
BAYESIAN ANALYSIS ON MIXTURE MODELS,

FOR UNDERSTANDING THE PROCESS OF

MYOSIN BINDING TO THE THIN FILAMENT

by Madalina-Daniela Mihailescu

A thesis presented for the degree of

Doctor of Philosophy

Department of Mathematical Sciences,

Faculty of Science and Health,

University of Essex

ABSTRACT

Understanding how access is granted to myosin by the actin thin filament has not been

fully understood yet. The process of thin filament activation is explored by developing

a new variation of hidden Markov models to extract dynamic information from image

data and to establish how many myosins are present in an activated region against time.

Hidden Markov models supply an extension to mixture models in such a way that they

allow for spatial data. The novelty lies in the model allowing for spatial information in

the image to be encoded through contextual constraints of a neighbourhood structure

based on three nearest neighbours. Furthermore, for the purpose of Bayesian inference

about the unknown number of K components, the Metropolis-Hastings algorithm is

employed.

The Bayesian analysis shows that, when compared to reversible jump Markov chain

Monte Carlo, our proposed model provides a better alternative for the finite mixture

model at capturing the behaviour of myosin binding to the thin filament. The estimated

mean intensity values of fluorescence from both models are exemplified in separate

kymographs, where the variation in light intensity gives us information about how the

myosin binding phenomenon is clustered or varies over time.

ACKNOWLEDGEMENTS

Foremost, I would like to express my special thanks and the deepest appreciation to

my supervisor, Dr. Hongsheng Dai, for his immense support during my PhD study

years, for his patience, enthusiasm, extensive knowledge and for always pushing me to

work harder. I could not have imagined having a better advisor and mentor for my

PhD study.

I would also like to take this opportunity to express my heartfelt gratitude to my close

family who has always supported my ventures and has believed in me.

Last but not least, I am also indebted to one of closest friends, Amalia Becherescu,

because these past years would have been grim and difficult without her constant

encouragement and guidance.

CONTENTS

1 Introduction 6

1.1 Contribution to knowledge . 8

1.2 Biological background and data description 10

1.2.1 Muscle contraction . 10

1.2.2 Introduction to the Data . 14

2 Review of Bayesian inference for mixture models 17

2.1 Bayesian inference . 19

2.2 Finite mixture model estimation . 22

2.2.1 Basic definition . 26

2.3 The prior distribution . 28

2.4 Prediction by Markov chain Monte Carlo 30

2.4.1 Discrete time and discrete state space Markov chains 32

2.4.2 Metropolis Hastings algorithm 35

2.4.3 The Gibbs sampler . 38

3 Application to finite mixture models using reversible jump MCMC 41

3

3.1 RJMCMC algorithm - multiple move types and the model choice problem 42

3.2 Mixtures Analysis with an unknown number of components 44

3.2.1 Univariate normals with an unknown number of components . . 45

3.3 Performance of reversible jump MCMC 54

3.3.1 Dataset 1 with conditions 5 nM actin 57

3.3.2 Dataset 1 with conditions 10 nM myosin at pCa 6 66

3.4 Description of transition rates and probabilities 73

4 Hidden Markov model on two dimensions and its application 79

4.1 Hidden Markov models . 81

4.1.1 Hidden Markov random field . 84

4.2 Continuous time and discrete state space Markov chains 86

4.2.1 Basics of continuous time Markov chains 87

4.2.2 Birth and death processes . 91

4.3 The latent myosin binding process . 92

4.4 Image intensity model given the latent process 95

4.4.1 The likelihood . 96

4.4.2 The full posterior distribution 98

4.5 Numerical analysis . 99

4.5.1 Simulated binding process with 5 components 101

5 Conclusion and Future Direction 113

5.1 Hidden Markov model . 113

5.2 Future direction . 114

Appendices 116

A Proof of Proposition 1 (See page 94) 117

B Extra Analysis for 5nM actin kymographs 120

B.1 Dataset 2 with 5nM actin . 120

4

B.2 Dataset 3 with 5nM actin . 125

C Extra analysis for 10 nM myosin at pCa6 131

C.1 Dataset 2 with 10 nM myosin at pCa6 131

C.2 Dataset 3 with 10 nM myosin at pCa6 136

C.3 Hidden Markov models simulation . 141

D Computational code for statistical simulations using R software 145

D.1 RJMCMC simulations . 145

D.2 Hidden Markov MCMC . 153

D.2.1 Numerical analysis of the hidden Markov model 168

5

CHAPTER 1

INTRODUCTION

The mechanism of muscle contraction at the molecular scale has not been fully under-

stood yet, mainly because a model incorporating the full intricacy of the thin filament

is yet subjected to experimental scrutiny. The data used in this paper is unique and

extremely insightful. It has not been previously analyzed for the same purposes using

the techniques presented here. Full understanding of the myosin binding process might

allow, amongst others, novel treatments of genetic heart disease. It cannot yet be

predicted how a genetic failure in muscle protein will lead to a physiological change in

the heart. This is because yet there is no clear connection between muscle contraction

and cell or organ (Spudich [64]). While further work is necessary, this decade will see

an exponential expansion in our comprehension of the complex mechanism of muscle

contraction.

In the past few decades, mathematical modeling has played a significant role in our

understanding of the link between muscle contraction at the micro and macro scale

(Niederer et al. [49]). Many theoretical concepts, such as the sliding filament theory,

6

have been implemented using mathematical models. These models have proven to be

very accurate. For example, Walcott and Sun [70] performs a simple simulation to

examine the interaction between myosin and actin. These two proteins are the main

contributors to muscle contraction. Similarly, this paper measures the interactions

between myosin molecules and the thin filament. It has previously been established that

myosin molecules bind in clusters along the thin filament and their size depends on the

solution conditions. These clusters represent the number of myosins in an active region

and the regulatory system of the thin filament can accommodate at most 11 binders

in an active area (Desai et al. [19]). Myosin binders in an area of activation attach,

detach and catastrophically collapse. Based on studies of myosin binding to regulated

actin, McKillop and Geeves [40] propose a model with three regulatory states: blocked,

closed and open. The blocked state stops any myosin binding, the closed state allows

weak myosin binding as observed at low concentrations of Calcium, and the open state

allows both weak and strong myosin binding. Furthermore, both Mijailovich et al. [46]

and Desai et al. [19] discuss cooperative activation of thin filament. These two articles

argue that myosin facilitates its own binding by developing locally fully active regions.

The aim of this thesis is to examine the process of thin filament activation by developing

novel mathematical methods to extract dynamic information from image data. To solve

the problem that coexisting fluorophores cannot be optically resolved, we will use a

novel mathematical variation of hidden Markov models to establish how many myosins

are present in an activated region against time. This will offer unprecedented access into

the mechanism of a complex system at the single molecule level. The implementation

of a latent spatial process is being considered, in order to model the rate of myosin

molecules binding on the thin filament, the rate of myosin molecules leaving the thin

filament and how myosin molecules interact with each other. We are particularly keen

on studying how bound myosin molecules lead to cooperative activation of the thin

filament to generate further binders, and also on the catastrophic collapse of the thin

filament. This catastrophic collapse involves full detachment of the bound myosin

7

molecules in an active region, in only one step. In other words, an active region on the

thin filament is turned off in only one step.

Modeling problems in this thesis are addressed mainly from the computational view-

point. The primary concern is how to define the objective function for the optimal

solution for the given image analysis problem and how to find the optimal solution us-

ing Bayesian methods. The reason for defining the solution in an optimisation sense is

due to numerous uncertainties in the image processes. Thus, we search for the optimal

solution, using encoded constraints to fit the given data. Contextual constraints are

indispensable in the correct interpretation of visual information because the aspects

of context are important for the task of identifying the context, and determining how

they constrain the process under consideration.

The research presented within this thesis will demonstrate how the reversible jump

MCMC algorithm, within a Bayesian structure, can be used in the area of thin filament

activation for parameter estimation and model selection. This approach deals with the

issue of selecting the number of clusters and the validity of a given model is addressed

in a principled and formal way. The performance of the reversible jump MCMC will

then be compared to the performance of the hidden Markov model proposed in this

thesis. Both models will be applied to similar datasets and evaluated to provide a

better understanding of how the thin filament activates and also deactivates.

1.1 Contribution to knowledge

The thesis studied the activation of the thin filament and how myosin binds in clusters

along the thin filament via finite mixture models in Chapter 3, using the reversible

jump MCMC algorithm. This detailed examination using the reversible jump MCMC

approach reveals a high probability of myosin binding in a more classical cooperative

activation. It also reinforces that myosin spreads its own binding by creating locally

fully active regions known as regulatory units.

8

To further explain such cooperative phenomenon, a new variation of hidden Markov

models has been considered because these models supply an extension to mixture mod-

els in such a way that they allow for spatial data. The novelty lies in the model allowing

for spatial information in the image to be encoded through contextual constraints of a

neighbourhood structure based on three nearest neighbours. This neighbourhood pro-

cess has been carefully chosen to capture the effects light intensity from neighbouring

positions has on the average intensity of light of a pixel. The latent variable produces

the number of bound myosins at a time point and location, and also deals with the

transitions between different states of behaviour. This enabled an assumption-free

model of the attachment and detachment probabilities for myosin to be determined.

It is expected that myosin binds to actin stochastically and forms clusters. The highly

elevated collapse probability suggests a concerted mechanism of deactivation (relax-

ation), and explains the ability of muscle to relax in conditions that would be expected

to still permit myosin binding.

The performance of the proposed Markov chain Monte Carlo algorithm in simulating

the myosin binding process is compared to the raw data and to the performance of the

reversible jump Markov chain Monte Carlo. The purpose of such mixture analysis of

our novel variation of HMMs and RJMCMC is inference about the unknown number

of K components, component parameters and the proportion of each cluster. The

analysis reveals that our proposed model has an improved performance when compared

to RJMCMC because it gives a better simulation of the number of myosins found in

each pixel. Thus, the hidden Markov model provides a better alternative for the finite

mixture model at capturing the behaviour of myosin binding to the thin filament.

9

1.2 Biological background and data description

Nowadays, statistical modelling is more and more frequently used in research of the

behaviour of biological systems, especially in the process of rehabilitation, in medicine

and sports biomechanics. This is due to the need for identification and connection

of the series of phenomena occurring in the organism. In the majority of cases, the

direct measurements of data that describe those phenomena cause disturbances of

organisms functions or permanent damage to its organs. For that reason the statistical

modelling has been used during the identification of cause-and-effect relationships.

The interaction of actin and myosin filaments is the basis for muscle contraction in

all cases. So, full understanding of the thin filament activation process could help the

identification of novel treatments of genetic heart disease.

In this section, a brief theoretical review on the mechanism of muscle contraction is

presented in the first section. Then, the second part of this section is dedicated to

introducing a dataset example and displaying some descriptive statistics in order to be

made familiar with the datasets before commencing any analysis. This information will

become more useful in later chapters, in order to comprehend the underlying theory

and its applications.

1.2.1 Muscle contraction

The human body has three types of muscle tissue: skeletal, cardiac and smooth (Sil-

verthorn et al. [62]). Skeletal muscle, which is attached to the bones of the skeleton,

controls body movement. This type of muscle contracts only in response to a signal

from a somatic motor neuron (a highly specialized cell in the nervous system which

conducts impulses to skeletal muscles). Cardiac muscle is the muscle of the heart which

contracts to squeeze blood out of the heart, and relaxes to fill the heart with blood.

Skeletal and cardiac muscles are known as striated muscles because they have cross

striations formed from the organisation of the sarcomere, which is formed of the dif-

ferent thick (myosin) and thin (actin) filaments within muscle cells. Smooth muscle is

10

the primary muscle of internal organs and tubes such as stomach and walls of blood

vessels. Its dominant function is to impact the movement material into, out of, and

within the body (Silverthorn et al. [62]). This paper focuses on striated muscle only.

Muscles have two main functions, which include the production of motion and of force.

Force generation in striated muscle is a reaction of the cyclical interaction of myosin

with actin, a process that is regulated by local Calcium ion concentration. The two

principal muscle proteins implicated in contraction are myosin and actin. Myosin

molecules join to create a thick filament with the heads assembled at each end and

actin is the protein that forms the thin filament. These proteins are arranged as

a repeating pattern of thick and thin filaments in the sarcomere. According to the

sliding filament model which was firstly introduced by Huxley and Hanson [36], each

myosin headpiece engages in a repetitive cycle of making and breaking crossbridges to

an adjacent thin filament. Each actin molecule has a single myosin-binding site, and

each myosin head has one actin binding site and one binding for adenosine triphosphate

(ATP) (Tobacman [68]). A Calcium signal initiates the power stroke and repeats many

times as a muscle fiber contracts. The myosin head reaches forward, binds to actin,

contracts, releases actin molecule, and then reaches forward again to bind actin in

a new cycle. Crossbridges form when myosin heads of thick filament bind to actin

in the thin filament, which results in the actin filament being drawn along a certain

distance, towards the centre of the sarcomere. This sliding force established between

the filaments is hydrolysing of ATP by myosin at a rapid rate, thus releasing energy for

muscle contraction. When activation of the muscle ends, interaction between myosin

cross bridges and actin filaments stops. Therefore, no sliding energy is created and the

muscle is relaxed once more(Stracher [67]).

McKillop and Geeves [40] have shown that without Calcium (Ca2+), the position of

tropomyosin partially covers actin’s myosin-binding sites, preventing the myosin cross-

bridges from binding to the thin filament. This process is presented in Figure (1.1)

(OpenStax [50]). Weak binding can still occur but myosin is blocked from complet-

11

Figure 1.1: Thin Filament Activation

12

ing its power stroke. In order to trigger the contraction of the muscle, tropomyosin

must shift its position to uncover the myosin binding sites. Calcium and ATP are

cofactors necessary for the contraction of muscle cells. ATP is the supplier of energy,

whereas calcium sends out signals to troponin which regulates the off-on positioning

of tropomyosin. Specifically, troponin pulls tropomyosin completely away from actin’s

myosin binding sites. This ”on” position and sufficient ATP allows the myosin heads to

form strong crossbridges and complete their power strokes, moving the thin filament.

In the absence of Calcium, this binding does not occur, so the presence of calcium is

a valuable regulator of muscle contraction(Silverthorn et al. [62]). According to Desai

et al. [19]: ”Once bound, myosin is hypothesized to potentiate the binding of further

myosins. We have found that 2 myosin heads are required to laterally activate a regula-

tory unit of thin filament. The regulatory unit is found to be capable of accommodating

11 additional myosins.” This suggests that the binding of one myosin molecule in one

position facilitates the same action in neighbouring binding sites through the activation

of the thin filament. So, when the thin filament is fully active, myosin is capable of

opening a region on the thin filament which permits up to 11 supplementary myosin

heads to bind.

Furthermore, as explained in Kad et al. [37], subsequent studies have shown that

myosin’s interaction with the thin filament consist of three states: blocked, closed and

open. As previously mentioned, when Ca2+ is not present tropomyosin occupies the

binding site preventing myosin from binding to actin. At the time of Ca2+ binding to

troponin, tropomyosin’s equilibrium position moves toward the closed state, exposing

some binding sites that allow myosin weak binding. Once bound, myosin’s weak-to-

strong binding transition shifts tropomyosin’s equilibrium position further towards the

open state, permitting cooperative binding of additional myosins by exposing neigh-

bouring actin binding sites. Thus, the full activation of the thin filament occurs only

when an open state exists.

13

1.2.2 Introduction to the Data

The datasets used in this thesis for the purposes of analysis have been collected by Desai

et al. [19] during preliminary experiments. The experiments involved the development

of an in vitro model of thin filament activation based on the use of single molecule

imaging 1. Single headed myosin II have been fluorescently tagged to behave as both

an activator and a reporter of activation. Also, single reconstituted thin filaments

suspended between silica beads, have been employed. These are known as ”tightropes”.

This technique of single molecule imaging has presented new insights into how motion

and force is being generated. In Figure (1.2), which illustrates a typical image dataset

of the thin filament activation, one would be able to notice that myosins bind in

clusters along the thin filament. These clusters differ in size depending on the solution

conditions. A study across a range of Calcium and myosin concentrations is required to

provide accurate modelling of the complex mechanism of thin filament activation. Such

analysis will determine to what extent a catastrophic collapse is a stochastic process.

This is because thin filament activation is inherently a stochastic process influenced

by the concentration of Calcium and myosin. One would expect that with greater

solution concentrations, the active regions will grow and unite to turn on the entire

thin filament.

Figure 1.2: Kymograph at pCa=6 and myosin II=5 nM

As an example, Figure (1.2) represents a kymograph of myosin interactions with thin

filaments. The horizontal axis (x-axis) exhibits time, where the time difference between

two pixels is 300ms and the frame rate is approximately 3.3 frames per second (fps).

This comes from the exposure time, and therefore fps is determined by the exposure

1The full extent of the experiment can be found in Desai et al. [19]

14

time of 300ms. The vertical y-axis represents the single thin actin filament and each

pixel of the kymograph is 126.4nm of the thin filament. The conditions of this specific

image are 15nM myosin at pCa=6 (calcium concentration) with 0.5 µM ATP. The flu-

orescent spots in the kymograph illustrate binders. As the intensity of a spot increases,

one would expect a greater number of binders in that position.Each pixel has a value

which represents the intensity of light in the pixel. Thus, the brighter the pixel, the

larger the number of binders in that position at that point in time. Many fluorescent

pixels appearing next to each other indicate clustered myosin binding.

Figure 1.3: Histogram at pCa=6 and myosin II=5 nM

Table 1.1: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

0 28 58 69.41 94 255 57

15

To gain some initial insight into the datasets, descriptive statistics of Figure 1.2 are

used to summarise and describe data. This kymograph is representative of the type of

data to be analysed in later chapters. Firstly, Table 1.1 presents the summary statistics

of the kymograph presented in Figure 1.2, where the mean value of a pixel is 69.41.

Also, the standard deviation (SD) is 57, which measures the average distance between a

single observation and the mean. Figure 1.3 displays the positively skewed distribution

of data, where most of values are found in between 0 and 150. Moreover, by looking at

this histogram, one cannot tell how many distinct subgroups are within this dataset,

even if it is well known from literature that myosin binding occurs in clusters.

Having introduced the theoretical review on the mechanism of muscle contraction and

some descriptive statistics of the datasets, the next chapter will provide a comprehen-

sive review of Bayesian inference for mixture models. One of the main interests in

this thesis is to determine the number of clusters in each dataset and then model the

process of clustering, which is represented by the myosin binding to the thin filament.

16

CHAPTER 2

REVIEW OF BAYESIAN INFERENCE

FOR MIXTURE MODELS

Because the exact theories of optimal estimates are challenging to apply, attention has

deviated to approximate algorithmic methods, such as simulation. In this thesis, it is

more appropriate to use a Bayesian approach when dealing with a stochastic process.

Inference is made about an unknown parameter, say θ, from the data, which allows

one to explore and learn about this parameter θ.

Bayesian analysis is a method of statistical inference (named after the English mathe-

matician Thomas Bayes) that allows one to combine prior information about a popu-

lation parameter with evidence from information contained in a data sample to guide

the statistical model. Bayesian inference is an extremely powerful set of tools for mod-

eling any random variable. It involves drawing conclusions, based on real data, about

quantities that are not observed. Bayesian inference starts with the formulation of

a model that we consider as an appropriate representation of a situation that holds

17

our interest. This is done by utilising practical methods for drawing conclusions from

representative data, using probability models for both observed and unobserved quan-

tities. In this type of analysis, uncertainty is expressed in terms of probability and

common-sense interpretation of statistical conclusions is facilitated. For instance, a

95% credible interval for an unknown quantity is interpreted as having a 95% prob-

ability of containing the unknown quantity. Whereas, a 95% frequentist (confidence)

interval is interpreted as a range of values so defined that there is a 95% probability

that the unknown quantity lies within this range.

The four steps of a Bayesian analysis are

1. Specify a joint distribution for the outcome(s) and all the unknowns, which typi-

cally takes the form of a marginal prior distribution for the unknowns multiplied

by a likelihood for the outcome(s) conditional on the unknowns. This joint dis-

tribution is proportional to a posterior distribution of the unknowns conditional

on the observed data.

In practice, two major challenges confront the practical implementation of Bayesian

analysis - the specification of the prior distributions and the calculation of the

posterior distribution.

2. Draw from posterior distribution using Markov Chain Monte Carlo (MCMC)

methods.

Recent advances in computing technology coupled with developments in nu-

merical and Monte Carlo methods, most notably Markov Chain Monte Carlo

(MCMC), have opened up new and promising directions for addressing this chal-

lenge. The basic idea behind MCMC here is the construction of a sampler which

simulates a Markov chain that is converging to the posterior distribution.

3. Evaluate how well the model fits the data and possibly revise the model.

4. Draw from the posterior predictive distribution of the outcome(s) given interest-

18

ing values of the predictors in order to visualize how a manipulation of a predictor

affects (a function of) the outcome(s).

The fundamental feature of Bayesian methods is their specific use uncertainty by a

probability distribution over hypotheses. Ones ability to make inferences depends on

ones degree of confidence in the chosen prior, and the robustness of the findings to

alternate prior distributions may be relevant and important. Whereas, the frequentist

method only uses conditional distributions of data given specific hypotheses. The

presumption is that some hypothesis (parameter specifying the conditional distribution

of the data) is true and that the observed data is sampled from that distribution.

This chapter aims to introduce the reader to the construction, prior elicitation, es-

timation and evaluation of mixture distributions in a Bayesian setting. It will show

that mixture models provide a flexible framework for statistical modelling and anal-

ysis. The focus lies on methods, given that the practical aspects will be presented

in later chapters. In Section 2.1 the basis of Bayesian inference is being introduced,

followed by basic properties of mixtures in Section 2.2. Then, Section 2.3 talks about

the use of prior distributions and their importance. Most importantly, Section 2.4 de-

scribes the powerful tool of MCMC methods and algorithms that can be used for the

approximation to the posterior distribution on mixture parameters.

2.1 Bayesian inference

The basis for Bayesian inference is derived from Bayes’ theorem. This theorem provides

an expression for the conditional probability of A given B, which is equal to

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

Replacing B with observations y, A with the set of parameters θ and probabilities P

with densities π results in

19

π(θ|y) =
f(y|θ)π(θ)

ρ(y)
(2.2)

where

ρ(y) =

∫
f(y|θ)π(θ)dy. for continuous data

and

ρ(y) =
n∑
i=1

f(y|θi)π(θi) for discrete data

According to Gelman et al. [28], in Bayesian statistics the parameter θ is taken as being

random. The statistical model f(y,θ) represents a family of distributions, each of which

has assigned a unique parameter θi, for i = 1, 2, · · · , n. Gelman et al. [28] also explains

that in oder to draw probability conclusions about θ given y, one must combine the

likelihood, f(y|θ), and the prior distribution π(θ) in the posterior distribution,π(θ|y).

π(θ) is the set of prior distributions for the set of parameters before y, the data, is ob-

served.The likelihood function, also denoted as L(θ|y), is thought of as the information

brought in by the data.

The marginal likelihood ρ(y) is an integral over all the values of θ of the product

f(y|θ)π(θ) and is viewed as a normalising constant to guarantee that π(θ|y) is a

proper density. The Bayesian approach often results in integration problems, due to

the difficulty in calculating the normalising constant, ρ(y), for large n. Given this, the

posterior distribution can now be expressed as

π(θ|y) ∝ f(y|θ)π(θ) (2.3)

which is

posterior ∝ likelihood× prior (2.4)

20

The posterior distribution, π(θ|y),as discussed above, represents the current updated

beliefs about the parameter θ, after observing the data sample, y, and the prior in-

formation about θ. Without the normalising constant, Bayesian inference will not be

available analytically. In order to solve this issue, numerical approximation methods

are applied by using advanced computational tools. For example, if the number of

dimensions is too large, calculations by hand are beyond the bounds of possibility and

statistical softwares could be used instead.

.Simulation can be used to approximate E[f(y|θ)]. Monte Carlo simulation takes in-

dependent samples {θi : i = 1, 2, · · · ,m} from π(θ) and uses the approximation

E[f(y|θ)] ≈ 1

m

n∑
i=1

f(y|θi) (2.5)

which holds by the strong Law of Large Numbers (Leonard E. Baum [38]) when m

goes to +∞. The {θi} need not be independent as long as they have the correct

distribution and so a Markov chain with stationary distribution π(θ) may be used to

draw correlated iterations from π(θ). This is called Markov chain Monte Carlo and it

will be discussed in Section 2.4.

The components of Bayesian inference are

1. π(θ) represents the set of prior distributions for the parameter space θ and uses

probabilities to quantify uncertainty about the parameters before observing the

data.

2. f(y|θ) is known as the likelihood function, which is a function of the unknown

set of parameters, θ, which indexes the distribution from which yi is generated.

3. π(θ|y) is the posterior distribution and it communicates the uncertainty about

the set of parameters after taking into account both the prior distributions and

the data. One can also consider looking at a single parameter of interest by

constructing the marginal posterior distribution, π(θi|y)

21

2.2 Finite mixture model estimation

A finite mixture model (FMM) is a statistical model that assumes the presence of

unobserved groups, called latent classes, within an overall population. One can compare

models with differing numbers of latent classes and different sets of constraints on

parameters to determine the best fitting model.

Over the years, a variety of methods have been used to estimate mixture distributions.

The main reason for the vast literature on the methodology of mixture estimation is

that explicit formulas for parameter estimates are yet not available. Practitioners are

increasingly turning to Bayesian methods for the analysis of complicated statistical

models. This is due to the arrival of the high speed computers and the accelerated

development in posterior simulation techniques such as MCMC methods for enabling

Bayesian estimation to be perfomed.

In the past decade the extent and the potential of the applications of mixture models

have widened substantially. The flexibility of mixture models allows them to be more

and more exploited as a convenient, semiparametric way in which to model unknown

distributional structures. This is in addition to their applications to group-structured

data, also known as cluster analysis.

Finite mixture models (FMMs) are a flexibile and powerful probabilistic modeling tool

for both univariate and multivariate data. The Bayesian approach to such models has

attracted increasing attention amongst researchers from both theoretical and practical

points of view. This is primarily because of the emergence of Markov chain Monte

Carlo methods. The main concept in finite mixture modeling is that the observed data

comes from distinct, but unobserved, subpopulations. The versatility of mixture mod-

els in any area which involves statistical modeling of data (such as pattern recognition,

image analysis, computer vision etc) has been widely acknowledged in recent years.

Because of their flexibility, finite mixture models have been used to adjust for cluster-

ing, and to model unobserved heterogeneity. More generally, FMMs allow mixtures of

22

linear and generalized linear regression models, including models for binary, ordinal,

nominal, and count responses, and allow the inclusion of covariates. Inferences can also

be made about each sobpopulation and individual observations can be classified into a

subpopulation. Thus, these models enable the use of Bayesian methods to make sta-

tistical inferences about the properties of the sub-populations given only observations

on the pooled population, without sub-population identity information.

The initial application to a mixture model-based approach was firstly introduced by

Pearson [51]. This paper suggested that two subspecies were present and it fitted a

mixture of two univariate normal components to some crab measurements provided

by his colleague Weldon [71],Weldon [72]. Given the amount of work involved in this

early approach, many have tried to simplify it and in the early 1900s work continued

on the use of the method of moments for this mixture problem. Maximum Likelihood

(ML) estimation of the parameters in a mixture distribution was firstly implemented

by Rao [55], using Fisher’s approach of scoring for a mixture of two univariate distri-

butions with equal variances. Later on, Dempster et al. [18] presents an expectation

- maximization (EM) algorithm as an iterative method to find maximum likelihood

or maximum a posteriori (MAP) estimates of parameters in statistical models, when

some of the data is missing. This iterative scheme was formalized in a general con-

text through the EM algorithm that the convergence properties of the ML solution for

the mixture problem were established on a theoretical basis. Dempster et al. [18] has

turned out to be a great stimulant for further research into the applications of finite

mixture models. This is confirmed by the subsequent flow of papers on finite mixtures

in the literature (McLachlan [42], McLachlan [43],McLachlan and Basford [44],Aitkin

[1]).

