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HIGHLIGHTS

® Flooded panel design overcomes poor thermal conductivity of stainless steel.

o Sufficiently uniform flow was achieved in each rectangular half-panel.

® 0.7 mm annealed stainless plate was required to withstand the 1 bar pressure load.
® Hydroforming trials at up to 48 MPa demonstrated the technique.

® 8 absorbers were built and pressure tested.

ARTICLE INFO ABSTRACT

Keywords: The concept of an evacuated flat plate collector was proposed over 40 years ago but, despite its professed ad-
Solar collector vantages, very few manufacturers have developed commercial versions. The absorber is a key component of a
Evacuated flat plate collector: in the context of an evacuated panel, absorber design poses a number of technical challenges.
Vacuum

A flooded panel absorber has been designed for use in evacuated flat plate solar collectors. The aim was to
obtain higher efficiency, in a low out-gassing material, than would be possible using a conventional serpentine
tube design.

Initial plans for a micro-channel plate were modified when optimisation analysis showed that a flooded panel
could achieve as good performance with easier fabrication. The absorber plate is made from hydroformed
stainless steel sheets welded together and features an array of through-holes for the glass-supporting pillars with
the square panel subdivided into two rectangles connected in series for ease of fabrication and better flow
distribution. The coolant flow was modelled in Star-CCM +. FEM simulations based on tensile test data informed
the choice of sheet thickness and weld radius around the holes to withstand the 1 bar pressure differential.

Hydroforming is an effective method for producing sheet metal components, e.g. plates for heat exchangers or
solar absorbers. As a thermal engineering experimental technique, the tooling is significantly cheaper than press
tools since the mould does not need a matching die. In a research context, the ability to form plates in-house and
explore profile and tooling options at low cost is very useful and might find application in other fields such as
experimental heat exchangers.

A hydroforming facility was built using 85 mm thick steel sheet and a 25 MPa hydraulic pump. This proved
highly effective at forming 0.7 mm stainless steel sheet. A total of eight absorbers were fabricated and suc-
cessfully leak tested using helium. Two variants were made: one kind for use in enclosures with a metallic rear
tray, the other for enclosures with glass on both sides. The collector efficiency factor is estimated to be 3% higher
than for commercial tube-on-plate designs.
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1. Introduction
1.1. Background

The concept of an evacuated flat plate (EFP) collector was proposed
over 40years ago but, despite its professed advantages, very few
manufacturers have developed commercial versions. This situation
suggests both technical difficulties in manufacturing a competitively-
priced sealed for life panel and a lack of awareness of the benefits of
such panels. Researchers at Warwick, Loughborough and Ulster uni-
versities have therefore developed and tested a number of evacuated
flat plate collectors as part of an investigation into technical issues that
might hinder manufacture and innovations that might improve effi-
ciency. The dissemination of these results aims also to increase
awareness of the efficiency benefits to end users.

One key component of a flat plate collector is the absorber plate: in
the context of an evacuated panel, this poses a number of challenges.
There is a compromise in the choice of material between thermal
conductivity and risk of outgassing. The need for pillars or ribs to
support the glass without any thermal conduction path from the plate
also adds complexity.

Flat plate solar thermal collectors traditionally use a serpentine tube
bonded or clipped to a conductive absorbing plate with a spectrally-
selective black coating. Efficiency losses due to temperature variations
across the plate can be minimised by using a high conductivity material
such as copper and making it thick enough to give a high fin efficiency.
A copper tube is typically soldered or laser welded to the back of the
plate [1,2] to maximise the bond conductance.

Vacuum insulation has the potential to significantly reduce the heat
loss coefficient Uy thereby allowing a collector to achieve satisfactory
efficiency levels even when operating at “medium” temperatures of
100-200 °C for industrial process heat [3], under weak insolation or in
cold environments [4]. An evacuated flat panel has higher optical ef-
ficiency than evacuated tubes.

A further requirement is that sufficient coolant flow can be achieved
without an excessive pumping power requirement. Most installations
use an electric circulating pump: an optimum pumping power [5], may
be calculated from the cost ratio of heat to electricity and the system
pressure drop. Micro-channel and flooded-panel absorbers can operate
effectively with lower pumping powers than a serpentine design.

