

X={x1, x2,…, xn} is a set of n Boolean variables (their values

belong to the set {true, false}) and C={c1, c2, …, cn} is a set of

m clauses. A clause ci ϵ C is a disjunction of literals and a literal

is either a variable xi (which is called positive literal) or its

 3

negation ¬xi (which is called negative literal). If the size of each

clause in C is equal to k, then the instance is a k−SAT instance

and r= m/n is its clause-to-variable ratio. An instance F=

c1˄c2˄…˄cm is a conjunction of clauses.
A complete satisfying assignment for a formula F is an

assignment to its variables making formula F true. If xi is true

by then xi belongs to (otherwise ¬xi ϵ). A literal l is said

to be satisfied by the current value of the variable if l ϵ and

falsified if ¬l ϵ . A clause is unsatisfied by if its all literals

are false literal and satisfied otherwise. A satisfying solution of

F is a complete assignment that satisfies all the clauses of F.

In SLS algorithms for HRS, for a variable x and an

assignment , the mainly variable x properties used by SLS

algorithms for SAT are make(x) [25] and break(x) [26], which

are the number of clauses that would become satisfied and

unsatisfied respectively, if variables x were to be flipped.

Usually, SLS algorithms for random k-SAT instances select a

variable x to be flipped based on its properties of score(x)

[27-30] and age(x) [31-35]. A scoring function which can be a

simple property or any mathematical expression with one or

more properties measures the increase in the number of

satisfied clauses by flipping x, and score(x) is defined as

make(x)−break(x). age(x) is defined as the number of steps that

have occurred since the variable x was last flipped [30].

The hard random SAT (HRS) is particularly interesting

because it turns out to be one of the hardest for all solvers [10].

Moreover, the HRS instances generated are especially difficult

for SLS algorithms [36]. Parameter optimization tool SMAC

[37], has been successful in improving the performance of SAT

solvers, especially SLS solvers. However, the recent successful

generator is based on the clause distribution control method [38]

and SMAC with the opposite purpose to slow down SAT

solvers and can be automatically configured to generate hard

benchmarks based on Dimetheus, ProbSAT and so on [10].

HRS was added for the first time to the random track of SAT

Competition in 2016 in order to evaluate and improve SAT

solvers, especially for SLS solvers. As witnessed in SAT

competitions since 2016, it has become a mainstream for SLS

solvers, for example, apart from URS instances, most (nearly

65% of) instances in the benchmark of the random SAT track in

the SAT Competition 2018 are HRS, which are classified into

three types based on clause-to-variable ratios (r): r=4.3,

r=5.206 and r=5.5. However, the performance of existing SLS

algorithms lags far behind on HRS especially for ratios of

r=5.206 and 5.5.

Clause selection heuristic and variable selection heuristic are

two main factors in affecting SLS algorithms. In order to

develop SLS algorithms for HRS, we focus on clause and

variable selection.

3 Reviewing probability strategy

In this section, we briefly review the probability strategy in

ProbSAT [26].

Probability strategy has presented success on applying in

SLS algorithms. In the context of SAT, the first definition of

probability strategy based on the combination of break and

make has been introduced in the literature [26]. An alternative

notion of probability strategy [17, 26] base on only break has

been proposed, and in the literature [26] probability strategy

based break has shown the superiority on solving SAT problem.

The probability strategy based only break leads several SLS

algorithms for SAT [13, 15, 17, 20, 26]. In this work, we adopt

the definition of probability strategy based only break [17].

The probability strategy called f(x,) [26] including a

polynomial or exponential uses only the break values of a

variable x under a complete assignment a as listed below.

f(x,))=(0.9+break(x,)))-2.06

f(x,))=(cb))-break(x,a)

According to the criterion of the algorithm based on

probability strategy f(x,), given a selected clause c, the

algorithms utilize
𝑓(𝑥,)

∑ 𝑓(𝑧,)𝑧∈𝐶
 to probabilistically select variables

that have smaller break values [17].

4 Two clause weighting schemes

In this section, we introduce two new clause weighting

schemes in the total search. Based on these clause weighting

schemes, we define some new types of clauses.

 Clause weighting schemes have been used prominently in

SLS algorithms for solving SAT [22, 30, 31], such as SWT [39],

DLM [40], PAWS [41], SAPS [42]. Although these clause

weighting SLS algorithms differ in the manner clause’ weights

should be updated (probabilistic or deterministic), they all

choose to increase the weights of all the unsatisfied clauses or

reduce the weights of all the satisfied clauses as soon as a local

minimum is encountered. Recent studies, mainly including

CCASat [39] CSCCSat [21], Score2SAT as well as their variant

considered that the algorithm should be forced to satisfy more

clauses, and the weights of clauses should be updated when the

search is stuck in a part [39, 43]. These clause weighting

techniques turn out to be essentially ineffective for solving

HRS instances.

But better weighting techniques can be derived by taking a

global scheme. It happens that the algorithm without using the

clause weighting scheme has loss some clauses that are difficult

to satisfy before it gets stuck in a "stuck" state. Therefore,

forcing the algorithm to satisfy more clauses will mislead the

algorithm to obtain worse quality allocation. To avoid this

situation happening, we consider two global schemes named

GWU and GWAC that update the clause’ weights in the total

search process respectively.

4.1 The clause weighting scheme GWU

 The first clause weighting scheme is denoted by GWU

(Global Weight based on Unsatisfied clauses) and works as

follows. For each clause c in step s, we associate an integer

number GWU (c, s) as its weight. Whenever a variable is

selected to be flipped, then clause’ weights are updated as

 4

follow:

▪ In the beginning of the SLS algorithm, for each clause c,

if c is unsatisfied under the initial assignment a, c’s

weight is initialized to 1 (i.e., GWU (c, 0) =1); otherwise,

c’s weight is initialized to 0 (i.e., GWU (c, 0) =0).

▪ When SLS algorithm searches to step s, and if a clause c

is unsatisfied, the clause c’s weight is activated, then

GWU (c, s) is equal to GWU (c, s-1) + 1; otherwise,

GWU (c, s) is equal to GWU (c, s-1).

Thus, in the implementation of the proposed GWU scheme, a

clause c’s weight has been changed if c is unsatisfied whenever

a variable is picked to be flipped.

Although there is similar idea between GWU and SWT

[39], they have important differences. If the clause is

unsatisfied, then the clause’ weights based GWU is initialized

as 1, otherwise, clause’ weights is initialized to 0, while all

clauses’ weights based on SWT are initialized as 1. Moreover,

whenever a variable is selected to be flipped, then GWU is

called, i.e., the weights of all unsatisfied clauses increased by

one, while when the algorithm falls into local optimum, the

SWT is only called, i.e., the weights of all unsatisfied clauses

increased by one, but if the average weight exceeds a threshold,

it needs to smooth all clause’ weights.

Previous algorithms select a clause from the unsatisfied

clauses with equal probability [13,16, 17, 20, 26] i.e., simply

categorizing clauses into unsatisfied ones and satisfied ones is

not informative enough to guide the SLS, especially for HRS

instances.

Thus, suggested by “deceasing” variables (comprehensively

decreasing variables) variables [30] in SLS algorithms, we

develop two sets of HSC-GWU (hard satisfiable clauses based

on GWU) and ESC-GWU (easily satisfiable clauses based on

GWU) to distinguish unsatisfied clauses. The formal

definitions of HSC-GWU and ESC-GWU are given as follows:

Definition 1. For a CNF formula F, a positive integer

parameter β, when SLS algorithm runs to step s, a clause c is a

HSC-GWU in step s if and only if c is unsatisfied and GWU(c,

s)/100≥β.

Definition 2. For a CNF formula F, a positive integer

parameter β, when SLS algorithm runs to step s, a clause c is a

ESC- GWU in step s if and only if c is unsatisfied and GWU (c,

s)/100<β.

Note that the purpose of the GWU (c, s) modules 100 is to

prevent the setting of positive integer parameter β from being

too large.

In this work, when SLS algorithm searches to any step s, we

use the notation HSC-GWU(s) to denote the set of all HSCs-

GWU in step s and ESC-GWU(s) to denote the set of all ESCs-

GWU in step s. In the step s, the union of HSC-GWU(s) and

ESC-GWU(s) is the set of all unsatisfied clauses at step s.

The intuition that clauses with larger GWU values are harder

to keep satisfied in the search process. Thus, it is beneficial for

SLS algorithms to prefer satisfying HSCs-GWU, and we use

GWU to guide clause selection.

HSCs-GWU are regarded as the good candidates of clauses

to be selected in the clause selection heuristic for solving SAT,

that means HSCs-GWU are put higher priority to be satisfied in

each search step.

 Based on the notions of HSCs-GWU and ESCs-GWU, until

at least β*100 steps, all the unsatisfied clauses are ESCs-GWU

in each step, and then the same problem is that the algorithm

cannot distinguish the unsatisfied clauses in the clause selection.

Thus, this motivates us to design the second new clause

weighting scheme which could distinguish ESCs-GWU.

4.2 The clause weighting scheme GWAC
 As the age property of variables is diversification mode,

which may be able to better handle local minimum. We propose

a new clause weighting scheme based on the age property of

clauses.

The second clause weighting scheme is denoted by GWAC

(Global Weight based on Age property of Clause) and works as

follows. For each clause c in step s, we associate an integer

number GWAC (c, s) as its weight. Whenever a clause is

selected by heuristics, then clause’ weights are updated as

follow:

▪ In the beginning of the SLS algorithm, for each clause c,

c’s weight is initialized to 0 (i.e., GWAC (c, 0) =0).

▪ When SLS algorithm searches to step s, GWAC (c, s) is

the number of steps that have occurred since the clause c

was last selected.

Thus, in the implementation of the proposed GWAC scheme,

a clause c’s weight has been changed in each step.

 Although there is similar idea between age and GWAC,

they are an important difference. The GWAC is adjusted for

clause, while the age property [30] is for variable.