There are two primary classes of estimation methods for mixture models, and these are

the EM algorithm, explained above, and the Bayesian methods. The use of Bayesian

methods for estimation of mixture distributions has been limited until the arrival of

Gelfand and Smith [26]. This paper brought into focus the great power of the Gibbs

23

sampler algorithm in a wide range of statistical problems. This is because they have

realised that many of the Bayesian computations could be implemented using the

Gibbs sampler. Gibbs sampling is applicable when the joint distribution is not known

explicitly or is difficult to sample from directly, but the conditional distribution of

each parameter is known and is easier to sample from. Thus, based on the two classes

mentioned above, other approaches have further been developed to fit these mixture

models. For example, Stephens et al. [66] presents an MCMC method which views the

parameters of the model as a (marked) point process and creates a Markov birth-death

process with an appropriate stationary distribution. Similarly, the book of Frühwirth-

Schnatter [24] presents an inclusive summary of the Bayesian analysis for finite mixture

models and Markov switching models. Bayesian techniques yield a greater amount of

information about the unknown parameters, but they can also be computationally

expensive.

While MCMC provides an appropriate way to draw inference from complicated statis-

tical models, there are many problems associated with the MCMC analysis of mixtures.

One problem is caused by the non-identifiability of the components under symmetric

priors, which is now known as the label-switching problem in the MCMC output. This

means that during MCMC simulation, the components’ weight and parameters switch,

making it difficult to determine whether the chain has reached the limiting distribu-

tion. Thus, ergodic averages of component specific quantities will be identical and

meaningless for inference.

Another key issue in mixture modeling is the selection of the number of components.

The usual trade off in model order selection problems arises: When too many com-

ponents are present, the mixture may over-fit the data, while a mixture with too few

components may not be flexible enough to approximate the true underlying data struc-

ture. As demonstrated by Chen [11], when the number of components is unknown, the

optimal convergence rate of the estimate of a finite mixture model is slower than the

optimal convergence rate when it is known. The use of Wasserstein distance was sug-

24

gested by Nguyen [48] to investigate the indentifiability issue and the optimal rates of

convergence for the parameters of multiple types in finite mixtures. Bayesian analysis

of mixture models for an unknown number of components has been made possible using

techniques such as reversible jump MCMC (Richardson and Green [56]) and birth and

death MCMC (Stephens [65]).

A stable approach to model selection is to combine the complexity of the model with

the performance of the model into a score, then select the model that minimizes the

score. This approach is referred to as statistical or probabilistic model selection as

the scoring method uses a probabilistic framework. A straightforward solution to the

problem of evaluating several candidate models is to select the model that gives the

most accurate description of the data. However, this selection process is not simple by

the fact that a model with many free parameters is more flexible than a model with few

parameters. But the complex model is not always assumed to be the best. According

to Wagenmakers and Farrell [69], the generally accepted view is that the best model is

the one that provides an acceptable account of the data. Since increasing complexity

is accompanied by a better fit, models are compared by trading off the measure of

fit (typically a deviance statistic) and complexity (i.e. the number of free parameters

in the model); so following early work of deLeeuw [16], proposals are often based

on minimising a measure of expected loss on a future replicate data set. The Akaike

information criterion (AIC) calculates for each model the Kullback-Leibler discrepancy,

which is a measure of distance between the probability density generated by the model

and reality, and does not assume that any of the candidate models is undoubtedly true.

A popular alternative model selection criterion is the Bayesian information criterion

or BIC. Wagenmakers and Farrell [69] also explains that a formal comparison in terms

of performance between AIC and BIC is very difficult, particularly because AIC and

BIC address different questions. Burnham and Anderson [8] agrees and discusses that

the fundamental difference between AIC and BIC model selection is their different

philosophies, including the exact nature of their target models and the conditions

25

under which one outperforms the other for performance measures such as predictive

mean square error. Thus, selection for use of these two criteria must be based on

comparing measures of their performance under conditions realistic of applications.

Another popular model selection criterion is the deviance information criterion (DIC),

which was introduced by Spiegelhalter et al. [63]. DIC was constructed to compare the

relative fit of a test of Bayesian hierarchical models. It is similar to AIC in combining a

measure of goodness-of-fit and measure of complexity, both based on the deviance. As

the number of independent parameters in a Bayesian hierarchical model is not clearly

defined, DIC estimates the effective number of parameters by the difference of the

posterior mean of the deviance and the deviance at the posterior mean. This coincides

with the number of independent parameters in fixed effect models with flat priors. DIC

can be viewed as a Bayesian analogue of AIC, with a similar justification but wider

applicability. It is also applicable to any class of model, involves negligible additional

analytic work or Monte Carlo sampling and appears to perform reasonably across a

range of examples. The DIC has been used largely in many disciplines and works well

for exponential family models but due to its dependence on the parameterisation and

focus of a model, its application to mixture models is questionable. In conclusion, a

limitation of probabilistic model selection methods is that the same general statistic

cannot be calculated across a range of different types of models. Instead, the metric

must be carefully derived for each model.

2.2.1 Basic definition

We let y = (y1, · · · , yn) denote an observed random sample of size n, where yi is an

observed value corresponding to the ith recording of some features on the phenomenon

under study. Note that we are using y to denote the entire sample. We can view f(yi)

as a density of yi and can be written in the form

f(yi|Θ) =
K∑
j=1

wjfj(yi,θj), with wj ≥ 0,
K∑
j=1

wj = 1 (2.6)

26

where the fj(yi,θj) are densities of independent and identically distributed (i.i.d) ob-

served data, with K > 1, wj being the mixing proportions of each component and θj

denoting the unknown parameters for the jth component in the mixture. We shall

refer to the density (2.6) as a K-component finite mixture distribution. Thus, the het-

erogeneous data is made up of K subgroups, where each group has a different mixing

proportion. Due to heterogeneity, y has a different probability distribution in each

group , usually assumed to arise from the same parametric family f(y|Θ), however

with each parameter θj differing across the groups (McLachlan and Peel [41]). In prac-

tice, the components are often taken to belong to the normal family, leading to normal

mixtures and this will be pursued further in Section 3.2.1 .

In this particular interpretation of the mixture model, the number of clusters is assumed

to be fixed. However, in many applications, the value of K is unknown and has to be

inferred from the data, together with the mixing proportions and the parameters for the

component densities. When the number of components K is unknown, the parameter

space is simultaneously ill-defined and of infinite dimension. This prevents the use

of classical testing procedures and priors. The usual approach therefore is to fit the

mixture model for fixed K and then to consider the choice of K according to some

information criterion that typically penalizes the log likelihood for the complexity of

the adopted model, possibly adjusted for the sample size. Thus, Richardson and Green

[56] presents a fully Bayesian approach with K taken to be an unknown parameter.

Their MCMC methods allow jumps to be made for variable dimension parameters and

thus can handle K unspecified and it is also used in Section 3. This method is known

as the reversible jump MCMC. In some applications, the clustering of the data is the

primary aim of the analysis. In such cases, the mixture model is used purely as a device

for exposing any grouping that may underlie the data.

Bayesian inference from data modeled by a mixture distribution can feasibly be per-

formed via Monte Carlo simulation. This approach presents the true Bayesian pre-

dictive distribution, implicitly integrating over the whole underlying parameter space.

27

An infinite number of mixture components can be sustained without any problems,

using a prior distribution for mixing proportions that selects a feasible subset of com-

ponents to explain any finite training set. Thus, the necessity to decide on a correct

number of components is in this case avoided. The empirical results exhibited in Neal

[47] show that modeling data as an infinite mixture also performs well when there

are only a small finite number of components in the real mixture. Thus, this option

of infinite mixture models is an attractive option whenever dealing with an unknown

number of components, because it avoids the issue of selecting between models with

various number of components. Except for the simplest nonhierarchical models, the

posterior distributions of Bayesian mixture models can be complicated and analytically

intractable, needing simulation-based inferential strategies such as MCMC.

2.3 The prior distribution

Adopting Bayesian analysis, therefore, provides the flexibiluty of incorporating external

information as prior beliefs about the parameters. A prior probability distribution

of a parameter expresses one’s beliefs about this parameter before the data is taken

into account. The relative influence of the prior distribution and data on updated

beliefs depends on the weight given to the prior and the ability of the data. The more

weight given to a prior, the more informative it becomes. This is a sensitive practical

problem which must be applied very carefully in order to enclose suitable beliefs in

the statistical model. As stated in Gelman et al. [28, p.37]:”A very general feature

of Bayesian inference: the posterior distribution is centered at a point that represents

a compromise between the prior information and the data, and the compromise is

controlled to a greater extent by the data as the sample size increases”.

Priors could be created using various methods, depending on whether they are in-

formative or non-informative. Informative prior distributions can be based on pure

judgement, a mixture of data and judgement, or data alone. Informative priors in-

clude Conjugate priors and Jeffreys priors. The use of informative priors clearly sets

28

out that the analysis is based on more than just the data and also contains a given

amount of judgement concerning plausible values of the parameters based on external

information. For example, a prior can be established based on previous experiments

or according to some specific principle such as symmetry. It would be more sensible

to construct a prior distribution on a scale on which one has a good perception of

magnitude, rather than one which may be convenient for mathematical purposes but

is fairly complex to understand. The important element to consider is not necessarily

to prevent an influential prior, but to be aware of the extent of its influence on the

values of the parameters (Congdon [15]).

A prior is said to be a conjugate prior for a family of distributions if the prior π(θ)and

posterior distribution π(|θ|y) are from the same family, which means that the form of

the posterior has the same distributional form as the prior distribution. For example,

if the likelihood is binomial, y ∼ B(n, p), a conjugate prior on p is the beta distri-

bution; it follows that the posterior distribution of is also a beta distribution. Other

commonly used conjugate prior/likelihood combinations include the gamma/Poisson,

gamma/gamma, gamma/beta and normal/normal cases. The development of conju-

gate priors was partially driven by a desire for computational convenienceconjugacy

provides a practical way to obtain the posterior distributions. Bayes estimators for

mixture models are well defined so long as the prior distributions are proper. Provided

that suitable (conjugate) priors are used, the posterior density will be proper, thereby

allowing the application of MCMC methods such as the Gibbs sampler to provide an

accurate approximation to the Bayes solution.

Congdon [15] explains that non-informative or flat priors are appropriate if one is

attempting to undertake a more objective approach for analysis or if one has little

information about the parameter. This type of priors do not support particular values

of the parameter over others, which creates a balance among outcomes by assigning

equal probabilities to all values of the parameter. If a Bayesian analysis with non-

informative priors is being implemented, this may lead to procedures with attractive

29

frequentist properties, as many classical procedures correspond to Bayesian analysis

with improper priors. One main hindrance is that improper priors yield improper

posterior distributions. To determine whether a posterior distribution is proper, you

need to make sure that the normalizing constant is finite for all y. An alternative

is to use a ”partially proper prior”. By this is meant a prior that does not require

subjective input for the component parameters, yet the posterior is proper (Roeder

and Wasserman [59]).

2.4 Prediction by Markov chain Monte Carlo

Markov chain simulation (Metropolis et al. [45]), also known as MCMC, is a powerful

tool for calculating probabilities or expectations that are unmanageable by analytical

methods or other numerical approaches. It is a general method for the simulation of

stochastic processes having probability densities known up to a constant of propor-

tionality. Its advantage over the classical Monte Carlo methods is that it does not

require the precise construction of an importance function, while taking into account

the characteristics of π(Θ|y). Markov chain Monte Carlo has extensive applicability,

even though its performance changes widely, depending on the complexity of the prob-

lem. A detailed discussion on MCMC theory and application could be found in Robert

and Casella [57].

The basic idea is very simple. If one is unable to find a way to simulate independent

realizations of some complicated stochastic process, it is almost as useful to be able to

simulate dependent realizations θ1,θ2, · · · forming an irreducible Markov chain having

the distribution of interest π(Θ|y) as its stationary distribution. Such methods allow

the construction of an ergodic Markov chain with stationary distribution equal to the

posterior distribution of the parameter of interest.

The implementation of an MCMC general algorithm starts with arbitrary values chosen

for the parameter space (θ0
1, · · · , θ0

n) in the first step. Then, in iteration t, new values

30

(θt1, · · · , θtn) are stochastically chosen in turn, with θti being picked at position i with

probability

P (Ah = θth|Ai = θti , Aj = θt−1
j : 1 ≤ i < h, h < j ≤ n) (2.7)

where (A1, · · · , An) is a set of random variable. The samples for θ are produced from

the joint distribution of these random variables. New values are chosen at each position

from the conditional distribution for that position given the latest values at all other

positions. Hence, the draws form a Markov chain. Then π(θ0
i , θ

1
i , · · · , θTi) is a Markov

chain if and only if

π(θTi |θ0
i , θ

1
i , · · · , θT−1

i) = π(θTi |θT−1
i), 1 ≤ i ≤ n (2.8)

so that each iteration is dependent only on the preceding iteration. Then, the itera-

tions are used to calculate the quantities of interest from the posterior distribution. The

chain, which is a bundle of draws from the parameters, wanders around the parameter

space remembering only where it has been in the last period. For some suitably large

T , this method is guaranteed to converge to the equilibrium distribution and the sim-

ulated values (θT1 , · · · , θTn) can be treated as coming from the desired distribution for

(A1, · · · , An). Such methods allow the construction of an ergodic Markov chain (MC),

meaning that the stationary distribution, π(θ), is equal to the posterior distribution

of the parameters, which is demonstrated in Gelfand and Smith [26]. The stationary

distribution can be written as

π(θ) = π(θ|y) (2.9)

where π(θ) is some distribution Π.

The number or draws required for this method to give an accurate approximation

can be difficult to determine. Thus, empirical tests of the use of this method in any

31

application are necessary.

Except for the simplest nonhierarchical models, the posterior distributions of Bayesian

mixture models can be complicated and analytically intractable, necessitating simulation-

based inferential strategies such as MCMC. Bayesian estimators for mixture models are

well defined so long as the prior distributions are proper. Given that conjugate priors

are used, the posterior distribution will be proper, allowing the employment of MCMC

methods such as the Gibbs sampler to determine an accurate solution. Diebolt and

Robert [20] introduced the Gibbs sampling algorithm for finite mixture models. The

Gibbs sampler for hidden Markov mixture models was developed by Albert and Chib

[2]. Also, Robert and Titterington [58] synthesizes a general approach to the estima-

tion of the parameters of a hidden Markov model in the cases of normal and Poisson

distributions, with the use of a Gibbs sampling algorithm.

Two of the mostly used MCMC methods, Metropolis Hastings algorithm and Gibbs

sampler, will be briefly described. However, before introducing the Metropolis-Hastings

algorithm and the Gibbs sampler, both discrete time and continuous time Markov

chains will be discussed in the next sections.

2.4.1 Discrete time and discrete state space Markov chains

Let {At} denote the value of a random variable at time t, and let the discrete state

space refer to the range of possible A values. the random variable is a Markov process

if the transition probabilities between different values in the state space depend only

on the random variable’s current state, i.e.,

P{At+1 = sj|A0 = sk, · · · , At = si, for z ≤ t} = P{At+1 = sj|At = si} (2.10)

This property shows that the probability of any future evolution of the process depends

only on its current position, and is not affected by past behaviour. Thus, {At+1} is

determined by the previous step {At} of the process and all of the past steps are

32

forgotten. A Markov chain refers to a sequence of random variables (A0, · · · , An)

generated by a Markov process. A chain is defined by its transition probabilities (or

the transition kernel), which represent the probability that a process at state space si

moves to state sj in one step,

P (i, j) = P (At+1 = sj|At = si) (2.11)

Thus, the aim is to estimate the transition rates and probabilities of moving from a

state si to another state sj. If, further, the process is independent of time, then the

continuous-time Markov chain is said to have stationary or homogeneous transition

probabilities. All Markov chains considered in this thesis will be assumed to have

stationary transition probabilities.

Let

πj(t) = P (At = sj) (2.12)

denote the probability that the chain is in state j at time t, and let π(t) represent the

row vector of the state space probabilities at step t. The chain gets started by defining

a starting vector π(0). As the chain advances, the probability values get spread out

over the state space.

The probability that the chain has state value si at step t+ 1 is given by the Chapman

Kolmogorov equation, which sums over the probability in being in a particular state

at the current step and the transition probability from that state into si,

πi(t+ 1) = P (At+1 = si)

=
∑
k

P (k, i)πk(t)

Then, define the probability transition matrix P as the matrix whose i, jth element is

P (i, j), the probability of moving from state i to state j. The Chapman Kolmogorov

33

equation in matrix form now becomes

π(t+ 1) = π(t)P

Now, it becomes obvious how to iterate the Chapman Kolmogorov equation as

π(t) = π(t− 1)P = π(t− 2)P2 = · · · = π(0)Pt

By defining the n-step transition probability pnij as the probability that the process is

in state j given that n steps ago it was in state i (i.e. P (At+n = sj|At = si), it follows

that pnij is just the ij-th element of Pn.

A Markov chain is said to be irreducible if there exists a positive integer such that

p
nij

ij > 0 for all i, j. That is, all states communicate with each other, as the chain can

always go from any state to any other state (not necessarily in one move). By their

nature, all Markov chain produced by MCMC algorithms are irreducible. Then these

chains are positive recurrent with stationary distribution π(θ|y). These Markov chains

are also ergodic, which means that the distribution of θT converges to π(·|y) for almost

every starting value θ0, so the influence of the starting value disappears. Likewise, a

state is said to be aperiodic when the number of steps required to move between two

states is not required to be mulpitle of some integer. In other words, the chain is not

forced into some fixed length cycle between certain states.

Therefore, for k large enough, the resulting θk is approximately distributed from π(θ|y),

no matter what the starting value θ0 is. The problem in practice is then to determine

what a ”large” k means, since it governs the number of simulations to run. The speed

of convergence, that is, the type of decrease in the distance between the distribution of

θk and its limit, brings an answer to this problem., but so far it has been mainly studied

from a theoretical point of view. Moreover, this rate of convergence often depends on

the starting point and a given k does not provide the same quality of approximation

34

for different values of θ0. There are thus practical hindrances in the use of Markov

chains for simulation since we often ignore whether the chain has been run long enough.

But as detailed in Robert and Casella [57], there now are diagnistic tests that provide

different indicators on the stationarity of the chain, and thus reduce this difficulty.

2.4.2 Metropolis Hastings algorithm

Once the principle of using a Markov chain with stationary distribution π - instead of

i.i.d variables exactly distributed from π -to approximate the parameters is accepted,

the implementation of this principle requires the construction of a generation mech-

anism to produce such Markov chains. An almost universal algorithm satisfying this

constraint does exist and it has been constructed by Metropolis et al. [45]. It actually

applies to a wide variety of problems, since its main restriction is that the distribution

of interest be known up to a constant. A great advantage of this algorithm is the

limitless number of proposal distributions that produce a Markov chain that converges

to the distribution of interest.

Consider the target distribution, π(Θ|y), over a multidimensional continuous param-

eter space from which we would like to generate representative values. We must be

able to compute the value of π(Θ|y) for any candidate value of θ. The distribution

π(Θ|y) does not have to be normalised, however. In typical applications, π(Θ) is the

unnormalized posterior distribution on θ (the product of the likelihood and the prior).

The Metropolis-Hastings algorithm can be described as follows. Given a density

π(Θ|y), known up to a normalising factor, and a proposal density q(θ
′ |θ), the al-

gorithm generates the chain (θm)n by

35

1. Choose the initial values θ0 = (θ
(0)
1 , θ

(0)
2 , · · · , θ(0)

n).

2. Repeat the following t = 1, 2, · · · , until convergence;

2.1. Update θt−1
1 to θt1, according to the conditional density π(θ1|θt−1

2 , · · · , θt−1
n);

simulate θ∗1 from the proposal distribution q(·|θt−1
2 , · · · , θt−1

n) such that

θ
(t)
1 =

 θ∗1 with probability α(θ
(t−1)
1 , θ∗1|θ

(t−1)
2 , · · · , θ(t−1)

n),

θ
(t−1)
1 with probability 1− α(θ

(t−1)
1 , θ∗1|θ

(t−1)
2 , · · · , θ(t−1)

n),

 .

where

α(θ
(t−1)
1 , θ∗1|θ

(t−1)
2 , · · · , θ(t−1)

n)

= min

{
π(θ∗1|θt−1

2 , · · · θt−1
n)

π(θt−1
1 |θt−1

2 , · · · , θt−1
n)

q(θt−1
1 |θt−1

2 , · · · , θt−1
n)

q(θ∗1|θt−1
2 , · · · , θt−1

n)
, 1

}
...

2.n. Update θt−1
n to θtn, according to the conditional density

π(θn|θt1, θt2, · · · , θtn−1); simulate θ∗n from the proposal distribution

q(·|θt1, θt2, · · · , θtn−1) such that

θ(t)
n =

 θ∗n with probability α(θ
(t−1)
n , θ∗n|θ

(t)
1 , θ

(t)
2 , · · · , θ(t)

n−1),

θ
(t−1)
n with probability 1− α(θ

(t−1)
n , θ∗n|θ

(t)
1 , θ

(t)
2 , · · · , θ(t)

n−1),

 .

where

α(θ(t−1)
n , θ∗n|θ

(t)
1 , θ

(t)
2 , · · · , θ(t)

n−1)

= min

{
π(θ∗n|θ

(t)
1 , θ

(t)
2 , · · · θ(t)

n−1)

π(θ
(t−1)
n |θ(t)

1 , θ
(t)
2 , · · · , θ(t)

n−1)

q(θ
(t−1)
n |θ(t)

1 , θ
(t)
2 , · · · , θ(t)

n−1)

q(θ∗n|θ
(t)
1 , θ

(t)
2 , · · · , θ(t)

n−1)
, 1

}

Algorithm 1: The Metropolis-Hastings Algorithm

And the M-H algorithm is interpreted as follows: the walk starts at some arbitrary point

36

specified by the user. The random walk progresses at each time step by proposing a

move to a new position in parameter space and then deciding whether or not to accept

the proposed move, based on the acceptance probability. If the present state of the

Markov process θt−1 is si, generate the next state according to the proposal probability

qij = P (θt = sj|θt−1 = si) and accept a proposal sample sj(6= si) with probability αij.

If this is rejected (which happens with probability 1 − αij) the chain remains at si.

It means that for any two states i and j, the stationary rate of moving from i to j is

equal to the stationary rate j to i. The parameter αij is called the ‘acceptance ratio‘.

In order to accept the proposed variate θt = sj with the probability αij so that the

detailed balance equations can be met, we use a uniform random variable U(0, 1).

Proposal distributions can take on many different forms, with the goal being to use a

proposal distribution that efficiently explores the regions of the parameter space where

π(θ|y) has most of its mass. Of course, we must use a proposal distribution for which

we have a quick way to generate random values!

Convergence will be slow and mixing properties will be poor if the proposed transitions

are mostly between nearby states in the state space. However, if we choose a proposal

distribution with a wide support aiming at distant transitions, it may result in a lower

acceptance ratio, which leads to slow convergence and poor mixing. Thus, the proposal

distribution should be chosen in such a way as to allow both distant transitions and high

acceptance ratio. One way to achieve this is to alternate different proposal distributions

in light of sampled elements.

A class of proposals, more related to standard Monte Carlo methods, are the indepen-

dent proposals, where we choose q(·|θ) that do not depend on θ,

q(θ∗|θ) = h(θ∗).

The most common choice for q, starting with Hastings [34], is the random-walk pro-

posal, where q(θ∗−θ). This approach takes into account the previously simulated value

37

to generate the next value. This is to consider a local exploration of the neighbourhood

of the current value and then see if the new value θ∗ is likely for the target distribu-

tion. Here, efficiency is a trade-off between small step size with high probability of

acceptance and large step sizes with low probability of acceptance. The Markov chain

will thus stay longer in a given point θ∗ if the corresponding posterior value π(θ∗) is

higher and, conversely, will never visit points θ∗ such that π(θ∗) = 0. Standard choices

for the proposal q are normal, uniform or Cauchy distributions.

2.4.3 The Gibbs sampler

The Metropolis-Hastings algorithm presented in the previous section is very attractive

for its universality. The main advantage of Metropolis-Hastings over Gibbs Sampling

is that we do not have to derive the conditional distributions analytically. We just

need to know the joint distribution. But, in contrast, the lack of connection between

the proposal q and the target distribution π can be detrimental to the convergence

properties of the approach (if the probability of approaching far away parts of the

target distribution is too small). Using a different outlook, the Gibbs sampling method

is actually based on the target distribution π.

Gibbs sampling (Geman and Geman [29]) is a Monte Carlo technique for generating

random variables from a conditional distribution. At each iteration in the cycle, we are

drawing a proposal for a new value of a particular parameter, where the proposal distri-

bution is the conditional posterior probability of that parameter. This means that the

proposal move is always accepted. Hence, if we can draw samples from the conditional

distributions, Gibbs sampling can be much more efficient than regular Metropolis-

Hastings. Such conditional distributions are far easier to simulate than complex joint

distributions and usually have simple forms (often being normals, inverse χ2, or other

common prior distributions). Thus, one simulates n random variables sequentially from

the n univariate conditionals rather than generating a single n-dimensional vector in a

single pass using the full joint distribution.

38

The idea in Gibbs sampling, as described in Casella and George [9] is to generate

posterior samples by sweeping through each variable (or block of variables) to sample

from its conditional distribution with the remaining variables fixed to their current

values. For instance, consider the random variables A1, A2, · · · , An. We start by setting

these variables to their initial values θ
(0)
1 , · · · , θ(0)

n . At iteration t, one samples θ
(t)
1 ∼

f(A1 = θ1|A2 = θ
(t−1)
2 , · · ·An = θ

(t−1)
n), θ

(t)
2 ∼ f(A2 = θ2|A1 = θ

(t)
1 , A3 = θ

(t−1)
3 , · · ·An =

θ
(t−1)
n), · · · and θ

(t)
n ∼ f(An = θn|A1 = θ

(t)
1 , A2 = θ

(t)
2 , · · ·An−1 = θ

(t)
n−1). This process

continues until convergence (the sampled values have the same distribution as if they

were sampled from the true posterior joint distribution). Algorithm 2 presents a generic

Gibbs sampler.

1. Initialize θ(0) = (θ
(0)
1 , · · · , θ(0)

n);

2. Repeat the following, i = 1, 2, · · · , until convergence;

2.1.Simulate θ
(i)
1 from the conditional density f(θ1|θ(i−1)

2 , · · · , θ(i−1)
m);

2.2.Simulate θ
(i)
2 from the conditional density f(θ2|θ(i)

1 , θ
(i−1)
3 , · · · , θ(i−1)

n);
...

2.n. Simulate θ
(i)
n from the conditional density f(θn|θ(i)

1 , · · · , θ(i)
n−1).

3. The stationary distribution θ(M) = (θ
(M)
1 , · · · , θ(M)

n), for M large

enough, is the true posterior distribution of f(θ1, · · · , θn|y).

Algorithm 2: The Gibbs sampler

the theory of MCMC guarantees that the stationary distribution of the samples gen-

erated under Algorithm 2 is the target joint posterior that we are interested in. For

comprehensive discussions and implementation on the Gibbs sampling procedure refer

to Gelman et al. [27] and Casella and George [9].

The implementation of Gibbs sampler requires the availability of full conditional prob-

ability density functions (pdfs) of all the parameters of interest of a problem. For some

problems, however, some of the full conditional pdfs have a known form, but some of

them cannot be analytically determined. In such cases one can use a hybrid algorithm

39

where the Metropolis-Hastings and Gibbs sampling procedures can be implemented in

a single algorithm, and is known as the Metropolis-within-Gibbs algorithm (Gamerman

and Lopes [25]). This method uses the acceptance/rejection sampling approach of the

Metropolis-Hastings algorithm, so that some of the component conditional distribu-

tions are sampled via Metropolis-Hastings.

In this chapter, the focus has been on introducing the theoretical background for the

construction, prior elicitation, estimation and evaluation of mixture distributions using

Bayesian inference. It has been demonstrated that mixture models provide a flexible

framework for statistical modelling and analysis.

