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Abstract 

Interrupting users engaged in tasks typically has negative effects on their task completion time, 

error rate, and affective state. Empirical research has shown that these negative effects can be 

mitigated by deferring interruptions until more opportune moments in a user’s task sequence. 

However, existing systems that reason about when to interrupt do not have access to task models 

that would allow for such finer-grained temporal reasoning. To enable this reasoning, we have 

developed an integrated framework for specifying and monitoring user tasks. For task 

specification, our framework provides a language that supports expressive specification of tasks 

using a concise notation. For task monitoring, our framework provides an event database and 

handler that manages events from any instrumented application and a task monitor that observes 

a user’s progress through specified tasks. We describe the design and implementation of our 

framework, showing how it can be used to specify and monitor practical, representative user 

tasks. We also report results from two user studies measuring the effectiveness of our existing 

implementation. The use of our framework will enable attention aware systems to consider a 

user’s position in a task when reasoning about when to interrupt. 

 

Keywords: Attention, Interruption, Task Models, Task Monitoring 
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Introduction 

When applications interrupt users at less opportune moments in their task sequence, disruptions 

to task performance (Bailey, Konstan & Carlis, 2001; Czerwinski, Cutrell & Horvitz, 2000b; 

Monk, Boehm-Davis & Trafton, 2002), error rate (Mcfarlane & Latorella, 2002), and affective 

state (Adamczyk & Bailey, 2004) are much more severe than if the interruption had occurred at a 

more opportune moment. Prior work has both argued (Miyata & Norman, 1986) and empirically 

demonstrated (Adamczyk & Bailey, 2004; Iqbal, Adamczyk, Zheng & Bailey, 2005) that subtask 

boundaries during task execution represent more opportune moments for interruption than non-

boundary moments. One explanation, among others, is that users experience less mental 

workload at boundary moments (Iqbal et al., 2005; Iqbal, Zheng & Bailey, 2004), leaving more 

mental resources for the interrupting task and for later resuming the previously suspended task. 

 

These and other empirical findings have created rapidly growing interest in developing attention 

aware systems that can computationally balance a user’s need for minimal disruption with their 

desire for information. A posited approach is to defer the presentation of information, such as 

email notifications, system alerts, and instant messages, until a user reaches an opportune 

moment in a task sequence (Bailey & Konstan, 2005; Horvitz, Jacobs & Hovel, 1999). In office 

settings or other work environments where information is desired, but not typically safety 

critical, users could exchange a small decrease in awareness for a large mitigation of disruption. 

 

We have developed a task specification and monitoring framework that facilitates the creation of 

such attention aware systems. Our framework consists of four components; a task description 

language that supports expressive specification of tasks using a concise notation, a graphical tool 
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that enables rapid assembly of task specifications, an event database and handler that manages 

user events from instrumented applications, and a task monitor that follows a user’s progress 

through specified tasks, notifying user-level services when task-related events occur. 

 

Existing systems that reason about when to interrupt users rely on external and non-task specific 

cues (Horvitz, 1999; HudsonFogartyAtkesonAvrahamiForlizziKiesler et al., 2003). By 

supporting models of tasks informed by and consistent with prior work (John & Kieras, 1996; 

Zacks, Tversky & Iyer, 2001), our framework enables systems to draw upon this knowledge 

when making interruption decisions. While there has been work on task description languages 

for generating interfaces (Szekely, Luo & Neches, 1993), predicting usability (Card, Moran & 

Newell, 1983; John, 1995; Kieras, Wood, Abotel & Hornof, 1995), guiding cognitive models 

(Ritter, Baxter, Jones & Young, 2000), and research on task monitoring by cooperative agents 

(Franklin, Budzik & Hammond, 2002; Rich & Sidner, 1998), our work provides an integrated 

framework for both specifying and monitoring user tasks. Rather than infer task models from 

user events (Maulsby, 1997), our framework includes a suite of effective end-user tools for 

rapidly creating task specifications and then monitoring those tasks during execution. 

 

An important contribution of our framework is that it provides an open architecture, enabling 

tasks involving any application with appropriate instrumentation to be monitored and any user-

level service to be notified when task-related events occur. Our framework thus enables systems 

to have access to accurate information about a user’s current position in a task sequence, 

important for intelligent tutoring systems (Cheikes, Geier, Hyland, Linton, Rodi & Schaefer, 
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1998), software agents (Lieberman, 1997; Maes, 1994), and attention aware systems that manage 

interruption (Horvitz et al., 1999). 

 

Related Work  

We review empirical evidence showing that interruptions have a negative impact on users and 

their tasks and discuss how attention aware systems can leverage task models to mitigate those 

effects. Then, we discuss how existing task description languages, scripting languages and 

frameworks, and task monitors are not sufficient to operationalize these empirical findings, and 

explain how our framework builds on this prior work to move closer to this goal. 

 

Interruption and Task Models 

Many experiments have shown that interrupting users engaged in tasks can have a significant, 

negative impact on task completion time (Cutrell, Czerwinski & Horvitz, 2001; Czerwinski, 

Cutrell & Horvitz, 2000a; Czerwinski et al., 2000b; Mcfarlane, 1999; Monk et al., 2002), error 

rate (Latorella, 1998), decision making (Speier, Valacich & Vessey, 1999), and affective state 

(Bailey & Konstan, 2005; Zijlstra, Roe, Leonora & Krediet, 1999). To mitigate effects of 

interruption, Miyata & Norman (1986) have speculated that task (and subtask) boundaries 

represent more opportune (or less disruptive) moments for interruption since users have reduced 

mental workload at those moments. They argue that when a user completes a task, the executive 

system releases the mental resources allocated for performing the task, momentarily reducing 

workload before the cycle of allocation and deallocation occurs again for the next task. 
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Experiments have empirically supported this speculation. Bailey & Konstan (2005) and Iqbal et 

al. (2005) showed that delivering peripheral tasks at particular boundaries during task execution 

causes considerably less disruptive impact than at other moments in the task. Since a small 

deferral resulted in a large mitigation of disruption, these results show that temporal 

manipulation of information offers an effective and practical computational strategy for 

mitigating effects of interruption. Our work seeks to enable such computational strategies by 

developing a language for specifying task models and marking moments selected for interruption 

and by developing a task monitor that allows higher-level services to defer delivery until those 

selected moments are reached. 