Based on the GWAC, we also develop two sets of

LAC-GWAC (long age clause based on GWAC) and

SAC-GWAC (short age clause based on GWAC) to

distinguish ESCs-GWU. The formal definitions of LAC

-GWAC and SAC-GWAC are given as follows:

Definition 3. For a CNF formula F, a positive integer

parameter η, when SLS algorithm runs to step s, a clause c is a

LAC-GWAC in step s if and only if c is ESC-GWU and

GWAC(c, s)≥η.

Definition 4. For a CNF formula F, a positive integer

parameter η, when SLS algorithm runs to step s, a clause c is a

SAC- GWAC in step s if and only if c is ESC-GWU and GWAC

(c, s) <η.

Note that the parameter η is positive integer.

In this work, when SLS algorithm searches to any step s, we

use the notation LAC- GWAC(s) to denote the set of all LACs-

GWAC in step s and SAC-GWAC(s) to denote the set of all

SACs-GWAC in step s. In the step s, the union of LAC- GWAC

(s) and SAC-GWAC(s) is the set of ESCs-GWU at step s.

The intuition that clauses with larger GWAC values are

easier to keep satisfied in the search process, and GWAC is a

supplement to GWU. If the algorithm only depends on GWU to

 5

pick a clause, it will easily fall into local optimization. Thus, if

there is no HSCs-GWU, it is beneficial for SLS algorithms to

select a LAC-GWAC. We use GWAC to guide clause

selection.

If there is no HSCs-GWU, LACs-GWAC are regarded as the

good candidates of clauses to be selected in the clause selection

heuristic for solving SAT, that means LACs-GWAC are put the

second higher priority to be satisfied in each search step.

Here we utilize the GWU and GWAC for picking a clause,

distinguishing itself from previous clause weighting schemes in

SLS algorithms for picking a variable [15,17,19,21,22, 39].

5 Second-level-biased random walk based on
GWU and GWAC

The random walk strategy is a standard component designed for

SAT. However, the standard random walk strategy may not be

suitable for SLS algorithms for HRS, because it does not

distinguish between HSCs-GWU and ESCs-GWU, or between

LACs-GWAC and SACs-GWAC. Since HSCs-GWU and

LACs-GWAC are put higher priority to be selected for SAT in

the proposed algorithm, thus it is reasonable for us to develop a

second-level-biased random walk component. The second-

level-biased random walk strategy is suggested by the idea

from [45] and described as follows:

▪ When the second-level-biased random walk is called, if

there exists HSCs-GWU, the algorithm selects an

HSC-GWU randomly;

▪ Otherwise, if there exists LACs-GWAC, the algorithm

selects an LAC-GWAC randomly;

▪ If there is no LACs-GWAC, the algorithm picks an

ESC-GWU or SAC-GWAC randomly;

▪ Then, the algorithm picks a variable to be flipped in the

chosen clause. In this work, this is accomplished by a

variable selection strategy which is described in the

subsequent section.

Although there is similar idea between second-level-

biased random walk strategy and biased random walk

strategy, they are an important difference. The

second-level- biased random walk strategy is utilized to select a

clause from two higher priority of sets, while the biased random

walk strategy is used to select a clause for one higher priority of

set.

By combining HSCs-GWU harder to keep satisfied and

LACs-GWAC easier to keep satisfied, the second-level-biased

random walk can maintain a balance between intensification

and diversification, making the SLS algorithm more widely

applicable.

6 The scoring function SA and BRSAP algorithm

In this section, we first propose a new scoring function named

SA which combines a score (greedy property) and an age

(diversification property) in a linear combination, and then we

utilize the SA to develop a new tie-breaking strategy.

6.1 The scoring function SA

Heuristics in SLS algorithms for SAT mainly include

two-mode SLS algorithms [1, 21, 22, 23, 30] and focused

random walk (FRW) algorithms [16, 17, 18, 20, 25, 26]. FRW

algorithms always select a variable to be flipped from an

unsatisfied clause chosen randomly in each step [7]. Based on

Section 4 and Section 5, our algorithm belongs to FRW

algorithms.

 For SLS algorithms, there is one important issue that is tie-

breaking –In SLS algorithm, tie-breaking strategy makes the

algorithm select a variable to flip when faced with multiple

candidate variables.) [1, 7, 50]. However, in FRW algorithms,

there is still other important issue - that generally may result in

the same variable being selected in consecutive steps (we also

call this issue tie-breaking). Actually, there is almost no

previous work devoted to handling this problem for FRW

algorithms. To avoid this, inspired by the previous tie-breaking

in Ref. [1, 30], we employ a new tie-breaking based on a new

scoring function named SA combining greedy property score

and diversification property age. The definition of SA is given

below.

Definition 5 Given a CNF formula F, for a variable x, in search

step s, when the assignment is , the scoring function, denoted

as SA, is defined as:

SA (x, s,) = score (x,) + age (x, s)/μ,

where μ is a positive integer parameter, which is used to control

the role of the age value played in the scoring function.

The new tie-breaking based on a linear scoring function SA

can also maintain a balance intensification and diversification.

6.2 The BRSAP algorithm

In this subsection, we utilize the second-level-biased random

walk based on two new clause weighting schemes and linear

scoring function SA as well as the probability strategy to

develop a new SLS algorithm called BRSAP.

 The pseudo-code of the BRSAP algorithm is outlined in

Algorithm 1 and it can be described in detail as follows.

At the start of the algorithm, BRSAP performs the first loop

until it finds a satisfying assignment or reaches the first limited

steps denoted by MaxSteps (line 2 in Algorithm 1). Then

BRSAP generates a complete assignment randomly as the

initial solution (line 3). bestVar is used to record which variable

was flipped in the last step (line 4). Then we initialize GWU(c,0)

and GWAC(c,0) as 0 for each clause c as well as HSC-GWU (0),

ESC-GWU (0), LAC-GWAC (0) and SAC- GWAC (0) as 0 (line

5 in Algorithm 1).

After the initialization, BRSAP executes the second loop

until a satisfying solution is found or exceeds the second

limited steps MaxTries (line 7). In each search step, BRSAP

selects a variable to be flipped.

Firstly, BRSAP picks a clause based on the second-level-

 6

Agorithm 1: BRSAP algorithm

Input: CNF-formula F, MaxTries, MaxSteps, μ, β, η

Output: A satisfying assignment of F, or “UNKNOWN”

1 begin

2 for i = 1 to MaxTries do

3 :=a generated truth assignment randomly for F;

4 bestVar :=null;

5 Initialize GWU(c,0) and GWAC(c,0) for each clause c and HSC-

 GWU (0), ESC-GWU (0), LAC-GWAC (0) and SAC-GWAC(0)

 as 0.

6 compute score (x, a);

7 for j = 1 to MaxSteps do

8 if satisfies F then Return ;

9 if HSC-GWU(j) is not empty then

10 C := a clause randomly chosen from HSC-GWU(j);

11 else

12 if LAC-GWAC(j) is not empty then

13 C := a clause randomly chosen from LAC-GWAC(j);

14 else

15 C := a clause randomly chosen from SAC-GWAC(j);

16 update GWAC;

17 v := x∈C selected according to probability
𝑓(𝑥,)

∑ 𝑓(𝑧,)𝑧∈𝐶
;

18 If v :==bestVar then

19 bestVar := x∈C, x≠v, with the greatest SA (x, j,);

20 else

21 bestVar := v;

22 := with bestVar flipped;

23 update GWU and age (x, j) for each variable x;

24 Return “UNKNOWN”;

25 end

biased random walk strategy as detailed in Section 5. If

HSC-GWU (j) is not empty in any step j, a clause is picked

randomly from HSC-GWU (j) (lines 9 and 10); otherwise, if

LAC-GWAC (j) is not empty in any step j, a clause is picked

randomly from LAC-GWAC (j)((lines 11-13), and if the

LAC-GWAC (j) is empty, a clause is picked randomly from

SAC-GWAC (j) (or ESC-GWU (j)) (lines 14 and 15), and then

updates the clause’ weights based on the weighting scheme

GWAC detailed Section 4.2 (line 16).

 Then BRSAP tries to pick a variable to be flipped according

to the probability based on f and the new tie-breaking strategy

as detailed in Section 6.1 (lines 17-21 in Algorithm 1): BRSAP

first picks a variable by the probability based on f (if k=3, f uses

polynomial strategy, otherwise, f uses exponential strategy)

(line 17 in Algorithm 1), and then if the variable is the same as

the last flipped variable (line 18), BRSAP picks a variable by

preferring the variable with the greatest SA value (lines 19).

After the variable is selected, the BRSAP flips the selected

variable (line 22) and then updates the clause’ weights based on

the weighting scheme GWU detailed Section 4.1 (line 23), then

the BRSAP algorithm starts the next search step.

Finally, once the search process terminates, the BRSAP

reports as the solution; otherwise, BRSAP reports

UNKNOWN (line 24).

7 Experimental evaluation

In this section, in order to present the effectiveness of the

BRSAP algorithm, we conduct extensive experiments to

evaluate BRSAP on HRS and URS instances, and compare

BRSAP against six state-of-the-art SLS solvers including

CSoreSAT, Score2SAT, YalSAT, ProbSAT, Sparrow and

Dimetheus as well as two state-of-the-art complete solvers

SparrowToRiss and gluhack on the same instances.

 We first introduce the benchmarks, the competitors and

experimental preliminaries. Then we compare BRSAP with

state-of-the-art SLS solvers and complete solvers on all testing

HRS and URS benchmarks.

7.1 Experimental evaluation on HRS

7.1.1 The HRS benchmarks
All the HRS instances used in our experiments are generated

according to the HRS tool [10]. We adopt the following seven

testing benchmarks.