Commercial evacuated flat panels use a serpentine tube and plate
design either with a copper sheet laser-welded to a stainless steel tube
[6] or an aluminium sheet and copper tube [7]. The current project was
intended to explore the potential of a micro-channel or similar novel
architecture to create slim, architecturally attractive panels with high
efficiency and low pressure drop. Many proprietary details of the SRB
and TVP designs are undocumented: the theoretical and experimental
investigation presented here is intended to provide definitive data to
guide future evacuated flat plate collector designs. The fabrication
technique may also find application in non-solar fields, for instance in
the manufacture of experimental heat exchangers.

1.2. Choice of materials

Absorbers for vacuum-insulated enclosures [8] require materials
with low outgassing rates in a vacuum [9]. Polymers are becoming a
possibility for conventional solar collectors [10] but no currently
available polymer has a sufficiently low outgas rate for use in an
evacuated panel. Low-oxygen copper may be used [11]; solders con-
taining high vapour pressure metals such as zinc should be avoided.
Materials should also be able to withstand a bake-out at temperatures of
200 - 400 °C. Stainless sheet is commonly used for vacuum equipment
[12,13] and can be vacuum baked [14] to reduce outgassing rates.
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1.3. Absorber manufacturing technology and heat transfer modelling

Most commercial solar collectors use a serpentine tube configura-
tion. This requires a plate to tube bond conductance > 30 W/mK [15].
Stainless steel has much lower thermal conductivity than copper or
aluminium: careful design is then needed to minimise thermal re-
sistance between plate and tube.

Mass produced panels usually use automated laser welding to join
the plate and tube. Spyrou [16] has assessed stress development during
welding and subsequent distortion. Laser welding copper sheet is dif-
ficult because the copper has very low absorption at typical laser wa-
velengths. Kuryntsev [17] and Moharana [18] overcame this problem,
for butt welds, by focusing the laser onto the stainless steel and relying
on conduction to melt the copper nearby.

Automated welding of a tube and plate absorber was not considered
for this low volume research project on cost grounds.

Other joining technologies for solar absorbers include soft-soldering
copper [19] and brazing [20,21]. Aluminium may be soldered to copper
using specialist fluxes [22].

Thermal conductivity effects are greatly reduced if heat flow paths
are shortened, for instance using a micro-channel or flooded panel
design [5]. Kohole [23] investigated the effect of tube placement on
efficiency and Tsilingiris [24] modelled the heat transfer implications
of low-conductivity materials.

Hydroforming [25] is an effective technique for moulding thin
sheets into shapes that would be suitable for a flooded panel. Prior
experience of micro-channel plate manufacture at the University of
Warwick together with the choice of stainless steel and manual welding
led to the adoption of a hydroformed flooded panel design for the
current project.

The purpose of this work was to investigate whether the thermal
conductivity limitations of stainless steel could be overcome by a novel
configuration which would also provide access for the cover glass
support pillars. The design also avoided any combination of dissimilar
metals in order to minimise thermal stresses and distortion. The target
was to achieve a collector efficiency factor higher than commonly ob-
tained from tube-on-plate designs. A secondary aim was to demonstrate
that hydroforming could be used effectively in a research context to
produce experimental apparatus. This was a novel and risky approach
since there is very little published work in this area: distortion from
residual stresses might have been too severe to allow welding into an
assembly.

2. Experimental fabrication of a micro-channel plate

The initial concept for the evacuated collector was that it should use
a micro-channel plate. This followed previous work at Warwick [26]
and is attractive because the small hydraulic diameters lead to high
heat transfer coefficients, thereby minimising the fluid-to-metal tem-
perature difference. The collector efficiency factor F’is also high [5]
due to the short conduction paths.

A pair of 200 mm X 140 mm absorbers were built [27]. This was a
labour-intensive exercise and it became clear that the machining and
manual welding time would be impracticable for a larger (0.5 x 0.5m)
panel. The time and cost could however be much reduced in a mass
production context using a formed or extruded base plate with con-
tinuous, automated welding or using an alternative manufacturing
technique, for instance roll-bonding [28,29]. For non-evacuated solar
collectors, micro-channel absorbers could also be produced cheaply
using injection-moulded polymers [30,31]: the low material con-
ductivity necessitates a micro-channel or flooded design instead of a
serpentine tube. Polymers were not considered for this project because
they are currently unsuitable for high-vacuum, high-temperature use.