 

For human-computer interfaces, a task model represents the hierarchical and sequential structure 

of a task (Card et al., 1983). Task models link how a person cognitively structures a task (what to 

do) with the actions afforded by a particular interface (how to do it). Models can be constructed 

by applying task modeling techniques such as GOMS (John & Kieras, 1996) or event perception 

theory (Zacks et al., 2001). For example, a typical scenario of use for GOMS is to develop initial 

models for a set of interface tasks, refine the models based on observing users performing the 

tasks, and then validate the refined models by observing another set of users performing the same 

tasks. However, the formality applied depends on the desired accuracy of the models. To create 

task models, a person almost always uses some form of a description language to express and 

represent the models. 
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Task Description Languages 

A task description language provides a formal syntax and semantics for creating task models. 

The constructed models can then be used to specify and communicate interface designs, generate 

interfaces, predict the usability of interfaces, or enable systems to monitor user activities. 

 

For specifying interface designs, description languages include task grammars (Shneiderman, 

1982), modeling notations (Carr, 1994; Hartson, Siochi & Hix, 1990; Siochi & Hartson, 1989; 

Tauber, 1990), algebraic specifications (Guttag & Horning, 1980), and transition diagrams 

(Harel, 1987). If expressive and detailed enough, the models can even be used to generate an 

executable form of the interface (Szekely et al., 1993). However, the models constructed with 

these languages would not generally allow a system to monitor the execution of the tasks. 

 

Research in cognitive modeling has produced several task description languages, e.g., those used 

in (Byrne & Anderson, 1998; Byrne, Wood, Sukaviriya, Foley & Kieras, 1994; John, Vera, 

Matessa, Freed & Remington, 2002; Kieras & Meyer, 1997; St. Amant & Riedl, 2001). Once 

developed, the models can be typically passed to a cognitive simulator to predict usability (Ritter 

et al., 2000). For example, GLEAN (Kieras et al., 1995) offers an English-like syntax for 

describing the hierarchical, sequential and unordered parts of a task. An author uses the language 

to describe fine detail of an interaction such as ‘move hand to mouse’, ‘move cursor to location’, 

and ‘click button,’ which is necessary for the simulator to make predictions. These types of task 

description languages have been used successfully to build models of complex interface tasks 

and have led to design improvements (Gong & Kieras, 1994). While useful for simulating 
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performance, these languages are more complex and require more specification detail than what 

interruption management would probably require, as indicated in (Bailey & Konstan, 2005). 

 

Task description languages have also been created to allow software agents to monitor user 

activities. For example, to apply discourse theory to human-agent interaction, Rich & Sidner 

(1998) developed a task description language that allowed agent behavior to be linked to specific 

actions in the interface during design. As part of the Intelligent Classroom, Franklin et al. (2002) 

developed a task description language that allowed an agent to monitor an instructor’s tasks and 

cooperate by managing the media capture devices. Each language has elements that would be 

useful for attention aware systems, but the languages themselves are inextricably tied to the 

particular system, which severely limits the ability of others to build upon their implementation. 

 

As part of a project on embedded training, Cheikes et al. (1998) developed a task description 

language that allowed context-specific instructions to be integrated into task models at multiple 

levels of detail. While the description language used constructs similar to our own language (e.g., 

InOrder and AnyOrder tags) for expressing patterns of interface events, the monitoring system 

could not accurately follow tasks if the user switched from executing an ongoing task to another 

task or performed multiple tasks at the same time, which is common in practice. 

 

While task models are usually constructed through manual use of description languages, there 

has been work to automatically infer the models. For example, ActionStreams (Maulsby, 1997) 

is a system that attempts to inductively learn the hierarchical, sequential, and variable parts of a 
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task model from the user event stream. This is done by learning a grammar that expresses the 

sequences of incoming events. Maulsby (1997) acknowledges that learning a grammar is a 

complex problem and, in some cases, no algorithms have yet been discovered that would enable 

the system to function as desired, e.g., learning grammars for arbitrary interleaving of events. 

Though learning task models is attractive, it is beyond the current state of the art for general use. 

 

Scripting Languages and Event Frameworks 

Scripting languages and event (or message passing) frameworks have been developed to enable 

system-wide communication among applications and to support advanced functionality within 

individual applications. System-wide frameworks such as AppleEvents (AppleScript) typically 

provide a centralized communication manager that enables applications to publish and subscribe 

to registered events and exchange data. When an application publishes an event, the 

communication manager notifies applications that previously subscribed to the event by invoking 

a callback routine. The scripting language, e.g., AppleScript, is typically provided as part of the 

framework and can be used to program the desired response behavior. 

 

Within applications, scripting languages enable sequences of interface commands to be recorded 

as macros, which are executable descriptions of a task. For example, Adobe Photoshop enables a 

graphic designer to visually record a sequence of image editing operations, edit the sequence, 

and then execute it on batches of images. 
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While existing scripting languages and frameworks support the exchange of individual events, 

they do not support explicit structures of task models or notifications of task-related events, e.g., 

that a user just crossed a particular subtask boundary. However, system-wide frameworks such 

as AppleScript could be used to facilitate implementation of a framework similar to our own. 

 

Task Monitoring 

Many systems, e.g., (Cheikes et al., 1998; Franklin et al., 2002; Maglio, Barrett, Campbell & 

Selker, 2000; Maulsby, 1997; Rich & Sidner, 1998) monitor the user event stream and compare 

events to a task model in order to provide context-sensitive instruction or feedback. While our 

system provides similar function, it also attempts to learn a flexible model of task execution and 

record that model in a user profile. In other words, the specified task model describes all the 

possible sequences of events and the model of task execution describes how often a user has 

historically followed each of those sequences when executing the tasks. 

