
 1

The Beach System: Building a PC from Many Tiny Computers
- A First Step at Virtualization -

Makes life easy at hand, Even with a million motes of sand,
Rather than deal with each, Leave it to the Beach.

Boris Capitanu, Ellick Chan, Indranil Gupta
University of Illinois at Urbana-Champaign

Department of Computer Science
<capitanu, emchan, indy>@uiuc.edu

Abstract –The emergence of tiny computers,
such as smart dust, Berkeley motes and Intel
motes, makes it feasible to envision the
conversion of a network of tiny computers
into a regular computing device (i.e., a “PC”
or personal computer). While the falling cost
and increasing (yet tiny) computation power
of these miniature computers portend well for
this vision, there are significant technical
hurdles. In this paper, we take a first step at
building “PCs” out of such tiny computer
networks, in order to run regular PC
applications. Our system, called Beach,
virtualizes the memory accessed by an
application at a single sensor mote (a type of
tiny computer), thus enabling this memory to
be distributed out over multiple such motes.
By using distributed page tables and caching,
we transform the puny memory at each mote
(few KBs) into several KBs of memory. We
present trace-driven experimental results
from running regular PC applications (e.g.,
sorting) on top of the Beach system. Due to
the exploratory nature of this research, we
ignore scalability and fault-tolerance issues
for now. Our work provides initial insight
into the pros and cons of the vision.

1. INTRODUCTION

 Tiny computers such as smart dust, Berkeley
motes and Intel motes (I-motes) have small
capabilities for computation (few MHz CPU),
memory (few KBs), communication (few 10s of
KBps) and energy (few days on full batteries at
100% operating time). Currently, such hardware
is being used for mostly sensor-type
applications, e.g., environmental monitoring,
battlefield tracking, building infrastructures, etc.

However, with the decreasing costs (and sizes)
of such tiny computers (e.g., motes), we
envision that it will soon be feasible to use them
for a different purpose. By stripping away the
sensor hardware from such motes, and instead
stringing together a network of tiny computers,
the collection of motes can be made to function
like a PC. Regular computation-intensive PC
applications can then be run on such a “bottle of
motes”.

Our design decisions are motivated by systems-
level goals. Any network-wide operating system
consists of several components – virtual
memory, processes, file systems, resource
management software. For the tiny computer
networks envisioned, we believe each of these
components poses enough challenges that they
should be dealt with separately and individually.

In light of the scarcity of work in this area so far,
this paper takes a first step at implementing
virtualization of memory across a collection of
motes. We present the design of a new system,
called the Beach system, which through
virtualization and caching, enables a
computation-intensive application to run on a
single mote, and yet spread its virtual memory
over other motes accessible over the network.

Through the Beach system, the master mote
(which is running the application) will be able to
malloc, read and write remote pieces of memory
on other motes. The Beach system is
customizable. Since we are given little
optimization information about application-
specific requirements, we will allow the user to
tune operational parameters at compile time,
thus avoiding the performance penalty of
runtime flexibility.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

We are currently in the process of deploying a
prototype of Beach on the Intel motes. We
present simulation results of our TinyOS
prototype, driven by traces from traditional PC
applications. This helps us identify the pros and
the cons of this direction.

2. RELATED WORK

 Existing research for sensor networks
primarily focuses on routing, power
management, storage, and reliability. As far as
we are aware of, there is no research done in the
area of distributed memory in sensor networks.
Other pertinent research areas include:

• Distributed Memory:
Current approaches use a memory management
unit to divide the address space into pages.
Pages may be present in memory, or swapped
out to secondary storage such as network-
mounted disks. These approaches are optimized
for utilizing idle memory resources of peers on
high-speed LANs [1, 2]. In the mobile realm, [3]
proposes a model where PDAs and mobile
devices request memory from nearby desktop
systems. Furthermore, these designs rely on the
presence of hardware support for virtualized
memory. Such facilities are unavailable on most
mote platforms.

• Storage Management:
The two notable storage management solutions
are Freenet [10] and OceanStore [11], which use
introspection techniques that guarantee
optimality of data placement over time. Existing
file sharing applications offer similar
fundamental principles to network page
management requirements such as page
replication and eviction. Judicious selection of
parameters can result in a custom-tailored
protocol optimized for distributed memory in
sensor networks. The combination of these
techniques offers better energy efficiency and
increased performance.

• In-network processing:
Approaches such as TAG [12] rely on manual
decomposition of a task into local decisions
made by sensors; data is aggregated at each node
and processed at the source. This approach is not

applicable to a general computational model
because it is not necessarily Turing-complete
(SQL). Our approach differs by allowing a mote
to use virtualized memory resources, moving the
tunable parameters closer to the system level.

• Programming Sensor Networks:
TinyOS [5, 6, 7] is a set of modules built using
the NesC language; it provides an interface to
commonly used sensor network functionality.
To build a TinyOS application, a programmer
connects several components through well-
defined interfaces. Events are generated from
interrupts, and non-preemptive tasks are posted
to a FIFO queue for execution.

