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Abstract

Satellites constitute an essential source of observations in operational satellite data

assimilation (DA). In this thesis, we investigate the impact of assimilating satellite

observations at different spatial scales: is there a relative benefit in focussing on small

rather than large scales (or vice versa)? In order to address this question without

using complex and computationally expensive Numerical Weather Prediction (NWP)

models, we conduct a series of idealised satellite DA experiments based on a modified

shallow water model able to imitate convection and precipitation.

The use of an isopycnal, single-layer version of the model (modRSW) is discussed first.

A series of forecast-assimilation experiments are carried out using a Deterministic En-

semble Kalman filter (DEnKF). As a result, the filter performance and the relevance

of the modRSW model for convective-scale DA in Numerical Weather Prediction sys-

tems are demonstrated and a protocol to extend a similar analysis to other idealised

systems is presented.

After establishing that the modRSW model is not suitable for satellite DA research,

a new isentropic, 11
2
-layer model (ismodRSW) is developed. The revised model is

equipped with a fluid temperature definition and is therefore a better candidate for

satellite DA experiments. The dynamics and the numerics of this model are discussed,

and its numerical solver is verified against an analytical solution.

In order to imitate closely an operational system, an idealised observing system com-

prising both ground and satellite observations is created, and pseudo observations

mimicking microwave radiation measured by polar-orbiting satellites are generated,

with clouds and precipitation implicitly taken into account within the new (and non-

linear) observation operator.

Finally, a new series of forecast-assimilation simulations is run to obtain a well-tuned

system which is used as a reference in a series of data denial experiments, where satel-

lite observations at small and large scales are selectively excluded from the assimilation

to evaluate their impact on the system. Preliminary results show a degradation of both

the analysis and the forecasts when only large-scale satellite observations are utilised,

although further work is needed to ascertain the robustness of these findings.

All in all, this thesis shows that the idea of investigating satellite DA using a modified

shallow water model is a viable strategy. By imitating closely several aspects of an

operational system and by developing a more realistic model, we have demonstrated

that large-scale satellite observations alone can have a negative impact on the quality

of a DA system.
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Chapter 1

Introduction

Thou shalt not worship the radiosonde

Suomi’s 11th commandment

1.1 Background and motivation

On April 1st 1960, 9 seconds after 6:40 am EST, a National Aeronautics and Space

Administration (NASA) rocket called Thor-Able was launched from Cape Canaveral,

Florida (United States). Thor-Able carried on board the first-to-be weather satellite:

the so-called Television and Infra-Red Observation Satellite (or TIROS-1), which en-

tered into orbit the same day and started to return images of the Earth straight away.

Since then, hundreds more missions have been carried out, operated by several na-

tional and supranational agencies, resulting in a remarkable number of satellites sent

into space with the purpose of studying the Earth’s atmosphere, as well as gathering

more data to improve the quality of weather forecasting. The European Space Agency

(ESA), for instance, launched its first satellite (called Meteosat) on November 23rd,

1977. The Japanese Space Agency had done the same with the first Himawari satellite

(also known as GMS-1) in the April of the same year. China followed shortly after by

sending into orbit its first Feng-Yun satellite (FY-1A) in September 1988. Currently,

the website of the World Meteorological Organization (WMO) lists a total of 111 op-
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erational satellites contributing to its Integrated Global Observing System (WIGOS)1.

The advent of satellites transformed many aspects of atmospheric sciences and meteo-

rology. For the first time, it was possible to monitor from the skies many atmospheric

phenomena, such as fronts and cyclones, which had previously been observed only

from the surface. Their use also contributed to the study of the properties of clouds

and precipitation, and helped to expand the real-time coverage of the weather across

the planet over previously unobserved areas such as the poles and the oceans, where

conventional observations were (and still are) difficult and rare.

The change brought about by satellites has been so radical that today it is difficult to

imagine generating a weather forecast without their contribution. Nevertheless, the

first operational forecast based on a Numerical Weather Prediction (NWP) model was

issued on May 6th, 1955 by the Joint Numerical Weather Prediction Unit (JNWPU)

in the United States (Harper et al., 2007), that is, five years before the first meteoro-

logical satellite was sent into orbit.

Almost seventy years later, weather forecasting can be rightly seen as one of the main

scientific achievements of the Twentieth century. In a review paper published a few

years ago, Bauer et al. (2015) called its success a “quiet revolution”, as the progress

made in this field was marked by small, incremental technical improvements and the

gradual understanding of the underlying physical processes rather than by a series of

major scientific developments. Sure enough, the inclusion of satellite observations and

the gain in knowledge on how to make best use of them was part of such advances.