Another extension of the Metropolis-Hastings algorithm presented in this chapter is

the reversible jump sampler, where the dimension of the parameter vector varies and is

more challenging theoretically; however the resulting algorithm is surprisingly simple

to follow. An outline of the samplers theoretical underpinnings is introduced in the

following chapter, together with the discussion on the analysis of sampler output. The

performance of the reversible jump MCMC is assessed through application to real data

sets.

40

CHAPTER 3

APPLICATION TO FINITE MIXTURE

MODELS USING REVERSIBLE JUMP

MCMC

In the previous chapter, the Metropolis-Hastings algorithm was introduced. Green

[32] applies it to a varying-dimension problem and proposes a new framework for the

construction of reversible jump Markov chain algorithm that allows simulation of the

posterior distribution on spaces of differing dimensionality. This novel method over-

comes computational restraints involving an extensive number of covariates. This is

because it is impossible to compute all possible models when the number of covari-

ates is large. Thus, the simulation is possible even if the number of parameters in the

model is unknown, which is flexible and fully constructive. This significantly extends

the scope of Metropolis-Hastings methods.

In order to appropriately model the datasets used in this thesis, a full Bayesian analysis

41

of finite mixtures of univariate normals with an unknown number of clusters is pre-

sented. It has already been established in Chapter 1.2 that myosin molecules bind in

clusters along the thin filament and the size of each cluster depends on the solution con-

ditions. These clusters represent the number of myosin molecules in an active region.

Each observation in the dataset is assumed to have emerged from one of K clusters.

Thus, the purpose of the mixture analysis is inference about the unknowns: the number

K of components, component parameters and the proportion of each cluster. Markov

chain Monte Carlo methods are adopted to determine the number of clusters in an

active region, via Reversible jump Markov chain Monte Carlo (RJMCMC) modelling.

In this chapter, RJMCMC is presented and discussed. In the first section, the basic

assumptions of the algorithm is introduced. Section 2 focuses on the general idea of

mixture models with an unknown number of components. In Section 3 a comprehensive

analysis of the metastable myosin binding data is used to determine the association

rate constant, in order to derive transition matrices. Using this analysis, it is possi-

ble to calculate the expected probability for any number of myosins binding to any

existing active region. In Section 4, the performance of the methodology is assessed

through application to three real data sets. Lastly, in Sections 5 sensitivity and MCMC

performance issues are considered.

3.1 RJMCMC algorithm - multiple move types and

the model choice problem

Suppose that there exists a countable collection of candidate models {Rm,m ∈ R},

where model Rm has a vector θ(m) of unknown parameters with dimension ρm, which

may vary from model to model. Under model Rm, the posterior distribution of θ(m)

takes the form

π(θ(m)|y,Rm) ∝ π∗(θ(m)|y,Rm) = L(y|θ(m),Rm)π(θ(m)|Rm) (3.1)

42

where L(y|θ(m),Rm) is the likelihood function, y is the data, π(θ(m)|Rm) is the prior

distribution and π∗(θ(m)|y,Rm) represents the unnormalised posterior density. Then

the joint distribution of (m,θ(m)) given the data takes the form

π(m,θ(m)|y) ∝ ρmπ
∗(θ(m)|y,Rm) (3.2)

Reversible jump MCMC is a random movement Metropolis Hastings approach (Metropo-

lis et al. [45]) adjusted for general state spaces. This algorithm has been discussed by

several authors, including Richardson and Green [56], Dellaportas and Papageorgiou

[17] and Bouguila and Elguebaly [6]. This sampling strategy generates samples from

the joint distribution π(m,θ(m)|y) given in (3.2). Just as in ordinary MCMC, although

each move is a transition kernel reversible with respect to π, multiple types of moves

are required to cross through the whole space R. The scanning through the available

moves is done according to various deterministic or random schedules. Attention is

restricted to Markov chains in which the detailed balance is satisfied within each move

type.

When the current state is m, a move of type s is proposed, that would take the state

to another state m∗, with probability αs(m,m
∗). As is the custom with Metropolis-

Hastings algorithms, the proposed value is accepted based on the acceptance probabil-

ity, where the probability of each move type depends only on the current state. These

moves are proposed to have a high acceptance probability. Indexing the move types

by s in a countable set S, a move type s consists of both the forwards move from

(m,θ(m)) to (m∗,θ(m∗)) and the reverse, taking (m∗,θ(m∗)) to (m,θ(m)) , for a specific

pair (m,m∗).

The algorithm is based on producing a Markov chain which can ”jump” between models

with parameter spaces of different dimensions, whilst satisfying the detailed balance

that guarantees the correct limiting distribution. The RJMCMC method outlined in

Chen et al. [12], which involves sampling from π(m,θ(m)|y), is given by Algorithm 3.

43

Assuming that the current state of the chain is (m,θ(m)), proceed as follows

Step 1. Propose a new model Rm with probability js(m
∗,m).

Step 2. Generate u from a specified proposal density qs(u|θ(m),m,m∗).

Step 3. Set (θ(m∗),u∗) = gs(θ
(m),u) where gs is a bijection between (θ(m),u) and

(θ(m∗),u∗) and the lengths of u and u∗ must satisfy ρm + dim(u) = ρm∗ + dim(u∗).

Step 4. Accept the proposed move to (m∗,θ(m∗)) with probability

αs(m,m
∗) = min

{
1,
ρm∗π

∗(θ(m∗)|y,Rm∗)js(m|m∗)qs(u∗|θ(m∗),m∗,m)

ρmπ∗(θ
(m)|y,Rm)js(m∗|m)qs(u|θ(m),m,m∗)

×
∣∣∣∣∂gs(θ(m),u)

∂(θ(m),u)

∣∣∣∣}

where π∗(θ(m)|y,Rm) is given by equation (3.1). Here, the Jacobian factor is from

the transformation from (θ(m),u) to (θ(m∗),u∗), and is dependent on the move

type s.

Algorithm 3: Reversible jump MCMC

To summarise, reversible jump MCMC is just a Metropolis-Hastings algorithm, defined

to allow for sampling from a distribution on a group of spaces of various dimensions, and

enabling state-dependent choice of move type. This method provides great flexibility

to the algorithm designer to profit from the structure of the problem at hand.

3.2 Mixtures Analysis with an unknown number of

components

As mentioned in the previous section, RJMCMC allows the Markov chain to move

between parameter subspaces corresponding to statistical models with different dimen-

sions. In this chapter, it is assumed that K, which represents the number of binders

44

on the thin filament, is a random variable and K ≤ Kmax for a given value of Kmax.

The RJMCMC algorithm is constructed in a manner similar to the one-dimensional

approach of Richardson and Green [56], so the required reversible jump transformation

requires split, merge and birth-death moves. The approach produces a good mixing of

the chains and is tested with real data.

The results from this model are used to compute the transitions from a state/sub-

population i to another state j, for i, j = 1, · · · , K and i 6= j. First, we model the

number of components and the mixture component parameters jointly and base infer-

ence about these quantities on their posterior probabilities. Using MCMC enables the

simultaneous exploration of the parameters and model space by treating the number

of myosin binders as being random and it is automatically adapted at each step. The

RJMCMC regularly proposes a move to a different dimension and rejects this proposal

with appropriate probability to ensure the chain crosses the stationary distribution.

3.2.1 Univariate normals with an unknown number of com-

ponents

Here it is assumed that each data point y arises from a mixture of normal distributions

and is modeled as follows:

ρ(y|δ,w, K) =
K∑
j=1

wjN (y, δj), with wj ≥ 0,
K∑
j=1

wj = 1 (3.3)

The above equation is an association ofK normal distributionsN (�) of independent and

identically distributed (i.i.d) observed data, y = y1, · · · , yn, with K ∈ {0, 1, · · · , 11}

and wj being the proportion of each component. Thus, the purpose of the mixture

analysis is inference about the unknowns: the number K of myosin binders, group

parameters δ and the proportions w. The parameter δ is a vector of combinations

(µj, σ
2
j) for j = 1, 2, · · · , K.

The above model implies a heterogeneous population consisting of components j =

45

1, · · · , K of sizes proportional to wj from which the random sample is selected. The

label of the component from which each sample is drawn is unidentified. Thus, we

represent the mixture components generating each observation via latent allocation

variables zi, for i = 1, · · · , n. Each zi is an integer denoting the unknown compo-

nent from which each observation yi is drawn. These different realizations zi of the

unobserved vector Z = (z1, · · · , zn) are drawn independently from the distributions

ρ(zi = j) = wj for j = 1, 2, · · · , K (3.4)

and conditional on Z, the realizations yi are selected from their respective normal

densities:

ρ(yi|zi = j,w, δ) = N (yi; δj) for i = 1, · · · , n. (3.5)

Integrating out the missing data Z then returns the model in equation (2.6).

Hierarchical Model and Priors

In this section, a general hierarchical model for mixtures is presented, which has been

proved to be weakly informative by Richardson and Green [56]. This case is more

appropriate for our datasets because an objective prior is preferred. The inference

should be done mostly based on the data available, as the prior information is not very

solid at this stage.

In Bayesian analysis, the unknown parameters K,w, and δ are viewed as random

variables and are selected from suitable prior distributions. The joint probability dis-

tribution of all these variables, in a general format, can be written as follows:

ρ(K,w, z,δ, y) = ρ(K)ρ(w|K)ρ(Z|w,K)ρ(δ|Z,w, K)ρ(y|δ,Z,w, K). (3.6)

A common approach is to introduce the conditional independecies ρ(δ|Z,w, K) =

ρ(δ|K) and ρ(y|δ,Z,w, K) = ρ(y|δ,Z), such that the joint probability distribution is

46

now simplified into

ρ(w,Z,K, δ, y) = ρ(K)ρ(w|K)ρ(Z|w, K)ρ(δ|K)ρ(y|δ,Z).

For full adaptability, an extra tier is introduced to the hierarchy to allow the priors for

(K,w, δ) to depend on hyperparameters λ, ε and η respectively. These hyperparameters

are selected from independent hyperpriors. As a result of introducing the extra tier

to the hierarchy, ρ(K) = ρ(K|λ) because K is now dependent on λ. Also, ρ(w|K) =

ρ(w|K, ε) as w becomes dependent on ε and ρ(δ|K) = ρ(δ|K, η) because δ depends

on η. Then, the joint probability distribution can be written as

ρ(λ, ε, η,K,w, z,δ, y) = ρ(λ)ρ(ε)ρ(η)ρ(K|λ)ρ(w|K, ε)ρ(Z|w, K)ρ(δ|K, η)ρ(y|δ,Z).

(3.7)

where ρ(λ) represents the prior distribution for λ, ρ(ε) is the prior distribution for ε

and ρ(η) is the prior distribution for the hyperparameter η.

The specification of the prior distributions should be done with great care. Even

in the absence of strong prior information, prior specification should be done at the

appropriate scale of biological interest. Being fully non-informative and achieving a

proper posterior distribution is unattainable in a mixture context. This is because

there is always a chance that no observations are assigned to one or more components

and thus the data are uninformative about these components. Hence the hyperprior

structure and the default hyperparameter choices are presented, which correspond to

making only the slightest assumptions on the data.

In specifying the priors, the approach suggested by Richardson and Green [56] is still

being followed (also employed by Stephens [65]). The parameter δ is a vector of

combinations (µj, σ
2
j) for j = 1, 2, · · · , K such that

f(y|δj) = N (y|µj, σ2
j),

47

with µj and σ−2
j drawn independently from a normal and a gamma prior distribution

respectively

µj ∼ N (ζ, κ−1) and σ−2
j ∼ Γ(α, β). (3.8)

Another hierarchical level is included by allowing β to follow Γ(g, h), where α > 1 > g is

taken to suggest that the σ2
j (variances) are similar, without imposing any information

about their size. Note that η has now become (ζ, κ, α, β). The scale parameter h is set

as 10/R2, where R is the range of data y.

A key assumption that has to be made is related to the labelling of components. To

allow for detectability of each component, an unique labelling system has to be used.

That is where the µj are in increasing numerical order; hence the joint prior distribution

of the model parameters is K! times the product of the individual normal and gamma

distributions, limited to the set µ1 < µ2 < µ3 · · · < µK .

The prior on w is in all cases selected as symmetric Dirichlet

w ∼ D(ε, ε, · · · , ε) (3.9)

and a proper prior must be adopted for K. It is chosen such that

p(K) ∼ Poisson(λ). (3.10)

Lastly, in this thesis, ε and λ are kept fixed.

The hierarchical model with fixed α and random β applied for the variance distribution

allows a low degree of information to be passed on to the results of the analysis. Ac-

cordingly, we have chosen α = 2, g = 0.2, and h = 10/R2 in agreement with Richardson

and Green [56].

48

Normal mixtures

Normal mixtures are considered, rather than mixtures of other distributions, because

the mixture components are normally distributed. Following 3.7, for the hierarchical

normal mixture model there are 6 move types:

• a) updating the weights;

• b) updating parameters (µ, σ);

• c) updating the allocation z;

• d) updating the hyperparameter β;

• e) splitting one component into two, or combining two into one;

• f) birth or death of an empty component.

The only randomness in the scanning is the random choice in moves e) and f), where

the algorithm has to choose between splitting and combining or to choose between

birth and death. Moves e) and f) involve changing K by 1 and making essential

corresponding changes to (µ, σ, w, z). A sweep is represented by one complete pass

over all 6 moves, which is a basic time step for the RJMCMC algorithm.

Move types a), b), c) and d) are relatively simple to define, since the conjugate nature

of the priors leads to relatively simple forms for the full conditional distribution of the

desired parameter. Thus the first 4 moves are Gibbs sampling moves and they largely

follow Diebolt and Robert [20].

Through conjugacy, the full conditional distribution for the weights w takes the form

ρ(wj|ε, nj) ∼ D(ε+ n1, · · · , ε+ nk), (3.11)

where nj = #{i : zi = j}, meaning that nk is the number of observations allocated

to component K. Thus w can be updated by a Gibbs move, sampling from the full

conditional distribution by drawing independent gamma random variables.

49

The full conditionals for µj are

ρ(µj|y, σ−2
j , ζ, κ) ∼ N

{
σ−2
j

∑
i:zi=j

yi + κζ

σ−2
j nj + κ

, (σ−2
j nj + κ)−1

}
(3.12)

The full conditionals for σ2
j are

ρ(σ−2
j |y, µj, nj, α, β) ∼ Γ

{
α +

1

2
nj, β +

1

2

∑
i:zi=j

(yi − µj)2
}
, (3.13)

and for the latent variables we have

ρ(zi = j|y, wj, µj, σ2
j) ∝

wj
σj

exp

{
− (yi − µj)2

2σ2
j

}
(3.14)

.

Also, the full conditional distribution for β, the hyperparameter which is not fixed, is

a gamma distribution

ρ(β|g, κ, α, h, σ−2
j) ∼ Γ(g + κα, h+

∑
j

σ−2
j). (3.15)

For the split/combine move e), the reversible jump mechanism is required. The main

criteria which must be met when designing these moves are that they are irreducible,

aperiodic, form a reversible pair and satisfy the detailed balance. This move takes the

form of a Metropolis-Hastings step where a move from state θ(m) to state θ(m
′
) is pro-

posed, with π(θ(m)) the target distribution and qs(θ
(m),θ(m

′
)) the proposal distribution

for the move s. The proposed transition is then accepted with probability αs

αs = min

{
1,
π(θ(m

′
))qs(θ

(m
′
),θ(m))

π(θ(m))qs(θ
(m),θ(m′))

}
(3.16)

50

For the case where a move from state θ(m) to state θ(m
′
) lies in a higher dimensional

space, the move can be completed by drawing a vector of continuous random variables

u, independent of θ(m). The new state θ(m
′
) is decided upon using an invertible de-

terministic function of θ and u. Green [33] shows that the acceptance probability of

transitioning to a higher dimensional space is given by

αs = min

{
1,

π(θ(m
′
))rs(θ

(m
′
))

π(θ(m))rs(θ
(m))q(u)

∣∣∣∣ ∂θ(m)

∂(θ, u)

∣∣∣∣
}

(3.17)

where rs(θ
(m)) is the probability of choosing move type s when in state θ(m) and q(u)

represents the density function of u. The final term in the ratio is a Jacobian emerging

from the change of variable from (θ(m), u) to θ(m
′
).

In move e), a random choice is made between attempting to split or combine with

one of its neighbours with probability ρsk and ρck = 1 − ρsk , depending on k. Also,

ρc1 = 1 and ρsK = 0, where K is the maximum number of components; otherwise

ρsk = ρck = 0.5, for k = 2, 3, · · · , K − 1. If the choice is to combine the component,

then a pair of components (j1, j2) that are adjacent in terms of their means is chosen at

random. These two components are merged, reducing k by 1 and the new component

is labelled jc. Values for (wjc , µjc , σjc) have to be created, so the parameters for jc are

calculated from

wjc = wj1 + wj2 ; (3.18)

wjcµjc = wj1µj1 + wj2µj2 ;

wjc(µ
2
jc + σ2

jc) = wj1(µ
2
j1

+ σ2
j1

) + wj2(µ
2
j2

+ σ2
j2

).

This proposal to combine components is deterministic once the choices for j1 and j2

have been made, so the acceptance probability is given by equation (3.16).

51

If the decision is to split, a component js is chosen at random and split into two

components, labelled j1 and j2, with parameters conforming to equations (3.18). In

making this transformation there are 3 degrees of freedom, so a three-dimensional

random vector u has to be generated to enable the specification of the new component

weights and parameters. Beta distribution is used to generate the random vector u

because u is a continuous random variable whose range is between 0 and 1. This

random generation is done as follows

u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2), u3 ∼ Beta(2, 2).

The split transformation, as proposed by Richardson and Green [56], is then defined

by:

wj1 = wjsµ1, wj2 = wjs(1− µ1), (3.19)

µj1 = µjs − u2σjs

√(
wj2
wj1

)
,

µj2 = µjs + u2σjs

√(
wj1
wj2

)
,

σ2
j1

= u3(1− u2
2)σ2

js
wjs

wj1
,

σ2
j2

= (1− u3)(1− u2
2)σ2

js
wjs

wj2
,

which provide the needed weights and parameters, satisfying equations (3.18)

In the birth and death move f), a random choice between birth and death is made first,

using the same probabilities ρsk and ρck as above. For a birth, a weight and parameters

for the proposed new component are selected using

wjs ∼ Beta(1, k) µjs ∼ N (ζ, κ−1) σ−2
js ∼ Γ(α, β).

In order to allow for a new component, the existing weights are rescaled, so that all

52

weights sum up to 1. For a death, a random choice is made between any existing empty

components. The chosen component is deleted and the remaining weights are rescaled

to sum up to 1. Detailed balance holds for this move, given that births and deaths are

accepted according to equation 3.17, where u is substituted by (wj
s, µj

s, σj
s2).

At this point one has a better understanding of the concepts needed to comprehend the

RJMCMC algorithm and the mathematical tools for executing it with either real or

simulated data. So the next section covers the application of the RJMCMC algorithm

on our data.

53

3.3 Performance of reversible jump MCMC

Examples of the results obtained from real datasets are displayed in this section. First

to be presented, is the description of model performance with default settings for the

hyperparameters. Six real data sets are used throughout the thesis, as a basis for our

comparison. An introduction to this data has been made in Section (1.2.2). Three

of these datasets have been collected under the same conditions, and the following

three have been collected in slightly different conditions. However, only one of each

conditions will be presented in this section and the rest of the results are to be found

in Appendix B and C.

The implementation of the RJMCMC algorithm has been done by employing the exist-

ing miscF package (Feng [22]) for R. The built-in function uvnm.rjmcmc was used to

estimate the parameters of an univariate normal mixture model including the number

of components using the RJMCMC method. Similarly, the coda package (Plummer

et al. [53]) contains several graphics functions for visualising MCMC output, which

have been used successfully to check for Markov chain convergence. The trace plots,

density plots and Gelman plots were created using graphics functions from the coda

package.

The analysis has been carried out with the hierarchical normal random β mixture

model defined in Section (3.2.1). Also, for each of the six datasets, we report results

corresponding to 30000 draws and a burn-in period of 5000 draws. We consider that

these numbers go beyond what is needed to obtain reliable results. Moreover, for each

data set four chains were run in parallel with different starting points. At each sweep

of the RJMCMC algorithm, the chain has the ability to move between different values

of K.

When making an inference from an MCMC analysis, one has to ensure that an equilib-

rium distribution, also known as convergence, has indeed been reached by the Markov

chain. An MCMC creates a sample from the posterior distribution, and the question

54

is whether this sample is sufficiently close to the posterior to be used for analysis. For

each parameter, the initial value of the chain is started at an arbitrary point. Because

consecutive draws are dependent on the previous value of each parameter, the actual

values chosen for the starting points are observable for a while before the chain be-

comes independent of the initial values. Nevertheless, a bad starting value can lead to

slow convergence. This can be diagnosed from one run and corrected by changing the

starting value. These first draws are to be discarded at the burn-in stage as they are

unrepresentative of the equilibrium distribution of the Markov chain.

From Markov chains theory, the chains are expected to eventually converge to the

stationary distribution. Chains should be run out long enough so that all the potential

scale reduction factors are small enough. However, there is no guarantee that the

chains will converge after M draws. There are several ways to check for convergence,

both visual and statistical.

The simplest method, which is also employed in this chapter, is just to inspect plots

of the chains visually: they should look like nice oscillograms around a horizontal line

without any trend. This method shows how well the chain is mixing, or moving around

the parameter space. If the chain is taking a long time to move around the parameter

space, then it will take longer to converge. Only the draws obtained after the chain

has converged should be included in the analysis, for accurate and relevant results.

A statistical convergence diagnostics is also applied after the visual examination, in

order to guarantee the efficiency of the model. The method developed by Andrew Gel-

man [3] is employed, as this is perhaps one of the most popular diagnostics. This

Gelman-Rubin diagnostic measures whether there is a significant difference between

the variance within several chains and the variance between several chains by a value

that is called scale reduction factors. To do this, at least two chains would have to be

simulated in parallel, each with different starting points which are overdispersed with

respect to the target distribution.

55

A factor of 1 means that between variance and within chain variance are equal, larger

values mean that there is still a notable difference between chains. Any value signif-

icantly above 1 would suggest lack of convergence. Thus, this statistic measures the

potential advancement, in terms of the estimate of the variance in the variable, which

could be achieved by running the chains to infinity. When a small amount of advance-

ment could be gained, the chains are taken as being mixed. The Gelman diagnostic

plot is also a nice tool to see roughly where this point is, that is, from which point

on the chains seem roughly converged. The Gelman plot shows the development of

the scale-reduction over time (chain steps), which is useful to see whether a low chain

reduction is also stable. This is done by calculating the shrink factor of all the parallel

Markov chains at various points in time.

Below, Figure 3.1 illustrates the distributions of all 6 datasets to be analysed in this

chapter. It is very clear from these histograms that the actin data does not have a

consistent mean light intensity in all 3 datasets. Dataset 1, which is the grey distri-

bution in the left histogram, does not overlap at all with the other two datasets with

the same conditions. Whereas the other 2 actin datasets have a high degree of overlap,

with the most frequent mean intensity of around 1000. Then , on the right hand side,

there is the histogram of calcium datasets with an approximate mean intensity value

of 3200. One can clearly observe that these calcium datasets have a high degree of

overlap, showing consistency in the data.

After this initial view of the data distributions, in the analysis it is expected to see an

increased number of clusters for higher light intensities, thus for pCa 6 datasets. Desai

et al. [19] argues that increased concentrations of myosin and calcium favor myosin

association, leading to more active regions on the thin filament. Thus, thin filament

activation responds to myosin and calcium.

56

Figure 3.1: Overlapping histograms of all 6 datasets with conditions 10 nM of myosin
at pCa 6 on the left hand side histogram and 5 nM actin on the right hand side
histogram. The peaks correspond to the most common number of light intensities, and
the histograms become skewed to higher intensities as more myosins bind to the thin
filament.

3.3.1 Dataset 1 with conditions 5 nM actin

As a first step, we examined the interaction of 5nM actin data. Movies of these in-

teractions were taken, and slices along thin filaments were projected through time to

generate kymographs. In this section, we present the results of one kymograph under

the conditions mentioned above because datasets with the same conditions show sim-

ilar analysis results. This can be seen in Appendix B where the outcomes from two

further kymographs with the same conditions could be found.

Before doing any analysis, we looked at the descriptive statistics for the raw data

presented in Table 3.1. The table shows that the minimum value of a pixel is 1877 and

57

the mean value is 2760. Also, the standard deviation (SD) is 657. Figure 3.2 displays

the positively skewed distribution of data, where 75% of values are found in between

1877 and 3098. So by looking at the distribution of data, it is not clear how many

clusters there are in this dataset.

Table 3.1: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

1877 2270 2532 2760 3098 5944 657

Figure 3.2: Histogram of dataset with conditions actin only and myosin II = 5nM

The implementation of the RJMCMC algorithm will now be presented, corresponding

to 30000 iterations and a burn in period of 5000 draws. Given that the number of

clusters is unknown, the starting points for the Markov chains were chosen based on

the summary statistics and expert knowledge.

To understand the behaviour of myosin within active regions we applied a Markov

Chain statistical approach. This allows the binding and release events within a dataset

58

to be analysed. For one kymograph/dataset we generated four independent Markov

chains using the RJMCMC algorithm and calculated the average mean and variance

value for each population of binders. The first two chains were obtained by conditioning

on K = 1, whereas the other 2 chains were conditioned on K = 6. The starting values

can be found in Table 3.2 and these were chosen to resemble the descriptive statistics.

Table 3.2: Starting values used for the RjMCMC algorithm

Chain 1 and 2 Chain 3 and 4

Weight 1 0.15 0.15 0.2 0.2 0.18 0.12
Mean 2600 2000 2300 2760 3000 3400 3800
Variance 657 550 600 657 600 595 665

Markov chain diagnostics is a critical issue. This is because these tools are used to

check whether the quality of a sample generated with an MCMC algorithm is sufficient

to provide an accurate approximation of the target distribution. As a result, we start

with the visual inspection of the trace and density plots for parameter K for all the

chains, where K represents the number of myosins bound to the thin filament.

Figure (3.3) illustrates the mixing over K for each chain, which shows the values taken

by K during the run time of the chain. A good sign of convergence is that there are no

breaks in the chains to suggest poor mixing. Also the chains seem to move from one

state to another without getting stuck for too long in one state. Healthy chains jump

up and down frequently. It appears that most sampled values of all three chains are

between 7 and 9 components after reaching equilibrium. This can also be seen in the

density plots in Figure (3.4), where the distribution of the values for parameter K is

presented. Thus, from the visual inspection we can say that the MCMC method has

captured the true population distribution. However, to establish that convergence is

achieved, we also examine the Gelman plot.

59

Figure 3.3: Traces for mixing over K for a concentration of actin only and myosin II
= 5nM, over 30000 sweeps

60

Figure 3.4: Posterior distribution of 30 000 Ks produced by the reversible jump MCMC
algorithm

Figure 3.5 illustrates the Gelman plot, which shows the development of the scale reduc-

tion factor over time (chain steps). It is helpful to see whether a low chain reduction

is stable, meaning that it does not go down and then up again. This is because the

bias that arises from the starting values until convergence, has to be discarded. So

when the shrink factor gets close to 1 (perhaps not greater than 1.1 or 1.2) that is

roughly the point when the chains reach convergence. Only iterations that are on the

converged part of the chain must be used for statistical analysis.

61

Figure 3.5: Gelman plot for all four chains with different starting points

The Gelman plot is a useful tool to see roughly where the convergence point is, in order

to appropriately decide on the burn in stage. Figure 3.5 shows that the chains start

getting close to 1 after 10000 iterations, meaning that the stationary distribution has

being reached at that stage. So, as a result the burn in stage is set at 10000 draws,

being left with 20000 draws for analysis. Similarly, Table 3.3 presents the potential

scale reduction factor (psrf) for the Gelman diagnostic of all chains, where both values

are almost 1. This provides further assurance that the chains have indeed attained

stationarity.

Table 3.3: Potential scale reduction factor for all chains

Point est. Upper C.I.
1.034217 1.08674

The RJMCMC algorithm calculates the average mean, variance value and weight for

62

each population of binders. The mean corresponds to the idealized pixel intensity values

for the stated number of binders. In order to decide which number of components would

interest us most, we have looked at the spread of data for each chain given by Table 3.4.