Virtual machines, such as Maté [8, 9], provide a
clean abstraction to machine resources. Maté
allows application programmers to customize
the instruction set, which is then translated into
bytecodes. A memory virtualization model using
this approach will be completely transparent to
client applications.

• Routing:
Several techniques and optimizations may be
applied from existing approaches such as
Directed Diffusion [13], which establishes
virtual circuits from sources to sinks of
information. Geographical routing [14] relies on
á priori knowledge of mote placement and
topology to ensure optimal routing. LEACH [15]
reduces hot-spot formation by ensuring uniform
long-term availability of sensor motes. Routing
facilities can be used in the formation of a static
group of members which can be optimized for
low latency communication.

• Allocation:
TinyAlloc provides a malloc-like interface to
memory on a mote. It allows applications to
dynamically allocate space within a specified
heap area. TinyAlloc requests are split-phased in
consistence with all TinyOS-based operations.
In the first phase, a memory request is
generated. The second phase signals completion
of the request by sending an event to the
application. TinyAlloc does not provide an
interface for remote memory access. Therefore,
an application requiring more memory than what

 3

a single mote can offer does not benefit from
this interface.

3. DESIGN CONSIDERATIONS

 In a typical distributed shared memory
system, memory is divided into pages. A
memory management unit (MMU) present on
each client manages access to memory and
caches. The MMU is responsible for translating
virtual addresses used by applications to
physical addresses. A page table provides a map
of memory addresses and permission bits for
each block of memory. In a desktop computer
page sizes are typically 4 kilobytes. The effect of
finer granularity on pages is a larger overhead
for structures describing the allotment of pages.
Larger pages require less overhead, however,
they can be prone to waste due to internal
fragmentation. One approach to help increase
the utilization ratio without requiring large
amounts of overhead is to split pages into
subpages, or keep separate page pools of various
sizes. In such a pooled architecture pages may
be sized to powers of two, which makes it easy
to compute tag addresses for caching.

Distributed shared memory schemes rely on
messaging to pass pages between nodes. The
judicious selection of parameters, such as
appropriate sized quanta for pages, can have
great impact on performance. Since pages must
be transmitted as network packets, a page size
much larger than the optimal packet size may
lead to fragmentation and ultimately high loss
rates as partially transmitted pages may need to
be fully retransmitted to guarantee integrity.
Larger packets also imply higher error rates and
latency characteristics; however, they offer the
lowest overhead and best performance. Smaller
packets have the advantage of speed and low
failure rate at the cost of high overhead. An
application designer must carefully profile the
results of changing parameters with requirement
metrics to ensure optimality. We briefly analyze
and discuss several application scenarios in the
evaluation section to suggest some suitable
values.

Caching

 Caching is vital to performance in any
system that relies on frequent access to a
working set of data. Several cache classes and
optimizations such as prefetching are available
at the programmer’s dispense. Cache size may
affect the application’s aptitude for data
processing. A small cache has the advantage of
allowing a programmer to better partition
memory for application-specific needs. A large
cache may decrease the miss rate, but occupy
more application space and unnecessarily waste
memory if the hit rate is low for the application
data. Such a scenario may be possible if an
application only accesses each memory address
once, such as calculating the sum of a large
array. Prefetching pages can allow for better
performance where the access pattern is
predictable by a simple predictor. This
optimization has utility in the checksum
example, but fails in an example that may
involve sorting. Caches are better suited to
applications that have high locality of accesses,
such as bubble sort.

Cache replacement policies can have great effect
on the performance of an application. For
applications that repeatedly work on a small
subset of data, such as matrix relaxation
algorithms (temperature analysis), a least
recently used (LRU) replacement policy may be
best. An algorithm that repeatedly traverses an
array, such as selection sort, would be best
suited by a circular replacement policy. LRU,
LFU (least frequently used) and circular
replacement policies have worst-case scenarios
that cause performance degradation. One
possible solution may be a random cache
eviction policy. This approach has the benefit of
providing probabilistically good expected
running times, but the random choice of an
eviction may not be cheap to compute on a
mote.

One clear benefit to caching data comes in the
form of write caching. By delaying the commit
of a frequently used cache line, we can avoid
unnecessary use of the radio. One scenario
where this might occur is in a simulation where
highly used variables are stored on several

 4

pages. By using a write-back caching policy,
changes are not committed until the entry is
evicted. This approach works well when there is
only a single client, but degenerates in a
contentious environment. An alternate approach
is a write-through cache, which updates a cache
line when written, as well as the original replica.
This policy helps ensure fast access on future
reads without the consistency problems of the
write-back approach. In a small setup with few
motes we believe that a write-back policy
controlled by a coordinating node would result
in the best performance with the least overhead.

