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Abstract 

The impacts of artificial light at night (ALAN) on marine ecosystems have emerged as a focus for 

ecological light pollution research in recent years, yet the global prevalence of ALAN in underwater 

marine ecosystems is unknown. We have derived a global atlas of ALAN throughout the marine water 

column that will accelerate our understanding of its sources and environmental impacts. At a depth of 1 m, 

1.9 million km2 of the world’s coastal seas are exposed to biologically important ALAN, which equates to 

around 3.1% of the global Exclusive Economic Zones. This area decreases to 1.6 million km2 (2.7%) at a 

depth of 10 m, and to 840,000 km2 (1.4%) at 20 m. The most heavily exposed regions are those that 

experience intensive offshore development in addition to coastal urbanization. The atlas highlights that 

ALAN as a global change issue is not exclusive to land but is also widespread in the world’s underwater 

habitats at irradiances that elicit biological responses in marine organisms. 

Introduction 

The 21st century will see dramatic increases in coastal urbanization (Neumann et al., 2015) and offshore 

infrastructure. Lighting from coastal urban centers, oil platforms and other offshore structures scatters in 

the atmosphere to form artificial skyglow that increases the extent of light pollution from source to 

hundreds of kilometers into the surrounding marine habitats. The impacts of this light on marine 

ecosystems has emerged as a focus for ecological light pollution research (Davies et al., 2014; Ludvigsen 

et al., 2018; Fobert et al., 2019; Torres et al., 2020). 

One of the clearest demonstrations that we have entered another epoch, the urbanocene (West, 2018), is 

the prevalence of artificial light at night (ALAN) visible from space (Falchi et al., 2016a). Satellite-derived 



images of the world’s night-time lights have been successfully coupled with atmospheric light dispersion 

models to produce new insights into the prevalence and growth of ALAN skyglow on land (Falchi et al., 

2016a; Kyba et al., 2017). Much of this light will enter the world’s seas and oceans, which until now has 

been difficult to quantify. The spectral signature of land-based light sources is detectable on the biodiverse 

coral reef ecosystems of the Red Sea (Tamir et al., 2017), and radiative transfer modelling of in-water 

ALAN skyglow transmission suggests that up to three quarters of the seafloor adjacent to cities can be 

exposed to artificial light irradiances sufficient to elicit biological responses (Davies et al., 2020). Satellite 

products of the world’s night-time lights have proved valuable for quantifying trends in ALAN (Bennie et 

al., 2014; Kyba et al., 2017), and exposure in terrestrial ecosystems (Mazor et al., 2013; Duffy et al., 2015; 

McLaren et al., 2018) and protected areas (Gaston et al., 2015). Skyglow-like light levels can affect 

melatonin in freshwater fish (Kupprat et al., 2020) and more generally impact freshwater ecosystems 

(Jechow and Hölker, 2019). To date, there is no atlas of the extent of ALAN under the sea, limiting 

advances in understanding and quantifying the impacts of marine ALAN from the organism to ecosystem 

level. 

We have derived a high-resolution global atlas of ALAN under the sea. The atlas is produced at a spatial 

scale of approximately 1 km x 1 km by combining the recently available world atlas of artificial night sky 

brightness (Falchi et al., 2016a; 2016b), satellite-derived in-water spectral optical properties (Lee et al., 

2002), sea surface-measured artificial light irradiances (Davies et al., 2020) and hydrological radiative 

transfer modelling (Mobley, 1995) (Figure 1). The atlas is calibrated using derived relationships between 

artificial sky brightness (Falchi et al., 2016a) and broadband sea surface irradiances (blue, nominally 400–

500 nm; green, nominally 500–600 nm; and red, nominally 600–700 nm) collected from waters adjacent to 

the city of Plymouth, UK (Davies et al., 2020) (Table 1). To model attenuation of light in the three 

wavebands, inherent optical properties (IOPs: absorption due to phytoplankton, colored dissolved organic 

matter (CDOM) and particulates, and backscatter due to particulates) were derived using global monthly 

climatologies (1998–2017) calculated from the primary IOP dataset of the European Space Agency 

Climate Change Initiative (Sathyendranath et al., 2019a; 2019b). The resulting broadband irradiances were 

then integrated to produce absolute irradiances of ALAN underwater with depth. This approach allowed 

insight for the first time into the spatial extent of in-water marine light pollution and its temporal 

variability on a global scale. 

To understand the biological importance of the modelled underwater ALAN field, we calculated the 

critical depth (Zc) to which biologically important ALAN penetrates throughout the global ocean estuarine, 

coastal and nearshore regions, across the area defined by the Exclusive Economic Zone (EEZ) of 

individual countries. The biological impacts of ALAN are likely to be more severe and widespread in 

regions experiencing higher values of Zc across larger spatial scales. Zc was calculated for each pixel as the 

maximum depth where underwater irradiance exceeds a predefined threshold for biologically important 

ALAN (Elim). We define Elim using the precautionary principle, following the convention set out by Davies 

et al. (2020). For integrated absolute irradiance measurements, Elim is approximated as 0.1 µWm–2, the 



minimum irradiance of white light that elicits diel vertical migration in globally widespread adult Calanus 

copepods (Båtnes et al., 2015).  