1) 4.3HRS SAT2017: all HRS instances with r=4.3 from

SAT Competition 2017 3 (n=400, 420, …, 540, 40

instances, 5 for each size)

2) 4.3HRS Random: HRS instances generated randomly by

the HRS tool (r=4.3, n=600, 700, …,1000, 1000 instances,

200 for each size)

3) 5.206HRS SAT2017: all HRS instances with r=5.206

from SAT Competition 2017 (n=400, 420, …, 540, 40

instances, 5 for each size)

4) 5.206HRS Random: HRS instances generated randomly

by the HRS tool (r=5.206, n= 600, 700, …,1000, 1000

instances, 200 for each size)

5) 5.5 HRS SAT2017: all HRS instances with r=5.5 from

SAT Competition 2017 (n=400, 420, …, 540, 40 instances,

5 for each size)

6) 5.5HRS Random: HRS instances generated randomly by

the HRS tool (r=5.5, n= 600, 700, …,1000, 1000 instances,

200 for each size)

7) 5.699HRS Random: HRS instances generated randomly

by the HRS tool (r=5.699, n=200, 300, …,1000, 900

instances, 100 for each size)

7.1.2 The competitors
We compare the BRSAP algorithms with six state-of-the-art

SLS solvers including CSoreSAT [30], Score2SAT [22],

YalSAT [20], ProbSAT [17], Sparrow [23] and Dimetheus [16]

as well as two state-of-the-art complete solvers SparrowToRiss

[23] and gluhack [24] on the same instances.

The CSoreSAT solver utilizes two scoring functions and

3https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/

 7

clause weighting scheme PAWS [41]. The Score2SAT adopts

two scoring functions and two clause weighting schemes SWT

[19] and PAWS. Score2SAT is the third place in SAT

Competition 2017. YalSAT wins the random track of SAT

Competition 2017. ProbSAT wins the random track of SAT

Competition 2013, and is the second place among the SLS

algorithms in SAT Competition 2018. Dimetheus is the winner

of random SAT track of SAT Competition 2014 and SAT

Competition 2016 respectively, and is the first place among the

SLS algorithms in random SAT track of SAT Competition

2018. Sparrow uses the clause weighting scheme PAWS, and is

the first place in the random SAT track of SAT Competition

2011. SparrowToRiss is a combination of Sparrow and Riss

[23], and is the first place on the random SAT track of SAT

Competition 2018. The gluHack is an efficient complete solver

and wins the silver of SAT Competition 2018.

7.1.3 Experiment preliminaries
The BRSAP algorithm is implemented in C/C++. The BRSAP

algorithm is involved in three parameters, i.e., β controlling

the number of HSCs-GWU, η controlling the number of

LACs-GWAC, γ controlling the balance between the score and

age.

We tuned the β, η and γ parameters of BRSAP on HRS

according to our experience in Table 1. For cb, we utilize the

default parameter setting tuned in the literature [17].

Table 1: Parameter settings of BRSAP for HRS instances

 μ
r=4.3 r=5.206/5.5 r=5.699

η, β=9 β, η=312 β, η=312

n≤400

900

321 800

500 400<n

<600 276
1081

n≥600 1255 661

 The binary of CScoreSAT is provide by its author. For the

YalSAT and Score2SAT solvers, we adopt the two codes

submitted to SAT Competition 20174. The binaries of ProbSAT,

Dimetheus, Sparrow, SparrowToRiss and gluhack can be

downloaded online5 and we use the parameter setting as the one

used in SAT Competition 2018.

Experiments on the seven benchmarks are carried out on

Intel(R) Core (TM) i5-8265U 1.60 1.80GHz CPU with 8GB

RAM, running the 64-bit Ubuntu Linux operating system. Each

run that terminates in finding a satisfying assignment within the

cutoff time is a successful run. The cutoff time is set to 600

seconds (as in the literature [36]) for 4.3HRS random

benchmark, 5.206 HRS random benchmark, 5.5HRS random

benchmark and 5.699HRS random benchmark, and 5000

seconds (as in SAT Competitions 2017 and 2018) for the rest

benchmarks. For all benchmarks, each solver is executed 10

times for each instance. In this paper, for each solver on each

instance group, we report the number of success runs (#suc) for

the top seven benchmarks as well as “par 2”, which is a

penalized average run time where an unsuccessful run of a

4https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=downloads
5http://sat2018.forsyte.tuwien.ac.at/index.php?cat=downloads

solver is penalized as 2 times cutoff time, and “Overall”

symbols averaged over all instances with each run per instance.

Note that PAR 2 is adopted in SAT Competitions and has been

widely used in the literature [30]. The best results for an

instance class are highlighted in bold. If a solver has no

successful run on an instance class, the corresponding “par 2” is

marked with “-”.

7.1.4 Experimental results
In this subsection, we conduct extensive experiments of

BRSAP and its state-of-the-art SLS and state-of-the-art

complete competitors on all testing benchmarks, i.e., the

4.3HRS SAT17, 4.3HRS Random, 5.206HRS SAT17,

5.206HRS Random, 5.5HRS SAT17, 5.5HRS Random, and

5.699HRS Random.

7.1.4.1 Results on the 4.3HRS Random benchmark

Table 2 presents the comparative performance results of

BRSAP and its state-of-the-art SLS competitors CSoreSAT,

Score2SAT, YalSAT, ProbSAT, Dimetheus as well as Sparrow

and complete competitors gluHack and SparrowToRiss on the

HRS instances with r=4.3 from SAT Competition 2017. On the

overview of the results, BRSAP provides a better performance

than gluHack and SparrowToRiss in terms of metrics. Overall,

although BRSAP is slower than Score2SAT, YalSAT,

ProbSAT and Sparrow in terms of par 2, BRSAP and its

competitors solve the same number of instances, indicating

BRSAP is competitive with state-of-the-art SLS solvers, i.e.,

CSoreSAT, Score2SAT, YalSAT, ProbSAT, Dimetheus and

Sparrow.

7.1.4.2 Results on the 4.3HRS Random benchmark

Table 3 reports the comparative performance results of BRSAP

and its state-of-the-art SLS competitors including CSoreSAT,

Score2SAT, YalSAT, ProbSAT, Dimetheus as well as Sparrow

and complete competitors containing gluHack as well as

SparrowToRiss. According to Table 3, BRSAP significantly

outperforms its complete competitors gluHack and

SparrowToRiss in terms of metrics. Although BRSAP

performances slightly worse than CSoreSAT, Score2SAT,

YalSAT, ProbSAT, Dimetheus and Sparrow in terms of par 2,

BRSAP and its SLS competitors show the same performance in

terms of successful runs. Overall, BRSAP outperforms

SparrowToRiss in terms of par 2.

7.1.4.3 Results on the 5.206HRS SAT2017 benchmark

The comparative results of BRSAP and its state-of-the-art SLS

competitors CSoreSAT, Score2SAT, YalSAT, ProbSAT,

Dimetheus as well as Sparrow, and complete competitors

gluHack as well as SparrowToRiss on the HRS instances with

r=5.206 from SAT Competition 2017 are summarized in Table

4. Overall, BRSAP and SparrowToRiss succeed in all runs,

while Score2SAT, Sparrow and gluHack only succeed in 80, 80

and 380 runs (out of 400 runs) respectively, and also CSoreSAT,

YalSAT, ProbSAT and Dimetheus fail to solve any instance on

this benchmark. According to the empirical results presented in

Table 4, BRSAP solves each instance within one second. More

 8

Table 2: Experimental results on the 4.3HRS SAT2017 benchmark.

Instance

Class

CSoreSAT

#suc

par2

Score2SAT

#suc

par2

YalSAT

#suc

par2

ProbSAT

#suc

par2

Dimetheus

#suc

par2

Sparrow

#suc

par2

gluHack

#suc

par2

SparrowToRiss

#suc

par2

BRSAP

#suc

par2

n=400
50

0.006

50

0.000

50

0.010

50

0.004

50

0.014

50

0.002

50

328.5

50

0.068

50

0.016

n=420
50

0.018

50

0.002

50

0.008

50

0.002

50

0.028

50

0.002

50

619.1

50

0.059

50

0.014

n=440
50

1.766

50

0.022

50

0.072

50

0.004

50

0.331

50

0.192

30

4702

50

0.338

50

0.052

n=460
50

0.022

50

0.010

50

0.014

50

0.006

50

0.009

50

0.002

50

1521

50

0.058

50

0.044

n=480
50

0.000

50

0.008

50

0.002

50

0.000

50

0.011

50

0.000

40

2410

50

0.067

50

0.024

n=500
50

0.002

50

0.000

50

0.000

50

0.000

50

0.009

50

0.000

20

6461

50

0.060

50

0.012

n=520
50

0.004

50

0.006

50

0.008

50

0.000

50

0.010

50

0.000

30

4891

50

0.072

50

0.026

n=540
50

0.004

50

0.010

50

0.004

50

0.000

50

0.010

50

0.000

20

6910

50

0.075

50

0.022

Over all
400

0.228

400

0.007

400

0.015

400

0.002

400

0.053

400

0.025

290

3480

400

0.100

400

0.026

Table 3: Experimental results on the 4.3HRS Random benchmark.

Instance

Class

CSoreSAT

#suc

par2

Score2SAT

#suc

par2

YalSAT

#suc

par2

ProbSAT

#suc

par2

Dimetheus

#suc

par2

Sparrow

#suc

par2

gluHack

#suc

par2

SparrowToRiss

#suc

par2

BRSAP

#suc

par2

n=600
2000

0.006

2000

0.006

2000

0.004

2000

0.000

2000

0.010

2000

0.002

400

979.9

2000

0.063

2000

0.026

n=700
2000

0.012

2000

0.022

2000

0.024

2000

0.012

2000

0.037

2000

0.004

0

-

2000

0.177

2000

0.050

n=800
2000

0.026

2000

0.056

2000

0.018

2000

0.032

2000

0.059

2000

0.002

0

-

2000

0.394

2000

0.320

n=900
2000

0.084

2000

0.046

2000

0.030

2000

0.080

2000

0.024

2000

0.006

0

-

2000

0.159

2000

0.050

n=1000
2000

0.030

2000

0.018

2000

0.010

2000

0.002

2000

0.024

2000

0.000

0

-

2000

0.187

2000

0.064

Over all
10000

0.032

10000

0.030

10000

0.017

10000

0.025

10000

0.031

10000

0.003

400

1156

10000

0.196

10000

0.102

Table 4: Experimental results on the 5.206HRS SAT2017 benchmark.

