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Abstract

Visual Simultaneous Localization and Mapping (SLAM) is crucial for robot perception. Vi-

sual odometry (VO) is one of the essential components for SLAM, which can estimate the

depth map of scenes and the ego-motion of a camera in unknown environments. Most pre-

vious work in this area uses geometry-based approaches. Recently, deep learning methods

have opened a new door for this area. At present, most research under deep learning frame-

works focuses on improving the accuracy of estimation results and reducing the dependence

of enormous labelled training data.

This thesis presents the work for exploring the deep learning technologies to estimate

different tasks, such as depth, ego-motion, optical flow, and semantic segmentation, under

the VO framework. Firstly, a stacked generative adversarial network is proposed to estimate

the depth and ego-motion. It consists of a stack of GAN layers, of which the lowest layer

estimates the depth and ego-motion while the higher layers estimate the spatial features. It

can also capture the temporal dynamics due to the use of a recurrent representation across

the layers. Secondly, digging into the internal network structure design, a novel recurrent

spatial-temporal network (RSTNet) is proposed to estimate depth and ego-motion and optical

flow and dynamic objects. This network can extract and retain more spatial and temporal

features. The dynamic objects are detected by using optical flow difference between full flow

and rigid flow. Finally, a semantic segmentation network is proposed, producing semantic

segmentation results together with depth and ego-motion estimation results.

All of the proposed contributions are tested and evaluated on open public datasets. The

comparisons with other methods are provided. The results show that our proposed networks

outperform the state-of-the-art methods of depth, ego-motion, and dynamic objects estima-

tions.
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Chapter 1

Introduction

The popularity of deep learning technology has led to tremendous research progress in com-

puter vision and robotics. Visual-based SLAM is an overlapped area between these two

fields, directly benefiting from applying deep neural networks to achieve numerous robotic

tasks. In order to explore how this data-based learning method can achieve and improve

various tasks of visual odometry in SLAM, this thesis has made several innovative attempts

and contributions. This chapter introduces the research motivation, the challenging tasks, the

used methodologies, and the novel contributions. Also included is the thesis’s outline.

1.1 Motivation

Localization is such a problem that faces a robot that needs to figure out where it is on a

given map using sensor data in robotics. Simultaneous Localization and Mapping (SLAM)

is a complex problem. The robot needs to track where it is while building a map from

scratch without prior knowledge introduced in [9]. This technology can endow mobile robots

with persistent autonomy in an unknown environment and is widely used in autonomous

driving and virtual reality applications. For the past decades, the autonomous navigation

of a robot has depended on feeding a large number of sensors’ data such as infrared, radar,

gyroscope, GPS, and other superior sensors. The more precise the positioning, the more

expensive sensor resources are needed. Robot perception has become a common practice in

many industrial applications. With the continuous hardware development, computer vision

provides an inevitable trade-off for navigation technology by only using images or videos.

Designing a more reliable and accurate SLAM system using cheap sources like cameras has

1



2 1.2. TASKS AND CHALLENGES

become a competitive target among quite a lot of research works in robotics. Researchers

named this SLAM system that only uses cameras as visual SLAM (VSLAM) in [10].

The classic VSLAM system generally consists of two parts: front-end feature extraction

with loop closer detection and back-end mapping optimization as summarized in [11]. Be-

cause robots are hard to directly utilize the raw sensor data such as images from camera or

beams from laser to express the SLAM state, the front-end as a preceding module extracts

relevant pixel location features of different points from the view. The front-end module is

named visual odometry (VO) in [12] which is in charge of data association through asso-

ciating each sensor’s measurement to a specific landmark. The back-end module optimiz-

ing visualization map relies on initial triangulating the positions of landmarks from multiple

views. Therefore, the property of visual odometry directly affects the performance of SLAM.

Following the discussion of [11], this thesis raises a further question of ”how good the vi-

sual odometry problem is solved,” which is also difficult to answer because there are many

aspects in visual odometry that need to be specified, such as using monocular or stereo data,

planar or three-dimensional environments, and single or multiple estimation tasks. Monoc-

ular and planar data leverages the cheapest resources and the most inadequate information.

Despite the limited resources, previous visual odometry can quickly fail in some challeng-

ing environments, such as high-speed estimation and highly dynamic environments. These

resource awareness conditions demand that researchers design more efficient and versatile

visual odometry with decent accuracy and robustness. Thence, the motivation of this the-

sis is to develop some innovative monocular visual odometry systems to conduct various

estimation tasks, which could be used for back-end processing.

1.2 Tasks and Challenges
Visual odometry primarily comprises four estimation tasks: depth (disparity), ego-motion,

optical flow, and semantic segmentation. While these tasks are different, the challenges to

face are almost identical, such as improving the estimation accuracy and robustness. This

thesis will set out to accomplish the following tasks and address their faced challenges:

1. Disparity Estimation

The depth of target objects in the view field from the camera is one of the most critical

parameters in visual odometry. Civera [13] proposed a new parametrization for point



1.2. TASKS AND CHALLENGES 3

features: inverse depth within monocular SLAM which permits the efficient and accurate

representation of uncertainty. This inverse depth which is the disparity mentioned below

is an essential parameter that its accuracy directly affects the accuracy of the map and the

scale recovery.
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Figure 1.1: Ideal stereo camera imaging model to infer depth.

The challenge of disparity estimation is achieving accurate performance according to

different hardware platforms such as monocular or stereo cameras. A stereo camera can

quickly solve the depth estimation problems like an individual’s eyes through knowledge

of similar triangle geometry as shown in Figure 1.1. We can get three equations:

z
f
=

x
xl

;
z
f
=

x−b
xr

;
z
f
=

y
yl

=
y
yr

(1.1)

We can get z of point P by replacing x, which is the depth of the space point P from the

camera:

z =
f ∗b

xl− xr
(1.2)

Y-axis is perpendicular to the page. It can be found that if we want to calculate the

depth, the premise assumes that we must know: 1. Camera focal length f , left and right

camera baseline b. These parameters can be obtained through prior information or camera

calibration. 2. Parallax xl− xr. Need to know the correspondence between each pixel

(xl,yl) of the left camera and the corresponding point (xr,yr) of the right camera. The
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above is the core problem of stereo vision.

Nevertheless, when people close one eye and observe an object with only one eye, they

can also distinguish which object is close and which is distant. Does it mean that monoc-

ular cameras can also get depth information? The positive answer comes with many

subsidiary conditions. It is authentic that people can obtain a certain depth of information

through one eye. However, there are some easily neglected factors in action: people have

an excellent prior knowledge of understanding this world. Therefore, there is a funda-

mental prediction of the size of everyday objects based on the years of visual training

from the child. According to the common sense of objects, the individual’s brain can

indeed infer which object is far and which object is near in the view. The second factor is

that the human’s eye is shaking when observing an object which is equivalent to a mov-

ing monocular camera. Similar to the principle of the Structure from Motion (SfM), the

single moving eye can get depth information by comparing multiple views. Thus, these

thoughts inspire monocular depth estimation.

2. Camera’s Ego-Motion Estimation

The most intuitive task of visual odometry is the camera’s ego-motion estimation. Ego-

motion is a continuous process where 2D image sequences captured by a camera are used

to estimate 3D camera movement within a rigid scene as defined in [14]. The camera

movement is a rigid body movement, which ensures that the length and angle of the

same vector in each coordinate system will not change. This transformation becomes

the Euclidean transformation. Ego-motion is 6-DoF camera rigid transformation quantity

which consists of three dimensional Euler angles to establish rotation matrix R and three

dimensional translation t = [tx, ty, tz]. Rotation matrix R can be uniquely determined by

the rotation axis x, y, z and the corresponding rotation angles: α , β , γ . For a three-

dimensional point P(x,y,z) rotating around the z axis by an angle θ , it can be expressed

by the following rotation matrix:

Rz(θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (1.3)
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Rotation matrix rotating around the other two x, y axes as:

Rx(θ) =


1 0 0

0 cosθ −sinθ

0 sinθ cosθ

 (1.4)

Ry(θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (1.5)

If the rotation axis sequence is (x,y,z), the rotation matrix is

R = Rx(α)Ry(β )Rz(γ) (1.6)

For a vector a in the world coordination, we can get a′ after one rotation described by R

and one translation t. Then combining rotation and translation together are:

a
′
= R ·a+ t (1.7)

Through the above formula, we use a rotation matrix R and a translation vector t to com-

pletely describe the coordinate transformation relationship of Euclidean space. VO or

ego-motion is to estimate R, t under the same world coordinate.

Because VO conducts geometric computations with authentic images from 3D environ-

ments, ego-motion estimation faces low accuracy and robustness problems. As mentioned

in the last section, a monocular camera estimates disparity through the structure from ego-

motion in the rigid scene. Thus, eliminating dynamic objects in the real world and adapt-

ing to dynamic scene changes has become one of the significant challenges to removing

the gap between the ideal rigid assumption and the real world. Ego-motion estimation

couples with disparity estimation under the framework of visual odometry, which makes

the simultaneous solution more difficult to be solved.

3. Optical Flow Estimation

Optical flow is the instantaneous velocity of pixel movement of 3D moving objects on the
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Observation image 
plane

2D optical 
flow vector 
u = (u, v)

3D motion

Figure 1.2: 3D motion is projected into optical flow in 2D image plane.

observation image plane as shown in Figure 1.2. Generally, the instantaneous change rate

of a specific coordinate point between two images is defined as an optical flow vector.

Optical flow comes into being by the movement of the foreground object itself, the move-

ment of the camera, or the joint movement of them in the scene. In 3D space, the motion

can be described by a motion field. However, the motion of an object is often reflected by

the different grey-scale distributions of different images in the image sequence on the 2D

image plane. Therefore, the motion field in space transferred to the image is expressed

as optical flow vector u. The optical flow vector is a two-dimensional vector: u = (u,v),

which reflects the changing trend of the grey level of each point on the image, which can

be regarded as the instantaneous velocity field generated by the motion of pixels with grey

levels on the image plane. The information it contains is the instantaneous velocity vector

information of each pixel. The purpose of studying the optical flow field is to approximate

the motion field that cannot be directly obtained from the sequence of images. Therefore,

the optical flow field corresponds to the motion field in an ideal situation.

If the optical flow method is used for visual odometry, there are two basic assumptions:

brightness is constant and time is continuous-time, or exercise is small. When the same

target moves between different frames, its brightness will not change significantly. This

assumption of the primary optical flow method and all variants of optical flow methods

must be satisfied. This assumption is used to obtain the fundamental equation of opti-

cal flow methods. Time changes should not cause drastic changes in the target position.

The displacement between adjacent frames should be relatively small, an indispensable
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assumption of the optical flow method. It is these basic assumptions that become the chal-

lenging issues to optical flow methods. In the next chapter, some details of optical flow

methods will be discussed in part related to geometry-based visual odometry methods

(literature reviews).

4. Semantic Segmentation

Most SLAM solutions are working at a low level, i.e., feature point or pixel level. These

feature points and pixels are chosen from computer vision algorithms or mathematical

representations of image information. It is hard for individuals to identify feature points

in some cases and judge their movement directions based on detected feature points.

In contrast, individuals’ vision is more efficient in identifying scenes at the object level

and estimating the distance through left and right eyes to infer their ego-motion based

on object movement in the view. This thesis envisions the higher-level representations

including objects and solid shapes and believes semantic segmentation tasks will play a

key role in visual odometry for the next generation of SLAM.

The wide application of deep learning technology has improved the accuracy of seman-

tic segmentation and replaced traditional methods such as support vector machines and

conditional random fields. However, the accuracy improvement of segmentation needs

developing deep neural networks to be trained on many labeled data. Designing a more

efficient network to produce more accurate semantic segmentation is another challenge

for visual odometry. In addition, utilizing semantic segmentation results to improve other

estimation tasks, such as depth or ego-motion estimation tasks, is another problem worthy

of investigation.

Hence, this thesis will set the above four tasks: disparity estimation, ego-motion estima-

tion, optical flow estimation, and semantic segmentation as the challenging tasks to investi-

gate using robust deep learning networks.

1.3 Methodology and Contributions
In recent years, deep learning methods have been proven to be more effective in processing

robust and efficient prediction tasks. Researchers strive to transfer these deep networks to

learn to estimate traditional physical quantities of visual odometry as a concise end-to-end
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system. Analogously, deep learning networks can do ego-motion regression or disparity

estimation by training on a large quantity of data set with ground truth according to recent

years of work. This supervised deep learning method performs well on the same training data

set. However, it does not perform well when migrating to a new scenario or other data sets

with different parameter settings. This problem is the generalization ability of deep neural

networks, and this is directly related to the robustness of the network’s learning ability.

In order to solve this poor generalization problem of learning systems, researchers try

to use an unsupervised learning methodology. The training process of unsupervised deep

learning does not require the ground truth labels to enable the network to learn the ability to

predict tasks. This unsupervised method dramatically increases the adaptive learning abil-

ity of networks and the prediction ability to unfamiliar scenes. Thus, the methodology of

this thesis is proposing novel network solutions for the unresolved problems. By designing

different network structures and new training loss functions, the thesis implements various

estimation tasks based on the public training dataset. Afterward, evaluation experiments are

processed on the public testing dataset to verify our novel contributions. The specific method

uses unsupervised deep learning to estimate depth, ego-motion, and optical flow. Traditional

geometric methods can constrain the learning convergence of these three fundamental quan-

tities to design the loss functions for unsupervised training. In addition, semantic segmen-

tation is a higher level of human-defined perception tasks. It does not have actual physical

meaning, so supervised training is inevitable for semantic segmentation tasks in the thesis.

Learning-based VO networks have been proposed to jointly estimate the depth (task 1)

and ego-motion (task 2). Because these works depend on the ideal rigid transformation

assumption, one of the challenging problems that affect the robustness and accuracy of these

deep networks is dynamic objects and occlusion areas in the scenes. The main work of this

thesis is how the networks can learn the dynamic features and occlusion areas to improve

the accuracy of learning-based visual odometry. This optimized estimation task of dynamic

objects is achieved through unsupervised optical flow (task 3) estimation for dynamic objects

detection. In addition, semantic segmentation (task 4) is integrated into the unsupervised

visual odometry training process in order to create a novel deep learning pathway for high-

level object-based representations of visual odometry.

The main contributions of this thesis are digging into the novel research of unsupervised
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deep learning networks and dynamic noise processing of training approaches for the above

four tasks in visual odometry which are summarised as below:

1. Stacked Generative Adversarial Networks based Visual Odometry (Chapter 3)

Recently end-to-end unsupervised deep learning methods have achieved an effect be-

yond geometric methods for visual depth and ego-motion estimation tasks. These data-

based learning methods perform more robustly and accurately in some of the challenging

scenes. The encoder-decoder network has been widely used in depth estimation, and

the RCNN has brought significant improvements in ego-motion estimation. Furthermore,

the latest use of Generative Adversarial Network (GAN) in depth and ego-motion es-

timation has demonstrated that the estimation could be further improved by generating

pictures in the game learning process. This section proposes a novel unsupervised net-

work system for visual depth and ego-motion estimation: Stacked Generative Adversarial

Network(SGANVO), consisting of a stack of GAN layers. The lowest layer estimates

the depth and ego-motion, while the higher layers estimate the spatial features. It can

also capture the temporal dynamic due to the use of a recurrent representation across the

layers. This part is based on the following journal publication:

• Tuo Feng, and Dongbing Gu. “SGANVO: Unsupervised deep visual odometry and

depth estimation with stacked generative adversarial networks.” IEEE Robotics and

Automation Letters 4.4 (RA-L) (2019): 4431-4437.

2. Recurrent Spatial-Temporal Networks for Estimating Depth, Ego-Motion, Optical

Flow and Dynamic Objects (Chapter 4)

Depth and camera ego-motion estimations from raw monocular unlabeled consecutive

RGB frames challenge learning-based visual odometry (VO). Most current monocular vi-

sual odometry learning works are based on warping monocular frames to neighbor views

to process the geometric reconstruction. Considering the limitation of the monocular

visual odometry learning task, the geometric reconstruction method fundamentally has

some problems: occlusions and dynamic objects can bring about the artifacts error during

the photometric loss’s computation and break down the static environment assumption.

In addition, construction cannot be inferred under a static scene with nil camera ego-

motion. This thesis proposes a novel monocular visual odometry system with a recurrent
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spatial-temporal feature learning network (RSTNet) to overcome these challenges. This

contribution includes the design of a dynamic auto-masking loss to get rid of occlusions,

nil ego-motion, and dynamic objects problems through warping source disparity to the

target disparity based on the rigid flow field. This part of the work initially employs the

error between full optical flow and rigid optical flow as the relatively camera static optical

flow field for a dynamic object detection network to predict dynamic object masks. The

evaluation experiment results outperform some state-of-the-art unsupervised monocular

approaches. This part is based on the following publications:

• Tuo Feng, Dongbing Gu. “RSTNet: Recurrent Spatial-Temporal Networks for Es-

timating Depth, Ego-Motion, and Dynamic Objects.” IEEE Transactions on Cyber-

netics. (T-Cyb), 2021. (Under Review)

3. Coalesce semantic segmentation network and geometry-based method into our self-

supervised learning of visual odometry (Chapter 5)

Semantic segmentation is a task of high-level processing objects in the field of computer

version field. It can provide additional information of objects for depth estimation to assist

in improving the estimation accuracy. Applying semantic segmentation to the training of

depth estimation has become a popular research topic. Most of the previous work has

focused on using pre-trained segmentation networks to predict semantic maps or ready-

made segmented images as additional input to the depth estimation network. This method

directly applies supervised learning with semantic labels in the two-stage training process.

Namely, semantic segmentation and depth estimation are independently trained. In order

to explore whether these two training stages can be combined into one training process to

achieve the training convergence of two tasks simultaneously, this thesis proposes a new

single-stage depth and ego-motion estimation coupled with the semantic segmentation

task. It relies on a semantic edge-ware loss function.

In addition, as geometric methods perform better than deep learning methods for ego-

motion estimation, especially in the case of small rotations, this part also explores the

development of a visual odometry system that can have both the accuracy of geometric

methods and the robustness of deep learning methods. The system is a combination of

our designed RSTNet and the commonly used geometric method. This part is based on
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the following project:

• Tuo Feng, Dongbing Gu. “DeepSLAM Demonstration System Project.” (University

Project)

1.4 Outline of Thesis
This first chapter serves as an introduction to the full thesis. The second chapter will state the

background literature review of my research. All of my work’s contributions are distributed

in Chapter 3, Chapter 4, and Chapter 5. The last one, Chapter 6 presents the conclusions and

potential future work of this thesis. The details of each chapter are summarized as follows:

I Chapter 2 plays a role as the theoretical basis and source of this thesis through reviewing

related work to the research’s topic. The basic geometric visual odometry is initially intro-

duced as a technical premise. There are three mainstream methods: feature-based meth-

ods, semi-direct methods, and direct methods. After that, learning-based visual odometry

is reviewed as the core implementation reference. From previous supervised learning

methods to recent unsupervised methods, this section presents the timeline of the related

research progress. It introduces the basic models of networks for later implementation and

the training data sets for the most common horizontal comparison standards. Afterward,

the related work is reviewed in the following four parts according to the different tasks.

Firstly, the literature review provides a comparative analysis of two disparity estimation

methods: monocular and stereo. Then the published estimation networks of the camera’s

ego-motion and object’s motion are discussed with sensor fusion learning networks. Re-

lated work of optical flow is divided into supervised methods and unsupervised methods.

