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Abstract
State-of-the-art numerical simulations of quantum electrodynamical (QED) processes in strong
laser fields rely on a semiclassical combination of classical equations of motion and QED rates,
which are calculated in the locally constant field approximation. However, the latter approximation
is unreliable if the amplitude of the fields, a0, is comparable to unity. Furthermore, it cannot, by
definition, capture interference effects that give rise to harmonic structure. Here we present an
alternative numerical approach, which resolves these two issues by combining cycle-averaged
equations of motion and QED rates calculated in the locally monochromatic approximation. We
demonstrate that it significantly improves the accuracy of simulations of photon emission across
the full range of photon energies and laser intensities, in plane-wave, chirped and focused
background fields.

1. Introduction

The collision of multi-GeV electron beams and intense laser pulses is a promising scenario for precision
measurements of quantum electrodynamics (QED) in the strong-field regime, where both the normalised
amplitude of the laser, a0, and quantum nonlinearity parameter of the electron, χe, exceed unity.
Perturbative QED calculations of the interaction fail once a0 �� 1 and must be replaced by ‘all-order’
approaches, which take the interaction with the strong background field into account exactly [1, 2]. While
the theory for this regime is now several decades old [3], experiments are limited in number. In the weakly
multiphoton regime, a0 � 0.4, laser-electron collision experiments have observed Compton scattering
(photon emission) and trident electron–positron pair creation [4, 5]. At higher values of a0, but small χe,
they have observed photon emission in the classical regime (nonlinear Thomson scattering) [6–9] and at
a0 � 10, radiation reaction (multiple photon emission) in the nonlinear classical [10] and quantum regimes
[11]. However, as yet, there are no experimental measurements charting the transition between the
perturbative, multiphoton, and nonlinear regimes, 0.1 � a0 � 10 at χe � 1. This is likely to change in the
near future, as increasing interest in strong-field QED has led to planned experiments that will combine
conventional electron accelerators with intense optical lasers [12, 13].

The transition regime represents a particular challenge for theory and simulation. A perturbative
approach is not sufficient once a0 �� 1. However, neither is an approach based on the locally constant field
approximation (LCFA) [1, 14], as this applies only in the opposite limit, a0 � 1: this approximation
underpins the simulation codes [15–17] used to model QED effects in laser–plasma interactions [18–24],
which will be explored in the next generation of multi-petawatt laser facilities [25–28]. The versatility of the
LCFA comes from its local nature and the neglect of interference effects, i.e. the finite size of the spacetime
region over which QED processes take place, which requires both a0 � 1 and a3

0/χe � 1; the limitations of
doing so have been thoroughly discussed in the literature [29–33]. Experiments that aim at precision
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measurements of strong-field QED demand precision simulations of the interaction. However, in the
transition regime, the error made by simulations based on LCFA rates is unacceptably large.

In this paper, we present a simulation framework that overcomes these issues by using the locally
monochromatic approximation (LMA) instead. This achieves greater accuracy by taking into account
interference effects at the scale of the laser wavelength, which is possible provided that the laser pulse is
relatively unchanged by the collision with a probe electron beam. To do this, we combine classical
trajectories, defined on a cycle-averaged basis, with probability rates that treat the background ‘locally’ as a
monochromatic plane wave, with an amplitude and frequency that can vary in space and time. As such, we
exchange the ability of the LCFA to model an arbitrary electromagnetic field for significantly increased
accuracy in the modeling of plane-wave-like fields. While plane-wave rates have already been used in
numerical modeling and analysis [13, 34–36], their derivation from strong-field QED has only recently
been formalised by Heinzl et al [37], who combine a slowly varying envelope approximation [38–41] with a
‘local’ expansion in the interference phase [1, 3, 29, 31, 32, 42].

The derivation of the LMA in Heinzl et al [37] assumes a plane wave, whereas any experimental
configuration will employ a focused laser pulse. This makes it essential to consider beyond-plane-wave field
configurations, for which exact theoretical results are limited in number [43, 44]. In order to make progress,
we consider the case of plane-wave backgrounds that have a nonlinear dependence on phase, or a ‘chirp’,
which results in a localisation of both the wave’s amplitude and frequency. By allowing both the amplitude
and wavevector to vary in space and time, we gain analytical insight into the case of a focused background,
where this would also be the case. We then describe how the LMA may be implemented in numerical
simulations of photon emission and benchmark their predictions against strong-field QED for pulsed plane
waves (unchirped and chirped) as well as with focusing pulses. For the last of these, we must employ an
approximate solution to the Dirac equation [45–47], which, to the best of our knowledge, has not
previously been compared to a simulation. Our results confirm that simulations based on this framework
may be used for precision modeling of experiments, with an accuracy of a few percent in the integrated
probability (improving on the accuracy of the LCFA by orders of magnitude in the transition regime), and
correct reproduction of harmonic structure in the differential spectrum, which has been identified as an
aim of future experiments [13].

In the following, we use a system of units in which the Planck’s reduced constant, the speed of light and
the vacuum permittivity are all set to unity: � = c = ε0 = 1. The electron mass is denoted by m. The
fine-structure constant α is related to the elementary charge e by α = e2/(4π).

2. Theory background

We begin with an explanation of how the full QED plane-wave results are calculated, as well as a summary
of the main details arising from the analytical calculation underpinning the LMA. (Many papers have
investigated the effect of pulse shape on nonlinear Compton scattering, see e.g. [40, 48–52].) For
concreteness, we specify from the outset that we will be assuming a background that is a circularly
polarised, chirped, plane-wave pulse with potential A. We define the dimensionless potential a = eA/m,

a(φ) = a0f

(
φ

Φ

)
[ε cos b(φ) + β sin b(φ)] , (1)

where a0 is the dimensionless intensity parameter [53] (also called the ‘classical nonlinearity’, normalised
amplitude or the strength parameter) and ε, β are orthonormal polarisation vectors obeying
ε · ε = β · β = −1. Throughout, we use lightfront coordinates xμ = (x+, x−,	x⊥)μ, where x± = x0 ± x3,
	x⊥ = (x1, x2), x± = 2x∓ and 	x⊥ = −	x⊥. The function f(φ/Φ) is the pulse envelope which depends on the
lightfront phase φ = κ · x (where κμ = δ+μ κ+ is the background wavevector), and the pulse phase duration,
Φ, is related to the number of cycles, N, via Φ = 2N. The function b(φ) describes the chirp of the
background. For a pulse without chirp, b is linear in φ, i.e. b′′(φ) = 0 for all φ. (In the following, we will
pick b(φ) = φ for the unchirped case.)

We use the scattering matrix approach [54] to calculate the probability of single nonlinear Compton
scattering from a single incoming electron colliding with a plane-wave background. We can write the
scattering matrix element as:

Sr′,r;l = −ie

∫
d4x Ψp′,r′(x) ε/ ∗

k,le
ik·xΨp,r(x), (2)

2
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where � ε∗k,l is the polarisation of the emitted photon with four-momentum k and Ψp,r(Ψp′,r′) is the Volkov
wavefunction [55] of the incoming (outgoing) electron:

Ψp,r(x) =

(
1 +

m � κ � a
2κ · p

)
up,r eiSp(x), Sp(x) = p · x +

∫ φ

dy
2mp · a(y) − m2a2(y)

2κ · p
. (3)

The matrix element can be simplified to:

Sr′,r;l = C̃

∫ φf

φi

dφ ūr′

[
Δ� ε∗k,l +

m

2κ · p

( � a � κ � ε∗k,l

1 − s
+ � ε∗k,l � a � κ

)]
ur exp

[
i

η0(1 − s)

∫ φ

φi

dy
k · π(y)

m2

]
(4)

where s = κ · k/κ · p is the lightfront momentum fraction of the emitted photon, η0 = κ · p/m2 is the
initial energy parameter of the probe electron, C̃ contains normalisation constants, the instantaneous
electron momentum is given by

π(y) = p − ma(y) + κ
2 m p · a(y) − m2a2(y)

2κ · p
, (5)

and the regularising factor Δ = 1 − k · π/k · p incorporates all the contributions from phases outside of the
integral. The total probability can be written:

P =
α

η0

1

24π2

∫
d2	r⊥ds

s

1 − s
〈|Sr′ ,r;l|2〉pol., (6)

where	r⊥ = 	k⊥/(ms) −	p⊥/m contains the shifted perpendicular momentum. Here ‘⊥’ indicates directions
perpendicular to the background propagation direction and 〈·〉pol. indicates an average over initial and sum
over final polarisation states. The numerical results in exact QED are calculated by evaluating equation (6)
directly: the matrix element in equation (2) was evaluated using photon polarisation eigenstates of the
background [56] and spin states in the Lepage–Brodsky convention [57].