 

Bayesian networks have been applied to infer a probability distribution over user tasks (Albrecht, 

Zukerman, Nicholson & Bud., 1997; Horvitz & Apacible, 2003). The networks typically use 

specific events or properties of events as evidence variables. This works well for identifying a 

task in the midst of sparse or noisy data. However, Bayesian networks by themselves cannot 

easily monitor multiple instances of the same task (e.g. preparing two separate email messages) 

or multiple active tasks (e.g. interrupting the editing of a document to send an instant message 

and then resuming), both of which are common in multi-tasking environments. Also, building or 

adapting the computational machinery for a Bayesian network would be overly difficult for most. 
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A challenge in task recognition is how to handle situations where multiple tasks match the same 

initial sequence of events. In this case, our task monitor maintains a candidate set of possible 

tasks and refines the set as more events are generated. While our approach provides a working 

solution, more sophisticated, probabilistic approaches such as Dempster-Shafer theory (Carberry, 

2001) could be used in the future. User preferences for execution sequences and more domain 

specific information could also help resolve ambiguity in task recognition. 

 

To summarize, our task description language extends prior work in that it leverages the syntactic 

structure of XML to more easily support hierarchical decomposition, it draws upon the use of 

regular expressions to describe patterns of events in a concise notation, and it results in task 

models that are reasonably easy to read and understand. Our task monitor extends prior work in 

that it can monitor multiple ongoing tasks and multiple instances of the same task, seeks to learn 

a model of task execution, and uses a client/server architecture to support multiple applications. 

 

Framework Design Goals 

Several design goals were defined to guide the development of our task specification language 

and monitoring system. The term author refers to the person writing a task specification, which 

could be an interface designer, developer, IT support staff, end user, or other stakeholder. The 

goals of the system are to: 
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• Enable low-investment creation of task specifications. The benefit that comes from 

specifying tasks should ostensibly outweigh the investment required to specify those tasks. 

While we have shown the potential benefit of task monitoring for attention aware systems 

(Adamczyk & Bailey, 2004), realizing a net benefit requires a task specification language 

that is reasonably easy to use and learn and that is accompanied by effective interface tools. 

 

• Enable tasks to be specified at multiple levels of detail. For example, a compose email task 

could be decomposed into open window, compose and send mail subtasks. Compose could 

then be further decomposed into select recipients, enter subject, and enter body subtasks, and 

so forth. For attention aware systems, finer-grained task decomposition would enable finer 

temporal reasoning about when to interrupt (Adamczyk & Bailey, 2004), but also requires 

more effort on part of the author. Striking the appropriate balance between level of detail 

and specification effort should be left to the author’s discretion, not imposed by the system. 

 

• Support expressive descriptions of tasks. An effective language should enable an author to 

express variations of task execution in a concise notation. Although there may be many 

different execution sequences to accomplish a task, an author should not have to explicitly 

describe all those variations; rather the language should accommodate multiple 

interpretations. This is analogous to how regular expressions provide a notation that enables 

a single specification to describe several matching patterns of strings. 
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• Enable specification of tasks that involve multiple applications. Interactive tasks often 

involve multiple applications. An example is that a user receives an email with an attached 

document, opens the document, edits it, and emails it back to the sender. If performed often, 

an author may want to specify this sequence as a single task because it provides a more 

accurate representation of the interaction sequence. 

 

• Accurately monitor specified tasks in the midst of unspecified activities. Due to the 

enormous number and diversity of tasks possible in a typical computing environment, a task 

monitoring system cannot expect that every task that a user performs would have an 

associated specification. However, research shows that users often spend about 81% of their 

time performing core tasks in a few applications (Czerwinski, Horvitz & Wilhite, 2004). 

Thus, even if a system is able to monitor only a small part of the overall task space, it is still 

possible for it to recognize tasks that a user performs most of the time. 

 

• Support forecasting of a user’s task execution. By building a model of how a user performs 

and transitions among specified tasks, a system could forecast the user’s task execution. The 

temporal granularity of the forecasting would be commensurate with the level of detail in 

the specifications. For example, for a compose email task specified at a coarse level, a 

system could forecast that a user will spend 5 minutes composing an email, or if specified at 

a finer level, that the user will spend 1 minute selecting recipients, 30 seconds writing the 

subject, and 3.5 minutes composing the body. Forecasting would be useful to enable an 

attention aware system to better reason about when to interrupt a user engaged in a task, 
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e.g., by deferring the delivery of information until the user reaches a boundary in their task 

sequence (Miyata & Norman, 1986). 

 

While our current implementation does not yet fully achieve all of these goals, we felt it was 

vital to define them up front and use them to justify implementation and other design decisions. 

 

Framework Architecture 

As shown in Figure 1, our framework consists of four components; (i) a task description 

language that enables an author to express tasks at multiple levels of detail, (ii) an event database 

and handler that manage user events, (iii) a graphical tool called PETDL Maker that can be used 

to quickly assemble task specifications, and (iv) a task monitor that follows a user’s progress 

through specified tasks, recording transition frequencies and the time spent at each step. 

 

In our framework, the term event refers to an application-level event, which is a system-level 

event that has been delivered to and interpreted by an interface control. For example, a system-

level event is ‘mouse click’ while an application-level event is ‘select file menu.’ Our framework 

assumes and only ever receives application-level events that were generated by user interaction. 

Our framework further assumes that applications have been instrumented to send these events. 

To demonstrate the feasibility of and test our framework, we instrumented MS Outlook, MS 

Word, and Firefox using their built-in scripting tools to generate events for common tasks. In the 

future, we expect that applications would have such instrumentation already available. 
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The framework uses a client/server architecture where the event handler and task monitor 

execute in a server process on the same or separate machine. Executing the server on a separate 

machine would enable the task monitor to monitor the tasks of multiple users simultaneously and 

across heterogeneous systems. 

 

Task Description Language 

PETDL (Pattern-based Event and Task Description Language) is an XML-based language for 

describing user tasks that draws upon GOMS (Card et al., 1983), regular expressions, and 

schema descriptions. Table 1 shows the tags available in the language and Figure 2 shows how a 

calendaring task in Microsoft Outlook could be specified using the tags. Any number of task 

specifications can be contained in one PETDL document. PETDL includes tags to describe 

events, hierarchy, references, and pattern matching: 

 

• Events. An author uses the <event> tag to name an application-level event in a specification. 