At last, high-level object segmentation work is listed, from semantic segmentation and

instance segmentation to dynamic object detection.

I Chapter 3 proposes a stacked generative adversarial network (SGANVO) based unsu-

pervised system for visual depth and ego-motion estimation. The related unsupervised

learning works of depth and ego-motion estimation are introduced in the beginning. Then

the system’s overview is presented as a generator and discriminator architecture accord-

ing to the structure of generative adversarial networks. The core novel contribution of
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this visual odometry is the adversarial training procedure through the generator loss func-

tions and discriminator loss functions. To evaluate the performance of our SGANVO,

the depth estimation and ego-motion estimation experiments are demonstrated as eval-

uation methods. This chapter concludes that this system generates more accurate depth

estimation results and comparable visual odometry results compared with other published

unsupervised learning networks.

I Chapter 4 drives deep into the research of dynamic feature representation of deep learn-

ing networks used for visual odometry and proposes the recurrent spatial-temporal net-

work (RSTNet) for estimating depth, ego-motion, and dynamic objects. The first part

introduces dynamic objects and occlusion as two commonly faced problems of depth es-

timation and ego-motion estimation networks. The previous related work implemented

the unsupervised learning-based visual odometry networks without considering the noise

caused by dynamic objects to rigid transformation scenes. Furthermore, some improve-

ment learning methods make a step forward in the network estimation performance by

crudely eliminating dynamic masks. To achieve a refined dynamic object mask estima-

tion, this chapter of the thesis proposes a novel network model consisting of recurrent

spatial-temporal encoder-decoder modules. RST module can learn the perfect spatial-

temporal features extraction through its internal recurrent features representation and re-

fined sub-pixel layers. Because of proposing such a progressive network model, this

thesis chapter presents the self-supervised monocular recurrent spatial-temporal visual

odometry named RSTNet. RSTNet jointly manages four complex tasks: depth, ego-

motion, optical flow and dynamic objects estimations in one stage training process of net-

works. The evaluation experiments provide sufficient verification for the performances of

all involved tasks. The conclusion summarizes that our novel visual odometry can esti-

mate more accurate depth, ego-motion, and optical flow with the advanced treatment of

dynamic objects.

I Chapter 5 integrates the semantic segmentation supervised training into our novel unsu-

pervised visual odometry training procedure. The high-level object segmentation allows

the networks to learn to understand objects according to massive artificially defined la-

bels, which costs an amount of hardware memory space. We use a semantic segmentation
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network instead of an optical flow estimation network to implement the one-stage training

target in our visual odometry system. The first part of this chapter is the introduction of

related semantic estimation works. Afterward, depth estimation, ego-motion estimation,

and semantic segmentation collaborative networks are proposed with a semantic-guided

unsupervised training procedure. The evaluation experiments show that our novel net-

works estimate the accurate depth and ego-motion and produce competitive semantic

segmentation results. This chapter also leverages geometry-based visual odometry and

learning-based networks for engineering applications. The geometry-based visual odom-

etry is integrated with parts of our trained network model to develop a visual odometry

system by Python 3.6. Our synthesized visual odometry system’s performance has less

drift compared with some pure learning-based methods and more robustness than some

pure geometry-based methods.

I Chapter 6 gives a conclusion for all the thesis and summarizes the contributions as aca-

demic papers for publications. Our novel ideas provide some new directions for future

work in the direction of the SLAM research area.

This first chapter introduces my thesis, consisting of motivation, research tasks and chal-

lenges, methodology and contributions, and an outline of the whole thesis. The following

chapter will present the thesis literature review.
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Chapter 2

Literature Review

Before this thesis begins to present its main contribution work, some imperative background

reviews need to be laid out. Section 2.1 introduces the related works of traditional geometry-

based visual odometry as theoretical preparation for implementing the network training

essence of learning-based methods. There are three kinds of basic geometry-based visual

odometry: feature point methods, direct methods, and semi-direct methods. From the con-

sistent timeline of research progress, the reviews of learning-based visual odometry are pre-

sented from supervised deep learning to unsupervised deep learning in Section 2.2. This

section outlines the improvement of unsupervised training methods compared with previ-

ous supervised works and lists the most popular training data sets and basic deep learning

network models transferred from the computer vision field. More details of related deep

learning-based works to estimate disparity, ego-motion, optical flow, and object segmenta-

tion are divided into the following Sections 2.3, 2.4, 2.5, and 2.6.

2.1 Geometry-based Visual Odometry

This section provides fundamental principles and an overview of three classical geometric

SLAM solutions, including feature points and direct and semi-direct methods. Feature point

methods calculate the camera’s ego-motion through the feature points extracted and matched

from two consecutive frames and optimize the ego-motion through bundle adjustment to

minimize the reprojection error like representative work in [15]. Because the feature point

methods need to rely on a repetitive feature extractor and correct feature matching process

to calculate the camera’s motion correctly, it has apparent shortcomings: time-consuming

15
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extractor limits the speed of SLAM, the sparse feature points waste valid information and

downtime in case of featureless scenes such as a white wall or a vast sky. Therefore, a more

holistic and more elegant way to deal with data association issues is proposed as the direct

method. Just like the work of [16], the direct method estimates the motion of the camera

based on minimizing photometric errors from brightness information of the pixels without

knowing the correspondence between point pairs, which avoids the disadvantages of feature

point methods. The optical flow method is one of the direct methods which is discussed

in the task 2. Likewise, direct methods also strongly rely on constant grey values and small

movements, limiting its application scenarios. Taking into account the characteristics of both

feature point methods and direct methods, representative work in [17] puts forward the semi-

direct methods, which contain selecting the feature points and computing the photometric

errors of pixel block region surrounding the feature points. The related literature reviews of

each method are detailed in the following three sub-sections.

2.1.1 Feature Point Methods

A large amount of work on the feature point method has been published each year. This sec-

tion only outlines a basic timeline of research development. The timeline is not exhaustive,

but it covers most typical works as shown in Table 2.1. It started with the initial real-time

SLAM [18] in 2003 and its optimized version [19] in 2004. Meltzer et al. [20] developed a

vision-based SLAM algorithm incorporating feature descriptors derived from multiple views

of a scene, incorporating illumination and viewpoint variations. CV-SLAM in [21] proposed

a fast and robust ceiling SLAM technique using a single ceiling vision sensor, and Smith

extended the real-time monocular SLAM with straight lines in [22].

After summarizing these works, a representative MonoSLAM was emerged by Davison

et al. [23] in 2007. MonoSLAM employed a probability framework to create sparse and

consistent 3D feature points for 30Hz real-time mapping on a standard computer. However,

its tracking and mapping components are synchronized in one linked thread. Because esti-

mating the 6-DoF ego-motion and visualizing the 3D point cloud map on every image, the

number of sparse futures of this single thread method is restricted. In the same year, Klein

et al. [24] proposed a parallel tracking and mapping (PTAM) system solving the inefficiency

problem by tracking each frame to compute the 6-DoF ego-motion but updating the map by
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Table 2.1: Summary of Feature point methods

Methods Year Reference

2003 Real-time SLAM [18]

2004 Real-time 3D SLAM [19]

2004 Meltzer et al. [20]

2005 CV-SLAM [21]

2006 Smith et al. [22]

2007 MonoSLAM [23]

2007 PTAM [24]

2009 Migliore et al. [25]

2013 RGB-D SLAM et al. [26]

2013 Li et al. [27]

2014 Weikersdorfer et al. [28]

Feature Points 2015 ORB-SLAM [15]

Method 2015 Leutenegger et al. [29]

2016 Forster et al. [30]

2017 ORB-SLAM2 [31]

2017 Bundlefusion [32]

2017 Mur et al. [33]

2018 ProSLAM [34]

2018 Sun et al. [35]

2018 ICE-BA [36]

2018 VINS-mono [37]

2019 Geneva et al. [38]

2020 Structure-SLAM [39]

2020 DM-SLAM [40]
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demanding bundle adjustment calculation on keyframes in the other thread. Nevertheless,

PTAM system only performed very well in a small scene. In 2009, Migliore et al. [25] used

a single camera to solve the problem of SLAM in dynamic environments obtaining.

Enhanced sensors can provide more helpful information for SLAM. Works in [26], [27],

[28], [29], [30], and [37] take the advantage of enhanced sensors, such as RGB-D and inertial

measurement unit (IMU). With the development of hardware, a new kind of sensor appears

called event camera or Dynamic and Active-pixel Vision(DAVIS) sensor. Some SLAM al-

gorithms like in [41] had a decent performance, especially in some challenging scenarios.

Because it is not relevant to the methodology of this research, this section will not go deep

into the methods with enhanced sensors.

ORB-SLAM [15] is considered as one of the most popular features points of monocular

SLAM algorithms up to now, and the optimized version stereo ORB-SLAM2 [31] was pro-

posed in 2017. The innovation point of this work is focused on the use of ORB features to

recognize location through Bag-of-Words (BoW). ORB was proposed in [42] as a rotational

invariant and scale-aware descriptor that can be extracted at high frequencies. The most

outstanding advantage of ORB-SLAM is the efficient visual odometry with re-localization

and loop closure detection as a complete real-time system. Following the PTAM’s parallel

threads in [24], but this ORB feature-based system can work well in large-scale environ-

ments. The most solid foundation work has been initiated from ORB-SLAM. The later

works make different kinds of optimizations in [32], [33], [34], and [38] or transfer to indoor

environments as [40] or add enhanced sensors like inertial information as in [39].

2.1.2 Direct Methods

Direct methods put data association and pose estimation in a unified nonlinear optimization

framework. In contrast, feature point methods are solved step by step: the association among

data is obtained by matching feature points, then estimates the ego-motion based on the

association. These two steps are usually independent in feature point methods. However,

direct methods directly estimate the movement of the camera based on the pixel brightness

information, without calculating key points and using descriptors of feature points at all.

Silveira et al. [43] firstly proposed an efficient direct approach for visual SLAM directly

using image intensities as observations which formulated the visual SLAM problem as a
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Table 2.2: Summary of Direct methods and semi-direct methods

Methods Year Reference

2008 Silveira et al. [43]

2011 DTAM [44]

2011 Kinectfusion [45]

2012 Kintinuous [46]

2013 Whelan et al. [47]

2013 Weikersdorfer et al. [48]

2013 Kerl et al. [49]

2013 Engel et al. [50]

2014 LSD-SLAM [16]

Direct 2015 Stereo LSD-SLAM [51]

Method 2015 Bloesch et al. [52]

2016 ElasticFusion [53]

2016 EVO [54]

2017 DSO [55]

2017 Stereo DSO [56]

2018 DSVIO [57]

2018 Zhou et al. [58]

2019 BAD SLAM [59]

2020 DVL-SLAM [60]

2020 DSM [61]

2010 Newcombe et al. [62]

2014 SVO [17]

2016 SVO2 [63]

Semi-Direct 2018 Lee et al. [64]

Method 2019 RESLAM [65]

2019 Fmd Stereo SLAM [66]

2020 SD-VIS [67]

2020 Zhao et al. [68]

2021 Liang et al. [69]
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nonlinear image alignment task. Then Newcombe et al. [44] offered a dense tracking and

mapping (DTAM) system. DTAM system estimates the depth of each pixel in an image to

generate its dense 3D map. This approach inspires depth and ego-motion joint estimation in

deep learning. Profit from using RGB-D cameras, KinectFusion was proposed in [45] as an-

other dense registration and mapping method which is relied on a truncated signed distance

function (TSDF) for pixel grid representation and utilizes Iterative Closest Point (ICP) for

aligning depth images. Both DTAM and KinectFusion run indoors in real-time with commer-

cial GPU. Whelan developed Kintinuous in [46] for optimizing the KinectFusion in the next

year. The same author proposed a robust real-time visual odometry for dense RGB-D map-

ping. The similar attempts were made in [48] and [49] until semi-dense visual odometry [50]

was proposed in 2014. This work increased the efficiency of dense-based methods without

using all pixels of one image but using the pixels with a non-negligible image gradient to

run in real-time on CPUs. SVO estimated the semi-dense disparity and tracked the 6-DoF

ego-motion with the alignment of estimated disparity maps. Engel et al. [16] extended SVO

to Large-Scale Direct Monocular SLAM (LSD-SLAM) system which could run in large-

scale environments with CPUs. The optimization of LSD-SLAM is employing the sim(3)

to detect scale drifts and providing a probabilistic solution to improve the depth prediction

during tracking. The stereo version of LSD-SLAM in [51] was developed in the next year.

After the works in [52], [53] and [54] tried different explorations, Engel proposed another

very representative work: direct sparse odometry (DSO) in [55]. This work combined pho-

tometric errors with geometric disparity errors. It optimized all the model parameters jointly

to obtain good performances such as high accuracy in tracking and mapping and robustness

under featureless challenges. The stereo version and inertial version of DSO were proposed

following that in [56] and [57]. Zhou et al. [58] presented the semi-dense 3D reconstruction

based on stereo event camera. T.Schops in [59] applied the bundle adjustment to process

direct SLAM based on RGB-D cameras. DVL-SLAM [60] and DSM [61] utilized the sparse

information to implement their optimizations for direct methods.

2.1.3 Semi-Direct Methods

Semi-direct methods establish feature correspondences based on direct methods. This method

constructs the tracking map by minimizing the photometric errors and reprojection errors. In
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the second part of Table 2.2, there are not so many works like the other two methods. New-

combe et al. [62] made the first attempt to develop a monocular semi-direct method. Forster

proposed a fast semi-direct monocular visual odometry (SVO) in [17] and the second ver-

sion of SVO was proposed by the work [63]. Lee et al. [64] improved the semi-direct based

monocular SLAM in a loosely-coupled way. Focus on the fast performance of semi-direct

method, Tang et al. [66] and Liu et al. [67] explored novel SLAM systems. For robustness

of SLAM in complex environments, Zhao et al. [68] proposed a feature-aided semi-direct

stereo SLAM and Liang et al. [69] proposed a SLAM algorithm in challenge environments.

Although semi-direct methods have some advantages of both feature point methods and di-

rect methods, they have a high requirement on image quality and are sensitive to photometric

changes. This is similar to pure direct methods.

To sum up, these three approaches have achieved good performance in some targeted

scenes. However, their robustness and accuracy in complex scenes such as high dynamic

and large-scale environments still need further improvement. Learning-based visual odome-

try is proposed as the new emerging pathway to solving the above problems. Nevertheless,

the basic ideas of these three geometry-based methods provide the primary theoretical foun-

dation for learning-based visual odometry.

2.2 Learning-based Visual Odometry

Learning-based visual odometry estimates the required tasks in an end-to-end mode without

matching manually designed features between images. Deep neural networks extract implicit

features inside the multi-layer of network structure. The expression layer of networks can

export the unexplained feature points, disparity, optical flow, or ego-motion estimation for

the back-end of SLAM.

At the beginning of this chapter, the thesis presents a wraparound summary of related

works for supervised, unsupervised, and semi-supervised methods. The basic deep learning

network models, popular loss functions, and training data sets are introduced in the following

sub-sections of the first part. The next four sections introduce the main four tasks: disparity,

ego-motion, optical flow, and high-level object segmentation.
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Table 2.3: Learning-based visual odometry literature summary. SP represents supervised
learning methods, UnSP represents unsupervised learning methods, and SemiSP represents
semi-supervised learning methods.

Reference Year SP UnSP SemiSP Task
Eigen et al. [70] 2014

√
Depth

Li et al. [71] 2015
√

Depth, Surface Normal
Liu et al. [72] 2015

√
Depth

Konda et al. [73] 2015
√

Pose
Kendall et al. [74] 2015

√
Pose

Costante et al. [75] 2015
√

Pose
Mayer et al. [76] 2016

√
Depth, Flow

Kendall et al. [77] 2017
√

Depth
Clark et al. [78] 2017

√
Depth, Pose

Wang et al. [79] 2017
√

Pose
CNN-SLAM [80] 2017

√
Depth, Pose

Fu et al. [81] 2018
√

Depth
Xue et al. [82] 2018

√
Pose

Xue et al. [83] 2019
√

Pose
Chen et al. [84] 2019

√
Pose

Facil et al. [85] 2019
√

Pose
Garg et al. [86] 2016

√
Depth

Godard et al. [1] 2017
√

Depth
Kuznietsov et al. [87] 2017

√
Depth

Poggi et al. [88] 2018
√

Depth
Ramirez et al. [8] 2018

√
Depth

Aleotti et al. [89] 2018
√

Depth
Pilzer et al. [90] 2018

√
Depth

Wang et al. [91] 2018
√

Depth, Pose
Zhan et al. [92] 2018

√
Depth, Pose

Li et al. [93] 2018
√

Depth, Pose
Wang et al. [94] 2019

√
Depth, Pose

Pilzer et al. [95] 2019
√

Depth
Tosi et al. [96] 2019

√
Depth

Chen et al. [97] 2019
√

Depth
Fei et al. [98] 2019

√
Depth

Zhou et al. [4] 2017
√

Depth, Pose
Vijayanarasimhan et al. [99] 2017

√
Depth, Pose

Yang et al. [100] 2017
√

Depth, Pose
Mahjourian et al. [101] 2018

√
Depth, Pose

Zou et al. [102] 2018
√

Depth, Pose, Flow
Yin et al. [103] 2018

√
Depth, Pose, Flow

Ranjan et al. [104] 2019
√

Depth, Pose, Flow
Wang et al. [105] 2019

√
Depth, Pose

Li et al. [106] 2019
√

Depth, Pose
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2.2.1 Deep Learning Methods Summary

Learning-based visual odometry handles the required tasks through training deep neural net-

works. The networks are trained periodically through their designed objective function until

it converges. According to the resources required by different objective functions, deep

learning network training methods are divided into supervised, unsupervised, and semi-

supervised. This training procedure is supervised if the objective function needs the ground

truth labels of required task data to build the loss functions. Conversely, the needless ground

truth data method is unsupervised. A semi-supervised approach between them does not need

the task’s ground truth data but utilizes ground truth labels for other variables. In this sub-

section, the thesis provides a summary of deep learning-based visual odometry works that

are divided into three categories: supervised, unsupervised and semi-supervised in Table 2.3.

This table also summarizes the main tasks of each work. Because the main contributions of

this thesis are based on unsupervised learning methods, and related works of each task are

discussed in the following sections, the unsupervised learning methods of this part are not

exhaustive. In the Table 2.3 SP, UnSP, and SemiSP represent supervised unsupervised and

semi-supervised three learning methods. The disparity is the inverse of depth tasks, and the

pose represents the camera’s ego-motion for simplicity.

Eigen et al. [70] made the initial attempt to predict the depth map from monocular data

through training a multi-scale deep network. Li et al. [71] added the surface normal into the

network estimation tasks. Liu et al. [72] presented another depth estimation method with

single images using the deep convolutional neural field (DCNF) which integrates continu-

ous Conditional Random Field (CRF) components into an unified deep convolution neural

network (CNN). To improve real-time performance, Li et al. [71] proposed the super pixel

pooling method combined with fully convolutional networks (FCN). The most intuitive idea

of these supervised learning works from [73] to [79] and [82] to [85] is directly applying the

ego-motion ground truth as the supervised training signal to train the networks to regress the

6-DoF ego-motions according to input images sequence. Works in [77] and [81] changed the

supervised task to depth estimation. Jointly estimating the multi-tasks in supervised learning

methods was introduced in [71], [76], [78], and [80].