Rather than direct numerical evaluation, some of the integrals in equation (6) can be evaluated
analytically by generalising the LMA [37] to arbitrarily chirped plane-wave pulses. In the following, we
present an overview of this approach, and direct the reader to appendix A for details.

The background field is given by equation (1). For the LMA to approximate the emission spectrum well,
the envelope function f(φ/Φ) should be slowly varying with respect to the carrier frequency, implying that
Φ−1 � min

[
b′(φ)

]
(i.e. Φ � 1 for the unchirped case, which corresponds to a many-cycle pulse). However,

in this work, we also include the chirp. Therefore we will also make a ‘slowly varying chirp’ approximation
(see e.g. Seipt et al [58]). These approximations then allow the squared Kibble mass, μ, which occurs in an
exponent, to be integrated over. The Kibble mass takes the form μ = 1 +

〈
	a2

〉
θ
− 〈	a〉2

θ , where

〈f 〉θ = θ−1
∫ φ+θ/2
φ−θ/2 f denotes a phase-window average. In the case of a circularly polarised background, the

slowly varying (envelope) and rapid (carrier) timescales occur in 〈	a〉θ. We can demonstrate the
approximation by considering a single component of 	a, e.g. 	ε ·	a.

〈	ε ·	a〉θ =
a0

θ

∫ φ+θ/2

φ−θ/2
dφ f

(
φ

Φ

)
cos b(φ). (7)

Now, one can introduce a local frequency scale, ω(ϕ) = b′(ϕ) and integrate by parts as in equation (A6). The
fast timescale of the cosine term is included exactly. The remaining terms for the envelope and chirp
variations have a size, relative to the leading term, of the order of

∼ 1

Φ

f ′(φ/Φ)

f (φ/Φ)
, ∼ ω′(φ)

ω(φ)
, (8)

respectively (neglecting a rapidly varying term that appears ∼ cot b(φ)). As long as the magnitudes of both
of these are much less than unity, we should expect the slowly varying approximation to be good. (The
same arguments apply to the 	β ·	a term, whereas

〈
	a2

〉
θ

is not affected by chirp in a circularly polarised
background.) Beyond the additional constraints on the chirp, no further modifications to [37] are required
in the derivation (more details are given in appendix A).

Finally, we arrive at PLMA =
∫

dτ WLMA, where:

WLMA =

∞∑
n=1

∫ sn,∗(τ)

0
ds

d2Pmono
n [arms(τ), η(τ)]

dτ ds
, (9)

3
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where a2
rms(τ) = q2/m2 − 1 and η(τ) = ω[φ(τ )]η0, with η0 = κ · p/m2 the unchirped energy parameter.

Here q = 〈π〉 is the quasimomentum, the laser-cycle-average of the instantaneous electron momentum given
in equation (5). The appearance of a local wavevector in η(τ ) also follows from considering components of
the field-strength tensor, Fμν , for the chirped pulse in equation (1), which contain terms ∼ κμ(φ)∂aν/∂b,

where κμ(φ) = b
′
(φ)κμ. Pmono

n is the probability of nonlinear Compton scattering into the nth harmonic in
a monochromatic background, τ is the proper time, related to the phase by dτ/dφ = 1/(mη0). The
approximation is locally monochromatic because the intensity and energy parameter occurring in the
monochromatic probability now take the (cycle-averaged) local value at the position of the electron. The
integrand is given explicitly by equation (A28) for nonlinear Compton scattering. Unlike the
monochromatic case, here the harmonic range is phase-dependent:

sn,∗(τ) =
sn(τ)

1 + sn(τ)
, sn(τ) =

2nη(τ)

1 + a2
rms(τ)

, (10)

where sn(τ) is the edge of the classical (nonlinear) harmonic range.
To obtain the probability of Compton scattering in a focused laser background, we must use some

approximation, as analytical solutions to the Dirac equation in a realistic focused laser background are
unavailable (some progress has recently been made in this direction: see e.g. [43, 44]). One method is to
find an approximate solution to the Dirac equation using a WKB expansion in a small parameter γ−1,
where γ is the initial relativistic gamma factor of the incident electron [45–47]. Then assuming γ � a0, for
a head-on collision of the electron probe with the focused laser pulse, one can write:

P2D =

∫
d2→x⊥ ρ(

→
x⊥)P[arms(

→
x⊥), η(

→
x⊥)], (11)

where ρ is the electron probe areal density and the plane-wave probability, P from equation (6), now has an
intensity parameter which can depend on the perpendicular spatial co-ordinate.

3. Implementation in numerical simulations

The inclusion of strong-field QED processes in numerical simulations, such as the particle-in-cell [15, 16]
or particle-tracking codes [34, 35, 59] used in plasma and beam physics, is based on a semiclassical
treatment of particle dynamics, which combines classical trajectories with the use of probability rates [60].
This is motivated by the appearance of the classical kinetic momentum π, equation (5), in the QED
scattering probability, via the exponent of the Volkov wavefunction, equation (3). (This occurs because the
Volkov solution is identical to the semiclassical solution of the Dirac equation in a plane-wave background.)
This permits the probability, equation (6), to be approximated as the integral P �

∫
W dτ , where W � 0 is

interpreted as a probability rate, which can depend, inter alia, on the instantaneous momentum and field
amplitude.

The approximations applied to the probability rate affect what dynamical quantities must be obtained
from the classical trajectory. In the LCFA, for example, the rate W = W[χ(τ)], where the quantum
nonlinearity parameter χ(τ) = e |Fμν[x(τ)]πν(τ)| /m3 [1]. Furthermore, the conservation of momentum
for the scattering may be written such that it constrains the kinetic, rather than asymptotic, momenta. Thus
the classical trajectory must be defined in terms of kinetic momentum π, i.e. instantaneously, and obtained
from the Lorentz force equation dπμ/dτ = −eFμνπ

ν/m and dxμ/dτ = πμ/m. This is illustrated on the
left-hand side of figure 1: the classical trajectory is well-defined at all timescales, including that of the laser
carrier wave. The angular structure of the photon emission arises from two sources: the oscillation of the
trajectory (θ � a0/γ for γ � a0 � 1) and the intrinsic beaming of the emission around the instantaneous
velocity, the latter being of characteristic size θ ∼ 1/γ [61, 62]. The former is the dominant contributor in
the regime a0 � 1, which is consequently where the LCFA is expected to be valid.

The rate in the LMA, by contrast, is derived assuming that the envelope of the potential, rather than the
potential itself, is slowly varying. Averaging over the fast timescale, the laser period, means that the quantity
that enters the rate, and also the conservation of momentum, is not the kinetic momentum directly, but
rather the quasimomentum q ≡ 〈π〉 [1, 63]. In a plane wave, π = p − ma + κ(2mp · a − m2a2)/(2κ · p) and
π2 = m2, whereas q = p + κm2a2

rms/(2κ · p) and q2 = m2(1 + a2
rms), for a2

rms ≡ −
〈

a2
〉

. In contrast to the
LCFA case, the rate is a function of two parameters: the normalised amplitude (or intensity parameter),
arms, and the energy parameter η ≡ κ · p/m2, both locally defined. (The root-mean-square quantum
parameter follows as χrms = armsη.) Both may be obtained from q as follows: arms =

√
(q/m)2 − 1 and

η = κ · q/m2. An equation of motion for the quasimomentum may be obtained by separating the Lorentz
force equation (in a focused, pulsed electromagnetic wave) into quickly and slowly varying components and

4
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Figure 1. Illustration of two ways to model photon emission by an electron interacting with a high-intensity laser. In the LCFA
(left), the kinetic momentum πμ of the electron (blue) plays the essential role, appearing in the equation of motion, the
conservation of momentum, and the emission rate, the latter via the quantum parameter χ. In the LMA (right), it is the
quasi-momentum q ≡ 〈π〉 (green) that appears in the conservation of momentum and the emission rate, via the parameters
arms =

√
q2/m2 − 1 and η = κ · q/m2. The yellow arrow denotes the emitted photon, momentum k, and the red arrow the

wavevector of the laser background κ.