We confirmed the validity of our methodology using data from a field campaign in the Gulf of Aqaba, Red 

Sea (Tamir et al., 2017). Such datasets are extremely rare due in part to the technical difficulty of 

measuring multi-spectral irradiances to the level of µW m–2 nm–1 with an associated high signal to noise 

ratio (SNR). 

Methods 

Theory 

To describe the penetration and subsequent attenuation of ALAN as it propagates through the water 

column, Beer’s Law was used for a general wavelength λ: 

 

𝐸𝐸(𝜆𝜆, 𝑧𝑧) = 𝐸𝐸0(𝜆𝜆) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝑑𝑑(𝜆𝜆). 𝑧𝑧)    (Equation 1) 

where E is irradiance (W m–2 nm–1), Kd the diffuse attenuation coefficient (m–1) and z is depth (m). 

Expanding to account for spectral wavebands, λi (i = blue, λb, nominally 400–500 nm; i = green, λg, 

nominally 500–600 nm; i = red, λr, nominally 600–700 nm): 

 

𝐸𝐸(𝑧𝑧) = 𝐸𝐸0(𝜆𝜆𝑏𝑏) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝑑𝑑(𝜆𝜆𝑏𝑏). 𝑧𝑧) + 𝐸𝐸0�𝜆𝜆𝑔𝑔� 𝑒𝑒𝑒𝑒𝑒𝑒�−𝐾𝐾𝑑𝑑�𝜆𝜆𝑔𝑔�. 𝑧𝑧� + 𝐸𝐸0(𝜆𝜆𝑟𝑟) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝑑𝑑(𝜆𝜆𝑟𝑟). 𝑧𝑧) 

(Equation 2) 

The left side of Equation 2 can be expanded thus: 

𝐸𝐸(𝑧𝑧) = 𝐸𝐸0 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐾𝐾𝑑𝑑𝑧𝑧)   (Equation 3) 

where the contributions of the surface irradiance in the λb, λg and λr are expressed as a simple sum: 

𝐸𝐸0 = 𝐸𝐸0(𝜆𝜆𝑏𝑏) +  𝐸𝐸0�𝜆𝜆𝑔𝑔� + 𝐸𝐸0(𝜆𝜆𝑟𝑟)   (Equation 4) 

which results in 

�E0(λb) +  E0�λg� + E0(λr)� exp(−Kdz) = 

E0(λb) exp(−Kd(λb). z) + E0�λg� exp�−Kd�λg�. z� + E0(λr) exp(−Kd(λr). z)            (Equation 5) 

Using spectral irradiance fractional (f) contributions to the whole 

𝑓𝑓𝑏𝑏 + 𝑓𝑓𝑔𝑔 +  𝑓𝑓𝑟𝑟 = 1    (Equation 6) 



where, e.g.: 

𝑓𝑓𝑏𝑏 =  𝐸𝐸0(𝜆𝜆𝑏𝑏)
𝐸𝐸0(𝜆𝜆𝑏𝑏)+ 𝐸𝐸0�𝜆𝜆𝑔𝑔�+ 𝐸𝐸0(𝜆𝜆𝑟𝑟)    (Equation 7) 

allows the relative irradiance contributions fb,g,r to be calculated at the surface. 

Broadband (400–700 nm) Kd can be calculated using the following expression at a fixed depth (e.g., for z 

= 1 m): 

𝐾𝐾𝑑𝑑 =  −𝑙𝑙𝑙𝑙 �𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐾𝐾𝑑𝑑(𝜆𝜆𝑏𝑏)� +  𝑓𝑓𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐾𝐾𝑑𝑑�𝜆𝜆𝑔𝑔��+ 𝑓𝑓𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒�−𝐾𝐾𝑑𝑑(𝜆𝜆𝑟𝑟)��    (Equation 8) 

Calculating the critical depth is then straightforward, where the irradiance drops below a preset threshold 

(Elim): 

𝑍𝑍𝑐𝑐 =  − 1
𝐾𝐾𝑑𝑑
𝑙𝑙𝑙𝑙 �𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙

𝐸𝐸0
�    (Equation 9) 

Datasets 

In order to quantify regionally and globally the amount of ALAN reaching different depths within the 

water column, two different datasets were used: an artificial night sky brightness world atlas (Falchi et al., 

2016b) to define the above water light field; and a global dataset of in-water IOP (Sathyendranath et al., 

2019b), the absorption and backscatter components being calculated using the IOP model of Lee et al. 

(2002). Global monthly mean climatologies (199 –2017) were calculated from the primary IOP dataset 

(Sathyendranath et al., 2019b), specifically: the absorption due to phytoplankton at a wavelength of 443 

nm, aph(443); the absorption due to CDOM and particulates at 443 nm, ady(443); and the backscatter due to 

particulates at 555 nm, bbp(555). 

A sea-surface broadband irradiance dataset collected from Plymouth Sound and the Tamar Estuary (Davies 

et al., 2020) was used to convert the night sky brightness (Falchi et al., 2016b) into spectral waveband 

irradiances (see Modelling section). For the specification of EEZ, the global data set of the Flanders 

Marine Institute (2018) was used. 