Semi-supervised learning networks are almost trained for a single task such as depth
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Figure 2.1: Target view synthesize through warping source view.

or ego-motion. Suppose it needs to estimate disparity by using a monocular camera. In

that case, the camera’s ego-motion should be known in advance, as discussed in the third

section methodology of Chapter 1. Geometry stereo depth estimation applies the knowledge

of similar triangle geometry as shown in Figure 1.1 which can be regarded as two sequential

monocular images on a time series with the known motion. Therefore, the semi-supervised

learning for monocular depth estimation is based on the ego-motion supervised estimation

in [86] to [90] and [95] to [98]. For stereo depth estimation in [91] to [94], the deep networks

can be trained to jointly estimate depth and ego-motion using unsupervised learning with

stereo training input images.

2.2.2 Unsupervised Learning Implementation

Supervised learning is very straightforward. Nevertheless, the most critical problem arises:

estimating the ego-motion or depth through unsupervised training only by feeding monocu-

lar image sequences. To illustrate this problem, it is necessary to start with the view synthesis

through image warping based on rigid transformation. Let pt denote the homogeneous coor-

dinates in the target view, and K denote the camera intrinsic matrix. We can obtain the pt’s
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projected coordinates pst onto the source view ps as bellow:

pst ∼ KT̂t→sD̂(pt)K−1 pt (2.1)

The projected coordinates pst are continuous values. In Figure 2.1, P is a point in the 3D

space, pt is the homogeneous coordinates on the target image frame. The camera coordinates

ct can be converted by pixel coordinates pt by using the depth D̂(pt) of pixel pt and camera

intrinsic matrix K. The target camera coordinate ct can be projected to the source pixel

coordinate pst through the camera intrinsic matrix multiplying ego-motion T̂t→s in equation

2.1. By using the bilinear sample technique, we can obtain the value of the warped image Îs

at location pt from Is(ps): Îs(pt) = Is(ps). The composite target image Îs(pt) warping from

source view Is(ps) constructs the supervised signal with the input image It(pt) for training

although the synthesized image Îs(pt) could lose some edge pixels sometimes. In this way,

the network can jointly estimate the depth and ego-motion without ground truth labels to

implement unsupervised learning.

2.2.3 Deep Neural Network Models

Supervised and unsupervised learning methods need to build deep neural networks to rep-

resent the quantities required by various tasks. The most basic neural network model is the

convolutional neural network (CNN). Albawi et al. [107] presented this CNN name coming

from mathematical linear convolution operation between matrixes. A CNN has a structure

with multiple layers: including convolutional layer, non-linearity layer, pooling layer, and

fully-connected layer. The convolutional and fully connected layers have parameters, but

pooling and non-linearity layers do not have parameters.

There are three crucial network models to be used. They are recurrent neural network

(RNN), Encode-to-Decoder, and generative adversarial network (GAN).RNN is a class of

artificial neural networks where the connections between nodes form a directed graph along

a temporal sequence as introduced in [108]. Its structure allows it to exhibit temporal dy-

namic behavior through maintaining the memory of hidden states in terms of time via feed-

back loops as shown in Figure 2.2. RNN model runs depending on the current input xt and

previous states ht . A simple RNN cannot handle the exponential exploding of weights or

disappearance of gradients with recursion, and it is difficult to capture long-term correlation.
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Figure 2.2: Basic RNN unit expands in time series.

Figure 2.3: Internal structures of LSTM unit and GRU unit

Therefore, a unique recurrent structure is long short-term memory (LSTM) which can solve

the problem well. LSTM is proposed in [109] which is suitable for processing and predict-

ing important events with very long intervals and delays in time series. However, the evident

disadvantages of LSTM are the complex network structure and huge storage memory of net-

work parameters. Because LSTM training is relatively slow, gated recurrent unit (GRU) is

introduced by [110] slightly modifying LSTM to make speed much faster, but the accuracy is

unchanged. The internal structures of the LSTM unit and GRU unit are shown in Figure 2.3.

To construct a spatial-temporal sequence prediction model and grasp time-space information

at the same time, the fully connected weight in LSTM is changed to convolution, which is

called ConvLSTM in [111]. The same spatial-temporal improved GRU network is proposed

as ConvGRU in [112]. More technical details such as the mathematical relationship of the

internal unit structure have been clearly stated in the related papers. The recurrent neural

network unit used by Chapter 4 is the ConvGRU model.

Auto-encoder is another essential model of deep learning networks, as shown in Figure

2.4. The purpose of this model is the learning presentation for a group of data, especially

for dimensionality step-down like compressed sensing [113]. It is different from compressed
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Figure 2.4: Auto-encoder model

sensing, where the signal is sampled internally and recovers the signal. It works by com-

pressing the input signal through CNN to learn the feature representation and recovering it

through mirror-symmetric CNN from features with reduced distortion. Compressed sensing

has the advantage of a fast recovering signal by little sampling information, but encoder-

decoder has the advantage of less distortion encoding like work in [114]. There are two

primary components of the auto-encoder model: encoder and decoder. The encoder and de-

coder are connected to form a feed forwarding mesh structure with the coding features gen-

erated in the middle layers. This encoder-to-decoder mathematical logic can be expressed in

the following formula:

so = D(f); f = E(si) (2.2)

which si is the input signal feeding into the encoder E that is a non-linear function represen-

tation. The encoder compresses the input signal through CNN to export coding features f.

The decoder D is also a non-linear function processing f through deconvolution layers, di-

lated convolution layers, upsampling layers, or convolution layers to output so. Auto-encoder

has been widely used for image classification and image recognition in the computer vision

field. The most popular network models used in depth estimation, optical flow estimation,

and segmentation are the encoder-decoder models. Some details will be introduced in the

following sub-sections, along with related tasks.

Generative adversarial network (GAN) is a class of machine learning frameworks de-
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Figure 2.5: Generative adversarial network model

signed by Ian Goodfellow et al. [115] in 2014. The basic model structure is two neural

networks contesting in a zero-sum game where one agent’s gain is another agent’s loss. The

model of GAN is shown in Figure 2.5. Generator and Discriminator are two neural networks

acting as the players of the game. The generator network generates learning samples from

latent random variables. The input to the Discriminator network is an actual image sample

with the generated sample. Discriminator learns to detect if the generated sample is real or

fake according to the actual image sample. The generator loss and Discriminator loss are

formed from the zero-sum game rule. The loss functions generally consist of multiple loss

functions such as the photometric errors and reprojection errors of geometry-based methods

for GAN-based visual odometry. More details of implementation are presented in Chapter 3.

Speaking of the typical network model, it is inevitable to introduce the Spatial Trans-

former Network [116]. For computer vision tasks, we hope that the model can have a certain

degree of invariance to the change of object pose or position to analyze objects in differ-

ent scenes. Traditional CNN uses convolution and Pooling operations to achieve translation

invariance to a certain extent. However, this artificially set transformation rule makes the net-

work excessively dependent on prior knowledge, which can neither truly achieve translation

invariance. Invariance’s requirements are very high for translation which makes CNN lack

the proper feature invariance for geometric transformations such as rotation and distortion

that have not been artificially set. Spatial Transformer Network with derivable properties

does not require extra annotations and can adaptively learn the spatial transformation meth-

ods for different data. It can perform the spatial transformation on the input and be inserted
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into any layer of the existing network as a network module to achieve spatial transformation

of different Feature maps. Finally, let the network model learn the invariance to translation,

scale transformation, rotation, and more common distortions, and also make the model also

shows better results on many benchmark data sets.

2.2.4 Tackle the Long-Range Dependencies of CNN

From the effect point of view, the spatial invariance can realize the degeneration, such as

parameter sharing and translation. The channel specificity allows the convolution kernel to

collect diversified information encoded in different channels. However, it should be noted

that convolution is not perfect, and there are some inherent defects. On the one hand, al-

though the combination of space invariance and space compactness plays a role in improving

efficiency and translation and other degeneration, it causes the convolution kernel to lose the

ability to adapt to the diversified visual modes of different spatial positions. The locality also

limits the receptive field of convolution, and it is challenging to capture long-distance spatial

interactions at one time. On the other hand, even for many successful deep neural networks,

there is apparent inter-channel redundancy in the convolution filter, making it possible for us

to reduce the specificity of the convolution kernel in different channels without significantly

affecting its expression ability.

The design of the convolutional layer needs to ensure locality through a limited receptive

field and ensure translation equivariance through weight sharing. Research [116] has shown

that these two attributes are the critical inductive biases when designing image processing

models. However, the inherent locality of the convolution kernel makes it impossible to

obtain the global context in the image, and to recognize the objects in the image better, the

global context is essential.

The self-attention mechanism [117] is a recent development in obtaining long-range in-

teractivity, but it is mainly used in sequence modeling and generative modeling tasks. The

key idea behind the self-attention mechanism is to take the weighted average of the values

calculated by the remote unit. Unlike pooling or convolution operators, the weight used

in the weighted average operation is dynamically obtained through the similarity function

between the hidden units. Therefore, the interaction between input signals depends on the

signals themselves rather than predetermined by their relative positions. In particular, it is
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worth mentioning that this enables the self-attention mechanism to obtain the Great Wall

interactivity without increasing the parameters. In the future, our RSTNet in chapter 4 can

utilize this idea to optimize our network to obtain longer-range learning capabilities.

2.2.5 Training Dataset

The learning mechanism of deep neural networks is very much like the human learning

process, which needs a large amount of data for training. Individuals understand this world

by seeing a lot, hearing a lot, and feeling a lot to establish reactions. This data-driven learning

mode makes deep neural networks simulate the individual perception of the environment.

This section will briefly overview popular datasets used for depth estimation, ego-motion

estimation, optical flow estimation, and object segmentation.

The first dataset KITTI is one of the most leading comparison benchmarks, which is

collected in outdoor environments in a driving vehicle in [118]. The KITTI provides monoc-

ular, and stereo images with ground truth of 6-DoF ego-motions derived from the fusion of

multiple sensors data and the depth maps derived from the calibrated laser. The KITTI also

provides a small number of artificial labels of semantic segmentation and instance segmen-

tation. The second popular dataset is Cityscapes [119] which also provides monocular and

stereo image sequences with ground truth of depth map, ego-motions, and semantic segmen-

tation. Almost all the work of depth estimation and ego-motion estimation are evaluated on

these two benchmarks. For object segmentation tasks, COCO [120] is the most frequently

used data set. To remedy the lack of abundant segmentation training labels and 3D labels,

the KITTI 360 [121] is proposed for the joint estimation of depth, ego-motion, and semantic

segmentation.

Considering the fairness of comparison with other works, KITTI [118] is the primary data

set used in this thesis for depth estimation, ego-motion estimation, optical flow estimation,

and semantic segmentation.

2.3 Disparity Estimation with Deep Learning

Disparity estimation is a crucial task for visual odometry. Some geometry-based methods

utilize the disparity to implement the ego-motion computation. Following the summary of

deep learning methods in Chapter 2, this section introduces related unsupervised learning
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work of disparity estimation. By focusing on only using cameras as input without any other

additional sensors, unsupervised deep learning methods of disparity estimation are divided

into monocular depth estimation and stereo depth estimation.

2.3.1 Monocular Depth Estimation

How to implement unsupervised learning for depth estimation has already been described

in earlier sections. The primary method is to design two networks separately, estimating

the depth map of each frame and the ego-motion between two consecutive frames. The

learning cost function consists of reprojection errors and photometric errors through warping

to synthesize target frame from a source frame in the SfM principle which jointly constrains

the learning convergence of the two networks.

The groundbreaking works are represented by SfMlearner [4], and SfM-net [99]. Both

of them proposed the auto-encoder model-based disparity network for predicting depth and

pose network for predicting ego-motion. SfMlearner proposed an additional decoder net-

work to predict the uncertainty mask for eliminating non-rigid motion noise. SfM-net [99]

proposed using two auto-encoder networks to predict depth and object masks. In addition,

SfM-net applied the features from the middle layer of a motion network connecting with the

object’s motion and camera’s motion representation layers to predict ego-motion. Similarly,

Geonet [103] improved the estimation performance of depth network and pose network and

constructed the residual optical flow network to refine optical flow estimation. This work

divided the network’s training into two stages: first, train the SfM networks to obtain good

initial estimations and then train the residual optical flow learning network to estimate full

flow. Yang et al. [100] added the edge-aware depth normal consistency loss in the cost

function. Furthermore, Mahjourian et al. [101] was inspired by the optimization method:

Iterative Closest Point (ICP) to build the 3D geometric constraint loss function.

2.3.2 Stereo Depth Estimation

Unsupervised stereo depth estimation is an improvement pathway of pure monocular depth

estimation without other expensive sensors. Inspired by the Deep3D [122], the deep neural

network can learn the depth representation like an individual’s stereo eyes through training

a large number of stereo images. The change from the left to the right is viewed as a cam-

era motion and used as additional depth training information. The main idea runs as the
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representation capability of auto-encoders, where the encoder represents the left image with

a predicted monocular depth map. At the same time, the decoder is a warp function that

synthesizes a reconstructed image through the predicted depth map from the right image.

This left-right continuity work was proposed in [86] which reconstructed the error of left

image from right warped image to build the warping loss functions to train the networks.

Zhong et al. [123] developed the unsupervised deep depth estimation network by feeding

pure stereo images in this way. Godard et al. [1] improved the stereo depth estimation by

wrapping left and right images Il and Ir across each other to synthesize the corresponding

images I
′
l , I

′
r for left and right reconstruction loss function Ei:

Ei = ∑

∥∥∥Il− I
′
l

∥∥∥
2
+∑

∥∥∥Ir− I
′
r

∥∥∥
2

(2.3)

The accuracy of depth prediction could be enhanced by penalizing both left and right photo-

metric losses. UnDeepVO [93] enriched the reconstruction loss functions by warping tempo-

ral sequence images forward and backward each other and warping left and right each other.

Thus, this work achieved better performance on depth and ego-motion estimations with the

vast loss parameters. In addition, the use of 3D geometric registration loss only contributed

a little or even adverse effects through this thesis’s research experiments in some previous

works. Why this kind of loss function performs poorly other than making a significant differ-

ence like work in [101]. Because the depth estimation is not accurate in the early stage of the

training, the 3D point cloud in the camera coordination, which is transformed from using the

depth and image, is not reliable. Accordingly, the joint training of 2D reconstruction error

and 3D geometric registration loss cannot guarantee the network to converge to the target

tasks. The 3D point cloud warping loss Ep can be listed as below:

Ep = ∑

∥∥∥P̂2−P
′
1→2

∥∥∥
L

(2.4)

The point cloud P̂2 is transformed from the depth d2, which is poorly predicted by the depth

network at the beginning of the training process. The point cloud P
′
1→2 is transformed from

the depth d1. The poor depth estimation cannot provide a valued supervised signal for

training. In other words, the quantity to be predicted cannot self-guide training’s conver-

gence. Differently, [101] constructed the points cloud through the depth and image, which
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are strongly dependent on the image projected onto 3D space according to the depth informa-

tion. The image pixel loss provides more training weight in this way instead of completely

depending on the roughly estimated depth. To sum up, stereo depth estimation networks can

be trained fully unsupervised in an end-to-end approach. Some of the related work can be

treated as improved monocular depth approaches during the inference phase with the pose

estimation networks. Benefit from geometrical constraints. Recent unsupervised networks

even outperform some supervised methods in terms of accuracy of depth estimation.

2.3.3 Depth Estimation Discussion

Disparity or depth estimation plays an essential role in building up dense maps for SLAM

systems. The related depth estimation works have made good estimation performance based

on monocular camera or stereo camera. Depth estimation methods still face some prob-

lems from their theoretical underpinning assumptions: rigid transformation and static scene.

More and more works are being proposed to overcome these problems such as modifying

loss functions and predicting more subsidiary tasks. Monocular depth estimation networks

can learn disparity representation from monocular image sequences, which could save more

resources than stereo networks.

No matter how these works optimize the depth estimation networks, they cannot produce

a good result without ego-motion estimation under an unsupervised learning framework. In

the next section, deep learning-based motion estimation works will be reviewed.

2.4 Ego-Motion Estimation with Deep Learning
Traditional geometry-based visual odometry utilizes rigid transformation technical knowl-

edge to estimate the camera’s ego-motion. Deep neural networks can be trained to learn

sensing distance and position and use this feedback to adjust the pose in an end-to-end data-

driven method. Thus, the depth and the ego-motion are jointly estimated by networks in the

unsupervised learning mode. In addition, object motion estimation opens up a pathway to

deal with dynamic object noise.

2.4.1 Improved Camera’s Ego-Motion Estimation

The prime task of visual odometry is estimating the camera’s ego-motion to build a trajectory

map. Deep learning networks learn to predict 6-DoF ego-motion as a regression problem in
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supervised learning methods such as Kendall et al. [74] and [124]. In order to implement un-

supervised learning of ego-motion, depth and pose are jointly estimated as introduced in the

initial work [4] and [99]. The basic theoretical explanation of how ego-motion unsupervised

learning is the same as the depth’s unsupervised deep learning in the second sub-section of

Chapter 2.2. The required quantities: depth and ego-motion, are estimated by unsupervised

deep learning networks under the rigid transformation and static scenario assumption. How

to deal with the limitations exposed by the assumption becomes a major challenging task.

Li et al. [125] extends his UnDeepVO [93] with uncertainty mask output and loop closure

detection to refine the ego-motion estimation where the dynamic mask work is of an identical

nature with [4]. This estimated mask by the network during the unsupervised training is not

very precise for filtering out the noise caused by dynamic objects in the input image. Godard

et al. [6] proposed a representative work for dynamic auto-masking method from computing

photometric and reprojection loss functions. This optimization treatment masks the large

areas of low feature points like the sky and large objects that are relatively stationary. More

technical details will be discussed in the related work in Chapter 4. Ranjan et al. [104] and

Wang et al. [105] proposed the additional networks for estimating the optical flow to compute

the dynamic mask from the difference between full flow and rigid flow. The flow error

mask can mask more distinct dynamic and uncertainty areas during ego-motion unsupervised

learning. To express dynamic objects more explicitly, Casser et al. [126] utilized additional

semantic segmentation input for predicting dynamic segmentation to refine the depth and

ego-motion joint unsupervised learning. Gordon et al. [127] reduced the harsh requirements

of semantic segmentation to object masks to estimate every pixel’s motion of dynamic object

region. The camera’s ego-motion and object motion jointly participate in calculating loss

functions based on the rigid transformation to improve the performance of the network’s

ego-motion estimation. Li et al. [128] improved this method by predicting each pixel’s 3D

motion without any semantic segmentation or object masks. Bian et al. [5] proposed a novel

mask method by using the view synthesis warping depth map to reconstruct the error with

the original estimated depth map.

Unlike the explicit or implicit dynamic masks, amending the network’s structure to im-

prove the network’s learning ability is another direction for improving ego-motion estima-

tion. Li et al. [93] proposed the RNN based pose expression layers in the network to learn the
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temporal feature representation for ego-motion estimation. GANVO [129] initially proposed

combining the GAN to predict ego-motion in the game setting. SGANVO [130] proposed

the stacked generative adversarial networks with the RNN ego-motion expression layers in

the stacked structure networks. Profit from more temporal and spatial features to be learned.

These methods push the ego-motion towards a higher level of performance.