Table 1. Overview of the conceptual differences between LCFA- and LMA-based simulations of photon emission in strong laser pulses.

LCFA LMA

Rate derived for Constant, crossed field Monochromatic plane wave
(fast quiver motion here)

and controlled by Instantaneous momentum πμ Quasimomentum qμ = 〈πμ〉
via quantum parameter χe via arms and η

Lorentz force: Ponderomotive force:

equation of motion dπμ
dτ = − eFμνπν

m
d	q
dt = − m2

2q0
∂a2

rms
∂	r

(fast quiver motion here)

isolating the latter. The result is the relativistic ponderomotive force equation [64]:

d
→
q

dt
= − m2

2q0

∂a2
rms

∂
→
r

, (12)

where q0 = [m2(1 + a2
rms) + |	q|2]1/2. The slowly varying components of the position are determined by

d	r

dt
=

	q

q0
. (13)

The trajectory obtained from these two equations does not include the fast oscillation at the timescale of the
laser period, as shown on the right-hand side of figure 1. This does not mean that the physical effect of that
oscillation is lost: it is accounted for in the emission rate. To see this more clearly, note that at fixed s, in the
limit a0 � 1, there is a most probable harmonic index n = a2

rmss/[η(1 − s)] [65]. Combining this relation
with the conservation of quasimomentum, which reads k2

⊥/m2 = 2nηs(1 − s) − s2(1 + a2
rms) for p⊥ = 0,

one finds that the most probable emission angle is θ � arms/γ for γ � a0 � 1 [65] (see also [63]). Thus an
equivalent angular structure emerges, provided that the classical trajectory is parametrised in terms of
quasimomentum. The conceptual differences between LCFA- and LMA-based simulations are summarized
in table 1.

The emission of photons, and its effect on this trajectory, is modeled in the following way. At any
particular timestep, we have the electron quasimomentum q and position r from the classical equations of
motion, as well as the local values of the laser normalised amplitude arms(r), wavevector κ(r) and
polarisation (taken to be circular throughout). In fact, κ and q are sufficient to determine the properties of
the emission, as they define the two invariant parameters, arms and η, that control the rate and the
conservation of momentum. This is given by

q + nκ = q′ + k, (14)

where q′ is the electron quasimomentum after the scattering, k is the momentum of the emitted photon,
and n is the harmonic index (the net number of laser photons absorbed). The emission rates themselves
control n and subsequently s ≡ κ · k/κ · q, the lightfront momentum fraction. Given n, s and q, it is a
matter of kinematics to determine k and then q′. Our Monte Carlo algorithm is as follows: (i) advance the
electron trajectory by solving equations (12) and (13), (ii) evaluate, at every timestep, the probability of

5
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emission and pseudorandomly decide whether to emit a photon or not, and on those timesteps where
emission takes place, (iii) select a harmonic index n with probability Wn/W, where Wn is the partial rate
and W =

∑∞
n=1Wn is the total rate, (iv) sample s from the partial spectrum (dWn/ds)/Wn, (v) determine k

given n, s and q and (vi) reset the electron quasimomentum from q to q′.
The probability that emission takes place in small interval of lab time Δt is given by P = WΔτ and

Δτ = Δt(m/q0) is the equivalent interval of proper time. We obtain W by integrating, and then summing,
the partial, differential rates of emission Wn, which are given by [37]

dWn

ds
= −αm

{
J2

n(z) +
a2

rms

2

[
1 +

s2

2(1 − s)

] [
2J2

n(z) − J2
n−1(z) − J2

n+1(z)
]}

. (15)

The argument z of the Bessel functions Jn (of the first kind [66]) and auxiliary variables are

z2 =
4n2a2

rms

1 + a2
rms

s

sn(1 − s)

[
1 − s

sn(1 − s)

]
, sn =

2nη

1 + a2
rms

(16)

and the bounds on s are 0 < s < sn/(1 + sn). Note that sn depends on arms and η and is therefore a function
of proper time τ , as shown explicitly in equation (10). While the summation should run from n = 1 to
infinity, it is sufficient to sum up to a largest value nmax = 10(1 + a3

rms). In principle, the integration and
summation can be done at every timestep, given the particular values of arms and η. However, it is
significantly faster to obtain W by interpolating from a lookup table, where W(arms, η) is precalculated over
the domain amin

rms < arms < amax
rms and ηmin < η < ηmax. The upper bounds are fixed by the problem space

under consideration; we have taken amax
rms = 10 and ηmax = 2 in our code. The lower bounds are chosen such

that alternative sampling strategies may be used.
First, if arms < amin

rms � 1, only the first harmonic, n = 1, contributes significantly to the probability. In
this limit, the rate may be obtained analytically:

W � W1 + O(a4
rms), W1 =

αma2
rms

2η

[
2 + 8η + 9η2 + η3

(1 + 2η)2
− 2 + 2η − η2

2η
ln(1 + 2η)

]
. (17)

Second, if η < ηmin � 1, we may take the classical limit, whereupon the partial rates become:

dWn

dv
� αmnη

1 + a2
rms

[a2
rmsJ

2
n−1(z) + a2

rmsJ
2
n+1(z) − 2(1 + a2

rms)J2
n(z)] + O(η2),

z2 =
4a2

rmsn
2v(1 − v)

1 + a2
rms

,

(18)

but where we fix v = s(1 + sn)/sn to be 0 < v < 1. Equation (18), integrated over 0 < v < 1 and summed
over n = 1 to nmax, is tabulated over the same range amin

rms < arms < amax
rms . In our implementation,

amin
rms = 0.02 and ηmin = 10−3. Thus at every timestep, the emission probability P = WΔτ is obtained by

interpolating from the appropriate lookup table, or using the limiting analytical expression. Emission is
deemed to occur if a pseudorandom number R, drawn from the uniform distribution U(0, 1), satisfies
R < P.

If emission takes place, the next step is to determine n and s. The former is obtained by solving for n,
R′ =

∑n
i=1Wi/W , where R′ is another pseudorandom number drawn on the unit interval U(0, 1). In our

implementation, the total rate of emission W is already available at this point; however, the sequence of
partial rates must be evaluated explicitly, by integrating equation (15) over s. We do this, rather than store a
lookup table in n (as well as in arms and η), because unlike the total rate, which is needed at every timestep,
the partial rates are only needed on emission, which occurs at infrequent intervals. Once n is fixed, the
lightfront momentum fraction transferred, s, is obtained by rejection sampling of equation (15).

The kinematical calculation of k is performed in the zero momentum frame (ZMF), which moves with
four-velocity u = (q + nκ)/[m

√
1 + a2

rms + 2nη] with respect to the lab frame. In the ZMF, the emitted

photon has momentum
∣∣∣	k′zmf

∣∣∣ = mnη/
√

1 + a2
rms + 2nη and polar scattering angle

cos θzmf = 1 − s(1 + a2
rms + 2nη)/(nη). The azimuthal angle ϕzmf , which is arbitrary for circularly polarised

backgrounds, is pseudorandomly determined in 0 � ϕzmf < 2π. Once	kzmf is determined, it may be boosted
back to the lab frame, where q′ follows from equation (14).

4. Benchmarking

While LMA rates have already been implemented in simulation codes used to study laser–electron
interactions [34–36], the accuracy of these simulations has not been thoroughly benchmarked against the
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underlying theory. Placing quantitative bounds on the error made, is essential for experiments that aim for
precision characterisation of strong-field QED processes [13]. These analyses have been performed for
LCFA-based simulations, however: see [29, 30, 67] and proposed improvements in [31–33]. In this section,
we compare the results of simulations based on the LMA, as outlined in section 3, with QED theory
calculations without the LMA, for photon emission in a pulsed, plane-wave background. We focus on the
transition regime a0 ∼ 1, where currently existing approaches based on the LCFA are likely to fail. The laser
pulses we consider are circularly polarised with a cosine-squared temporal envelope: the potential
	a(φ) = a0f (φ)[	x cos b(φ) +	y sin b(φ)], where f(φ) = cos2[φ/(2N)] for |φ| < πN. Here N is the number
of cycles corresponding to the total duration of the pulse. One may estimate the (intensity)
full-width-at-half-maximum duration of this pulse as T[fs] � Nλ[μm]/0.8. The function b(φ) controls the
frequency chirping of the pulse and is initially set to b(φ) = φ (i.e. unchirped) for the results in section IVA.
The electrons counterpropagate head-on to the laser pulse, with initial energy parameter η0 = 0.1. This is
equivalent to an initial Lorentz factor of γ0 = 1.638 × 104 for a laser wavelength of 0.8 μm.

