
Specifying and Monitoring Tasks 1

Running Head: A Framework for Specifying and Monitoring User Tasks

A Framework for Specifying and Monitoring User Tasks

Brian P. Bailey*1, Piotr D. Adamczyk, Tony Y. Chang, and Neil A. Chilson

Department of Computer Science

University of Illinois

Urbana, IL 61801

1 Corresponding author Phone: 217-333-6106 Fax: 217-244-6869

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Specifying and Monitoring Tasks 2

Abstract

Interrupting users engaged in tasks typically has negative effects on their task completion time,

error rate, and affective state. Empirical research has shown that these negative effects can be

mitigated by deferring interruptions until more opportune moments in a user’s task sequence.

However, existing systems that reason about when to interrupt do not have access to task models

that would allow for such finer-grained temporal reasoning. To enable this reasoning, we have

developed an integrated framework for specifying and monitoring user tasks. For task

specification, our framework provides a language that supports expressive specification of tasks

using a concise notation. For task monitoring, our framework provides an event database and

handler that manages events from any instrumented application and a task monitor that observes

a user’s progress through specified tasks. We describe the design and implementation of our

framework, showing how it can be used to specify and monitor practical, representative user

tasks. We also report results from two user studies measuring the effectiveness of our existing

implementation. The use of our framework will enable attention aware systems to consider a

user’s position in a task when reasoning about when to interrupt.

Keywords: Attention, Interruption, Task Models, Task Monitoring

Specifying and Monitoring Tasks 3

Introduction

When applications interrupt users at less opportune moments in their task sequence, disruptions

to task performance (Bailey, Konstan & Carlis, 2001; Czerwinski, Cutrell & Horvitz, 2000b;

Monk, Boehm-Davis & Trafton, 2002), error rate (Mcfarlane & Latorella, 2002), and affective

state (Adamczyk & Bailey, 2004) are much more severe than if the interruption had occurred at a

more opportune moment. Prior work has both argued (Miyata & Norman, 1986) and empirically

demonstrated (Adamczyk & Bailey, 2004; Iqbal, Adamczyk, Zheng & Bailey, 2005) that subtask

boundaries during task execution represent more opportune moments for interruption than non-

boundary moments. One explanation, among others, is that users experience less mental

workload at boundary moments (Iqbal et al., 2005; Iqbal, Zheng & Bailey, 2004), leaving more

mental resources for the interrupting task and for later resuming the previously suspended task.

These and other empirical findings have created rapidly growing interest in developing attention

aware systems that can computationally balance a user’s need for minimal disruption with their

desire for information. A posited approach is to defer the presentation of information, such as

email notifications, system alerts, and instant messages, until a user reaches an opportune

moment in a task sequence (Bailey & Konstan, 2005; Horvitz, Jacobs & Hovel, 1999). In office

settings or other work environments where information is desired, but not typically safety

critical, users could exchange a small decrease in awareness for a large mitigation of disruption.

We have developed a task specification and monitoring framework that facilitates the creation of

such attention aware systems. Our framework consists of four components; a task description

language that supports expressive specification of tasks using a concise notation, a graphical tool

Specifying and Monitoring Tasks 4

that enables rapid assembly of task specifications, an event database and handler that manages

user events from instrumented applications, and a task monitor that follows a user’s progress

through specified tasks, notifying user-level services when task-related events occur.

Existing systems that reason about when to interrupt users rely on external and non-task specific

cues (Horvitz, 1999; HudsonFogartyAtkesonAvrahamiForlizziKiesler et al., 2003). By

supporting models of tasks informed by and consistent with prior work (John & Kieras, 1996;

Zacks, Tversky & Iyer, 2001), our framework enables systems to draw upon this knowledge

when making interruption decisions. While there has been work on task description languages

for generating interfaces (Szekely, Luo & Neches, 1993), predicting usability (Card, Moran &

Newell, 1983; John, 1995; Kieras, Wood, Abotel & Hornof, 1995), guiding cognitive models

(Ritter, Baxter, Jones & Young, 2000), and research on task monitoring by cooperative agents

(Franklin, Budzik & Hammond, 2002; Rich & Sidner, 1998), our work provides an integrated

framework for both specifying and monitoring user tasks. Rather than infer task models from

user events (Maulsby, 1997), our framework includes a suite of effective end-user tools for

rapidly creating task specifications and then monitoring those tasks during execution.

An important contribution of our framework is that it provides an open architecture, enabling

tasks involving any application with appropriate instrumentation to be monitored and any user-

level service to be notified when task-related events occur. Our framework thus enables systems

to have access to accurate information about a user’s current position in a task sequence,

important for intelligent tutoring systems (Cheikes, Geier, Hyland, Linton, Rodi & Schaefer,

Specifying and Monitoring Tasks 5

1998), software agents (Lieberman, 1997; Maes, 1994), and attention aware systems that manage

interruption (Horvitz et al., 1999).

Related Work

We review empirical evidence showing that interruptions have a negative impact on users and

their tasks and discuss how attention aware systems can leverage task models to mitigate those

effects. Then, we discuss how existing task description languages, scripting languages and

frameworks, and task monitors are not sufficient to operationalize these empirical findings, and

explain how our framework builds on this prior work to move closer to this goal.

Interruption and Task Models

Many experiments have shown that interrupting users engaged in tasks can have a significant,

negative impact on task completion time (Cutrell, Czerwinski & Horvitz, 2001; Czerwinski,

Cutrell & Horvitz, 2000a; Czerwinski et al., 2000b; Mcfarlane, 1999; Monk et al., 2002), error

rate (Latorella, 1998), decision making (Speier, Valacich & Vessey, 1999), and affective state

(Bailey & Konstan, 2005; Zijlstra, Roe, Leonora & Krediet, 1999). To mitigate effects of

interruption, Miyata & Norman (1986) have speculated that task (and subtask) boundaries

represent more opportune (or less disruptive) moments for interruption since users have reduced

mental workload at those moments. They argue that when a user completes a task, the executive

system releases the mental resources allocated for performing the task, momentarily reducing

workload before the cycle of allocation and deallocation occurs again for the next task.

Specifying and Monitoring Tasks 6

Experiments have empirically supported this speculation. Bailey & Konstan (2005) and Iqbal et

al. (2005) showed that delivering peripheral tasks at particular boundaries during task execution

causes considerably less disruptive impact than at other moments in the task. Since a small

deferral resulted in a large mitigation of disruption, these results show that temporal

manipulation of information offers an effective and practical computational strategy for

mitigating effects of interruption. Our work seeks to enable such computational strategies by

developing a language for specifying task models and marking moments selected for interruption

and by developing a task monitor that allows higher-level services to defer delivery until those

selected moments are reached.

For human-computer interfaces, a task model represents the hierarchical and sequential structure

of a task (Card et al., 1983). Task models link how a person cognitively structures a task (what to

do) with the actions afforded by a particular interface (how to do it). Models can be constructed

by applying task modeling techniques such as GOMS (John & Kieras, 1996) or event perception

theory (Zacks et al., 2001). For example, a typical scenario of use for GOMS is to develop initial

models for a set of interface tasks, refine the models based on observing users performing the

tasks, and then validate the refined models by observing another set of users performing the same

tasks. However, the formality applied depends on the desired accuracy of the models. To create

task models, a person almost always uses some form of a description language to express and

represent the models.

Specifying and Monitoring Tasks 7

Task Description Languages

A task description language provides a formal syntax and semantics for creating task models.