The stainless absorber proved to be well sealed, with water bath
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checks using helium at 1 bar revealing just a couple of tiny leaks that
were immediately repaired. The aluminium absorber however suffered
from numerous weld leaks and it was infeasible to seal them all.
Porosity in laser-welded aluminium is a complex topic [32]: it was not
evident whether the leakage stemmed from micro-cracking or weld
porosity. This clear difference between materials led to the choice of
stainless steel instead of aluminium for all subsequent collectors.

Any design of collector (flooded, micro-channel or serpentine tube)
will have an optimum channel size or plate-plate gap that balances the
competing benefits of increased heat transfer coefficient and low
thermal resistance at small hydraulic diameter and increased flow rate
at large diameter [5].

Micro-channel and flooded designs provide a larger flow area and
shorter passage length than a serpentine, at any given hydraulic dia-
meter. The pumping power at a given flow rate is greatly reduced;
conversely at a given pumping power a higher flow rate can be
achieved. This minimises the fluid temperature rise and slightly im-
proves the collector efficiency.

A detailed analysis of the optimum passage size [5] revealed that
the optimum is a function of the intended system pumping power, plate
length in the flow direction and fluid properties but is likely to be at
least 1.6 mm. A flooded panel design is easier to manufacture than a
microchannel plate and can achieve hydraulic diameters of this order
without excessive sensitivity to welding distortion.

The choice of a flooded panel was subsequently confirmed by a
design exercise for a stainless steel tube on plate absorber with a 10 mm
diameter tube spot-welded to the plate at 30 mm intervals. A Bessel’s
equation radially symmetric approximation to the temperature field
around each spot weld suggested that, even when using a 2 mm thick
plate in an effort to overcome the low conductivity of stainless steel, the
collector efficiency factor would have been only 0.933. The metho-
dology will be described more fully in [33a].

3. Hydroforming trials

Stainless steel sheets in a mass production context can be quickly
and easily formed by pressing; the costs of press tooling could not
however be justified for a low-volume research project. Hydroforming
offered an alternative using simpler tooling. The possibility of simple
design modifications is an added advantage since a matching punch and
die are not required.

The first trial used a pair of steel plates 125 X 100 x 12 mm that
clamped a shim against an O-ring. The O-ring was made from stock
material, cut to length and super-glued. The shim came from pack of
stainless shims in 0.2, 0.25 and 0.3 mm thicknesses. The shape of the
mould (Fig. 1(a)) was designed to test the shim’s ability to deform into
narrow channels, around corners and to leave “lands” that could be
welded and provide space to the support pillar holes.
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Initial testing showed that the shims easily tore when formed over
corners. Rounding the corners improved the situation but the problem
was ultimately identified by hardness measurements, HV = 434, which
showed that the material was not in an annealed condition.

Some annealed shim stock was then procured with HV = 165. This
did not tear, even with pressures as high as 48 MPa. The deformed
shims closely followed the mould, even to the extent of showing em-
bossed versions of the mould’s end-mill machining marks. The hy-
draulic test pump was capable of higher pressures but at 48 MPa the O-
ring started to extrude into the gap between the plates and needed
replacing after a few tests. The plates themselves yielded slightly: the
feed pipe and mould plates bowed in the centre by 0.14 and 0.06 mm
respectively.

The basic equation for hydroforming assumes a 2-D cross-section
with a constant-thickness sheet stretching to form an internal bend
radius 1 iy that is effectively a section of a cylindrical pressure vessel.
imin = O-Lt

A typical t= 0.3mm thick cross section after hydroforming at
p = 19.3 MPa shows an internal bend radius of 6.5 mm, implying that
the stress reached o = 418 MPa. Tensile testing (Fig. 6, below) showed
that annealed 316 stainless started to yield at o, = 255 MPa; the stress
then rose above this level due to work hardening. Hydroforming theory
is covered in more detail by Marciniak [34]. The hydroforming process
for commercial components may involve highly detailed modelling
[35].

Lower pressure tests gave a more rounded profile that was perfectly
adequate for use in an absorber. This implied that a thicker sheet could
be used with the pressures available.