The theoretical calculations described in section 2 are for single emission only. However, for sufficiently
large a0 or pulse length N, it is possible for the total probability of emission P to exceed unity. This indicates
that higher order processes, including the emission of multiple photons by a single electron, become
important. Simulations model multiple emissions as the incoherent combination of single-vertex processes,
transporting the electron classically between emission events. This is motivated by theoretical calculations
of higher order processes which show that part of the probability can be factorised into a product over
polarised, first-order processes [68–70]. Neglecting other contributions, where the intermediate state does
not propagate, is expected to be a good approximation if a2

0 Δφ � 1 [71], where Δφ = 2πN is the phase
duration of the pulse, which allows simulations to model cascades of photon emission and pair creation
[60]. In the present case, we consider only the comparison for single photon emission results. Therefore, the
probability obtained theoretically is interpreted as the average number of emitted photons [72]. As our
simulations allow for an arbitrary number of emission events per electron, we obtain equivalent results by
artificially disabling recoil, i.e. the electron momentum is not changed self-consistently when a photon is
emitted. The number of emitted photons therefore scales exactly linearly with pulse duration. This does not
apply to the theoretical results.

The symmetries of a plane wave suggest that the photon spectrum is best characterised in terms of the
lightfront momentum fraction, s, and normalised perpendicular momentum r⊥ = k⊥/(ms). These provide
proxies for the emitted photon energy ω

′
and polar scattering angle θ, respectively:

s = ω′(1 + cos θ)/p− � ω
′
/(mγ0) and r⊥ = (p−/m)tan(θ/2) � γ0θ, where p− = m2η0/ω0 is the initial

lightfront momentum of the electron and γ0 its Lorentz factor.

4.1. Pulsed plane waves
Figures 2(a) and (e) show photon spectra, double-differential in s and r⊥, obtained from simulations in the
linear and nonlinear regimes (a0 = 0.5 and 2.5 respectively) for a pulse that is N = 16 cycles in duration. In
the former case, radiation emission is dominated by the first harmonic, which displays the expected,
characteristic energy–angle correlation. In the latter case, the radiation is composed of a broad range of
high harmonics, extending the spectrum to much larger s. The effect of the pulse envelope is evident in the
broadening of the first harmonic for small r⊥: recall that the position of the first Compton edge,
s∗1 = 2η/(1 + a2

rms + 2η), is phase-dependent through arms and η. We also see that the higher harmonics are
predominantly emitted at r⊥ � a0, as expected in the nonlinear regime, whereas for a0 = 0.5, the
characteristic r⊥ < a0.

The three plots accompanying each double-differential spectrum compare lineouts at fixed r⊥ against
theoretical results. The simulations capture the position and overall shape of the harmonics well, but miss
the subharmonic substructure visible in figures 2(f) and (g) in particular. This structure arises from
interference effects at the scale of the pulse envelope, whereas the LMA accounts only for interference effects
at the scale of the wavelength. The LCFA, by contrast, captures neither, which causes the spectra to be
smeared between the clear peaks seen in both the theory and LMA simulation results [29].

Single-differential spectra, i.e. the results from figure 2 integrated over r⊥, are shown in figure 3. We
compare the simulation results with QED for normalised amplitudes a0 = 0.5 and 2.5 and for pulse
durations equivalent to N = 4 and 16 cycles. The agreement is much better for the longer pulse, which we
expect because the LMA neglects terms of order 1/N (see equation (8) and [37]). The LMA simulations
capture the harmonic structure and correctly reproduce the small-s behavior of the theory, where the
spectrum tends to a constant value ∝ a2

0

∫
f 2(φ) dφ [31, 37]. The LCFA simulations are significantly wrong

in this region s < s∗1, where we see the characteristic divergence ∝ s−2/3 [1].
The intermediate structure, which appears below the first Compton edge for a0 = 2.5, shown in

figure 3(e), is ponderomotive in origin: it is radiation from the slow decrease and increase of the electron
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Figure 2. Comparison between theory and simulation results for the double-differential photon spectrum, in the linear regime
a0 = 0.5 (upper row) and nonlinear regime a0 = 2.5 (lower row): (a) and (e) spectra ∂2P/(∂s∂r⊥) from simulations with LMA
emission rates (color scale); (b)–(d) and (f)–(h) lineouts through the spectrum at fixed r⊥, from theory (solid, colored) and
simulations with LMA (black, dashed) and LCFA (red, dashed) emission rates. Here s∗1 = 2η0/(1 + a2

0 + 2η0), which corresponds
to the first nonlinear Compton edge, the electron energy parameter η0 = 0.1, and the pulse duration N = 16.

Figure 3. Single differential photon spectra, in the linear regime a0 = 0.5 (upper row) and nonlinear regime a0 = 2.5 (lower
row): results from QED for a pulse with duration equivalent to N = 4 (blue) and 16 (orange) cycles; and simulations using LMA
(black, dashed) and LCFA (red, dashed) emission rates. As the spectra are normalised by the duration, and recoil is disabled, the
simulation results are independent of N (see text for details). Here s∗1 = 2η0/(1 + a2

0 + 2η0), which corresponds to the first
nonlinear Compton edge, and the electron energy parameter η0 = 0.1.

momentum caused by gradients in the intensity profile [73]. While this is accounted for at the level of the
classical trajectory in the simulations, its contribution to the emission spectrum is neglected. The peak
moves toward smaller s as N increases and it is eventually lost in the monochromatic limit [37]. Integrating
over the s-weighted probability, shown in figures 3(c) and (e), yields the total lightfront momentum transfer
from electron to photon. If a0 > 1, this is dominated by contributions from s > s∗1, where the LCFA works
well [30]. However, it is evident from figure 3(c) that the LCFA fails globally for a0 < 1.

Finally, we consider the total probability that a photon is emitted, P, and the average lightfront
momentum fraction of that photon, 〈s〉 ≡

∫
s dP

ds ds, as a function of a0 for a four-cycle pulse. The values
obtained from theory and from LMA and LCFA simulations are shown in figure 4, along with the
percentage error made by the simulations. The LMA-based simulations are accurate at the level of a few per
cent across the full range of a0 explored. The improvement over the LCFA is particularly dramatic for the
probability, where the error made is larger than 10% even when a0 = 5. The average lightfront momentum
fraction is more sensitive to the contribution of higher harmonics, i.e. large s; as this is where the LCFA
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Figure 4. (a) Photon emission probability and (b) average lightfront momentum fraction from QED (blue, solid) and from
simulations using LMA (black, dashed) and LCFA (red, dashed) rates. Here the pulse duration is equivalent to N = 4 cycles and
the electron energy parameter η0 = 0.1. (c), (d) The percentage error of the simulation results, as compared to QED. The blue
shaded region gives the estimated accuracy of the QED calculation.

works rather well, the accuracy for 〈s〉 is better than that for P. However, the LMA simulations are
significantly more accurate when a0 � 1.

4.2. Chirped pulses
In Heinzl et al [37], the LMA is derived for a pulse in which the amplitude is slowly varying. However, a
monochromatic plane wave is defined by both an amplitude and a frequency. By extending the LMA to the
situation where both may vary with phase, it becomes possible to simulate radiation generation in chirped
laser pulses in the transition regime a0 ∼ 1. In this section we benchmark our simulation results against
theory for this case.

The first example we consider is that of a linearly chirped laser pulse, which has potential
	a(φ) = a0f (φ)[	x cos b(φ) +	y sin b(φ)], where f(φ) = cos2[φ/(2N)] for |φ| < πN and
b(φ) = φ[1 + cφ/(2N)]. The instantaneous frequency, ω(φ) = ω0(1 + cφ/N) for chirp parameter c, must
be positive throughout the pulse, which imposes the restriction c < 1/π. This is consistent with the
condition for the chirp to be slowly varying, equation (8), which may be cast as c � N/(1 + πN).
Furthermore, for a particular pulse duration, there is an upper bound on the largest chirp that can be
obtained [74]. In our notation, this maximum is given by χrpmax � 10/N. We note that chirping a pulse,
which is accomplished by introducing a frequency-dependent phase shift, also changes its duration and
peak amplitude; we neglect these such that the only difference between the chirped and unchirped case is
the variation of the instantaneous frequency.