2.4.2 Object Motion Estimation with Deep Learning

Object motion estimation is essential in the computer vision field, such as human body mo-

tion estimation. The actual object motions are almost random, and non-rigid are so complex

that a mathematical description cannot calculate them. Nevertheless, accurate object motion

estimation can improve visual odometry by eliminating dynamic influence, as discussed in

the above section.

Zhou et al. [4] tried to estimate the object motion mask in the networks, but it was very

rough and inaccurate. Zhou et al. [131] introduced a semantic segmentation network for dy-

namic objects’ masks. Yang et al. [132] proposed the unsupervised moving object detection

via contextual information separation. This work trained a deep neural network to predict

the moving context by using the optical flow predicted by the network, and another network

attempts to make such context as uninformative as possible. One generator generates dy-

namic masks. The other is an in painter that tries to inpaint back the optical flow masked

out by the corresponding mask to implement unsupervised dynamic object detection. RNN

is also introduced into the object motion estimation, such as work in [133]. To sum up, these

object motion estimation methods in computer vision provide many inspirations for dealing

with dynamic objects in visual odometry.

2.5 Optical Flow Estimation with Deep Learning

Optical flow estimation is a classic research problem in the field of computer vision. As

discussed above, this task defines the movement of an object in an image of a video image

sequence. This movement can be caused by camera movement or object movement. To

facilitate the solution, the traditional optical flow estimation algorithm is generally based on

the following assumptions: 1) The assumption of constant brightness: the brightness of the

same point changes with time, and its brightness will not change. 2) For small movements,
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changes in time will not cause drastic changes in position. 3) The assumption of consistent

space: the adjacent points in a scene projected to the image are adjacent points, and the

speeds of the adjacent points are the same. The classic traditional optical flow algorithms

include LK optical flow [134], PCA-Flow [135], EpicFlow [136], FlowFields [137] and other

algorithms. However, the balance of accuracy and speed of these algorithms often restricts

their wide applications in practical engineering.

The development of deep learning has brought a breakthrough development in this op-

tical flow estimation: On the one hand, in terms of supervised learning, the data set is con-

structed through virtual environments, and the deep learning network based optical flow

estimation surpasses the traditional algorithms in terms of speed and accuracy. The optical

flow networks have extensively promoted the development of this field. On the other hand,

by developing unsupervised learning algorithms, the optical flow estimation network based

on deep learning has an accuracy level that has reached the traditional optical flow algorithm.

Its speed is far beyond the traditional algorithms. The following sub-sections will discuss

the related work from the supervised networks to the unsupervised networks.

2.5.1 Supervised Optical Flow Learning

In terms of supervised learning networks, Wulff et al. [138] firstly proposed to introduce

CNN into the field of optical flow estimation in 2015. They proposed the FlowNet network

structure, which feeds two consecutive images as input, and the CNN is directly used for end-

to-end training. The output is an optical flow image in the original input image size. To build

the data set, the author synthesized the Flying Chairs data set for training. The accuracy of

this algorithm is slightly lower than the traditional algorithms, but its speed is much higher

than that of the traditional algorithms. Furthermore, the same team of FlowNet proposed

FlowNet 2.0 [139] based on the original network that has significantly improved the perfor-

mance of optical flow estimation through three strategies: including novel data collection

and improved training method, multiple network stacking, and small displacement network

design. FlowNet 2.0 is close to the best algorithm of traditional optical flow, and its speed is

much faster than traditional algorithms. In 2017, SpyNet [140] utilized the pyramid concept

in the traditional algorithms to estimate the optical flow from coarse to fine-scale, which

better handles the large motion and the small motion problems. When the time came into
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2018, the most popular PWCNet [2] continued to introduce the cost volume into the classic

networks, which improved the performance of the networks and realized end-to-end training

at the same time. This work’s contributions make the PWCNet become the new baseline

for subsequent optical flow algorithms. Ren et al. [141] further proposed PWCNet-fusion

to extend PWCNet into a multi-frame information fusion structure with further improved

performance in 2019. In addition, LiteFlowNet [142] was proposed in the same year, which

used a similar cost volume pathway but introduced the cascading optical flow prediction and

feature regularization further to improve the performance of optical flow estimation. In 2020,

this team extended LiteFlownet to version 3.0 in [143] which further improved the perfor-

mance by modifying the network structure and training method. There are a large number

of works exploring the optical flow estimation in the computer vision field, such as Hur

et al. [144] introduced the occlusion map and significantly reduced the number of network

parameters through weight sharing for the occlusion problem.

2.5.2 Unsupervised Optical Flow Learning

In terms of unsupervised learning networks, Meister et al. [145] proposed UnFlow in 2018,

which achieved good results by treating optical flow estimation as an image reconstruction

problem. Due to the lack of ground truth labels as training supervision, the occlusion prob-

lem in the unsupervised optical flow estimation algorithm is more serious. Janai et al. [146]

firstly estimated the occlusion map through forward and backward optical flows. The occlu-

sion information by this method is ignored in the image reconstruction loss, which effectively

improves the performance of the optical flow estimation. Liu et al. [147] proposed DDFlow,

which learns to predict the optical flow through the teacher network and artificially con-

structs occlusion information in the student network. The student network uses the labels in

the teacher network as the truth value for training, thereby solving the truth value problem

of occlusion.

Due to the similarity of unsupervised implementation principles, optical flow estimation

networks treat their training processes like joint unsupervised depth and ego-motion esti-

mation by image reconstruction. Some works completed the optical flow estimation while

improving the depth and attitude estimation, such as in [94], [104] and [103]. DF-Net [102]

implemented the joint estimation of depth and optical flow by using cross-task consistency.
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Because the depth and ego-motion estimation is based on the static scenario assumption, the

rigid optical flow can be synthesized. From the dynamic masking of these works, the depth

and ego-motion can build the rigid optical flow to warp the image compared with the image

warped from full optical flow. However, the rigid optical flow from depth and ego-motion

is rougher than the full optical flow, such as dynamic objects. Suppose the depth estimation

makes up the dynamic objections and ego-motion estimation processes non-rigid motion for

each pixel. In that case, the synthetic optical flow is infinitely close to the actual optical flow.

Whether the optical flow is estimated as a direct or indirect target, this task still plays an

essential role in deep learning-based visual odometry.

2.6 High-Level Object Segmentation with Deep Learning

Object segmentation is a high-level task for robot’s SLAM systems. Traditional robots rely

on sensors to measure various physical quantities to perceive the surrounding environment.

How to perceive and understand the surrounding environment more like humans has be-

come the new goal of robots in the intelligent era. Individuals who walk on the road rely

on high-level information such as the name of a building, road sign direction, and object’s

shape. Traditional geometric visual odometry cannot complete this kind of work effectively.

Nevertheless, deep learning networks are naturally suitable for such high-level object seg-

mentation tasks. Based on the recent research, three kinds of main high-level object segmen-

tation methods could be applied in visual odometry tasks: semantic segmentation, instance

segmentation, and dynamic object detection.

2.6.1 Semantic Segmentation

Image segmentation is one of the most popular research topics in image processing and

computer vision. There has been a substantial amount of works aimed at developing image

segmentation approaches using deep learning models as introduced in [148]. This section

presents an essential summary as the base for own contributions.

It is known that the task of image classification is to classify a picture into a specific cat-

egory, while semantic segmentation is a further step from classification: those belonging to

the same category must be classified into one category with a given semantic meaning. The

rise of deep learning has dramatically improved the accuracy of semantic segmentation al-



2.6. HIGH-LEVEL OBJECT SEGMENTATION WITH DEEP LEARNING 39

gorithms, and the researcher’s enthusiasm for traditional semantic segmentation algorithms

has gradually begun to decline. In 2012, Ciresan [149] used CNN to challenge semantic

segmentation tasks. This work adopts a sliding window method to take a small image patch

centered on each pixel and input it into the CNN to predict the semantic label of the pixel.

This is a significant attempt to break the precedent that CNN is only used for target classifi-

cation. However, the disadvantages of this method are also obvious: firstly, it is necessary to

traverse each pixel to extract the patch for training and prediction, which is slow and time-

consuming; In addition, choosing an appropriate size of the window is a problem that too

minor lacks context information and too large will increase much calculation. Undoubtedly,

there are a lot of redundant calculations between many windows.

In 2015, Girshick et al. [150] proposed the first deep learning model applied in the direc-

tion of target detection: Region-based Convolutional Neural Network (R-CNN). The main

process begins with using the selective search algorithm to extract 2000 candidate boxes,

then uses the convolutional network to perform serial feature extraction on the candidate

boxes. Afterward, use Support Vector Machine (SVM) to classify and predict the candidate

boxes according to the extracted features. Finally, use the regression method to correct the

area frame. Due to the low efficiency of R-CNN, two improved versions were proposed by

Girshick et al. [151] and Ren et al. [152] in 2015.

A greatly improved semantic segmentation accuracy is achieved after the proposed Full

Convolutional Neural Network (FCN). This model completely changes the previous concept

that a window is needed to transform a semantic segmentation task into a picture classifi-

cation task. FCN completely discards the fully connected layer in the picture classification

task and only uses the convolutional layer from start to finish. This model defines the pro-

cess of extracting features as an encoder, that is, the stage where the feature map of FCN

becomes smaller in front. The following process of upsampling and deconvolution is called

a decoder. The picture is restored to the original size in the decoder. This model is discussed

as the encoder-decoder in the above deep neural network model section. After the FCN,

the classic network structure based on the encoder and decoder structure has sprung up like

mushrooms after rain. The following are representative papers that are essential in the direc-

tion of semantic segmentation: U-Net [153], DeepLab serious [154] [155] [156] [157], and

PSPNet [158].
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Due to the limitation of the convolutional layer structure, the context information pro-

vided by FCN is insufficient and needs to be improved. Therefore, various methods have

been proposed to explore context dependence to obtain more accurate segmentation results

in recent years. There are two main methods for aggregating contextual information: the

pyramid-based approach and the attention-based approach. PSPNet [158] is a pyramid-

based module or global pooling to regularly aggregate regional or global context informa-

tion. However, this method captures the context of the same kind but ignores the context

of different categories. Attention-based approaches such as channel attention and spatial

attention selectively aggregate contextual information between different categories like in

DANet [159], CCNet [160], Yu et al. [161] and Hou et al. [162].

2.6.2 Instance Segmentation

Instance Segmentation is a relatively tricky task of visual perception. It has the characteristics

of semantic segmentation requiring classification at the pixel level and the characteristics of

object detection. In other words, different instances need to be located, even if they are

of the same type. Therefore, the study of instance segmentation has been divided into two

pathways: the two-stage method and the single-stage method.

The two-stage method can be divided into top-down and bottom-up. The idea of the

top-down instance segmentation method is to first find out the bounding box of the instance

through target detection and then perform semantic segmentation in the detection box. Each

segmentation result is outputted as a different instance at last. The masterpiece of this type of

method is the famous Mask-RCNN [163] and PANet [164]. Mask-RCNN can complete tasks

such as target classification, target detection, semantic segmentation, instance segmentation,

and human pose estimation by adding different branches. For instance, a branch is added

for semantic segmentation based on Faster-RCNN with classification and regression branch.

Huang et al. [165] improved the accuracy of Mask-RCNN through mask quality scoring,

which is named MS-RCNN. The idea of the bottom-up instance segmentation method is first

to perform semantic segmentation at the pixel level and then distinguish different instances

employing clustering and metric learning. There are not so many such works like introduced

in [166].

The single-stage method is affected by the research of single-stage target detection.
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Therefore, there are two ways of thinking: One is inspired by one-stage, anchor-based de-

tection models such as YOLO [167], and RetinaNet [168]. Representative works include

YOLACT [169] and SOLO [170].

2.6.3 Dynamic Object Detection

Semantic segmentation and instance segmentation can provide object-level information for

SLAM. However, dynamic objects are the main noise that could cause interference for depth

and ego-motion joint estimation in visual odometry. Dynamic object detection becomes

the further task of artificially defined higher-level information. Bak et al. [171] introduced

the dynamic object detection through visual odometry. Xiao et al. [172] utilized a deep

learning network to detect dynamic objects during semantic segmentation of the SLAM.

Specifically, Zhou et al. [4] and Wang et al. [94] tried to detect the dynamic objects during

the unsupervised depth and ego-motion joint training. The visual odometry performs much

better when the learning network achieves more accurate dynamic object detection results.

To sum up, high-level object segmentation plays a vital role with the applications such as

scene understanding, image analysis, robotic perception, video surveillance, and augmented

reality. It can be seen as a dominant task such as semantic segmentation for semantic SLAM.

It can be used to improve the performance of visual odometry networks as an implicit dy-

namic detection task.

2.7 Discussion
This chapter lists the related work of the traditional geometry method for visual odometry,

which contains feature point methods, direct methods, and semi-direct methods. The follow-

ing learning-based visual odometry firstly provides a summary of the deep learning methods.

The following sub-sections introduce the unsupervised learning implementation, deep neural

network models, and popular training dataset for different learning-based tasks. The follow-

ing four sections present the related representative work for disparity estimation, ego-motion

estimation, optical flow estimation, and high-level object segmentation. This literature re-

view part lays the research foundation for the whole thesis’s work. From the next chapter,

the thesis begins to introduce my work: SGANVO, RSTNet, and coalescing semantic seg-

mentation into RSTNet and leverage geometry method for ego-motion estimation.
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Chapter 3

Stacked Generative Adversarial

Networks based Visual Odometry

Recently end-to-end unsupervised deep learning methods have demonstrated an impressive

performance for visual depth and ego-motion estimation tasks. These data-based learning

methods don’t rely on the same limiting assumptions that geometry-based methods do. The

encoder-decoder network has been widely used in the depth estimation and the RCNN has

brought significant improvements in the ego-motion estimation. Furthermore, the latest use

of Generative Adversarial Nets (GANs) in depth and ego-motion estimation has demon-

strated that the estimation could be further improved by generating pictures in the game

learning process. This chapter proposes a novel unsupervised network system for visual

depth and ego-motion estimation: Stacked Generative Adversarial Network (SGANVO). It

consists of a stack of GAN layers, of which the lowest layer estimates the depth and ego-

motion while the higher layers estimate the spatial features. It can also capture the temporal

dynamic due to the use of a recurrent representation across the layers. See Figure 3.1 for de-

tails. We select the most commonly used KITTI [118] data set for evaluation. The evaluation

results show that our proposed method can produce better or comparable results in depth and

ego-motion estimation.

3.1 Introduction
Object’s depth estimation and camera’s ego-motion estimation are two essential tasks in

autonomous robotic applications. Impressive progress has been achieved by using vari-

43
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ous geometric based methods. Recently, unsupervised deep learning based methods have

demonstrated a certain level of robustness and accuracy in some challenging scenes without

the need of labeled training data set.

Inspired by the image wrapping technique - spatial transformer [116], Garg et al. [86]

proposed an unsupervised Convolutional Neural Network (CNN) to estimate the depth by

using the left-right photo-metric constraint of stereo image pairs. Godard [1] further ex-

tended this method by employing a loss function with the left and right images wrapping

across each other. Because both left and right photo-metric losses are penalized, this method

improved the accuracy of depth estimation. Zhou et al. [4] proposed two separate networks to

infer the depth and ego-motion estimation over three temporal consecutive monocular image

frames. The middle frame performs as the target frame and the previous and the following

frames as the source frames. Yin [103] proposed the GeoNet which not only estimates the

depth and ego-motion but also the optical flow for dynamic objects. Similarly, Godard et

al. [6] proceeded to merge the pose network with the depth network through sharing the net-

work weights. Furthermore, benefit from the recent advance of deep learning methods for

single-image super-resolution, Pillai et al. [173] proposed the sub-pixel convolutional layer

extension for obtaining depth super-resolution. Their superior pose network is bootstrapped

with much more accurate depth estimation.

Most of recent work are all based on the encoder-decoder neural networks, but with

different loss functions based on view reconstruction approach. Li et al. [93] designed their

loss functions not only combining the loss functions defined in [1] and [4] but also adding

the 3D points transformation loss. However, their results perform not very well in the scenes

where dynamic and occluded objects occupy a large part of the field of view due to artificially

designed rigid transformation used. To deal with dynamic and occluded objects in the scenes,

Ranjan [104] and Wang [94] introduced additional networks to estimate the optical flow

jointly with the depth and pose networks from videos. Ranjan used two networks to learn

the optical flow and dynamic object masks, and jointly compute the flow and mask loss

functions to refine the depth and pose networks. Wang added the optical flow estimation

network to deal with the dynamic objects and refine the depth network. Due to the use of

a PWC network [2] to handle the stereo depth estimation, Wang’s Undepthflow improved

the unsupervised depth estimation by an order of magnitude and its pose estimation also
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reached the optimal rank. Almalioglu [129] introduced a visual odometry (GANVO) to

estimate the depth map using Generative Adversarial Network [115]. Its Generator network

generates the depth map and the pose regressor infers the ego-motion. Together they build

up the view reconstruction. Then its Discriminator network games the original target image

and the reconstructed image to refine the depth and pose networks. This work is similar

with [174] [89] [90] [175], which use the Generator to generate the depth map instead of

using estimation networks. From these work, it can be seen that the generative nature in GAN

networks is beneficial to the scenes with dynamic objects. However, these visual odometry

related GANs focus on the depth estimation, but not on the ego-motion estimation.

In this chapter, we propose a novel unsupervised deep visual odometry system with

Stacked Generative Adversarial Networks (SGANVO) (see Figure 3.1). Our main contri-

butions are as follows:

• To the best of our knowledge, this is the first time to use the stacked generative and

adversarial learning approach for joint ego-motion and depth map estimation.

• Our learning system is based on a novel unsupervised GAN scheme without the need

for ground truth.

• Our system possesses a recurrent representation which can capture the temporal dy-

namic features.

The outline of this chapter is organized as follows: Section 3.2 gives an overview of

our proposed SGANVO system. Section 3.3 describes various loss functions used for the

Generator and Discriminator. Section 3.4 presents our experimental results of depth and

ego-motion estimation. Finally, conclusion and future work are drawn in Section 3.5.

3.2 System Overview
We address the depth and the ego-motion estimation as a whole visual odometry system

in Figure 3.1. The system consists of an ego-motion representation layer for ego-motion

estimation, and multiple feature extraction layers for feature estimation. The error image Al

from error unit E l−1 in current layer is propagated up to higher layer as the input. The hidden

state in recurrent representation layer Rl is propagated down to lower layer for capturing the
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Â1

Â2
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Figure 3.1: Our proposed SGANVO architecture for the depth and ego-motion estimation.
It is a series of stacked GANs. The bottom layer estimates the depth and ego-motion. The
other layers estimate the spatial features.
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recurrent representation.

temporal dynamic. There are mainly two units, Generator (Gl) and Discriminator (Dl), in

each layer.

Figure 3.2 shows the network unfolded in time step. After the initial states Sl are set to

the network, the current left and right frames are fed to the network’s input. The network

runs for a sequence of N consecutive frames. After N steps, the initial states are set to the

network again.

3.2.1 Generator

In the bottom layer, the Generator consists of depth estimator d, ego-motion estimator p,

and view reconstructor V . It takes the hidden state from recurrent representation R0 as its

input and generates an estimated image from view reconstructor V for current input image.