Although not shown in Figure 2 for brevity, event tags include attributes for specifying the 

name of an application. By including the application name with an event, specifications can 

include events from multiple applications. The name of the event must exactly match the 

name of the event forwarded. Because an application registers an event dictionary with our 

event database, an author is able to view all events available for supported applications 

when writing specifications. 
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• Hierarchy. Drawing upon task modeling techniques such as GOMS (Card et al., 1983), 

PETDL enables an author to hierarchically decompose a task into subtasks (goals) and 

patterns of events (operators). PETDL provides a single tag <task> that can be recursively 

nested to more easily express hierarchy. The use of nesting allows – rather than forces – 

tasks to be specified at multiple levels of detail. In a <task> tag, any number of control tags 

can be nested to express patterns of matching user events. The names of the control tags 

were designed to reflect the event patterns they express. Also, the <task> tag supports a 

reference attribute that allows it to be named and then reused elsewhere in the same or other 

specification. The hierarchical structure of the model implicitly defines boundary points, 

with each end tag for a task defining a boundary. The nesting level of the boundary is used 

to infer how opportune that moment would be for interruption. Alternatively, an author can 

set the opportune attribute that takes an integer parameter, with lower numbers being more 

opportune for interruption. 

 

• References. A positive consequence of using nesting to express hierarchy is the ability to 

rapidly create new specifications by composing reusable parts of existing ones. This reduces 

duplication of common subtasks, making them easier to maintain, and enables specifications 

to be shared among authors. PETDL allows a reference to be made to existing tasks/subtasks 

through the use of a ref=true attribute in a <task> tag. For example, in Figure 3, the 

AddAppointment subtask is referenced and reused later in the task specification, and could 

also be used in other specifications. 
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• Pattern Matching. Listed in Table 1, PETDL provides seven control tags for specifying rich 

patterns of user events. Control tags are built to resemble the control syntax used in regular 

expressions, e.g., the use of <zeroOrMore> in PETDL is equivalent to the use of an asterisk 

(*) in regular expressions. Similar to describing matching patterns of strings, an author uses 

control tags in a task specification to concisely express matching sequences of user events. 

Beyond regular expressions, however, our language also includes an <anyOrder> tag, as this 

tag allows many variations of execution sequences to be immediately expressed. For 

example, the use of this tag in Figure 2, states that a user may either, add the appointment 

then close the email, or close the email and then add the appointment. Just as with regular 

expressions, some patterns of events may be described with alternative combinations of 

control tags. We leave the decision of how to best express patterns of events up to the 

specification author. 

 

Event Database and Handler 

The event database maintains a persistent store of event dictionaries for applications and records 

live streams of events generated by a user interacting with instrumented applications connected 

to our server. When an application starts, it can connect to the event database to register or later 

modify its event dictionary. An event dictionary gives the name and description of all events that 

can be generated by an application. An author can inspect the event dictionary directly (as it is 

plain text) or can use our PETDL graphical tool which supports features such as filters. 

 

After registering or modifying its event dictionary, an application connects to the event handler 

executing in our server. The event handler manages the streams of events generated by users 
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interacting with the applications. For each event, the name of the event, the application that 

generated it, and the time that it was generated are sent to the event handler. The handler 

forwards this event structure on to the task monitor and then records it into the database. Because 

events are recorded, an author can use our graphical tool to monitor live streams of events and 

use these events to author task specifications in a way similar to macro authoring. A stream is 

removed from the database once the corresponding application is exited. 

 

PETDL Maker 

PETDL Maker is a graphical tool written in Visual Basic that enables quick assembly of task 

specifications. As shown in Figure 4, the tool enables an author to view elements from event 

dictionaries, the live stream of events being generated by user interaction, and the control tags. 

Because the list of incoming events can be large, the tool supports filtering based on application 

name and time. To create a specification, an author drags elements from any of these sources and 

drops them into the document region. The elements are inserted into an editable tree-structure 

that reflects and enforces the hierarchical nature of the language (see Figure 4). Our experience 

with the tool shows that the ability to monitor events while interacting with an application is 

particularly useful for creating specifications. For example, to create a specification for a 

calendaring task, an author would run the PETDL graphical tool, perform the calendaring task as 

usual, view the live stream of events being generated by the interaction, and then select the 

desired events and appropriate control tags to assemble task specifications. We believe that this 

style, akin to macro authoring, will facilitate quick and accurate creation of specifications. 
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Task Monitor 

The task monitor follows a user’s progress through task specifications and notifies user-level 

services of task-related events, e.g., starting or finishing a task. The task monitor receives events 

from the event handler and matches them to the available specifications, loaded at startup. The 

algorithm for matching incoming events to specifications is shown in Figure 5. 

 

The task monitor maintains a list of position placeholders, which is initially empty. A position 

placeholder points to the next matching event or control tag in a specification and there is one 

placeholder for each instance of a task that the user is currently in. This allows the user to be in 

the midst of multiple tasks or the same task multiple times, an important advantage over many 

existing approaches, such as those discussed in (Cheikes et al., 1998; Horvitz, Breese, 

Heckerman, Hovel & Rommelse, 1998). 

 

When an event arrives, each placeholder (or active task) attempts to match the event to its next 

allowable events. For example, if a placeholder points to an AnyOrder tag, it would match the 

event against its contained events and recursively against the next allowable events of its 

contained control tags. If a placeholder matches an event, it then handles the event. Handling an 

event involves marking the matched event as having occurred in that instance of the specification 

and determining if it was the last event of the tag. If it was the last event, a placeholder to the 

next control tag is returned, otherwise the same placeholder is returned. 
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If the incoming event does not match any existing placeholders, the event is compared to events 

that start new tasks. If it matches, a new placeholder is created and added to the list. Otherwise, 

since the event does not move an existing task forward or start a new task, it is discarded. This 

process repeats itself for each incoming event. If a placeholder has not moved for a specified 

duration, then it is removed from the list and the specification must be matched from the 

beginning. This situation may occur if a task was interrupted and never resumed. 

 

To demonstrate the algorithm, suppose the event stream in Figure 6 is matched against the 

Manage Schedule task in Figure 2: 

1. This first event, AppActivate, is ignored by the task monitor because it does not match the 

first event in the task description, OpenMailItem. The task monitor continues to ignore 

events until it sees OpenMailItem. 