Modelling 

The above water global artificial night sky brightness is given in units of mcd m–2 and is ostensibly a 

measure of the broadband signal. As the penetration of light through the water column has a strong spectral 

dependency, essentially being a function of absorption and scatter of the different optically active 

components (pure water, chlorophyll [phytoplankton], CDOM, suspended particulates), then the above 

water light field needs to be split spectrally into different bands. In this paper we use relatively wide 

spectral bands coincidental with the wavebands on a Skye Instruments multispectral irradiance sensor 

(blue, 400–500 nm; green, 495–560 nm; red, 620–740 nm) in order to empirically fit the broadband global 



atlas (Falchi et al., 2016a) values to their spectral signature (Davies et al., 2020). Figure 1 shows a 

schematic diagram of the model framework, split into two stages. 

Stage 1 

A look-up-table (LUT) of spectral Kd values (blue, 400–500 nm; green, 495–560 nm; red, 620–740 nm) 

was generated using the HYDROLIGHT in-water radiative transfer model (Mobley, 1995) assuming a 

totally diffuse sky and a windspeed of 5 ms–1. A four independent component model was used within 

HYDROLIGHT, these being: (I) pure water; (II) phytoplankton; (III) CDOM and; (IV) particles. For 

component I, tabulated absorption values (Smith and Baker, 1981) were used together with a pure water 

scattering phase function (Mobley, 1994). Components II and III are assumed to be non-scattering (i.e., no 

phase function required) and are described as a continuous function of wavelength. For component II, the 

normalized absorption coefficient data of Prieur and Sathyendranath (1981) were employed and for III, a 

simple exponential function was used: 

𝑎𝑎𝑑𝑑𝑑𝑑(𝜆𝜆) = 𝑎𝑎𝑑𝑑𝑑𝑑(443) 𝑒𝑒𝑒𝑒𝑒𝑒�−0.014(𝜆𝜆 − 443)� (m–1)  (Equation 10) 

Finally, component IV is assumed to be non-absorbing and is described by the spectral function for 

particulate backscatter (Smyth et al., 2006): 

𝑏𝑏𝑏𝑏𝑏𝑏(𝜆𝜆) = 𝑏𝑏𝑏𝑏𝑏𝑏(555) � 𝜆𝜆
555
�
−0.5

  (m–1)   (Equation 11) 

together with a particle phase function (Petzold, 1972). The input IOPs to HYDROLIGHT were aph(443), 

ady(443) and bbp(555), based on the global IOP dataset wavelengths. Both aph(443) and ady(443) input 

values were prescribed at logarithmic intervals between 0.01 and 10.0 m–1 (n = 28), whereas bbp(555) 

ranged between 0.001 and 0.1 m–1 (n = 19) resulting in 14,896 runs of the HYDROLIGHT model for each 

spectral band (λb, λg, λr) to create a LUT. The resultant LUT was then used to calculate 12 monthly global 

climatology maps each of Kd (λb, λg, λr) at a nominal resolution of 4 km on an equal angle projection 

(8192 x 4096 pixels), using a 3D weighted nearest-neighbour scheme. 

Stage 2 

The relationships between the global artificial night sky brightness atlas (Falchi et al., 2016b) and sea 

surface broadband irradiances collected from Plymouth Sound and the Tamar Estuary (Davies et al., 2020) 

were spectrally resolved using empirical equations of the form: 

E0(λ) = mλ × EF +  cλ (µW m–2)    (Equation 12) 

where mλ and cλ are the spectral slope and intercept, respectively (Table 1), and EF is the night sky 

brightness (mcd m–2). The cλ term also takes into consideration the natural sky brightness as well as 

compensating for some of the assumptions within the Falchi et al. (2016b) atlas, such as the blue 

“blindness” of the Day/Night Band of the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite 



sensor (see section on Limitations of approach) and use of a fixed aerosol optical depth. The surface 

spectral light field was then propagated through the water column using a broadband formula for Kd 

(Equation 8), weighting each spectral band by its relative contribution to the surface irradiance (Equations 

6–8). The Kd global climatological maps were resampled to match the spatial (1 km) resolution of the 

global artificial night sky brightness atlas. For each pixel of the regional or global map generated, 

determineing the broadband irradiance was then possible at any given depth, or the depth below which the 

light levels dropped below a predetermined threshold (Elim). Elim was set to 0.1 µWm–2 based on the light 

sensitivity of Calanus (Båtnes et al., 2015), a globally widespread key diel migratory species of 

zooplankton important to fisheries. Elim was converted from 0.47 x 10–6 µmol photon m–2 s–1 using the 

approximate conversion factor given by Morel and Smith (1974) for mean frequency averaged lighting 

conditions (1 W m–2 ≈ 4.6 µmol photons m–2 s–1).  The critical depth (Zc) was calculated using Equation 9. 

Validation of methodology 

We used the in-water multi-spectral irradiance dataset generated on a field campaign in the Gulf of Aqaba, 

northern Red Sea, as reported in Tamir et al. (2017). The multi-spectral in-water light profiles were 

measured using a SeaWiFS-compliant, high resolution, profiling reflectance radiometer (PRR-800; 

Biospherical Instruments Inc., San Diego) with 19 spectral channels in the 300–900-nm wavelength range. 