Instance

Class

CSoreSAT

#suc

par2

Score2SAT

#suc

par2

YalSAT

#suc

par2

ProbSAT

#suc

par2

Dimetheus

#suc

par2

Sparrow

#suc

par2

gluHack

#suc

par2

SparrowToRiss

#suc

par2

BRSAP

#suc

par2

n=400
0

-

0

-

0

-

0

-

0

-

0

-

50

45.30

50

2.102

50

0.258

n=420
0

-

40

2000

0

-

0

-

0

-

30

4008

50

19.43

50

0.988

50

0.590

n=440
0

-

10

8000

0

-

0

-

0

-

30

4007

50

44.65

50

0.652

50

0.648

n=460
0

-

0

-

0

-

0

-

0

-

20

6002

50

238.0

50

0.982

50

0.810

n=480
0

-

10

8000

0

-

0

-

0

-

0

-

50

504.0

50

14.65

50

0.698

n=500
0

-

0

-

0

-

0

-

0

-

0

-

50

284.1

50

1.498

50

0.762

n=520
0

-

10

8000

0

-

0

-

0

-

0

-

40

2686

50

17.97

50

0.766

n=540
0

-

10

8000

0

-

0

-

0

-

0

-

40

3183

50

9.179

50

0.836

Over all
0

-

80

8000

0

-

0

-

0

-

80

8002

380

875.6

400

6.003

400

0.671

Table 5: Experimental results on the 5.206HRS Random benchmark.

Instance

Class

CSoreSAT

#suc

Score2SAT

#suc

YalSAT

#suc

ProbSAT

#suc

Dimetheus

#suc

Sparrow

#suc

gluHack

#suc

SparrowToRiss

#suc

BRSAP

#suc

 9

par2 par2 par2 par2 par2 par2 par2 par2 par2

n=600
0

-

0

-

0

-

0

-

0

-

400

965.1

400

968.0

2000

11.94

2000

0.890

n=700
0

-

0

-

0

-

0

-

0

-

0

-

0

-

2000

12.11

2000

1.140

n=800
0

-

0

-

0

-

0

-

0

-

0

-

0

-

1600

274.4

2000

1.388

n=900
0

-

0

-

0

-

0

-

0

-

0

-

0

-

1200

505.6

2000

1.410

n=1000
0

-

0

-

0

-

0

-

0

-

0

-

0

-

1200

504.9

2000

1.560

Over all
0

-

0

-

0

-

0

-

0

-

400

1153

400

1154

8000

261.8

10000

1.278

Table 6: Experimental results on the 5.5HRS SAT2017 benchmark.

Instance

Class

CSoreSAT

#suc

par2

Score2SAT

#suc

par2

YalSAT

#suc

par2

ProbSAT

#suc

par2

Dimetheus

#suc

par2

Sparrow

#suc

par2

gluHack

#suc

par2

SparrowToRiss

#suc

par2

BRSAP

#suc

par2

n=400
10

8000

10

8000

10

8000

10

8000

10

8000

10

8000

50

9.507

50

164.8

50

0.332

n=420
20

6000

20

6000

20

6000

20

6000

20

6000

20

6000

50

4.088

50

109.1

50

0.932

n=440
0

-

0

-

0

-

0

-

0

-

0

-

50

7.289

50

205.5

50

1.118

n=460
10

8000

10

8000

10

8000

10

8000

10

8000

10

8000

50

37.34

50

166.3

50

1.184

n=480
10

8000

10

8000

10

8000

10

8000

10

8000

10

8000

50

33.63

50

158.0

50

0.908

n=500
20

6001

20

6000

20

6000

20

6000

20

6000

20

6000

50

51.75

50

130.4

50

1.230

n=520
10

8002

10

8000

10

8000

10

8000

10

8000

10

8000

50

39.30

50

173.1

50

1.274

n=540
0

-

10

8000

10

8000

10

8000

10

8000

10

8000

50

42.69

50

190.9

50

1.396

Over all
80

8000

90

7750

90

7750

90

7750

90

7750

90

7750

400

28.20

400

162.3

400

1.047

encouragingly, Table 4 shows that BRSAP is over 9 times

faster than SparrowToRiss in overall 5.206HRS instances,

indicating that BRSAP is the comprehensive best algorithm in

this comparison. On the other hand, SparrowToRiss is the first

place on the random SAT track of SAT Competition 2018 and

gluHack also exhibits good performance on this benchmark,

thus it is challenging to improve such performance over

SparrowToRiss, indicating that BRSAP algorithm achieves the

state-of-the-art performance on HRS instances with r=5.2.

7.1.4.4 Results on the 5.206HRS Random benchmark

To evaluate the performance of these solvers on large

random HRS instances, we conduct the experiment of BRSAP

and its state-of-the-art SLS competitors CSoreSAT,

Score2SAT, YalSAT, ProbSAT, Dimetheus as well as Sparrow,

and complete competitors gluHack as well as SparrowToRiss

on the large random HRS ones with r=5.206. The experimental

results are illustrated in Table 5. It is encouraging to see the

performance of BRSAP remains surprisingly good on these

5.206HRS random benchmark, where its competitors show

rather poor performance, especially for SLS solvers. It is

apparent that BRSAP stands out as the best algorithm on this

benchmark. According to Table 5, BRSAP consistently solves

all HRS instances with up to 1000 instance, although the

competitor SparrowToRiss solves 1600, 1200, 1200 runs on the

n800, n900 and n1000 class respectively, whereas other all

competitors fail to find a solution for any of these instances

(CSoreSAT, Score2SAT, YalSAT, Dimetheus, ProbSAT,

Sparrow and gluHack), indicating the scalability of the BRSAP

algorithm. Indeed, to the best of our knowledge, all 5.206HRS

random benchmark are solved for the first time. Given the good

performance of BRSAP on the 5.206HRS Random with 1000

variable, it is very likely it could be able to solve larger HRS

instances with r=5.206.

7.1.4.5 Results on the 5.5HRS SAT2017 benchmark

Table 6 shows experimental results on the HRS instances with

r=5.5. As is clear from Table 6, BRSAP shows significantly

better performance than other competitors on the whole

instances in terms of both successful runs and par 2. For the

whole benchmark, BRSAP and SparrowToRiss succeed in all

runs, while gluHack succeeds in 290 runs (out of 400 runs), and

CSoreSAT succeeds in 80 runs, and Score2SAT, YalSAT,

ProbSAT, Dimetheus, and Sparrow 90 runs respectively.

Particularly, the par 2 of BRSAP is about 155 times less than of

SparrowToRiss, and about 7402 orders of magnitudes less than

those of other state-of-the-art SLS competitors, indicating the

effectiveness of BRSAP algorithm.

7.1.4.6 Results on the 5.5HRS Random benchmark

 10

The experimental results for solving the large HRS instance

with r=5.5 are presented in Table 7. It is clear that BRSAP

shows significantly better performance than all its competitors

on the whole benchmark. BRSAP is the only solver that solves

these HRS instances with up to 1000 variables consistently (i.e.,

with 100% success rate), whereas all its competitors fail to find

a solution for any of these instances with n=1000, and BRSAP

outperforms its competitors in terms of par 2, which indicates

the scalability of the BRSAP algorithm.

7.1.4.7 Results on the 5.699HRS Random benchmark

We conduct more empirical evaluations of BRSAP and its

state-of-the-art SLS competitors CSoreSAT, Score2SAT,

YalSAT, ProbSAT, Dimetheus as well as Sparrow, and

complete competitors gluHack as well as SparrowToRiss on

HRS instances with r=5.699. The benchmark is generated by

HRS tool [36].

The experimental results on the 5.699HRS benchmark are

presented in Table 8. For n200 class, BRSAP is worse than

gluHack, but BRSAP and gluHack solve the same number of

instances. For n300, n400, n500, and n700 class,

SparrowToRiss, gluHack and BRSAP show the same

performance in terms of successful run, but BRSAP has less

accumulative run time. For n800, n900 and n1000 instances,

BRSAP stands out as the best solver in this comparison.

Especially, BRSAP shows significantly superior performance

than its competitors on n900 and n1000 class, where it solves

all instances, while other competitors fail to find a solution for

any of these instances. Overall, BRSAP solves 9000 instances,

compared to 0, 0, 0, 0, 0, 0, 6000 and 2600 instances for

CSoreSAT, Score2SAT, YalSAT, ProbSAT, Dimetheus,

Sparrow, gluHack and SparrowToRiss respectively, which

clearly demonstrates the superiority of BRSAP over its SLS

and complete competitors on solving HRS instances with

r=5.699.

Table 7: Experimental results on the 5.5HRS Random benchmark.

Instance

Class

CSoreSAT

#suc

par2

Score2SAT

#suc

par2

YalSAT

#suc

par2

ProbSAT

#suc

par2

Dimetheus

#suc

par2

Sparrow

#suc

par2

gluHack

#suc

par2

SparrowToRiss

#suc

par2

BRSAP

#suc

par2

n=600
0

-

400

960.0

400

960.0

400

960.0

400

960.0

400

960.0

1600

299.2

2000

307.6

2000

1.376

n=700
400

963.3

400

960.0

400

960.0

400

960.0

400

960.0

400

960.0

1200

596.2

800

760.8

2000

1.732

n=800
0

-

400

960.0

400

960.0

400

960.0

400

960.0

400

960.0

0

-

400

960.3

2000

1.854

n=900
400

986.2

400

960.0

400

960.0

0

-

400

960.0

400

960.0

0

-

800

816.8

2000

2.062

n=1000
0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

2000

2.202

Over all
800

1110

1600

1008

1600

1008

1200

1056

1600

1008

1600

1008

2800

899.1

4000

758.7

10000

1.845

Table 8: Experimental results on the 5.699HRS Random benchmark.