It appears that all four chains have jumped to 7 and 8 components the most, meaning

that the RJMCMC algorithm considers that the dataset is most likely to have 7 or

8 clusters. Prior information says that light intensity increments are linear with the

number of binders. Thus, we will examine both 7 and 8 clusters to find out which of

the two have a more linear relationship.

Table 3.4: The spread of data resulting from the RjMCMC algorithm

of components 6 7 8 9 10 11

Chain 1 278 8187 7421 2501 1372 241
Chain 2 0 8053 7615 3222 1048 62
Chain 3 494 9343 7578 2386 199 0
Chain 4 0 10831 6178 2389 602 0

Table 3.5 presents the mean intensities, variance and weights for each binder corre-

sponding to a total of either 7 components (equivalent to background plus 6 binders)

or 8 components (equivalent to background plus 8 binders). For both 7 and 8 com-

ponents, there are clear linear increments between binders, as seen in Figure 3.6. The

linear plot was constructed using the mean values from Table 3.5. Given that one of our

assumptions is linear relationship, it seems that the 8 component simulation provides

a more saturated Gaussian mixtures model and will be used as the basis for further

analysis. Further confirmation of the choice of component number derives from the

weighting or relative abundance of these binders. For 8 components the predominant

population is between 0 and 4 molecules per bound cluster but there is still a 29%

chance for 5 to 7 binders (8% weighting for 5 binders, 8% for 6 binders and 13% for 7

binders).

A simple approach for choosing the cut-off pixel intensity value of each population of

binders is to use the midpoint between successive means for the 8 components. For

63

Table 3.5: Summary results including the mean, variance and weight of having a total
of either 6 or 7 myosin binders

of Total of 6 binders (7 components)Total of 7 binders (8 components)

bindersMean = µ6 Variance= σ6 Weight=w6 Mean = µ7 Variance= σ7 Weight=w7

0 2150 88 0.2 2139 88 0.19
1 2343 122 0.22 2329 119 0.2
2 2583 165 0.24 2530 156 0.19
3 3012 161 0.09 2807 159 0.11
4 3353 230 0.08 3126 187 0.08
5 3823 500 0.16 3473 289 0.08
6 5046 384 0.01 3935 477 0.13
7 5071 360 0.01

example, the cut-off values for pixel intensity between binders 1 to 2 (values found in

Table 3.5: 2329 to 2530) is 2429.5 and from baseline to binder 1 (values in Table 3.5:

2139 to 2329) is 2234. Therefore any peaks in the kymograph within this intensity

range would be assigned as a singly bound. The mean (3.5) and cut-off values (3.6)

are used for further analysis to generate the rates of transition from a cluster of bound

myosins to another cluster of bound myosins and to understand the mechanism of

myosin binding to the thin filament.

64

Figure 3.6: Comparing the number of components used in the RJMCMC analysis.
Using the RJMCMC analysis with either 7 or 8 total components for linear plots of
the mean intensity vs. the number of binders.

Table 3.6: Range of values for up to 7 or 8 components, which will be used to transform
the raw data and then calculate the rates of transition from a component to another
component

Range of 7 components 8 components

values for Lower Bound Upper Bound Lower Bound Upper Bound

0 binders 1877 2246.5 1877 2234
1 binder 2246.6 2463 2234.1 2429.5
2 binders 2463.1 2797.5 2429.6 2668.5
3 binders 2797.6 3182.5 2668.6 2966.5
4 binders 3182.6 3588 2966.6 3299.5
5 binders 3588.1 4434.5 3299.6 3704
6 binders 4434.6 5944 3704.1 4503
7 binders 4503.1 5944

Examining Appendix B, which displays the analysis for two more kymographs with

conditions 5 nM of actin, it is very clear that the analysis output is not consistent.

65

This is because the simulation performed by the RJMCMC algorithm indicates that

there are 7 or 8 components in Dataset 1 (i.e. kymograph presented in this section),

in comparison to Datasets 2 and 3 where the mostly proposed number of clusters is 4.

This could be due to the fact that the distribution of Dataset 1 does not overlap at all

with Dataset 2 and 3. This is illustrated in Figure 3.1 and it could mean that there

might have been data collection variations.

3.3.2 Dataset 1 with conditions 10 nM myosin at pCa 6

A kymograph with conditions 10 nM of myosin at pCa 6 should allow a clearer view of

how the active regions collide and collapse catastrophically, according to Desai et al.

[19]. Cluster formation is boosted by increased myosin and increased calcium levels.

Thus, an image with 10 nM of myosin at pCa 6 was used to determine how many

myosins were bound per cluster. Extra analysis results for two more image with the

same conditions could be found in Appendix C.

The descriptive statistics presented in Table 3.7 shows that the minimum value of a

pixel is 2767 and the mean value is 3169, with a standard deviation of 146. Figure 3.7

shows that skewness is close to zero, where 75 % of data is found in between 2767 and

3259. This histogram does not reveal clearly how many subgroups could be found in

this kymograph.

Table 3.7: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

2767 3066 3154 3169 3259 3869 146

66

Figure 3.7: Histogram of dataset with conditions pCa6 and S1=10nM

A simulation of 30000 draws and a burn in stage of 5000 iterations is implemented

using the RJMCMC algorithm. The starting values of the Markov chains have been

chosen based on expert knowledge and the descriptive statistics described above. The

same statistical approach as in Section 3.3.1 was followed; where four different chains

conditioned on either K=1 or K=6 were generated. The starting values are presented

in Table 3.8.

Table 3.8: Starting values used for the RJMCMC algorithm

Chain 1 and 2 Chain 3 and 4

Weight 1 0.19 0.2 0.15 0.16 0.2 0.1
Mean 3169 2900 3000 3160 3300 3450 3600
Variance 146 105 100 140 133 170 110

The quality of the simulation is shown in Figure 3.8, where the trace plots of the Markov

chains are illustrated. All four chains seem to be moving around the parameter space,

67

jumping up and down frequently. It appears that the chains reach stationarity after

approximately 5000 draws and the most sampled values are 2-3. This means that

the RJMCMC algorithm reads that there exist 2-3 subgroups in this dataset. The

same information is presented in Figure 3.9 by the distribution of parameter K in each

Markov chain.

Figure 3.8: Traces for mixing over K for 10nM myosin at pCa 6, over 30000 sweeps

68

Figure 3.9: Posterior distribution of 30 000 Ks produced by the reversible jump MCMC
algorithm

Further chain diagnostics were carried out via the Gelman plot and the Gelman diag-

nostic. Figure 3.10 illustrates that the chains reach stationarity fairly rapidly around

5000 iterations, which is our burn in stage. Convergence is also confirmed by the

potential scale reduction factor, presented in Table 3.9, which is very close to 1.

69

Figure 3.10: Gelman plot for all four chains with different starting points

Table 3.9: Potential scale reduction factor for all chains

Point est. Upper C.I.
1.005338 1.009267

Given that the diagnostics have confirmed the convergence of the Markov, the next step

is to decide which number of components would be best to use for further analysis.

Thus, we have looked at the spread of data for each chain given by Table 3.10. It

appears that all four chains have jumped to 3 and 4 components the most, meaning

that the RJMCMC algorithm considers that the dataset is most likely to have 3 or

4 clusters. Prior information says that light intensity increments are linear with the

number of binders. Thus, we will examine both 3 and 4 clusters to find out which of

the two have a more linear relationship.

Table 3.11 displays the mean intensities, variance and weights for each myosin binder

70

Table 3.10: The spread of data resulting from the RJMCMC algorithm

of components 2 3 4 5 6 7 8

Chain 1 35 19979 4262 563 124 37 0
Chain 2 0 18679 4742 1096 394 89 0
Chain 3 433 18742 4622 1005 186 3 9
Chain 4 0 19310 4618 933 138 1 0

equivalent to a total of either 3 components (corresponding to background plus 2 bound

myosins) or 4 components (corresponding to background plus 3 myosin binders). Then

Figure 3.11 exemplifies the mean intensities of each subpopulation, which results in a

linear plot with a slope corresponding to the intensity change per additional bound

myosin. So, this linear regression fit to the data indicates an intensity change per

myosin binder of 143.5 (based on a trendline fit for 3 components). The slopes for

both 3 and 4 components are similar. So, it seems that the 4 component simulation

supports a better fit for the mixture model in this dataset because the other two

datasets (please see Appendix C) show very similar results, which further validates

our choice. Moreover, for 4 components the predominant population is between 0 and

1 bound myosins per cluster, with a 71% chance. Clusters of 2 myosin binders also

have a good chance of 20%, whereas 3 binders are very unlikely to happen, with a 9%

probability.

Table 3.11: Summary results including the mean, variance and weight of having a total
of either 2 or 3 myosin binders

of Total of 2 binders (3 components) Total of 3 binders (4 components)

binders Mean = µ2 Variance= σ2 Weight=w2 Mean =µ3 Variance=σ3 Weight=w3

0 3097 100 0.59 3069 96 0.41
1 3252 118 0.31 3174 104 0.3
2 3384 145 0.1 3288 117 0.2
3 3396 141 0.09

71

Figure 3.11: Comparing the number of components used in the RJMCMC analysis.
Using the RJMCMC analysis with either 3 or 4 total components for linear plots of
the mean intensity vs. the number of binders.

It’s been decided that the fitting number of myosin binders is 4, for data collected

under the same conditions. This means that there are 4 clusters in the kymographs

with 10nM of myosin at pca 6 , according to the RJMCMC algorithm. As a result,

the cut-off pixel intensity value of each subpopulation of bound myosins is established

using the midpoint between consecutive means for the 4 components. As an example,

the cut-off value between 1 to 2 bound myosins (values found in Table 3.11: 3174 to

3288) is 3231. The range of values for all 4 subpopulations is found in Table 3.12.

These values are used for further analysis. So then the raw data is translated into 4

subpopulations using these ranges, in order to generate the rates of making a transition

from a group of myosin binders to a different group of binders.

The other two kymographs presented in Appendix C are of the same nature as the

kymograph introduced in this section, having been collected under the same experi-

mental conditions. We have seen in Figure 3.1 that the distributions of the 3 calcium

datasets are the same. This is because there is a great amount of overlap in the data

72

Table 3.12: Range of values for up to 3 or 4 components, which will be used to transform
the raw data and then calculate the rates of transition from a component to another
component

Range of 3 components 4 components

values for Lower Bound Upper Bound Lower Bound Upper Bound

0 binders 2767 3174.5 2767 3121.5
1 binder 3174.6 3318 3121.6 3231
2 binders 3318.1 3869 3231.1 3342
3 binders 3342.1 3869

points, which means that the analysis results would be expected to be very similar.

Knowing that the outcomes are very much alike gives us a boost of confidence in the

performance of the algorithm and in our overall analysis.

3.4 Description of transition rates and probabilities

Activation of the thin filament occurs through the initial association of myosin to

open the thin filament for subsequent myosins to bind Desai et al. [19]. These bind

in a collision limited process and, although stochastic, the process of activation is

predictable. To determine the association rate constant we analysed our myosin binding

data using RJMCMC to derive transition matrices.

A quantitative comparison between two datasets with different conditions is presented

in this section. These are Dataset 1 with 5 nM actin and Dataset 1 with 5 nM myosin at

pCa 6. The results were obtained using the thresholds introduced in Sections 3.3.1 and

3.3.2 to rescale the data and calculate the rates and probabilities of transition between

myosin binders. Knowing the number of myosins in each cluster enabled us to calculate

transition matrices, which provide information on how myosin molecules attach to or

detach from the thin filament. To generate transition matrices we examined the fate of

each cluster by measuring the frequency of transitions from one cluster size to another

within a single frame (vertical slice of the kymograph). From these measurements we

73

generated matrices of probabilities and rates.

The diagonal rates for remaining in the same state, for an exponentially distributed

length of time, are found in Figures 3.12 and 3.13 for the 5 nM actin dataset and 10 nM

of myosin at pCa 6 respectively. From the previous section we have already established

that the actin dataset has up to 7 clusters, which is why there are 8 binding states in

total (this includes state 0, where there is no binding) and that the Calcium dataset

accommodates up to 3 clusters, so 4 binding states.

By closely examining these matrices, we notice that all states have similar rates of

remaining in the current state, apart from State 0 (S(0)) and State 6 (S(6)) in the

actin dataset, and S(0) in the Calcium dataset. This means that if the binding process

is found in State 0, it stays in State 0 for an exponentially distributed length of time,

with a rate of 0.65 or 0.74, and then moves on to a different state. So, the rate of

remaining in the current state is lowest when there are 0 bound myosins and highest

in states S(1), S(2) and S(3).

Figure 3.12: Rates of remaining in the current state for 5 nM actin

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)



S(0) 0.65 0 0 0 0 0 0 0

S(1) 0 1.34 0 0 0 0 0 0

S(2) 0 0 1.21 0 0 0 0 0

S(3) 0 0 0 1.35 0 0 0 0

S(4) 0 0 0 0 1.11 0 0 0

S(5) 0 0 0 0 0 0.98 0 0

S(6) 0 0 0 0 0 0 0.61 0

S(7) 0 0 0 0 0 0 0 0.82

74

Figure 3.13: Rates of remaining in the current state for 10 nM of myosin at pCa 6

S(0) S(1) S(2) S(3)


S(0) 0.74 0 0 0

S(1) 0 1.66 0 0

S(2) 0 0 2.03 0

S(3) 0 0 0 1.3

Moving on to the rates of making a transition to a different state, the central diagonal is

zero since we are measuring movement away from the current cluster size. All numbers

to the right of the diagonal are binding events and to the left detachments. These

matrices with the rates of leaving the current binding state are found in Figures 3.14

and 3.15.

In Figure 3.14, which is a matrix based on the actin dataset, it can be seen that for

all states there can be at most a binding of 2 myosins on top of the current number of

bound myosins. For example, if the binding process is in state S(1), which means that

there is already 1 bound myosin at that position, then the rate of making a transition

to state S(2) (2 binders) is 0.63 and the rate of going to S(3) is 0.03. The situation

is very similar with all the other states because at any state, the rate of one myosin

binder attaching is a lot greater than the rate of two binders attaching. This shows that

myosins become attached to the thin filament one by one and rarely two at the same

time. Similarly, the rates of detachment have similar values to the rates of attachment.

There are up two myosins which could detach in a single frame, but they usually detach

one at a time. So the binding process is most likely to go up in 1 myosin head or down

in 1.

This process of myosin heads attaching to/detaching from the thin filament is not as

clear in Figure 3.15. It is because the number of states in the Calcium dataset is a

lot smaller. However, it is still visible that the rates of release/binding are highest

75

for single myosin heads. In neither of the two matrices corresponding to the rates of

transition, there is no indication of complete detachment of all molecules in a single

time frame. This communicates that the process of muscle relaxation occurs in stages

and there is no sudden deactivation of the thin filament.

Figure 3.14: Rates of making transitions to different states for 5 nM actin

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)



S(0) 0 0.63 0.02 0 0 0 0 0

S(1) 0.68 0 0.63 0.03 0 0 0 0

S(2) 0.02 0.7 0 0.49 0.01 0 0 0

S(3) 0 0.01 0.81 0 0.53 0 0 0

S(4) 0 0 0.01 0.6 0 0.49 0.01 0

S(5) 0 0 0 0.01 0.55 0 0.42 0

S(6) 0 0 0 0 0 0.43 0 0.18

S(7) 0 0 0 0 0 0 0.82 0

Figure 3.15: Rates of making a transition to a different state for 10 nM of myosin at
pCa 6

S(0) S(1) S(2) S(3)


S(0) 0 0.65 0.09 0

S(1) 0.81 0 0.71 0.14

S(2) 0.13 1.1 0 0.79

S(3) 0.01 0.31 0.98 0

The matrices which illustrate the transition probabilities, Figures 3.16 and 3.17, are

just another way of displaying the results from the analysis. All rows sum to one and

there are no vertical transitions. It can be seen that near the central diagonal there is

an increased probability of cluster size corresponding to the release/binding of single

76

myosins. Binding does not appear concerted, since there is very little probability of

forming complexes in the top right of the diagram.

Figure 3.16: Transition probabilities for 5 nM actin

S(0) S(1) S(2) S(3) S(4) S(5) S(6) S(7)



S(0) 0 0.97 0.03 0 0 0 0 0

S(1) 0.5 0 0.47 0.03 0 0 0 0

S(2) 0.02 0.57 0 0.4 0.01 0 0 0

S(3) 0 0.01 0.6 0 0.39 0 0 0

S(4) 0 0 0.01 0.54 0 0.44 0.01 0

S(5) 0 0 0 0.01 0.56 0 0.44 0

S(6) 0 0 0 0 0 0.7 0 0.3

S(7) 0 0 0 0 0 0 1 0

Figure 3.17: Probabilities of making a transition for 10 nM of myosin at pCa 6

S(0) S(1) S(2) S(3)


S(0) 0 0.88 0.12 0

S(1) 0.49 0 0.43 0.08

S(2) 0.06 0.54 0 0.39

S(3) 0.01 0.24 0.75 0

We have directly observed single molecules of fluorescently tagged myosins with dif-

ferent conditions, interacting with the thin filament, forming clustered regions of acti-

vation. This detailed examination using the reversible jump MCMC approach reveals

a high probability of myosin binding in a more classical cooperative activation. It is

clear that myosin binding occurs in clusters in such partially active conditions. This

confirms that myosin spreads its own binding by creating local active regions known as

regulatory units. Also, these results show that the process of muscle relaxation occurs

77

in stages and the catastrophic collapse of active regions is not so much present.

The results from the performance of RJMCMC assessed in this chapter through the

application on real datasets reinforce that myosin facilitates its own binding by devel-

oping local active regions, just as it is presented in the literature. Using the transition

matrices illustrated here, it is possible to calculate the expected probability for any

number of myosins binding to any existing active region.

To further explain the phenomenon of cooperative activation and the catastrophic

collapse of the thin filament, a new variation of hidden Markov models is considered

in the following chapter. That is because hidden Markov models are an extension to

mixture models in such a way that they allow for spatial data. So the model allows

for spatial information in the image to be encoded through contextual constraints of

a neighbourhood structure. Then the performance of this novel MCMC algorithm

is compared to the performance of the RJMCMC algorithm analysed in this current

chapter.

78

CHAPTER 4

HIDDEN MARKOV MODEL ON TWO

DIMENSIONS AND ITS APPLICATION

The hidden Markov model (HMM) can be considered a generalisation of a mixture

model where the hidden states, which control the mixture components corresponding

to each observation, are related through a Markov process rather than being indepen-

dent of each other. They have been applied to model various types of data: discrete,

continuous, univariate, multivariate, mixed and mixture data (Zucchini et al. [73]. Con-

sequently, they have been used in numerous applications in computational molecular

biology, pattern recognition and computer vision such as image sequence modelling

and object tracking. A brief description of both frequentist and bayesian approaches

to HMMs is provided by McLachlan and Peel [41].

Hidden Markov models have been employed in this application, because it suitably

provides a formulation for an extension of a mixture model, to allow for spatial data.

HMM treats the unobserved latent variable, N as a sequence, which has a behaviour

79

of a Markov chain. The latent variable generates the observations (number of binders)

n at a time point and location, and also models transitions between different states of

behaviour. Thus the observed binding and release of individual myosins was modelled

using Hidden Markov models. This enabled an assumption-free model of the attach-

ment and detachment probabilities for myosin to be determined. It is expected that

myosin binds to actin stochastically and forms clusters. This highly elevated collapse

probability suggests a concerted mechanism of deactivation (relaxation), and explains

the ability of muscle to relax in conditions that would be expected to still permit

myosin binding.

HMMs require that yj(ts) be drawn independently from a distribution conditional on

the correspondent latent state nj(t) and are defined by three properties, as stated by

Ghahramani [30]. The first property is that the observation yi is generated by an

unobserved process whose latent variable is hidden. In our case, we know that the

observations are driven by the attachment/detachment process, without knowing the

states of the contraction. The second property states that the hidden process must

satisfy the Markov property. The last property requires the latent variable to have

discreete states. Thus, our model satistfies all three requirements of the HMMs.

The first part of this chapter considers a new hidden Markov model. It illustrates this

model on a biology application to data introduced in Chapter 2, on the contraction

of the muscle. The novelty lies in the model allowing for spatial information in the

image to be encoded through contextual constraints of a neighbourhood structure based

on three nearest neighbours. This neighbourhood process has been carefully chosen

to capture the effects light intensity from neighbouring positions has on the average

intensity of light of a pixel.

The second part of this chapter looks at the evaluation of the MCMC algorithm per-

formance. We discuss several methods to evaluate the convergence and mixing of the

MCMC algorithm. It is important to note that there is no definitive way of assessing

convergence and mixing for problems that involve analytically intractable densities.

80

Hence a combination of methods should be employed to satisfy the researcher that

convergence has been reached. After the chain diagnostics, the next step is to draw

inference about the parameters.

4.1 Hidden Markov models

Hidden Markov models (HMMs) are models in which the distribution that generates

an observation depends on the state of an underlying and unobserved Markov process.

These models have been used for at least three decades in signal-processing applications,

especially in the context of automatic speech recognition (Pietrzykowski and Sa labun

[52]), but interest in their theory and application has expanded to other fields, such as:

· all kinds of recognition: face. gesture, handwriting, signature (Pietrzykowski and

Sa labun [52]);

· bioinformatics: biological sequence analysis (Eddy [21]);

· finance: series of daily returns (Bulla [7]).

Other terms used to describe Hidden Markov models are state space models (SSMs)

and latent process models, in which the distribution of a sequence of observations

is generated by the unobserved state variables. The main aim in most applications

is to reconstruct the state variable based on a given set of observations, which can

be derived as a recursive form of Bayes’ rule (Chen et al. [13]). SMM provides a

general framework for analysing deterministic and stochastic dynamical systems that

are measured or observed through a stochastic process. The most well studied SSM

is the Kalman filter, which defines an optimal algorithm for inferring linear Gaussian

systems; see Leroux and Puterman [39]. Linear Gaussian state space models are used

extensively in all areas of control and signal processing.

A hidden Markov model, as described by Ghahramani [31], is a tool for representing

probability distributions over sequences of observations. The model assumes three

81

defining properties. First, the observations are generated by some process, N, whose

states are hidden from the observer. We use our binding process to illustrate N .

Denote nj = {nj(t), t ∈ [0, τ]},nt = (n1(ts), · · · , nJ(ts)) and N = {nj, j = 1, · · · , J},

where nj(t) is the number of myosin binders at position j and at time t. Second, the

states of this hidden process satisfy the first-order 1 Markov property. Thus, HMM

treats the latent variable as a sequence, which has the behaviour of a Markov chain.

A third assumption is usually that the hidden state variable is discreet. Taking these

Markov properties together, it means that the distribution of the latent process can be

determined as follows:

P (nt) = P (n1(t))
J∏
j=2

P (nj(t)|nj−1(t)) (4.1)

Such HMM, nt, is not directly observed. Instead, we observe the independent data yi(t)

at time points t1, t2, · · · , tS, where data are recorded from time t1 = 0 to time tS = τ .

Denote Y j = (yj(t1), · · · , yj(tS)), ~Ys = (y1(ts), · · · , yJ(ts))
T and Y = (~Y1, · · · , ~YS) =

(Y T
1 , · · · ,Y T

J)T . The posterior density for the HMM is given by

p(Yt,nt,θ) = {
J∏
j

f(yj(t)|nj(t);θ)}p(nt|θ)π(θ) (4.2)

where π(θ) denotes the prior density for the parameter vector θ. This factorisation of

the joint probability is also known as a Bayesian network or a probabilistic graphical

model in some areas such as molecular biology (Friedman et al. [23]). Bayesian networks

specify conditional independence relations for a hidden Markov model. Gibbs sampling

can be used to generate draws of the parameter vector, with θ augmented by the hidden

component-indicator nt. For this to be attainable, simulation from all the conditional

distributions has to be simple. HMMs are increasingly being employed in applications,

since it extends the mixture model by allowing for weakly dependent heterogenous

1A first-order Markov property is one in which the current state nt is independent of all previous
states. An n-th order Markov process is when nt given nt−1, · · · ,nt−n is independent of nτ for
τ < t− n.

82

phenomena (Christian P. Robert [14]).

In general, a stationary Markovian model is defined for the distribution of the hidden

vectors n1, · · · ,nJ . In one dimension, this model is a Markov chain, and in higher

dimensions it is a Markov random field (Besag [5]). MRFs are a type of stochastic

processes that form a natural generalisation of Markov processes in which a time index

is replaced by a space index. A more detailed discussion on MRFs is to be found in

the next subsection.

In order to highlight the difference between a hidden Markov chain and a hidden

MRF, let nδj(t) contain the neighbours of the hidden variable, nj(t). In the case of

hidden Markov chain, let nδj(t) = {nj+1(t), nj−1(t)} for j = {2, · · · , J − 1}, nδ1(t) =

n2(t), nδJ(t) = nJ−1(t); and in the case of a hidden Markov random field, let nδj(t) be

dependent on a neighbourhood structure of the underlying Markov random field. The

hidden component indicator vector nt can be tackled by generating each nj(t) from

the conditional distribution

p(nj(t)|nδj(t),Yt,θ) ∝ p(nj(t)|nδj(t);θ) (4.3)

for j = 1, · · · , J . Rydén and Titterington [61] have investigated the intractability of

the full conditional distributions in the case of a MRF and have provided changes to

this procedure to cope with this issue.

Parameter estimation in hidden Markov models usually relies on maximum likelihood or

Bayesian methods, moments methods being intractable in this setting. In particular,

calculation of maximum likelihood estimates (MLE) is nontrivial. The dependency

structure can only aggravate the difficulties met in mixture estimation for i.i.d. data;

see Archer and Titterington [4]. Using richer hidden representations invariably leads

to computational intractability in the algorithms for inferring the hidden state from

observations. According to McLachlan and Peel [41] Monte Carlo methods, such as

Gibbs sampling and variational methods, are two ways of handling this intractability.

83

4.1.1 Hidden Markov random field

Hidden Markov random field (HMRF) models (McLachlan and Peel [41]) are multidi-

mensional random processes which generalise the notion of a 1D Markov process. These

models are widely used for image segmentation, as they appear naturally in problems

where a spatially constrained clustering scheme is asked for. A HMRF model is a

stochastic process generated by a Markov random field (MRF) whose state sequence

cannot be observed directly, but can be indirectly observed through observations..The

importance of the HMRF model derives from the way in which the spatial information

in an image is encoded through the mutual influences of neighboring sites/pixels.

MRF, is also often defined on a discrete lattice, with a set of random variables described

using an undirected graph (Chaudhary [10]) . MRF theory presents an appropriate and

consistent way for modeling items that are context dependent, such as image pixels and

correlated features. MRFs can be used to make inferences about the underlying image

and scene structure to solve problems such as image reconstruction, image segmentation

and object labelling.

Segmentation seeks to subdivide images into regions of similar attributes, playing a

crucial role in image processing. A suitable neighbourhood structure has to be defined,

with the constraint that being neighbours is symmetric. For example, the pixel values

in an image usually depend most strongly on those in the immediate vicinity, and

have only weak correlations with those further away. Hence, images must be divided

into physical objects so that each region constitutes a semantically meaningful entity.

Therefore, vision problems are well suited to the MRF optimization technique.

One approach is to employ a HMRF, using a simple neighbourhood structure based

on 4-connected neighbours, also known as the nearest-neighbour process. A set of

random variables which have some conditional independence properties is considered.

The MRF contains a set of sites, which may be indexed with two values, j and t, to

emphasise the 2D structure of the sites. Labels might take continuous values, but the

84

assumption will be to have a discrete set of labels. Every site will have a label and one

can assign a site to every pixel in the image. So, in later sections, we might refer to the

site Bj(t) as the image intensity at position j and at time t, and its vertical neighbour

Bj+1(t) or its horizontal neighbour Bj(t+ 1). Also, a site is not its own neighbour.