The spectral irradiances were aggregated into 1-m depth bins, and then the entire spectrum at each depth 

was interpolated linearly onto a 1-nm wavelength resolution grid, which was then integrated into the 

broadband ranges for blue (400–500 nm), green (495–560 nm) and red (620–740 nm), for each depth and 

each station to allow inter-comparison to be made with the global model. 

Point extractions from the global model were made at the locations of the 19 stations described in Tamir et 

al. (2017). These were: 1) above surface sky brightness (mcd m–2) from the global atlas of Falchi et al. 

(2016a); and 2) the in-water broadband spectral Kd(λb, λg, λr) extracted from the global climatological 

maps. The surface sky brightness was converted to the blue, green and red wavelengths (µW m–2) using 

Equation 12 and coefficients in Table 1, and then propagated through the water column using Equation 1. 

This approach allowed direct inter-comparison with the in situ measured irradiances for each station as a 

function of depth. In addition, for each station at each 1-m depth interval, the broadband (PAR) 

downwelling irradiance was calculated from the three spectral components. This calculation allowed the 

value of Zc to be calculated for each station. 

Results  

Table 2 shows the total area of individual EEZs where Zc exceeds given depths, ranked first by the surface 

(< 1 m) component and then successively down the water column to greater depths (maximum of 50 m) 

for the top 20 regions. A comprehensive ranking table (Table S1) shows that around 3.1% of the world’s 

EEZs, a total area of 1.9 million km2, are already impacted by ALAN. In the UK part of the North Sea 



(also shown in Figure 2), ranked #5, Zc exceeds 1 m across nearly 65,000 km2, and exceeds 40 m across  

approximately 3000 km2. Greater impacts of ALAN are anticipated at depth in EEZs with clearer waters. 

To give one example, the largest area where Zc exceeds 40 m in Table 2 (4,393 km2) can be found in the 

Malaysian part of the South China Sea (ranked #6). 

Table 3 shows the total percentage area of an individual EEZ where Zc exceeds given depths ranked for the 

top 20 regions (the global ranking table is given in Table S2). Zc exceeded 1 m across at least 60% of the 

surface area of all of the top 20 ranked EEZs. Seven EEZs ranked in the top 20 by percentage area in the 

Persian Gulf and two EEZs in the North Sea. In some of the most impacted regions (Qatari part of the 

Persian Gulf #4; UAE part of the Persian Gulf #9) Zc exceeds 10 m across sizable percentages of their area 

(94 and 79.5% of their surface area, respectively). In these regions, extensive ALAN at the sea surface 

combines with clear surface waters to produce widespread impact zones at depth. 

The month impacted the most by ALAN is shown in column 3 of Table 2. All regions demonstrate some 

form of seasonal cycle driven by blooms of phytoplankton (a function of light and nutrient availability, and 

water column stability) as well as riverine inputs to the marine system through suspended particulates and 

dissolved organic matter, or physical processes such as winter wind-driven mixing which causes 

significant resuspension of sediment in shallow coastal waters. From the biological impact perspective, 

ALAN impacts are thus likely to vary between seasons, and indeed over shorter timescales in tidally 

dynamic regions. 

Figure 2 shows the prevalence and likely impact of ALAN on the marine environment in two of the most 

heavily light-polluted regions on the globe, namely the Persian Gulf and the North Sea. These regions are 

characterized by extensive offshore development including oil and gas platforms, windfarms and island 

development. The urbanized areas around the Persian Gulf fringes, such as Dubai, Abu Dhabi, Doha and 

Manama, as well as the North Sea fringes, such as Sunderland and Hartlepool in the UK and the extended 

Dutch and Belgian coastal conurbations, generally have a smaller impact on the marine ALAN field than 

remote offshore features of these regions. This difference is due in part to the anisotropic nature of the 

light pollution at the land–sea interface; i.e., a large percentage, depending on the orientation of the 

coastline, topography and aspect of artificial light sources, is directed inland. It is also dependent upon the 

clarity of the water in and around the coastal zone, governed by the IOPs, which is generally more opaque 

(higher Kd in Equation 9) than further offshore due to freshwater runoff from land, upwelling of nutrients 

and wave and tidal mixing of the water column and seabed. Water column opacity increases where 

sediment loading, CDOM concentrations and possibly phytoplankton densities are higher. 

Figure 3 shows the inter-comparison between the global model-derived in-water light profiles and those 

derived from in situ measurements in the Gulf of Aqaba (Tamir et al., 2017). The purpose of including 

these data here is to provide quantifiable confidence in our overall methodology. The in situ multispectral 

measurements (Figure 3b, e, h) have been integrated to produce broadband blue, green and red irradiances 

to replicate our modelling (Figure 3a, d, g) approach. The logarithmic root mean square differences 

between the modelled and in situ data are 0.234, 0.663 and 0.634 in the blue, green and red parts of the 



spectrum, respectively (Figure 3c, f, i) and replicate reasonably well the decrease in spectral irradiance 

with depth: less than 1% of the surface irradiances in the red penetrate below 3–5 m; around 10% of the 

surface green light arrives at 20 m; and more than 10% of the blue light penetrates depths deeper than 30 m 

in both the modelled and in situ data. The modelled Zc (mean ± standard deviation of 24.6 ± 1.7 m, N = 18) 

is slightly lower than the in situ observations (25.7 ± 1.3 m, N = 18; Station 17 removed as an obvious 

outlier). Important controls on the vertical light profile are the in-water IOPs: our modelled approach uses 

climatological monthly values (September, for the data presented) and small changes in the IOPs can have 

a large impact on the value of Zc. The annual range of modelled Zc for the stations presented here is 

between 21.4 ± 0.3 m (N = 19) in November and 24.6 ± 0.4 m (N = 19) in September; the average for all 

stations and all months is 23.5 ± 1.1 m (N = 228). 