Both caching and prefetching may improve the
performance of certain applications, but possibly
perform unnecessary preparation in others. In
the latter situations, the benefits of prefetching
and caching and the goal to conserve energy
may be a dichotomy. It is the responsibility of
the application programmer to determine proper
and reasonable parameters through traces and
profiling.

Virtualization Interface

 As described earlier, memory virtualization
techniques typically require hardware assistance
(MMU) to effectively maintain the illusion of a
linear memory space. Without such a facility,
there are several ways to accomplish the same
goal. First, a program may employ a virtual
machine that interprets instructions and remaps
data references. This is the approach taken by
Maté, a virtual machine for sensor networks. A
second approach is to use relative addressing
instructions. This approach is taken by uClinux,
a variant of Linux that runs on machines without
an MMU. In uClinux, applications are compiled
to be relocatable at runtime. The operating
system chooses a starting address, and data
references are all relative to that address. This
approach requires special support from the
compiler to generate position independent code.
Another approach is to generate a fault on an
illegal memory access. Such accesses can be
overloaded to implement system calls or
virtualize memory. Finally, an application may
guard all memory accesses through a special
library or compiler preprocessing directives,

which redirects array, pointer and memory
accesses.

Each of the methodologies described has
benefits and drawbacks. The virtual machine
approach requires an unnecessarily high
performance overhead on code that does not
necessarily access remote memory. The
relocatable code approach and the memory fault
approach require special support from the
operating system, hardware, and compiler to
properly operate. Whereas the virtualization
library approach requires programmer
intervention and an implementation would incur
additional indirection overhead. To minimize the
requirements, we chose to design and implement
the virtualization library approach. Although we
have indirection overhead on every memory
access, we can replace the access instructions
with compile-time macros to switch between
accesses to remote or local virtual memories
with no runtime cost.

Library Interface

 Our library exports several familiar
functionalities to the C programmer. We attempt
to provide similar interfaces to well-established
libraries, but we had to make special
modifications to adapt to the event-driven
programming model of TinyOS. Each operation
requires a split-phase asynchronous
implementation. First, a user requests a memory
operation, then the library processes the data and
issues network requests if necessary. Once the
VM library has finished its work, it signals the
application by raising a TinyOS event. The
application then reads the status of the request
and continues execution.

In TinyOS, execution units are divided into two
classes: tasks and event handlers. Tasks may not
be interrupted by other tasks, but they may be
preempted by an event handler. The proper way
to divide work is to execute short operations that
depend on external stimuli in an event handler,
and post longer operations as tasks. One way to
implement a blocking virtual memory system
would be to use a spin lock to suspend
execution, waiting for the completion of a
memory request. Such an approach may lead to

 5

a code snippet similar to the one depicted in
Figure 1.

The problem with this approach is that the spin
lock unnecessarily wastes CPU cycles and
energy by waiting on a condition instead of
sleeping the processor. This approach also
prevents the execution of other independent
tasks that might be required to release the lock,
potentially causing deadlock. The advantage to
the spin lock approach is that programs are
executed sequentially in a single-threaded
manner. By using the event-driven approach
TinyOS advocates, we must rewrite our
applications in a way that is conducive to their
model. This requires some clever manipulation
of program structure and loop unrolling to
express programs at the cost of code clarity.
Figure 2 demonstrates how a loop may be
constructed using the TinyOS approach. The
task repeatedly requests memory and processes
it, while the event handler posts a task to process
the incoming data.

Other Optimizations

 In addition to caching, other techniques such
as compression, message piggybacking, and

differential updates may help reduce the total
number of messages exchanged. While
considering these options we realized that the
benefits may be insignificant, and sometimes
nonexistent, due to the fact that most of the time
the message packets are completely filled, or the
data not easily compressible without the
overhead of extra headers and checksums.

4. CORE DESIGN

 In the Beach system, there are two primary
roles: master motes, which request memory
resources, and slave motes, which offer and
broker these memory resources. Masters
maintain a page table with references to remote
memory, as well as a cache that improves
performance for repeated accesses. Slaves have
a persistent data store and an allocation table. In
our design, the allocation table and the page
table are modeled by the same data structures.
The cache and persistent storage structures are
also equivalent. Therefore, the same structure
assumes different roles depending on
functionality of the mote. A single compile-time
flag selects the role of a mote. All motes in a
mote network run the same binary image,
making replication and code updates easy. As a
result of our design, running a simulation in the
TinyOS simulator (TOSSIM) is very
straightforward.

 Masters are responsible for computation.
They may access memory resources through
four basic operations. These operations are:
malloc, read, write, and free.