 

2. The second event, OpenMailItem, matches the first event of the Schedule Appointment From 

Email task. Since this is the first event in the task, the task monitor creates a position 

placeholder to track progress through the task. The next matching event can be 

SwitchFocus, which is optional, or OpenApptItem or CloseMailItem, which can occur in any 

order but both must occur. 

 

3. The third event, ReadMailItem, does not match the existing position in the task nor does it 

start a new task. Since it does not match, it is ignored by the task monitor. 
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4. The fourth event, OpenApptItem, gets matched with the position placeholder and now the 

position placeholder is waiting for ChangeApptItemProp. 

 

5. The fifth event, ChangeApptItemProp, matches the position placeholder and it is updated 

and now expecting another ChangeApptItemProp or WriteApptItem. 

 

6. The last event, ChangeApptItemProp, also matches the position placeholder because of the 

<oneOrMore> control tag. The position placeholder will still match more 

ChangeApptItemProp events or a Write-ApptItem event. 

 

Because the algorithm maintains the position placeholders while ignoring non-matching events, 

the task monitor can monitor tasks in the midst of non-matching events and unspecified 

activities. For example, in the Manage Schedule task, the user could save the email at any time - 

thus generating a series of non-matching events - without disrupting the task monitor. 

 

The algorithm compares incoming events against the specified events that could possibly occur 

next. In cases where an event matches multiple subsequent events, an ambiguity arises. We 

handle this through one of many possible solutions, namely by matching the event to the 

placeholder that was created first chronologically. 
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As a user transitions among specified tasks, the task monitor builds a model of the user’s task 

execution. The model is a graph where the nodes represent tasks and events and directed edges 

represent transitions between the events. Initially, the graph represents the task structure of the 

corresponding specification, built recursively from the specification itself. There is one graph for 

each specification supplied. Note that control tags are not included in the graph, since by this 

point, the task monitor has already decided that the generated event matches a specification. 

 

When an event occurs, a directed edge is added (just the first time) from the last event’s node to 

the generated event’s node and the frequency and timing information is recorded. For example, 

for the specification in Figure 2, if the last event was openAppItem and the next event is 

changeAppItemProp, the system adds a directed edge between the event’s nodes, sets the 

transition probability to 1, and records the time between events in the last event’s node. Next 

time, for example, if a closeMaiItem event occurs, the system adds an edge from the openAppItem 

node to the closeMailItem node, updates the transition frequencies on the outgoing links to 0.5, 

and updates the timing information, e.g., by computing and storing the average of the values, and 

so on. From the model, the monitor can infer the time and transition to the next event (task) and 

further event (task) sequences. The tasks containing an event can always be identified from the 

model. The more repetitive the tasks and events are, the more accurate the inferences. 

 

Forecasting would provide a much needed service for attention-aware systems that seek to defer 

delivery of information until a user reaches an opportune moment such as a task boundary in 

their task sequence. To make an effective decision, the system must know the likelihood that the 

user will reach different levels of boundaries (with the assumption that interrupting at a higher-



Specifying and Monitoring Tasks 23 

level boundary would cause less disruption) and how long it will take for the user to reach those 

moments. We are currently extending our implementation to provide this support. 

 

Implementation 

We engineered our system to enable others to leverage and build upon our implementation effort 

as much as possible. Since XML is a powerful, well-known language toolkit, it was used to 

construct our task description language. We believe the resulting syntactic representation is easy 

to use and learn. Also, there are many freely available tools for building and parsing XML 

documents, so our language can be quickly extended, e.g., to add new attributes to existing tags. 

 

A key design decision was the use of a client / server architecture with multiple connection 

points. Any instrumented client application can connect to our event handler, register an event 

dictionary, and begin sending events. While the application must communicate using a defined 

protocol, the protocol is documented in the source distribution and is relatively simple in that it 

exchanges plain text XML structures. Once an application is connected, the PETDL tool can be 

immediately used to view the live stream of events from the application as well as to create 

related specifications. Once specifications are created, the task monitor can observe those tasks. 

 

Similarly, any user-level service can connect to the task monitor and request notifications of 

when a user starts or finishes a specified task or subtask. Requests and notifications are 

exchanged using plain text XML structures as a communication protocol. Because user task 

recognition and monitoring is an essential component of many intelligent systems including 
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intelligent tutoring systems (Cheikes et al., 1998), software agents (Maes, 1994), and attention 

aware systems (Horvitz & Apacible, 2003), our architecture reduces future implementation 

efforts by abstracting these commonly needed services into a single monitoring component. Our 

future implementation effort will be to allow user-level services to store their own information 

into the execution model maintained by the task monitor and to support forecasting of a user’s 

task execution sequences. 

 

The task monitor and the event handler were written in Python and consist of several thousand 

lines of programming code. Python's xml.dom library was used to validate task specifications. 

PETDL Maker was written in Visual Basic .NET and consists of about 2,500 lines of code. 

Plugins for MS Outlook and MS Word were written with Visual Basic 6 and monitored events 

published by their respective scripting APIs. The plugin for Firefox was written in ECMAScript. 

We implemented our framework on an MS Windows platform because it was readily accessible 

to us and it was the best fit with the programming expertise of our research team. 

 

Evaluation 

We conducted two user studies to evaluate how well our existing implementation satisfied our 

design goals and to identify areas and methods for improvement. The studies were designed to 

represent a common scenario of use in user task modeling. The first study was conducted to learn 

how effective our language was for creating task specifications and how useful our graphical tool 

was for constructing specifications from collected events. In this study, two authors analyzed 

interaction videos of four users performing the same three tasks. From these observations and, 

with the help our graphical tool, they created task specifications. 
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The second study was conducted to measure how well those specifications could match the event 

streams generated by a different group of users performing the same tasks. Also, the event 

streams collected from this study were fed into the task monitor to determine the robustness of its 

event matching algorithm. Together, these studies enabled us to measure length and complexity 

of the specifications, how many and which PETDL tags were used, and the effectiveness of the 

matching algorithm in the task monitor. 