Discussion  

Implications 

Evidence for the potential impacts of ALAN across marine phylogenies and all levels of biological 

organization is rapidly emerging. ALAN affects multiple aspects of the life history of marine organisms, 

including reduced reproductive success (Witherington and Bjorndal, 1991; Fobert et al., 2019), disrupted 

migration (Ludvigsen et al., 2018; Berge et al., 2020; Torres et al., 2020), altered recruitment (Davies et 

al., 2015), and shifts in the balance of species interactions (Becker et al., 2013; Underwood et al., 2017; 

Levy et al., 2020). The extent of ALAN sufficient to elicit such responses in marine ecosystems is not yet 

known. Our atlas is the first to quantify the global spatial and temporal prevalence of biologically 

important ALAN in undersea habitats. It has numerous potential applications in the design of ecological 

experiments, biogeography and conservation. 

The atlas highlights the many areas of the global ocean that are strongly impacted by ALAN from land and 

offshore infrastructure. ALAN penetrates to significant depths within the water column (> 40 m) 

depending on the clarity of the water, which itself is a function of regional biogeochemistry and season. In 

the most heavily light-polluted regions (Persian Gulf, Eastern Mediterranean, North Sea), there is likely 

significant disruption to the natural ecosystems of the region impacting every trophic level from 

phytoplankton upwards. The greatest direct impacts are likely on highly photosensitive species that utilize 

moonlight to guide migrations and synchronize phenological events (Naylor, 2001; Last et al., 2016; 

Ugolini et al., 2016; Ludvigsen et al., 2018; Torres et al., 2020), many of which are critical to the wider 

ecosystem and sustain vital ecosystem services (Moberg and Folke, 1999; Hayes, 2003). 

Disruption by ALAN at the geographical scales presented here is likely to have a significant impact on an 

individual country’s realized economic value of their EEZ. The EEZs are already regions under 

considerable stress from other factors such as shipping and underwater noise (Simmonds et al., 2014). This 



work makes a compelling case for undersea ALAN to be included as an additional stressor within this 

already multi-stressed environment.  

Limitations of approach 

Our atlas combines remote sensing products with radiative transfer modelling to produce first insights into 

the exposure of undersea habitats to ALAN. The relationship between artificial sky brightness and sea 

surface irradiance is derived from measurements of artificial skyglow originating from the city of 

Plymouth, UK, recorded on clear moonless nights when the sun was > 18° below the horizon. Whilst the 

derived relationships are robust (Table 1; Figure S2 in Davies et al., 2020), our modelling approach 

assumes that the spectral power distribution of artificial skyglow is matched between Plymouth, a 

predominantly light-emitting diode (LED)-lit city, and the rest of the world. While LED lighting use is 

growing rapidly – forecast to contribute 97% of the global lighting market by 2025 (Bertoldi, 2018) – the 

modelled exposure levels may overestimate artificial light irradiances where low pressure sodium (LPS) 

lighting is still in use, but will remain broadly representative where other modern broad spectrum lights 

(for example high pressure sodium and metal halide) predominate. For an in depth study on spectral 

differences of artificial light sources and the differences in color between countries, see Levin et al. (2020). 

The in situ data used here and presented in Tamir et al. (2017) contained a strong peak in the sodium band 

(589 nm); however, the impact of this band was omitted in the modelling and the in situ numerical 

integration. We contend that this approximation is acceptable, because the absorption due to pure water 

(Pope and Fry, 1997) at 589 nm is around 0.135 m–1, which compares with 0.009 m–1 (450 nm, mid-blue); 

0.04 m–1 (530 nm, mid-green) and 0.465 m–1 (680 nm, mid-red). Most of the light in this sodium band will 

therefore be attenuated in the top few meters of the water column, and consequently contribute 

insignificantly to the overall broadband calculated Zc. 

The current terrestrial world atlas of Falchi et al. (2016a) uses the Day Night Band of the VIIRS satellite 

sensor which is “blind” in the blue part of the spectrum and cannot spectrally distinguish between sodium-

based lights and the longer wavelength component of the LED emission spectrum. The outputs of our 

methodology could therefore be improved by new satellite missions that could spectrally quantify the 

ALAN signature of individual countries and urban areas.   

The base dataset of the world atlas of artificial sky brightness (Falchi et al., 2016a) is limited to clear sky 

conditions, hence so are the values of underwater irradiance we present here. Cloud cover and cloud base 

height can amplify light pollution (Davies et al., 2020) by an order of magnitude in luminance (Kyba et al., 

2011). The reported exposure irradiances and values of Zc will therefore be higher when clouds are present.  