Instance

Class

CSoreSAT

#suc

par2

Score2SAT

#suc

par2

YalSAT

#suc

par2

ProbSAT

#suc

par2

Dimetheus

#suc

par2

Sparrow

#suc

par2

gluHack

#suc

par2

SparrowToRiss

#suc

par2

BRSAP

#suc

par2

n=200
0

-

0

-

0

-

0

-

0

-

0

-

1000

0.028

1000

46.19

1000

0.224

n=300
0

-

0

-

0

-

0

-

0

-

0

-

1000

0.459

1000

101.4

1000

0.256

n=400
0

-

0

-

0

-

0

-

0

-

0

-

1000

2.589

1000

229.2

1000

0.338

n=500
0

-

0

-

0

-

0

-

0

-

0

-

1000

42.08

1000

249.8

1000

0.402

n=600
0

-

0

-

0

-

0

-

0

-

0

-

800

275.7

800

470.6

1000

0.442

n=700
0

-

0

-

0

-

0

-

0

-

0

-

1000

244.9

400

875.3

1000

0.786

n=800
0

-

0

-

0

-

0

-

0

-

0

-

200

1070

0

-

1000

0.876

n=900
0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

1000

0.976

n=1000
0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

1000

1.056

Over all
0

-

0

-

0

-

0

-

0

-

0

-

6000

448.4

2600

619.2

9000

0.595

 11

Table 9: The instances numbers, ratio and sizes for each HRS and URS with long clauses in the SAT2017 benchmark

 HRS

URS

5-SAT 7-SAT

medium huge medium huge

#inst. 40 40 40 40 20 40 20

ratio 4.3 5.206 5.5 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0}

size 𝑛 ∈ {400, 420,… ,540} 𝑛 ∈ {200, 210, …, 590} 250000 𝑛 ∈ {90, 92, …, 168} 50000

Table 10: The instances numbers, ratio and sizes for each HRS and URS with long clauses in the SAT2018 benchmark

 HRS

URS

5-SAT 7-SAT

medium huge medium huge

#inst. 55 55 55 10 20 10 20

ratio 4.3 5.206 5.5 21.117 r∈ {16.0, 16.2, …, 19.8} 87.79 r∈ {55.0, 56.0, …, 74.0}

size 𝑛 ∈ {200, 220,… ,400} 250 250000 120 50000

7.2 Experimental evaluation on URS and HRS

In order to show the generality and applicability of the

proposed BRSAP algorithm, additional experiments on the

URS and HRS benchmarks are carried out and the results are

summarized in the following parts. Most (nearly 66.7% of)

uniform instances in the benchmark of the random SAT track in

SAT Competition 2017 are the ones at the phase transition.

However, the performance of existing SLS algorithms on

random k-SAT instances at the phase transition is still

unsatisfactory. Thus, results of extensive experiments to

evaluate BRSAP on uniform k-SAT instances at the phase

transition and with long clauses are provided.

7.2.1 Benchmarks and Experiment Preliminaries
All the URS instances used in our experiments are generated

according to the and k-SAT generator6 . We adopt the following

4 testing benchmarks.

1) SAT2017: all 120 HRS instances and all 120 medium and

huge random k-SAT instances with long clauses from SAT

Competition 2017, and each k-SAT, the instances contains

various sizes and ratios. The details of the benchmark are

given in Table 9.

2) URS 5-SAT: Random 5-SAT problems generated by the

k-SAT generator. Medium 5-SAT instances at the

threshold ratio of phase transition (r=21.115, 100 instances,

n=200, 250, 300, 350, 400, 20 instances for each size)

3) URS 7-SAT: Random 7-SAT problems generated by the

k-SAT generator. Medium 7-SAT instances at the

threshold ratio of phase transition (r=87.79, 100 instances,

n=110, 120,130, 140, 150, 20 instances for each size)

4) SAT2018: all 165 HRS instances and all 60 medium and

huge random k-SAT instances with long clauses from SAT

Competition 20187. The details of the benchmark are given

in Table 10.

We tuned the β, η and γ parameters of BRSAP on URS

according to our experience in Table 11.

6https://sourceforge.net/projects /ksat generator/
7http://sat2018.forsyte.tuwien.ac.at/

Table 11: Parameter settings of BRSAP for URS instances

scale 5-SAT 7-SAT

medium instances β=100000

μ=1000

η=1000

 β=5000

μ=50

η=50

huge instances

The complete solvers did not solve any instances for the

medium and huge instances of the SAT competition in 2018

(except the champion solver SparrowToRiss), thus, gluHack

was not applied to solve the medium and huge random k-SAT

instances in the following experiments. In order to evaluate the

relative effectiveness and efficiency of BRSAP, we compare

BRSAP with SparrowToRiss, CScoreSAT, Score2SAT,

YalSAT and PobSAT on URS and HRS benchmarks.

Experiments on the four benchmarks are carried out on

Intel(R) Core (TM) i7-6700U 3.4 GHz CPU with 16GB RAM,

running the 64-bit Ubuntu Linux operating system. The CPU

time limit is 5000 seconds. For all benchmarks, each solver is

executed 10 times for each instance. we report average solved

instances at ten run “AverS” for these benchmarks as

well as “par 2”. The best results for an instance class are

highlighted in bold. If a solver has no successful run on an

instance class, the corresponding “par 2” is marked with “-”.

7.2.2 Experimental Results
In the following, we present the comparative experimental

results of BRSAP and its competitors on each benchmark.

7.2.2.1 Results on the SAT2017 benchmark

Table 12 presents the results of the performance of BRSAP

compared with state of the art SLS solvers on all HRS and URS

with long clauses from SAT Competition 2017. The results

show that for 5-SAT instances with r=21.117, the performance

of BRSAP, Score2SAT and CScoreSAT are similar and better

than that of other competitors, and for the remaining instances

class, BRSAP significantly outperforms its competitors in

terms of metrics.

Especially, BRSAP succeeds in a few more average runs

than its competitors on random 7-SAT instances at phase

 12

Table 12: Experimental results on the SAT2017 benchmark.

Random

SAT
r

SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2

HRS

4.3 40 0.117 40 0.009 40 0.008 40 0.017 40 0.057 40 0.115

5.206 40 5.709 0 - 0 - 0 - 0 - 40 0.594

5.5 40 151.0 6 8500 9 7750 9 7750 9 7750 40 0.980

URS

<21.117 4 8083 10 5250 8 6231 12 4147 11 4526 13 3805

21.117 9 7760 15 6476 14 6655 13 6880 13 6829 14 6667

<87.79 9 5602 11 4839 11 5756 9 5517 11 4514 12 4082

87.79 16 6035 18 5931 19 5582 17 5957 18 5552 21 4993

Overall/240 158 3466 100 5992 101 5997 100 5903 102 5775 180 2801

Table 13: Experimental results on the URS 5-SAT benchmark.

Ratio
Variable SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2

r=21.117

n=200 11 4516 11 4506 11 4523 11 4513 11 4513 11 4502

n=250 9 5582 10 5069 9 5502 10 5247 10 5142 10 5112

n=300 3 8525 8 6298 9 6078 10 5283 8 6122 9 5894

n=350 8 6091 12 4166 13 3749 13 3734 13 3734 13 3721

n=400 1 9510 3 8667 3 8728 2 9216 3 8613 3 8602

Table 14: Experimental results on the URS 7-SAT benchmark.

Ratio
Variable SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2

r=87.79

n=110 10 5087 10 5141 11 4592 11 4749 11 4559 11 4532

n=120 9 5626 9 5780 10 5248 10 5451 9 5969 10 5261

n=130 10 5123 10 5518 13 3981 13 4412 12 4380 11 4774

n=140

n=150

10

0

5087

-

11

3

4829

8594

13

4

4048

8327

10

5

5397

8119

10

5

5597

7965

13

7

4019

7394

Table 15: Experimental results on the SAT2018 benchmark.

Random

SAT
Ratio

SparrowToRiss CScoreSAT Score2SAT YalSAT PobSAT BRSAP

AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2 AverS par 2

HRS

4.3 55 0.052 55 0.009 55 0.001 55 0.001 55 0.013 55 0.012

5.206 55 1.020 8 8591 33 4000 9 8387 12 7858 55 0.324

5.5 55 136.4 11 8000 12 7818 12 7818 12 7818 55 0.516

URS

<21.117 3 8570 9 5706 11 4683 12 4079 11 4524 13 3941

21.117 7 3111 8 2495 7 3015 8 2326 7 3404 9 1523

<87.79 9 5657 10 5129 11 4720 9 5520 11 4522 12 4118

87.79 8 2262 5 5224 8 2453 6 4488 8 2967 8 2692

Overall/225 192 1537 106 5362 137 3968 111 5117 116 4919 207 784.3

transition. BRSAP succeeds in 21 average runs, compared to 19

for Score2SAT, and 18 for both ProbSAT and CScoreSAT, and

17 for YalSAT, and 16 for SparrowToRiss. Further observation

shows that BRSAP succeeds in 179 average runs, compared to

158 for SparrowToRiss, and 102 for ProbSAT, and 101 for

Score2SAT, and 100 for both CScoreSAT and YalSAT. Overall,

BRSAP succeeds in 180 average runs, whereas none of its

competitors succeeds in more than 160 average runs with the

half cutoff time, which illustrates its robustness and scalability.

7.2.2.2 Results on the URS 5-SAT benchmark

To measure the performance of BRSAP on URS instances at

phase-transition more accurately, we additionally test BRSAP

on the medium 5-SAT instances. The results are presented in

Table 13. According to the Table 13, BRSAP has similar

performance with ProbSAT, CScoreSAT, YalSAT and

Score2SAT on this benchmark.

7.2.2.3 Results on the URS 7-SAT benchmark

In order to measure the performance of BRSAP on 7-SAT

instance at phase transition, we compare BRSAP with

ProbSAT, CScoreSAT, YalSAT, SparrowToRiss which is the

best SLS solver in the random track of SAT Competitions in

2018, and Score2SAT which is the best SLS solver on URS at

phase-transition in the random track of SAT Competitions in

2017. The results are reported in Table 14. As can be seen from

Table 14, BRSAP does not give the best performance on the

only 7-SAT instance with n=130, but BRSAP has similar

performance to the solvers SparrowToRiss and Score2SAT.

7.2.2.4 Results on the SAT2018 benchmark

To investigate the performance of BRSAP on URS and HRS

benchmarks with various ratio, we compare it with ProbSAT,

CScoreSAT, YalSAT, SparrowToRiss and Score2SAT on all

HRS instances and URS instances with long clauses from SAT

 13

Competition 2018. Table 15 summarizes the experimental

results on the SAT2018 benchmark.