In the higher layer (l > 0), the Generator is a convolutional layer which takes the hidden
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state from recurrent representation Rl as its input and generates an estimated error image Âl

for the input Al from lower layer. The recurrent representation Rl is a convolutional Long

Short Term Memory network (ConvLSTM) [176] and connected top down between layers.

The hidden state Rl
t is updated according to Rl

t−1,R
l+1
t ,E l

t−1. It is used to store the temporal

dynamic from consecutive video which is defined as:

Rl
t =ConvLST M(E l

t−1,R
l
t−1,U pSample(Rl+1

t )) (3.1)

The hidden state Rl
t is updated through two passes: a top down pass from the UpSample of

Rl+1, and then a level pass calculated by previous hidden state Rl
t−1 and previous error E l

t−1.

The depth estimator is an encoder-decoder network to generate the multi-scale dense

depth map, like the one used in [1]. Inspired by [173], we replace the UpSample branches

in the depth decoder with the sub-pixel convolutional branches used in [177] to generate the

up-scaled features. Sub-pixel convolutional branches consist of a sequence of three consec-

utive 2D convolutional layers with 64, 32, 4 output channels with 1 pixel stride. The depth

estimator directly generates the dense depth map by using a pair of stereo images separately

concatenating the features from unit R0
t along with the image channel to train the network.

The ego-motion estimator is a VGG-based CNN architecture. It takes current image and

the hidden state representing the information in previous frame as the input, and generates

the 6-DoF ego-motion estimation between current frame and previous frame. We decouple

the translation and the rotation with two separate groups of fully-connected layers after the

last convolutional layer for better performance. We feed the input data concatenating two

continuous images and the features from unit R0
t along with image channel to train the ego-

motion estimator.

If we feed one image into the stacked networks each time, the pose estimator will gen-

erate a 6-DoF ego-motion for two consecutive frames. However, the initial frame of each

temporal window will introduce the failure initialization of pose estimation. To resolve that,

we reuse the first frame as the previous frame of beginning and start to compute pose trans-

lation from the second temporal frame.

The view reconstructor V takes the depth estimate, ego-motion estimate, and previous

frame It−1 as the input and generates a predicted image Ît for the current frame It . By using
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the spatial transformer network [116] and the homogeneous coordinate of the pixel It−1(i, j)

in the (t−1)th frame, we can derive its corresponding pixel Ît(i, j) in the tth frame through

Ît(i, j) = KT̂t−1,td−1
t−1(i, j)K−1It−1(i, j) (3.2)

where K is the camera intrinsic matrix, dt(i, j) is the estimated disparity, T̂t−1,t is the camera

coordinate transformation matrix from the (t−1)th frame to the tth frame generated by the

ego-motion estimator.

Based on this, Ît−1 and Ît can be constructed from It and It−1, respectively. The error

units in the bottom layer or higher layers are computed as below:

E0
t = [ReLU(It− Ît);ReLU(Ît− It)] (3.3)

E l
t = [ReLU(Al

t − Âl
t);ReLU(Âl

t −Al
t)] (3.4)

where E0
t is the error image between the generated from the view reconstructor and the

current frame at t time, E l
t is the error image at the higher layer (l > 0), ReLU is an activation

function operation. The input error image Al
t is defined as:

Al
t = Maxpool(ReLU(Conv(E l−1

t ))) (3.5)

where Conv denotes the convolutional operation. The Generator in the higher layer (l > 0)

consists of one convolutional unit with 3 dimension filters to generate error feature image Âl
t :

Âl
t = ReLU(Conv(Rl

t)) (3.6)

3.2.2 Discriminator

The Discriminator is a convolutional network that can categorize the images fed to it. In

the bottom layer, we feed the generated image Ît and original image It into it. In the higher

layer (l > 0), the inputs to the Discriminator are the generated error image Âl
t and the error

image Al
t from the lower layer. We used WGAN [178] in our architecture, which employs

the Wasserstein distance instead of Kullback-Leibler (KL) divergence or Jensen-Shannon

(JS) divergence for stabilizing the training process using gradient descents. The Discrimi-
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Table 3.1: Discriminator Network Architecture.

Block Type Kernel Size Strides Filters Input

Conv1 5×5 2 16 Image

SELU1 none none none Conv1

Conv2 5×5 2 32 SELU1

SELU2 none none none Conv2

Conv3 5×5 2 64 SELU2

SELU3 none none none Conv3

Conv4 5×5 2 128 SELU3

SELU4 none none none Conv4

Conv5 4×4 1 1 SELU4

nator architecture is shown in Table 3.1. Considering the GPU’s memory space, we set all

the Discriminators five simple convolutional layers connected by four SELU block units as

provided in [179].

The bottom base layer of the stack networks takes stereo images as input at each time

step within a consecutive temporal window. Then bottom base computes the error between

reconstruction and original image and feed to the high-level’s Generator and the bottom

feed yielding component. The feed yielding component produces the dynamic features for

ego-motion estimator and depth estimator to respectively generate the scaled 6-DoF ego-

motion and depth maps. From the second layer of stack networks, Generator only uses

the difference of the original feed image and reconstructed image from the lower layer as

its feed. Analogously, the higher Generator generates such higher dimensional difference

as supervised object for gaming through Discriminator. The higher Generators learn the

temporal dynamic features and the bottom Generator learns the spatial appearance feature.
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3.2.3 Stereo Generating

For monocular SGANVO’s training and testing, we apply WGAN to learn stereo generating

technology to feed into SGANVO system as shown in Figure 3.3. Different from [122],

we implement Generator process generating right images from left images. In Generator,

left images sequence are feed into VGG encoder network and achieve five scaled outputs.

We use five deconvolution layers to predict five scaled feature masks. Original left images

multiple the sum of scaled feature masks to generate right images. Afterwards, both the

original right image and projected right image separately feed into Discriminator. The fake

image output and real image output of Discriminator form the WGAN loss functions for

training. This component can build the stereo images input for SGANVO’s training and

testing experiments with monocular data set.

3.3 Training Procedure
The SGANVO training follows the improved WGAN training procedure [180] like above

stereo generating component. We jointly compute the losses of Generators and Discrimina-

tors in all the layers and take the weighted sum as the final G loss and D loss. We feed the

stereo data sequence of KITTI dataset into the depth estimator, and the monocular data se-

quences of KITTI dataset into the ego-motion estimator no matter monocular or stereo data

set. The loss functions are defined as below:

3.3.1 Generator Loss

Our G losses mainly include three parts. The first one is from the Discriminator and defined

as:

LD
g = ∑

l
λlE[D(x̂l)] (3.7)

where λl is the weight at lth layer, and D(x̂l) is the output from the Discriminator when its

input is from generated image x̂l in its layer. E is the mean operation.

The second one is the weighted sum of all the error images within a sequence of N

consecutive frames.

LN
g =

N

∑
t=1

λt ∑
l

λl

nl
∑
nl

‖E l
t ‖1 (3.8)

where λt is the temporal weight factor, λl is the layer weight factor, nl is the total number of
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ReLU units of the lth layer, and ‖ · ‖1 is the L1 norm.

The last one is the disparity consistency loss which is used to improve the depth smooth-

ness. Denote dl
t and dr

t the left and right disparity maps, respectively. The disparity consis-

tency loss is defined as:

Ld
g =

N

∑
t=1

∑
i, j
‖dl

t (i, j)−dr
t (i, j)‖1 (3.9)

The final G loss is the weighted sum of above three parts.

L f inal
g = αLD

g +βLN
g + γLd

g (3.10)

where α , β and γ are the weight parameters.

3.3.2 Discriminator Loss

The D loss is defined as:

LD
d = ∑

l
λlargmax

D
Dl

d (3.11)

where Dl
d is the Discriminator loss in the lth layer when its inputs are real image x and

generated image x̂. Afterwards the Dl
d is defined as :

Dl
d = E[D(xl)]−E[D(x̂l)]+λDE[(||OD(x′l)||2−1)2] (3.12)

where E is the mean operation and O is the solving gradient operation. The innovation

of WGAN-GP is on the last item of the above loss function where the x′ is the random

interpolation samples between real value and generated value defined as:

x′ = x∗ ε + x̂∗ (1− ε) (3.13)

In our implementation, we choose λD = 10 and ε is a random number from uniform distri-

bution between 0 and 1.

3.3.3 Adversarial Training Procedure

To sum up, our SGANVO generates the features of temporal field over a time window and

of spatial field over stacked layers. It can estimate the depth and the ego-motion at current
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time step from previous frame in the bottom layer.

Initially, the first frame in the first temporal window is fed to the network. This frame is

also used as the initial previous frame to resolve the initial matrix irreversible problem. Thus

our system can generate one depth estimation and one ego-motion estimation at each time

step of the window. We set all the initial states Sl to zeroes. They are passed to the recurrent

representation Rl . The synthetic error image Âl are generated as zero matrices. And the

initial estimate of ego-motion is zero as the initial current input and initial previous image

are the same. But an initial depth map can be estimated from the depth estimator.

After the initialization, the first frame is fed to the system, and the system begins to

generate the results in each layer.

After completing the feeding of current temporal window to the network, the system

computes all the G the D losses over all the temporal steps (N). At the same time, it can

generate both the depth and ego-motion estimate. Then the final G and D losses are applied to

back propagate the Generators and Discriminators. The min-max training of our SGANVO

is described as:

W (x, x̂) = argmin
D

LD
d (3.14)

The Discriminator training procedure is to make the W (x, x̂) convergent to the minimum.

The above procedure is repeated for next temporal window until all the frames in the data set

are used.

3.4 Experiments
We implemented the proposed SGANVO architecture with the publicly available Tensor-

flow framework and trained with NVIDIA GTX 1080TI GPUs. The Adam optimizer was

employed to speed up the network convergence for up to 30 epochs with parameters β1 = 0.9

and β2 = 0.999. The learning rate started from 0.0001 and decreased by half for every 1/5

of total iterations. For the ease of training and data preparation, we used a temporal window

size of N = 3 and two higher layers L = 2 and one bottom layer, but it is possible to use

longer sequences and more higher layers for training and testing. The size of input image

to the network was 416×128 with the consideration of comparison with other systems. To

fine-tune the network, we used the original image size in computing the losses. For data

prepossessing, different kinds of data augmentation methods were used to enhance the per-
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Figure 3.4: Illustrated above are qualitative comparisons of our SGANVO (image size:
416× 128) with Monodepth [1] (image size: 512× 256). The depth map shows that our
approach produces qualitatively better depth estimates with crisp boundaries.

formance and mitigate possible over-fitting, such as image color augmentation [4], rotational

data augmentation [181] and left-right pose estimation augmentation [1]. We increased the

weight parameter of rotational data to achieve better performance because the magnitude of

rotation is very small compared to that of translation. We set α = 10−4, β = 1.0 and γ = 0.1

in the final G loss Equation (3.10). To test our SGANVO’s depth estimation on the monocu-

lar dataset, we built a stereo view reconstruction component like [182] to generate the stereo

frames from the monocular dataset ( see the testing inputs in Figure 3.1). Our SGANVO can

test directly on the monocular dataset.
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Figure 3.5: Our proposed SGANVO system to estimate the ego-motion on the KITTI odom-
etry benchmark, Sequence 09 (left) and Sequence 10 (right). Our results are rendered in blue
while the ground truth is rendered in red.

3.4.1 Depth Estimation Evaluation

We evaluate the performance of our SGANVO depth estimation on the KITTI dataset with

a benchmark split from [4]. Figure3.4 shows some raw RGB images from sequence 10

and their corresponding depth estimates from Monodepth [1], and our system. As shown in

Figure 3.4, the different depths of cars and trees are explicitly generated, even the depth of

trunks and street lights are generated clearly. Compared with the others, our SGANVO can

generate more details and clearer textures.

The quantitative depth estimation results are listed in Table 3.2, where M stands for using

monocular image sequence training and S stands for using stereo image sequence training.

Compared with the existing unsupervised learning-based methods (see the smallest values

in Abs Rel, Sq Rel, RMSE, and RMSE log columns in the table with the highest δ ), our

SGANVO performs better in terms of the metrics used. And it even outperforms some

methods with larger image input.

3.4.2 Ego-motion Estimation Evaluation

We used the KITTI dataset [118] to test the performance of the SGANVO ego-motion es-

timation. The KITTI dataset only provides the ground-truth of 6-DoF poses for Sequence

00-10. We used Sequence 00-08 for training and Sequence 09-10 for testing. The results are

shown in Table 3.3.
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Table 3.4: Absolute Trajectory Error (ATE) on KITTI odometry dataset. The results of
other baselines are taken from [94].

Method frames Sequence 09 Sequence 10

ORB-SLAM(Full) All 0.014±0.008 0.012±0.011

SfMLearner [4] 5 0.016±0.009 0.013±0.009

GeoNet [103] 5 0.012±0.007 0.012±0.009

Undepthflow [105] 2 0.023±0.010 0.022±0.016

SGANVO 3 0.015±0.006 0.014±0.009

The metrics are the average translational root-mean-square error (RMSE) drift and aver-

age rotational RMSE drift (◦/100m) on length of 100m− 800m. The results are shown in

Table 3.4. We compare the results with ESP-VO [181], SfMLearner [4], ORB-SLAM (with-

out loop closure), UndeepVO [93], and Undepthflow [94]. It can be seen that our SGANVO

shows a better performance in the testing sequences (09, 10) with these state-of-the-art meth-

ods in terms of the ATE metric.

The other metrics used are the absolute trajectory error (ATE) averaged over all over-

lapping 5-frame snippets. We concatenated all of left and right estimations together for the

entire sequences without any post-processing. The estimated trajectory of sequences 9 and

10 from our SGANVO and its ground truth are shown in Figure 3.5. Although the estimated

result includes some drift, our SGANVO can estimate all the features of the trajectory and

performs well in terms of odometry estimation without loop closure detection. The quanti-

tative results are shown in Table 3.4 where we compare our results with ORB-SLAM(Full),

SfMLearner [4], GeoNet [103], and Undepthflow [94]. Our SGANVO produced a compara-

ble result.

3.4.3 Ablation Analysis for Spatial Layers and Temporal Frames

To demonstrate the importance of the high level spatial features and temporal recurrent win-

dow, we conducted three contrast experiments for an ablation analysis. In Table 3.5, we set

the same network and training parameters, but configured the system with different number

of high level layers and size of temporal window to explore the influence of high level spa-

tial features and temporal recurrent window on the learning results. The main evaluation is

focused on the ego-motion and depth test for sequence 09 and sequence 10. Considering the
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GPU’s memory and training time, we just tested the system configuration with 2 layers or 3

layers combining with 2 frames or 3 frames.

It can be seen from the data in the first two rows that the ego-motion performs much

better when the window size increases from 2 to 3 when the number of high level layers are

kept unchanged. In addition, the depth estimation also has a little bit improvement. Then we

fixed the same temporal window size as 3 frames to explore the influence of different number

of high level layers. It can be concluded from the data in the last two rows of Table 3.5 that

the number of high level layers can make a significant improvement on the depth estimation,

although its influence on the ego-motion estimation is limited.

From these results, we can conclude that the size of temporal recurrent window can

make a significant improvement on the ego-motion estimation while the number of high

level layers can make a significant improvement on the depth estimation.

3.5 Conclusions
This chapter proposes a novel stacked GAN network for depth estimation and ego-motion

estimation from videos. Because the higher layers of our network can learn spatial features

with different abstraction levels and the recurrent representation of our network can learn the

temporal dynamics between consecutive frames, our SGANVO can generate more accurate

depth estimation results and comparable ego-motion estimation result compared with other

existing unsupervised learning networks.

In the future, we will extend our system to a visual SLAM system to reduce the drift

by adding a loop closure detection. Moreover, more data sets will be used for training and

testing to improve the performance further. After this chapter explores the external network

structure for visual odometry, the next chapter will discuss the design of the internal network

structure that has a deeper impact on the network’s estimation performance.
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Chapter 4

Recurrent Spatial-Temporal Networks

for Estimating Depth, Ego-Motion,

Optical Flow and Dynamic Objects

Depth map and ego-motion estimations from consecutive monocular images are challenging

to learning-based Visual Odometry (VO) approaches. With dynamic objects or occlusions

in input images, the estimation performance could have further deteriorated. This chapter

proposes a novel VO architecture: Recurrent Spatial-Temporal Network (RSTNet), which

can estimate the depth map, ego-motion, and dynamic objects from consecutive monocular

images. The main contribution in our RSTNet includes a novel RST-encoder layer and RST-

decoder layer, which can preserve and recover the spatial and temporal features from inputs

in their intermediate representations. Our RSTNet extracts the appearance features from

input images and the structure and dynamic features from internal results: depth and optical

flow for ego-motion estimation. Our RSTNet also includes a pre-trained network to detect

dynamic objects from the difference between complete and rigid optical flows. A novel auto-

mask scheme is designed in our loss function to deal with some challenging scenes. Our

evaluation results on the KITTI odometry benchmark show that our RSTNet outperforms

some of the existing unsupervised learning approaches.

This work is inspired by sensor-less challenging navigation tasks for mobile robots and

driver-less cars with a monocular camera. Robots can robustly estimate the continuous lo-

cation information and record its track map through deep learning networks. This chapter
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designs a novel spatial-temporal feature learning network for estimating a robot’s track and

surrounding dynamic objects and proposes an auto-mask training strategy to remove the dy-

namic interference during the learning process. From the evaluation results on monocular

videos collected from an actual vehicle on the road, our network estimates the track map

of the vehicle and dynamic objects more accurately. Moreover, the efficient learning com-

ponent of our network can also be flexibly used as a plug-in unit by other networks, which

provides a broad practical prospect.

4.1 Introduction

Visual Odometry (VO) pioneers a new path towards solving simultaneous localization and

mapping (SLAM) problems. The accurate depth and ego-motion estimations become the pri-

mary target of recent research works in this area. It is interesting to see some unsupervised

deep learning VO methods outperform classical geometric algorithms and supervised learn-

ing methods in some scenes. Monocular VO methods also demonstrate promising results

under the framework of learning-based methods like [183].

Most monocular unsupervised learning VO methods reconstruct a frame through warping

neighbor frames and use the reconstructed frame as the supervised signal for learning, such as

SfMlearner [4] and SfMnet [99]. GANVO [129] proposes a generative adversarial network

to produce the depth and ego-motion estimations. Alternatively, the depth can be estimated

through training stereo images. For instance, Monodepth [1] uses a stereo learning network

with the left-right consistency loss functions to estimate monocular depth. UnDeepVO [93]

coalesces the monocular multi-view reconstruction and stereo version training methods to

predict the depth maps and camera ego-motion. Furthermore, SGANVO [130] explores the

spatial-temporal features with a stacked generative adversarial network to generate a stereo

vision loss function.