4. Absorber design
4.1. Conceptual design

One attractive feature of a micro-channel design is that the mani-
folds can be designed to achieve uniform flow distribution over the
surface. When using a flooded panel without manifolds there is less
precise control over the internal flow, especially when the geometry is
constrained by a uniform array of through-holes.

The simplest approach would be to take a square panel with inlet
flow to one corner and outlet from the opposite corner. This is likely to
result in flow running diagonally as it follows the shortest route: there
would be stagnation regions in the two non-connected corners.

Considering the comparable problem of achieving uniform flow in a
manifold and micro-channel system [36], the distribution becomes
more uniform as the aspect ratio of passage length/manifold length
increases. The increased pressure drop along channels reduces the

Fig. 1. (a) Mould and clamp plate for initial
hydroforming trials, showing recesses of various
depths and O-ring groove. (b) 0.2mm sheet
specimen formed at 34.5MPa, seen from the
pressurised side. The mould was designed to test
features that would be necessary in an absorber
such as concave and convex corners with varia-
tions in mould depth, width and corner radius.
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Top to bottom
transfer hole.

Fig. 2. Hydroformed and laser cut sheets prior to welding.

sensitivity to pressure differences in the manifolds. The flooded panel
was therefore designed as two rectangular halves. The flow in each
rectangle is still between opposite corners but for a given gap and flow
rate the mean velocity will be higher.

This sub-division of the assembly meant that the absorber could be
fabricated by welding two identical hydroformed sheets onto alternate
sides of a flat base plate, Fig. 2, considerably reducing the size and
weight of the hydroforming tools and minimising the risk of welding
burn-through by avoiding butt welds between thin sheets.

Welding sheet metal commonly causes some distortion. The double-
rectangle design with its 180° symmetry about a horizontal axis was
expected to be slightly more stable and to distort less than a single
hydroformed sheet covering one side of a flat base plate.

The enclosure size was limited to 0.5 x 0.5m by vacuum oven ca-
pacity; with some allowance for the edge spacer and internal clearance,
the absorber is 0.47 x 0.47 m.

The flooded panel concept, modelled as a pair of parallel plates, is
the limiting case of a micro-channel analysis. Taking nominal design
parameters of flow length L = 1 m (corner to corner over both panel
halves), Tyfocor-LS at 70 °C and pumping power W, = 0.1 W/m? leads
to an optimum plate to plate gap of approximately 1.6 mm [5].

A further consideration was that the increased pressure drop from a
narrower plate spacing would cause the flow to spread out with a more
uniform distribution instead of taking the shortest possible route. A
separation of less than 2 mm was deemed too risky since any distortion
when welding might cause the plates to come together and touch. A
2 mm spacing was therefore chosen for the main section.

The flow near the flow and return pipes will be at a much higher
velocity than at mid-panel because of the area contraction. This is likely
to lead to increased head losses where the flow turns through 90° to
leave or enter the tubes. The hydroformed plate is dished to provide a
3.5mm gap in regions within 40 mm of the pipe ports to control the
peak velocity.

4.2. Internal flow analysis

The flow was simulated in Star-CCM to check for low velocity or
recirculating regions that might cause hot spots. The predicted flow
distribution appears uniform across a mid-length horizontal plane in
Fig. 3(a), without an obvious bias to one side or the centre. Towards the
corners there is more variation but this is inevitable with a simple panel
when using an array geometry without internal baffles and dividers to
direct the flow. The 22 million node mesh was fine enough to resolve
the plate-to-plate velocity distribution,Fig. 4.

Four of the eight sub-panel corners are stagnation regions. This
cannot easily be avoided and the conduction path to regions of appre-
ciable velocity was deemed short enough to avoid any risk of over-
heating. The final design used a 7 X 7 grid of support holes instead of
the 11 x 11 shown in Fig. 3.
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4.3. Collector efficiency factor

Duffie and Beckman [15] define the collector efficiency factor F'as
the ratio of heat flux to fluid between the actual collector flux g, and the
ideal collector equivalent with peyfect thermal contact between fluid
the ratio of two heat transfer coefficients: one from plate to environ-
ment, the other from fluid to environment: F’ = %2

The collector efficiency factor for an absorber with a tube embedded
in a plate is found [15] using:

and absorber surface: F' = F'may also be expressed as

F/ — 1/IJL
1 1 1
[UL[D+(W—D)F] + Cp + nthﬁ]
where F = BhnWW=D)/2) . [U with metal conductivity k., and

m(W—D)/2
plate thickness . The more common situation where a tube is welded to
one side of the plate may be modelled by setting D = 0. The efficiency
factor is however overestimated in this case, unless thick-walled tube is
used, because it takes no account of temperature variation around the
tube as heat flows away from the contact point.