The constructed models can then be used to specify and communicate interface designs, generate

interfaces, predict the usability of interfaces, or enable systems to monitor user activities.

For specifying interface designs, description languages include task grammars (Shneiderman,

1982), modeling notations (Carr, 1994; Hartson, Siochi & Hix, 1990; Siochi & Hartson, 1989;

Tauber, 1990), algebraic specifications (Guttag & Horning, 1980), and transition diagrams

(Harel, 1987). If expressive and detailed enough, the models can even be used to generate an

executable form of the interface (Szekely et al., 1993). However, the models constructed with

these languages would not generally allow a system to monitor the execution of the tasks.

Research in cognitive modeling has produced several task description languages, e.g., those used

in (Byrne & Anderson, 1998; Byrne, Wood, Sukaviriya, Foley & Kieras, 1994; John, Vera,

Matessa, Freed & Remington, 2002; Kieras & Meyer, 1997; St. Amant & Riedl, 2001). Once

developed, the models can be typically passed to a cognitive simulator to predict usability (Ritter

et al., 2000). For example, GLEAN (Kieras et al., 1995) offers an English-like syntax for

describing the hierarchical, sequential and unordered parts of a task. An author uses the language

to describe fine detail of an interaction such as ‘move hand to mouse’, ‘move cursor to location’,

and ‘click button,’ which is necessary for the simulator to make predictions. These types of task

description languages have been used successfully to build models of complex interface tasks

and have led to design improvements (Gong & Kieras, 1994). While useful for simulating

Specifying and Monitoring Tasks 8

performance, these languages are more complex and require more specification detail than what

interruption management would probably require, as indicated in (Bailey & Konstan, 2005).

Task description languages have also been created to allow software agents to monitor user

activities. For example, to apply discourse theory to human-agent interaction, Rich & Sidner

(1998) developed a task description language that allowed agent behavior to be linked to specific

actions in the interface during design. As part of the Intelligent Classroom, Franklin et al. (2002)

developed a task description language that allowed an agent to monitor an instructor’s tasks and

cooperate by managing the media capture devices. Each language has elements that would be

useful for attention aware systems, but the languages themselves are inextricably tied to the

particular system, which severely limits the ability of others to build upon their implementation.

As part of a project on embedded training, Cheikes et al. (1998) developed a task description

language that allowed context-specific instructions to be integrated into task models at multiple

levels of detail. While the description language used constructs similar to our own language (e.g.,

InOrder and AnyOrder tags) for expressing patterns of interface events, the monitoring system

could not accurately follow tasks if the user switched from executing an ongoing task to another

task or performed multiple tasks at the same time, which is common in practice.

While task models are usually constructed through manual use of description languages, there

has been work to automatically infer the models. For example, ActionStreams (Maulsby, 1997)

is a system that attempts to inductively learn the hierarchical, sequential, and variable parts of a

Specifying and Monitoring Tasks 9

task model from the user event stream. This is done by learning a grammar that expresses the

sequences of incoming events. Maulsby (1997) acknowledges that learning a grammar is a

complex problem and, in some cases, no algorithms have yet been discovered that would enable

the system to function as desired, e.g., learning grammars for arbitrary interleaving of events.

Though learning task models is attractive, it is beyond the current state of the art for general use.

Scripting Languages and Event Frameworks

Scripting languages and event (or message passing) frameworks have been developed to enable

system-wide communication among applications and to support advanced functionality within

individual applications. System-wide frameworks such as AppleEvents (AppleScript) typically

provide a centralized communication manager that enables applications to publish and subscribe

to registered events and exchange data. When an application publishes an event, the

communication manager notifies applications that previously subscribed to the event by invoking

a callback routine. The scripting language, e.g., AppleScript, is typically provided as part of the

framework and can be used to program the desired response behavior.

Within applications, scripting languages enable sequences of interface commands to be recorded

as macros, which are executable descriptions of a task. For example, Adobe Photoshop enables a

graphic designer to visually record a sequence of image editing operations, edit the sequence,

and then execute it on batches of images.

Specifying and Monitoring Tasks 10

While existing scripting languages and frameworks support the exchange of individual events,

they do not support explicit structures of task models or notifications of task-related events, e.g.,

that a user just crossed a particular subtask boundary. However, system-wide frameworks such

as AppleScript could be used to facilitate implementation of a framework similar to our own.

Task Monitoring

Many systems, e.g., (Cheikes et al., 1998; Franklin et al., 2002; Maglio, Barrett, Campbell &

Selker, 2000; Maulsby, 1997; Rich & Sidner, 1998) monitor the user event stream and compare

events to a task model in order to provide context-sensitive instruction or feedback. While our

system provides similar function, it also attempts to learn a flexible model of task execution and

record that model in a user profile. In other words, the specified task model describes all the

possible sequences of events and the model of task execution describes how often a user has

historically followed each of those sequences when executing the tasks.

Bayesian networks have been applied to infer a probability distribution over user tasks (Albrecht,

Zukerman, Nicholson & Bud., 1997; Horvitz & Apacible, 2003). The networks typically use

specific events or properties of events as evidence variables. This works well for identifying a

task in the midst of sparse or noisy data. However, Bayesian networks by themselves cannot

easily monitor multiple instances of the same task (e.g. preparing two separate email messages)

or multiple active tasks (e.g. interrupting the editing of a document to send an instant message

and then resuming), both of which are common in multi-tasking environments. Also, building or

adapting the computational machinery for a Bayesian network would be overly difficult for most.

Specifying and Monitoring Tasks 11

A challenge in task recognition is how to handle situations where multiple tasks match the same

initial sequence of events. In this case, our task monitor maintains a candidate set of possible

tasks and refines the set as more events are generated. While our approach provides a working

solution, more sophisticated, probabilistic approaches such as Dempster-Shafer theory (Carberry,

2001) could be used in the future. User preferences for execution sequences and more domain

specific information could also help resolve ambiguity in task recognition.

To summarize, our task description language extends prior work in that it leverages the syntactic

structure of XML to more easily support hierarchical decomposition, it draws upon the use of

regular expressions to describe patterns of events in a concise notation, and it results in task

models that are reasonably easy to read and understand. Our task monitor extends prior work in

that it can monitor multiple ongoing tasks and multiple instances of the same task, seeks to learn

a model of task execution, and uses a client/server architecture to support multiple applications.

Framework Design Goals

Several design goals were defined to guide the development of our task specification language

and monitoring system. The term author refers to the person writing a task specification, which

could be an interface designer, developer, IT support staff, end user, or other stakeholder. The

goals of the system are to:

Specifying and Monitoring Tasks 12

• Enable low-investment creation of task specifications. The benefit that comes from

specifying tasks should ostensibly outweigh the investment required to specify those tasks.

While we have shown the potential benefit of task monitoring for attention aware systems

(Adamczyk & Bailey, 2004), realizing a net benefit requires a task specification language

that is reasonably easy to use and learn and that is accompanied by effective interface tools.

• Enable tasks to be specified at multiple levels of detail. For example, a compose email task

could be decomposed into open window, compose and send mail subtasks. Compose could

then be further decomposed into select recipients, enter subject, and enter body subtasks, and

so forth. For attention aware systems, finer-grained task decomposition would enable finer

temporal reasoning about when to interrupt (Adamczyk & Bailey, 2004), but also requires

more effort on part of the author. Striking the appropriate balance between level of detail

and specification effort should be left to the author’s discretion, not imposed by the system.