Although these methods have established some achievements for depth and camera ego-

motion estimations, there are still some challenges to be addressed, such as extracting and

retaining more spatial and temporal features from input sequences in intermediate layers or

detecting and masking dynamic objects in the scenes more robustly. This chapter proposes

a novel recurrent spatial-temporal network (see Figure 4.1) for self-supervised monocular

depth and camera ego-motion estimations. Our main innovations are summarized as follows:
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Image1

Image2

Image3

Depth1

PWC-Net

PWC-Net

RST Encoder-Decoder

Depth2

Depth3

Flow12,21

Flow23, 32

+

+

RNN

RNN

{R12, t12}

RST-Encoder

RST-Encoder

RST-Encoder

RST-Encoder

RST-Encoder

Rigid 
Flow12

Rigid 
Flow23

Objects1

{R23, t23}

RST Encoder-Decoder

RST Encoder-Decoder Objects2

SegNet

SegNet

Figure 4.1: Our proposed RSTNet architecture for self-supervised learning. The RST-
encoder and RST-decoder components consist of multiple RST-encoder and RST-encoder
layers. The depth is estimated from a network including a RST-encoder component and a
RST-decoder component. The ego-motion is estimated from a RNN network with inputs
from appearance features in input images, structure features from depth, and dynamic fea-
tures from optical flow. A pre-trained PWC-Net in [2] is used to estimate the full optical flow.
The dynamic objects are detected by a pre-trained SegNet [3] with input from the difference
flow between full and rigid flows.
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• Propose a novel recurrent spatial-temporal network to estimate ego-motion. It uses ap-

pearance features from input images, structure features from depth maps, and dynamic

features from optical flow.

• Propose novel RST-encoder and RST-decoder layers to learn the detail-preserving rep-

resentations in a reversible architecture.

• Design a dynamic auto-mask scheme for the loss function, which can robustly mask

dynamic objects and some challenging scenes.

• Estimate dynamic objects by using a pre-trained segmentation network from the dif-

ference between full and rigid optical flows.

The outline of this chapter is organized as follows: Section 4.2 presents the state-of-the-

art works related to depth and ego-motion estimations. Section 4.3 provides the detailed

introduction to the RST-encoder and RST-decoder layers. Section 4.4 gives an overview of

our proposed RSTNet architecture and its dynamic auto-masking loss function. Section 4.5

presents our experimental results on the KITTI odometry dataset with comparisons of some

previous works. Finally, conclusion and future work are drawn in Section 4.6.

4.2 Related Work
We review the research work in estimating the depth and ego-motion from consecutive im-

ages using deep learning networks in this section. It starts from self-supervised methods

and is followed by methods that could extract more intermediate features or generate more

reliable masks for dynamic objects or occlusions.

4.2.1 Self-supervised Depth and Ego-motion Learning Networks

SfMlearner [4] uses the geometric warping technique between neighbor frames to build their

unsupervised loss functions for monocular depth and ego-motion estimations. SfMnet [99]

extends the work for estimating the object’s motion to warp point clouds for generating

the optical flow. Both of them predict the dynamic mask to cut down the noise caused

by dynamic objects. Nevertheless, the performance of the dynamic mask detection is not

reliable. Monodepth [1] trains a single-view depth network by using stereo image pairs.

The left-right consistency between the left image and synthesized left image warped from
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the right image is used as the supervision signal. Zhan et al. [92] extend the training of

reconstruction networks to stereo videos. SGANVO [130] puts forward a stack generative

adversarial network-based on stereo pair training. The stereo reconstruction networks do not

require the ground truth of depth.

Compared with stereo reconstruction methods, monocular multi-view reconstruction meth-

ods have relatively fewer constraints. Godard et al. [6] extends Monodepth [1] to train the

depth network and ego-motion network on monocular data sets. They propose an auto-

masking loss function to solve the occlusion problem, but the problem caused by dynamic

objects, such as cars and pedestrians, still needs to be solved. Yin [103] proposes the GeoNet

to train a depth network, an ego-motion network, and a residual optical flow network in two

stages. Based on the trained monocular depth and ego-motion networks, residual optical

flow can be trained to estimate the full optical flow, including dynamic objects. Prasad [184]

makes use of the Epipolar constraints in the learning system so that the system can perform

successfully even in the case of failure when minimizing the photometric error. To improve

the monocular depth estimation, SC-SfMlearner [5] proposes a geometry consistency loss

for scale-consistent predictions and induces a self-discovered mask for handling moving ob-

jects and occlusions. However, the performance of self-discovered masks in the unknown

marginal region and dynamic object occlusion is limited.

4.2.2 Learning with Intermediate Features

Inspired by the sub-pixel network [177] which performs convolutions with single image

super-resolution, Superdepth [173], and Lipu [185] introduce the sub-pixel networks for

self-supervised monocular depth estimation to improve the performance of networks. Fur-

ther digging into the network architecture, Packnet-SFM [7] proposes the 3D packing and

unpacking networks to replace the max-pooling layer and bilinear upsample layer of tradi-

tional depth networks. The detail-preserving properties of this architecture could reconstruct

the near-lossless features of images.

Similar with DDVO [91], Wang [94] introduces additional networks to estimate the op-

tical flow and use the full optical flow to refine the ego-motion estimation. Ranjan [104]

proposes four networks to predict the monocular depth, camera ego-motion, optical flow,

and dynamic object masks. The 3D geometric constraint is used in [101]. Using semantic
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segmentation networks can provide more accurate object information as introduced in [8].

Casser [126] uses segmentation masks as the additional features and estimates the 3D object

motion to refine the depth and ego-motion estimations. Gordon [127] goes a further step to

implement the unsupervised learning of camera intrinsic parameters and reduce the semantic

or instance segmentation input requirements. At the same time, better performance of depth

and ego-motion estimations is maintained. Li [128] extends this approach by removing the

requirement for any auxiliary semantic information from images. The camera intrinsic can

be either specified or learned. Klingner [186] applies the semantic segmentation decoder to

predict semantic segmentation in the supervised training stage. After that, semantic masks

are used to calculate the loss functions for depth and ego-motion estimations. Wagstaff [187]

applies the pose correction to improve the accuracy of ego-motion estimation. Ambrus [188]

presents a network that can learn the structure features from additional depth inputs to opti-

mize the ego-motion estimation.

We propose to use the appearance features from input images and intermediate features

from the depth and optical flow to estimate the ego-motion in this chapter. The intermediate

features from depth are related to the structure or surface of the scenes, and the intermediate

features from optical flow are related to dynamic objects.

4.2.3 Learning with Auto-Masking

To further improve the performance of estimation networks, the most intuitive approach is

to mask the uncertain or error areas in the training images. For instance, the initial works

in [4] propose using the pose network to predict the uncertain mask while estimating the

6-DoF pose. Furthermore, [94] introduces the optical flow to help mask the dynamic objects

and occlusion areas. Monodepth2 in [6] proposes the implied auto-masks to improve the

training accuracy. To optimize the uncertain masks in [4], [5] presents the self-discovered

masks using depth map rigid warping error to mask the uncertain areas. Some research

works try to combine the dynamic error to build the training loss functions. Struct2depth

in the [126] uses the pre-segmentation semantic masks to mark dynamic objects to estimate

their poses and add objects rigid warping into the total loss functions. Gordon in [127] sim-

plifies the segmentation inputs to estimate the unsupervised ego-motion. Jiang [189] tackles

the photometric errors by masking out the invisible or manonstationary pixels in the error
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map using a statistical technique. Zhao [190] recovers the relative pose by sampling corre-

spondences which are normalized to produce the inlier mask. The residual mask research

work shows that both the inlier mask and outlier mask can improve the networks’ estimation

performance. Chang [191] proposes a neural network block to remove reflection influence

for depth estimation.

Based on the auto-mask scheme in [6] which can remove objects moving at similar speeds

to the camera and scenes where the camera is temperately static, we deal with the influence

of dynamic objects on estimated results by adding mask component via using a depth error.

We also use a pre-trained SegNet [3] to detect dynamic objects. In addition, salient object

detection from images is an important, challenging vision task such as introduced in [192].

To the best of our knowledge, this chapter is the first to use the difference flow between full

and rigid flows for dynamic object detection.

4.3 Recurrent Spatial-Temporal Layers

The traditional convolutional layer pursues enhancing its receptive field size through aggres-

sive striding and pooling operations. However, these operations potentially could lead to the

loss of detailed pixel representations, and the resize-convolution operation in upsampling

layers could not recover the details. In addition, most convolutional layers do not preserve

the temporal features from their inputs. We propose a novel recurrent spatial-temporal en-

coder layer (RST-encoder layer) that can preserve detailed spatial and temporal features from

its inputs to address these problems. We also propose an RST-decoder layer, which is sym-

metrical to the RST-encoder layer. Both are the building blocks for the encoder and decoder

components in our RSTNet presented in the next section.

4.3.1 RST-encoder layer

In Figure 4.2(a), the RST-encoder layer starts with a space2depth operation, which is taken

from the sub-pixel network in [177]. This layer can fold the height (H) and width (W )

dimensions of convolutional feature maps into extra feature channels (C ∗ 4). The output

tensor is at a reduced resolution. This operation is a reversible transformation without any

loss, which is different from striding or pooling operations. This is followed by a dimension

expanding operation, which adds an extra dimension to the tensor for a 3D convolution layer
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(Conv3d) with d = 4. This extra dimension is used to retain the detailed spatial features. The

3D convolution layer is used to compress the concatenated features and outputs the same

size tensor. Then a convolutional LSTM layer (ConvLSTM) consisting of two ConvLSTM

cells (n = 2) is used to capture temporal features via memory. The ConvLSTM layer outputs

the same size tensor with feature channels (C ∗8). After that, we transpose and reshape the

extra dimension (d) of the tensor to the channel dimension (d ∗C ∗ 8), including detailed

spatial-temporal features. In the end, a 2D convolution layer (Conv2d) is used to produce

the tensor with the desired number of feature channels. This structure of cascading multiple

complex convolutional layers allows the RST-encoder layer to preserve detailed spatial and

temporal features extracted from the input tensor.

4.3.2 RST-decoder layer

The RST-decoder layer is the symmetrical architecture with cascading multiple deconvo-

lution layers as shown in Figure 4.2(b). The compressed concatenated features from the

RST-encoder layer are the input tensor to the first layer (Conv2d). This layer adjusts the

number of channel dimensions (C ∗ 4/d) to adapt to the following 3D convolutional layer

(Conv3d). Then this 3D convolution layer expands back the compressed spatial features

to a ConvLST M layer. The ConvLST M layer also consists of two ConvLST M cells to pre-

serve temporal features via memory. The channel dimension in its output is c ∗ 4/d. Next,

we transpose and reshape the tensor to d ∗ c ∗ 4/d = c ∗ 4 channels. This layer ends with a

depth2space operation that reduces the channel dimensions to the original C.

4.3.3 RST Layers for Depth Estimation

Our RST-encoder and decoder layers can be used to estimate the depth from consecutive

monocular images. To show the capability of our RST layers in recovering lossless spatial-

temporal features, we use the RST encoder and decoder layers to replace the pooling, strid-

ing, and upsampling layers of the depth estimation network in [4] without changing any other

data processing, loss function, and network parameters. The input images are shown in the

first column in Figure 4.3. The estimated depth maps from the network in [4] replaced with

our RST layers are shown in the second column (RST-SfMlearner). The estimated depth

maps from [4] is shown in the third column (SfMlearner). Benefit from the sub-pixel layer,

Conv3d, and ConvLSTM layers. These results show that our RST layers can learn more
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Input image RST-SfMlearner SfMlearner [4]

Figure 4.3: Depth estimation performance of our RST layers compared with SfMlearner [4].
The images on the first row show a small and distant view scene. The images on the second,
third, and fourth rows show dynamic objects and irregular objects. The images on the fifth,
sixth, and seventh rows show high resolution scenes such as dense foliage and car parts.
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dynamic structures and detailed spatial features than traditional networks for specific tasks.

In Figure 4.3, the depth estimation with our RST layers has more spatial details than the

original network, such as road signs, vehicles, and irregular branches. In addition, the results

also show that our RST layers perform much better on dynamic objects, such as persons by

motorcycle or bike.

4.4 Recurrent Spatial-Temporal Network: RSTNet

4.4.1 RSTNet Overview

Our proposed RSTNet targets four main estimation tasks: depth, ego-motion, optical flow,

and dynamic objects. As shown in Figure 4.1, three monocular consecutive images (Image1,2,3)

are used as its inputs. The RSTNet estimates three corresponding depth maps using three

RST encoder and decoder networks. Two PWC-Nets estimate two full optical flow maps

(Flow12,Flow23). It estimates two ego-motions (R12, t12,R23, t23) from two RNNs, each

of which uses the features extracted from two consecutive monocular images, two esti-

mated depth maps, and one estimated optical flow as the inputs. Two dynamic object maps

(Ob ject1,Ob ject2) are detected from two pre-trained networks (SegNet) [3], each of which

uses the difference between a full flow from PWC-Nets and a rigid flow computed from

the depth and ego-motion estimations. The RST encoder or decoder layers are used as the

building blocks in constructing the networks.

4.4.2 Depth Estimation Networks

Our depth network (Figure 4.4) is constructed with the symmetrical encoder and decoder

network structure, including multiple RST-encoder and RST-decoder layers. The monocular

image input is a tensor with [B,H,W,C] shape where B is the batch size dimension, H is the

height dimension, W is the width dimension, and C is the channel dimension. The first two

2D convolution layers extract the features as 64 output channels. The first RST-encoder layer

folds the feature tensor, expands the spatial-temporal features for the next encoding level, and

skips symmetric decoding. Starting from the second level of encoding, each of the following

encoding layers will shrink with a scale of 2 times to produce the output with more feature

channels. Each of the following encoding layers begins with two residual blocks and ends

with an RST-encoder layer. The residual block is composed of two stacked 2D Convolution
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layers, Batch Normalization [193], and RELU Activation Function [194]. After five RST

encoder layers, the height and width of the input tensor are compressed by 16 times.

The decoder part begins with an RST-decoder layer to extend the size of its input tensor

to 4 times. Afterward, the Convolution Reflect block combines its output and skip features

from the fourth level of the encoder part to decode the tensor. Then each of the following four

decoder layers consists of an RST-decoder layer, a Convolution Reflect block, and a sub-pixel

disparity layer. Each of them outputs a tensor two times larger in height and width of its input

so that the decoder part can obtain the depth maps with four scales. The Convolution Reflect

block is a 2D Convolution layer with the half size of filter pad. The sub-pixel disparity

layer is the same architecture as the Convolution Reflect block with four output channels.

The decoder part of this depth estimation network can produce the disparity maps with four

scales [H/8,W/8], [H/4,W/4], [H/2,W/2], and [H,W ]. Its output resolution on each scale

is four times larger than most published depth estimation networks so that it can estimate

more details.

4.4.3 Ego-Motion Estimation Network

Depth map carries the structural information of objects, optical flow represents the dynamic

information, and original images provide many appearance features in the view. To estimate

the ego-motion with reasonable accuracy, we use two adjacent images, their depth maps, and

the corresponding optical flow as the source of features extraction.

In the ego-motion network of RSTNet (see Figure 4.1), we reuse the appearance features

of two consecutive images extracted in the encoder part of the depth estimation network as

inputs. We also use the structural features extracted from two consecutive depth maps as

inputs. Furthermore, we use the dynamic features extracted from the estimated optical flow

as inputs. The optical flow is estimated from the pre-trained PWC-Net. These features are

concatenated on the channel dimension of inputs and fed into an RNN network to estimate

the ego-motion. The RNN network consists of two convolution LSTM cells with 256 output

channels for decoding the rotation R and the translation t.
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Figure 4.5: The first row includes input image (left) and our estimated depth (right). Our
auto-mask (µd) (left) are compared with the self-discovered mask [5] (right) in the second
row. The projected image errors from our RSTNet and [6] are shown in the third row. Our
auto-mask µt +µs is shown in the bottom two rows. The vehicle with similar velocity as the
camera is shown in the red circle (left) and eliminated as shown in the black (right) in the
fourth row. The static distance sky (left) is shown in the fifth row and eliminated as shown
in the black (right).
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Figure 4.6: Comparison between the Auto-Masking [6] and our Dynamic Auto-Mask.

4.4.4 Loss Functions and Auto-Masking

The synthetic target view Ii
s→t is generated from the ith source view Ii

s by using the spatial

transformer [116]:

Ii
s→t(x,y) = KT̂s→td−1

t (x,y)K−1Ii
s(x,y) (4.1)

where K is the camera intrinsic matrix, dt(x,y) is the estimated disparity, T̂s→t is the camera

coordinate transformation matrix from the ith source frame to the target frame and estimated

by the ego-motion network. Our photometric reprojection loss function Lp is defined as

below:

Lp =
N

∑
i=1

min
t

pe
(
It , Ii

s→t
)
+

N

∑
i=1

min
s

pe
(
Ii
s, I

i
t→s
)

(4.2)

where N is the number of source views and N = 2 for three consecutive input frames. The

pe is a photometric reconstruction error computed from SSIM [195] and L1 [126] [127]:

pe(Ia, Ib) =
α× (1−SSIM(Ia, Ib))

2
+(1−α)×‖Ia− Ib‖1 (4.3)

We also use a depth edge-aware smooth loss function to regularize the depth in texture-
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less and low-image gradient regions.

Ls = |δxd∗t |e−|δxIt |+ |δyd∗t |e−|δyIt | (4.4)

where d∗t = dt/d̄t is the mean-normalized disparity, δx and δx are the gradient.

Finally, our total loss function includes the photometric reprojection loss with a dynamic

auto-masking weight µ and the edge-aware depth smooth loss:

Ltotal = µLp +λLs (4.5)

This loss function performs very well for the training under the assumption of static

scenes with a moving camera. However, its performance could have deteriorated rapidly

when the camera is stationary, or there are dynamic objects in the scene [6]. The auto-

masking loss function in [6] alleviates some of these problematic scenes. It can mask the

target image to reduce the influence of objects when moving at the same velocity as the

camera or ignore the whole image when the camera stops moving. However, it does not

exploit dynamic information provided by moving objects.

We propose a novel dynamic auto-masking scheme. The full mask includes three parts

µ = µt +µs +µd . The first part µt is the same as the one purposed in [6] as shown in Figure

4.6(a).

µt =

[
N

∑
i=1

(min
t

pe
(
It , Ii

s→t
)
< min

t
pe
(
It , Ii

s
)
)

]
(4.6)

This mask can remove the pixels representing other objects moving at a similar velocity as

the camera or all pixels when the camera is static.

The second part µs plays a similar role as µs but with reverse projection Ii
t→s as shown in

Figure 4.6(b):

µs =

[
N

∑
i=1

(min
s

pe
(
Ii
s, I

i
t→s
)
< min

s
pe
(
Ii
s, It
)
)

]
(4.7)

The third part µd is defined as a depth error between the estimated depth map dt and its

warped map di
s→t from the ith source depth based on optical flow as shown in Figure 4.7:

µd =
N

∑
i=1

(
1− ‖dt−di

s→t‖
dt +di

s→t

)
(4.8)
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Previous Dynamic Mask Current Frame Next Dynamic Mask

Figure 4.7: Previous Dynamic Auto-Mask and Next Dynamic Auto-Mask with Current
Frame Image.

Different from the auto-masks [6] and the self-discovered masks [5], we use a full optical

flow to warp a depth map to generate the full dynamic auto-mask. A full optical flow could

record all the dynamic information within a scene. The depth map estimated from the depth

network relies more on rigid motion in a scene as it is linked to the ego-motion estimation

and the rigid warping operation used in the loss functions. The flow warped depth map

contains more information on dynamic objects. Their difference reflects more accurately on

dynamic objects.