BRSAP gives the best performance for all random SAT

instances except for the HRS instances with r=4.3 and URS

instances with r=87.79, and especially it solves more HRS

instances than all SLS competitors and more URS instances

with long clauses than all competitors. For the URS instances

with r=87.79, BRSAP solves as many instances as

SparrowToRiss, but the par 2 is a little more than

SparrowToRiss’s. Overall, BRSAP solves 207 instances on

average, and SparrowToRiss solves 192 instances on average,

and Score2SAT solves 137 instances on average, and ProbSAT

solves 116 instances on average, and YalSAT solves 111

instances on average, and CScoreSAT solves 106 instances on

average. BRSAP significantly outperforms SparrowToRiss on

all random SAT instances. SparrowToRiss is the first place on

the random SAT track of SAT Competition 2018, thus it is

challenging to improve such performance over SparrowToRiss,

indicating that BRSAP algorithm achieves the state-of-the-art

performance on random SAT instances, which illustrates the

robustness and scalability of BRSAP algorithm on HRS

instances and URS instances with long clauses.

7.3 Summary of experimental results

According to these experiments including in Tables 2-8,

BRSAP is significantly better than the state-of-the-art SLS

solvers and complete solvers on a broad range of instances, and

shows the efficiency and the robustness on solving all testing

HRS instances with up to 1000 variables. This experiment

clearly demonstrates that the superiority of BRSAP becomes

more significant over its competitors as the size of HRS

instances increases. As can be seen from Tables 12-15, BRSAP

is quite competitive for solving URS with long clauses. Thus,

BRSAP can effectively solve both URS problems with long

clauses and HRS problems (The current state-of-the-art SLS

solvers can only effectively solve URS instances, and complete

solvers can only effectively solve HRS instances. There is no

solver that can effectively solve both HRS and URS).

Moreover, the heuristics used by SLS solvers to solve

random SAT problems are also potentially useful for solving

real-world SAT problems. The SAT instances encoded from

real-world applications may be of large size. Therefore, it is of

great significance to develop a fast and efficient SAT solver

solving theories and methods. Also, SLS is an efficient method

for solving graphs, gene regulatory networks, automated

verification, scheduling and computing theory. In this work,

our BRSAP algorithm is able to solve large HRS instances with

up to 1000 variables within five seconds and can effectively

solve URS with long clauses, and thus can provide support for

solving problems from the application domain.

8 Discussions

Some further discussions are given below to clarify some issues

and highlight some important cases.

8.1 Effectiveness of the BRSAP components

In this section, we present a detailed discussion on each

underlying component of BRSAP algorithm, namely GWU,

GWAC, second-level-biased random walk strategy, the new

tie-breaking strategy, the score property and the age greed

property. Since almost all state-of-the-art SLS solvers can

effectively solve all HRS instances with r=4.3, we do extensive

experiments for following alternative versions on all testing

HRS benchmarks expect for the HRS instances with r=4.3. The

computing environments for these experiments are the same as

those used for experiments in Section 7.1.

8.1.1 Effectiveness of GWU

In order to demonstrate the effectiveness of clause weighting

scheme GWU in the BRSAP algorithm, we conduct

experiments to compare BRSAP with its an alternative version

named BRSAP_alt1, which does not utilize the GWU, i.e.,

removing update clause’ weights GWU of lines 9-11 and

removing update GWU of line 23 in Algorithm 1. We use the

default value of BRSAP as the parameter settings of η and γ.

The BRSAP_alt1 algorithm solves six testing benchmarks and

performs ten times for each instance with the cutoff time of 600

seconds. The experimental results on the six benchmarks are

shown in Table 16.

 From the results in Table16, it is apparent that BRSAP_alt1

fails to solve any instance with r=5.206 and r=5.699, and

BRSAP_alt1 succeeds in solving 50 runs (out of 400), 400 runs

(out of 10000) and 760 runs (out of 1650). The performance of

BRSAP significantly outperforms that of BRSAP_alt1,

demonstrating the significance of the clause weighting scheme

GWU (i.e., the significance of HSCs-GWU)

8.1.2 Effectiveness of GWAC

The BRSAP algorithm does not use the new clause weighting

scheme GWAC, i.e., removing lines 12-14 and 16 in Algorithm

1. We obtain an alternative degenerating version called

BRSAP_alt2. We use the default value of BRSAP as the

parameter settings of β and γ.

We conduct extensive experiments to show the effectiveness

of GWAC on all testing instances. The BRSAP_alt2 also

performs ten times for each instance with the cutoff time of

600 seconds. The experimental results on the six benchmarks

are reported in Table 16.

In terms of success runs, BRSAP significantly outperforms

BRSAP_alt2 on all six benchmarks. The instance class for

which BRSAP does not give the best performance is HRS

instances with r=5.206 and r=5.5 in terms of par2. Although

BRSAP_alt2 spends less time than BRSAP, BRSAP and

BRSAP_alt2 solve the same instances with r=5.206 and

r=5.699. For the HRS instances with r=5.5, we observe that

BRSAP significantly outperforms BRSAP_alt2. The

improvement of BRSAP over BRSAP_alt2 is small, but the gap

is still considerable on the HRS instances with r=5.5. Overall,

the comparison between BRSAP and BRSAP_alt2 shows that

updating the clause’ weights in BRSAP is of great significance

for solving HRS instances with r=5.5.

 14

Table 16: Comparison among BRSAP and its alternative degenerating versions on the six testing benchmarks. Each solver is performed 10 times

on each class, and the results in bold indicate the best performance for each class.

Benchmarks

BRSAP BRSAP_alt1 BRSAP_alt2 BRSAP_alt3 BRSAP_alt4 BRSAP_alt5 BRSAP_alt6 BRSAP_alt7

suc

par2

suc

par2

suc

par2

suc

par2

suc

par2

suc

par2

suc

par2

suc

par2

5.206HRS

SAT2017

400

0.671

0

-

400

0.545

0

-

400

0.884

390

30.64

400

0.675

0

-

5.206HRS

Random

10000

1.278

0

-

10000

0.989

0

-

10000

1.498

8400

193.2

10000

1.287

0

-

5.5HRS

SAT2017

400

1.047

50

1050

380

60.72

90

930.0

130

810.2

370

90.92

370

90.93

90

930.0

5.5HRS

Random

10000

1.845

400

1152

9200

97.38

800

1104

1200

1056

8400

193.5

9200

97.69

1200

1056

HRS

SAT2018

1650

0.173

760

652.5

1600

36.50

770

647.2

1300

254.7

1580

51.06

1590

43.80

760

648.6

5.699HRS

Random

9000

0.595

0

-

9000

0.480

0

-

8200

107.3

8600

53.89

8400

80.57

0

-

8.1.3 Effectiveness of the second-level-biased random

walk

By removing all clause weighting schemes, i.e., removing the

GWU (i.e., removing update clause’ weights GWU of line 23

in Algorithm 1) and GWAC (i.e., removing update clause’

weights GWU of line 16 in Algorithm 1), i.e., replacing the

biased random walk component, i.e., lines 9-15 in Algorithm 1,

with the standard random walk component, i.e., line 15 in

Algorithm 1), we obtain this alternative version named

BRSAP_alt3. BRSAP_alt3 utilizes the default value of BRSAP

as the parameter settings of γ.

We conduct a large number of experiments to show the

effectiveness of biased random walk on the six benchmarks,

and the results are summarized in Table 16. The BRSAP_alt3

performs ten times for each instance with the cutoff time of 600

seconds.

The experimental results show that BRSAP obviously

outperforms BRSAP_alt3. Specifically, BRSAP_alt3 fails to

solve any instance with r=5.206 and r=5.699, which indicates

that the importance of the biased random walk based on GWU

and GWAC.

8.1.4 Effectiveness of the new tie-breaking strategy

In this subsection, we do more experiments to analyze the

effectiveness of the new tie-breaking strategy (lines 18-20 in

Algorithm 1) in the BRSAP algorithm. To demonstrate the

effectiveness of the new tie-breaking strategy, we do not utilize

the tie-breaking strategy, i.e., removing lines 18-20 in

Algorithm 1. We obtain an alternative degenerating version

called BRSAP_alt4, which allows the same variable to be

selected in successive steps. We use the default value of

BRSAP as the parameter settings of η and β.

We evaluate BRSAP_alt4 on six testing benchmarks and the

results are shown in Table 16, where each solver performs 10

times with a cutoff time of 600 seconds.

BRSAP shows significantly better performance than

BRSAP_alt4 on the all six benchmarks in terms of both

successful runs and average run time. Particularly, on the

5.5HRS SAT2017, 5.5HRS Random, HRS SAT2018 and

5.699HRS Random benchmarks, the runtime of BRSAP is

about 774 times, 572 times, 1472 times and 180 times less than

of BRSAP_alt5 respectively. The results confirm the

effectiveness of the new tie-breaking as does in BRSAP on

solving HRS instances.

8.1.5 Effectiveness of the greedy property score

This alternative version of BRSAP utilizes the tie-breaking

strategy, but the SA function only uses age (i.e., replacing the

SA function, i.e., SA of line 19 in Algorithm 1, with the age).

Thus, we obtain this alternative version called BRSAP_alt5,

which uses the default value of BRSAP as the parameter

settings. BRSAP_alt5 is executed ten times on each instance

with the cutoff time of 600 seconds.

From the results of Table 16, it is clear that BRSAP

significantly outperforms BRSAP_ alt4 on all HRS instances,

which indicates that if we do not utilize the greedy property

score as does in BRSAP, the algorithm performs much worse

than BRSAP.

8.1.6 Effectiveness of the diversification property age

By removing the age in the BRSAP algorithm, i.e., replacing

SA with only score in line 19 in Algorithm 1, we obtain an

alternative degenerating version named BRSAP_alt6, which

uses the default value of BRSAP as the parameter settings of η

and β. BRSAP_alt6 is executed ten times on each instance with

the cutoff time of 600 seconds.