• Support expressive descriptions of tasks. An effective language should enable an author to

express variations of task execution in a concise notation. Although there may be many

different execution sequences to accomplish a task, an author should not have to explicitly

describe all those variations; rather the language should accommodate multiple

interpretations. This is analogous to how regular expressions provide a notation that enables

a single specification to describe several matching patterns of strings.

Specifying and Monitoring Tasks 13

• Enable specification of tasks that involve multiple applications. Interactive tasks often

involve multiple applications. An example is that a user receives an email with an attached

document, opens the document, edits it, and emails it back to the sender. If performed often,

an author may want to specify this sequence as a single task because it provides a more

accurate representation of the interaction sequence.

• Accurately monitor specified tasks in the midst of unspecified activities. Due to the

enormous number and diversity of tasks possible in a typical computing environment, a task

monitoring system cannot expect that every task that a user performs would have an

associated specification. However, research shows that users often spend about 81% of their

time performing core tasks in a few applications (Czerwinski, Horvitz & Wilhite, 2004).

Thus, even if a system is able to monitor only a small part of the overall task space, it is still

possible for it to recognize tasks that a user performs most of the time.

• Support forecasting of a user’s task execution. By building a model of how a user performs

and transitions among specified tasks, a system could forecast the user’s task execution. The

temporal granularity of the forecasting would be commensurate with the level of detail in

the specifications. For example, for a compose email task specified at a coarse level, a

system could forecast that a user will spend 5 minutes composing an email, or if specified at

a finer level, that the user will spend 1 minute selecting recipients, 30 seconds writing the

subject, and 3.5 minutes composing the body. Forecasting would be useful to enable an

attention aware system to better reason about when to interrupt a user engaged in a task,

Specifying and Monitoring Tasks 14

e.g., by deferring the delivery of information until the user reaches a boundary in their task

sequence (Miyata & Norman, 1986).

While our current implementation does not yet fully achieve all of these goals, we felt it was

vital to define them up front and use them to justify implementation and other design decisions.

Framework Architecture

As shown in Figure 1, our framework consists of four components; (i) a task description

language that enables an author to express tasks at multiple levels of detail, (ii) an event database

and handler that manage user events, (iii) a graphical tool called PETDL Maker that can be used

to quickly assemble task specifications, and (iv) a task monitor that follows a user’s progress

through specified tasks, recording transition frequencies and the time spent at each step.

In our framework, the term event refers to an application-level event, which is a system-level

event that has been delivered to and interpreted by an interface control. For example, a system-

level event is ‘mouse click’ while an application-level event is ‘select file menu.’ Our framework

assumes and only ever receives application-level events that were generated by user interaction.

Our framework further assumes that applications have been instrumented to send these events.

To demonstrate the feasibility of and test our framework, we instrumented MS Outlook, MS

Word, and Firefox using their built-in scripting tools to generate events for common tasks. In the

future, we expect that applications would have such instrumentation already available.

Specifying and Monitoring Tasks 15

The framework uses a client/server architecture where the event handler and task monitor

execute in a server process on the same or separate machine. Executing the server on a separate

machine would enable the task monitor to monitor the tasks of multiple users simultaneously and

across heterogeneous systems.

Task Description Language

PETDL (Pattern-based Event and Task Description Language) is an XML-based language for

describing user tasks that draws upon GOMS (Card et al., 1983), regular expressions, and

schema descriptions. Table 1 shows the tags available in the language and Figure 2 shows how a

calendaring task in Microsoft Outlook could be specified using the tags. Any number of task

specifications can be contained in one PETDL document. PETDL includes tags to describe

events, hierarchy, references, and pattern matching:

• Events. An author uses the <event> tag to name an application-level event in a specification.

Although not shown in Figure 2 for brevity, event tags include attributes for specifying the

name of an application. By including the application name with an event, specifications can

include events from multiple applications. The name of the event must exactly match the

name of the event forwarded. Because an application registers an event dictionary with our

event database, an author is able to view all events available for supported applications

when writing specifications.

Specifying and Monitoring Tasks 16

• Hierarchy. Drawing upon task modeling techniques such as GOMS (Card et al., 1983),

PETDL enables an author to hierarchically decompose a task into subtasks (goals) and

patterns of events (operators). PETDL provides a single tag <task> that can be recursively

nested to more easily express hierarchy. The use of nesting allows – rather than forces –

tasks to be specified at multiple levels of detail. In a <task> tag, any number of control tags

can be nested to express patterns of matching user events. The names of the control tags

were designed to reflect the event patterns they express. Also, the <task> tag supports a

reference attribute that allows it to be named and then reused elsewhere in the same or other

specification. The hierarchical structure of the model implicitly defines boundary points,

with each end tag for a task defining a boundary. The nesting level of the boundary is used

to infer how opportune that moment would be for interruption. Alternatively, an author can

set the opportune attribute that takes an integer parameter, with lower numbers being more

opportune for interruption.

• References. A positive consequence of using nesting to express hierarchy is the ability to

rapidly create new specifications by composing reusable parts of existing ones. This reduces

duplication of common subtasks, making them easier to maintain, and enables specifications

to be shared among authors. PETDL allows a reference to be made to existing tasks/subtasks

through the use of a ref=true attribute in a <task> tag. For example, in Figure 3, the

AddAppointment subtask is referenced and reused later in the task specification, and could

also be used in other specifications.

Specifying and Monitoring Tasks 17

• Pattern Matching. Listed in Table 1, PETDL provides seven control tags for specifying rich

patterns of user events. Control tags are built to resemble the control syntax used in regular

expressions, e.g., the use of <zeroOrMore> in PETDL is equivalent to the use of an asterisk

(*) in regular expressions. Similar to describing matching patterns of strings, an author uses

control tags in a task specification to concisely express matching sequences of user events.

Beyond regular expressions, however, our language also includes an <anyOrder> tag, as this

tag allows many variations of execution sequences to be immediately expressed. For

example, the use of this tag in Figure 2, states that a user may either, add the appointment

then close the email, or close the email and then add the appointment. Just as with regular

expressions, some patterns of events may be described with alternative combinations of

control tags. We leave the decision of how to best express patterns of events up to the

specification author.

Event Database and Handler

The event database maintains a persistent store of event dictionaries for applications and records

live streams of events generated by a user interacting with instrumented applications connected

to our server. When an application starts, it can connect to the event database to register or later

modify its event dictionary. An event dictionary gives the name and description of all events that

can be generated by an application. An author can inspect the event dictionary directly (as it is

plain text) or can use our PETDL graphical tool which supports features such as filters.

After registering or modifying its event dictionary, an application connects to the event handler

executing in our server. The event handler manages the streams of events generated by users

Specifying and Monitoring Tasks 18

interacting with the applications. For each event, the name of the event, the application that

generated it, and the time that it was generated are sent to the event handler. The handler

forwards this event structure on to the task monitor and then records it into the database. Because

events are recorded, an author can use our graphical tool to monitor live streams of events and

use these events to author task specifications in a way similar to macro authoring. A stream is

removed from the database once the corresponding application is exited.

PETDL Maker

PETDL Maker is a graphical tool written in Visual Basic that enables quick assembly of task

specifications. As shown in Figure 4, the tool enables an author to view elements from event

dictionaries, the live stream of events being generated by user interaction, and the control tags.