Malloc – is a split-phase asynchronous call
which creates a contract between master and
slave motes for memory allocation. Memory
requests are made to the granularity of a page;
larger allocations request multiple pages. In the
first malloc phase, a request for the amount of
memory needed is broadcasted to all first-hop
slave motes, which respond indicating their
ability to satisfy the request. Each response is
sent if the node can fulfill all or part of the
memory request. For networks reaching their
capacity, partial allocations can allow better
utilization of free space. Based on these
responses the leader decides whether the offers

task void doComputation() {
 call VM.readMemory(…);
 …
}
event void operationComplete(…) {
 //save received data
 //to a buffer
 post doComputation();
}

Figure 2 - Event-based loop

task void doComputation() {
 …
 call VM.readMemory(…);
 while(!ready);
 …
}
event void operationComplete(…) {
 ready = TRUE;
}

Figure 1 - Spin lock

 6

received are sufficient and signals a completion
code. The offers are processed in the order they
were received, guaranteeing that the
topologically closest slaves are selected in order
to minimize latency. If the responses indicate a
valid request, the leader then sends a binding
message to the selected slaves, which completes
the memory reservation. In response, the slaves
acknowledge the request and provide a unique
handle (which encodes the mote address) to the
master. All subsequent requests must refer to
this handle to access memory in the allocated
area.

Read – There are two versions of the read
command that differ in access granularity. A
readPage call takes as input the page offset
within a handle and a flag specifying whether
the data is cacheable, and returns a buffer
holding the data associated with that page. Its
implementation determines whether the
requested data exists in the cache: if the data is
found in the cache, the request is satisfied
locally, otherwise a lookup is performed in the
page table to find the mote responsible for that
page. Once the page is located, a request is sent
to the remote mote to retrieve the page. A
message indicating the result of the operation is
returned by the slave mote. If the operation
succeeded, the buffer holding the received page
is returned, and, depending on the value of the
“cacheable” flag, the data is inserted into the
local cache (possibly evicting another entry,
according to the cache replacement policy).
Cache parameters and eviction policies may be
selected by the application programmer to
optimize the hit rate.

To provide a more flexible programming model
we created a wrapper interface around readPage
that takes as input an offset in the page to start
reading from, the size of the read request (in
bytes), a buffer where the data retrieved must be
placed, and a flag indicating whether the data
should be cached or not. Using this wrapper, a
program can read any number of bytes, allowing
the underlying implementation to determine
exactly how many pages are needed to satisfy
the request and perform the actual readPage
operations.

Write – Similar to the read operation, a
writePage function is provided that operates at
the page level. Based on the caching policy
employed, the cache is updated and a write
request containing the page is sent to the mote
responsible for it. The location of the page offset
is determined by examining the index of the
entry in the page table.

The writeBytes function is also provided for
added convenience, and allows the programmer
to specify the offset, the size (in bytes), and a
flag indicating the caching policy preferred.
Programmers seeking to optimize the library
might define their own replacement policies and
prefetch predictors to match memory access
patterns.

Both read and write operations transfer data in
blocks. Since a TinyOS message has a
maximum payload size of 29 bytes, our block
size is limited by this value and the overhead of
our message header. Currently we use a paging
model where the page size is fixed (equal to the
block size minus header data), but we provide a
discussion about variable size pages, their
advantages and disadvantages, in the Future
Work section.

Free – This operation works in a similar manner
to malloc. It iterates through the page table
entries to retrieve the host ids and remote indices
allocated for that handle, and sends out
messages to the respective motes indicating that
they should free those specific memory areas. If
any entries are also found in the local cache,
they are evicted.
Upon receipt of a free request, a remote mote
employs a similar algorithm that identifies the
pages held by a particular handle, marking them
as unused.

5. IMPLEMENTATION DETAILS

We have created a prototype implementation
of our virtual memory library (VM) as a NesC
module that utilizes the radio to talk to similar
master or slave modules in the network. Each
VM module contains a page table, a cache and a
buffer for holding temporary information
received from a read request.

 7

Page Table Format

 Each page table consists of a set of page
table entries. Handles to memory references are
simply indices into the page table shown in
Figure 3. Each line contains a host id, describing
which mote holds the storage of the contents of
pages managed under the handle. Page table
entries may form a linked list using ‘next’
pointers that allows for variable-sized handles. A
handle allocates memory in quanta of pages,
which are listed in the cache id fields. Each page
table entry contains a list of cache ids. There is
one cache id per page in the handle. The list of
cache ids is null-terminated. Each entry of the
list either refers to an index in the cache that is
currently holding the block, or contains a special
value indicating that the cache does not contain
the block. The cache id fields implicitly refer to
a page by its index into the handle structure,
delegating the task of locating the page to the
slave node, or the cache. Since the actual
management of handle memory is distributed to
the slave mote, it is allowed to delegate contents
of pages to other motes, forming a topology.

Cache Format

Caches are composed of cache lines of un-
typed memory (Figure 4). Each line refers to the
contents of a page. Cache validity is determined
by checking if a handle in the page table refers
to a cache entry. Care is taken by the library not
to alias a cache line to multiple handles or pages.