 According to the results of Table 16, the performance of

BRSAP significantly outperforms that of BRSAP_ alt6 on all

six HRS benchmarks. Specially, BRSAP_ alt6 succeeds in

solving 8400 runs on 5.699HRS Random benchmark, whereas

BRSAP_ alt5 and BRSAP succeed in solving 8600 runs and

9000 runs on 5.699HRS Random benchmark respectively,

which indicates that the importance of property age.

8.1.7 Effectiveness of clause weighting schemes and

tie-breaking strategy

This alternative version of BRSAP does not use GWU, GWAC

and the new tie-breaking strategy. i.e., does not utilize biased

random walk strategy and the SA (i.e., removing lines 9-14, 16,

 15

18-20 and 23 in Algorithm 1, i.e., only using the polynomial

probability and standard random walk). This alternative version

is named BRSAP_alt7, which is no parameter to be set.

We evaluate BRSAP_alt7 on all six benchmarks, where each

solver performs ten tines with a cutoff time of 600 seconds.

Table 16 presents that BRSAP_alt7 fails to solve any

instances with r=5.206 and r=5.699; even on the 5.699HRS

Random benchmark including instances with n=200. The

performance of BRSAP is obviously better than that of

BRSAP_alt7, conforming the significance of the new clause

weighting schemes and the new tie-breaking strategy.

8.2 Approximate Implementation of BRSAP

In this paper, the implementation of BRSAP described in

Sections 4-6.

Inspired by the approximate implementation of the SWT

strategy [39], we firstly propose an accurate implementation of

GWU scheme, which updates the weights of unsatisfied clauses

during the search process. The maintenance of the accurate

implementation is described as follows: whenever a variable x

is flipped during the search, each clause c ϵ C(x) (C(x)={c | c is

a clause which x appears in c}) is checked whether c’s state is

changed (from unsatisfied to satisfied, from satisfied to

unsatisfied) by flipping a variable x (the implementation of

checking clauses’ state on BRSAP is equal to one on

probability SLS algorithms like ProbSAT [17]). If it is the case

(c’s state is unsatisfied by flipping the variable y), c’s GWU

value is updated.

Note that the discussions below are based on the condition

that F is a random k-SAT instance with n variables and m

clauses (r=m/n). For each clause c, the number of all variables

is equal to k, i.e., E(|c|) =k. We use F(s) to denote the number of

unsatisfied clauses in step s, thus E(|F(s)|) < m.

For the accurate implementation of GWU scheme, the time

complexity of computing the unsatisfied clauses’ GWU at step

s is O(E(|F(s)|)) < O(m).

 Inspired by the approximate implementation of the age

function [30], we propose an accurate implementation of

GWAC scheme, which updates the weights of clause selected

during the search process, i.e., only one clause's GWAC value

is updated at each step, thus for the accurate implementation of

GWAC scheme, the time complexity of computing the selected

clause’ GWAC at each step is O(1).

The second-level-biased random walk strategy is based on

the idea of biased random walk strategy [45]. However, the

second-level-biased random walk strategy is utilized to select a

clause from two sets (HSCs-GWU and LDCs-GWAC) in the

worst case. HSCs-GWU and LDCs-GWAC are updated by the

unsatisfied clauses at each step. For the accurate

implementation of second-level-biased random walk strategy

described in Section 5, the worst-case time complexity of

selecting an unsatisfied clause at step s is O(E(|F(s)|)) +

O(E(|F(s)|)) = O(E(|F(s)|)).

The probability strategy is utilized to select a variable from

the unsatisfied clause c selected based on the

second-level-biased random walk strategy. The approximate

implementation of probability strategy on BRSAP is equal to

one on SLS algorithms based on probability strategy like

ProbSAT. The new tie-breaking strategy based on the new

function SA is that the last flipping variable must not be the

current flipping variable. The tie-breaking strategy is also used

to select a variable from the unsatisfied clause c selected based

on the second-level-biased random walk strategy. Thus, for the

accurate implementation of variable selection heuristic, the

worst-case time complexity of computing the probability

strategy and tie-breaking strategy is O(E(|c|)) + O(E(|c|)) =

O(E(|c|)) = O(k).

Compared with SLS algorithms only based probability

strategy like ProbSAT, the additional implementations of

BRSAP are the second-level-biased random walk strategy and

the new tie-breaking strategy. Thus, the worst-case time

complexity of adding the implementations is O(E(|F(s)|)) +

O(E(|c|)) = O(E(|F(s)|)) + O(k)< O(m)+ O(k).

 According to the literature [62], it shows that all the time

complexities of SLS algorithms only based probability strategy

(like PrboSAT) are about O(k*r). Thus, all the time

complexities of the approximate implementation of BRSAP are

about O(E(|F(s)|)) + O(E(|c|))+O(k*r)= O(E(|F(s)|))+ O(k)+

O(k*r)= O(E(|F(s)|))+ O(k*r). If the number of unsatisfied

clauses is not greater than k*r in step s, then the time

complexities of the approximate implementation of BRSAP are

about O(k*r). Otherwise, the time complexities of the

approximate implementation of BRSAP are greater than O(k*r).

According to our experience, when the algorithm executes after

larger than a certain step s, the number of unsatisfied clauses

must be less than or equal to k*r (This conclusion needs to be

proved later). Thus, the time complexities of the approximate

implementation of probability strategy are close to those of the

approximate implementation of BRSAP.

The existing probability strategy is ineffective when solving

to HRS, while the second-level-biased random walk strategy

and the new tie-breaking strategy shows effectiveness when

applying to probability strategy, and the related empirical

analyzes have be shown in Sections 8.1-8.8. The possible

reason is that second-level-biased random walk strategy and the

new tie-breaking strategy help probability algorithms to

decrease blind unreasonable search and thus leads probability

SLS algorithms to promising search spaces.

9 Conclusions and future work

In this work, we proposed two new global clause weighting

schemes GWU and GWAC and a new scoring function SA

based on greedy property score and diversification property

age for improving SLS algorithms on SAT instances, resulting

in an effective SLS algorithm namely BRSAP, which shows

excellent performance on HRS instances and URS instances.

The main results are summarized below:

1) Firstly, only considering unsatisfied clauses, we proposed

a global clause weighting scheme named GWU, which aims to

distinguish unsatisfied clauses. We also defined hard satisfiable

clauses and easy satisfiable clauses accordingly.

 16

2) In order to distinguish easy satisfiable clauses, based on

the current clauses selected, we further proposed another global

clause weighting scheme called GWAC. Then we also defined

long age clauses and short age clauses accordingly.

3) Based on the GWU and GWAC, we developed a

second-level-biased random walk strategy to select a clause.

4) Finally, in order to prevent the same variable to be

selected in consecutive steps, we adopted the tie-breaking

strategy, but the previous tie-breaking strategy is not suitable

for HRS instances. Thus, we proposed the SA function

combining the score (greedy property) and age (diversification

property), which is utilized to break ties. Finally,

second-level-biased random walk strategy based on two global

clause weighting schemes and a new scoring function were

used to develop the BRSAP algorithm.

BRSAP’s effectiveness has been demonstrated on random

SAT problems from the SAT Competitions in 2017 and 2018,

and on randomly generated HRS and URS with long clauses

problems. The results show that BRSAP outperforms

state-of-the-art SLS solvers and the state-of-the-art complete

solver in most cases. Moreover, BRSAP can effectively solve

both URS problems and HRS problems.

Further investigations show that the effectiveness of BRSAP

is attributed to second-level-biased random walk strategy based

on two global clause weighting schemes and the tie-breaking

strategy based on a linear scoring function SA, especially the

clause weighting scheme GWU.

The heuristics used by SLS solvers to solve random SAT

problems are also potentially useful for solving real-world SAT

problems [47-49]. The SAT instances encoded from real-world

applications may be of large size. As our BRSAP algorithm is

able to solve large HRS instances quickly with up to 1000

variables within five seconds, and may be beneficial to solving

cryptography instances, and thus we believe the experimental

results of BRSAP on HRS instances and URS instances may

provide support for solving problems from the application

domain.

 For future work, we plan to combine the global clause

weighting schemes and the new tie-breaking strategy with other

algorithmic techniques, such as linear make [25] and

configuration checking [1], [3]. Also, inspired by the success

of two global clause weighting schemes based on GWU and

GWAC, we would like to explore more global clause weighting

schemes, and thus employ them to develop more efficient SLS

algorithms for random SAT. Additionally, we would like to

apply the GWU, GWAS, the scoring function SA to improving

performance of SLS algorithms on solving the structured

instances in SAT competition.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (Grant No.61673320) and the

Fundamental Research Funds for the Central Universities

(Grant No.2682019ZT16 and No.2682020CX59), and Sichuan

Science and Technology Program (Grant No. 2020YJ0270).

The authors would like to thank Tomáš Balyo for providing the

HRS generator.

REFERENCES

[1] C. Luo, K. Su and S. Cai (2014). More efficient two-mode stochastic
local search for random 3-satisfiability[J]. Applied Intelligence, vol. 41,

no. 3, pp.665-680.

[2] H. Fu, Y. Xu, G. Wu, H. Jia, W. Zhang and R. Hu, “An Improved
Adaptive Genetic Algorithm for Solving 3-SAT Problems Based on

Effective Restart and Greedy Strategy,” Inter. J.Com. Intell. Sys., vol. 11,

no. 1, pp.402-413, Jan. 2018.
[3] M. Davis, and H. Putnam (1960). "A computing procedure for

quantification theory," J. ACM, vol.7, no. 3, pp: 201-215.

[4] M. Davis, G. Logemann, and D. W. Loveland (1962), “A machine
program for theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–

397.

[5] C. Weidenbach, D. Dimov, A. Fietzke, et al (2009). “Wischnewski P.
SPASS Version 3.5,” In: Proceedings of Automated Deduction, Springer,

Berlin, Heidelberg, pp. 140-145.

[6] S. Cai and K. Su (2011).“Local search with configuration checking for
SAT,” In: Proceedings of ICTAI, pp. 59–66.

[7] C. Luo, S. Cai, K. Su and W. Wu (2015). “Clause states based

configuration checking in local search for satisfiability,” IEEE Trans.
Cybern, vol. 45, no. 5, pp. 1028-1041.