Eventually, the emergence of increasingly complex and sophisticated NWP models has

led to the ability to predict the main atmospheric variables at synoptic scales several

days in advance with good accuracy (Bauer et al., 2015; Zhou et al., 2017).

Running an NWP model amounts to solving numerically a set of differential equations

representing the evolution in time of various atmospheric processes. In this sense, the

problem of forecasting the weather is an initial value problem and requires an initial

condition representing as closely as possible the real atmospheric conditions at the

validity time in which the forecast starts.

The domain of the atmospheric sciences dealing with the production of such initial

conditions is called data assimilation (DA). Data assimilation comprises a series of

1Webpage url: https://community.wmo.int/activity-areas/wmo-space-programme-wsp/

satellite-status. Last access on 30/03/2021.
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1.1 Background and motivation
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Figure 1.1: Schematic representation of a sequential (left) and a variational (right) DA

scheme. In a sequential scheme, the forecast trajectory (red lines) is regularly adjusted

towards the observations (green dots) at analysis times {ti, ti+1, ...} to generate an

analysis state (cyan dots) which is used as initial condition for the subsequent forecast.

In a variational scheme, an analysis trajectory (cyan line) results from the minimisation

of a cost function which optimises the distance from the observations (green dots) and

the previous forecast (red line) over a certain assimilation window [t1, t2]; the value

of the analysis at the end of the assimilation window (cyan dots) becomes the initial

condition for the subsequent forecast. In both figures, the green line denotes the ‘true’

evolution of the atmosphere.

mathematical and statistical techniques which are used to continuously adjust recent

model data with up-to-date observations in order to obtain a more accurate and precise

description of the ongoing atmospheric conditions. The literature on this topic is vast,

and many books cover it in detail, such as Kalnay (2003) and Reich & Cotter (2015).

Among many review articles, Carrassi et al. (2018) offer an up-to-date summary on

its uses and future perspectives in the geosciences.

One of the most interesting properties of the atmosphere is its intrinsic chaotic be-

haviour. In the context of deterministic systems, chaos is defined as a strong sensitivity

to the initial conditions (Lorenz, 1963). In this sense, the ability to predict the weather

in the future depends on the knowledge of the current conditions. As a result, the

role of DA in generating accurate initial conditions for NWP models is particularly

important and plays a crucial role in determining the accuracy of a forecast.

There exist several types of DA schemes, which can be grouped into four categories: (i)

sequential, (ii) variational, (iii) hybrid and (iv) particle filters. Most of these algorithms
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are based on a Bayesian probabilistic framework, in which starting from a ‘first-guess’

distribution associated with the prior forecast model state (also called the background),

and by using the observations available, a posterior distribution can be estimated,

leading to the derivation of a new model state called an analysis. In addition, most

of them (with the exception of particle filters) assume Gaussian error distributions

for both the observations and the background, which allows us to formulate the DA

equations only in terms of the mean state and the error covariance matrices. A brief

description of each DA category mentioned above follows:

(i) Sequential schemes alternate a forecast step during which a model is integrated

forward in time, and an analysis step in which the observations are assimilated

and a new initial condition is generated and used to launch the subsequent

forecast step (see Figure 1.1, left image). This method requires the observations

to be used sequentially in time and therefore prescribes that they are assimilated

only at a single time, which becomes the analysis validity time. Examples include

the Optimal Interpolation (OI) method (Kalnay, 2003) and the Kalman Filter

(Kalman, 1960; Kalman & Bucy, 1961), with the latter allowing a flow-dependent

background error which is recomputed at every analysis step. In recent years,

sequential schemes have moved significantly towards an ensemble approach, in

which multiple model simulations are run in parallel during the forecast step,

contributing to improving the representation of the forecast uncertainty. The

development of the Ensemble Kalman Filter (EnKF, Evensen (1994)) was one

of the first attempts made in this direction.