We compare the photon spectra obtained from theory and LMA-based simulations for a0 = 0.5, N = 16
and c = 1/(2π) in figure 5. The unchirped results, c = 0, are also shown for reference. The theoretical
results are obtained numerically, using equation (6) and the explicit form of the potential 	a(φ). For this
case, the electron trajectory can be written in a closed form in terms of Fresnel functions. In the
simulations, a chirp is included by promoting the frequency of the background κμ to be a function of phase
κμ(φ). We find that the simulations capture the softening of the harmonic structure evident in the theory
results for the chirped pulse. Lineouts through the theoretical double-differential spectrum at fixed r⊥
demonstrate that chirping smooths out the subharmonic structure; as a consequence, simulation results
appear to be more accurate than in the unchirped case.

The second example we present is that of a highly nonlinear chirp, where the instantaneous frequency
varies in such a way as to compensate for the classical broadening of the photon spectrum at a0 > 1. In a
pulsed plane wave, the position of the first harmonic edge varies from s = 2η0/(1 + 2η0) to
s = 2η0/(1 + a2

0 + 2η0) as the cycle-averaged potential arms(φ) sweeps up and down. As such, the on-axis
emission is broadband unless the intensity is rather low. In order to overcome this, and obtain a
narrowband source of Compton γ rays even when a0 is not small, it has been proposed to chirp the pulse in
a particular way [75–79]. If the instantaneous frequency of the pulse varies as ω(φ) = ω0[1 + a2

rms(φ)], then
s = 2η0/(1 + 2η0) for all φ and the nonlinear redshift is perfectly compensated. Although there are
significant obstacles to achieving this in experiment, it is a useful test case for the simulation method we
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Figure 5. Comparison between simulation (dashed) and QED (solid) results for a linearly chirped pulse with a0 = 0.5 and
N = 16 (red/orange) and the equivalent unchirped pulse (blue/black). The electron energy parameter η0 = 0.1.

Figure 6. Comparison between simulation (dashed) and QED (solid) results for a pulse with a nonlinear chirp that compensates
for the classical redshift (red/orange). Here a0 = 1, N = 16 and the electron energy parameter η0 = 0.1.

have introduced. We therefore consider a pulse with envelope f(φ) = cos2[φ/(2N)] for |φ| < πN and

b(φ) = φ+ a2
0

∫ φ

0 f 2(y) dy. In this case, the chirp may be considered to be slowly varying if
2a2

0/[N(1 + a2
0)] � 1. We show results for a0 = 1, N = 16 in figure 6. The lightfront momentum spectrum

for theory and simulation both show a shift of the edge of the first harmonic from the nonlinear, to the
linear position, as expected for this choice of chirp. However, this rather extreme choice of chirp leads to a
larger discrepancy in the in the height of the spectra: the simulations underestimate the total yield by a
small but not insignificant amount. We have verified that both theory curves tend to the same value in the
limit of vanishing s, and that the simulation curves do as well: the limiting value, lims→0

dP
ds ∝ a2

0

∫
f 2(φ) dφ,

is sensitive only to the pulse envelope (for circular polarization) [31, 37].

5. Focused lasers

Theoretical calculations of strong-field QED effects in experimentally relevant scenarios must deal with
three-dimensional effects: the nonlinear regime a0 � 1 is reached by focusing laser light to a spot of small,
even diffraction-limited, size, so the laser pulse will differ significantly from a plane wave; the electron beam
that probes the laser will also have finite size and temporal duration. Theoretical results build upon
analytical solutions of the Dirac equation in a background field and are therefore only available for plane
waves, focusing models of very high symmetry [43, 44], or under a high-energy approximation γ � a0

[45, 47]. In this section, we discuss the application of simulations, based on LMA emission rates, to model
the interaction of electron beams with focused laser pulses.

Within the LMA, the field is treated locally as a monochromatic plane wave. In order to model a focused
laser pulse, we therefore promote the cycle-averaged amplitude arms and wavevector κ to be functions of
spatial coordinate as well as phase. For Gaussian focusing, within the paraxial approximation, we have

arms =
a0f (ψ)√

1 + ζ2
exp

(
− ρ2

1 + ζ2

)
, ρ2 =

x2 + y2

w2
0

, ζ =
z

zR
, (19)

where w0 is the beam waist (the radius at which the intensity falls to 1/e2 of its central value), zR = πw2
0/λ

is the Rayleigh range, and the factor f(ψ) is the pulse envelope [80]. The local wavevector κμ = ∂μψ, where
ψ = φ− ρ2ζ/(1 + ζ2) + tan−1 ζ is the total phase. However, in what follows we neglect the wavefront
curvature and Gouy phase so that ψ = φ and κ takes its usual, plane-wave value. We compare the results so
obtained with simulations based on the LCFA, which is a more standard approach [15, 16]. In the LCFA
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Figure 7. Electron (upper row) and photon (lower row) angular distributions, from LMA- and LCFA-based simulations of an
electron beam colliding with a focused laser pulse, with recoil disabled. Here the laser pulse has a peak amplitude of a0 = 10, a
duration of 30 fs, and a focal spot size of w0 = 2 μm. The electrons in the beam have energy parameter η0 = 0.01, zero initial
divergence, and are distributed uniformly over a disk of radius r = w0. Black, dashed lines gives analytical estimates for the
scattering angles: see text for details.

simulations, the laser pulse is defined using the paraxial solution for the fields given in [81]: we include
terms up to fourth-order in the diffraction angle ε = w0/zR in the Gaussian beam, which is then multiplied
by a temporal envelope f(φ). Electron trajectories are determined by solution of the ponderomotive force
equation, equation (12), for the quasimomentum, or the Lorentz force for the kinetic momentum, as
appropriate.

First, we verify that LMA and LCFA simulations yield consistent results in a regime where they are
expected to do so. We consider a laser pulse that is focused to a spot size w0 = 2 μm, reaching a peak
amplitude of a0 = 10, with Gaussian temporal envelope of (full width at half maximum) duration 30 fs.
The electrons have initial energy parameter η0 = 0.01 (equivalent to γ0 = 1638, given a laser wavelength of
0.8 μm) and are initially counterpropagating, with zero initial divergence. Their initial positions are
distributed over a disk of radius r0 = w0, such that they encounter a range of peak intensities. We have both
a0 � 1 and a2

0/η0 � 1, so the LCFA is expected to be a good approximation. The results presented in
figure 7 are obtained from simulations of this scenario using the LMA and LCFA, with recoil on photon
emission artificially disabled. This means that the electron trajectory is determined solely by the action of
the laser fields, allowing us to confirm the equivalence between the LMA and LCFA at the level of the
electron dynamics, illustrated in figure 1.

Figure 7 shows the angular distributions of the electrons and emitted photons, after the collision has
taken place. We see immediately that the LMA and LCFA simulations yield almost identical results. In order
to explain the double ring structure evident in the electron distributions, we derive an approximate,
analytical prediction for the expected ponderomotive scattering angle3. Consider an electron that is initially
counterpropagating, with no initial transverse momentum, at radial distance (impact parameter) b from the
laser axis, at ultrarelativistic velocity such that q0 � −q3 � q⊥. We approximate a2

rms � [a0 exp(−r2/w2
0)

f (φ)]2 and solve the equation of motion, equation (12), perturbatively in the small parameter ε ≡ 1/γ0.
The first-order correction to the perpendicular momentum q⊥ is obtained by substituting into
equation (12) q0 = mγ0 and r = b, i.e. assuming the electron is undeflected. The deflection angle follows as

3 Analytical predictions for the scattering angle are also given in [82], but these are derived under the assumptions that the laser trans-
verse intensity profile is flat up to a radius equal to the waist, and that the pulse duration is infinitely long. Neither condition applies
here.
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Figure 8. Comparison between simulation (dashed) and theory (solid, colored) results for a plane wave (blue) and a focused
pulse (waist w0 = 5λ, orange) with a0 = 0.5 (upper row) and 2.5 (lower row). The pulse duration is N = 16 and the electron
energy parameter η0 = 0.1. In the 3D case, the electrons are initially uniformly distributed over a disk of radius 2w0. The 1D
results are scaled by a factor R3D = (1 − e−8)/8 � 0.125 (see text for details).