Because the list of incoming events can be large, the tool supports filtering based on application

name and time. To create a specification, an author drags elements from any of these sources and

drops them into the document region. The elements are inserted into an editable tree-structure

that reflects and enforces the hierarchical nature of the language (see Figure 4). Our experience

with the tool shows that the ability to monitor events while interacting with an application is

particularly useful for creating specifications. For example, to create a specification for a

calendaring task, an author would run the PETDL graphical tool, perform the calendaring task as

usual, view the live stream of events being generated by the interaction, and then select the

desired events and appropriate control tags to assemble task specifications. We believe that this

style, akin to macro authoring, will facilitate quick and accurate creation of specifications.

Specifying and Monitoring Tasks 19

Task Monitor

The task monitor follows a user’s progress through task specifications and notifies user-level

services of task-related events, e.g., starting or finishing a task. The task monitor receives events

from the event handler and matches them to the available specifications, loaded at startup. The

algorithm for matching incoming events to specifications is shown in Figure 5.

The task monitor maintains a list of position placeholders, which is initially empty. A position

placeholder points to the next matching event or control tag in a specification and there is one

placeholder for each instance of a task that the user is currently in. This allows the user to be in

the midst of multiple tasks or the same task multiple times, an important advantage over many

existing approaches, such as those discussed in (Cheikes et al., 1998; Horvitz, Breese,

Heckerman, Hovel & Rommelse, 1998).

When an event arrives, each placeholder (or active task) attempts to match the event to its next

allowable events. For example, if a placeholder points to an AnyOrder tag, it would match the

event against its contained events and recursively against the next allowable events of its

contained control tags. If a placeholder matches an event, it then handles the event. Handling an

event involves marking the matched event as having occurred in that instance of the specification

and determining if it was the last event of the tag. If it was the last event, a placeholder to the

next control tag is returned, otherwise the same placeholder is returned.

Specifying and Monitoring Tasks 20

If the incoming event does not match any existing placeholders, the event is compared to events

that start new tasks. If it matches, a new placeholder is created and added to the list. Otherwise,

since the event does not move an existing task forward or start a new task, it is discarded. This

process repeats itself for each incoming event. If a placeholder has not moved for a specified

duration, then it is removed from the list and the specification must be matched from the

beginning. This situation may occur if a task was interrupted and never resumed.

To demonstrate the algorithm, suppose the event stream in Figure 6 is matched against the

Manage Schedule task in Figure 2:

1. This first event, AppActivate, is ignored by the task monitor because it does not match the

first event in the task description, OpenMailItem. The task monitor continues to ignore

events until it sees OpenMailItem.

2. The second event, OpenMailItem, matches the first event of the Schedule Appointment From

Email task. Since this is the first event in the task, the task monitor creates a position

placeholder to track progress through the task. The next matching event can be

SwitchFocus, which is optional, or OpenApptItem or CloseMailItem, which can occur in any

order but both must occur.

3. The third event, ReadMailItem, does not match the existing position in the task nor does it

start a new task. Since it does not match, it is ignored by the task monitor.

Specifying and Monitoring Tasks 21

4. The fourth event, OpenApptItem, gets matched with the position placeholder and now the

position placeholder is waiting for ChangeApptItemProp.

5. The fifth event, ChangeApptItemProp, matches the position placeholder and it is updated

and now expecting another ChangeApptItemProp or WriteApptItem.

6. The last event, ChangeApptItemProp, also matches the position placeholder because of the

<oneOrMore> control tag. The position placeholder will still match more

ChangeApptItemProp events or a Write-ApptItem event.

Because the algorithm maintains the position placeholders while ignoring non-matching events,

the task monitor can monitor tasks in the midst of non-matching events and unspecified

activities. For example, in the Manage Schedule task, the user could save the email at any time -

thus generating a series of non-matching events - without disrupting the task monitor.

The algorithm compares incoming events against the specified events that could possibly occur

next. In cases where an event matches multiple subsequent events, an ambiguity arises. We

handle this through one of many possible solutions, namely by matching the event to the

placeholder that was created first chronologically.

Specifying and Monitoring Tasks 22

As a user transitions among specified tasks, the task monitor builds a model of the user’s task

execution. The model is a graph where the nodes represent tasks and events and directed edges

represent transitions between the events. Initially, the graph represents the task structure of the

corresponding specification, built recursively from the specification itself. There is one graph for

each specification supplied. Note that control tags are not included in the graph, since by this

point, the task monitor has already decided that the generated event matches a specification.

When an event occurs, a directed edge is added (just the first time) from the last event’s node to

the generated event’s node and the frequency and timing information is recorded. For example,

for the specification in Figure 2, if the last event was openAppItem and the next event is

changeAppItemProp, the system adds a directed edge between the event’s nodes, sets the

transition probability to 1, and records the time between events in the last event’s node. Next

time, for example, if a closeMaiItem event occurs, the system adds an edge from the openAppItem

node to the closeMailItem node, updates the transition frequencies on the outgoing links to 0.5,

and updates the timing information, e.g., by computing and storing the average of the values, and

so on. From the model, the monitor can infer the time and transition to the next event (task) and

further event (task) sequences. The tasks containing an event can always be identified from the

model. The more repetitive the tasks and events are, the more accurate the inferences.

Forecasting would provide a much needed service for attention-aware systems that seek to defer

delivery of information until a user reaches an opportune moment such as a task boundary in

their task sequence. To make an effective decision, the system must know the likelihood that the

user will reach different levels of boundaries (with the assumption that interrupting at a higher-

Specifying and Monitoring Tasks 23

level boundary would cause less disruption) and how long it will take for the user to reach those

moments. We are currently extending our implementation to provide this support.

Implementation

We engineered our system to enable others to leverage and build upon our implementation effort

as much as possible. Since XML is a powerful, well-known language toolkit, it was used to

construct our task description language. We believe the resulting syntactic representation is easy

to use and learn. Also, there are many freely available tools for building and parsing XML

documents, so our language can be quickly extended, e.g., to add new attributes to existing tags.

A key design decision was the use of a client / server architecture with multiple connection

points. Any instrumented client application can connect to our event handler, register an event

dictionary, and begin sending events. While the application must communicate using a defined

protocol, the protocol is documented in the source distribution and is relatively simple in that it

exchanges plain text XML structures. Once an application is connected, the PETDL tool can be

immediately used to view the live stream of events from the application as well as to create

related specifications. Once specifications are created, the task monitor can observe those tasks.

Similarly, any user-level service can connect to the task monitor and request notifications of

when a user starts or finishes a specified task or subtask. Requests and notifications are

exchanged using plain text XML structures as a communication protocol. Because user task

recognition and monitoring is an essential component of many intelligent systems including

Specifying and Monitoring Tasks 24

intelligent tutoring systems (Cheikes et al., 1998), software agents (Maes, 1994), and attention

aware systems (Horvitz & Apacible, 2003), our architecture reduces future implementation

efforts by abstracting these commonly needed services into a single monitoring component. Our

future implementation effort will be to allow user-level services to store their own information

into the execution model maintained by the task monitor and to support forecasting of a user’s

task execution sequences.

The task monitor and the event handler were written in Python and consist of several thousand

lines of programming code. Python's xml.dom library was used to validate task specifications.

PETDL Maker was written in Visual Basic .NET and consists of about 2,500 lines of code.

Plugins for MS Outlook and MS Word were written with Visual Basic 6 and monitored events

published by their respective scripting APIs. The plugin for Firefox was written in ECMAScript.

We implemented our framework on an MS Windows platform because it was readily accessible

to us and it was the best fit with the programming expertise of our research team.