The upper surface of a flooded panel absorber may be modelled as a
continuous sheet. Summing three thermal resistances in series (fluid to
plate, conduction through the plate and heat loss to environment) leads
to a simpler formula for this case:

F/_ 1/[]L
T a1
U, k hfi

Table 1 shows predicted efficiency factors for idealised absorbers
with zero thermal resistance between tube and plate. The first case with
150 mm tube pitch is an estimate of the dimensions used in TVP’s
evacuated collector; the other cases take the 60 mm pillar pitch used in
the present experiment. The efficiency factors for the tube on plate
cases are over-estimates due to the assumption of infinite bond con-
ductance and the neglect of any temperature distribution around the
tube. This is particularly true when using stainless steel (second
column). It was estimated (Section 2) that the bond resistance due to a
series of spot welds at 30 mm intervals would reduce the efficiency
factor to 0.933 in the stainless steel tube case.

The third column in Table 1 shows the expected performance of a
flooded panel absorber. In this case there is no uncertainty regarding
bond conductance because there is no tube and no bond line. At the
nominal Uy = 1 W/m? K condition the efficiency factor is at least 3%
higher than for the aluminium tube on plate result and 7% higher than
expected in practice with a tube spot-welded to a stainless steel plate.

This conclusion is not limited to evacuated panels. The results at
U, = 4 W/m? K show that a flooded panel has a more significant effi-
ciency advantage (0.993 versus 0.888) when subjected to the higher
heat loss coefficients in a conventional flat plate collector.

4.4. Design to withstand operational stresses

The material must be sufficiently thick and strong enough to with-
stand the > 1 bar pressure difference in an evacuated enclosure without
rupture or excessive distortion. There were two areas of particular in-
terest: the central deflection in the flat regions between each group of
four holes and the stresses in and around the weld zones.

Each stainless steel sheet was modelled as a “shell” in Abaqus CAE™
to avoid the need for a 3D grid with closely-spaced nodes in the
through-sheet direction. Deflections and stresses were analysed both for
an axisymmetric model of the region around a single hole and for a
nominal rectangular panel.

The Abaqus sheet model was drawn assuming that the hydroformed
sheet would locally adopt a toroidal profile, Fig. 5, as it stretched to its
elastic limit over each circular island on the former.
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Velocity: Magnitude (m/s)
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Velocity: Magnitude (m/s)
0.011200 0.015800

0.025000

0.0020000 0,0066000 0.020400

Fig. 3. Predicted water speed (Star-CCM, 22 million nodes). (a) Flow is from left to right and there is evidence of a “jet” from the transfer port in the left-hand image

(scale 0 — 0.06 m/s).

12

0.02593¢

Fig. 4. View of a typical cross-section between two holes. [Scale 0 — 0.026 m/
s].

Table 1

Assumed parameters and collector efficiency factors for tube on plate and
flooded panel absorbers using Tyfocor-LS® at 60 °C, laminar flow. 4 W/m?*K
would be a typical U; heat loss coefficient for a non-evacuated flat plate
whereas 1 and 0.4 represent nominal and highest feasible coefficients for an
evacuated collector.

Type Tube on plate Tube on plate Flooded panel

Sheet material Aluminium 304L stainless  316L stainless
steel steel

Sheet thickness 1 mm 1.6 mm 0.8 mm

Hydraulic diameter 12mm 12mm 4 mm

Tube internal, external diameter 12, 14 mm 12, 14 mm 2mm gap

Tube pitch 150 mm 60 mm n/a

Bond conductance o o0 n/a

F'(Up = 4 W/m?K) 0.881 0.921 0.993

F (U =1 W/m?K) 0.967 0.979 0.9983

F' (U, = 04 W/m?K) 0.987 0.991 0.9993

Two hydroformed profiles were studied. The toroidal areas around
each hole blend into a pattern of flat regions surrounded by 4 holes:
increasing the size of the toroid reduces the flat area and means that a
larger proportion of the plate is stiffened by the 3D nature of the tor-
oidal curve. The island diameter is the same in each case since the
difference between the two models can be achieved by altering the
hydroforming pressure.