An undirected graphical model, also known as a Markov random field, can be used for

image analysis or spatial statistics because it does not require the specification of edge

orientations and seems much more natural for certain domains than directed graphical

models (also known as Bayes nets). MRFs can be applied to a wider range of problems

in which there is no natural directionality associated with variable dependency. These

models have greater power than Bayes nets, but are more difficult to deal with compu-

tationally because many undirected models are intractable and require approximation

techniques. A general rule of thumb is to employ Bayesian nets whenever possible, and

only switch to MRFs if there is no logical way to model the problem with a directed

graph. As an illustrative example, an undirected 2d lattice is shown in Figure (4.1b)

and a directed acyclic graph (DAG) is presented in Figure (4.1a). In an MRF, node

Y2,3 is independent from the rest of the graph given its neighbours, also referred to as

the Markov blanket of Y2,3.

85

(a) Directed graphical model or Bayes

net

(b) Markov random field or Markov net-

work

Figure 4.1: (a) A 2D lattice represented as a directed graphical model. The red node
Y2,3 is independent of all other nodes (black) given its Markov blanket, which include
its parents (blue), children (green) and co-parents (orange). (b) The same model
represented as an unordered graphical model, also called a MRF or Markov network.
The red node Y2,3 is independent of the other black nodes given its nearest neighbours
(blue nodes).

However, two dimensional MRFs are not suitable for the data described in this thesis.

This is because the data has a space index and a time index, rather than two space

indeces like MRFs; and an appropriate hidden Markov model which behaves like an

undirected graphical model is proposed in this chapter. Hence, this naturally leads to

the next section which describes Markov chains on a discrete state space and continuous

time.

4.2 Continuous time and discrete state space Markov

chains

The behaviour and properties of Markov chains in continuous time on a finite number

of states is used to determine the rates and probabilities of transition between states,

within the activation region of the thin filament. The myosin binding process is a

Markov process because it is inherently a stochastic process influenced by the concen-

tration of Calcium and myosin. This means that the future evolution of the binding

86

process is independent of previous steps. This section also introduces some general

information on birth-death processes. These birth-death processes are continuous time

Markov chains on the non-negative integers in which only jumps to adjacent states

are allowed. Hence, the state transitions can be either births or deaths. This type of

process will be used in a later section of this chapter to study the number of myosin

binders attaching to / detaching from the thin filament.

4.2.1 Basics of continuous time Markov chains

Consider a continuous-time stochastic process At, where t ∈ [0,∞), defined on a dis-

crete state space S. As presented in Ross et al. [60], the process is a continuous-time

Markov chain if for all h, t ≥ 0, and nonnegative integers i, j,

f(h) = P (At+h = j|At = i, Au = iufor u ≤ t) = P (At+h = j|At = i) (4.4)

where there can be infinitely such h. So, f(h) calculates the probability of being in a

different state j ∈ S at time t + h, knowing that the chain is in state i ∈ S at time

t. In other words, a continuous-time Markov chain is a stochastic process having the

Markovian property that the conditional distribution of the future state at time t+ h,

given the present state at t and all past states, depends only on the present state and

is independent of the past. In addition, the process is said to be time-homogenous if

P (At+h = j|At = i) = P (Ah = j|A0 = i) = ρij(h), for all t (4.5)

and the continuous-time Markov chain is said to have stationary or homogenous tran-

sition probabilities. This means that the probability of transitioning from a state i to

a state j depends on the length of the time interval (t+ h)− t = h. All Markov chains

considered in this thesis are assumed to have stationary transition probabilities.

87

Holding times

Suppose that a continuous-time Markov chain enters state i at some time, say 0, and

suppose that the process does not make a transition from state i to another state j

during the next t time units. It is important to understand how long the chain remains

in a given state, or what is the holding time in a specific state. By the Markovian

property, the probability that the process remains in that state during the interval

[t, t + h] is just the unconditional probability that it remains in state i for at least h

time units. That is, if Ti denotes the amount of time that the process stays in state i

before making a transition, then

P (Ti > t+ h|Ti > t) = P (Ti > h) ∀ h, t ≥ 0 (4.6)

Hence, the random variable Ti satisfies the loss of memory property and is therefore

exponentially distributed (since the exponential random variable is the only continuous

random variable with this property).

Thus, the holding time in state i is Ti if

Ti = inf{s ≥ 0 : At+h 6= i|At = i} (4.7)

Consider the parameter of exponential holding time for state i as λi, where an useful

observation could be made that

ETi =
1

λi
;

which means that the higher the rate λi, which represents the rate of transitioning to a

state j, forj 6= i, the smaller the expected time for the transition to occur. Even if the

holding time parameter for state i is known, further information is required to figure

out to which state the transition is made after leaving state i. So, the next step would

be to study the transition probabilities associated with the process.

88

Transitions

The interest lies in small time steps, i.e. small values of h > 0. Surely, f(0) = 0.

Under the assumption that f is differentiable at 0, one can obtain the derivative f ′(0)

as follows

lim
h→0

P (At+h = j|At = i)

h
= lim

h→0

f(h)− f(0)

h− 0
= f ′(0) = qij

and can be written as

P (At+h = j|At = i) = ρij(h) = qijh+ o(h). (4.8)

This means that the chain moves to a new state j ∈ S with probability qijh+ o(h) in

the small time interval (t, t+ h), given that the state was in state i at time t. Here, as

h→ 0, the probability of two or more transitions in the time window (t, t+ h) is o(h),

as follows

lim
h→0

o(h)

h
= 0

Similarly, no transition happens in the given time interval (t, t+ h) with probability

P (At+h = i|At = i) = ρii(h) = qiih+ o(h)

From equation (4.8) it is shown that, for every i ∈ S and for all i 6= j,

ρii(h) = 1−
∑
j∈S

qijh+ o(h) = 1 + qiih+ o(h),

if qii = −
∑

j∈S qij. As above qii = f ′(0) for f(h) = P (At+h = i|At = i), but now

f(0) = 1.

This information can be entered into a matrix, say Q = (qij : i, j ∈ S), which contains

all the information about the transitions in the given Markov chain. The properties of

this matrix Q are

89

• all off-diagonal entries, qij are positive, where i 6= j;

• all diagonal entries qii are negative;

• the sum over the entries in each row is 0.

Still considering Ti as the amount of time the process remains in state i after entering

state i, and also knowing that it is exponentially distributed with parameter λi, then

for j 6= i

ρij = P (ATi = j|A0 = i)

is the probability that the process transitions to state j after leaving state i. It can

be shown that the holding time Ti and the value of the new state, j, are independent

random variables. This is because if the amount of time the chain stays in state i affects

the transition probabilities, then the Markov property is not satisfied as it would be

required to know both the current state and the amount of time taken by the chain to

reach that state.

Then it is required to define

λi, = λiρij (4.9)

Since Ti is exponential with parameter λi, then it follows that

P (Ti < h) = 1− e−λih = λih+ o(h), as h→ 0.

Thus, for i 6= j and mild assumptions on function λ 2 ,

P (Ah = j|A0 = i) = P (Ti < h,ATi = j|A0 = i) + o(h) (4.10)

= λihρij + o(h)

= λi,jh+ o(h)

as h→ 0. Therefore, λi,j represents the local rate of transitioning from state i to state

2For example, λz cannot be equal to ∞ for any z ∈ S

90

j. Also, it is worth emphasising that for i ∈ S

∑
j 6=i

λi,j =
∑
j 6=i

λiρij = λi

Similar to equation (4.10), the probability of remaining in state i, considering that the

holding time is exponentially distributed, it follows that

P (Ah = i|A0 = i) = 1−
∑
j 6=i

P (Ah = j|A0 = i) (4.11)

= 1−
∑
j 6=i

λi,jh+ o(h)

= 1− λih
∑
j 6=i

ρij + o(h)

= 1− λih+ o(h)

It can be argued that any process satisfying equations (4.10) and (4.11) also satisfies

the Markov property (4.4). This is because (4.10) and (4.11) utilise only the current

state of the process and forget the entire past. This leads to a formal definition of a

continuous time Markov chain that includes all the parameters of the model.

4.2.2 Birth and death processes

A birth-death process refers to a Markov process with a discrete state space S, which

can be enumerated with index i = 0, 1, 2, 3, · · · , such that state transitions can occur

only between neighbouring states, i → i + 1 or i → i − 1. The state of the process is

usually thought of as representing the size of some population, and when the population

increases by 1, a birth occurs, and when the process decreases by one, a death occurs.

Let %ij be defined by

%ij = υiρij, ∀i 6= j

Since υi represents the rate at which the process leaves state i and ρij is the probability

that it then goes to state j, it follows that %ij is the rate when in state i that the process

91

makes a transition into state j; hence, %ij is the transition rate from i to j.

Then, let ϕi and ωi be given by

ϕi = %i,i+1 for i ≥ 0,

ωi = %i,i−1 for i ≥ 1.

The values ϕi and ωi are called the birth rate and death rate respectively. Since∑
j %ij = υi, then

υi = ϕi + ωi,

ρi,i+1 =
ϕi

ϕi + ωi
= 1− ρi,i−1.

Consequently, a birth and death process could be thought of by supposing that when-

ever there are i myosin binders in the system, the time until the next attachment

(birth) occurs is exponential with rate ϕi and is independent of the time until the next

detachment (death), which is exponential with rate ωi.

4.3 The latent myosin binding process

Consider the process nt = (n1(t), · · ·nJ(t)) (t ∈ [0, τ]). Let Tj be a transformation,

which only changes N = (n1, · · · ,nJ) at the jth position from nj to n
′
j. We assume

that in an instantaneous time point, at most one myosin binder can bind or leave the

actin thin filament. Thus, nt could be modeled as a spatial birth-death process. We

have three events which could occur: nj
′(t) = nj(t) + 1 (where a new myosin molecule

binds to the thin filament), nj
′(t) = nj(t)−1 (where a myosin molecule detaches from

the thin filament) and nj
′(t) = nj(t) (where there are no changes). The transition

rate for the spatial process could be defined as follows

q(nt,Tj(nt)) = r(nt,Tj(nt))× ψn′j(t)ψn′j(t)|nj−1(t)ψnj+1(t)|n′j(t) (4.12)

92

r(nt,Tj(nt)) =


λ nj

′(t) = nj(t) + 1

ς nj
′(t) = nj(t)− 1

0 otherwise

In the above model, the values of λ and µ are proportional to the baseline rate of a

new myosin binder arrives and that of a myosin binder leaves, respectively, if there is

no interaction between myosin binders. We assume that λ < ς which is reasonable in

our study as the myosin attaching rate is smaller than the detaching rate.

In reality, the myosin binders interact with each other. One myosin molecule binds on

the actin thin filament and then it increases the chances of another myosin molecule

binding next to it. Therefore, we also consider the interaction effects of myosin binders.

The above model treats nt = (n1(t), · · ·nJ(t)) at a particular time point t as a one

dimensional hidden Markov model, where given nj−1(t) and nj+1(t) the random variable

nj(t) is independent of the number of myosin binders at all other positions. Such a

hidden Markov rmodel takes into account the following two effects: [1] the value ψn′j(t)

describes how the myosin binders at position j affect other myosins at the same position

at time t; [2] the values ψn′j(t)|nj−1(t)ψnj+1(t)|nj(t)′ describes how the myosin binders at

position j affect other myosins in the neighbouring positions j − 1 and j + 1. If there

is no cooperation between different myosin minders, then ψm|n will be constant for all

values of m and ψm will also be constant. In such case the transition rate q(·, ·) is

just governed by a birth-death process with rates proportional to λ and ς. Therefore,

the two-dimensional model described in equation (4.12) takes into account both the

birth-death process on the spatial axis and the hidden Markov model on the time axis.

Let Υ be the maximum number of binders in a position. Here we assume that∑Υ
m=0 ψm|n = 1, which means that ψnj−1|nj

can be viewed as a transition probabil-

ity. It could be interpreted as that if there are nj myosin binders at position j, the

probability of having nj−1 binders at position j − 1, if there is no other effect. We

also assume that
∑Υ

n=0 ψn = 0. This is to standardize the parameters ψi and λ, ς are

93

identifiable.

We also define n0 = nJ+1 = −1 and ψ−1|m = 1 for m ≥ 0. Note that this de-

fines the transition rates for the boundary points of the thin filament tight rope,

i.e. q(N ,T1(N)) = r(N ,T1(N)) × ψn′1
ψn2|n

′
1

and q(N ,TJ(N)) = r(N ,TJ(N)) ×

ψnJ−1|n
′
J
ψn′J

.

Proposition 1. Let η = (λ, ς,ψ) be the unknown parameters , where ψ includes all

conditional probabilities ψ·|· and all parameters ψ·. Then , the stationary distribution

P(N |η) will satisfy the detail balance

P(N |η)q(N ,Tj(N)) = P(Tj(N)|η)q(Tj(N),N) (4.13)

with P(nt = N |η) = c(η)−1ψn1

J∏
j=2

ψnj |nj−1

J∏
j=1

(
λ

ς

)nj

where c(η) represents the normalising constant.

See Appendix A for proof of Proposition 1.

The detail balance condition is an important property of Markov chains because it

is stronger that than required merely for a stationary distribution; that is, there are

Markov processes with stationary distributions that do not have detailed balance. A

Markov chain with stationary distribution P(N |η) is said to be reversible with respect

to P(N |η) or to satisfy detailed balance with respect to P(N |η) if Proposition 1 holds.

The detailed balance equations say the flow of probability is balanced locally: at each

edge, the amount of probability that flows across in one direction in one step, equals

the amount that flows in the opposite direction.

For convenience, we define N1 = −→n (0) and N1s = −→n (t), ts−1 < t ≤ ts, s = 2, · · · , S. If

we define ∆nj(t) = nj(t) − nj(t), the increment of myosin binders at position j and

at time point t, the probability distributions for N is given by

94

P(N|η) =

[
c−1

S∏
s=2

P(Ns|η,Ns−1)

]
× P(N1|η)

P (Ns|η,Ns−1) =
J∏
j=2

[
∆λψn′j(t)ψnj−1(t)|n′j(t)ψnj+1(t)|n′j(t)

](nk(t)−nk(t))

[
∆ςψn′j(t)ψnj−1(t)|n′j(t)ψnj+1(t)|n′j(t)

]−(nk(t)−nk(t))

exp
(
−∆λψn′j(t)ψnj−1(t)|n′j(t)ψnj+1(t)|n′j(t)

)
exp

(
−∆ςψn′j(t)ψnj−1(t)|n′j(t)ψnj+1(t)|n′j(t)

)
where nk(t)− nk(t) = ∆nk(t), which represents the latent variable.

4.4 Image intensity model given the latent process

The light emitted by the fluorophore on a myosin molecule b, located in pixel/position

k of the thin filament at time t, will contribute to the image intensity of pixel k with

a random value. We assume that the random values are independent and identically

distributed for different values of k, b, t, following a normal distribution N (µ, σ2). Also,

given that we do not distinguish between myosin molecules and fluorophores, we assume

that the fluorophores are stable during the data collection and that the positions on

the thin filament, where there exist myosin binders, do not have any effects on the light

emitted by the fluorophores.

One would argue that larger image intensity at a pixel, would result in a greater number

of myosin binders. However, this is not entirely correct. This is because the light upon

light excitation emitted by the fluorophore attached on a myosin molecule can have

effects within the neighbouring 379.2 nanometers (three pixel distance). Thus, the

intensity of light in a pixel could be impacted by binders in neighbouring positions.

For this particular reason the raw data must be modelled such that we arrive as close

as possible to the real light intensity values.

95

Suppose that the thin filament is made up of J positions at each time point t, where

each position corresponds to a pixel in the data image. If a fluorescently labelled

myosin binder, b, is bound in pixel k at time t, then the image intensity in position j

supplied by b is assumed to be equal to dj,kZkb(t), where dj,k is given as follows:

dj,k =


1 j − k = 0

0 |j − k| > 3

exp(−δ|j − k|) 1 ≤ |j − k| ≤ 3

This means that the fluorophore of a myosin binder at position k will discharge the

highest image intensity at the binding position and its effect on neighbouring positions

will diminish via a factor dj,k. As shown above, when |j − k| > 3 we have dj,k = 0

because the impact is 0 for positions with distances greater than 3 pixels from the

binding position. Similarly, when the distance between a position j and the fluorophore

of a binder at k is equal to 0, the decay factor is equal to 1. This is because the position

corresponds to the same pixel in such cases and its image intensity value must be true.

The third scenario would occur when a position is within three pixels from a myosin

binder. In such cases the decay factor,dj,k, would be exponentially distributed.

4.4.1 The likelihood

Let nj(t) be the number of myosin binders at position j at time t. We assume that the

noise intensity εjt, for position j at time t, follows the normal distribution N (µ0, σ
2
0).

Denote nj = {nj(t), t ∈ [0, τ]} and N = {nj, j = 1, · · · , J}. Let Bj,k(t) be the image

intensity on position j at time t, contributed by the fluorophores on the nk(t) binders

in pixel k. In this study, we consider a simple model for the light emitted by the

fluorophores, i.e.

Bj,k(t) = dk,jZnk(t)(t)

96

We define

Bj(t) =
J∑
k=1

Bj,k(t) + εjt

where Bj(t) is the intensity at position j and at time t. Then given nk(t) (k = 1, · · · , J)

we have

Bj(t) ∼ N (µnj(t), σ
2
nj(t)) and εjt ∼ N (µ0, σ

2
0)

with

µj(t) =
J∑
k=1

E [Bj,k(t)] =
J∑
k=1

µnk(t)dk,j + µ0

σ2
j(t) =

J∑
k=1

Var [Bj,k(t)] =
J∑
k=1

σ2
nk(t)d

2
k,j + σ2

0.

Suppose that the data Yi(t) is observed at time points t1, t2, · · · , tS and data are

recorded from time t1 = 0 to time tS = τ . Denote Y j = (Yj(t1), · · · , Yj(tS)), ~Ys =

(Y1(ts), · · · , YJ(ts))
T and Y = (~Y1, · · · , ~YS) = (Y T

1 , · · · ,Y T
J)T . Then given the latent

process N and parameter θ := (µ, σ2, µ0, σ
2
0), the probability density for the data Y

is given by

f(Y|N ,θ) (4.14)

=
S∏
s=1

J∏
j=1


[

J∑
k=1

σ2
nk(t)d

2
k,j + σ2

0

]−1/2

exp

[
−

(yj(ts)−
∑J

k=1 µnk(t)dk,j − µ0)2

2
∑J

k=1 σ
2
nk(t)d

2
k,j + σ2

0

]
where µ0 and σ2

0 are the mean value and variance of the noise intensity. Then µnk(t) and

σ2
nk(t) are the mean value and variance of nk(t) binders in pixel k. And dk,j represents

the decay factor at position j.

97

4.4.2 The full posterior distribution

The full posterior distribution for θ, η and N is given by

π(θ,η,N|Y) ∝ f(Y|N,θ)× P(N|η)× π0(θ,η)

∝
S∏
s=2

J∏
j=1

{[J∑
k=1

σ2
nk(t)d

2
k,j + σ2

0

]−1/2

exp

[
−

(yj(ts)−
∑J

k=1 µnk(t)dk,j − µ0)2

2
∑J

k=1 σ
2
nk(t)d

2
k,j + σ2

0

]}
∏

t∈(ts−1,ts]

J∏
j=1

{[
λψn′j(t)ψnj−1(t)|n′j(t)ψnj+1(t)|n′j(t)

]I[∆nj(t)=1]

[
ςψn′j(t)ψnj−1(t)|n′j(t)ψnj+1(t)|n′j(t)

]I[∆nj(t)=−1]
}

exp

(
−
∫

(ts−1,ts]

(J∑
j=1

λψnj(t)+1ψnj−1(t)|nj(t)+1ψnj+1(t)|nj(t)+1

+
J∑
j=1

ςψnj(t)−1ψnj−1(t)|nj(t)−1ψnj+1(t)|nj(t)−1

)
dt

)
× P(N1|η)

(4.15)

where π0 is the prior distribution, θ := (µ, σ2, µ0, σ
2
0) and η = (λ, ς, ζ,ψ).

The full conditional distribution for ψ is as follows

π(ψ|θ, ς, λ, ζ,N) ∝ P(N|η)× π0(θ, λ, ς, ζ)

where π0(λ, ς, ζ) ∝ 1. So we have

π(ψ|θ, ς, λ, ζ,N) ∝ P(N|η)× π0(θ)

98

4.5 Numerical analysis

To investigate the behaviour and performance of the hidden Markov model proposed in

this chapter, we applied this model to Dataset 1 using MCMC simulations. This dataset

corresponds to the dataset used for analysis in Section 3.3.2 to estimate parameters

using RJMCMC algorithm.

Dataset 1 has a Calcium concentration of 6nM and myosin 10nM. We have used an

extract of this dataset, which represents the first 15 rows of its image and the first 50

columns. The entire dataset was not included due to heavy computational issues.

When determining the posterior distribution, Bayesian analysis incorporates prior dis-

tributions of the parameters of interest. The prior distributions are usually derived

from prior knowledge about the statistics of the parameters. So the priors we have

chosen for simulations are informative and different for each unknown parameter, in

order to allow the incorporation of available expert information. The priors on λ, ς and

ζ are selected as Gamma

λ ∼ Γ(5.5, 2.3) ς ∼ Γ(5.7, 2.5) ζ ∼ Γ(6, 2) (4.16)

because Gamma represents the conjugate prior of a normal distribution.

In specifying the priors, the combinations (µj, σj) for j = 1, 2, · · · , K, we have µj and

σj drawn independently from a normal and a Gamma distribution respectively

µj ∼ N (ξj, κj) and σj ∼ Γ(αj, βj) (4.17)

where ξj and κj are set as the previous step of the Metropolis-Hastings algorithm

corresponding to mean and standard deviation. So the priors change according to the

development of the Markov chains. Then, we also have αj and βj which are chosen in

99

a different manner. These are fixed such that

α = (100, 120, 120, 130, 100, 100, 110) β = (3, 3, 2.5, 2.5, 2.7, 2.2, 2.5)

As proposal densities we have chosen truncated normal densities, q(·), for θ := (µ,σ)

and η := (λ, ς, ζ). This is because the original population is normally distributed with

positive values; hence the densities have been restricted to sampling values which lie

above 0. We have also restricted σ1 to sample values below 750 because the variance

parameters should not be too high. However, we have allowed σ1 to be a lot higher

than the variance for the other components because the first component incorporates

noise.

In the construction of latent N , a Poisson proposal density was chosen for its simulation

and was seen as fit for this proposed hidden Markov model. This is because this discrete

distribution models the number of events occurring randomly in a given time interval,

with its shape parameter (or mean rate) indicating the average number of occurrences in

the given period. Hence this fits with determining the number of binders in each pixel.

The mean rate used for this distribution is a changing rate so that each pixel (j, t) in

the latent variable is generated from a position in a matrix matching to (j, t). For this

corresponding matrix we use the transformed dataset from the reversible jump MCMC

estimated in Section 3.3.2. As it has also been presented in Section 3.3.2, the range of

values for all 4 subpopulations estimated using RJMCMC were used to translate the

raw data into the transformed dataset. This means that the intensity values provided

by the raw data were matched to the range of values for each subpopulation, which

translates into a transformed dataset providing the estimated number of bound myosins

at each position (j, t).

As MCMC practitioners we have to address two critical questions: where to start

and when to stop the simulation. Although a great amount of research has gone into

establishing convergence criteria and stopping rules with sound theoretical foundation,

100

in practice, MCMC users often decide convergence by applying empirical diagnostic

tools. There are no general rules for how long one needs to run the chain, but generally

it is a good idea to start the chain from different starting points and make sure they

converge to the same density plots. Secondly, one can decide in advance on the number

of samples one wants from the underlying distribution, and run the chain until the

effective sample size reaches that number.

We have decided for the simulation study to be based on a Markov chain with 10,000

iterations. The first 1000 samples of each chain are discarded as burn-in samples

when estimating the parameters. Furthermore, to achieve a better result the thinning

method has also been applied, with a thinning factor n = 2. In order to check whether

convergence has been achieved in our chains, we will assess convergence through chain

diagnostics and acceptance rates.

4.5.1 Simulated binding process with 5 components

For the algorithm to be efficient, it is necessary to carefully choose the shape of the

proposal density to that of the posterior density, and the scaling parameter of the

proposal distribution (the variance of the truncated normal distributions in our case).

Large values for the variance will generally favour jumps that are far away from the

current state of the chain, often in regions where the target density is low. Conse-

quently, proposed moves will usually be rejected and the chain will linger on some

states for long periods of time. On the other hand, small values for variance will gen-

erate short jumps, resulting in a poor exploration of the state space. Thus, the jump

size is determined by the variance or width of the proposal density. In this scenario,

the global acceptance probability is about 47.8%, which is in the range suggested by

the literature (30-50%).

In practice, there might be a concern on the quality of realisations generated by the

Markov chains. Although there are algorithms developed to generate exact samples

from the posterior based on MCMC, such as Coupling from the past [54], such ex-

101

act methods only work for the simple toy examples. For very complicated Bayesian

computational problems, there are no hard rules available to justify the convergence of

MCMC chains and users usually make their decisions based on rules of thumb. Here,

we consider using simple autocorrelation plots, trace plots and posterior density plots,

to justify the burn in stage of the Markov chains. We also consider using the Markov

chains from different starting points and use simulated realisations from parallel in-

dependent chains. Also, after seeing the outcome for µ5 we have tried using different

starting points, but the results were similar to the ones in Figure 4.3b. Given that the

density found is multimodal, we believe that this last component includes information

for other small modes µ6, µ7 (K = 7). But due to practical reasons and for the purpose

of comparing the simulations in this chapter with the RJMCMC simulations, we chose

to do our analysis with K = 5 components.

From the trace plots to be found in Appendix C.3, we see that the MCMC sampler

seems to mix reasonably well for the mean parameters. The following Figures 4.2 and

4.3 illustrate the autocorrelations and density plots for the mean parameters of our

model.

Some of the mean parameters suffer somewhat of higher auto-correlation at the be-

ginning of the chain, which leads to a slow mixing of the chain. The worst parameter

results are the autocorrelation plots for µ5, but all other parameters µ have very good

mixing properties (see in Figures 4.2 and 4.3). The autocorrelations for the other

mean parameters show large positive correlations for several lags which quickly decay

towards zero. Hence the iterations appear to not be linearly related to their past, for

most mean parameters. Also, looking at the density plots it seems that apart from

µ5, which shows a multimodal distribution representing the possibility of some extra

components may exist, all other component means have uni-mode posterior densities.

102

(a) Autocorrelation and density plot for µ1 with mean parameter value µ1 = 3195

(b) Autocorrelation and density plot for µ2 with mean parameter value µ2 = 3693

(c) Autocorrelation and density plot for µ3 with mean parameter value µ3 = 3956

Figure 4.2

103

(a) Autocorrelation and density plot for µ4 with mean parameter value µ4 = 4135

(b) Autocorrelation and density plot for µ5 with mean parameter value µ5 = 7398

Figure 4.3

The following Figures 4.4 and 4.5 illustrate the chain diagnostics for the variance pa-

rameters σ1, σ2, σ3, σ4, and σ5. A good sign of convergence for these variance parameters

is that the autocorrelation plots show very weak correlation between the iterations of

the Markov chain. This argument is further strengthened by the trace plots of σs in

Appendix C.3. Note that we put a subjective prior distribution with a constraint be-

ing no larger than 750 for σ1, the variance for noise component, to overcome possible

overfitting problem.

104

(a) Autocorrelation and density plot for σ1 with mean parameter value σ1 = 749.7

(b) Autocorrelation and density plot for σ2 with mean parameter value σ2 = 39.6

(c) Autocorrelation and density plot for σ3 with mean parameter value σ3 = 46.3

Figure 4.4

105

(a) Autocorrelation and density plot for σ4 with mean parameter value σ4 = 49.5

(b) Autocorrelation and density plot for σ5 with mean parameter value σ5 = 36.8

Figure 4.5

Autocorrelations and density plots for λ, ς and ζ are displayed in Figure 4.6. These

plots reveal very low correlation in the Markov chains for these three parameters and

display the posterior distributions. So this is a very good sign of chain convergence.

Also, Appendix 4.5 presents very healthy trace plots of the Markov chains.