 

Users and Tasks 

Two authors (both male) and four users (one female) participated in the first study, and eight 

different users (four female) participated in the second study. The two authors were computer 

science graduate students familiar with regular expressions and grammars. The users consisted of 

undergraduate and graduate students who were experienced users of email, word processing, and 

web browsing software. In both studies, each user performed the same three tasks. 

 

To keep users focused on their task, and to assure an uninterrupted experimental trial, users were 

given instructions on how to perform the tasks, and were then left unattended while they 

performed them. Details in the instructions were kept to a minimum so as to not influence the 

pattern of user behavior. Though individual tasks were conducted without a broader context, we 

constructed the tasks to involve multiple applications and placed as few restrictions as possible 

on user behavior. 
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Three tasks; document editing, Web posting, and calendar scheduling, were developed for the 

studies. For the document editing task, the user first located an email message in Outlook’s 

inbox, opened the attached document in MS Word, made corrections, saved the modified 

document, and sent a reply from MS Outlook with the modified document attached. The 

document was annotated with instructions on how to correct each error. 

 

In the Web posting task, the user navigated to a website using Mozilla Firefox, found a specific 

web log entry and posted a comment. The user interacted with the site to ensure that the post was 

anonymous, to preview the comment, and to make a given change to the comment before making 

the final post. Again user interaction within the task was unconstrained, with users instructed 

only broadly in terms of the main task goals. 

 

The third task was a scheduling task where the user opened an email in Microsoft Outlook and 

scheduled an initial appointment using Outlook’s calendar based on requirements in the email. 

The user then opened a second email and again scheduled an appointment. Because the 

requirements (date, time) of the appointment were ambiguous, a user may have had to re-

schedule the first appointment in order to properly schedule the second appointment. 

 

The average time to perform each task was just over four minutes, more than enough time to 

generate a meaningful stream of events. We selected these three tasks because they would 

provide a sufficient initial test of our system in the desktop communication domain; they 

involved multiple applications, are representative of tasks that users often perform, and users 
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could perform them in a manner unconstrained enough to test the expressiveness of our task 

description language. This last aspect also provides a good test of how well our task monitor 

could handle variance in task execution. 

 

Procedure 

In both studies, a user performed practice trials of the tasks prior to the experimental tasks. After 

any clarifications or questions were answered, the user performed the experimental tasks. Our 

plugins for the applications involved in the tasks intercepted user events and sent them to the 

event handler for logging. This would allow us to match the event streams to the specifications 

by hand and understand where and why mismatches occurred. Commercially available software 

was used to electronically record a user’s screen interaction. Each study lasted about 30 minutes. 

 

Measurements and Results 

User Study I 

In our first study, the two authors reviewed the event logs and screen interaction videos to create 

PETDL specifications for each task. Part of the final specification for the calendaring task is 

shown in Figure 2 and the full specification for the document editing task is in Figure 7. The 

process was iterative, with authors creating the first draft of the specifications after viewing one 

user’s interaction, then revising that specification based on the task executions of the remaining 

users. Once complete, the resulting specifications expressed all of the users’ task sequences. 
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The total time spent constructing the task specifications was not significantly more than the time 

needed to review the interaction videos, which was about two hours. After specifications were 

developed, we counted the frequency of tags used to describe each task, summarized in Table 2. 

Specifications required only a small number of tags to express the tasks overall and were 

relatively short in length. On average, counting just the event and control tags, document editing 

was 14 lines, Web posting was 15 lines, and calendar scheduling was 12 lines. This shows that 

our description language can express event streams for practical tasks in a concise manner. 

 

User Study II 

For the second study, we wanted to determine how well the specifications developed in the first 

study would express the task execution of a different set of users performing the same tasks. 

After following a procedure similar to that outlined above, we compared the new set of user 

event streams to the specifications. For each event, we classified the outcome as a match, a user 

error, or a specification error. A match meant that the specification correctly described the event. 

A user error occurred when the specification could express the event stream, but an error arose 

due to the user not performing the task as requested. For example, during the Web posting task, 

one user posted to the wrong web log. A specification error was when the user performed the 

task as requested, but the specification did not express the event stream. This was the most 

serious type of error. 

 

The matching outcomes are depicted in Figure 8. Though accuracy was task dependent, the 

specifications were able to reasonably express the event streams from this set of users. An 

inspection of the event streams showed that improved accuracy could be achieved by performing 



Specifying and Monitoring Tasks 29 

additional iterations on the task specifications; there were a number of informative events that 

could be added to future iterations of the task specifications. However, because this was the first 

time that the authors in our study had ever created task specifications or used our description 

language to do so, we find these results encouraging and believe that they show that creating task 

specifications is feasible in practice. 

 

Because matching the event streams to the specifications was done by hand in order to categorize 

and understand matching errors, the next step was to test the computational matching algorithm 

in the task monitor. The specifications (without modification) were loaded into the task monitor 

and events from each captured stream were delivered one at a time, just as if they had come from 

the event handler in a live environment. For each stream, the task monitor correctly matched 

events to the specifications and correctly ignored events that did not match. Though the matching 

algorithm worked correctly, an important point is that how well a specification matches an event 

stream really depends on the accuracy of the specification itself, not necessarily on the matching 

algorithm. 

 

Next, to simulate multiple tasks and multiple instances of the same tasks being performed, we 

interleaved the streams arbitrarily and sent events from this newly formed stream to the task 

monitor. Through inspection of the matching log, we found that the algorithm correctly matched 

each event to the appropriate specification and correctly ignored non-matching events. This 

validates the correctness of the algorithm and shows that use of the position placeholders 

supports multiple active tasks and multiple instances of the same tasks. 
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Discussion 

Meeting the Design Goals 

We discuss how the existing implementation of our framework has heretofore met our system 

design goals. To enable low-investment creation of task specifications, we developed an XML-

based language that has a small number of control tags that can be used to concisely express 

many variations of task execution sequences. This results in specifications that are reasonably 

easy to read and understand and that are of relatively short length. The language is accompanied 

by an effective graphical tool that facilitates a macro-style authoring of specifications. The tool 

enables authors to construct specifications by composing control tags and events from the live 

user event stream and event dictionaries within an editable tree structure. 