In Figure 4.5, there is a clear dynamic object (motorcycling) in the input image (left on

the first row). Our depth estimation also clearly shows the scene (right on the first row). Our

auto-mask (µd) and the self-discovered mask [5] are compared on the left and right of the

second row, respectively. Our mask can provide a much more distinct figure and a thinner

outline of the trees than the self-discovered mask. Given a more precise object detection, the

mask used in the loss function could avoid the information loss from the input image. The

projected image errors from our RSTNet and [6] is shown in the left and right of the third

row, respectively. It is demonstrated that our mask detects dynamic objects much better. In

the last two rows, the performance of our auto-mask (µt + µs) is shown. The vehicle with

a similar velocity as the camera is shown in the red circle (left) and eliminated as shown in

the black (right) in the fourth row. The static distant sky (left) is shown in the fifth row and

eliminated in black (right).

4.4.5 Dynamic Object Estimation

We use a pre-trained network (SegNet) to detect dynamic objects in our RSTNet. The SegNet

is an encoder-decoder architecture and used here to classify each pixel as two classes: static

and dynamic. The input is the difference between the full flow estimated from PWC-Net and

the rigid flow reconstructed by using estimated depth and ego-motion (see Figure 4.1). This
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is a different use against the work in [103] [196] where they estimate the residual flow using

a network, then reconstruct the full flow with a rigid flow.

Some results from this network are shown as in Figure 4.8. We use an image with a

size of 384×184. The forward flow (Flow12) and backward flow (Flow21) are predicted by

the PWC-Net. The rigid flow is computed by using estimated depth and ego-motion. The

difference flow is the full flow minus the rigid flow. The dynamic object is separated from

the static background by the SegNet (Mask Generator). The result shows the profile of the

dynamic object is clearly detected with intermediate optical flows in Figure 4.9.

4.5 Experiments

We implemented the proposed RSTNet using the Tensorflow framework and trained it with

one NVIDIA GTX 1080TI GPU. Adam optimizer was employed to speed up the network

convergence for up to 30 epochs with parameter β1 = 0.9. The learning rate started from

0.0001 and decreased to 0.00001 after the 3/4 of total iterations. Because of our GPU’s

memory size limitation, the size of input images was 416× 128 under the consideration of

comparison with other networks. For data prepossessing, we used different kinds of data

augmentation methods introduced in the previous work [4] [6] that can enhance the perfor-

mance and mitigate possible over-fitting.

4.5.1 Depth Estimation Evaluation

To evaluate the performance of the proposed RSTNet depth estimation, we choose the KITTI

dataset with a benchmark split from [4] as the benchmark. As shown in Figure 4.10, we

compare our method with the state-of-the-art unsupervised depth estimation methods, such

as Monodepth2 [6], SC-SfmLearner [5], and Packnet-SfM [7]. The dynamic, challenging

scenes, including pedestrians, are shown in the first and second rows. Our RSTNet per-

forms best compared with the other three methods, such as the shape details for pedestrians.

It can also be seen in the third to the sixth rows, where motorcycles and vehicles are dy-

namic objects. In addition, the RSTNet depth estimation of static objects, such as the trees,

street lights, and signposts, has a higher resolution and a clearer view of structures. These

results are from a smaller size image (128 × 416) than others Packnet-SfM (192× 640),

SC-SfMLearner (256×832), and Monodepth2 (192×640).
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We list the quantitative depth estimation results in Table 4.1, where M stands for using

monocular image sequence for training and S stands for using segmentation inputs for train-

ing. Compared with the existing state-of-the-art unsupervised learning-based methods, our

RSTNet has a better performance in terms of the metrics used (see the smallest values in Abs

Rel, Sq Rel, RMSE, RMSE log columns and the highest values δ of the last three columns

in the table). Our RSTNet uses the smallest image size but achieves the better depth estima-

tion results without the additional inputs like work in the [126] and [127]. Profit from our

lossless RST-encoder and RST-decoder layers, our depth network estimates more accurate

results than other methods. Some comparative data of table are obtained from [130] and [7].

4.5.2 Ego-Motion Estimation Evaluation

We used the KITTI dataset to test the performance of the proposed RSTNet ego-motion es-

timation. The KITTI dataset only provides the ground truth of 6-DoF poses for Sequence

00-10. We used Sequence 00-08 for training and Sequence 09-10 for testing. The met-

rics are the average translational root-mean-square error (RMSE) drift and average rota-

tional RMSE drift (◦/100m) on length of 100m-800m. The results are shown in Table II.

We compare the results with SGANVO [130], Zhao [190], ORB-SLAM (without loop clo-

sure) [31], UndeepVO [93], and Undepthflow [94]. SGANVO is based on monocular image

training. UndeepVO and Undepthflow are based on stereo image training. ORB-SLAM is

a geometry feature method. Zhao leverages geometry-based methods and deep learning to

estimate the ego-motion. It can be seen that our RSTNet shows a better performance in

the testing sequences (09, 10) with these state-of-the-art methods in terms of the transla-

tional and rotational RMSE drift metrics. It outperforms other end-to-end learning-based

methods (SGANVO, UndeepVO, and Undepthflow). However, the average rotational drifts

of learning-based methods (RSTNet, SGANVO, UndeepVO, and Undepthflow) are rifely

larger than the geometric methods such as ORB-SLAM and Zhao’s [190]. It shows that the

deep learning method has a limited learning ability on rotation estimation compared with the

geometry methods.

Another metric used is the absolute trajectory error (ATE) averaged over all overlapping

5-frame snippets. We concatenated all of the left and right estimations together for the entire

sequences without any post-processing. The estimated trajectories of sequences 02, 08, 09
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Table 4.3: Absolute Trajectory Error (ATE) on KITTI odometry dataset. The results of
other baselines are taken from [103]

Method frames Sequence 09 Sequence 10

ORB-SLAM(Full) [31] All 0.014±0.008 0.012±0.011

SfMLearner [4] 5 0.016±0.009 0.013±0.009

GeoNet [103] 5 0.012±0.007 0.012±0.009

Monodepth2 [6] 2 0.017±0.008 0.015±0.010

RSTNet 3 0.011±0.006 0.010±0.005

and 10 from our RSTNet and its ground truth are shown in Figure 4.11 and Figure 4.12. Al-

though the estimated results include some drifts, our RSTNet can estimate all the trajectory

features and performs well when no loop closure detection is used. The quantitative results

are shown in Table 4.3 where we compare our results with ORB-SLAM(Full) [31], Sfm-

learner [4], Geonet [103], and Monodepth2 [6]. In the comparison, our RSTNet produced a

good result.

In addition, the rotation error and translation error of sequence 09 and 10 are shown in

Figure 4.13 and Figure 4.14 which are based on the 100m to 800m path length and 25km/h

to 60km/h speed. From this figure, we can see that it reflects the same drift of translation

and rotation as Table 4.2 in four-line charts of the first and third column, and the other four

line charts reveal that high-speed movement does not fail the network’s estimation even the

errors have a nimble reduction in Sequence 09 and 10.

4.5.3 Dynamic Object Estimation Evaluation

The pre-trained SegNet was used for detecting dynamic objects. The performance of using

this network for dynamic object detection is shown in Figure 4.15. There are dynamic objects

such as vehicles and pedestrians in each input image. Visually, our estimation has good

accuracy, and the outline and shape of dynamic objects (car in the first to third rows and

pedestrians in the fourth row) are clear. It can be seen that the shadow of the moving car in

the second, third, and fourth rows is also detected as the part of dynamic objects, which is a

good result given the shadow was also moving with the car.
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Input Image Dynamic Objects

Figure 4.15: Our proposed RSTNet to estimate the dynamic objects on the KITTI odometry
benchmark.
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Table 4.4: The number of parameters and inference time for different versions of networks.
Networks Type Parameters Inference Period(s/it)

3D-Packnet [7] 23170736 1.24357

RST-V1 23125232 1.23886

RST-V2 37062512 1.42846

RST-V3 26444144 1.33599

RST-V4 23789168 1.30512

RST-V5 23125232 1.23902

RST-FULL 40863344 1.89274

4.5.4 Network Complexity

Our RSTNet demonstrated a significant performance in various estimation tasks, such as

depth, ego-motion, and dynamic objects. Nevertheless, it comes at the price of computa-

tional network complexity. For a fair comparison, our experiments were conducted under

Tensorflow 1.14 version with the same size (128× 416) for the input image. We imple-

mented our RST-encoder and RST-decoder layers based on the RES18 network. We replaced

the striding, pooling, and upsampling operations in each layer of the RES18 network with

our RST layers. We constructed five versions of networks (RST-V1 to RST-V5) by replacing

each of five filters in the RES18 network with RST layers and a full version (RST-FULL)

by replacing all five filters together. We implemented the 3D-Packenet [7] in the same Ten-

sorflow environment. Table 4.4 presents the network parameters and inference time on the

NVIDIA GTX 1080TI GPU. The inference time is an average over the last ten iterations in

training epoch 2.

Table 4.4 reveals that the number of parameters for version V2 to V4 is larger than the

RES18 network, and accordingly longer inference time is required. The full version in the

last row shows that both the number of parameters and inference time became significantly

larger but produced good estimation results as demonstrated in Figure 4.3.

4.5.5 Ablation Analysis

We conducted three experiments for an ablation analysis with three network versions (RST-

V1, RST-V12, to RST-V123). The version RST-V1 replaces the first filter in the RES18
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network with an RST layer. The version RST-V12 replaces the first two filters in the RES18

network with two RST layers. The version RST-V123 replaces the first three filters in the

RES18 network with three RST layers. In Table 4.5, we set the same network and training

parameters to explore the influence of increasing the number of RST layers on the estimation

performance. The primary evaluation is focused on the ego-motion and depth estimation for

sequence 09 and sequence 10.

It can be seen from Table 4.5 that both ego-motion and depth estimations perform better

and better when the number of RST layers increases from 1 to 3. More RST layers lead to

more accurate results with a longer computational time, as indicated in the last sub-section.

We also conducted seven experiments for an ablation analysis on features used for ego-

motion estimation in our RSTNet. In Figure 4.1, the RNN ego-motion network uses three

kinds of input features extracted from two consecutive input images, two estimated depth

maps, and one optical flow map. The input image features (Fi) provide appearance informa-

tion, and they are the most compelling features for ego-motion estimation, as demonstrated

in most research works. The depth features (Fd) provide structural information of the scene.

The flow features (Ff ) provide dynamic information of objects.

The average translational RMSE drift trel and rotational RMSE drift rrel for Sequence 09

are used for evaluation in Table 4.6. It can be seen the results are not improved when the

depth features (Fd) or flow features (Ff ) are used alone comparing with image features (Fi).

But the results can be improved when the depth features or flow features are used together

with image features (see Fi+d and Fi+ f column).

When the combination of depth features and flow features are used (Fd+ f column), the

results get worse, which implies that the image features are the most influential factor. When

all three kinds of features are used (Fi+d+ f column), the results are the best.

4.5.6 Optical Flow Estimation Evaluation

In the above third dynamic object estimation experiments, we utilize the difference between

full optical flow and rigid synthetic optical flow. This section evaluates our RSTNet’s optical

flow estimation, which directly affects the accuracy of dynamic object estimation and auto-

mask during the training process. To quickly verify our ideas, the above optical flow network

is pre-trained PWC-Net which is supervised training on the FlyingChairs dataset [197]. In-
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Table 4.6: Impact of image features (Fi), depth features (Fd), and flow features (Ff ) on the
ego-motion estimation of Sequence 09.

Features Fi Fd Ff Fi+d Fi+ f Fd+ f Fi+d+ f

trel(%) 5.67 8.21 9.12 4.64 4.75 9.06 4.35

rrel(
◦) 2.94 7.82 8.34 3.25 3.30 7.69 2.22

• trel: average translational RMSE drift (%) on length of 100m-800m.

• rrel: average rotational RMSE drift (◦/100m) on length of 100m-800m.

spired with Geonet [103] and UnDepthFlow [94], we implement our RSTNet optical flow

network unsupervised learning. Because our RST-encoder can be used as a plug-in unit by

other networks, we replace the PWC-Net’s encoders with our RST-encoders. In addition, our

RSTNet can deal well with dynamic information. Our warping optical flow from depth maps

and ego-motion perform very close to the real optical flow field. So we can directly use the

RSTNet refined PWC-net to estimate optical flow or utilize RSTNet’s depth and ego-motion

estimations to optical synthesis flow.

In Figure 4.16, our refined PWC-Net can estimate the forward and backward optical flow

lying alongside with input image, which has advantages in estimating the dynamic scene

field. Our RSTNet synthetic forward and backward optical flow lie alongside a dynamic

object image, which estimates dynamic object flow. The experiment results demonstrate that

both our refined PWC-Net and RSTNet synthetic optical flow have a good performance in

estimating optical flow from images. The application of optical flow from a deep learning

network will be introduced in the next chapter with geometry visual odometry.

4.6 Conclusion

This chapter proposes a novel monocular recurrent spatial-temporal network (RSTNet) for

estimating depth, ego-motion, and dynamic objects from videos. Since our proposed RST

layers can capture detailed spatial and temporal features from consecutive input frames, the

RSTNet can generate more accurate depth and ego-motion estimation results compared with

other existing unsupervised learning networks. In addition, the dynamic object detection re-

sults also demonstrate exemplary performance. The loss function with our auto-mask scheme

plays a crucial role in improving the learning quality of depth, ego-motion, and dynamic ob-
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Input Image & Dynamic Object Forward Optical Flow Backward Optical Flow

Figure 4.16: Optical flow estimation comparison between the refined PWC-Net estimation
and RSTNet synthetic optical flow with dynamic object.
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jects.

Many recent works such as [198], [199], and [190] that combines geometric method with

deep learning networks can not only improve the accuracy but also reduce computational

time. In the future, we will plan to integrate geometric methods with our deep network

further to improve accuracy, robustness, and real-time performance.

This chapter explores the novel design of the internal network structure to improve esti-

mation performance. The following chapter will go further to coalesce semantic segmenta-

tion into RSTNet for disparity estimation and leverage geometry method for visual odome-

try.



Chapter 5

Leverage Semantic Segmentation for

Depth Estimation and Geometry Method

for Ego-Motion Estimation

5.1 Introduction

High-level object segmentation is an essential task for robots to understand their environ-

ments. Suppose the learning-based visual odometry can work with object segmentation al-

gorithms. In that case, the system can process higher-level tasks such as object classification

and object recognition to build higher-level maps. The segmentation information helps im-

prove the estimation performance of the original tasks in learning-based visual odometry as

well. This chapter introduces a pathway for coalescing semantic segmentation networks into

the depth and ego-motion estimation networks in section 5.2.

Semantic segmentation is considered to be the most commonly used object detection

method in the computer vision field. Instance segmentation can provide more detailed in-

formation for different instances in the same category. However, instance segmentation net-

works need more network parameters to store than semantic segmentation because of more

complex network design. Considering the memory limitation of training hardware, this sec-

tion chooses a relatively nimble semantic segmentation network to coalesce into the visual

odometry of our RSTNet.

In addition, to exploit semantic segmentation networks, this chapter also explores in-

99
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tegrating geometry methods into learning-based methods. Although a deep learning-based

ego-motion estimator performs well, it still cannot reach the accurate level of some advanced

geometry methods. Therefore, more and more research works to leverage deep learning

networks and geometry methods to obtain highly accurate results in ego-motion estimation

tasks. This chapter implements a geometry-based visual odometry system with deep learning

networks in section 5.3.

5.2 Leverage Semantic Segmentation for Depth Estimation
Our RSTNet in Chapter 4 can produce the pretty and legible depth map and relative accurate

ego-motion estimation through the complex internal network structure design and utilizing

the optical flow network to predict the full flow for building the novel dynamic auto-masking

loss functions. It is just this complex and bulky training design that consumes all the current

hardware resources in our hands. In this section, the RSTNet is extended to add a high-level

object segmentation network rather than using the dynamic objects detection proposed in

Chapter 4. This section explores whether semantic segmentation can improve depth estima-

tion or not.

5.2.1 Coalesce Semantic Segmentation into RSTNet

The structure of coalescing semantic segmentation into our RSTNet is shown in Figure 5.1.

The middle image of three consecutive frames is fed into the semantic segmentation network

to predict the semantic mask. Meanwhile, a simplified version of our RSTNet estimates

the depth maps D1,D2,D3 and two ego-motions T12,T23 between them. This lightweight

RSTNet network only contains one image feature extraction encoder, which is reused by

three images for depth and ego-motion decoder as introduced in Chapter 4.

Different from the others’ work like [126] [127], we coalesce the semantic segmentation

network into RSTNet in one stage training process with one coalescing total loss function.

This total loss function contains three components: supervised semantic segmentation loss,

unsupervised RSTNet depth estimation loss, and associative semantic edge-ware loss:

Lcoal = αdLd +αsLs +αaseLase (5.1)

Ld is introduced as the above photometric re-projection loss function. The supervised
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segmentation loss function is the standard cross-entropy between the predicted semantic

labels and ground truth pixel-wise semantic labels:

Ls = H(pt , pt)+KL(pt , pt) (5.2)

where pt is the ground truth semantic pixel and pt is the predicted semantic pixel. H donates

the entropy, and KL represents KL-divergence. Associative semantic segmentation and depth

estimation is Lase as below:

Lase =
N

∑
i, j

sign(|δxsemi, j|e−|δxdi, j|)+ sign(|δysemi, j|e−|δydi, j|) (5.3)

where semi, j is the semantic pixel label, sign is the operation that marks the absolute value

of the gradients in the semantic map. di, j is the estimated depth and δx,y is the corresponding

gradients. This semantic edge-aware smooth loss function can regularize a gradient peak

between adjacent pixels belonging to different classes.

5.2.2 Leveraging Semantic Segmentation Depth Evaluation

To keep the better specialties of RSTNet for estimation, the semantic segmentation enhanced

version of RSTNet needs to be firstly trained typically as the pre-trained networks. Unlike

the unsupervised deep learning of depth, ego-motion, and optical flow, semantic segmenta-

tion needs the labeled ground truth for supervised semantic training. The traditional KITTI

dataset provides insufficient semantic ground truth labels for training the networks. Most

current works use the Cityscapes dataset to train the network to learn semantic segmentation

in advance and then transform the pre-trained network to the KITTI dataset for depth and

ego-motion estimation. This approach does not incorporate semantic segmentation into the

visual odometry networks because the whole networks are not trained in the single-stage

at the same time. Benefit from the KITTI segmentation dataset [200], this training dataset

can provide the semantic segmentation ground truth labels for supervised training with the

unsupervised training for other tasks.

We implement our semantic segmentation-based visual odometry in RSTNet and evalu-

ate the results on the KITTI 2015 dataset. The depth evaluation results of our new system are

presented in Figure 5.2. The first column lists the input images. The other two columns are
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Input Images Our Depth Maps SemMonoDepth [8]

Figure 5.2: Semantic Segmentation based Depth Estimation in RSTNet Compared with
SemMonoDepth [8].
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SemMonoDepth[8] 
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Figure 5.3: Semantic Segmentation Results in RSTNet Compared with SemMonoDepth [8].
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Table 5.1: Depth estimation results on KITTI 2015 evaluation dataset. For testing data, our
Semantic RSTNet uses monocular images but SemMonoDepth [8] uses stereo images.

Method Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ <1.252 δ <1.253

Semantic RSTNet 0.127 1.112 5.176 0.202 0.858 0.953 0.979

SemMonoDepth [8] 0.136 1.872 6.127 0.210 0.854 0.945 0.976

our Semantic RSTNet depth estimations compared with the SemMonoDepth depth estima-

tions. It can be seen that our depth maps are more straightforward and more accurate in the

contours of objects such as vehicles, trees, street lamp, and pedestrians. Because of utiliz-

ing semantic segmentation ground truth to build the associative semantic edge-ware loss and

using our RSTNet unsupervised learning, we can gain better depth estimation results than

SemMonoDepth [8] as the quantitative results shown in Table 5.1 even if SemMonoDepth

uses stereo images.