106

(a) Autocorrelation and density plot for λ with mean parameter value λ = 2

(b) Autocorrelation and density plot for ς with mean parameter value ς = 1.98

(c) Autocorrelation and density plot for ζ with mean parameter value ζ = 2.6

Figure 4.6

Credible intervals are an important concept in Bayesian statistics. Its core purpose is

to describe and summarise the uncertainty related to the unknown parameters you are

trying to estimate. So posterior medians and the 95% credible intervals are presented

in Table 4.1. The interpretation of the Bayesian 95% credible interval is the following:

there is a 95% probability that the true (unknown) parameter estimate would lie within

the interval, given the evidence provided by the observed data (Hespanhol et al. [35]).

107

Parameter name Estimated posterior median 95% Credible Interval
µ1 3202 (3201, 3205)
µ2 3570 (3557, 3602)
µ3 3971 (3956, 4009)
µ4 4288 (4265, 4342)
µ5 6901 (5808, 8003)
σ1 750 (750, 750)
σ2 39.8 (37.2, 46.2)
σ3 47.4 (44, 55)
σ4 50.9 (46.8, 59.3)
σ5 36.8 (34.2, 43.1)
λ 2.01 (1.74, 2.83)
ς 1.95 (1.7, 2.66)
ζ 2.56 (2.24, 3.5)

Table 4.1: Estimated posterior means and 95% credible intervals for each model pa-
rameter

Inference results

By using direct imaging of single myosin S1 (simply termed myosin here) molecules

interacting with suspended thin filaments, we are able to determine when and where

the thin filaments are active. It is clear from the literature, that myosin binding occurs

in clusters in such partially active conditions. To successfully extract useful information

from these fluorescence images, which we have used as datasets, it has required us to

compute meaningful image analysis. One way of approaching this analysis is to see it

like a puzzle. The aim of our hidden Markov model in this chapter was to recreate the

intensity kymograph (see Figure 4.7c), which shows the myosin binding process and to

provide a quantitative description of the thin filament activation process. In the end,

we have extracted some kind of quantitative measurements that are justified by the

nature of the experiment and the facts of image formation. Each pixel contains all of the

fluorescence intensity information for a single time point in the movie along the length

of a thin filament. The pixel intensities have different scales in Figures 4.7a and 4.7b

because of the models used for simulation have different levels of performance. These

images illustrate both the simulated activation and deactivation of the thin filament,

108

based on the raw data presented in Figure 4.7c.

The raw extract of the dataset has a dimension of 15 x 50, so the estimated latent

variable, via reversible jump MCMC and also via the hidden Markov model, has the

same dimension. This latent variable displayed as a kymograph, is the process of

myosin binding and it is colour-coded to represent the number of binders. These are

the estimates of the number of myosins bound to the thin filament for each location and

each time point for Dataset 1. The scale is different for each of the three kymographs,

but we are mostly interested in the formation of clusters, which are seen to move along

the thin filament as myosins bind and then leave. At the lowest values on the scale, no

binding occurs and the colour of the pixel is black. As fluorescence intensity increases,

the thin filament partially activates, permitting the binding of myosins. Thus, the

brighter the pixel, the larger the number of binders to be found in that position and

at that point in time.

The heat maps in Figure 4.7 provide clear and accessible representations of the dynamic

binding process, advancing our understanding of the data at hand. From this analysis,

it is clear that myosin binding occurs in clusters even in partially active conditions

and that myosin propagates its own binding. We are also able to show that active

regions fuse to form larger units capable of moving along the thin filament. The top

kymograph, which is the binding process simulated via our HMM where K = 5, seems

to resemble the most the raw data, presented in the bottom kymograph, indicating

good performance of the algorithm. Thus, the middle kymograph which displays the

binding process simulated via RJMCMC with K = 4, did not perform as well as the

top kymograph. A very important aspect of normal muscle function is its ability to

relax. And in these results obtained using the proposed model we can observe the

catastrophic collapse of the active regions. This suggests that the thin filament has the

potential to be turned fully on or off in a binary fashion.

109

(a) The myosin binding process simulated using the hidden Markov model

(b) The myosin binding process estimated via reversible jump MCMC

(c) The raw image of the real myosin binding process

Figure 4.7: Mean intensity values of fluorescence are exemplified in each of the three
kymographs. The variation in light intensity gives clues about how the myosin binding
phenomenon is clustered or varies over space. Our Bayesian statistical simulations have
produced the results in (a) and (b), which we have used to colour each pixel on the
array white or black depending on the saturation and produce these heat maps. The
raw dataset is displayed in (c) to compare it with our simulated data. The legends
are the same for (a) and (b) because those numbers represent the number of binders
captured in the simulations. The difference is that (a) captures up to 4 binders in its
simulation and (b) captures up to 3 binders. In (c) the legend is different because it has
a different scale as it represents the real values in the dataset. The x-axis is the same
for all three kymographs, which represents time of exposure and the y-axis represents
the positions on the single thin actin filament.

110

When looking at different regions in these kymographs, we can see that the RJMCMC

algorithm overfits the data and tends to show a lot more binding than there is in many

of the clusters. For example, looking at the cluster starting from column 34, row 1

and ending in column 46, row 9, the light intensity is very high for this whole region

simulated by RJMCMC. And for this same region, the raw data shows that there is

some clustering where myosin is rapidly binding and releasing until column 39 and row

3 where there is a brighter patch which lasts for 4 pixels. Our simulated results mirror

the raw data a lot more than the RJMCMC results for the same region. We can see

that the shape and the light intensity is very similar to that of the raw data, even if

there is a small amount of data overfitting in a couple of pixels.

Similarly, the small cluster in the bottom right corner of the bottom kymograph is

picked up in both simulations. The RJMCMC shows there is a lot of myosin binding

in that area because of the maximum light intensity, whereas the hidden Markov model

displays some less bright pixels which are closer to reality. Furthermore, another cluster

area from column 16 and row 12 to column 20 and row 15, is found in all three

kymographs; again the RJMCMC algorithm seems to fully overfit the number of binders

to be found in this region and the HMM reproduces some of the light intensity found

in the raw image. Thus, based on all of the above arguments, we are confident to

argue that the hidden Markov model proposed in this chapter has outperformed the

reversible jump MCMC.

The aim of our hidden Markov model in this chapter was to recreate the intensity

kymograph, which shows the myosin binding process and to provide a quantitative

description of the thin filament activation process. In the end, we extracted some kind

of quantitative measurements that are justified by the nature of the experiment. The

algorithm performance in simulating the myosin binding process is compared to the

raw data and to the performance of the reversible jump Markov chain Monte Carlo.

The purpose of such mixture analysis of our novel variation of HMMs and RJMCMC

is inference about the unknown number of K components, component parameters and

111

the proportion of each cluster. The analysis reveals that our proposed model has an im-

proved performance when compared to RJMCMC because it gives a better simulation

of the number of myosins found in each pixel. To successfully extract useful informa-

tion from the fluorescence images/kymographs, which we have used as datasets, it has

required us to compute meaningful image analysis.

112

CHAPTER 5

CONCLUSION AND FUTURE

DIRECTION

This research work has developed a hidden Markov model to investigate the behaviour

of myosin molecules binding to regulated thin filaments in a single molecule assay. This

new method provides a formulation for an extension of a mixture model to allow for

spatial data and is able to determine the number of binders found in an active region of

the thin filament. This chapter summarises the contributions of the thesis and outlines

future direction.

5.1 Hidden Markov model

At the molecular level, calcium modulates myosin’s access to the thin filament. Once

bound, myosin is assumed to potentiate the binding of further myosin molecules. The

hidden Markov model proposed here, provides a theoretical framework for evaluating

113

thin filament regulation of actin – myosin interactions. Such Markov models appear

naturally in problems where a spatially constrained clustering scheme is asked for.

Thus, using this approach, the process of myosin binding along thin filaments has been

quantified.

The analysis results obtained using our proposed model display evidence of cooper-

ativity in the process of myosin binding to regulated actin filaments, as it had been

anticipated. The stochastic nature of activation is strongly highlighted by the data,

which was obtained in sub-optimal activation conditions, where the generation of acti-

vation waves and their catastrophic collapse can be observed. The data presented here

provides evidence of a catastrophic collapse once the full-length myosin and calcium

together cannot sustain the active state. This explains the ability of muscle to relax in

conditions that would be expected to still permit myosin binding. Hence, using our de-

veloped model, we have been able to visualize cooperativity enabling the fundamental

processes that underlie muscle relaxation to be studied.

Also, the performance of the MCMC method is compared against the performance of

the reversible jump MCMC and against the raw data. The analysis discloses that our

model provides a better simulation of the number of myosin molecules found in each

pixel. Therefore, the hidden Markov model is a better substitute for the finite mixture

model at capturing the interaction between myosin and actin.

5.2 Future direction

A possible extension of this methodology is to also estimate the model parameter, ψ,

which is the parameter that considers the interaction effects of myosin binders. Due

to its high dimension and also because of the high sensitivity of our model, it was

difficult to simulate ψ. The current MCMC algorithm is not computationally efficient

and simulating ψ would have decreased efficiency even more. This could be explored

as further research.

114

Future work could also include doing a simulation study to evaluate how accurately the

parameters can parameters can be estimated using the proposed hidden Markov model.

A key strength of simulation studies is the ability to obtain empirical results about the

performance of statistical methods in certain scenarios, as opposed to general analytic

results, which may cover many scenarios. Thus, simulation studies can understand the

behaviour of statistical methods because some parameters of interests are known from

the process of generating the data.

115

Appendices

116

APPENDIX A

PROOF OF PROPOSITION 1 (SEE

PAGE 94)

Proposition 1. Let η = (λ, ς,ψ) be the unknown parameters , where ψ includes all

conditional probabilities ψ·|· and all parameters ψ·. Then , the stationary distribution

P(N |η) will satisfy the detail balance

P(N |η)q(N ,Tj(N)) = P(Tj(N)|η)q(Tj(N),N) (4.13)

with P(nt = N |η) = c(η)−1ψn1

J∏
j=2

ψnj |nj−1

J∏
j=1

(
λ

ς

)nj

where c(η) represents the normalising constant.

Proof.

(1) Assume that n
′
j = nj − 1, which illustrates the detachment of 1 myosin molecule.

117

We then have

q(N ,Tj(N)) = ς×ψn′jψnj−1|n
′
j
ψnj+1|n

′
j

and q(Tj(N),N) = λ×ψnj
ψnj−1|nj

ψnj+1|nj

Substituting the above equations into the detail balance equation, we obtain

λ

ς
c(η)−1ψn1

J∏
j=2

ψnj |nj−1

(
λ

ς

)∑J
j=1 nj

× ς × ψn′jψnj−1|n
′
j
ψnj+1|n

′
j

=

=
λ

ς
c(η)−1ψn1

J∏
j=2

ψnj |nj−1

(
λ

ς

)∑J
j=1 nj−1 ψnj+1|n

′
j

ψnj+1|nj

ψn′j |nj−1

ψnj |nj−1

× λ× ψnj
ψnj−1|nj

ψnj+1|nj

Then, the detailed balance equation cancels out to

ψn′j
ψnj−1|n

′
j
ψnj+1|n

′
j

= ψnj
ψnj−1|nj

ψnj+1|nj

ψnj+1|n
′
j

ψnj+1|nj

ψn′j |nj−1

ψnj |nj−1

ψnj−1,n
′
j

= ψnj−1,nj

ψn′j |nj−1

ψnj |nj−1

ψnj−1

ψnj−1

ψnj−1,n
′
j

= ψnj−1,nj

ψn′j ,nj−1

ψnj ,nj−1

ψnj−1,n
′
j

= ψn′j ,nj−1

(2) Assume that n
′
j = nj + 1, which illustrates the attachment of 1 myosin molecule.

We then have

q(N ,Tj(N)) = λ×ψn′jψnj+1|n
′
j
ψnj−1|n

′
j

and q(Tj(N),N) = ς×ψnj
ψnj+1|nj

ψnj−1|nj

Substituting the above equations into the detail balance equation, we obtain

c(η)−1ψn1

J∏
j=2

ψnj |nj−1

(
λ

ς

)∑J
j=1 nj

× λ× ψn′jψnj+1|n
′
j
ψnj−1|n

′
j

=

= c(η)−1ψn1

J∏
j=2

ψnj |nj−1

(
λ

ς

)∑J
j=1 nj+1 ψnj+1|n

′
j

ψnj+1|nj

ψn′j |nj−1

ψnj |nj−1

× ς × ψnj
ψnj+1|nj

ψnj−1|nj

118

And the detailed balance cancels out to

ψn′j
ψnj−1|n

′
j
ψnj+1|n

′
j

=
ψnj+1|n

′
j

ψnj+1|nj

ψn′j |nj−1

ψnj |nj−1

ψnj
ψnj+1|nj

ψnj−1|nj

ψn′j
ψnj−1|n

′
j

=
ψn′j |nj−1

ψnj |nj−1

ψnj−1

ψnj−1

ψnj
ψnj−1|nj

ψnj−1,n
′
j

= ψnj−1,nj

ψn′j ,nj−1

ψnj ,nj−1

ψnj−1,n
′
j

= ψn′j ,nj−1

119

APPENDIX B

EXTRA ANALYSIS FOR 5NM ACTIN

KYMOGRAPHS

We present the simulation results obtained from applying the reversible jump MCMC

algorithm on two kymographs (datasets) with the same conditions of 5nM actin.

B.1 Dataset 2 with 5nM actin

Table B.1: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

926 1047 1074 1082 1105 1429 50.8

120

Figure B.1: Histogram of dataset with conditions actin only and myosin II = 5nM

Table B.2: Starting values used for the RJMCMC algorithm

Chain 1 and 2 Chain 3 and 4

Weight 1 0.19 0.2 0.15 0.16 0.2 0.1
Mean 1080 970 1000 1080 1130 1190 1250
Variance 50 45 50 40 62 43 52

121

Figure B.2: Traces for mixing over K for a concentration of actin only and myosin II
= 5nM, over 30000 sweeps

122

Figure B.3: Posterior distribution of 30 000Ks produced by the reversible jump MCMC
algorithm

123

Figure B.4: Gelman plot for all four chains with different starting points

Table B.3: Potential scale reduction factor for all chains

Point est. Upper C.I.
1.03328 1.076271

Table B.4: The spread of data resulting from the RjMCMC algorithm

of components 3 4 5 6 7 8

Chain 1 378 18753 5018 752 99 0
Chain 2 812 16754 5938 1234 232 30
Chain 3 32 17301 6020 1501 144 2
Chain 4 888 15965 5985 1888 254 20

124

Table B.5: Summary results including the mean, variance and weight of having a total
of either 3 or 4 bound myosins

of Total of 3 binders (4 components) Total of 4 binders (5 components)

binders Mean = µ3 Variance= σ3 Weight=w3 Mean = µ4 Variance= σ4 Weight=w4

0 1048 26 0.36 1044 26 0.3
1 1082 31 0.41 1074 30 0.33
2 1129 48 0.18 1103 38 0.22
3 1200 72 0.04 1144 53 0.12
4 1203 69 0.04

Figure B.5: Comparing the number of components used in the RJMCMC analysis.
Using the RJMCMC analysis with either 4 or 5 total components for linear plots of
the mean intensity vs. the number of binders.

B.2 Dataset 3 with 5nM actin

Table B.6: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

901 1047 1074 1081 1105 2453 64

125

Figure B.6: Histogram of dataset with conditions actin only and myosin II = 5nM

Table B.7: Starting values used for the RJMCMC algorithm

Chain 1 and 2 Chain 3 and 4

Weight 1 0.19 0.2 0.15 0.16 0.2 0.1
Mean 1080 970 1000 1080 1130 1190 1250
Variance 50 45 50 40 62 43 52

126

Figure B.7: Traces for mixing over K for a concentration of actin only and myosin II
= 5nM, over 30000 sweeps

127

Figure B.8: Posterior distribution of 30 000Ks produced by the reversible jump MCMC
algorithm

128

Figure B.9: Gelman plot for all four chains with different starting points

Table B.8: Potential scale reduction factor for all chains

Point est. Upper C.I.
1.005483 1.009718

Table B.9: The spread of data resulting from the RJMCMC algorithm

of components 3 4 5 6 7

Chain 1 0 22315 2494 165 26
Chain 2 319 20945 3204 471 61
Chain 3 256 21336 3098 308 2
Chain 4 0 21190 3425 373 12

129

Table B.10: Summary results including the mean, variance and weight of having a total
of either 3 or 4 bound myosins

of Total of 3 binders (4 components) Total of 4 binders (5 components)

binders Mean =µ3 Variance=σ3 Weight=w3 Mean = µ4 Variance=σ4 Weight=w4

0 1055 264 0.5 1041 197 0.41
1 1094 39 0.38 1083 43 0.36
2 1176 67 0.12 1136 53 0.18
3 1700 296 0.01 1254 86 0.04
4 1788 282 0.01

Figure B.10: Comparing the number of components used in the RJMCMC analysis.
Using the RJMCMC analysis with either 4 or 5 total components for linear plots of
the mean intensity vs. the number of binders.

130

APPENDIX C

EXTRA ANALYSIS FOR 10 NM MYOSIN

AT PCA6

We present the simulation results obtained from applying the reversible jump MCMC

algorithm on two kymographs (datasets) with the same conditions of 10 nM myosin at

pCa6.

C.1 Dataset 2 with 10 nM myosin at pCa6

Table C.1: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

2745 3064 3162 3179 3274 3900 158

131

Figure C.1: Histogram of dataset with conditions actin only and myosin II = 5nM

Table C.2: Starting values used for the RJMCMC algorithm

Chain 1 and 2 Chain 3 and 4

Weight 1 0.19 0.2 0.15 0.16 0.2 0.1
Mean 3179 2900 3000 3160 3300 3450 3600
Variance 158 105 120 160 133 151 210

132

Figure C.2: Traces for mixing over K for thin filaments with a concentration of pCa6
and S1=10nM, over 30000 sweeps

133

Figure C.3: Posterior distribution of 30 000Ks produced by the reversible jump MCMC
algorithm

134

Figure C.4: Gelman plot for all four chains with different starting points

Table C.3: Potential scale reduction factor for all chains

Point est. Upper C.I.
1.007235 1.018919

Table C.4: The spread of data resulting from the RJMCMC algorithm

of components 3 4 5 6 7 8 9

Chain 1 11070 9651 3135 833 260 46 5
Chain 2 9501 11244 3361 699 131 48 16
Chain 3 9276 11607 3033 825 202 54 3
Chain 4 12756 8772 2659 662 151 0 0

135

Table C.5: Summary results including the mean, variance and weight of having a total
of either 2 or 3 bound myosins

of Total of 2 binders (3 components) Total of 3 binders (4 components)

binders Mean = µ2 Variance= σ2 Weight=w2 Mean =µ3 Variance=σ3 Weight=w3

0 3039 80 0.27 3029 76 0.23
1 3189 116 0.56 3149 99 0.33
2 3369 161 0.18 3254 119 0.31
3 3409 156 0.13

Figure C.5: Comparing the number of components used in the RJMCMC analysis.
Using the RJMCMC analysis with either 3 or 4 total components for linear plots of
the mean intensity vs. the number of binders.

C.2 Dataset 3 with 10 nM myosin at pCa6

Table C.6: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

2792 3096 3190 3208 3304 4038 154

136

Figure C.6: Histogram of dataset for thin filament with conditions pCa6 and S1=10nM

Table C.7: Starting values used for the RJMCMC algorithm

Chain 1 and 2 Chain 3 and 4

Weight 1 0.19 0.2 0.15 0.16 0.2 0.1
Mean 3208 2900 3000 3160 3300 3450 3600
Variance 154 105 120 160 133 151 210

137

Figure C.7: Traces for mixing over K for thin filaments with a concentration of pCa6
and S1=10nM, over 30000 sweeps

138

Figure C.8: Posterior distribution of 30 000Ks produced by the reversible jump MCMC
algorithm

139

Figure C.9: Gelman plot for all four chains with different starting points

Table C.8: Potential scale reduction factor for all chains

Point est. Upper C.I.
1.010237 1.02688

Table C.9: The spread of data resulting from the RJMCMC algorithm

of components 3 4 5 6 7 8 9

Chain 1 4015 12911 5780 1789 443 57 5
Chain 2 3147 12110 6631 2571 433 108 0
Chain 3 2563 10866 8868 2310 372 21 0
Chain 4 3589 10688 7121 2883 556 127 36

140

Table C.10: Summary results including the mean, variance and weight of having a
total of either 3 or 4 bound myosins

of Total of 3 binders (4 components) Total of 4 binders (5 components)

binders Mean =µ3 Variance=σ3 Weight=w3 Mean =µ4 Variance=σ4 Weight=w4

0 3069 81 0.28 3050 76 0.2
1 3193 99 0.37 3155 91 0.31
2 3328 135 0.28 3262 110 0.28
3 3483 159 0.07 3382 133 0.16
4 3539 152 0.04

Figure C.10: Comparing the number of components used in the RJMCMC analysis.
Using the RJMCMC analysis with either 4 or 5 total components for linear plots of
the mean intensity vs. the number of binders.

C.3 Hidden Markov models simulation

Figures C.11, C.12 and C.13 show the trace plots for Dataset 1 analysed using the

proposed variation of the hidden Markov model.

141

(a)

(b)

(c)

Figure C.11: MCMC trace plots of µ1, µ2, µ3, µ4 and µ5

142

(a)

(b)

(c)

Figure C.12: MCMC trace plots of σ1, σ2, σ3, σ4 and σ5

143

(a)

(b)

Figure C.13: MCMC trace plots of λ, ς and ζ

144

APPENDIX D

COMPUTATIONAL CODE FOR

STATISTICAL SIMULATIONS USING R

SOFTWARE

D.1 RJMCMC simulations

1 ###########################

STANDARDISATION

3 ###########################

s e t . seed (2345)

5 l i b r a r y (s tandard i z e)

l i b r a r y (” ggp lot2 ”)

7

a c t i n 1 4 v=as . vec to r (as . matrix (a c t i n 1 4))

9 a c t i n 5 4 v=as . vec to r (as . matrix (a c t i n 5 4))

a c t i n 5 6 v=as . vec to r (as . matrix (a c t i n 5 6))

145

11 movie 33 v=as . vec to r (as . matrix (movie 33))

movie 34 v=as . vec to r (as . matrix (movie 34))

13 movie 37 v=as . vec to r (as . matrix (movie 37))

15 summary(a c t i n 1 4 v)

h i s t (a c t i n 1 4 v , c o l=” orange ” , main=”” , xlab=” Pixe l va lue ”)

17 h i s t (a c t i n 5 4 v , c o l=” green ” , add = TRUE)

summary(a c t i n 5 4 v)

19 h i s t (a c t i n 5 4 v , c o l=” orange ” , main=”” , xlab=” Pixe l va lue ”)

summary(a c t i n 5 6 v)

21 h i s t (a c t i n 5 6 v , c o l=” orange ” , main=”” , xlab=” Pixe l va lue ”)

23 summary(movie 33 v)

h i s t (movie 33 v , c o l=” orange ” , main=”” , xlab=” Pixe l va lue ”)

25 summary(movie 34 v)

h i s t (movie 34 v , c o l=” orange ” , main=”” , xlab=” Pixe l va lue ”)

27 summary(movie 37 v)

h i s t (movie 37 v , c o l=” orange ” , main=”” , xlab=” Pixe l va lue ”)

29

##

31 ######### OVERLAPPING HISTOGRAMS #############

##

33 h i s t (a c t i n 1 4 v , c o l=” grey ” , yl im=c (0 ,5000) , xl im=c (0 ,6000) , main=”

Overlapping the a c t i n da ta s e t s ” , xlab=”Mean l i g h t i n t e n s i t y ”)

h i s t (a c t i n 5 4 v , c o l=” blue ” , add=T)

35 h i s t (a c t i n 5 6 v , c o l=” red ” , add=T)

37 l egend (2500 , 5000 , l egend=c (” a c t i n datase t 1” , ” a c t i n datase t 2” , ” a c t i n

datase t 3”) ,

lwd=5, c o l=c (” grey ” , ” red ” , ” blue ”) , l t y =1:1 , cex =0.8 ,

39 t ex t . f ont =2)

41 h i s t (movie 33 v , c o l=” grey ” , yl im=c (0 ,5000) , xl im=c (2000 ,5000) , main=”

Overlapping the calc ium data s e t s ” , xlab=”Mean l i g h t i n t e n s i t y ”)

h i s t (movie 34 v , c o l=” blue ” , add=T)

146

43 h i s t (movie 37 v , c o l=” red ” , add=T)

legend (3000 , 5000 , l egend=c (”pCa 6 datase t 1” , ”pCa 6 datase t 2” , ”pCa 6

datase t 3”) ,

45 lwd=5, c o l=c (” grey ” , ” red ” , ” blue ”) , l t y =1:1 , cex =0.8 ,

t ex t . f ont =2)

47

##

49 ##### PREPARE EACH DATASET IN THIS STEP ######

##

51 l i b r a r y (miscF)

l i b r a r y (coda)

53 s c a l e d=movie 37 v

y=s c a l e d

55

#######CHAINS 1 and 2################

57 w one <− c (1)

mu one <− c (3208)

59 sigma2 one <− c (154)

61 #c o n s t r u c t s and execute s a func t i on c a l l from a func t i on and a l i s t o f

arguments to be passed to i t

Z <− do . c a l l (cbind , l app ly (1 , f unc t i on (i)w one [i] ∗dnorm(y , mu one [i] ,

s q r t (sigma2 one [i]))))

63 #retu rns a vec to r or array or l i s t o f va lue s obta ined by apply ing a

func t i on to margins o f an array or matrix

Z <− apply (Z , 1 , f unc t i on (x) which (x==max(x)) [1])

65 # simula t i on o f RJMCMC algor i thm f o r Chain 1

chain1<−uvnm . rjmcmc (y , nsweep =30000 , kmax=11, k=1, w one , mu one , sigma2

one , Z , d e l t a =1,

67 x i=NULL, kappa=NULL, alpha =2, beta=NULL, g =0.2 , h=

NULL)

s imu la t i on o f RJMCMC algor i thm f o r Chain 2

69 chain2<−uvnm . rjmcmc (y , nsweep =30000 , kmax=11, k=1, w one , mu one , sigma2

one , Z , d e l t a =1,

147

x i=NULL, kappa=NULL, alpha =2, beta=NULL, g =0.2 , h=NULL

)

71

######### CHAINS 3 and 4 ##############

73 w <−c (0 . 1 9 , 0 . 2 0 , 0 . 15 , 0 . 1 6 , 0 . 2 0 , 0 . 1 0)

mu <−c (2900 ,3000 ,3160 ,3300 ,3450 ,3600)

75 sigma2 <−c (105 , 120 ,160 ,133 ,151 ,210)

Z <−do . c a l l (cbind , l app ly (1 : 6 , f unc t i on (i)w[i] ∗dnorm(y , mu[i] , s q r t (

sigma2 [i]))))

77 Z <− apply (Z , 1 , f unc t i on (x) which (x==max(x)) [1])

chain3 <−uvnm . rjmcmc (y , nsweep =30000 , kmax=10, k=6, w, mu, sigma2 , Z ,

d e l t a =1, x i=NULL, kappa=NULL, alpha =2, beta=NULL, g =0.2 , h=NULL)

79 chain4 <−uvnm . rjmcmc (y , nsweep =30000 , kmax=10, k=6, w, mu, sigma2 , Z ,

d e l t a =1, x i=NULL, kappa=NULL, alpha =2, beta=NULL, g =0.2 , h=NULL)

81 k chain1=mcmc(as .mcmc(chain1 $k . save))

k chain2=mcmc(as .mcmc(chain2 $k . save))

83 k chain3=mcmc(as .mcmc(chain3 $k . save))

k chain4=mcmc(as .mcmc(chain4 $k . save))

85 combinedchains = mcmc . l i s t (k chain1 , k chain2 , k chain3 , k chain4)

87 ########PLOTS########

par (mfrow=c (2 , 2))

89 #outputs dens i ty p l o t s o f each chain

densp lot (k chain1 , show . obs = TRUE, c o l=” orange ” , xlab = ”K” , type=” l ” ,

main=”Chain 1 − Histogram of K”)

91 densp lot (k chain2 , show . obs = TRUE, c o l=” orange ” , xlab = ”K” , type=” l ” , main