[8] H. H. Hoos and T. Stützle (2004), Stochastic Local Search: Foundations

& Applications. San Francisco, CA, USA: Elsevier/Morgan Kaufmann,
Sep. 2004.

[9] M. Mavrovouniotis, F. M. Müller and S. Yang (2017), "Ant colony

optimization with local search for dynamic traveling salesman
problems," IEEE Trans. Cybern, vol. 47, no. 7, pp. 1743-1756.

[10] T. Balyo (2016). Using algorithm configuration tools to generate hard

random satisfiable benchmarks. In: Proceedings of SAT 2016, pp. 60–
62.

[11] B Selman, H A Kautz and B Cohen (1994). “Noise strategies for

improving local search”. In: Proceedings of AAAI, pp. 337–343.
[12] H H Hoos (2002). “An adaptive noise mechanism for WalkSAT”. In:

Proceedings of AAAI, pp. 655–660.

[13] O. Gableske (2018). Dimetheus. In: Proceedings of SAT 2018, pp.
20-21.

[14] Yin L, He F, Hung WNN, Song X, Gu M (2012) Maxterm covering for

satisfiability. IEEE Trans Comput 61(3):420–426.
[15] S. Liu and A. Papakonstantinou. "Local search for hard sat formulas: the

strength of the polynomial law," in 30th AAAI Conf. Artif. Intell., Feb.

2016, pp. 732-738.

[16] O Gableske (2016). “Sat solving with message passing”. PhD

dissertation, Ulm University, Germany, 2016.

[17] A Balint and U Schöning (2018). “probSAT”. In: Proceedings of SAT
2018, pp. 35.

[18] S Cai, K Su and C Luo (2013). “Improving walksat for random

k-satisfiability problem with k>3“. In: Proceedings of AAAI, pp.
145-151.

[19] C Luo, S Cai, W Wu and K Su (2014). “Double configuration checking

in stochastic local search for satisfiability”. In: Proceedings of AAAI, pp.
2703-2709.

[20] A. Biere (2017). “CADICAL, LINGELING, PLINGELING,
TREENGELING and YALSAT: Solver description,” In: Proceedings of

SAT 2017, pp. 14-15.

[21] C. Luo, S. Cai, W. Wu, and K. Su (2016). CSCCSat2014. In:
Proceedings of SAT 2016, pp, 10.

[22] S. Cai and C. Luo (2017). “Score2SAT: Solver description,” In:

Proceedings of SAT 2017, pp. 34.
[23] A. Balint and N. Manthey (2018). SparrowToRiss. In: Proceedings of

SAT 2018, pp, 38-39.

[24] A. Zha (2018). GluHack. In: Proceedings of 2018, pp, 26.
[25] S Cai, C Luo and K Su (2014). Improving walksat by effective

tie-breaking and efficient implementation. Computer Journal, 58(11):

2864-2875.
[26] A. Balint and U. 7 (2012), “Choosing probability distributions for

stochastic local search and the role of make versus break,” In:

Proceedings of SAT 2012, pp. 16–29.
[27] H. H. Hoos and T. Stützle (2000). “Local search algorithms for SAT: An

empirical evaluation,” J. Autom. Reasoning, 24(4), pp. 421–481.

[28] C. M. Li and W. Q. Huang (2005). “Diversification and determinism in
local search for satisfiability,” In: Proceedings of SAT 2005, pp. 158–

172.

[29] D.A. Tompkins and H.H. Hoos (2010). “Dynamic scoring functions with
variable expressions: New SLS methods for solving SAT,” In:

 17

Proceedings of SAT 2010, pp. 278-292.
[30] S. Cai, C. Luo and K. Su (2014). "Scoring functions based on second

levell score for k-SAT with long clauses." Jour. Artif. Intell. Resea., vol.

51, no. 2014, pp. 413-441.

[31] A. Balint and A. Fröhlich (2010), “Improving stochastic local search for

SAT with a new probability distribution,” in Proc. SAT, Edinburgh,

U.K., Jul. 2010, pp. 10–15.
[32] S. Cai, Z. Jie and K. Su. (2015). "An effective variable selection heuristic

in SLS for weighted Max-2-SAT." Journal of Heuristics, vol. 21, no. 3,

pp. 433-456.
[33] S. Cai. (2015). "Balance between Complexity and Quality: Local Search

for Minimum Vertex Cover in Massive Graphs." In: Proceedings of

AAAI, pp. 747-753.
[34] H. Zhang, S. Cai, et al (2017). "An efficient local search algorithm for

the winner determination problem." Journal of Heuristics, vol. 23, no. 2,

pp. 1-30.
[35] C. Luo, H. Hoo, S. Cai, et al (2019). “Local Search with Efficient

Automatic Configuration for Minimum Vertex Cover”. In: Proceedings

of IJCAI, pp. 1297-1304.
[36] T. Balyo and L. Chrpa (2018). “Using Algorithm Configuration Tools to

Generate Hard SAT Benchmarks”. In: Proceedings of SoCS 2018,

pp,133-137.

[37] F. Hutter, H. H. Hoos, and K. Leyton-Brown (2011). “Sequential

modelbased optimization for general algorithm configuration”. In:

Proceedings of LION 2011, pp, 507–523.
[38] W. Barthel, A. K. Hartmann, M. Leone, F. Ricci-Tersenghi, M. Weigt,

and R. Zecchina (2002). “Hiding solutions in random satisfiability
problems: A statistical mechanics approach”. Physical review letters,

vol. 88, no. 18, pp. 188701.

[39] S. Cai and K. Su (2013). "Local search for Boolean Satisfiability with
configuration checking and subscore." Artificial Intelligence vol. 204, no.

2013, pp.75-98.

[40] Z. Wu and B. W. Wah (2000). “An efficient global-search strategy in
discrete Lagrangian methods for solving hard satisfiability problems”. In:

Proceedings of AAAI, pp. 310-315.

[41] J. Thornton (2005). “Clause weighting local search for SAT”. Journal of
Automated Reasoning, vol. 35, no. 1-3, pp. 97-142.

[42] F. Hutter, D. A. Tompkins and H. H. Hoos (2002). “Scaling and

probabilistic smoothing: Efficient dynamic local search for SAT”. In:
Proceedings of CP 2002, pp. 233-248.

[43] D. Liang, Y. Wu and S. Ma (1998). “An efficient local search algorithm

for structured SAT problems”. Chinese Journal of computers, vol. s1, pp.
92-97.

[44] J. Qiu, Y. Zhang (2010). “A Heuristic Algorithm for Solving the

Satisfiability Problem Based on the Key Literal”. Computer & Digital
Engineering, 10.

[45] C. Luo, S. Cai, K. Su and W. Huang (2017). “CCEHC: An efficient local

search algorithm for weighted partial maximum satisfiability”. Artificial
Intelligence, vol. 243, pp. 26-44.

[46] H. Fu, S. Chen, Y. Xu and J. Liu (2020). “Improving WalkSAT for

Random 3-SAT Problems”. Journal of Universal Computer Science, vol.
26, no. 2, pp. 220-243.

[47] C. Bright, K. Ilias, and G. Vijay (2019). "Applying computer algebra

systems with SAT solvers to the Williamson conjecture." Journal of
Symbolic Computation, vol. 100. no. 2020, pp. 187-209.

[48] B. König, N. Maxime, and N. Dennis (2018). "CoReS: A Tool for

Computing Core Graphs via SAT/SMT Solvers." In: Proceedings of
Graph Transformation, pp. 37-42.

[49] A. Deshpande, and R. K. Layek (2019). “Fault detection and therapeutic

intervention in gene regulatory networks using SAT solvers”.

BioSystems, vol. 179, pp.55-62.

[50] Z. Lei, and S. Cai (2019). "NuDist: An Efficient Local Search Algorithm

for (Weighted) Partial MaxSAT." The Computer Journal. bxz063,
https://doi.org/10.1093/comjnl/bxz063.

[51] Y. Fu, Z. Lei, S. Ca, J. Lin, and H. Wang, (2020). “WCA: A weighting

local search for constrained combinatorial test optimization”.

Information and Software Technology, 122, 106288.

[52] Z. Lei, and S. Cai (2018). “Solving (Weighted) Partial MaxSAT by

Dynamic Local Search for SAT”. In: Proceedings of IJCAI, pp.

1346-1352.

[53] S. Cai, J. Lin, and K. Su (2015). “Two weighting local search for

minimum vertex cover”. In: Proceedings of AAAI 2015, pp 1107–1113.

[54] M., Ouimet, and K. Lundqvist, (2007). “Automated verification of

completeness and consistency of abstract state machine specifications

using a sat solver”. Electronic Notes in Theoretical Computer Science,

190(2), 85-97.

[55] X. Zhao, L. Zhang, D. Ouyang and Y. Jiao, (2009). “Deriving all

minimal consistency-based diagnosis sets using SAT solvers”. Progress

in Natural Science, 19(4), 489-494.

[56] J. Coelho, & M. Vanhoucke, (2011). “Multi-mode resource-constrained

project scheduling using RCPSP and SAT solvers”. European Journal of

Operational Research, 213(1), 73-82.

[57] V. Ulyantsev and F. Tsarev, (2012). “Extended finite-state machine

induction using SAT-solver”. IFAC Proceedings Volumes, 45(6),

236-241.

[58] J.P. Marques-Silva, I. Lynce, S. Malik (2009). “Conflict-Driven Clause

Learning SAT Solvers”. Frontiers in Artificial Intelligence &

Applications, 185(4), pp.131-153.

[59] M.J.H., Heule, and H., van Maaren (2009).” Look-Ahead Based SAT

Solvers”. Handbook of Satisfiability, 185(5), pp. 155–184.

[60] A. Nadel, V. Ryvchin (2018). “Chronological backtracking”. In:

Proceedings of 2018, pp.111-121. Springer, 2018.

[61] C. Luo, K. Su and S. Cai (2012).” Improving local search for random

3-SAT using quantitative configuration checking”. In: Proceedings of

ECAI 2012, pp. 570–575.

[62] H. Fu, J. Liu and Y. Xu (2020). “Focused Random Walk with Probability

Distribution for SAT with Long Clauses”. Applied intelligence.

Accepted for publication.