Evaluation

We conducted two user studies to evaluate how well our existing implementation satisfied our

design goals and to identify areas and methods for improvement. The studies were designed to

represent a common scenario of use in user task modeling. The first study was conducted to learn

how effective our language was for creating task specifications and how useful our graphical tool

was for constructing specifications from collected events. In this study, two authors analyzed

interaction videos of four users performing the same three tasks. From these observations and,

with the help our graphical tool, they created task specifications.

Specifying and Monitoring Tasks 25

The second study was conducted to measure how well those specifications could match the event

streams generated by a different group of users performing the same tasks. Also, the event

streams collected from this study were fed into the task monitor to determine the robustness of its

event matching algorithm. Together, these studies enabled us to measure length and complexity

of the specifications, how many and which PETDL tags were used, and the effectiveness of the

matching algorithm in the task monitor.

Users and Tasks

Two authors (both male) and four users (one female) participated in the first study, and eight

different users (four female) participated in the second study. The two authors were computer

science graduate students familiar with regular expressions and grammars. The users consisted of

undergraduate and graduate students who were experienced users of email, word processing, and

web browsing software. In both studies, each user performed the same three tasks.

To keep users focused on their task, and to assure an uninterrupted experimental trial, users were

given instructions on how to perform the tasks, and were then left unattended while they

performed them. Details in the instructions were kept to a minimum so as to not influence the

pattern of user behavior. Though individual tasks were conducted without a broader context, we

constructed the tasks to involve multiple applications and placed as few restrictions as possible

on user behavior.

Specifying and Monitoring Tasks 26

Three tasks; document editing, Web posting, and calendar scheduling, were developed for the

studies. For the document editing task, the user first located an email message in Outlook’s

inbox, opened the attached document in MS Word, made corrections, saved the modified

document, and sent a reply from MS Outlook with the modified document attached. The

document was annotated with instructions on how to correct each error.

In the Web posting task, the user navigated to a website using Mozilla Firefox, found a specific

web log entry and posted a comment. The user interacted with the site to ensure that the post was

anonymous, to preview the comment, and to make a given change to the comment before making

the final post. Again user interaction within the task was unconstrained, with users instructed

only broadly in terms of the main task goals.

The third task was a scheduling task where the user opened an email in Microsoft Outlook and

scheduled an initial appointment using Outlook’s calendar based on requirements in the email.

The user then opened a second email and again scheduled an appointment. Because the

requirements (date, time) of the appointment were ambiguous, a user may have had to re-

schedule the first appointment in order to properly schedule the second appointment.

The average time to perform each task was just over four minutes, more than enough time to

generate a meaningful stream of events. We selected these three tasks because they would

provide a sufficient initial test of our system in the desktop communication domain; they

involved multiple applications, are representative of tasks that users often perform, and users

Specifying and Monitoring Tasks 27

could perform them in a manner unconstrained enough to test the expressiveness of our task

description language. This last aspect also provides a good test of how well our task monitor

could handle variance in task execution.

Procedure

In both studies, a user performed practice trials of the tasks prior to the experimental tasks. After

any clarifications or questions were answered, the user performed the experimental tasks. Our

plugins for the applications involved in the tasks intercepted user events and sent them to the

event handler for logging. This would allow us to match the event streams to the specifications

by hand and understand where and why mismatches occurred. Commercially available software

was used to electronically record a user’s screen interaction. Each study lasted about 30 minutes.

Measurements and Results

User Study I

In our first study, the two authors reviewed the event logs and screen interaction videos to create

PETDL specifications for each task. Part of the final specification for the calendaring task is

shown in Figure 2 and the full specification for the document editing task is in Figure 7. The

process was iterative, with authors creating the first draft of the specifications after viewing one

user’s interaction, then revising that specification based on the task executions of the remaining

users. Once complete, the resulting specifications expressed all of the users’ task sequences.

Specifying and Monitoring Tasks 28

The total time spent constructing the task specifications was not significantly more than the time

needed to review the interaction videos, which was about two hours. After specifications were

developed, we counted the frequency of tags used to describe each task, summarized in Table 2.

Specifications required only a small number of tags to express the tasks overall and were

relatively short in length. On average, counting just the event and control tags, document editing

was 14 lines, Web posting was 15 lines, and calendar scheduling was 12 lines. This shows that

our description language can express event streams for practical tasks in a concise manner.

User Study II

For the second study, we wanted to determine how well the specifications developed in the first

study would express the task execution of a different set of users performing the same tasks.

After following a procedure similar to that outlined above, we compared the new set of user

event streams to the specifications. For each event, we classified the outcome as a match, a user

error, or a specification error. A match meant that the specification correctly described the event.

A user error occurred when the specification could express the event stream, but an error arose

due to the user not performing the task as requested. For example, during the Web posting task,

one user posted to the wrong web log. A specification error was when the user performed the

task as requested, but the specification did not express the event stream. This was the most

serious type of error.

The matching outcomes are depicted in Figure 8. Though accuracy was task dependent, the

specifications were able to reasonably express the event streams from this set of users. An

inspection of the event streams showed that improved accuracy could be achieved by performing

Specifying and Monitoring Tasks 29

additional iterations on the task specifications; there were a number of informative events that

could be added to future iterations of the task specifications. However, because this was the first

time that the authors in our study had ever created task specifications or used our description

language to do so, we find these results encouraging and believe that they show that creating task

specifications is feasible in practice.

Because matching the event streams to the specifications was done by hand in order to categorize

and understand matching errors, the next step was to test the computational matching algorithm

in the task monitor. The specifications (without modification) were loaded into the task monitor

and events from each captured stream were delivered one at a time, just as if they had come from

the event handler in a live environment. For each stream, the task monitor correctly matched

events to the specifications and correctly ignored events that did not match. Though the matching

algorithm worked correctly, an important point is that how well a specification matches an event

stream really depends on the accuracy of the specification itself, not necessarily on the matching

algorithm.

Next, to simulate multiple tasks and multiple instances of the same tasks being performed, we

interleaved the streams arbitrarily and sent events from this newly formed stream to the task

monitor. Through inspection of the matching log, we found that the algorithm correctly matched

each event to the appropriate specification and correctly ignored non-matching events. This

validates the correctness of the algorithm and shows that use of the position placeholders

supports multiple active tasks and multiple instances of the same tasks.

Specifying and Monitoring Tasks 30

Discussion

Meeting the Design Goals

We discuss how the existing implementation of our framework has heretofore met our system

design goals. To enable low-investment creation of task specifications, we developed an XML-

based language that has a small number of control tags that can be used to concisely express

many variations of task execution sequences. This results in specifications that are reasonably

easy to read and understand and that are of relatively short length. The language is accompanied

by an effective graphical tool that facilitates a macro-style authoring of specifications. The tool

enables authors to construct specifications by composing control tags and events from the live

user event stream and event dictionaries within an editable tree structure.

To enable tasks to be specified at multiple levels of detail, we leverage the hierarchical nesting

syntax of XML. To enable specification of tasks that involve multiple applications, the language

allows the names of events to be prefaced by the name or instance of the application, eliminating

ambiguity among events with the same name. To accurately monitor specified tasks in the midst

of unspecified activities, our monitoring algorithm uses a list of position placeholders to mark

where a user is relative to each instance of a task. This enables the monitor to follow a user’s

progress through multiple active tasks and multiple instances of the same task. To support

forecasting of a user’s task execution, we have laid the implementation groundwork by recording

transition frequencies in a persistent model of task execution.

Specifying and Monitoring Tasks 31

Lessons about Task Specification

From our experience using the system, we also learned lessons about how to better specify tasks.