 

To enable tasks to be specified at multiple levels of detail, we leverage the hierarchical nesting 

syntax of XML. To enable specification of tasks that involve multiple applications, the language 

allows the names of events to be prefaced by the name or instance of the application, eliminating 

ambiguity among events with the same name. To accurately monitor specified tasks in the midst 

of unspecified activities, our monitoring algorithm uses a list of position placeholders to mark 

where a user is relative to each instance of a task. This enables the monitor to follow a user’s 

progress through multiple active tasks and multiple instances of the same task. To support 

forecasting of a user’s task execution, we have laid the implementation groundwork by recording 

transition frequencies in a persistent model of task execution. 
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Lessons about Task Specification 

From our experience using the system, we also learned lessons about how to better specify tasks. 

First, tasks should not end with control tags that may optionally occur. For example, if 

<zeroOrMore> or <oneOrMore> are used as the last control tag in a task, the task monitor does not 

know whether or not to keep waiting for more repetitions or to mark the task as complete. 

Second, task authors can help disambiguate task specifications. For example, some tasks can be 

described with multiple specifications that match the same event sequences. The same problem 

can be found in regular expressions like (the)|(this) which is equivalent to th((e)|(is)). While this 

normally does not influence regular expressions, for task specifications it causes ambiguity when 

matching events. To help overcome this ambiguity, it proved best to group together the longest 

sequence of events possible in each part of a specification. Another solution could be to review 

past events and consider future transition probabilities. 

 

Our language enables an author to specify tasks at multiple levels of detail. Consistent with 

lessons from task modeling (Card et al., 1983), our experience is that specifying tasks to 

progressively finer levels of detail is progressively more difficult since many more execution 

sequences become possible. More experience with creating specifications for practical tasks is 

necessary to understand and recommend an appropriate level of detail. 

 

Limitations and Implementation Issues 

A limitation of our approach is that, regardless of the effectiveness of our language and tools, 

creating specifications will always require some amount of effort. However, we believe that the 
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effort to create task specifications will be outweighed by the benefit of their use, e.g., mitigating 

the negative impact of interruption, in both safety critical and office environments. In safety 

critical environments, where human operators of complex systems can be often interrupted when 

performing critical tasks, mitigating the negative impact of interruption on task performance, 

error rate, and decision-making could save lives and prevent catastrophic accidents (Mcfarlane & 

Latorella, 2002). In office environments, where task performance is important, but perhaps less 

critical, large reductions in the frustration, annoyance, and anxiety that users too often experience 

due to ill-timed interruptions would also yield a meaningful benefit. 

 

It is important to understand that specifications for tasks only need to be created once and can 

then be shared and reused. We envision specifications being produced as part of the interface 

design process and packaged with applications. Also, we envision a community of authors 

(designers, developers, IT staff, end users, etc.) willing to create and share specifications for 

common task environments such as for email and instant messaging, graphic design, document 

editing, and Web browsing. If effective user-level services can be developed and deployed, this 

will provide further impetus for creating and sharing specifications. In particular, we believe that 

developing an attention aware system – facilitated by the use of our framework – that mitigates 

the negative impact of interruption would provide such a compelling service. 

 

Another practical limitation is that the use of our framework requires applications to be properly 

instrumented such that the task monitor can access the user event stream. There are at least two 

methods to provide this instrumentation. One method is for developers of software applications 

to provide the necessary instrumentation during development. This is not unrealistic, as many 
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applications developed for the Mac OS have such instrumentation, presumably due to the long 

availability of its system-wide scripting and event framework. The software infrastructure 

needed to script applications, which would provide much of the instrumentation needed to 

leverage our framework, is becoming increasingly available in other operating systems as well. 

The disadvantage of this method, however, is that instrumentation must occur per application. 

 

An alternative is to adapt the underlying user interface management system to make the event 

stream accessible without modification to the applications that use it, e.g., by modifying the 

dynamic interface libraries loaded at startup. This method has been successfully used in several 

projects, such as those discussed in (Cheikes et al., 1998; Ritter et al., 2000). The advantage is 

that instrumentation only needs to occur once while the disadvantage is that events are lower-

level and more difficult to interpret (e.g., mapping an event to the corresponding interface 

control). We believe that advances in directions of both methods will make the user event stream 

more readily available in the future. 

 

It should also be noted that the level of detail in the instrumentation itself affects the level of 

detail possible in the task specifications. For example, if events related to text selection in MS 

Word are not made available, then authors cannot include those events in a specification. Thus, 

developers should instrument applications to a fine level of detail and allow authors to choose 

the desired level of detail when creating specifications. 
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When a user reaches an opportune moment in a task sequence, an attention aware system must 

be able to respond quickly, presumably on the order of a few hundred milliseconds, else the 

window of opportunity for interruption may be lost. This is challenging, as once an application 

sends the triggering event, the task monitor must, at a minimum, capture, match, and handle the 

event and then notify the system. Whether this process would allow the system to deliver the 

information in time depends on several factors such as the computational speed of the machine 

executing the task monitor, the efficiency of its algorithms, and the size of the temporal window 

around the opportune moment. Empirical research is needed to provide numerical estimates for 

the latter factor. 

 

Future Work 

Our future work seeks to implement algorithms for forecasting a user’s task execution sequences 

based on historical observations of task execution, extend our existing plugins to further 

instrument the applications, develop plugins for additional, commonly used applications, and 

develop an attention aware system that uses our framework to defer the delivery of peripheral 

information until selected boundary points in a user’s task sequence. 

 

Once developed, such a system must undergo extensive evaluation to demonstrate its utility for 

users in realistic settings. An evaluation should focus on at least two elements. First, an 

evaluation must measure how well the task monitor can forecast a user’s task sequences for 

commonly used applications, as accurate forecasting would be critical for deciding when to 
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interrupt. This also implies that task specifications must effectively describe common patterns of 

application use and that the task monitor can accurately recognize those patterns. 

 

Second, since the system would defer delivery of information until boundary points during task 

execution, the evaluation must investigate acceptable tradeoffs between decreased awareness and 

increased mitigation of disruption. Though results from empirical studies show that decreased 

awareness can indeed be exchanged for increased mitigation of disruption  (Bailey & Konstan, 

2005), the tradeoffs that would be necessary for users to adopt such systems in practice needs to 

be better understood.  