Table 2. Conditions on the pulse amplitude a0, phase duration ω0τ and electron energy parameter η = κ.p/m2 for simulated photon
yields and spectra to be accurate under the LMA and LCFA.

Predicted quantity LCFA is accurate when LMA is accurate when

Yield, Nγ a2
0/η � 1, a0 � 1, ω0τ � 1a ω0τ � 1

Spectrum, dNγ
ds s � 2η

1+a2
0+2η

s � s∗0 , s � s∗0

where s∗0 = η/N

1+a2
0+η/N

a.The last condition expresses that the photon formation length should be smaller than both the wavelength λ and the pulse length τ . It
follows from the standard LCFA applicability conditions [(a2

0/η)s/(1 − s)]1/3 � 1 and a0 � 1, when one chooses s = s�0 and η � Na2
0,

corresponding to the mid-IR peak.

θ � q⊥/q0:

θe �
a2

0

γ2
0

be−2b2/w2
0

zR

∫ ∞

−∞
f 2(φ) dφ. (20)

The outer ring in figures 7(a) and (b) corresponds to scattering at b = w0/2 (shown by the black, dashed
line), at which equation (20) is maximised, and the inner ring to scattering at b = w0 (shown by the black,
dotted line), which is the radius of the electron beam.

As discussed in section 3, and shown in figure 1, angular structure in the photons emerges differently in
the LMA and LCFA simulations. In the former, it is the emission rate and the conservation of
quasimomentum that ensures that photons are most probably emitted at angles θγ � a0/γ0 to the
instantaneous quasimomentum. In the latter, it arises from the instantaneous oscillation in the electron
kinetic momentum, which has characteristic angle θe � a0/γ0, and the fact that the radiation is beamed
parallel to this. The azimuthal symmetry of a circularly polarised laser means that the radiation angular
profile is annular in shape: while this is evident in figures 7(c) and (d), the characteristic angle is smaller
than the expected value θγ = a0/γ0, which is shown by the black, dashed line. This is caused by the fact that
the electrons are distributed over a range of impact parameters and therefore encounter lower effective
values of a0: aeff

0 (b) � a0 exp(−b2/w2
0).

Focal spot averaging not only lowers the yield of photons, as compared to a plane wave with the same
peak amplitude, it also reduces the clarity of signatures of strong-field QED effects. We demonstrate this in
particular for the position of the first nonlinear Compton edge, at a0 ∼ 1, η0 = 0.1. This also provides an
opportunity to crosscheck our LMA simulation results for focused lasers with theory. The latter is obtained
using equation (11), i.e. under the high-energy approximation that the electron is undeflected during its
passage through the laser pulse. We have already shown that the total deflection angle scales as (a0/γ0)2,
which is indeed very small. In this case, the laser amplitude is either a0 = 0.5 or 2.5, its waist is w0 = 4 μm,
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and its temporal envelope (electric-field) is f(φ) = cos2[φ/(2N)] with N = 16. The electrons have energy
parameter η0 = 0.1 (equivalent to γ0 = 1.638 × 104 for a head-on collision with a laser pulse of central
wavelength λ = 0.8 μm) and are distributed uniformly over a disk of radius 2w0.

In figure 8, we compare the theory and simulation results with those obtained for a plane wave with the
same peak amplitude. As the total yield is reduced in the former case, we scale the plane-wave results by a
factor R3D which approximately accounts for the effect of focal spot averaging. In the perturbative limit
arms � 1, the emission rate is proportional to a2

rms. Thus we expect the overall number of photons, in the
3D case, to be reduced by a factor R3D �

(∫
a2

rms(b) dNe
db db

)
/a2

0, where dNe
db is the distribution of electron

impact parameters b, and we may take arms(b) = a0 exp(−b2/w2
0) for beam waist w0. For a beam of

electrons which are uniformly distributed over a disk of radius 2w0, we have R3D = (1 − e−8)/8 � 0.125.
The distribution of photon lightfront momentum fraction s is shown in figures 8(a) and (c) for a0 = 0.5
and 2.5 respectively. Figures 8(b) and (d) show lineouts through the double-differential spectrum at fixed
r⊥ = a0/2. The agreement between theory and simulation is reasonably good. The detailed structure in the
lineouts is not resolved, because the LMA misses interference effects at the scale of the pulse envelope. This
is more evident in figure 8(b) than figure 8(d), i.e. at lower a0, for the following reason. In the LMA, the
only contribution to the bandwidth of an individual harmonic is the variation in the mass shift over the
pulse duration: at fixed r⊥, this width is Δs/s = a2

0/(1 + 2nη). There is an additional contribution from the
non-zero bandwidth of the pulse, which is given approximately by Δs/s � 0.187/(ω0τ ), where τ is the
FWHM duration of the pulse intensity profile: for the cosine-squared envelope under consideration here,
ω0τ � 0.364N and Δs/s � 1/(2N). At sufficiently small a0, it is the latter contribution, from the laser pulse
bandwidth, that dominates. Note that in a focused pulse, the effective amplitude at finite impact parameter
arms(b) < a0 and so such effects are magnified. Integrating over a finite range of r⊥ partially mitigates this,
which is why the single-differential spectra are in much better agreement.

The difference between the 1D and 3D cases, evident in the theory, is captured very well by the
simulations. We see that the first nonlinear edge is smeared out by focal spot averaging, particularly for
a0 = 2.5. This is because the position of the edge differs for electrons at different impact parameters, as
increasing b means reducing the effective a0. We have repeated the comparison between LMA-based
simulations and QED for more tightly focused laser pulses, reducing the waist w0 to 3λ and 1λ, while
holding the peak a0 and the electron-beam–laser overlap fixed. The detailed results are shown in the
supplementary material (https://stacks.iop.org/NJP/23/085008/mmedia): we find that the spectra are barely
affected by the reduction and the agreement between simulations and theory is consistently good. This
supports our expectations that LMA-based simulations are accurate even for focused laser pulses.

6. Discussion

The focus of this paper has been incorporating the LMA into numerical simulation and providing the first
benchmarks for a range of parameters and observables with direct calculation from QED. As part of this
work, we compare the LMA to the LCFA, which is the standard scheme for including QED effects in the
modeling of intense laser interactions. The power of the LCFA is, in part, due to its versatility. It can be used
when the strong electromagnetic field is not known a priori, which is a particular advantage when dealing
with a laser–plasma interaction. However, in situations where the shape of the intense laser pulse is
well-known, and unchanged in the interaction, the LMA can be used to attain a higher precision than the
LCFA. The demand for the precision is acute if the field strength and particle energies in question are
outside the region of validity of the LCFA, as is the case in some upcoming high-energy experiments
[12, 13].

Using a plane-wave pulse with phase duration ω0τ = 2πN, we can give some indication for parameter
regimes where the approximations can be used. We designate the region of accuracy as being when particle
and field parameters are far away from values where it is known that the approximation is in doubt. We
summarize our findings in table 2 for the photon yield and spectrum separately, as the conditions depend
on the quantity that is to be measured. Note that, for these two quantities, the ‘penalty’ from violating the
validity conditions is not equal in each case: if the LCFA is used to calculate the yield outside of the range
given by a0 and η, the prediction can be wrong by orders of magnitude (as demonstrated by figure 4). The
requirement that ω0τ � 1 for the LMA to be accurate is softer. Figure 4 shows that the simulations are
accurate to within a few per cent even if N = 4, which is already much shorter than most typical laser pulses
(where the equivalent N � 10): furthermore we expect the accuracy to improve with increasing N. Similarly,
the error made by the LCFA in the photon spectrum becomes arbitrarily large as s → 0, even if a0 � 1,
whereas the LMA is guaranteed to obtain the correct limiting value for all a0. The LMA result is inaccurate
only in a small region around s � s∗0 = (η/N)/(1 + a2

0 + η/N) [73], which is in any case missed by the
LCFA: radiation here arises from the slow ponderomotive scattering of the electron.
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If the plane wave contains a chirp, then the condition that the LMA is still a good approximation is
found to be |ω′

/ω| � 1, which is a ‘slowly varying’ condition of the same nature as 1/N � 1. In practice,
one is often limited to such chirps by virtue of the available bandwidth [74]. For focused laser pulses, we
may expect that the applicability regime apparent when a chirp was introduced, should be adaptable for the
change in wave vector	k obeying |	k′|/|	k| � 1. This reduces to a condition on the focusing, which may be
expressed through the diffraction angle ε = λ/(πw0) as ε � 1. (A similar condition applies to the validity
of the ponderomotive-force approach to the particle’s classical dynamics [64], which confirm for ε � 0.12
in figure 8.) Using the high-energy approximation with the focused background in equation (19), we note
z/zR = −φ/(2ωzR), and the relevant change in wave-vector on the focal axis is k′/k ∼ 1/(ωzR) = ε2/2 � 1.
We have cross-checked our simulation results against a theoretical calculation which uses a WKB
approximation, suitable for high-energy electrons. This integrates the plane-wave probability over a
transverse distribution of intensity and particle flux and therefore works in a similar way to our simulations.
We find good agreement even for diffraction-limited focal spots (see supplementary material), when
|	k′|/|	k| � 1 still holds. To benchmark the LMA fully would require solutions to the Dirac equation in
backgrounds beyond a plane wave, which is still an active area of research [43, 83, 84].