However, this effect may be offset by the clouds, particularly when there is a low altitude cloud base, 

rapidly attenuating the upward propagation of the surface light field and limiting the far field effects of 

ALAN. The near-field effects of individual street lights, although considerable on scales < 10 m, rapidly 

decrease with distance and, when interacting with the aquatic environment, much of the light is reflected at 



the surface (Jechow and Hölker, 2019); the far-field skyglow term will tend to dominate the in-water 

impacts at distances > 100 m as point sources appear closer to the horizon.   

The coverage from ocean color satellites used to generate the in-water IOP fields does not include high 

latitudes (> 50°) during the winter months (boreal, December–February; austral, June–August). This 

limitation is of most relevance in the northern hemisphere, as there are few population centers poleward of 

50°S.   

The 0.1 µWm–2 value for Elim was selected based on the importance to fisheries of globally pervasive diel 

migratory species such as Calanus. However, other values of Elim could have been chosen and alternative 

values are listed extensively elsewhere (Davies and Smyth, 2018; Tidau et al., 2021). Figure 4 of Davies 

and Smyth (2018) plots the light sensitivity of several different marine invertebrates as a function of light 

penetration depth. When comparing the sensitivity to types of light source (artificial skyglow and point 

source) and in-water optical properties, Calanus is shown to be particularly sensitive, which in turn relates 

to deeper values of Zc. As not all sensitivity thresholds can be accommodated in any one system, even if 

available, we adopted a precautionary approach in using the most sensitive species. The value of Elim also 

depends upon assuming the mean frequency of averaged lighting conditions which changes depending 

upon the light source itself (e.g., daylight or artificial light). McCree (1981) showed that assuming this 

mean frequency gives a variation of around ± 8.5%. 

By using monthly climatologies of IOPs to modulate the ALAN field through the water column, our atlas 

adds novel insight into temporal variability and hence seasonal impacts of ALAN. This higher temporal 

resolution in our approach is limited by a lack of similar temporal resolution in the above surface ALAN. 

For long-term studies (multi-annual to decadal) as urbanization accelerates and the spectral signatures 

inevitably shift, changes to the above surface ALAN are likely to become increasingly important. Again, 

improvements in tools to quantify above sea surface ALAN levels will improve our understanding of 

ALAN impacts underwater.  

The ocean colour sensors used to derive IOPs as part of the Climate Change Initiative dataset 

(Sathyendranath et al., 2019a) measure top-of-the-atmosphere radiances. These measurements are then 

used to derive water-leaving radiances, Lw(λ), which involves use of an atmospheric correction procedure 

(Steinmetz et al., 2011): typically the atmospheric signal contributes 80% or more to the top of the 

atmosphere radiances (Müller et al., 2015). Lw(λ) in turn is controlled by the in-water IOPs of absorption, 

a(λ), and back-scattering, bb(λ). The Lee et al. (2002) IOP model used to invert Lw(λ) into aph(443), 

ady(443) and bbp(555) employed a quasi-analytical algorithm which sought to limit the amount of empirical 

relationships contained within its framework. This approach minimises any likely errors caused by region-

specific datasets used to derive IOP relationships and also makes the algorithm more generally applicable 

to coastal (Case 2) as well as open-ocean (Case 1) waters (Morel and Prieur, 1977). We therefore sought to 

minimise any limitations in the IOP dataset by using products that utilise algorithms suited to atmospheric 

correction (Steinmetz et al., 2011) and IOP retrieval (Lee et al., 2002) in the regions close to shore.     



Management/policy implementation  

In theory, the amelioration of ALAN impacts upon marine, and indeed terrestrial, ecosystems could be 

achieved instantly: simply turning off the lights at night would have an immediate effect. Such immediacy 

contrasts starkly with the multifaceted challenges posed by anthropogenic emissions of greenhouse gases 

into the atmosphere, which typically have decadal to centennial residence times and are intimately linked 

to global economic growth and prosperity. However, achieving a direct response is highly unlikely and 

runs counter to the observed trend towards increased use of artificial light in urban areas due to various 

other societal concerns. A staged approach to limiting ALAN is therefore more realistic and pragmatic, 

particularly as many regions of the world have only recently adopted LED technology to replace older LPS 

lighting. LED lighting peaks more strongly in the blue end of the spectrum, compared with the orange–red 

of LPS, and penetrates deeper into the water column by virtue of the optical properties of pure water (Pope 

and Fry, 1997; Smith and Baker, 1981). This deeper penetration is offset somewhat in more productive 

coastal and estuarine waters where contributions to absorption by phytoplankton and CDOM (Prieur and 

Sathyendranath, 1981) become significant in the blue. However, even in these more optically complex 

inshore waters, blue and green light originating from ALAN penetrates much further into the water column 

than red (Davies et al., 2020). Therefore, rather than the Spartan approach to coastal urban lighting of 

turning everything off at night, likely solutions could employ some form of filtering or spectral tuning of 

the LED lighting (i.e., low Kelvin) in order to offset some of the worst impacts. 