The material chosen was T316 sheet in 2B annealed state. A tensile
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test specimen was cut from sheet and tested to determine its stress/
strain characteristics, Fig. 6. These were converted to true stress and
true strain as required in Abaqus.

A 3 x 3 pattern of support holes was used for the rectangular panel
FE analysis instead of the full 3 X 7 in each side-panel (Fig. 7, 0.8 mm
sheet top and bottom, “wider” toroids); this simplified the manual input
requirements when meshing. After a number of simulations with var-
ious thicknesses and weld ring diameters a sheet thickness of 0.7 mm
(hydroformed), 0.9 mm (baseplate) was chosen. One important feature
is that the weld ring diameter (20 mm) is larger than the hole diameter
(13 mm): this reduces stress levels in and around the weld.

The final design increased thickness from 0.6 to 0.7 mm to limit the
peak stress in the vicinity of the weld. To avoid tearing, the hydro-
formed sheet has a blend radius around the lip of the moulding island.
The weld line in the Abaqus model (arrowed) is therefore offset inwards
from the apparent intersection. The lip here is also necessary to allow
clamping while welding and to reduce the risk of burn through.

The choice of 0.7 mm sheet was a compromise between operational
stresses and ease of hydroforming. The base plate did not require hy-
droforming and could in principle use much thicker material to mini-
mise the risk of distortion: the flat sheet does not have any toroidal
surfaces to stiffen it. A 0.9 mm base was chosen because welding is
easier if the sheets are not too dissimilar in thickness. The von Mises
peak stress of approximately 480 MPa at a differential pressure
AP = 2 bar, Fig. 7(a), is for a worst case e.g. during leak testing. When
operating with coolant at ambient pressure in an unpressurised circuit
the peak stress would be of order 240 MPa and hence less than the
initial yield stress. The highly ductile nature of the stainless steel allows
the possibility of stress relief via slight deformation in the high stress
regions without risk of failure.

5. Design of the hydroforming facility

The hydroforming clamp plates and mould plate (Fig. 8) were ma-
chined from S355 high-yield structural steel. A thickness of 85 mm was
chosen for the clamp plates based on a rectangular slab stress formula
for a uniformly loaded rectangular plate of length a and width b [37]:
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Mould
ceiling

“Island”
on mould

I
Toroid (i e,
Axis of rotation () Toroid (ii)

Pressure

Fig. 5. Cross-section of toroidal profiles as modelled in Abaqus. The mould line for toroid (ii) is included here simply to illustrate how the shape is generated: the
Abaqus simulations described below are for a free (unenclosed) panel.

Annealed 316L, 0.2 mm shim

Stress MPa

0 1 I I L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Strain
(b)

Fig. 6. (a) Tensile test of T316 specimen, (b) nominal and true stress/strain characteristics. The specimen started to yield at 255 MPa and failed at a nominal strain of
42%.

Grade 8.8 M27 bolts tightened to 600 N m with greased threads and
washers clamp the stainless sheet between the mould and lower clamp

This models the pressure-loaded area only and the stress may be an plates. The sheet is pushed against an O-ring that sits in a groove in the
over-estimate for a larger plate loaded only over a central region. clamp plate. The torque is less than the recommended tightening torque

The formula gives a peak stress approximately 26% lower than (=1390 N m) but was the highest that could easily be achieved with the
obtained for an infinitely long plate. The yield stress of 355 MPa would available torque wrench. An online torque calculator [38] suggests that
be achieved at a hydraulic pressure of 57.4 MPa, implying a safety 600N m creates a preload of approximately 131 kN in each bolt.
factor of 2.3 at the design pressure of 25 MPa.

2
Omax = ﬁ’:;f using 8 = 0.557 for% = 1.75.

Fig. 7. Abaqus simulation of deflections (exaggerated here) and von Mises stresses in the hydroformed plate (left) and base plate (right) for 0.8 mm sheet at
AP = 2 bar. The colour bar runs from 0 to 486 MPa in each case.
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Fig. 8. (a) The hydroforming facility, (b) the mould plate. The surface seen here faces downwards in the facility.