7. Summary

Motivated by the imminent need for precision simulations of strong-field QED processes in the transition
regime a0 ∼ 1, we have presented here a novel simulation framework which incorporates quantum effects
via probability rates calculated within the LMA [37]. From the theory perspective, the formalisation of the
LMA from the plane-wave model has been extended to include chirped pulses, under a ‘slowly varying
chirp’ approximation. We have also adapted the LMA to model focused laser backgrounds, under the
approximation that the incident electron has a relativistic γ factor satisfying γ � a0.

The emission rates so derived are embedded within a classical simulation framework that assumes a
definite particle trajectory. In contrast to simulations based on the LCFA, the electron quasimomentum (the
cycle-averaged kinetic momentum) plays the essential role here, appearing in the classical equations of
motion and the conservation of momentum. The fast oscillation of the particle momentum, at the timescale
of the laser frequency, is nevertheless included, but at the level of the emission rates. This simulation
framework therefore has conceptual similarities to the ‘envelope solvers’ used to model laser-wakefield
acceleration [85–87].

In benchmarking the simulations against QED results, we have found excellent agreement for a variety
of background field configurations. Furthermore, we obtain significant reductions in the relative error when
compared to the use of the LCFA in the transition regime. While we have focused, in this work, on the
specific example of nonlinear Compton scattering in a circularly polarised background, our results can be
extended to other processes, such as electron–positron pair creation [1,37], and to include spin- and
polarisation-dependence [88–92].
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Appendix A. Locally monochromatic approximation for general chirped plane-wave
pulses

In [37], the LMA was derived from plane-wave QED for a simple plane-wave pulse. A plane wave is a highly
idealised model of a laser field, which does not take into account some of the important characteristics of
pulses in a real experiment. Here we extend the LMA to the case of a plane-wave pulse which includes an
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arbitrary chirp. We begin with a general overview of the LMA for a plane-wave field with a general chirp
term.

For concreteness, we use a circularly polarised pulse with an arbitrary chirp, where the dimensionless
gauge potential aμ(ϕ) = eAμ(ϕ)/m is

aμ(φ) = a0f
(ϕ

Φ

) [
εμ cos b(ϕ) + βμ sin b(ϕ)

]
, (A1)

and the phase is ϕ = κ · x. In the derivation of the LMA, it is more natural to work with functions of the
phase variable ϕ, than the proper time τ , which is used in the main text, and so in what follows we work
with ϕ. The discussion here can be generalised to linearly or elliptically polarised backgrounds (see [37] for
more details on the subtleties involved in the LMA for a linear, unchirped, plane-wave pulse).

We follow the standard approach of defining the scattering amplitude for our process in terms of the
Volkov wavefunctions for the background dressed fermions of mass m and four-momentum pμ, [55],

Ψp,r(x) =

(
1 +

m � κ � a(ϕ)

2κ · p

)
up,re

−iSp(x), (A2)

where up are constant spinors. The Volkov phase term is given by,

Sp(x) = p · x +

∫ ϕ

−∞
dy

2 m p · a(y) − m2a2(y)

2κ · p
, (A3)

which is just the classical action for an electron in a plane-wave background field. The nontrivial
dependence of the Volkov wavefunctions on the phase ϕ means that overall momentum conservation for an
arbitrary scattering amplitude S in the plane-wave background field only holds for three of the four
directions, {−,⊥}. As such, the scattering amplitude takes the form,

S = (2π)3δ3
−,⊥(pin − pout)M, (A4)

where δ3
−,⊥(p) = δ(p−)δ(p1)δ(p2), and M is the invariant amplitude.

Closed form solutions to equation (A3) are not always available. A simple example is the infinite
monochromatic plane wave, which is the f(ϕ/Φ) → 1, b(ϕ) → ϕ limit of the background field
equation (A1). However, one can separate the fast and slow dynamics of the background field in such a way
that the field dependent terms in the exponent can by integrated by parts, and simplified by neglecting
derivative corrections. This technique is known as the slowly varying envelope approximation [37–41].

The slowly varying envelope approximation for an arbitrarily chirped plane-wave field was derived in
[58], and we follow this approach here. For the circularly polarised background equation (A1), the terms
which are quadratic in the field depend only on the slowly varying envelope, a2(ϕ) = −a2

0f 2(ϕ/Φ), while
the terms linear in the field contain both slow (through f) and fast (through b) timescales. This gives
integrals of the form,

I =

∫ ϕ

−∞
dy f

( y

Φ

) [
cos b(y), sin b(y)

]
. (A5)

To deal with these integrals, we first transform the trigonometric functions of b(y) to pull out a factor
depending on the inverse of ω(y) = b′(y), where a prime denotes a derivative of the argument:

I =

∫ ϕ

−∞
dy

f (y/Φ)

ω(y)

d

dy

[
sin b(y),− cos b(y)

]
. (A6)

The function ω(y) is taken to define a local frequency scale. Each term can then be readily integrated by
parts, giving two contributions: a boundary term and a term proportional to

d

dy

f (y/Φ)

ω(y)
=

1

Φ

f ′(y/Φ)

ω(y)
− f (y/Φ)

ω2(y)
ω′(y). (A7)

Provided this is a small correction, which is valid for sufficiently long pulses, Φ � 1 and when the
derivative of the chirp function satisfies ω′(y) � ω(y), we can neglect these slowly varying terms, and
approximate the integrals by,

I � f (ϕ/Φ)

ω(φ)
[sin b(ϕ),− cos b(ϕ)] . (A8)

Applying these approximations to the classical action Sp in equation (A3) gives,

Sp(x) = G(ϕ) − z(ϕ) sin[b(ϕ) − ϑ] . (A9)
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The function G(ϕ) contains only slowly varying terms, or terms linear in ϕ. The function z(ϕ) depends on
the phase only through the slowly varying envelope f(ϕ/Φ) and local frequency ω(ϕ), and the angle ϑ is
independent of the phase.

The exponential of the trigonometric function in equation (A9) can be expanded into an infinite sum of
Bessel functions using the Jacob–Anger expansion,

e−iz sin(b−ϑ) =
∞∑

n=−∞
e−in(b−ϑ)Jn(z). (A10)

For the case of a one vertex process, such as nonlinear Compton scattering or Breit–Wheeler pair
production, once the oscillating phase term has been expanded by equation (A10), the invariant amplitude,
M, in equation (A4), takes on the form,

M =

∫
dϕ

∞∑
n=−∞

M′
n(ϕ). (A11)

The probability, P, is then found in the usual way by squaring the scattering amplitude equation (A4)
and integrating over the Lorentz invariant phase space for the particular process, dΩLIPS,

P ∝
∫∫

dϕ dϕ′
∞∑

n,n’=−∞

∫
dΩLIPS M′ †

n (ϕ)M′
n′(ϕ

′). (A12)

There are now two phase integrals, and what distinguishes the LMA from the slowly varying approximation
(which is all we have applied so far) is performing a local expansion in the phase variables. To achieve this
we introduce the sum and difference variables,

φ =
1

2
(ϕ+ ϕ′), θ = ϕ− ϕ′, (A13)

and then take the small phase difference approximation θ � 1 to expand the probability in a Taylor series
in θ, retaining only the leading-order, O(θ), contributions.