Conclusion 

We have calculated the critical depth (Zc) to which biologically detectable light can penetrate the water 

column for the global coastal ocean, as represented by Exclusive Economic Zones. We have quantified the 

regions of the global coastal ocean which are already heavily impacted by ALAN, namely areas 

characterized by widespread offshore developments as well as large coastal urban areas. The global 

transition towards white LED lighting will likely exacerbate in-water light pollution and its impact across 

species, populations and marine ecosystems. This atlas on global marine light pollution can provide a 

powerful tool to guide research and conservation to mitigate the ecological impacts of ALAN. 
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Figures 

 

 
Figure 1. Schematic of the modelling approach. In Stage 1, the spectrally resolved values of the 

(in-water) diffuse attenuation coefficient (Kd) are calculated based on offline runs of a hydro-

optical model (HYDROLIGHT) used to create a look-up-table (LUT). Inputs are monthly 

climatologies (1–12) of global inherent optical property fields: phytoplankton absorption (aph); 

coloured dissolved organic matter absorption (ady); and particulate backscattering (bbp). In Stage 

2, a combination of the Falchi et al. (2016a) ALAN atlas converted to above water spectral 

irradiance (using empirical Equation 12) and the Kd fields is used to calculate the critical depth 

(Zc; Equation 9). 



 
Figure 2. Sky brightness and in-water critical depth. ALAN sky brightness from the global 

atlas of Falchi et al. (2016a) for the (a) Persian Gulf and (b) North Sea, two of the most ALAN-

polluted regions on the globe (Table 2). In-water impact of ALAN shown as the critical depth (Zc) 

parameter for the (c) Persian Gulf and (d) North Sea. Note different scales for ALAN and Zc 

between the two regions.  

  



 
Figure 3. Comparison between modelled and in situ in-water irradiances (µW m–2). For 

station locations within the Gulf of Aqaba (see original data in Tamir et al., 2017): station number 

on the top x-axis, station distance (m) away from the centre of Eilat (29.56°N, 34.95°E) on the 

bottom x-axis. Blue (400–500 nm) integrated irradiances for a) modelled b) in situ and associated 

c) difference, with root mean squared difference (RMSD); green (495–560 nm) integrated 

irradiances for d) modelled e) in situ and associated f) difference; and red (620–740 nm) 

integrated irradiance for g) modelled h) in situ and associated i) difference, all as a function of 

distance (x-axis) and depth (y-axis).  

  



Tables 

Table 1. Relationships between artificial night sky brightness (mcd m–2) and spectral irradiance (µW m–2) 

for clear skies (Davies et al., 2020)   

E0 (λ) ma c pseudo Fb pb 

Blue (400–500 nm) 4.53 59.58 12.2 < 0.01 

Green (495–560 nm) 7.27 25.09 16.4 < 0.001 

Red (620–740 nm) 6.37 26.20 25.9 < 0.001 
a Fitted using a quantile regression on the median to reduce leverage of measurements taken directly under 

artificial light sources, which are not representative of sky brightness. 

aDerived from Wald tests 

 
  

                                                      
 
 



Table 2. EEZ area (km2) affected by ALAN ranked by area affected just below the sea surface (1 m) 
 

Rank EEZ Long Descriptor 

Month 

most 

impacted 

Total area 

(km2) 

Total area (km2) affected by ALAN > Z (m)  

> 1 > 10 > 20 > 30 > 40 

1 Iranian part of the 

Persian Gulf Dec 119,714 71,589 68,716 24,781 3,951 359 

2 South Korean part of the 

Japan Sea Apr 222,288 66,242 64,908 39,567 20,006 2,223 

3 Vietnamese part of the 

South China Sea Dec 785,201 65,172 62,816 21,200 10,993 3,926 

4 Chinese part of the 

Yellow Sea Oct 342,731 65,119 19,536 1,714 685 343 

5 United Kingdom part of 

the North Sea Apr 489,021 65,040 54,281 25,918 12,715 2,934 

6 Malaysian part of the 

South China Sea Dec 439,335 52,281 51,402 41,737 19,331 4,393 

7 Chinese part of the South 

China Sea Dec 518,534 49,261 36,297 10,371 3,111 1,037 

8 Japanese part of the 

Japan Sea Apr 708,092 46,026 46,026 32,572 14,870 2,124 

9 Nigerian part of the Gulf 

of Guinea Oct 190,972 43,924 39,149 21,771 8,212 955 

10 United Arab Emirates 

part of the Persian Gulf Nov 53,317 42,494 42,387 18,714 4,159 1,386 

11 Chinese part of the 

Eastern China Sea Sep 342,463 41,780 5,822 1,370 685 342 

12 Italian part of the 

Adriatic Sea Dec 87,988 35,547 34,667 11,438 3,520 792 

13 Thailand part of the Gulf 

of Thailand Dec 193,725 33,708 33,321 23,247 8,718 1,550 

14 Italian part of the 

Tyrrhenian Sea Dec 297,085 32,976 32,976 29,411 5,942 1,188 

15 Finnish part of the Gulf 

of Bothnia May 145,359 32,706 11,047 1,163 436 145 

16 Mexican part of the Gulf 

of Mexico Dec 887,462 31,949 30,174 16,862 9,762 887 



17 Qatari part of the Persian 

Gulf Jan 33,786 31,793 31,759 12,636 1,250 68 

18 Algerian part of the 

Mediterranean Sea - 

Western Basin Dec 166,920 30,046 30,046 27,041 8,847 334 

19 Saudi Arabian part of the 

Persian Gulf Nov 37,437 29,987 29,538 7,562 973 524 

20 Angolan part of the 

South Atlantic Ocean Feb 447,840 29,557 28,214 6,270 896 448 

-a Global totals - 61,679,477 1,918,367 1,641,569 838,054 290,614 91,619 
aNot applicable 