The bolt line load in the centre of a long side may be calculated as:
R = ypb [37] using y = 0.497 at this aspect ratio.

At 25 MPa the load in the side bolts (56 mm pitch) would be 194 kN
and the bolts would stretch elastically by 0.10 mm relative to the pre-
loaded length. There was some evidence of leakage past the O-ring seal
at this condition which might indicate that the plates were starting to
separate slightly. This was not a significant problem and could perhaps
have been overcome by tightening to a higher torque. A total of 19
sheets were hydroformed.

0Oil is fed underneath the 0.7 mm sheet and pushes it up against a
20 mm thick mould plate, Fig. 8(b), that is held between the two clamp
plates. The mould plate is NC-milled, leaving 21 “islands” to form the
depressions in the sheet for the support holes and their circular welds.
An overhead crane with a magnetic chuck was used to aid removal of
the 180 kg clamp plates.

6. Absorber fabrication
6.1. Welding the hydroformed panels

Two competing enclosure designs were developed for the evacuated
collector project [8], Fig. 9. These required two different feed tube
arrangements.

o The first design used a stainless steel tray covered by a single glass
sheet and has absorber feed tubes pointing downwards through the
back of the tray.

® The second design used a symmetrical pair of glass panes held apart
by a stainless steel edge spacer. This is intended for use in building

facades where its attractive appearance from both inside and outside
would be an advantage. The feed tubes are in line with the absorber
and pass through the edge seal. A pair of cylindrical manifolds
distribute or collect the pipe flow over 4 cm of the absorber edge and
simplify the welding of the tube/absorber junction.

The hydroformed sheets were manually TIG welded. Each absorber
was then water-bath tested for leaks using helium at 1.4 bar.

6.2. Distortion testing

Measurements of thickness and any distortion due to variations in
pressure were required to determine the minimum safe height within
the evacuated enclosure. An absorber was supported at 3 points on a
surface table, Fig. 10, and the surface height was measured at 13 points
both unpressurised and at 1 bar gauge. Measurements were taken with
the absorber both front-side up and upside down. The maximum dis-
placement due to an applied 1 bar pressure was < 1 mm.

6.3. Installation and testing

The process of assembling the vacuum enclosures will be described
in a forthcoming pair of papers by Arya [33a,b]. The chrome plating,
testing and experimental results are presented in [39].

7. Conclusions

A number of absorber concepts were investigated. A flooded panel
absorber made from hydroformed plates was adopted because it offered
higher efficiency than a serpentine tube arrangement and was easier to
manufacture than a micro-channel architecture. Previous experience

Fig. 9. (a) Tray-type collector prior to adding the cover glass. Using a stainless steel tray allows the pins to be spot-welded in place. The absorber has been black

chrome plated. (b) Completed “symmetrical” enclosure.
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Fig. 10. A symmetrical absorber undergoing distortion measurements. The
cylindrical stub manifolds are visible on the left-hand side.

fabricating microchannel absorbers in aluminium and stainless steel led
to the choice of stainless steel as a suitable vacuum-compatible material
despite its relatively low thermal conductivity.

CFD simulations showed that an effective flow distribution could be
obtained by sub-dividing the absorber into two rectangular halves, each
with flow entering and leaving at opposite corners. The collector effi-
ciency factor is predicted to be 3% higher than for a typical aluminium
tube-on-plate design and 7% higher than would have been possible
using a spot-welded stainless steel plate.

FE analysis based on tensile test material properties proved that a
material thickness of 0.7 mm was sufficient to withstand operational
pressures. The peak stress is approximately 240 MPa when subject to a
1 bar pressure differential.

Hydroforming proved to be an effective technique for forming sheet
metal in a research context. Pressures of 25 MPa were found to work
well in deforming a 0.7 mm stainless sheet. The hydroforming rig
concept, with sheet metal sealed against an O-ring, was successfully
demonstrated. Pressure testing showed that a 1 bar pressure differential
(representative of operation in a vacuum enclosure) distorted the
completed absorbers by less than 1 mm.

The flooded panel solar absorber concept could be easily adapted
for mass production using high speed press tools and automated
welding. For small volume production, hydroforming is a useful
workshop technique and could be useful for experimental heat ex-
changer components as well as solar absorbers. The flow and stress
predictions presented here may provide useful insights for other fields
such as radiators and blow-moulded components.
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