(ii) Variational schemes (Le Dimet & Talagrand, 1986; Talagrand & Courtier, 1987)

are based on the minimisation of a cost function defined as the sum of various

terms accounting for the deviation of the observations and the background from

an unknown atmospheric state to be varied in the minimisation process. The

model state that minimises these deviations becomes the analysis and therefore

the initial condition for the subsequent forecast. A common approach based

on the linear approximation of the observation penalty term leads to the so-

called incremental approach (Courtier et al., 1994), in which the cost function

is expressed in terms of the perturbation with respect to a known reference

state (Veersé & Thépaut, 1998). Variational algorithms are based on the same

assumptions regarding Gaussian errors as the sequential schemes, and gener-

ally assume a static background-error covariance matrix (in fact, the Kalman
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1.1 Background and motivation

smoother equations and the variational cost function are equivalent, as shown

in Lorenc (1986)). They can assimilate all observations comprised within an

hours-long assimilation window (cf. Figure 1.1, right image) and also require

the formulation of both tangent-linear operators (cf. §6.3 in Kalnay (2003))

and adjoint models (Errico, 1997). The two most common variational schemes

are called 4D-Var (four-dimensional variational data assimilation) and 3D-Var

(three-dimensional variational data assimilation), which differ in the way they

handle the time dimension, with pure 3D-Var assuming that the observations

are all valid at the same time and 3D-Var FGAT (First Guess at Appropriate

Time) assuming that the observations and the previously calculated background

trajectory are valid at the same time.

(iii) Hybrid schemes are in essence variational algorithms in which the ensemble ap-

proach is adopted to compute – totally or partially – the (otherwise static)

background-error covariance matrix. Hybrid methods are currently in use at a

number of operational weather centres (cf. Table 5 in Bannister (2017)).

(iv) Particle filters have been formulated recently (Van Leeuwen, 2009), and represent

an attempt to formulate a DA technique without assuming Gaussian-distributed

errors. Presently, they are not considered in any operational settings.

Bannister (2017) provides a comprehensive review of the algorithms in use at various

operational weather centres.

Data assimilation strongly benefited from the advent of satellite observations, as they

significantly expanded the data coverage around the planet, especially in poorly ob-

served regions where in-situ observations were harder and more expensive to collect.

This expansion led to a significant improvement in the forecast skill, particularly in the

Southern Hemisphere, where for logistical reasons (i.e. a smaller population density

and a high proportion of the surface occupied by water) the conventional observations

were scarce (Rabier, 2005; Simmons & Hollingsworth, 2002).

With time, satellites have become the most prominent source of observations in global

NWP DA in terms of both volume of data assimilated and impact on the final analy-

sis (Kelly & Thépaut, 2007). This progress took several decades of research and was

accompanied by a radical rethink of how satellite observations had to be treated. The

initial approach (common in the 1980s) of treating satellite data as de-facto radiosonde
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measurements, and converting them into vertical profiles of temperature and humidity

was later replaced by the direct assimilation of radiance, which was also made possible

by a gradual shift towards the use of variational schemes in the late 1990s.

Currently, one of the main challenges is the assimilation of cloudy scenes. In fact, only

a small portion of all available satellite data is routinely assimilated, and for many

years most of the satellite observations contaminated by clouds and precipitation have

been discarded because of the difficulties in handling the non-linearities arising from

their assimilation. In practice, only satellite observations in the presence of clear-sky

conditions used to be retained. More recently, a lot of effort has been put into so-called

all-sky DA, that is, the assimilation of satellite data regardless of the local weather

conditions (Geer et al., 2017, 2018; Migliorini & Candy, 2019). This progress is ex-

pected to have a further positive impact on the quality of weather forecasting, as the

areas covered by clouds and precipitation are often those dynamically more interesting

to assimilate (McNally, 2002). At present, there are already a few operational centres

which have started to implement their all-sky assimilation methods, while the research

in this field is still ongoing.

Satellite DA is also confronted by an ongoing expansion in the number of observa-

tions, due to the continuous addition of new instruments and the increase in both

their spectral and spatial resolutions. These developments make the research into how

to optimise the use of satellite observations all the more important. In this regard, one

possible approach consists of applying data compression techniques that can thin the

total amount of observations by taking into account their error correlations (Fowler,

2019).

In an effort to investigate more efficient ways to assimilate an expanding number of

observations, in this thesis we examine the potential benefit of focussing on the as-

similation of satellite observations at small rather than large spatial scales (and vice

versa). In particular, we will assess the response of a forecast-assimilation system to

the variation in spatial resolutions (or Field of View) of a set of synthetic satellite

observations. Understanding the effect of prioritising the assimilation of satellite ob-

servations at a specific spatial scale can help orientate future strategies and decisions

in the field, with more resources directed towards what is deemed most beneficial for

an operational DA system.

Moreover, in an attempt to make the work presented here as relevant as possible in

the context of the current research interests in satellite DA, we plan to include the
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1.1 Background and motivation

effect of clouds and therefore to conduct all-sky assimilation experiments.