First, tasks should not end with control tags that may optionally occur. For example, if

<zeroOrMore> or <oneOrMore> are used as the last control tag in a task, the task monitor does not

know whether or not to keep waiting for more repetitions or to mark the task as complete.

Second, task authors can help disambiguate task specifications. For example, some tasks can be

described with multiple specifications that match the same event sequences. The same problem

can be found in regular expressions like (the)|(this) which is equivalent to th((e)|(is)). While this

normally does not influence regular expressions, for task specifications it causes ambiguity when

matching events. To help overcome this ambiguity, it proved best to group together the longest

sequence of events possible in each part of a specification. Another solution could be to review

past events and consider future transition probabilities.

Our language enables an author to specify tasks at multiple levels of detail. Consistent with

lessons from task modeling (Card et al., 1983), our experience is that specifying tasks to

progressively finer levels of detail is progressively more difficult since many more execution

sequences become possible. More experience with creating specifications for practical tasks is

necessary to understand and recommend an appropriate level of detail.

Limitations and Implementation Issues

A limitation of our approach is that, regardless of the effectiveness of our language and tools,

creating specifications will always require some amount of effort. However, we believe that the

Specifying and Monitoring Tasks 32

effort to create task specifications will be outweighed by the benefit of their use, e.g., mitigating

the negative impact of interruption, in both safety critical and office environments. In safety

critical environments, where human operators of complex systems can be often interrupted when

performing critical tasks, mitigating the negative impact of interruption on task performance,

error rate, and decision-making could save lives and prevent catastrophic accidents (Mcfarlane &

Latorella, 2002). In office environments, where task performance is important, but perhaps less

critical, large reductions in the frustration, annoyance, and anxiety that users too often experience

due to ill-timed interruptions would also yield a meaningful benefit.

It is important to understand that specifications for tasks only need to be created once and can

then be shared and reused. We envision specifications being produced as part of the interface

design process and packaged with applications. Also, we envision a community of authors

(designers, developers, IT staff, end users, etc.) willing to create and share specifications for

common task environments such as for email and instant messaging, graphic design, document

editing, and Web browsing. If effective user-level services can be developed and deployed, this

will provide further impetus for creating and sharing specifications. In particular, we believe that

developing an attention aware system – facilitated by the use of our framework – that mitigates

the negative impact of interruption would provide such a compelling service.

Another practical limitation is that the use of our framework requires applications to be properly

instrumented such that the task monitor can access the user event stream. There are at least two

methods to provide this instrumentation. One method is for developers of software applications

to provide the necessary instrumentation during development. This is not unrealistic, as many

Specifying and Monitoring Tasks 33

applications developed for the Mac OS have such instrumentation, presumably due to the long

availability of its system-wide scripting and event framework. The software infrastructure

needed to script applications, which would provide much of the instrumentation needed to

leverage our framework, is becoming increasingly available in other operating systems as well.

The disadvantage of this method, however, is that instrumentation must occur per application.

An alternative is to adapt the underlying user interface management system to make the event

stream accessible without modification to the applications that use it, e.g., by modifying the

dynamic interface libraries loaded at startup. This method has been successfully used in several

projects, such as those discussed in (Cheikes et al., 1998; Ritter et al., 2000). The advantage is

that instrumentation only needs to occur once while the disadvantage is that events are lower-

level and more difficult to interpret (e.g., mapping an event to the corresponding interface

control). We believe that advances in directions of both methods will make the user event stream

more readily available in the future.

It should also be noted that the level of detail in the instrumentation itself affects the level of

detail possible in the task specifications. For example, if events related to text selection in MS

Word are not made available, then authors cannot include those events in a specification. Thus,

developers should instrument applications to a fine level of detail and allow authors to choose

the desired level of detail when creating specifications.

Specifying and Monitoring Tasks 34

When a user reaches an opportune moment in a task sequence, an attention aware system must

be able to respond quickly, presumably on the order of a few hundred milliseconds, else the

window of opportunity for interruption may be lost. This is challenging, as once an application

sends the triggering event, the task monitor must, at a minimum, capture, match, and handle the

event and then notify the system. Whether this process would allow the system to deliver the

information in time depends on several factors such as the computational speed of the machine

executing the task monitor, the efficiency of its algorithms, and the size of the temporal window

around the opportune moment. Empirical research is needed to provide numerical estimates for

the latter factor.

Future Work

Our future work seeks to implement algorithms for forecasting a user’s task execution sequences

based on historical observations of task execution, extend our existing plugins to further

instrument the applications, develop plugins for additional, commonly used applications, and

develop an attention aware system that uses our framework to defer the delivery of peripheral

information until selected boundary points in a user’s task sequence.

Once developed, such a system must undergo extensive evaluation to demonstrate its utility for

users in realistic settings. An evaluation should focus on at least two elements. First, an

evaluation must measure how well the task monitor can forecast a user’s task sequences for

commonly used applications, as accurate forecasting would be critical for deciding when to

Specifying and Monitoring Tasks 35

interrupt. This also implies that task specifications must effectively describe common patterns of

application use and that the task monitor can accurately recognize those patterns.

Second, since the system would defer delivery of information until boundary points during task

execution, the evaluation must investigate acceptable tradeoffs between decreased awareness and

increased mitigation of disruption. Though results from empirical studies show that decreased

awareness can indeed be exchanged for increased mitigation of disruption (Bailey & Konstan,

2005), the tradeoffs that would be necessary for users to adopt such systems in practice needs to

be better understood.

Conclusion

Existing systems that reason about when to interrupt do not have access to task models that

would allow for finer-grained temporal reasoning. To enable this reasoning, we have presented

an integrated framework for specifying and monitoring user tasks. For task specification, our

framework provides a language that supports expressive specification of tasks using a concise

notation. For task monitoring, our framework provides an event database and handler that

manage events from any instrumented application and a task monitor that observes a user’s

progress through specified tasks. Results were also presented from two user studies showing that

our language can be used to effectively specify practical tasks and that our monitoring system

can accurately follow a user’s progress. Our framework facilitates instrumentation of office

environments as well as safety critical domains to provide compelling user-level services such as

intelligent tutoring, context-sensitive help, and intelligent interruption management.

Specifying and Monitoring Tasks 36

Acknowledgments

We would like to thank the anonymous reviewers for constructive comments on an earlier draft

of this article.

Specifying and Monitoring Tasks 37

References

Adamczyk, P. D., & Bailey, B. P. (2004). If not now when? The effects of interruptions at

various moments within task execution. Proceedings of the ACM Conference on Human

Factors in Computing Systems, 271-278.

Albrecht, D., Zukerman, I., Nicholson, A., & Bud., A. (1997). Towards a bayesian model for

keyhole plan recognition in large domains. Proceedings of User Modeling, 365-376.

AppleScript. (Apple Computer). http://www.apple.com/applescript, February 15, 2005.

Bailey, B. P., & Konstan, J. A. (2005). On the need for attention aware systems: Measuring

effects of interruption on task performance, error rate, and affective state. Journal of

Computers in Human Behavior, special issue on attention aware systems.

Bailey, B. P., Konstan, J. A., & Carlis, J. V. (2001). The effects of interruptions on task

performance, annoyance, and anxiety in the user interface. Proceedings of the IFIP TC.13

International Conference on Human-Computer Interaction, Tokyo, Japan, 593-601.

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Lebiere

(Eds.), The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum Associates,

Inc.

Byrne, M. D., Wood, S. D., Sukaviriya, P., Foley, J. D., & Kieras, D. E. (1994). Automating

interface evaluation. Proceedings of the ACM Conference on Human Factors in

Computing Systems, Boston, MA, 232-237.