 

Conclusion 

Existing systems that reason about when to interrupt do not have access to task models that 

would allow for finer-grained temporal reasoning. To enable this reasoning, we have presented 

an integrated framework for specifying and monitoring user tasks. For task specification, our 

framework provides a language that supports expressive specification of tasks using a concise 

notation. For task monitoring, our framework provides an event database and handler that 

manage events from any instrumented application and a task monitor that observes a user’s 

progress through specified tasks. Results were also presented from two user studies showing that 

our language can be used to effectively specify practical tasks and that our monitoring system 

can accurately follow a user’s progress. Our framework facilitates instrumentation of office 

environments as well as safety critical domains to provide compelling user-level services such as 

intelligent tutoring, context-sensitive help, and intelligent interruption management. 
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Figure Captions 

Figure 1: Our framework consists of a task description language, an event database and handler, 

a graphical tool called PETDL Maker for assembling task specifications, and a task monitor. The 

framework uses a client / server architecture to communicate with applications and services. 

 

Figure 2: Sample specification for a calendaring task using PETDL. 

 

Figure 3: A specification using a task reference. References allow tasks and subtasks to be reused 

in the same or other specifications. 

 

Figure 4: The PETDL graphical tool used to quickly assemble task specifications. Events from 

the event dictionary are listed in the upper left while events from the incoming event stream are 

listed in the lower left. Control tags are listed at the right. An author may drag events and control 

tags from any of these sources and drop them into the document region (middle). The dialog 

shown in the center can be used to manually add events to the specification. 

 

Figure 5: Algorithm for managing the position placeholders in the task monitor. 

 

Figure 6: Example event stream with events numbered for reference. 

 

Figure 7: The final task specification for the document editing task built from the first user study.  

 

Figure 8: Results for task recognition. 
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Table 1: Tags Available in our Task Description Language 

PETDL Tag Description 
Task Expresses hierarchical task structure and enables reuse 
inOrder Children tags must occur in specified order 
anyOrder Children tags can occur in any order, but all must occur 
Optional Zero or one of specified children may occur 
oneOrMore One or more of specified children may occur 
zeroOrMore Zero or more of specified children may occur 
repeatExactly Children must occur an exact number of times 
choice Exactly one of the children may occur 
event An application-level event 
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Table 2: Tag Usage for Specifications from the First User Study 

PETDL Tag Doc Edit Web Search Scheduling Total 
Task 4 5 3 9 
inOrder 0 0 2 2 
anyOrder 0 1 1 2 
optional 1 0 1 2 
oneOrMore 1 0 1 2 
zeroOrMore 1 0 0 0 
repeatExactly 0 0 0 0 
choice 1 1 0 2 
event 10 9 7 24 
Total Tags 17 16 15 43 
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 <task name="Manage Schedule"> 
  <task name="Schedule Appointment From Email"> 
    <inOrder> 
      <event name="OpenMailItem"/> 
      <optional> 
        <event name="SwitchFocus"/> 
      </optional> 
      <anyOrder> 
        <task name="AddAppointment"> 
          <inOrder> 
            <event name="OpenApptItem"/> 
            <oneOrMore> 
              <event name="ChangeApptItemProp"/> 
            </oneOrMore> 
            <event name="WriteApptItem"/> 
            <event name="CloseApptItem"/> 
          </inOrder> 
        </task> 
        <event name="CloseMailItem"/> 
      </anyOrder> 
    </inOrder> 
  </task> 
</task> 
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 <task name="Manage Schedule"> 
  <task name="AddAppointment"> 
    <inOrder> 
     ... 
    </inOrder> 
  </task> 
  <task name="Schedule Appointment From Email"> 
    <inOrder> 
      ... 
      <anyOrder> 
        <task name="AddAppointment" ref="true"/> 
        <event name="CloseMailItem"/> 
      </anyOrder> 
    </inOrder> 
  </task> 
</task> 
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 HandleEvent(event) 
 
matched ← False 
 
« check against existing position placeholders » 
for (p in placeholders) 
    if p is older than 1 hour 
        delete p from placeholders 
    else if p.matches(event) 
        p ← p.handleEvent(event) 
        matched ← True 
 
        « check to see if the task is completed » 
        if p is NULL 
            delete p from placeholders 
 
« see if it's a new task » 
if not matched 
    for (t in tasks) 
        if t.matches(event) 
            p ← t.handleEvent(event) 
 
            « add the new position placeholders to the existing list » 
            placeholders.add(p) 
            matched ← True 
 
« if matched is False, then the event has been ignored » 
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 1. <event name="AppActivate" 
timeOccurred="2004.07.04 18:36:09" /> 

2. <event name="OpenMailItem" 
timeOccurred="2004.07.04 18:36:30" /> 

3. <event name="ReadMailItem" 
timeOccurred="2004.07.04 18:36:30" /> 

4. <event name="OpenApptItem" 
timeOccurred="2004.07.04 18:37:53" /> 

5. <event name="ChangeApptItemProp" 
timeOccurred="2004.07.04 18:38:59" /> 

6. <event name="ChangeApptItemProp" 
timeOccurred="2004.07.04 18:38:59" /> 
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 <taxonomy name="DocEdit"> 
<activity name="document editing"> 

<task name="manage email"> 
<event name="objMailItem_Open" />  
<event name="objMailItem_AttachmentRead" />  

<task name="edit document"> 
<oneOrMore> 

<choice> 
<event name="objDocument_Change" />  
<event name="objDocument_Spellcheck" />  
<event name="objDocument_Grammarcheck" />  

</choice> 
</oneOrMore> 
<event name="objDocument_Save"> 

<parameter> 
<name>location</name>  
<value>desktop</value>  

</parameter> 
</event> 
<optional> 

<event name="objDocument_Close" />  
</optional> 

</task> 
<task name="reply to email"> 

<event name="objMailItem_Reply" />  
<event name="objMailItem_Open" />  
<event name="objMailItem_AttachmentAdd" />  
<event name="objMailItem_Send" />  

</task> 
</task> 

</activity> 
</taxonomy> 
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