Caches may employ replacement policies
described previously.

Figure 4 - Cache Diagram

Message Format

Messages are derived from TinyOS
messages which allow for a 29 byte data
payload. We divide this payload into two
sections: the first section includes a common
header containing information about the
operation type, its return status, and the address
of the mote sending the request or reply; the
second section contains operation-specific
headers providing details about the operation.
Figure 5 and Figure 6 show details of the
messaging format.

The size of a page is highly dependent on
message size because we would like pages to fit
into a single message for efficiency and
performance reasons.

Figure 3 - Page Table Format

 8

Figure 5 – Messaging Format - Requests

Figure 6 - Messaging Format – Replies

6. EVALUATION

6.1 SIMULATION RESULTS

To evaluate our prototype implementation

we created a simple micro benchmark and a
trace-driven simulator that makes use of the four
defined operations, and calculated the number of
messages exchanged between the master and
slave motes, as well as the running time of each
individual operation averaged over four trials.
The pseudo code of our simple test case is
described in Figure 7.

Table 1 shows the running time of each
operation. Be aware that the TOSSIM simulation
does not accurately simulate latency, events, or
actual performance.

Trial 1 2 3 4 Avg.
MallocL 168 176 167 168 169.75
WriteL 106 109 94 112 105.25
ReadL 198 223 58 160 159.75

Table 1 – TOSSIM micro benchmarks with time

scaling enabled (milliseconds)

MallocL, WriteL, and ReadL are
measurements of the running time of the
respective operations in TOSSIM on a Fujitsu
Laptop (Pentium 4 1.8 GHz, 512 MB RAM
running Fedora Core 3 Linux). The L means that
TOSSIM was running with time scale equal to
one (option -l = 1), which is supposed to emulate
near real-time operation. Table 2 shows the
same readings taken without time scaling.

Task void Test() {
 handle=malloc(10);
 // wait for the
 // operationComplete signal
 write(handle, 0, ”hello”);
 // wait for the
 // operationComplete signal
 read(handle, 0); //read page 0
 // wait for the
 // operationComplete signal
}

Figure 7 - Test code

 9

Trial 1 2 3 4 Avg.
Malloc 150 150 121 152 143.25
Write 171 205 115 172 165.75
Read 71 71 56 73 67.75

Table 2 – TOSSIM micro benchmarks without time

scaling enabled (milliseconds)

The average latency seems to be more indicative
of the processing time of TOSSIM rather than
any real metric. Reads seem to have taken the
longest with time scaling on, but the shortest
with time scaling off.

We attempted to use another emulator, ATEmu,
which simulates TinyOS and the underlying
processor on an instruction-by-instruction level.
Tasks may be preempted using ATEmu, but
TOSSIM does not model this behavior.
Unfortunately, we were not able to obtain real
performance numbers from ATEmu directly,
because it lacked the ability to output debug
messages.

In terms of the number of messages exchanged,
the malloc operation takes four messages to
inquire and contact the target node, while the
read, write, and free take only two messages, for
a total of ten messages.

6.2 TRACE-DRIVEN SIMULATION

From our initial tests, we conclude that the

majority of latency in the library is due to radio
transmissions, therefore instead of focusing on
synthetic benchmarks obtained from a simulator,
we wrote a trace-driven simulation of the effects
of caching parameters. Since the algorithms and
inputs are well-known, implementing the sort in
C or TinyOS would make no difference in the
memory access patterns. Our implementation
generates traces from algorithms run in C on a
desktop machine, and replays the same actions
on a single master mote. The master then
executes the logged operations on in conjunction
with a single simulated slave node. Read and
write are the only logged operations, and
execution of the log is done at the full speed of
the simulated mote. This approach allows us to
test complex algorithms that may be too error-

prone to implement on a real mote, while
providing a reasonably accurate simulation.

We present our performance evaluation in

Figures 8 through 11. The first figure shows
cache hit rate plotted against block size. The
graph shows that Bubble sort benefits most from
caching, perhaps due to its myopic sorting
methodology. Quicksort seems to benefit least
because its access pattern is more random
through use of the partition function. The most
drastic performance gain from an increased
block size is in quicksort, this is due to the
ability to “see” a larger view of the array to be
sorted at any given time. Selection sort and
bubble sort benefit less from the larger window.
Figure 9 shows the hit rate plotted against the
number of cache lines. Not surprisingly, bubble
sort has a higher hit rate than quicksort;
however, its hit rate remains nearly constant
independent of the number of cache lines. This
is once again due to the myopic view. Quicksort
quickly increases its hit rate with more cache
lines because its access pattern is more spread.
Figures 10 and 11 show the number of messages
and the running times of our traces for various
page sizes. Recall that the message payload size
is equal to the page size, for simplicity.