Carberry, S. (2001). Techniques for plan recognition. User Modeling and User-Adapted

Interaction, 11, 31-48.

Specifying and Monitoring Tasks 38

Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction:

Lawrence Erlbaum Associates.

Carr, D. A. (1994). Specification of interface interaction objects. Proceedings of the ACM

Conference on Human Factors in Computing Systems, Boston, MA, 372-378.

Cheikes, B. A., Geier, M., Hyland, R., Linton, F., Rodi, L., & Schaefer, H.-P. (1998). Embedded

training for complex information systems. International Journal of Artificial Intelligence

in Education, 314-334.

Cutrell, E., Czerwinski, M., & Horvitz, E. (2001). Notification, disruption and memory: Effects

of messaging interruptions on memory and performance. Proceedings of the IFIP TC.13

International Conference on Human-Computer Interaction, Tokyo, Japan, 263-269.

Czerwinski, M., Cutrell, E., & Horvitz, E. (2000a). Instant messaging and interruption: Influence

of task type on performance. OZCHI 2000 Conference Proceedings, Sydney, Australia,

356-361.

Czerwinski, M., Cutrell, E., & Horvitz, E. (2000b). Instant messaging: Effects of relevance and

timing. People and Computers XIV: Proceedings of HCI, 71-76.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A diary study of task switching and

interruptions. Proceedings of the ACM Conference on Human Factors in Computing

Systems, 175-182.

Franklin, D., Budzik, J., & Hammond, K. (2002). Plan-based interfaces: Keeping track of user

tasks and acting to cooperate. International Conference on Intelligent User Interfaces,

79-86.

Specifying and Monitoring Tasks 39

Gong, R., & Kieras, D. (1994). A validation of the goms model methodology in the development

of a specialized, commercial software application. Proceedings of the ACM Conference

on Human Factors in Computing Systems, Boston, MA, 351-357.

Guttag, J., & Horning, J. J. (1980). Formal specification as a design tool. Proceedings of the 7th

Symposium on Programming Languages, 251-261.

Harel, D. (1987). Statecharts: A visual formulation for complex systems. Science of Computer

Programming, 8(3), 231-274.

Hartson, H. R., Siochi, A. C., & Hix, D. (1990). The uan: A user-oriented representation for

direct manipulation interface designs. ACM Transactions on Information Systems, 8(3),

181-203.

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. Proceedings of the ACM

Conference on Human Factors in Computing Systems, 159-166.

Horvitz, E., & Apacible, J. (2003). Learning and reasoning about interruption. Proceedings of the

Fifth ACM International Conference on Multimodal Interfaces, 20-27.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. (1998). The lumiere project:

Bayesian user modeling for inferring the goals and needs of software users. Proceedings

of the Fourteenth Conference on Uncertainty in Artificial Intelligence, 256-265.

Horvitz, E., Jacobs, A., & Hovel, D. (1999). Attention-sensitive alerting. Conference

Proceedings on Uncertainty in Artificial Intelligence, 305-313.

Hudson, S. E., Fogarty, J., Atkeson, C. G., Avrahami, D., Forlizzi, J., Kiesler, S., et al. (2003).

Predicting human interruptibility with sensors: A wizard of oz feasibility study.

Proceedings of the ACM Conference on Human Factors in Computing Systems, 257-264.

Specifying and Monitoring Tasks 40

Iqbal, S. T., Adamczyk, P. D., Zheng, S., & Bailey, B. P. (2005). Towards an index of

opportunity: Understanding changes in mental workload during task execution.

Proceedings of the ACM Conference on Human Factors in Computing Systems, (short

paper), to appear.

Iqbal, S. T., Zheng, X. S., & Bailey, B. P. (2004). Task evoked pupillary response to mental

workload in human-computer interaction. Proceedings of the ACM Conference on

Human Factors in Computing Systems, 1477-1480.

John, B. E. (1995). Why goms? Interactions, 2, 80-89.

John, B. E., & Kieras, D. E. (1996). The goms family of user interface analysis techniques:

Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3(4),

320-351.

John, B. E., Vera, A., Matessa, M., Freed, M., & Remington, R. (2002). Automating cpm-goms.

Proceedings of the ACM Conference on Human Factors in Computing Systems,

Minneapolis, MN, 147-154.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the epic architecture for cognition and

performance with application to human-computer interaction. Human-Computer

Interaction, 12, 391-438.

Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A. (1995). Glean: A computer-based tool for

rapid goms model usability evaluation of user interface designs. Proceedings of the ACM

Symposium on User Interface Software and Technology, 91-100.

Latorella, K. A. (1998). Effects of modality on interrupted flight deck performance: Implications

for data link. 42nd Annual Meeting of the Human Factors and Ergonomics Society, 87-

91.

Specifying and Monitoring Tasks 41

Lieberman, H. (1997). Autonomous interface agents. Proceedings of the ACM Conference on

Human Factors in Computing Systems, 67-74.

Maes, P. (1994). Agents that reduce work and information overload. Communications of the

ACM, 37(7), 30-40.

Maglio, P., Barrett, R., Campbell, C. S., & Selker, T. (2000). Suitor: An attentive information

system. Proceedings of the International Conference on Intelligent User Interfaces, 169-

176.

Maulsby, D. (1997). Inductive task modeling for user interface customization. Proceedings of the

International Conference on Intelligent User Interfaces, 233-236.

McFarlane, D. C. (1999). Coordinating the interruption of people in human-computer interaction.

Proceedings of the IFIP TC.13 International Conference on Human-Computer

Interaction, 295-303.

McFarlane, D. C., & Latorella, K. A. (2002). The scope and importance of human interruption in

hci design. Human-Computer Interaction, 17(1), 1-61.

Miyata, Y., & Norman, D. A. (1986). The control of multiple activities. In D. A. Norman & S.

W. Draper (Eds.), User centered system design: New perspectives on human-computer

interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Monk, C. A., Boehm-Davis, D. A., & Trafton, J. G. (2002). The attentional costs of interrupting

task performance at various stages. Proceedings of the Human Factors and Ergonomics

Society 46th Annual Meeting,

Rich, C., & Sidner, C. L. (1998). Collagen: A collaboration manager for software interface

agents. User Modeling and User-Adapted Interaction, 8(3/4), 315-350.

Specifying and Monitoring Tasks 42

Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. (2000). Supporting cognitive models as

users. ACM Transactions on Computer-Human Interaction, 7(2), 141-173.

Shneiderman, B. (1982). Multiparty grammars and related features for defining interactive

systems. IEEE Transactions on Systems, Man, and Cybernetics,, 12(2), 148-154.

Siochi, A. C., & Hartson, H. R. (1989). Task-oriented representation of asynchronous user

interfaces. Proceedings of the ACM Conference on Human Factors in Computing

Systems, 183 - 188.

Speier, C., Valacich, J. S., & Vessey, I. (1999). The influence of task interruption on individual

decision making: An information overload perspective. Decision Sciences, 30(2), 337-

360.

St. Amant, R., & Riedl, M. O. (2001). A perception/action substrate for cognitive modeling in

hci. International Journal of Human-computer Studies, 55, 15-39.

Szekely, P., Luo, P., & Neches, R. (1993). Beyond interface builders: Model-based interface

tools. Proceedings of INTERCHI, 383-390.

Tauber, M. J. (1990, 27-31 August, 1990). Etag: Extended task action grammar. A language for

the description of the user's task language. INTERACT, Cambridge, UK, 163-168.