=”Chain 2 − Histogram of K”)

densp lot (k chain3 , show . obs = TRUE, c o l=” orange ” , xlab = ”K” , type=” l ” ,

main=”Chain 3 − Histogram of K”)

93 densp lot (k chain4 , show . obs = TRUE, c o l=” orange ” , xlab = ”K” , type=” l ” ,

main=”Chain 4 − Histogram of K”)

95 #outputs t r a c e p l o t s o f each chain

148

t r a c e p l o t (k chain1 , type=” l ” , smooth = FALSE, ylab=”# of components” , main=”

Chain 1 − Trace o f K”)

97 t r a c e p l o t (k chain2 , type=” l ” , smooth = FALSE, ylab=”# of components” , main=”

Chain 2 − Trace o f K”)

t r a c e p l o t (k chain3 , type=” l ” , smooth = FALSE, ylab=”# of components” , main=”

Chain 3 − Trace o f K”)

99 t r a c e p l o t (k chain4 , type=” l ” , smooth = FALSE, ylab=”# of components” , main=”

Chain 4− Trace o f K”)

101 #######DIAGNOSTIC OF CHAINS###########

gelman d i a g n o s t i c=gelman . diag (combinedchains)

103 gelman . p l o t (combinedchains)

p s r f=gelman d i a g n o s t i c $ p s r f

105

########AUTOCORRELATIN OF COMBINED CHAINS####### #t e s t i n g f o r

a u t o c o r r e l a t i o n and p l o t t i n g a u t o c o r r e l a t i o n

107 autocor r (combinedchains , l a g s=c (1 ,5 , 10 ,100 ,500) , r e l a t i v e =TRUE)

autocor r . p l o t (combinedchains , l ag . max=100 , ask=dev . i n t e r a c t i v e ())

109

burnin=5000

111

####### SPREAD OF DATA #########

113 t a b l e (chain1 $k . save [−(1 : burnin)])

t a b l e (chain2 $k . save [−(1 : burnin)])

115 t a b l e (chain3 $k . save [−(1 : burnin)])

t a b l e (chain4 $k . save [−(1 : burnin)])

117

#######WEIGHT FOR 4 COMPONENTS######

119 w chain1=mcmc(chain1 $w. save [−(1 : burnin)])

w chain2=mcmc(chain2 $w. save [−(1 : burnin)])

121 w chain3=mcmc(chain3 $w. save [−(1 : burnin)])

w chain4=mcmc(chain4 $w. save [−(1 : burnin)])

123

weight 4 1=array (w chain1 [which (k chain1 [−(1 : burnin)]==4)])

125 weight 4 2=array (w chain2 [which (k chain2 [−(1 : burnin)]==4)])

149

weight 4 3=array (w chain3 [which (k chain3 [−(1 : burnin)]==4)])

127 weight 4 4=array (w chain4 [which (k chain4 [−(1 : burnin)]==4)])

129 weight<−matrix (u n l i s t (weight 4 1 , weight 4 2 , weight 4 3) , nco l = 4 , byrow

= TRUE)

weight 4 4=matrix (u n l i s t (weight 4 4) , nco l =4,byrow=TRUE)

131 weight=rbind (weight , weight 4 4)

mean w<−apply (weight , 2 , mean)

133

######## WEIGHT FOR 5 COMPONENTS #########

135 weight 5 1=array (w chain1 [which (k chain1 [−(1 : burnin)]==5)])

weight 5 2=array (w chain2 [which (k chain2 [−(1 : burnin)]==5)])

137 weight 5 3=array (w chain3 [which (k chain3 [−(1 : burnin)]==5)])

weight 5 4=array (w chain4 [which (k chain4 [−(1 : burnin)]==5)])

139

weight<−matrix (u n l i s t (weight 5 1 , weight 5 2 , weight 5 3) , nco l = 5 , byrow

= TRUE)

141 weight 5 4=matrix (u n l i s t (weight 5 4) , nco l =5,byrow=TRUE)

weight=rbind (weight , weight 5 4)

143 mean w<−apply (weight , 2 , mean)

145 ####### MEAN FOR 4 COMPONENTS #########

musave1<−mcmc(chain1 $mu. save [−(1 : burnin)])

147 musave2<−mcmc(chain2 $mu. save [−(1 : burnin)])

musave3<−mcmc(chain3 $mu. save [−(1 : burnin)])

149 musave4<−mcmc(chain4 $mu. save [−(1 : burnin)])

151 musavek1 = musave1 [which (k chain1 [−(1 : burnin)]==4)]

musavek2 = musave2 [which (k chain2 [−(1 : burnin)]==4)]

153 musavek3 = musave3 [which (k chain3 [−(1 : burnin)]==4)]

musavek4 = musave4 [which (k chain4 [−(1 : burnin)]==4)]

155 mu<−matrix (u n l i s t (musavek1 , musavek2 , musavek3) , nco l = 4 , byrow = TRUE)

musavek4=matrix (u n l i s t (musavek4) , nco l =4,byrow=TRUE)

157 mu=rbind (mu, musavek4)

mean<−apply (mu, 2 , mean)

150

159

####### SD f o r 4 components ##########

161 s igmasave1<−chain1 $ sigma2 . save [−(1 : burnin)]

s igmasave2<−chain2 $ sigma2 . save [−(1 : burnin)]

163 s igmasave3<−chain3 $ sigma2 . save [−(1 : burnin)]

s igmasave4<−chain4 $ sigma2 . save [−(1 : burnin)]

165

sigma1 = sigmasave1 [which (k chain1 [−(1 : burnin)]==4)]

167 sigma2 = sigmasave2 [which (k chain2 [−(1 : burnin)]==4)]

sigma3 = sigmasave3 [which (k chain3 [−(1 : burnin)]==4)]

169 sigma4=sigmasave4 [which (k chain4 [−(1 : burnin)]==4)]

171 SD<−matrix (u n l i s t (sigma1 , sigma2 , sigma3) , nco l = 4 , byrow = TRUE)

SD2<−matrix (u n l i s t (sigma4) , nco l =4,byrow=TRUE)

173 sigma=rbind (SD, SD2)

mean<−s q r t (apply (sigma , 2 , mean))

175

########## MEAN FOR 5 COMPONENTS ##############

177 musavek1 = musave1 [which (k chain1 [−(1 : burnin)]==5)]

musavek2 = musave2 [which (k chain2 [−(1 : burnin)]==5)]

179 musavek3 = musave3 [which (k chain3 [−(1 : burnin)]==5)]

musavek4 = musave4 [which (k chain4 [−(1 : burnin)]==5)]

181 mu<−matrix (u n l i s t (musavek1 , musavek2 , musavek3) , nco l = 5 , byrow = TRUE)

musavek4=matrix (u n l i s t (musavek4) , nco l =5,byrow=TRUE)

183 mu=rbind (mu, musavek4)

mean<−apply (mu, 2 , mean)

185

####### SD f o r 5 components ##########

187 sigma1 = sigmasave1 [which (k chain1 [−(1 : burnin)]==5)]

sigma2 = sigmasave2 [which (k chain2 [−(1 : burnin)]==5)]

189 sigma3 = sigmasave3 [which (k chain3 [−(1 : burnin)]==5)]

sigma4=sigmasave4 [which (k chain4 [−(1 : burnin)]==5)]

191 SD<−matrix (u n l i s t (sigma1 , sigma2 , sigma3) , nco l = 5 , byrow = TRUE)

SD2<−matrix (u n l i s t (sigma4) , nco l =5,byrow=TRUE)

193 sigma=rbind (SD, SD2)

151

mean<−s q r t (apply (sigma , 2 , mean))

152

D.2 Hidden Markov MCMC

2 ###################

IMPORT DATA

4 ###################

s e t . seed (1234)

6 l i b r a r y (truncnorm)

l i b r a r y (’MASS ’)

8

movie 33=read . del im (”/ Users /mdmiha/Documents/PhD B io s t a t s /Chapter 4 −

i n c l u d i n g a n a l y s i s and data /New approach us ing raw data s e t s /Compare

untreated−r o l l b a l l 5 0 /Thin f i l a m e n t e s pCa6 S1 10 nM/ R e s l i c e o f

2016−04−06 33 untreated . txt ” , header=FALSE)

10 b inder s=movie 33

data=as . matrix (b inder s)#d e f i n e the datase t as a matrixo

12 data=data [−c (1 : 5 0) ,−c (5 1 : 20 0)]

14 p <− nco l (data) # number o f columns f o r data

nn <− nrow (data) # number o f rows f o r data

16 S=p

J=nn

18

#data transformed us ing RJMCMC and i s being used to s imulate from i t

20 load (”/ Users /mdmiha/Documents/PhD B io s t a t s /Chapter 4 − i n c l u d i n g a n a l y s i s

and data /Ch4−transformed data s e t s / transformed−dataset−calcium−movie33

. Rdata”)

s c a l e d=z

22 s c a l e d rjmcmc=as . matrix (s c a l e d)

s c a l e d rjmcmc=s c a l e d [−c (1 : 5 0) ,−c (5 1 : 20 0)] #has to match the dimension o f

the po i s son proce s s

24 MAXNO COMPONENTS=5 # up to 11 b inder s p lus when there i s no binding

26 #######################

STARTING VALUES

153

28 #######################

#these s t a r t i n g va lue s are based on r e s u l t s from prev ious run o f the

a lgor i thm

30 mu s t a r t=c (2700 ,3155 ,3220 ,3417 ,3609)

Var s t a r t=c (705 ,41 ,45 ,49 ,42)

32

we do a random genera t i on f o r p s i because we do not s imulate i t in t h i s

t h e s i s

34 #p s i i s a ra t e

p s i=matrix (1 ,MAXNO COMPONENTS,MAXNO COMPONENTS)

36 p s i=r p o i s (matrix (2 ,MAXNO COMPONENTS,MAXNO COMPONENTS) ,2) /20

p s i<−matrix (ps i , byrow=MAXNO COMPONENTS, nco l=MAXNO COMPONENTS) +0.01 #

adding 0 .01 because otherwi se we get I n f in ”

po i s son proce s s ”

38 p s i s t a r t=p s i

40 lambda=2 #choose va lue s f o r ra t e o f a t tach ing ; t h i s i s the mean so i t

should be very smal l c o n s i d e r i n g that we have mostly 0 s in the datase t

lambda s t a r t=2

42 varsigma=2 #choose va lue s f o r ra t e o f det tach ing ; in our study , the

det tach ing ra t e i s s i m i l a r to the at tach ing ra t e

varsigma s t a r t=2

44 ze ta =2.5

zeta s t a r t =2.5

46 d e l t a =0.1 #because i t r e p r e s e n t s the time i n t e r v a l g iven by one p i x e l

48 #standard dev i a t i on should be very smal l

sdupdate mu =c (32 ,29 ,20 ,28 ,34)

50 sdupdate var=c (15 , 9 , 9 , 9 , 9)

sdupdate lambda=0.6

52 sdupdate varsigma =0.5

sdupdate zeta =0.6

54

parameter=l i s t (mu s ta r t , Var s ta r t , lambda s ta r t , varsigma s ta r t , ze ta s t a r t)

56 s t a r t v a l u e=c (mu s ta r t , Var s ta r t , lambda s ta r t , varsigma s ta r t , ze ta s t a r t)

154

58 ##

DEFINING INITIAL MATRIX FOR LATENT

60 ##

N=s c a l e d rjmcmc+1 # we i n c r e a s e the l a b e l l i n g by 1 because we cannot have

0 s in t h i s matrix ;

62

##

64 ### CONSTRUCTING THE PRIOR DISTRIBUTIONS ###

##

66 K=MAXNO COMPONENTS

alpha=c (100 ,120 ,120 ,130 ,100) #t h i s i s the shape in gamma d i s t r i b u t i o n

68 beta=c (3 , 3 , 2 . 5 , 2 . 5 , 2 . 7) #t h i s i s r ep re s ent ed by s c a l e in gamma

d i s t r i b u t i o n

70 p r i o r=func t i on (parameter ,K, alpha , beta) {

Mean=parameter [[1]]

72 sigma=s q r t (parameter [[2]]) # t h i s i s the standard dev i a t i on that I

b e l i e v e f i t s the datase t based on r e s u l t s from rjmcmc

muprior=rep (0 ,K)

74 v a r p r i o r=rep (0 ,K)

f o r (k in 1 :K) {

76 mu=parameter [[1]]

muprior [k]=dnorm(mu[k] , Mean [k] , sigma [k] , l og=TRUE)

78 }

f o r (k in 1 :K) {

80 Var=parameter [[2]]

v a r p r i o r [k]=dgamma(Var [k] , alpha [k] , beta [k] , l og=TRUE)

82 }

lamb=parameter [[3]]

84 lambda p r i o r=dgamma(lamb , 5 . 5 , 2 . 3 , l og = TRUE)

v a r s i g=parameter [[4]]

86 varsigma p r i o r=dgamma(vars ig , 5 . 7 , 2 . 5 , l og = TRUE)

ze t=parameter [[5]]

88 ze ta p r i o r=dgamma(zet , 6 , 2 , l og = TRUE)

155

#return (l i s t (muprior , varpr io r , lambda pr io r , varsigma pr io r , ze ta p r i o r))

90 re turn (sum(muprior+v a r p r i o r+lambda p r i o r+varsigma p r i o r+zeta p r i o r)) #

sum ins t ead o f m u l t i p l i c a t i o n because we have taken l o g s o f the p r i o r s

above

}

92

####################

94 ### DECAY FACTOR ###

####################

96 decay fun = func t i on (j , k , ze ta) {

i f (j−k==0){

98 re turn (1)

}

100 e l s e i f (abs (j−k)>3){

re turn (0)

102 }

e l s e {

104 re turn (exp(−ze ta ∗abs (j−k)))

}

106 }

decay=matrix (0 , nn , nn)

108 f o r (j in 1 : nn) {

f o r (k in 1 : nn) {

110 decay [j , k]=decay fun (j , k , ze ta)

}

112 }

114 ######################

LATENT PROCESS

116 ######################

bi r t h temp=matrix (0 , J , S)

118 death temp=matrix (0 , J , S)

nothing temp=matrix (0 , J , S)

120 l a t e n t fun=func t i on (J , S ,N) {

f o r (s in 2 : S) {

156

122 f o r (j in 1 : J) {

i f (N[j , s]−N[j , s−1]>0){

124 b i r t h temp [j , s]=N[j , s]−N[j , s−1]

}

126 e l s e i f (N[j , s]−N[j , s−1]<0){

death temp [j , s]=−N[j , s]+N[j , s−1]

128 }

e l s e {

130 nothing temp [j , s]=0

}

132 }

}

134 y l i s t=l i s t (b i r th temp , death temp , nothing temp)

}

136 l a t e n t<−l a t e n t fun (J , S ,N) #reco rd ing the func t i on ” l a t e n t fun ” , which i s

a l s o recorded in the func t i on below

138 ##################

LIKELIHOOD

140 ##################

l i k e l i h o o d=func t i on (K, parameter , data ,N, decay) {

142 mu=parameter [[1]]

var=parameter [[2]]

144 Mean=matrix (0 , J , S)

Var=matrix (0 , J , S)

146 l i k e l i=matrix (0 , nn , p)

f o r (j in 1 : J) {

148 f o r (s in 2 : S) {

f o r (k in (1 : J) [− j]) {

150 i f (N[k , s]>1){

Mean [j , s] = Mean [j , s] + (mu[N[k , s]]−mu[1]) ∗decay [j , k]

152 Var [j , s]= Var [j , s] + var [N[k , s]] ∗ (decay [j , k] ˆ 2)

}

154 }

}

157

156 }

X Mean=Mean+mu[1] # mean i n t e n s i t y va lue p lus the no i s e (the no i s e i s

a l s o equ iva l en t to having no binding)

158 Variance=Var+var [1] # var iance p lus no i s e

l i k e l i = dnorm(data , mean=X Mean , sd=s q r t (Variance) , l og=TRUE)

160 s u m l i k e l i=sum(l i k e l i) #sum ins t ead o f m u l t i p l i c a t i o n because we have

taken l o g s o f the l i k e l i h o o d

return (s u m l i k e l i)

162 }

164 ##

BIRTH − DEATH MODEL => POISSON PROCESS

166 ##

poi s son proce s s=func t i on (S , J ,N, parameter , p s i s t a r t , lambda , varsigma , d e l t a

=0.1){

168 l a t e n t = l a t e n t fun (J , S ,N)

b i r t h temp = l a t e n t [[1]]

170 death temp = l a t e n t [[2]]

nothing temp = l a t e n t [[3]]

172 p s i=p s i s t a r t

b i r t h ra t e=matrix (0 . 2 , J , S)

174 death ra t e=matrix (0 . 3 , J , S)

po i s p roc e s s=matrix (0 , J , S)

176 temp one=matrix (0 , J , 1)

we take l o g s o f the whole p roce s s because otherwi se the product w i l l

be equal to zero when we do the f i n a l product o f the matrix

178 f o r (s in 2 : S) {

f o r (j in 2 : J) {

180 i f (j<J) {

#cat (j , ” , ” , s , ” , ” ,N[j +1,s −1] ,” ,” ,N[j , s] , ”\n”)

182 b i r t h ra t e [j , s]= log (d e l t a ∗ lambda∗ p s i [N[j , s]] ∗ p s i [N[j −1,s−1] ,N[j , s

]] ∗ p s i [N[j +1,s−1] ,N[j , s]])

death ra t e [j , s]= log (d e l t a ∗varsigma∗ p s i [N[j , s]] ∗ p s i [N[j −1,s−1] ,N[j

, s]] ∗ p s i [N[j +1,s−1] ,N[j , s]])

184 }

158

e l s e i f (j==J) {

186 b i r t h ra t e [j , s]= log (d e l t a ∗ lambda∗ p s i [N[j , s]] ∗ p s i [N[j −1,s−1] ,N[j , s

]])

death ra t e [j , s]= log (d e l t a ∗varsigma∗ p s i [N[j , s]] ∗ p s i [N[j −1,s−1] ,N[j

, s]])

188 }

}

190 }

f o r (s in 2 : S) {

192 f o r (j in 1 : J) {

po i s p roce s s [j , s]=(b i r t h ra t e [j , s] ∗ (b i r t h temp [j , s]))+(death ra t e [j

, s] ∗ (death temp [j , s]))−b i r t h ra t e [j , s]−death ra t e [j , s]

194 }

}

196 f o r (j in 2 : J) {

temp one [j ,]= log (p s i [N[j , 1] ,N[j −1 ,1]])

198 }

po i s p roce s s [, 1]= temp one

200 sum po i s p roce s s=sum(po i s p roce s s)

#w=l i s t (sum po i s process , po i s p roc e s s) #re tu rn ing a l i s t because we use

the sum of the po i s son proce s s a c r o s s time f o r the p o s t e r i o r

202 # we use the matrix o f the po i s son proce s s (a l l p o s i t i o n s a c r o s s time)

when s imu la t ing the la t ent , N

#return (po i s p roc e s s)

204 re turn (sum po i s p roce s s)

}

206

##############################

208 ### PROPOSAL DISTRIBUTIONS ###

##############################

210 proposa l random mu<−f unc t i on (meanparameter , sdupdate mu) {

promu=rtruncnorm (1 ,0 ,2 ∗meanparameter , mean=meanparameter , sd=sdupdate mu)

212 re turn (promu)

}

214

159

proposa l random Var<−f unc t i on (meanparameter , sdupdate s c a l e) {

216 m=rnorm (1 , mean=meanparameter , sd=sdupdate var)

re turn (m)

218 }

220 proposa l random N<−f unc t i on (s c a l e d rjmcmc , j , t) {

#generate random numbers from the po i s son d i s t r i b u t i o n with a dimension

equal to the l a t e n t v a r i a b l e

222 #we update each l a t e n t parameter at each time po int in turn because

otherwi s e the re would be too many parameters to be updated at once and

the acceptance p r o b a b i l i t y too low

t h i s loop works only i f I i n c r e a s e the raw data by 0 .01

224 # otherwise , the raw data matrix conta in s too many 0 s and the loop ge t s

stuck as the random genera t i on cannot get past the se 0 s

repeat {

226 Nrand=r p o i s (1 , s c a l e d rjmcmc [j , t]+0 .01)

i f (Nrand<=4 & Nrand>0) break

228 }

#cat (j , ” , ” , t , Nrand [j , t] , ”\n”)

230 re turn (Nrand)

}

232

proposa l random lambda<−f unc t i on (meanparameter , sdupdate lambda) {

234 l=rtruncnorm (1 ,0 ,2 ∗meanparameter , mean=meanparameter , sd=sdupdate lambda)

#because we have only 1 binding ra t e

re turn (l)

236 }

238 proposa l random mu<−f unc t i on (meanparameter , sdupdate mu) {

promu=rtruncnorm (1 ,0 ,2 ∗meanparameter , mean=meanparameter , sd=sdupdate mu)

240 re turn (promu)

}

242

proposa l random varsigma<−f unc t i on (meanparameter , sdupdate varsigma) {

160

244 v=rtruncnorm (1 ,0 ,2 ∗meanparameter , mean=meanparameter , sd=sdupdate

varsigma) #because we have only 1 detach ing ra t e

re turn (v)

246 }

248 proposa l random zeta<−f unc t i on (meanparameter , sdupdate zeta) {

z=rtruncnorm (1 ,0 ,2 ∗meanparameter , mean=meanparameter , sd=sdupdate zeta)

250 re turn (z)

}

252

proposa l dens mu<−f unc t i on (previousparam , cur rent proposa l , sdupdate mu) {

254 muden = dtruncnorm (cur rent proposa l , 0 , 2 ∗previousparam , mean=

previousparam , sd=sdupdate mu)

return (sum(log (muden)))

256 }

258 proposa l dens Var<−f unc t i on (previousparam , cur rent proposal , sdupdate var)

{

Varden = dtruncnorm (cur rent proposal , 0 , 2 ∗previousparam , mean=

previousparam , sd=sdupdate var)

260 re turn (sum(log (Varden)))

}

262

proposa l dens N<−f unc t i on (mat , s c a l e d rjmcmc , j , t) {

264 #We chose a proposa l dens i ty f o r ‘N=latent ‘ to be a po i s son dens i ty

because i t counts the number o f b inders , with lambda=prev ious s tep

#and we generate t h i s d i s t r i b u t i o n based on the po i s son proce s s we have

p r e v i o u s l y c a l c u l a t e d

266 #how does lambda change ? based on the prev ious i t e r a t i o n

#we do not in c lude the Nden matrix in to the chain because we do not

care about N’ s path

268 #f o r N we only keep the prev ious s tep matrix and the proposa l matrix ,

s i n c e we do not save t h i s v a r i a b l e in the Markov chain

s c a l e d rjmcmc=s c a l e d rjmcmc+1

270 #i f (s c a l e d rjmcmc [j , t]>0){

161

Nden=dpois (mat [j , t] , s c a l e d rjmcmc [j , t])

272 # }

#e l s e i f (s c a l e d rjmcmc [j , t]==0){

274 # Nden=dpois (mat [j , t] , s c a l e d rjmcmc [j , t]) +1

#}

276 #e l s e {NULL}

re turn (sum(log (Nden))) #t h i s has to be kept as i t i s the proposa l va lue

o f l a t e n t N

278 }

280 proposa l dens lambda<−f unc t i on (tempvar , previousparam , sdupdate lambda) {

lambdaden=dtruncnorm (tempvar , 0 , 2 ∗previousparam , mean=previousparam , sd=

sdupdate lambda)

282 re turn (l og (lambdaden))

}

284

proposa l dens varsigma<−f unc t i on (tempvar , previousparam , sdupdate varsigma)

{

286 varsigmaden=dtruncnorm (tempvar , 0 , 2 ∗previousparam , mean=previousparam , sd=

sdupdate varsigma)

return (l og (varsigmaden))

288 }

290 proposa l dens zeta<−f unc t i on (tempvar , previousparam , sdupdate zeta) {

zetaden=dtruncnorm (tempvar , 0 , 2 ∗previousparam , mean=previousparam , sd=

sdupdate zeta)

292 re turn (l og (zetaden))

}

294

##############################

296 ### POSTERIOR DISTRIBUTION ###

##############################

298 p o s t e r i o r <− f unc t i on (S , J , parameter , p s i s t a r t ,K, data , N, decay) {

re turn (l i k e l i h o o d (K, parameter , data ,N, decay) + p r i o r (parameter ,K, alpha ,

beta)+po i s son proce s s (S , J ,N, parameter , p s i s t a r t , lambda , varsigma , d e l t a

162

=0.1))

300 }

302 ###########################

METROPOLIS HASTINGS

304 ###########################

i t e r a t i o n s =7000

306 metropo l i s mcmc<−f unc t i on (s t a r tva lue , parameter , i t e r a t i o n s , p s i s t a r t , k ,

data) {

temp N=s c a l e d rjmcmc+1 #because we use the same lambda f o r both the

random genera t i on o f N as we l l as f o r the proposa l dens i ty

308 l a t e n t temp=l i s t ()

param=r u n i f (MAXNO COMPONENTS∗MAXNO COMPONENTS, 0 ,MAXNO COMPONENTS)

310 param=matrix (param , byrow=MAXNO COMPONENTS, nco l=MAXNO COMPONENTS)

chain=array (dim=c (i t e r a t i o n s +1,MAXNO COMPONENTS∗2+3)) #array with nrow=

i t e r a t i o n s +1 and nco l=equal to the number o f parameters

312 chain [1 ,]= s t a r t v a l u e #d e f i n e s the s t a r t i n g va lue s o f each column o f the

chain

prev iousparameter = parameter

314 cur rent parameter = parameter

f o r (i in 2 : i t e r a t i o n s) {

316 ########## updating mu ###########

previousmu=prev iousparameter [[1]]

318 cur rent mu=previousmu

f o r (n in 1 :MAXNO COMPONENTS) {

320 cur rent mu[n] = proposa l random mu(previousmu [n] , sdupdate mu[n])

cur r ent parameter [[1]] [n] = cur rent mu[n] #updating the nth value

in 1 s t item o f the l i s t ‘ parameter ‘

322 temp1=proposa l dens mu(cur rent parameter [[1]] [n] , prev iousparameter

[[1]] [n] , sdupdate mu[n])

temp2=proposa l dens mu(prev iousparameter [[1]] [n] , cur rent parameter

[[1]] [n] , sdupdate mu[n])

324 p r o b a b i l i t y=p o s t e r i o r (S , J , cur rent parameter , p s i s t a r t ,K, data , temp N

, decay)−p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data , temp N, decay)

+temp2−temp1

163

i f (l og (r u n i f (1)) < p r o b a b i l i t y) {

326

} e l s e {

328 cur rent parameter [[1]] [n]= prev iousparameter [[1]] [n]

}

330 prev iousparameter = current parameter

}

332 chain [i , 1 :MAXNO COMPONENTS] = s o r t (cur rent parameter [[1]])

cat (i , ” , ” , ”mu” , chain [i , 1 :MAXNO COMPONENTS] , ”\n”)

334

########## updating sigma ##############

336 prev iousvar=prev iousparameter [[2]]

cu r r ent sigma=prev iousvar

338 f o r (m in 1 :MAXNO COMPONENTS) {

cur rent sigma [m] = proposa l random Var (prev iousvar [m] , sdupdate var [

m])

340 cur rent parameter [[2]] [m] = current sigma [m]

temp1 = proposa l dens Var (cur rent parameter [[2]] [m] ,

prev iousparameter [[2]] [m] , sdupdate var [m])

342 temp2 = proposa l dens Var (prev iousparameter [[2]] [m] , cur rent

parameter [[2]] [m] , sdupdate var [m])

p r o b a b i l i t y=p o s t e r i o r (S , J , cur rent parameter , p s i s t a r t ,K, data , temp N

, decay)−p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data , temp N, decay)

+temp2−temp1

344 i f (l og (r u n i f (1)) < p r o b a b i l i t y & (cur rent parameter [[2]] [m]>=20) &

(cur rent parameter [[2]] [m]<=750)) {

}

346 e l s e {

cur rent parameter [[2]] [m]= previousparameter [[2]] [m]