These results show that there are diminishing
returns with increasing page size for these
particular test scenarios. To provide an
assessment of the practicality of our approach,
we perform two indirect measures. The first
measure, number of messages, is meant to give a
rough estimate of the power requirements of our
library for a given task. In the worst case
analysis, running bubble sort on 15 elements
takes at most 575 messages over 46 seconds
when forced to use the worst-case block size of
1 byte. According to CrossBow, a typical mote
is capable of running for 172 hours with a packet
sent every four seconds. Slightly extrapolating, a
mote might be capable of slightly under
9288000 messages over the lifetime of the two
AA batteries. Our application consumes a mere
fraction of the available capacity of the device.
If we were doing the sorting at the same rate as
Crossbow's tests, it would take 38.3 minutes to
send requests from the master, and a total of 77
minutes to complete execution.

 10

Cache Hit Rates

1

2

3

4

5 6 7

8

1

2

3
4

5 6 7
8

1

2
3 4 5 6 7 8

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 1 2 3 4 5 6 7 8 9

Block Size

QuickSort

SelectionSort

BubbleSort

Figure 8 - Cache Hit Rate vs. Block Size

Cache Hit Rate vs. Cache Size

1

2

3

4

5

1

2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6

Number of Cache Lines

QuickSort

BubbleSort

Figure 9 - Cache Hit Rate vs. Number of Cache Lines

 11

Number of messages

0

100

200

300

400

500

600

700

1 3 5 7 9

Block size (bytes)

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s
 s

e
n

t

Bubble Sort
Selection Sort
Quick Sort

Figure 10 – Number of messages sent for the

different trace simulations with varying block size

Running Times

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9

Block size (bytes)

R
u

n
n

in
g

 t
im

e
 (

s
)

Bubble Sort
Selection Sort
Quick Sort

Figure 11 – Running times for the traces with

different block sizes

Our second metric is running time in TOSSIM.
We measure the running time of these traces
using the UNIX time command. As the graphs
show, the worst case performance is 46 seconds,
a factor of improvement over the worst-case
scenario of sending four packets every minute
(as described in the CrossBow documentation).

7. ADVANCED FEATURES

Since our VM approach does not dictate a
routing substrate, we have assumed a simple
topology until now. This has resulted in a
simplistic one-hop strategy that is suitable for
applications which have small marginal
requirements, and the need for high
performance. One simple approach for
expansion is to allow for partial memory
allocations on each node. Such a scheme would

alleviate contention, and better distribute data
across the network, resulting in benefits due to
parallel accesses. This is similar to a RAID0
striping arrangement. We see that the benefits
multiply when the access medium is slow in
nature, such as flash memory. The network may
be several times faster than long-term storage on
certain devices, especially when certain motes
only wake up during specific time intervals.

To implement partial allocation, each slave node
must use a reply message that indicates it wishes
to allocate only a subset of the requested
amount. Recall that our allocation procedure is
two-phase. The first phase solicits replies from
able servants, while the second phase commits
to the allocation by sending an allocation
commit message. Using this protocol, the
solicitation phase may ask all nodes which have
idle capacity to contribute, and then allocate
based on partial results. Each page table entry
contains a host id, remote page table id, a next
pointer to another page table entry, and a list of
cache entries. In the partial allocation scheme,
each constituent node would occupy a page table
entry, with values that are relevant to the node.
Since the next pointer does not fix a particular
host and handle id, this functionality may be
used to reference different nodes and remote
handle ids within the same local handle. The
overall effect of this approach is that we can
have an arbitrary mapping of remote memory
locations on many nodes to a single local handle.
As memory accesses increase, the local cache
can ensure that many of the hits will incur low-
cost.

We have currently implemented a subset of the
features required for a partial allocation scheme.
Our implementation uses a two-phase malloc as
described above, and a set of wrappers around
the block-based read and write operations. We
have found that partial allocation allows the use
of several effects. First, with partial allocation,
large memory allocations become possible
among a group of motes. If a fair allocation
scheme is used to budget the size of each
individual allocation, this can lead to hotspot
reduction, and parallelism benefits described
earlier.

 12

We faced several implementation issues
regarding our use of the TOSSIM simulator with
partial allocation. Using just two motes, there is
little chance of race conditions and packet loss.
When partial allocation is used, many messages
may be sent in response to a single read
message, which can specify multiple blocks.
Since TOSSIM is a discrete event simulator, it
tends to have two negative effects. First,
messages may be lost instead of queued when
many responses are received. We remedy this by
waiting for a reply on each request. Secondly,
events may be delivered out of order. We correct
this by carefully blocking the system execution
until a correct reply is received. Both of these
effects lead to a suboptimal messaging system
where there is a lot of blocking time and extra
messages sent. Had TOSSIM queued messages
and guaranteed total ordering, these measures
would not be necessary.