From the semantic segmentation evaluation results in Figure 5.3, we can see that our

segmentation network can predict the actual object’s mask, such as a vehicle, street lamp,

tree, and pedestrian. Because of the excellent performance in depth estimation, the edge of

the object’s semantic segmentation is clear and intact compared with SemMonoDepth [8].

It demonstrates that our semantic segmentation network can infer the intact vehicle in blue,

which is closer to the contour shape of the real object. Because our semantic edge-ware loss

function couples with depth estimation and semantic segmentation training in one process,

good depth estimation results help the semantic segmentation network to have more apparent

object edge segmentation and vice versa.

The KITTI semantic segmentation ground truth labels are not enough even that our RST-

Net semantic segmentation is also commendable under these hard-limited conditions. We

can get more accurate segmentation masks based on more training data with semantic ground

truth. In the future, we can extend our RSTNet semantic segmentation on pure high-level ob-

ject segmentation such as instance segmentation and panoamic segmentation in the computer

vision field.
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Figure 5.4: Leverage Geometry-based Methods and Deep Learning Networks.

5.3 Leverage Geometry Method for Ego-Motion Estima-

tion

With the rise of deep learning-based visual odometry from 2018, the current learning ability

of deep neural networks has stabilized at the bottleneck stage. More and more new research

works are emerging to try to make further improvements. One popular approach is proposed

to leverage geometry-based method and deep learning networks so that it has the precision

and speed of the traditional geometric method and inherits the robustness and stability of the

deep learning-based methods. As the future work discussed in the last part of Chapter 4,

this section implements leveraging geometry-based methods and our RSTNet based on the

framework introduced in [198].

5.3.1 Leveraging Geometry Method and Deep Learning System

• Deep Learning Component: As shown in Figure 5.4, this part implements the pre-

trained optical flow estimation network based on the PWC-Net between two images.

This part only utilizes the refined PWC-Net to detect dynamic objects for optical flow

estimation. Meanwhile, the RSTNet depth estimation networks provide two corre-



5.3. LEVERAGE GEOMETRY METHOD FOR EGO-MOTION ESTIMATION 107

sponding depth maps. The pre-trained RSTNet’s depth estimation can provide accu-

rate depth information for depth scale computing. The purpose of the deep learning

component is to replace traditional feature point extraction and represent factual depth

information.

• Geometry Method Component: Following the deep learning component, the ge-

ometry method component utilizes the forward and backward optical flows to predict

2D-2D dense correspondences between images. Give an image pair, (Ii, Ii−1), the op-

tical flow describes the pixel movements in Ii which give the correspondences of all

the pixels of Ii in Ii−1. Inspired by Geonet [103], the optical flow network can predict

forward optical flow Ff and backward optical flow Fb. The flow consistency can be

computed as:

C =−Ff −w(Ff , p f (Fb)) (5.4)

The warping process at a pixel x in backward flow from forward flow Ff is described

as:

w(Ff [x], p f (Fb[x])) = Fb[x+Ff [x]] (5.5)

After computing the forward-backward flow consistency C, the geometry method com-

ponent chooses the optical flows with the least inconsistency Fic to form the best N of

2D-2D matches, where N equals 2000 in most experiments. The system forms the

feature point matches (pi, pi−1) from the filtered flows based on flow inconsistency

Fic to select the correspondence as introduced in [201]. After selecting good 2D-2D

correspondences, the essential matrix can be solved using Epipolar Geometry. The

Epipolar constraint is employed for solving the essential matrix: E. Then the camera

ego-motion [R, t] can be decomposed from the essential matrix E as below:

pT
i−1K−T EK−1 pi = 0, where E = [t]×R (5.6)

However, the recovered motion [R, t] is up-to-scale. In each frame, the real map scale

is computed through the depth estimation based on the geometry. The geometry com-

ponent uses the predicted depth di as a reference for scale recovery. Triangulation is

performed for (pi, pi−1) to recover the up-to scale depth d
′
i . A scaling factor s can be
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estimated by aligning the triangulated depth map d
′
i with the deep learning depth map

di. Thus, the scaled ego-motion can be calculated as [R,s× t].

In summary, the deep optical flow learning network outputs forward and backward op-

tical flow estimations to detect the flow inconsistency for feature point extraction. The ge-

ometry method for 2D-2D matching computes the camera ego-motion for visual odometry.

The deep depth estimation network provides the 3D structure reference for the geometry

method’s triangulation scale recovery. These two components are complementary.

5.3.2 Leveraging Geometry Method Ego-Motion Evaluation

The performance of the fusing method visual odometry is shown in Figure 5.5. The left big

black area is the visual odometry map. The red track is the ground truth and the green track

is our result. It can be seen that the leveraging method has less drift on visual odometry

estimation than the learning methods in previous chapters. The first image on the right

presents the feature points extracted by comparing the forward optical flow and backward

optical flow. The two consecutive images matching results are shown in the second row on

the right. The depth map is listed in the third row, which is used to compute the actual scale

of the map with the forward optical flow. The two bottom images are the backward optical

flow and flow difference map.

Because our system utilizes the geometry-based method to estimate the ego-motion,

which is based on the feature point extraction from the forward-backward optical flow match-

ing, the track is more accurate without significant drift like pure deep learning-based meth-

ods. For quantitative comparison, we compare the leveraging geometry method with the

RSTNet ego-motion estimation in the pure deep learning method in Table 5.2. Concern-

ing translation error or rotation error, the leveraging geometry method outperforms the pure

learning method. The translation and rotation drifts of the leveraging method are small, so

the shape of the trajectory curve is closer to the ground truth curve corresponding to the vi-

sualized results in Sequence 09 of Figure 5.5 and Figure 4.12. Nevertheless, the leveraging

geometry method performs better than the pure deep learning method in the rotational drift

comparison. The leveraging geometric method performs nearly an order of magnitude better

than the learning method on average. We can also get a visual comparison in Figure 5.5

which has tiny rotational drift instead of significant rotational drift for Sequence 09 in Figure
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Figure 5.5: Leverage Geometry-based Method and RSTNet’s Map on KITTI Odometry
Sequence 09.

4.12.

5.4 Conclusions

To sum up, this chapter serves as a supplement and extension to the previous RSTNet ac-

cording to depth and ego-motion refinements. This part implements the leveraging seman-

tic segmentation into the RSTNet depth estimation and leveraging geometry-based method

on the ego-motion estimation. For the fairness and comparability of the experiments, we

have to implement the semantic segmentation network on the same RSTNet visual odometry

data set. Considering the hardware memory limitation, we re-implement our RSTNet in a

lightweight version for exploring the semantic segmentation’s improvement of depth estima-

tion. Although there is a limitation on KITTI semantic segmentation ground truth data, we

coalesce the semantic segmentation into RSTNet, and its performance is reasonably good.

In the future, we can extend the semantic segmentation to large semantic data sets for further

improvement.

Furthermore, we leverage the geometry-based method and deep learning networks to es-

timate the ego-motion track map following the current research diversion. The ego-motion



110 5.4. CONCLUSIONS

Table 5.2: Ego-motion estimation results on KITTI odometry dataset from Sequence 03-07
and 09-10 with our proposed RSTNet. We compare our leveraging geometry method with
the RSTNet’s ego-motion estimation. The best results are made in bold.

Sequence 03 04 05 06 07 09 10

RSTNet
trel(%) 4.67 2.28 2.97 3.81 2.83 4.75 5.54

rrel(
◦/100m) 3.08 0.69 1.04 1.13 1.77 2.22 2.72

Leveraging

Method

trel(%) 2.26 1.47 1.53 1.35 0.69 2.48 1.89

rrel(
◦/100m) 0.39 0.33 0.27 0.42 0.30 0.28 0.39

• trel: average translational RMSE drift (%) on length of 100m-800m.

• rrel: average rotational RMSE drift (◦/100m) on length of 100m-800m.

estimation of the fusing method has a significant advantage compared with the pure deep

learning method. Through our evaluation experiments, we can see that the leveraging ge-

ometric method has high accuracy. Therefore, the leveraging geometry and deep learning

method achieve both advantages, such as robustness and accuracy requirements. In the fu-

ture, we can explore more lightweight deep learning networks for feature point extraction

such as depth maps to get accurate, robust, and real-time performance.

The above three chapters are my main work and contributions. The next chapter is the

last part of the thesis to discuss the conclusions and future work.



Chapter 6

Conclusions and Future Work

The final chapter presents a summary of my research work and outlines the significant re-

search contributions. In addition, this chapter also enumerates the journal and conference

publications of my research work and extends to discuss the future work.

6.1 Research Summary
My Ph.D. research is irritated by sensor-less challenging navigation tasks for mobile robots

with videos only from the camera. Visual simultaneous localization and mapping (VSLAM)

techniques are a solution to these challenging navigation tasks. Remarkably, my work fo-

cused on the initial and vital component of VSLAM: visual odometry (VO), which directly

deals with feeding images as the front end of VSLAM systems.

The traditional visual odometry is based on the geometry-based method by estimating

the rigid ego-motion between two points by the positions in three-dimensional space. The

relationship between them is the artificial, rigid transformation. Deep learning technology

extends another path to estimate ego-motion through training deep neural networks. Unlike

the traditional geometric method or sensor’s measuring depth, the depth or the ego-motion is

the assumed known as the deep learning network’s initial output, although they are wrong.

Then the network is trained on the amount of data converging them towards the target output

through minimizing the loss functions with the supervised ground truth labels or the unsuper-

vised view synthesis images. No matter what methods are, there are three primary variables

of visual odometry (depth information, ego-motion, and optical flow) to settle. Therefore,

my research target is to estimate them by deep learning technology and process high-level

111
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semantic segmentation tasks.

In learning-based methods for visual odometry, depth and ego-motion can support each

other via the design of loss functions and network architectures. There are stereo and monoc-

ular depth estimation methods. Some datasets provide the depth and ego-motion ground

truth, and some do not. There are supervised and unsupervised training methods. After

comparing the previous works, we decided to explore the harsh condition under which the

monocular depth and ego-motion could be estimated with unsupervised learning methods.

Inspired by related work and popular generative adversarial network (GAN), we propose

the SGANVO based on the stacked GAN to estimate the depth and ego-motion at the bot-

tom layer. The state-of-the-art performance of estimations is achieved compared with the

previous work. However, the SGANVO is too bloated and contains a considerable size of

networks which costs too much memory of GPU with long computation time. To make the

visual odometry network more nimble, we explore the internal structure of the networks to

improve the nimble network learning ability of spatial-temporal features. In this condition,

we successfully design the recurrent spatial-temporal (RST) layer, which records the spatial-

temporal features.

Furthermore, we propose the efficient RSTNet to estimate the depth maps and ego-

motions for three consecutive input images each time. From the evaluation of the baseline

dataset, the RSTNet can estimate the more accurate depth and ego-motion with a smaller

network scale. In addition, we refine the PWC-Net by the RST layer to estimate optical flow

to detect dynamic objects and mask the dynamic information during the network’s training

process.

At last, we expand our RSTNet to deal with semantic segmentation and also leverage

geometry-based methods. From the experiment results, our RSTNet performs well on the

semantic segmentation task. After replacing the geometry-based feature extraction with our

deep learning network, our visual odometry has a broad practical prospect with state-of-art

performance.

6.2 Research Contributions
The significant contributions of my research are briefly outlined as follows:

(1) Stacked Generative Adversarial Networks based Visual Odometry (Chapter 3)
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• Propose a novel stacked generative adversarial network to estimate the depth and

ego-motion to reconstruct the fake image with the previous input image for gaming

with the actual input image.

• The upper stacked structure of the networks can learn the temporal features of three

consecutive frames for estimation tasks.

• The training dataset chooses the stereo images to learn to rebuild the stereo image,

making the depth estimation more accurate. The trained SGANVO can work on

the monocular dataset.

(2) Recurrent Spatial-Temporal Encoder and Decoder Layers (Chapter 4.3)

• Design a novel RST layer with 3D convolution space expansion and LSTM tempo-

ral extension, which records the spatial-temporal features in one time step.

• Integrated sub-pixel layer into the RST-encoder layer and RST-decoder layer to

achieve a higher precision output.

• The RST-encoder and RST-decoder layers can be flexibly used as plug-in units by

other networks.

(3) Recurrent Spatial-Temporal Network for Estimating Depth, Ego-motion, and Dy-

namic Object (Chapter 4.4)

• Propose a novel depth estimation network with an encoder-decoder structure con-

sisting of multiple RST-encoder and RST-decoder layers.

• Feed the different features from images, depth maps, and optical flow into an RNN

to estimate the ego-motion.

• Propose the auto-mask to move out the relatively static and dynamic information

for refining the network’s training process.

• Utilize the difference between the full optical flow from pre-trained PWC-Net and

the rigid optical flow synthesized from depth and ego-motion estimations to esti-

mate dynamic objects through the pre-trained SegNet.

(4) Semantic Segmentation and Geometry Method are coalesced with the RSTNet (Chap-

ter 5)
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• Coalesce high-level semantic segmentation into the RSTNet depth and ego-motion

estimation training in a single stage.

• Leverage the geometry-based feature extraction by the RSTNet optical flow net-

work.

6.3 Academic Publications
Some academic publications have been published or submitted from my Ph.D. research.

Journals

• Tuo Feng, Dongbing Gu. “SGANVO: Unsupervised deep visual odometry and depth

estimation with stacked generative adversarial networks.” IEEE Robotics and Automa-

tion Letters 4.4 (RA-L) (2019): 4431-4437.

• Tuo Feng, Dongbing Gu. “RSTNet: Recurrent Spatial-Temporal Networks for Esti-

mating Depth, Ego-Motion, and Dynamic Objects.” IEEE Transactions on Cybernet-

ics. (T-Cyb), 2021. (Under Review)

Conference

• Tuo Feng, and Dongbing Gu. “SGANVO: Unsupervised deep visual odometry and

depth estimation with stacked generative adversarial networks.” IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2019.

6.4 Potential Applications
SGANVO and RSTNet perform well in the laboratory, but real-time requirements are sacri-

ficed in pursuit of accuracy and performance, and extensive networks require a lot of com-

puting time. These two networks can work on a solid computing power platform such as

cloud service and vehicle for real-time applications. If applications’ real-time requirements

are not high, our networks can also run offline.

In the future, we can also convert the network to a lightweight version such as MobileNets

[202] to be competent for real-time applications of computer vision platforms with limited

resources.
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6.5 Future Work
Based on current research in the visual odometry area, three main directions are worthy of

further exploration: robustness, accuracy, and real-time.

• Robustness Deep learning technology provides a pathway to estimate the track for

visual odometry robustly. Future work can expand the RSTNet on the same dataset

but in different seasons or periods to train the network’s robustness.

• Accuracy Fusing the geometry-based method and deep learning can gain both accu-

rate and robust benefits. The next step is to explore the feature points extracted from

different networks, such as the RSTNet depth network and the RSTNet ego-motion

network. In addition, the output of the ego-motion network can be used as the initial

estimation, which can be refined by the geometry-based method as residual adjust-

ment.

• Real-time Design smaller and more efficient networks to reduce the computation time

or replace ego-motion estimation with a real-time geometry-based method.

According to high-level segmentation tasks, three new fields are worthy of future re-

search: instance segmentation, panoptic segmentation, and dynamic object segmentation.

• Instance Segmentation Instance segmentation is a more detailed task to detect differ-

ent objects belonging to the same class. Therefore, the network needs to be added with

new layers and be trained on the instance ground-truth dataset.

• Panoptic Segmentation Panoptic segmentation can be combined with semantic seg-

mentation or instance segmentation. This task can process by one stage from a single

designed network like [203] or two stages from respective networks.

• Dynamic Object Segmentation Our RSTNet only deals with the dynamic object esti-

mation but cannot detect different object classes and instances. Benefit from semantic

segmentation and instance segmentation. Future work can detect different dynamic

object instances.

When visual odometry is integrated into an entire SLAM system, the rest should include

loop closure detection, bundle adjustment, and 3D mapping.
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• Loop Closure Detection The estimation of location is a recursive process in which

the pose of the current frame is calculated from the pose of the previous frame. So

the cumulative error or drift of estimation is transmitted frame by frame in visual

odometry. Finding out the historical frames that can establish this location constraint

can be achieved using the loop closure detection technique, which helps to reduce the

cumulative error. In the future, our RSTNet can add the loop closure detection at the

back end.

• Bundle Adjustment Bundle adjustment is another optimization operation when keyframes

are needed to reduce the drift. This operation also can be added to the front end.

• 3D-Mapping Building a dense 3D point cloud map becomes more and more popular

in practical applications. Future work can build the 3D point cloud map through our

RSTNet depth map estimation. In addition, subsequent step work can build a 3D point

semantic map combined with semantic segmentation.

To sum up, the thesis research proposes some innovative deep learning networks for

estimating depth, ego-motion, optical flow, dynamic objects, and semantic segmentation for

visual odometry. The state-of-art performance has been achieved compared with related

work. It contributes to further progress in the area of SLAM research.
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[186] M. Klingner, J.-A. Termöhlen, J. Mikolajczyk, and T. Fingscheidt, “Self-Supervised

Monocular Depth Estimation: Solving The Dynamic Object Problem by Semantic

Guidance,” in European Conference on Computer Vision. Springer, 2020, pp. 582–

600.

[187] B. Wagstaff, V. Peretroukhin, and J. Kelly, “Self-Supervised Deep Pose Corrections

for Robust Visual Odometry,” in 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2020, pp. 2331–2337.

[188] R. Ambrus, V. Guizilini, J. Li, and S. P. A. Gaidon, “Two Stream Networks for Self-

Supervised Ego-Motion Estimation,” in Conference on Robot Learning. PMLR,

2020, pp. 1052–1061.

[189] H. Jiang, L. Ding, Z. Sun, and R. Huang, “DIPE: Deeper Into Photometric Errors for

Unsupervised Learning of Depth and Ego-Motion from Monocular Videos,” in 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

2020, pp. 10 061–10 067.



138 BIBLIOGRAPHY

[190] W. Zhao, S. Liu, Y. Shu, and Y.-J. Liu, “Towards Better Generalization: Joint Depth-

Pose Learning without PoseNet,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 9151–9161.

[191] Y. Chang, C. Jung, and J. Sun, “Joint Reflection Removal and Depth Estimation From

A Single Image,” IEEE Transactions on Cybernetics, pp. 1–14, 2020.

[192] C. Li, R. Cong, S. Kwong, J. Hou, H. Fu, G. Zhu, D. Zhang, and Q. Huang, “ASIF-

Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detec-

tion,” IEEE transactions on cybernetics, vol. 51, no. 1, pp. 88–100, 2020.

[193] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift,” in International conference on machine

learning. PMLR, 2015, pp. 448–456.

[194] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026–1034.

[195] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assess-

ment: From Error Visibility To Structural Similarity,” IEEE transactions on image

processing, vol. 13, no. 4, pp. 600–612, 2004.

[196] S. Lee, S. Im, S. Lin, and I. S. Kweon, “Learning Residual Flow as Dynamic Motion

from Stereo Videos,” arXiv preprint arXiv:1909.06999, 2019.

[197] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt,
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