Unfortunately, the degree of complexity and the computational cost typical of state-

of-the-art NWP models can hamper or slow down the research in DA, especially when

the resources are limited. Indeed, operational NWP DA systems are built to combine

routinely very large amounts of data: the number of degrees of freedom in a global

weather model (i.e., the number of model variables times the number of grid points

used for its numerical discretisation) can easily reach orders of magnitude of O(109),

while the number of observations assimilated can be as big as O(107).

Therefore, simplified or even idealised versions of the state-of-the-art models have been

developed and utilised as alternative tools. These solutions include:

• Models of intermediate complexity, based on some widely known simplifications

of the equations governing the atmosphere, such as the quasi-geostrophic (QG)

approximation. These models represent a compromise that retains a connec-

tion with the equations governing the atmosphere and at the same time reduce

considerably the computational cost. For example, a QG model was used in

Houtekamer & Mitchell (1998) to investigate the use of the Ensemble Kalman

filter, and in Beck & Ehrendorfer (2005) to study the impact of a flow-dependent

background-error covariance matrix in a 4DVar system. Other intermediate com-

plexity models developed for DA purposes are: the Atmospheric Model of In-

termediate Complexity (AMIC, Ehrendorfer & Errico (2008)), the Moist Atmo-

sphere Dynamics Data Assimilation Model (MADDAM, Zaplotnik et al. (2018)),

and the non-hydrostatic ABC model (Bannister, 2020; Petrie et al., 2017).

• Idealised models, based on simple sets of differential equations representing only

basic processes related to the atmosphere. A common example is represented

by the simplified models developed by Lorenz (e.g., Lorenz (1963) and Lorenz

(1995)), which have been used in many DA studies (see, for example, Goodliff

et al. (2015); Ott et al. (2004)). A different approach envisages the use of shallow

water models, which have been utilised in DA research for both the atmosphere

and the ocean in a series of studies, i.e. Žagar et al. (2004), Salman et al.

(2006), Stewart et al. (2013) and Würsch & Craig (2014). With respect to the

Lorenz models, they have the advantage of being based on actual fluid-dynamic

equations. Lastly, there are single-column models, in which the atmosphere is

approximated as a single, vertical column of fluid. These models have been used
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to investigate the role of clouds in ensemble DA (Vetra-Carvalho et al., 2011), to

explore the role of satellites in variational DA (Rudd et al., 2012), and to study

coupled 4DVar DA in an atmosphere-ocean model (Smith et al., 2015).

Key to the success of an idealised model is the degree to which it is able to imitate

the defining characteristics of the problem at hand. As a result, a well-constructed

idealised system will be able to display some of the same underlying features of the

real one, therefore allowing the user to address the scientific question without having

to solve or rely on the full-scale problem.

This thesis deals with two idealised models based on modified shallow water equations

developed to support DA research. The first one was developed in a previous work

by Tom Kent (Kent, 2016; Kent et al., 2017) and here we show its relevance in the

context of convective-scale NWP DA. The second one is an upgraded version which

will allow us to conduct idealised satellite DA experiments. Finally, in this thesis

we focus only on sequential schemes and, in particular, we adopt the Deterministic

Ensemble Kalman Filter (DEnKF) developed by Sakov & Oke (2008).

1.2 Objectives

The purpose of this thesis is to investigate the impact of satellite observations at dif-

ferent spatial scales on a DA system by using an idealised model of the atmosphere.

In particular, we are interested in understanding whether there is a relative benefit in

assimilating small scale observations over large scale ones, or vice versa.

In order to address this question, this work starts from an idealised model of the

atmosphere based on modified rotating shallow water equations (modRSW), able to

imitate convection and precipitation, which was presented in Kent (2016); Kent et al.

(2017). Here, we show that it is possible to conduct a series of forecast-assimilation

experiments with the modRSW model which are both well-tuned and relevant in the

context of operational NWP models. Since the relevance of idealised models for NWP

DA research is often overlooked in the literature, we present our results in the form of

a protocol that can be re-applied to other idealised systems in the future.

Furthermore, we discuss the limitations of the modRSW model for satellite DA re-

search and develop a new, revised version of the same model (in brief: ismodRSW)
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1.3 Thesis outline

which is considered fit for purpose. We also present our new observing system, in-

cluding our strategy to generate pseudo satellite observations, with the purpose of

assimilating them in a series of new forecast-assimilation experiments. Finally, we

aim to understand whether there exists a benefit in focussing on the assimilation of

satellite observations at small, rather than large spatial scale. To this end, we run

a series of data denial experiments, in which the scale of the observations is defined

by their horizontal resolution (or field of view). Thus, by excluding small and large

scale satellite observations in turn from the assimilation, it is possible to evaluate their

impact on the analysis.