8. POSSIBLE EXTENSIONS

Our current design forms the necessary basis
to address and manage virtual memory
primitives in a small tightly-knit mote network.
In the event that a computation requires greater
resources, a developer has several options.
Among the available choices is the option to
convert the problem into a specialized
distributed algorithm, such as those used by
TAG and Maté. If generality is important, our
system may be extended to provide marginal
benefits in cases that are slightly larger. We
describe possible extensions in our system in
this section with focus on simplicity of the
protocol.

One major improvement can be the inclusion of
multi-hop neighbors. Using the same mechanism
for partial allocations, a slave node may delegate
a memory allocation to a second-level slave.
Since the data structures on master and slave
nodes are equivalent, this method requires
minimal changes. Upon a memory access, a
master accesses the page table index associated
with a handle. The master then looks up the
remote address, handle and offset to send to the
slave mote. Upon receipt, the slave mote repeats
the same steps until a leaf node is reached. Once
a leaf is reached, the real address is located in

the cache/backing store, and then the data is
percolated back to the originating master.

Although this approach may seem slow, there
are several techniques that may help. First, if the
nodes allocate only in an increasing direction
away from the master, due to lack of
geographically closer viable nodes, then
performance can be guaranteed by hop
minimization. A simple approach would be to
use a geographic hash table to initially set up
allocation preferences. Secondly, a routing
substrate which respects geographically and
reliability-oriented nodes first can aide the
allocation mechanism in making an optimal
node choice.

Using the multi-hop scheme, it might be
expected that frequent access to data structures
may be slow. We debunk this myth by
exemplifying through P2P file sharing systems.
First, it is expected that our static allocation of
data within a network limits flexibility of
location. Secondly, long chains might damage
reliability characteristics of data storage in event
of a failure. While the former may seem true at a
first glance, the actual case is that as data is
accessed along the multi-hop route, each node
caches the access. The overall effect is similar to
that seen in Freenet, where files are migrated
and replicated along access paths [10]. While we
do not explicitly replicate, this has the effect of a
multilevel cache, where local events on the
primary cache have little effect on higher level
caches, ensuring a high hit rate on second and
third level caches. There may be much
unnecessary cache duplication overhead, but we
can combat this effect by using a probabilistic
caching scheme, where the probability that a
remote entry is cached is based on a parameter
p. This allows long chains of length n to occupy
approximately np space in the caches, greatly
reducing the crowding effect. The latter
argument relating to reliability may also be less
severe than previously thought. Since our system
is designed for short-term allocation, and many
memory accesses have good cache locality
through our multi-tier cache, the most important
data is likely to be replicated many times in
lower-level caches. This implies that a mote
network using our system may have many leaf-

 13

level caches, but fewer supernodes near the
master. This may lead to a network that has
properties similar to a power-law or exponential
network. The random failure of a few nodes is
likely to only affect leaf nodes, and most of the
network remains intact, with the common data
still fresh in the caches. While we do not yet
have detailed simulation traces, we argue that
the similarity in formation to existing networks,
such as Gnutella offers us temporary immunity
to some degrees of failure.

Another method to enhance fault tolerance is to
borrow schemes from distributed file systems. In
many distributed systems, there is the concept of
a primary replica, which manages pointers and
replication policies of specified data. We can use
this approach to delegate responsibility of a
shared page to a single slave mote. This slave
can then request an identical allocation on
another slave, and keep pointers to a secondary
group of slaves, whom replicate the same data.
Heartbeats among this group can guarantee
liveness, and upon node failure, a new master
may be selected. Protocols in distributed hash
tables with group membership are particularly
suited for this purpose.

Finally, our single-master approach may not be
completely scalable for larger computations; we
can partially alleviate this by having multiple
master nodes. Since a memory reference is a
tuple containing a node address and a handle,
this access tuple may be passed around the
network as a capability to other nodes such as
slaves to aid in computation. Even though this
does not provide any direct parallelization
benefits, it does partially help address the issue
of fragmentation of the global memory pool
across all motes. One perspective to view our
framework is to compare the memory allocation
we offer against that of a network without the
virtualization system. In such a network, there
are a high percentage of motes with unused
memory resources, and the fragmentation of
these resources can inhibit overall operation. We
allow users to partially recover reasonable-size
chunks of these resources to continue
computation.

9. CONCLUSIONS

 In this paper we presented the Beach system
as a first step towards the virtualization of
resources provided by these small computing
devices, called motes. We introduced a low
overhead virtualization library to automatically
manage remote memory on mote devices. Using
a systems approach, our library breaks memory
into user-specified fixed-sized quanta that are
allocated by applications. Through several
mechanisms such as partial allocation, we can
reclaim memory wasted in a mote network due
to fragmentation. This allows small sporadic
computations, which have large temporary
memory requirements, to run effectively. A
caching system avoids excessive utilization of
the radio, and allows motes to gain better access
to most recently used material. We implemented
our system and found that our caching scheme
significantly reduces the number of radio
transmissions for common sorting benchmarks.