The θ-integral can be performed analytically, leaving the probability in the form,

PLMA =

∫
dφRLMA(φ). (A14)

The function, RLMA(φ), contains summations over the Bessel harmonics and integrations over the final
states, but crucially only depends on one phase variable. This allows us to interpret R(φ) as a local rate
which can be used in simulations. (In the main paper, we instead use a rate WLMA defined as a probability
per unit proper time.) To make this discussion more explicit, we consider the process of nonlinear Compton
scattering.

A.1. Nonlinear Compton scattering in a chirped plane-wave pulse
Consider an electron with an initial momentum pμ interacting with a plane-wave electromagnetic field to
produce a photon of momentum kμ and polarisation ε∗k,l. The scattering amplitude, in terms of the Volkov
wave functions equation (A2), is given by,

Sr′,r;l = −ie

∫
d4x Ψ̄p′,r′(x) � ε∗k,le

ik·xΨp,r(x). (A15)

Here we use the Dirac slash notation,	r⊥ = 	k⊥/(sm) −	p⊥/m, where γμ are the Dirac gamma matrices. The
momentum p

′
μ is the momentum of the outgoing electron.

Performing all of the trivial integrations to express the scattering amplitude in the form equation (A4),
the invariant amplitude is found to be,

M = −ie

∫
dϕS(ϕ) exp

[
i

∫ ϕ

−∞
dy

k · π(y)

κ · (p − k)

]
, (A16)

where the spin dependent structure is given by,

S(ϕ) = ūp′,r′

[
1 +

m � a(ϕ) � κ
2κ · p′

]
� ε∗k,l

[
1 +

m � κ � a(ϕ)

2κ · p

]
up,r. (A17)
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and the classical action in the exponent is expressed in terms of the kinetic, or local, momentum of the
incoming electron,

πμ(ϕ) = pμ − maμ(ϕ) +
2 mp · a(ϕ) − m2a2(ϕ)

2κ · p
κμ. (A18)

After applying the slowly varying approximation, as detailed above, to the classical action in the
exponent, the invariant amplitude equation (A16) can be expressed as

M = −ie

∫
dϕS(ϕ)eiG(ϕ)−iz(ϕ) sin[b(ϕ)−ϑ]. (A19)

The function G(ϕ) has the explicit form,

G(ϕ) =
1

2sκ · p(1 − s)

∫ ϕ

−∞
dy

{
|	k⊥ − s	p⊥|2 + s2m2

[
1 + a2

0f 2
( y

Φ

)]}
, (A20)

where we have defined the lightfront momentum fraction s = κ · k/κ · p. As stated above, this only has
dependence on the phase through either linear or slowly varying terms.

The term z(ϕ) is

z(ϕ) =
ma0

κ · p(1 − s)

|f (ϕ/Φ)|
|ω(ϕ)|

√∣∣∣	k⊥ − s	p⊥

∣∣∣2
, (A21)

and so the only dependence on the phase comes through the ratio of the slowly varying pulse envelope and
the local frequency. The angle ϑ is defined through the relationship,

ϑ = arctan

[
(k − sp) · ε
(k − sp) · β

]
, (A22)

and so can be interpreted as the angle between the components of the four-vector kμ − spμ projected onto
the directions of background field polarisation.

We skip now to the explicit form of the probability. Expanding into Bessel harmonics according to
equation (A10), the probability equation (A12) becomes

PLMA =− αm2

4π2(κ · p)2

∫∫
dϕ dϕ′

∞∑
n,n′=−∞

∫
ds

s(1 − s)

∫
d2−→k ⊥eiG(ϕ)−iG(ϕ′)−inb(ϕ)+in′b(ϕ′)+i(n−n′)ϑ

×
({

1 +
a2

0

2

[
1 +

s2

2(1 − s)

] [
f 2

(ϕ

Φ

)
+ f 2

(
ϕ′

Φ

)]}
Jn(z(ϕ))Jn′(z(ϕ′))

− a2
0

2

[
1 +

s2

2(1 − s)

]
f
(ϕ

Φ

)
f

(
ϕ′

Φ

) [
Jn+1(z(ϕ))Jn′+1(z(ϕ′)) + Jn−1(z(ϕ))Jn′−1(z(ϕ′))

])
. (A23)

The probability in this form contains two infinite sums over the Bessel harmonics and integrals over the
outgoing photon momentum. Note the exponential dependence on the chirp function, b(ϕ), and the angle
ϑ. If we consider the definitions equations (A20)–(A22), we notice that the only dependence on the
transverse photon momentum is through the combination	r⊥ = 	k⊥/(sm) −	p⊥/m. We can then shift the
integration variables in equation (A23), and using equation (A22) express the integration measure in polar
coordinates, ∫

d2	k⊥ → s2m2

∫
d2	r⊥ =

s2m2

2

∫ 2π

0
dϑ

∫
d|	r⊥|2. (A24)

The only dependence of the probability on the angle ϑ is then through the exponential factor
exp(+i(n − n′)ϑ). The integration over the angle ϑ sets n = n′. This allows the probability to be well
approximated by,

P �− αm4

4π(κ · p)2

∫∫
dϕ dϕ′

∞∑
n=−∞

∫
ds

s

(1 − s)

∫
d|	r⊥|2e+iG(ϕ)−iG(ϕ′)e−in(b(ϕ)−b(ϕ′))

×
({

1 +
a2

0

2

[
1 +

s2

2(1 − s)

] [
f 2

(ϕ

Φ

)
+ f 2

(
ϕ′

Φ

)]}
Jn(z(ϕ))Jn(z(ϕ′))

− a2
0

2

[
1 +

s2

2(1 − s)

]
f
(ϕ

Φ

)
f

(
ϕ′

Φ

) [
Jn+1(z(ϕ))Jn+1(z(ϕ′)) + Jn−1(z(ϕ))Jn−1(z(ϕ′))

])
. (A25)

Following through with the local expansion, using equation (A13) and θ � 1, the integral over dθ can
be performed, which gives a δ-function:
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P �− α

η0

∫
dφ

∞∑
n=1

∫
ds

∫
d|	r⊥|2δ

[
|	r⊥|2 + 1 + a2

0f 2

(
φ

Φ

)
− 2η0nω(φ)(1 − s)

s

]

×
{

J2
n(z(φ)) +

a2
0

2

[
1 +

s2

2(1 − s)

]
f 2

(
φ

Φ

) [
2J2

n(z(φ)) − J2
n+1(z(φ)) − J2

n−1(z(φ))
]}

, (A26)

where we have defined η0 = κ · p/m2. The probability only has support when the argument of the
δ-function satisfies:

|	r⊥|2 + 1 + a2
0f 2

(
φ

Φ

)
− 2η0nω(φ)(1 − s)

s
= 0, (A27)

which (upon adapting the notation) is found to be exactly the stationary phase condition which is evaluated
in [58] (see equation (25) of [58]). In that work, the stationary phase approximation is carried out at the
level of the amplitude for nonlinear Compton scattering in the slowly varying envelope approximation.
Here we have shown that the exact same kinematic relationship reappears at the probability level after the
explicit application of a local expansion.

The integral over the remaining perpendicular momentum dependence can be trivially carried out using
the δ-function in equation (A26), which gives the relatively concise expression (suppressing explicit
dependence on φ)

P � − α

η0

∫
dφ

∞∑
n=1

∫ sn,∗(φ)

0
ds

{
J2

n(zn) +
a2

rms

2

[
1 +

s2

2(1 − s)

] [
2J2

n(zn) − J2
n+1(zn) − J2

n−1(zn)
]}

, (A28)

where the argument of the Bessel functions is now

zn(φ) =
2narms√
1 + a2

rms

√
1

ω(φ)

1

sn(φ)

s

1 − s

[
1 − 1

ω(φ)

1

sn(φ)

s

1 − s

]
, (A29)

and we have defined the cycle-averaged potential arms = a0f(φ/Φ) and the upper bound on the integration
over s is

sn,∗(φ) =
sn(φ)ω(φ)

1 + sn(φ)ω(φ)
, sn(φ) =

2nη0

1 + a2
rms

. (A30)

Thus, when compared with the expressions found for the LMA in a non-chirped pulse [37], the chirp
function, b(φ), contributes an effective rescaling of the lightfront energy parameter, η0 → η0ω(φ), inside the
argument of the Bessel functions. In equation (10) we have redefined sn and sn,∗ by absorbing the local
frequency, ω (where ω = ω(φ)), into the definition of the local energy parameter, η = η0ω (where
η = η(φ)).
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