  



 
Table 3. EEZ area affected by ALAN ranked by percentage impacted just below the sea-surface (1 m) 

Rank EEZ Long Descriptor 

Month 

most 

impacted 

Total 
area 
(km2) 

Percentage (%) of region affected by ALAN > Z 

(m)  

> 1 > 10 > 20 > 30 > 40 

1 

Iraqi part of the Persian 

Gulf Apr 940 100 30.6 4.5 4.5 0.2 

2 

Overlapping claim 

Palestinian part of the 

Mediterranean Sea Dec 600 99.8 99.8 99.8 68.8 34.2 

3 

French part of the North 

Sea Oct 2,372 98.6 97.8 3.6 0.1 0 

4 

Qatari part of the Persian 

Gulf Jan 33,786 94.1 94 37.4 3.7 0.2 

5 

Turkish part of the Sea of 

Marmara Dec 14,378 93 90.9 15.3 1.8 0.2 

6 

Bahraini part of the 

Persian Gulf Nov 8,885 83.2 82.1 30.3 3.9 1.7 

7 

Belgian part of the North 

Sea Sep 4,245 80.2 70.1 7.5 0 0 

8 

Saudi Arabian part of the 

Persian Gulf Nov 37,437 80.1 78.9 20.2 2.6 1.4 

9 

United Arab Emirates 

part of the Persian Gulf Nov 53,317 79.7 79.5 35.1 7.8 2.6 

10 

Overlapping claim 

Gibraltarian part of the 

Alboran Sea Dec 148 79.1 78.4 68.9 41.2 2.7 

11 

United Arab Emirates 

part of the Gulf of Oman Mar 4,580 76.7 76.6 34.2 11 2.2 

12 

US Southeast Alaska and 

British Columbia Jan 7,508 76.3 69.6 5.4 1.9 0.7 

13 

Kuwaiti part of the 

Persian Gulf Feb 12,993 74.9 61.3 12 2.7 1.6 

14 

Egyptian part of the Gulf 

of Suez Dec 10,692 70.5 70.5 59.4 24.3 2.4 



15 

Japanese part of the Seto 

Naikai  Dec 16,756 65.7 65.1 9 4.1 0.5 

16 

Spanish part of the Strait 

of Gibraltar Nov 619 62.4 61.4 47.7 13.1 4.8 

17 

Iran / UAE part of the 

Persian Gulf Nov 5,872 60 60 13 6.8 0.1 

18 

Moroccan part of the 

Strait of Gibraltar Dec 810 59.9 59.1 46.8 30.9 2.2 

19 

Iranian part of the 

Persian Gulf Dec 119,714 59.8 57.4 20.7 3.3 0.3 

20 

Swedish part of the 

Kattegat Feb 12,334 59.8 30.5 1.1 0.1 0.0 

- Global totals - - 3.11 2.66 1.36 0.47 0.15 
aNot applicable 
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Figure S1. Critical depth (Zc) for climatological May for North America.  Entire dataset can be 

downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749) 

  



 

 
Figure S2. Critical depth (Zc) for climatological May for Central America.  Entire dataset can be 

downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749) 

  



 

 
Figure S3. Critical depth (Zc) for climatological May for South America.  Entire dataset can be 

downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S4. Critical depth (Zc) for climatological May for Europe, Northern Africa and 

Mediterranean.  Entire dataset can be downloaded in netCDF format from Pangaea 

(https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S5. Critical depth (Zc) for climatological May for northwest Africa.  Entire dataset can be 

downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S6. Critical depth (Zc) for climatological May for northeast Africa and Arabian Peninsula.  

Entire dataset can be downloaded in netCDF format from Pangaea 

(https://doi.pangaea.de/10.1594/PANGAEA.929749) 



 
Figure S7. Critical depth (Zc) for climatological May for southern Africa and Madagascar.  Entire 

dataset can be downloaded in netCDF format from Pangaea 

(https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S8. Critical depth (Zc) for climatological May for northern Indian Ocean.  Entire dataset can 

be downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S9. Critical depth (Zc) for climatological May for Southeast Asia.  Entire dataset can be 

downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S10. Critical depth (Zc) for climatological May for northwest Pacific Ocean. Entire dataset can 

be downloaded in netCDF format from Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.929749). 



 
Figure S11. Critical depth (Zc) for climatological May for Australia and southeast Asia Island 

chains.  Entire dataset can be downloaded in netCDF format from Pangaea 

(https://doi.pangaea.de/10.1594/PANGAEA.929749) 
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