By specially designing our page tables, we can
indirect blocks between slave nodes. We can use
this indirection technique to form a tree of
participants whom contribute small amounts of
memory to the network. Specialized master
replicas can be designed to ensure fault tolerance
in the system without significant performance
penalties. Through the use of hierarchical
allocation and master replicas, we can build a
scalable and reliable system to redistribute
memory in a mote network.

Our work represents an initial attempt at
designing a system to handle efficient resource
reallocation within a mote network. With partial
allocation and caching, we already see a great
improvement in the capabilities of motes as a
viable platform for larger computations. Unlike
TAG and in-network computation, our system
can be used to run code that is difficult or
impossible to transform into an in-network
processing equivalent. This allows programmers
to use traditional algorithms on mote networks
without excess regard to resource
considerations.

 14

10. ONGOING DEPLOYMENT ATTEMPTS

 We have begun some initial testing with
mote hardware from both Crossbow and Intel.
At present, we do not have reliable
measurements, but we expect to be able to
obtain them soon. We had trouble with operating
the radios on the Crossbow motes we received,
so we opted to try out the next generation Intel
motes. At the time of this writing we are early in
the testing phase since we only received the new
hardware very recently. So far we have
experienced a number of problems with the
build process, and found the lack of
documentation on the iMote TinyOS Bluetooth
radio interface model to be a significant
shortcoming of these motes. We did have
limited success with the demo applications and
porting some of the basic TinyOS examples,
such as CntToRfm. We are actively exchanging
messages with other researchers on the TinyOS
mailing lists and community resources to
address the various issues we’ve encountered.
Given that the iMotes are still in an early beta
phase, maturity of the product over time may
help to ease our efforts.

11. REFERENCES

[1] T. Newhall, S. Finney, K. Ganchev, and M.
Spiegel. Nswap: A network swapping module
for linux clusters. In Proceedings of Euro-
Par’03 International Conference on Parallel and
Distributed Computing, Aug 2003.

[2] M. D. Flouris and E. P. Markatos. The network
ramdisk: Using remote memory on
heterogeneous nows. Cluster Computing, Special
Issue on I/O in Shared-Storage Clusters.,
2(4):281-293, Jun 1999.

[3] E. Lattanzi, A. Acquaviva, A. Bogliolo.
Proximity services supporting network virtual
memory in mobile devices. In Proceedings of the
2nd ACM international
workshop on Wireless mobile applications and
services on WLAN hotspots, pages 119-126.
ACM Press, 2004.

[4] P. Levis, N. Patel, D. Culler, and S. Shenker.
Trickle: A Self-Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor
Networks. In First USENIX/ACM Symposium on
Network Systems Design and Implementation
(NSDI), 2004.

[5] P. Levis, S. Madden, D. Gay, J. Polastre, R.
Szewczyk, A. Woo, E. Bewer, and D. Culler.
The Emergence of Networking Abstractions and
Techniques in TinyOS. In First USENIX/ACM
Symposium on Network Systems Design and
Implementation (NSDI), 2004.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E.
Brewer, and D. Culler. The nesC Language: A
Holistic Approach to Networked Embedded
Systems. In Proceedings of Programming
Language Design and Implementation (PLDI),
June 2003.

[7] P. Buonadonna, J. Hill, and D. Culler. Active
Message Communication for Tiny Networked
Sensors. Infocomm, 2001.

[8] P. Levis, D. Culler. Maté: A Tiny Virtual
Machine for Sensor Networks. In Architectural
Support for Programming Languages and
Operating Systems (ASPLOS), Dec 2002.

[9] P. Levis, D. Gay, D. Culler. Bridging the Gap:
Programming Sensor Networks with Application
Specific Virtual Machines. In 6th Symposium on
Operating Systems Design and Implementation,
2004.

[10] Clarke, I., Sandberg, O., Wiley, B., Hong, T.
Freenet: Distributed Anonymous Information
Storage and Retrieval System. In Lecture Notes
in Computer Science, 2001.

[11] J. Kubiatowicz, et al. OceanStore: An
Architecture for Global-Scale Persistent Storage.
In Architectural Support for Programming
Languages and Operating Systems, Nov 2000.

[12] Madden, S., et al. TAG: A Tiny AGregation
service for ad-hoc sensor networks. OSDI, 2002.

[13] C. Intanagonwiwat, R. Govindan, and D.
Estrin. Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor
Networks. In Proceedings of the Sixth Annual
International Conference on Mobile Computing
and Networks (MobiCOM 2000), Aug 200.

[14] B. Karp and H. Kung. GPSR: Greedy
perimeter stateless routing for wireless networks.
In Mobile Computing and Networks (MobiCOM
2000), pp. 243–254.

[15] W. R. Heinzelman, A. Chandrakasan, and H.
Balakrishnan. Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. In
Proceedings of the Hawaii International
Conference on System Sciences, Jan 2000.