Zacks, J., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating

structure in events. Journal of Experimental Psychology: General, 130(1), 29-58.

Zijlstra, F. R. H., Roe, R. A., Leonora, A. B., & Krediet, I. (1999). Temporal factors in mental

work: Effects of interrupted activities. Journal of Occupational and Organizational

Psychology, 72, 163-185.

Specifying and Monitoring Tasks 43

Vitae

Brian P. Bailey is an Assistant Professor in the Department of Computer Science at the

University of Illinois-Urbana. His research investigates developing interactive design tools that

better support human creativity, user interfaces for pervasive computing, computational systems

that manage human attention, and other areas of human-computer interaction. Dr. Bailey

received his Ph.D. from the University of Minnesota, Minneapolis, in 2002. His is a member of

the ACM and the current editor of the ACM SIGCHI Bulletin.

Piotr D. Adamczyk is a graduate student in Human Factors and Library and Information Science

at the University of Illinois-Urbana. He received a B.S. in Mathematics and Computer Science

from the University of Illinois in 2003. His research interests include applied attention and social

computing. He is a member of the ACM.

Tony Y. Chang is a software engineer working for Google.com. His interests are in rich web

applications and collaborative software. He received his M.S. in Computer Science from the

University of Illinois-Urbana in 2004. He is a member of the ACM.

Neil A. Chilson is currently a student at The George Washington University Law School with

interests in intellectual property, patent, and privacy law. He received his M.S. in Computer

Science from the University of Illinois-Urbana in 2005 and his B.S. degree in Computer Science

from Harding University in 1999.

Specifying and Monitoring Tasks 44

Figure Captions

Figure 1: Our framework consists of a task description language, an event database and handler,

a graphical tool called PETDL Maker for assembling task specifications, and a task monitor. The

framework uses a client / server architecture to communicate with applications and services.

Figure 2: Sample specification for a calendaring task using PETDL.

Figure 3: A specification using a task reference. References allow tasks and subtasks to be reused

in the same or other specifications.

Figure 4: The PETDL graphical tool used to quickly assemble task specifications. Events from

the event dictionary are listed in the upper left while events from the incoming event stream are

listed in the lower left. Control tags are listed at the right. An author may drag events and control

tags from any of these sources and drop them into the document region (middle). The dialog

shown in the center can be used to manually add events to the specification.

Figure 5: Algorithm for managing the position placeholders in the task monitor.

Figure 6: Example event stream with events numbered for reference.

Figure 7: The final task specification for the document editing task built from the first user study.

Figure 8: Results for task recognition.

Specifying and Monitoring Tasks 45

Table 1: Tags Available in our Task Description Language

PETDL Tag Description
Task Expresses hierarchical task structure and enables reuse
inOrder Children tags must occur in specified order
anyOrder Children tags can occur in any order, but all must occur
Optional Zero or one of specified children may occur
oneOrMore One or more of specified children may occur
zeroOrMore Zero or more of specified children may occur
repeatExactly Children must occur an exact number of times
choice Exactly one of the children may occur
event An application-level event

Specifying and Monitoring Tasks 46

Table 2: Tag Usage for Specifications from the First User Study

PETDL Tag Doc Edit Web Search Scheduling Total
Task 4 5 3 9
inOrder 0 0 2 2
anyOrder 0 1 1 2
optional 1 0 1 2
oneOrMore 1 0 1 2
zeroOrMore 1 0 0 0
repeatExactly 0 0 0 0
choice 1 1 0 2
event 10 9 7 24
Total Tags 17 16 15 43

Specifying and Monitoring Tasks 47

Event handler Task monitor

...

Author
create task

specification

store

forward Filter and
match

Model of task
execution

Notify and
predict

Photoshop
MS Word

MS Outlook
plugin

Applications

Record time,
frequencies

Attention
manager

Intelligent
TutorsAgents

User services

Event
database

PETDL task
specifications

PETDL
Maker

Description
Language

User

Task
specification

BenefitsInteracts

Events

uses

Firefox
plugin

Client

Server

TCP
connection

plugin

TCP
connection

Specifying and Monitoring Tasks 48

 <task name="Manage Schedule">
 <task name="Schedule Appointment From Email">
 <inOrder>
 <event name="OpenMailItem"/>
 <optional>
 <event name="SwitchFocus"/>
 </optional>
 <anyOrder>
 <task name="AddAppointment">
 <inOrder>
 <event name="OpenApptItem"/>
 <oneOrMore>
 <event name="ChangeApptItemProp"/>
 </oneOrMore>
 <event name="WriteApptItem"/>
 <event name="CloseApptItem"/>
 </inOrder>
 </task>
 <event name="CloseMailItem"/>
 </anyOrder>
 </inOrder>
 </task>
</task>

Specifying and Monitoring Tasks 49

 <task name="Manage Schedule">
 <task name="AddAppointment">
 <inOrder>
 ...
 </inOrder>
 </task>
 <task name="Schedule Appointment From Email">
 <inOrder>
 ...
 <anyOrder>
 <task name="AddAppointment" ref="true"/>
 <event name="CloseMailItem"/>
 </anyOrder>
 </inOrder>
 </task>
</task>

Specifying and Monitoring Tasks 50

Specifying and Monitoring Tasks 51

 HandleEvent(event)

matched ← False

« check against existing position placeholders »
for (p in placeholders)
 if p is older than 1 hour
 delete p from placeholders
 else if p.matches(event)
 p ← p.handleEvent(event)
 matched ← True

 « check to see if the task is completed »
 if p is NULL
 delete p from placeholders

« see if it's a new task »
if not matched
 for (t in tasks)
 if t.matches(event)
 p ← t.handleEvent(event)

 « add the new position placeholders to the existing list »
 placeholders.add(p)
 matched ← True

« if matched is False, then the event has been ignored »

Specifying and Monitoring Tasks 52

 1. <event name="AppActivate"
timeOccurred="2004.07.04 18:36:09" />

2. <event name="OpenMailItem"
timeOccurred="2004.07.04 18:36:30" />

3. <event name="ReadMailItem"
timeOccurred="2004.07.04 18:36:30" />

4. <event name="OpenApptItem"
timeOccurred="2004.07.04 18:37:53" />

5. <event name="ChangeApptItemProp"
timeOccurred="2004.07.04 18:38:59" />

6. <event name="ChangeApptItemProp"
timeOccurred="2004.07.04 18:38:59" />

Specifying and Monitoring Tasks 53

 <taxonomy name="DocEdit">
<activity name="document editing">

<task name="manage email">
<event name="objMailItem_Open" />
<event name="objMailItem_AttachmentRead" />

<task name="edit document">
<oneOrMore>

<choice>
<event name="objDocument_Change" />
<event name="objDocument_Spellcheck" />
<event name="objDocument_Grammarcheck" />

</choice>
</oneOrMore>
<event name="objDocument_Save">

<parameter>
<name>location</name>
<value>desktop</value>

</parameter>
</event>
<optional>

<event name="objDocument_Close" />
</optional>

</task>
<task name="reply to email">

<event name="objMailItem_Reply" />
<event name="objMailItem_Open" />
<event name="objMailItem_AttachmentAdd" />
<event name="objMailItem_Send" />

</task>
</task>

</activity>
</taxonomy>

Specifying and Monitoring Tasks 54

0%

20%

40%

60%

80%

100%

Doc Edit Web Search Calendaring

Ac
cu

ra
cy

/E
rr

or

Specification Error
User Error
Event Match