348 }

prev iousparameter = current parameter

350 }

chain [i , (MAXNO COMPONENTS+1) : (MAXNO COMPONENTS∗ 2)]= cur rent parameter

[[2]]

164

352 cat (i , ” , ” , ” sigma” , chain [i , (MAXNO COMPONENTS+1) : (MAXNO COMPONENTS∗ 2)

] , ”\n”)

354 ############# updating lambda ##################

previouslambda=prev iousparameter [[3]]

356 cur rent lambda=previouslambda

cur rent lambda=proposa l random lambda (previouslambda , sdupdate lambda)

358 cur rent parameter [[3]] = cur rent lambda

temp1 = proposa l dens lambda (cur rent parameter [[3]] , prev iousparameter

[[3]] , sdupdate lambda)

360 temp2 = proposa l dens lambda (prev iousparameter [[3]] , cur rent parameter

[[3]] , sdupdate lambda)

p r o b a b i l i t y=p o s t e r i o r (S , J , cur rent parameter , p s i s t a r t ,K, data , temp N,

decay)−p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data , temp N, decay)+

temp2−temp1

362 i f (l og (r u n i f (1)) < p r o b a b i l i t y) {

}

364 e l s e {

cur rent parameter [[3]] = prev iousparameter [[3]]

366 }

prev iousparameter=current parameter

368 chain [i ,MAXNO COMPONENTS∗2+1]= cur rent parameter [[3]]

cat (i , ” , ” , ”lambda” , chain [i ,MAXNO COMPONENTS∗2+1] , ”\n”)

370

################ updating varsigma ###################

372 prev iousvars igma=prev iousparameter [[4]]

cu r r ent varsigma=prev iousvars igma

374 cur rent varsigma=proposa l random varsigma (previousvars igma , sdupdate

varsigma)

cur rent parameter [[4]] = cur rent varsigma

376 temp1 = proposa l dens varsigma (cur rent parameter [[4]] ,

prev iousparameter [[4]] , sdupdate varsigma)

temp2 = proposa l dens varsigma (prev iousparameter [[4]] , cur rent

parameter [[4]] , sdupdate varsigma)

165

378 p r o b a b i l i t y=p o s t e r i o r (S , J , cur rent parameter , p s i s t a r t ,K, data , temp N,

decay)−p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data , temp N, decay)+

temp2−temp1

i f (l og (r u n i f (1)) < p r o b a b i l i t y) {

380 }

e l s e {

382 cur rent parameter [[4]] = prev iousparameter [[4]]

}

384 prev iousparameter=current parameter

chain [i ,MAXNO COMPONENTS∗2+2]= cur rent parameter [[4]]

386 cat (i , ” , ” , ” varsigma : ” , chain [i ,MAXNO COMPONENTS∗2+2] , ”\n”)

388 ################# updating N #####################

i f (i ==2){

390 previousN=temp N #prev ious s tep o f the chain ; have s e t i t equal to

s c a l e d rjmcmc (lambda)

cur rent N=previousN

392 }

previousN=temp N

394 cur rent N=previousN

f o r (t in 1 : S) {

396 f o r (j in 1 : J) {

#created a separa te chain j u s t f o r the l a t ent , so i t does not get

s to r ed in the markov chain

398 cur rent N[j , t]= proposa l random N(s c a l e d rjmcmc , j , t)+1 #i n c r e a s e d

the l a b e l l i n g by 1 because N cannot s t a r t from 0

temp1=proposa l dens N(cur rent N−1, s c a l e d rjmcmc , j , t)

400 temp2=proposa l dens N(previousN−1, s c a l e d rjmcmc , j , t)

p r o b a b i l i t y=p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data ,

cur r ent N, decay)−p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data ,

previousN , decay)+temp2−temp1

402 i f (l og (r u n i f (1))<p r o b a b i l i t y) {

temp N[j , t]= cur rent N[j , t]−1

404 }

e l s e {

166

406 temp N[j , t]= previousN [j , t]

}

408 }

}

410 cat (i , ” , ” , ” l a t e n t : ” , temp N, ”\n”)

l a t e n t temp [[i]]= temp N

412

############### updating zeta ####################

414 prev i ou s z e ta=prev iousparameter [[5]]

cu r r ent ze ta=prev i ou s z e ta

416 cur rent ze ta=proposa l random zeta (prev iousze ta , sdupdate zeta)

cur rent parameter [[5]] = cur rent zeta

418 temp1 = proposa l dens zeta (cur rent parameter [[5]] , prev iousparameter

[[5]] , sdupdate zeta)

temp2 = proposa l dens zeta (prev iousparameter [[5]] , cur rent parameter

[[5]] , sdupdate zeta)

420 p r o b a b i l i t y=p o s t e r i o r (S , J , cur rent parameter , p s i s t a r t ,K, data , temp N,

decay)−p o s t e r i o r (S , J , previousparameter , p s i s t a r t ,K, data , temp N, decay)+

temp2−temp1

i f (l og (r u n i f (1)) < p r o b a b i l i t y) {

422 }

e l s e {

424 cur rent parameter [[5]] = prev iousparameter [[5]]

}

426 prev iousparameter=current parameter

chain [i ,MAXNO COMPONENTS∗2+3]= cur rent parameter [[5]]

428 cat (i , ” , ” , ” zeta : ” , chain [i ,MAXNO COMPONENTS∗2+3] , ”\n”)

}

430 output=l i s t (” the chain ”=chain , ” l a t e n t N”=l a t e n t temp)

return (output)

432 }

a lgor i thm 4 b inder s=metropo l i s mcmc(s ta r tva lue , parameter , i t e r a t i o n s , p s i

s t a r t , k , data)

434 save (a lgor i thm 4 binders , f i l e=”MCMC 12 dec 4 b inder s . Rdata”)

167

D.2.1 Numerical analysis of the hidden Markov model

############################

2 ###### LOAD LIBRARIES ######

############################

4 l i b r a r y (MHadaptive)

l i b r a r y (pheatmap)

6 l i b r a r y (RColorBrewer)

l i b r a r y (miscF)

8 l i b r a r y (coda)

10 ############################

IMPORT RESULTS

12 ############################

load ing the r e s u l t s from the M−H algor i thm

14 load (”/ Users /mdmiha/Documents/PhD B io s t a t s /Sept20−Writing the R code /

Ceres r e s u l t s Sep 20/Long run/MCMC 6 jan 4 b inder s . Rdata”)

chain 4 b inder s=algor i thm 4 b inder s

16

combined cha ins=chain 4 b inder s [[” the chain ”]]

18 l a t e n t N=chain 4 b inder s [[2]]

20 ############################

THINNING THE CHAIN

22 ############################

n=2 #where ”n” i s the th inn ing f a c t o r

24 mu 1 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 1] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

mu 2 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 2] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

26 mu 3 <−mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 3] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

mu 4 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 4] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

168

28 mu 5 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 5] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

var 1 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 6] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

30 var 2 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 7] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

var 3 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 8] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

32 var 4 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 9] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

var 5 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 1 0] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

34 lambda 1 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 1 1] [seq (1 , l ength

(combined cha ins [, 1]) , by = n)]))

varsigma 1 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 1 2] [seq (1 ,

l ength (combined cha ins [, 1]) , by = n)]))

36 ze ta 1 <− mcmc(as .mcmc(chain 4 b inder s [[” the chain ”]] [, 1 3] [seq (1 , l ength (

combined cha ins [, 1]) , by = n)]))

38 ########################

TRACE PLOTS

40 ########################

t r a c e p l o t (mu 1 , type=” l ” , smooth = FALSE, ylab=” 1 ” , xlab=” I t e r a t i o n s ”)

42 t r a c e p l o t (mu 2 , type=” l ” , smooth = FALSE, ylab=” 2 ” , xlab=” I t e r a t i o n s ”)

t r a c e p l o t (mu 3 , type=” l ” , smooth = FALSE, ylab=” 3 ” , xlab=” I t e r a t i o n s ”)

44 t r a c e p l o t (mu 4 , type=” l ” , smooth = FALSE, ylab=” 4 ” , xlab=” I t e r a t i o n s ”)

t r a c e p l o t (mu 5 , type=” l ” , smooth = FALSE, ylab=” 5 ” , xlab=” I t e r a t i o n s ”)

46 t r a c e p l o t (var 1 , type=” l ” , smooth = FALSE, ylab=”SD1” , xlab=” I t e r a t i o n s ”)

t r a c e p l o t (var 2 , type=” l ” , smooth = FALSE, ylab=”SD2” , xlab=” I t e r a t i o n s ”)

48 t r a c e p l o t (var 3 , type=” l ” , smooth = FALSE, ylab=”SD3” , xlab=” I t e r a t i o n s ”)

t r a c e p l o t (var 4 , type=” l ” , smooth = FALSE, ylab=”SD4” , xlab=” I t e r a t i o n s ”)

50 t r a c e p l o t (var 5 , type=” l ” , smooth = FALSE, ylab=”SD5” , xlab=” I t e r a t i o n s ”)

t r a c e p l o t (lambda 1 , type=” l ” , smooth = FALSE, ylab=” ” , xlab=” I t e r a t i o n s ”)

52 t r a c e p l o t (varsigma 1 , type=” l ” , smooth = FALSE, ylab=” ” , xlab=” I t e r a t i o n s ”)

t r a c e p l o t (ze ta 1 , type=” l ” , smooth = FALSE, ylab=” ” , xlab=” I t e r a t i o n s ”)

169

54

##

56 #### AUTOCORRELATION AND DENSITY PLOTS######

##

58 par (mfrow=c (2 , 2))

mu 1 na<−mu 1 [! i s . na (mu 1)] # make sure to remove a l l NAs f i r s t

60 mu 2 na<−mu 2 [! i s . na (mu 2)] # make sure to remove a l l NAs f i r s t

mu 3 na<−mu 3 [! i s . na (mu 3)] # make sure to remove a l l NAs f i r s t

62 mu 4 na<−mu 4 [! i s . na (mu 4)] # make sure to remove a l l NAs f i r s t

mu 5 na<−mu 5 [! i s . na (mu 5)] # make sure to remove a l l NAs f i r s t

64

autocor r . p l o t (mu 1 na , l ag . max=500 , auto . layout = FALSE, main=” 1 ”)

66 p lo t (dens i ty (mu 1 na))

autocor r . p l o t (mu 2 na , l ag . max=500 , auto . layout = FALSE, main=” 2 ”)

68 p lo t (dens i ty (mu 2 na))

autocor r . p l o t (mu 3 na , l ag . max=500 , auto . layout = FALSE, main=” 3 ”)

70 p lo t (dens i ty (mu 3 na))

autocor r . p l o t (mu 4 na , l ag . max=500 , auto . layout = FALSE, main=” 4 ”)

72 p lo t (dens i ty (mu 4 na))

autocor r . p l o t (mu 5 na , l ag . max=500 , auto . layout = FALSE, main=” 5 ”)

74 p lo t (dens i ty (mu 5 na))

76 var 1 na<−var 1 [! i s . na (var 1)] # make sure to remove a l l NAs f i r s t

var 2 na<−var 2 [! i s . na (var 2)] # make sure to remove a l l NAs f i r s t

78 var 3 na<−var 3 [! i s . na (var 3)] # make sure to remove a l l NAs f i r s t

var 4 na<−var 4 [! i s . na (var 4)] # make sure to remove a l l NAs f i r s t

80 var 5 na<−var 5 [! i s . na (var 5)] # make sure to remove a l l NAs f i r s t

82 autocor r . p l o t (var 1 na , l ag . max=500 , auto . layout = FALSE, main=”SD1”)

p l o t (dens i ty (var 1 na))

84 autocor r . p l o t (var 2 na , l ag . max=500 , auto . layout = FALSE, main=”SD2”)

p l o t (dens i ty (var 2 na))

86 autocor r . p l o t (var 3 na , l ag . max=500 , auto . layout = FALSE, main=”SD3”)

p l o t (dens i ty (var 3 na))

88 autocor r . p l o t (var 4 na , l ag . max=500 , auto . layout = FALSE, main=”SD4”)

170

p lo t (dens i ty (var 4 na))

90 autocor r . p l o t (var 5 na , l ag . max=200 , auto . layout = FALSE, main=”SD5”)

p l o t (dens i ty (var 5 na))

92

lambda 1 na<−lambda 1 [! i s . na (lambda 1)] # make sure to remove a l l NAs

f i r s t

94 autocor r . p l o t (lambda 1 na , l ag . max=200 , auto . layout = FALSE, main=” ”)

p l o t (dens i ty (lambda 1 na))

96 varsigma 1 na<−varsigma 1 [! i s . na (varsigma 1)] # make sure to remove a l l

NAs f i r s t

autocor r . p l o t (varsigma 1 na , l ag . max=200 , auto . layout = FALSE, main=” ”)

98 p lo t (dens i ty (varsigma 1 na))

ze ta 1 na<−ze ta 1 [! i s . na (ze ta 1)] # make sure to remove a l l NAs f i r s t

100 autocor r . p l o t (ze ta 1 na , l ag . max=200 , auto . layout = FALSE, main=” ”)

p l o t (dens i ty (zeta 1 na))

102

###################################

104 ######ACCEPTANCE PROBABILITY#######

###################################

106 burnin=1000 #f i r s t 1000 i t e r a t i o n s which we may want to d i s ca rd

combined cha ins=chain 4 b inder s [[” the chain ”]] [− (1 : burnin) ,]

108 l a t e n t N=chain 4 b inder s [[2]] [− c (1 : burnin)]

110 MAXNO COMPONENTS=5

mm=MAXNO COMPONENTS∗2+3

112 acceptance ra t e=rep (0 ,MAXNO COMPONENTS∗2+3)

f o r (a in 1 :mm) {

114 acceptance ra t e [a]=1−mean(dup l i ca t ed (combined cha ins [, a]))

}

116 g l o b a l acceptance=mean(acceptance ra t e)

118 ###

PARAMETER MEANS

120 ###

chain 4 b inder s <− as . data . frame (combined cha ins)

171

122 param means=rep (0 ,MAXNO COMPONENTS∗2+3)

t=matrix (0 , J , S)

124 t mean=matrix (0 , J , S)

f o r (b in 1 : (MAXNO COMPONENTS∗2+3)) {

126 param means [b]=mean(combined cha ins [, b] , na . rm=TRUE)

}

128

############################

130 ###### LATENT OUTPUT #######

############################

132 # remove the blank elements in our l i s t by running code that subse t s the

l i s t by e lements that only have a l ength g r e a t e r than zero

l a t e n t N <− l a t e n t N[l app ly (l a t e n t N, l ength)>0]

134 l a t e n t N=lapp ly (l a t e n t N, matrix , nrow=1) # convert each element to a

matrix format

136 tempor=matrix (0 , J , S)

tempor mean=matrix (0 , J , S)

138 z=length (l a t e n t N)

t t=rep (0 , J∗S)

140 f o r (a in 2 : z) {

t t=as . vec to r (l a t e n t N [[a]])

142 tempor=matrix (tt , J , S)

tempor mean=tempor+tempor mean

144 }

146 # Average o f the l a t e n t v a r i a b l e

l a t e n t avr 4 b inder s=round (tempor mean/ (z−1)−1) #because we added 1 to the

matrix e a r l i e r on in the model

148 c o l s = colorRampPalette (c (” black ” , ” white ”)) (30)

pheatmap (l a t e n t avr 4 binders , c l u s t e r rows = FALSE, c l u s t e r c o l s = FALSE,

c o l o r=co l s , c e l l w i d t h = 10 , c e l l h e i g h t = 7 , main = ’Heatmap

r e p r e s e n t i n g up to 4 components ’) # d i s t a n c e s 0 to 3 are red , 3 to 9

black

172

BIBLIOGRAPHY

[1] Aitkin, M. (1980). Mixture applications of the em algorithm in glim. COMPSTAT

1980, pages 537–541.

[2] Albert, J. H. and Chib, S. (1993). Bayes inference via gibbs sampling of autore-

gressive time series subject to markov mean and variance shifts. Journal of Business

& Economic Statistics, 11(1):1–15.

[3] Andrew Gelman, D. B. R. (1992). Inference from iterative simulation using multiple

sequences. Statistical Science, 7(4):457–472.

[4] Archer, G. and Titterington, D. (2002). Parameter estimation for hidden markov

chains. Journal of Statistical Planning and Inference, 108(1-2):365–390.

[5] Besag, J. (1989). Digital image processing: Towards bayesian image analysis. Jour-

nal of Applied statistics, 16(3):395–407.

[6] Bouguila, N. and Elguebaly, T. (2012). A fully bayesian model based on reversible

jump mcmc and finite beta mixtures for clustering. Expert Systems with Applications,

39(5):5946–5959.

173

[7] Bulla, J. (2006). Application of hidden markov models and hidden semi-markov

models to financial time series.

[8] Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding

aic and bic in model selection. Sociological methods & research, 33(2):261–304.

[9] Casella, G. and George, E. I. (1992). Explaining the gibbs sampler. The American

Statistician, 46(3):167–174.

[10] Chaudhary, S. (2014). Implementation and performance analysis of markov ran-

dom field. International Journal of Advancements in Research Technology, 3:37–41.

[11] Chen, J. (1995). Optimal rate of convergence for finite mixture models. The

Annals of Statistics, pages 221–233.

[12] Chen, M.-H., Shao, Q.-M., and Ibrahim, J. G. (2012). Monte Carlo methods in

Bayesian computation. Springer Science & Business Media.

[13] Chen, Z., Barbieri, R., and Brown, E. N. (2010). State space modeling of neural

spike train and behavioral data. In Statistical signal processing for neuroscience and

neurotechnology, pages 175–218. Elsevier.

[14] Christian P. Robert, Tobias Rydn, D. M. T. (2000). Bayesian inference in hid-

den markov models through the reversible jump markov chain monte carlo method.

Journal of the Royal Statistical Society Series B, 62(1)(1):57–75.

[15] Congdon, P. (2006). Bayesian Statistical Modelling. John Wiley & Sons, 2nd

edition.

[16] deLeeuw, J. (1992). Introduction to akaike (1973) information theory and an

extension of the maximum likelihood principle. In Breakthroughs in statistics, pages

599–609. Springer.

[17] Dellaportas, P. and Papageorgiou, I. (2006). Multivariate mixtures of normals

with unknown number of components. Statistics and Computing, 16(1):57–68.

174

[18] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22.

[19] Desai, R., Geeves, M. A., and Kad, N. M. (2015). Using fluorescent myosin

to directly visualize cooperative activation of thin filaments. Journal of Biological

Chemistry, 290(4):1915–1925.

[20] Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distribu-

tions through bayesian sampling. Journal of the Royal Statistical Society: Series

B (Methodological), 56(2):363–375.

[21] Eddy, S. R. (1996). Hidden markov models. Current opinion in structural biology,

6(3):361–365.

[22] Feng, D. (2018). Miscellanous functions. R News.

[23] Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using bayesian

networks to analyze expression data. Journal of computational biology, 7(3-4):601–

620.

[24] Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models.

Springer Science & Business Media.

[25] Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic

simulation for Bayesian inference. Chapman and Hall/CRC.

[26] Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American statistical association, 85(410):398–409.

[27] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin,

D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.

[28] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2008). Bayesian data

analysis. Chapman & Hall/CRC Boca Raton, FL, USA, 2nd edition.

175

[29] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions,

and the bayesian restoration of images. IEEE Transactions on pattern analysis and

machine intelligence, (6):721–741.

[30] Ghahramani, Z. (2001a). An introduction to hidden markov models and bayesian

networks. In Hidden Markov models: applications in computer vision, pages 9–41.

World Scientific.

[31] Ghahramani, Z. (2001b). An introduction to hidden markov models and bayesian

networks. In Hidden Markov models: applications in computer vision, pages 9–41.

World Scientific.

[32] Green, P. J. (1995a). Reversible jump markov chain monte carlo computation and

bayesian model determination. Biometrika, 82(4):711–732.

[33] Green, P. J. (1995b). Reversible jump markov chain monte carlo computation and

bayesian model determination. Biometrika, 82(4):711–732.

[34] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and

their applications.

[35] Hespanhol, L., Vallio, C. S., Costa, L. M., and Saragiotto, B. T. (2019). Under-

standing and interpreting confidence and credible intervals around effect estimates.

Brazilian journal of physical therapy, 23(4):290–301.

[36] Huxley, H. and Hanson, J. (1954). Changes in the cross-striations of muscle during

contraction and stretch and their structural interpretation. Nature, 173:149–152.

[37] Kad, N. M., Kim, S., Warshaw, D. M., VanBuren, P., and Baker, J. E. (2005).

Single-myosin crossbridge interactions with actin filaments regulated by troponin-

tropomyosin. Proceedings of the National Academy of Sciences of the United States

of America, 102(47):16990–16995.

176

[38] Leonard E. Baum, M. K. (1965). Convergence rates in the law of large numbers.

Transactions of the American Mathematical Society, 120(1):108–123.

[39] Leroux, B. G. and Puterman, M. L. (1992). Maximum-penalized-likelihood esti-

mation for independent and markov-dependent mixture models. Biometrics, pages

545–558.

[40] McKillop, D. and Geeves, M. A. (1993). Regulation of the interaction between

actin and myosin subfragment 1: evidence for three states of the thin filament.

Biophysical Journal, 65:693–701.

[41] McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series, Canada.

[42] McLachlan, G. J. (1982). 9 the classification and mixture maximum likelihood

approaches to cluster analysis. Handbook of statistics, 2:199–208.

[43] McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test stastistic for

the number of components in a normal mixture. Journal of the Royal Statistical

Society. Series C (Applied Statistics), 36(3):318–324.

[44] McLachlan, G. J. and Basford, K. E. (1988). Mixture models: Inference and

applications to clustering, volume 84. M. Dekker New York.

[45] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). Equation of state calculations by fast computing machines. The journal

of chemical physics, 21(6):1087–1092.

[46] Mijailovich, S. M., Kayser-Herold, O., Li, X., Griffiths, H., and Geeves, M. A.

(2012). Cooperative regulation of myosin-s1 binding to actin filaments by a contin-

uous flexible tm–tn chain. European Biophysics Journal, 41(12):1015–1032.

[47] Neal, R. (1991). Bayesian mixture modelling by monte carlo simulation. Technical

report, Technical Report CRG–TR–91–2, Computer Science, Univ. of Toronto.

177

[48] Nguyen, X. (2013). Convergence of latent mixing measures in finite and infinite

mixture models. The Annals of Statistics, 41(1):370–400.

[49] Niederer, S. A., Campbell, K. S., and Campbell, S. G. (2019). A short history of

the development of mathematical models of cardiac mechanics. Journal of molecular

and cellular cardiology, 127:11–19.

[50] OpenStax. Anatomy and physiology. https://cnx.org/contents/FPtK1zmh@8.

25:fEI3C8Ot@10/Preface. Accessed: 2016-09-03.

[51] Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philo-

sophical Transactions of the Royal Society of London. A, 185:71–110.

[52] Pietrzykowski, M. and Sa labun, W. (2014). Applications of hidden markov model:

state-of-the-art. Int. J. Comput. Technol. Appl, 5:1384–1391.

[53] Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). Coda: Convergence

diagnosis and output analysis for mcmc. R News, 6(1):7–11.

[54] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled markov

chains and applications to statistical mechanics. Random Structures & Algorithms,

9(1-2):223–252.

[55] Rao, C. R. (1948). The utilization of multiple measurements in problems of biolog-

ical classification. Journal of the Royal Statistical Society. Series B (Methodological),

10(2):159–203.

[56] Richardson, S. and Green, P. J. (1997). On bayesian analysis of mixtures with an

unknown number of componenets. Journal of the Royal Statistical Society. Series

B, 4(59):731–792.

[57] Robert, C. and Casella, G. (2010). Monte Carlo statistical methods. Springer

Science & Business Media, 2nd edition.

178

https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface
https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface

[58] Robert, C. P. and Titterington, D. (1998). Reparameterization strategies for

hidden markov models and bayesian approaches to maximum likelihood estimation.

Statistics and Computing, 8(2):145–158.

[59] Roeder, K. and Wasserman, L. (1997). Practical bayesian density estimation using

mixtures of normals. Journal of the American Statistical Association, 92(439):894–

902.

[60] Ross, S. M., Kelly, J. J., Sullivan, R. J., Perry, W. J., Mercer, D., Davis, R. M.,

Washburn, T. D., Sager, E. V., Boyce, J. B., and Bristow, V. L. (1996). Stochastic

processes, volume 2. Wiley New York.

[61] Rydn, T. and Titterington, D. M. (1998). Computational bayesian analysis of

hidden markov models. Journal of Computational and Graphical Statistics, 7(2):194–

211.

[62] Silverthorn, D. U., Ober, W. C., Garrison, C. W., Silverthorn, A. C., and John-

son, B. R. (2010). Human physiology: an integrated approach. Pearson/Benjamin

Cummings San Francisco, CA, USA:, 5th edition.

[63] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).

Bayesian measures of model complexity and fit. Journal of the royal statistical

society: Series b (statistical methodology), 64(4):583–639.

[64] Spudich, J. A. (2014). Hypertrophic and dilated cardiomyopathy: four decades of

basic research on muscle lead to potential therapeutic approaches to these devastat-

ing genetic diseases. Biophysical journal, 106(6):1236–1249.

[65] Stephens, M. (2000). Bayesian analysis of mixture models with an unknown num-

ber of components-an alternative to reversible jump methods. Annals of statistics

28, pages 40–74.

179

[66] Stephens, M. et al. (2000). Bayesian analysis of mixture models with an unknown

number of componentsan alternative to reversible jump methods. the Annals of

Statistics, 28(1):40–74.

[67] Stracher, A. (2013). Muscle and nonmuscle motility, volume 1. Academic Press,

Inc., London.

[68] Tobacman, L. C. (1996). Thin filament mediated regulation of cardiac contraction.

Annual Reviews Physiology, 58:447–481.

[69] Wagenmakers, E.-J. and Farrell, S. (2004). Aic model selection using akaike

weights. Psychonomic bulletin & review, 11(1):192–196.

[70] Walcott, S. and Sun, S. X. (2009). Hysteresis in cross-bridge models of muscle.

Phys. Chem. Chem. Phys.”, 11:4871–4881.

[71] Weldon, W. (1892). Certain correlated variations in crangon vulgaris. 51:2–21.

[72] Weldon, W. (1893). On certain correlated variations in carcinus moenas. 54:318–

329.

[73] Zucchini, W., MacDonald, I. L., and Langrock, R. (2017). Hidden Markov models

for time series: an introduction using R. Chapman and Hall/CRC.

[1]

180

	Introduction
	Contribution to knowledge
	Biological background and data description
	Muscle contraction
	Introduction to the Data

	Review of Bayesian inference for mixture models
	Bayesian inference
	Finite mixture model estimation
	Basic definition

	The prior distribution
	Prediction by Markov chain Monte Carlo
	Discrete time and discrete state space Markov chains
	Metropolis Hastings algorithm
	The Gibbs sampler

	Application to finite mixture models using reversible jump MCMC
	RJMCMC algorithm - multiple move types and the model choice problem
	Mixtures Analysis with an unknown number of components
	Univariate normals with an unknown number of components

	Performance of reversible jump MCMC
	Dataset 1 with conditions 5 nM actin
	Dataset 1 with conditions 10 nM myosin at pCa 6

	Description of transition rates and probabilities

	Hidden Markov model on two dimensions and its application
	Hidden Markov models
	Hidden Markov random field

	Continuous time and discrete state space Markov chains
	Basics of continuous time Markov chains
	Birth and death processes

	The latent myosin binding process
	Image intensity model given the latent process
	The likelihood
	The full posterior distribution

	Numerical analysis
	Simulated binding process with 5 components

	Conclusion and Future Direction
	Hidden Markov model
	Future direction

	Appendices
	Proof of Proposition 1 (See page 94)
	Extra Analysis for 5nM actin kymographs
	Dataset 2 with 5nM actin
	Dataset 3 with 5nM actin

	Extra analysis for 10 nM myosin at pCa6
	Dataset 2 with 10 nM myosin at pCa6
	Dataset 3 with 10 nM myosin at pCa6
	Hidden Markov models simulation

	 Computational code for statistical simulations using R software
	RJMCMC simulations
	Hidden Markov MCMC
	Numerical analysis of the hidden Markov model