Overall, the objectives of this thesis can be summarised as follows:

1. Show that it is possible to obtain a well-tuned idealised experiment with the

modRSW model which is also relevant for operational NWP DA research and

formulate a protocol to assess other idealised systems in the same way;

2. Show that the modRSW model needs to be modified for satellite DA research,

and then develop a new, revised version of the model that is fit for purpose;

3. Construct a complex (and idealised) observing system, comprising both simu-

lated ground and satellite observations, in which the characteristics of real-world

observing systems and satellite observations are imitated closely, and include the

effect of clouds;

4. Conduct new forecast-assimilation experiments in which satellite observations

are assimilated that are relevant for operational NWP systems;

5. Perform a series of data denial experiments – i.e. simulations in which a por-

tion of the observations are intentionally excluded from the assimilation – to

investigate the impact of satellite observations at different spatial scales.

1.3 Thesis outline

The thesis is structured as follows. Chapter 2 briefly summarises the dynamics and

the numerics of the modRSW model and describes the setup and the DA scheme

used in the forecast-assimilation experiments realised with the same model; moreover,

it introduces a protocol to assess the performance and the relevance of an idealised

system in the context of operational NWP DA and concludes with an evaluation of the
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experiments conducted with the modRSW model (objective 1). Chapter 3 shows why

the modRSW model is unsuitable to conduct satellite DA experiments and presents the

dynamics and the numerics of a revised, isentropic model (ismodRSW), together with

a verification against an analytical solution and a prototype of a nature run simulation

for anticipated DA experiments (objective 2). Chapter 4 presents an in-depth review

of basic radiative transfer concepts, the functioning of meteorological satellites and

the history of satellite DA, which is followed by a description of how all-sky pseudo

satellite observations are imitated in our idealised system (objective 3). Chapter 5

describes the modifications made to the DA scheme already outlined in Chapter 2 so

that it is possible to assimilate the pseudo satellite observations (objective 3); given

the new configuration and the nature run introduced in Chapter 3, it then illustrates

the process to obtain a well-tuned experiment and proves its relevance in the context of

convective-scale NWP systems (objective 4); lastly, it shows and discusses the results

of a series of data denial experiments to evaluate the impact of satellite observations

at various spatial scales (objective 5). Chapter 6 reports the conclusions and discusses

possible future work.
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Chapter 2

The relevance of the modRSW

model for NWP data assimilation

Here we discuss the use of an idealised model of the atmosphere based on modified

shallow water equations to conduct a series of data assimilation experiments. In partic-

ular, we will describe the so-called ‘twin-setting’ configuration that is used to generate

a set of pseudo observations which are subsequently combine with an ensemble of fore-

casts using a Deterministic Ensemble Kalman filter (DEnKF). In the final part of the

chapter, we will evaluate its relevance for NWP DA research and, in doing that, we

present a protocol that can be generalised to other idealised models.

The data assimilation scheme and the twin-setting configuration outlined in this chap-

ter will be replicated in the experiments involving the assimilation of satellite obser-

vations in Chapter 5, apart from a few modifications described therein.

2.1 The modRSW model: dynamics and numerics

Previous work done by Kent (2016); Kent et al. (2017) led to the development of an ide-

alised model aimed at investigating convective-scale data assimilation research. This

model was based on modified rotating shallow water equations (hence the acronym

modRSW ) and was an improved modification of the simpler cumulus convection model

described in Würsch & Craig (2014).
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Here, we present a brief summary of the dynamics and numerical implementation of

the modRSW model. Later in the chapter, we will discuss in detail its use in a series

of data assimilation experiments (cf. section §2.4-2.5) thus proving its relevance for

NWP data assimilation. Similar considerations can be found in Kent et al. (2020).

2.1.1 Model equations

The equations of the modRSW model are as follows:

∂th+ ∂x(hu) = 0, (2.1.a)

∂t(hu) + ∂x(hu
2 + P ) + hc2

0∂xr − fhv = −Q∂xb, (2.1.b)

∂t(hv) + ∂x(huv) + fhu = 0, (2.1.c)

∂t(hr) + ∂x(hur) + αhr + hβ̃∂xu = 0; (2.1.d)

in which: x and t are the space and the time coordinates respectively, h is the fluid

depth, u and v are the zonal and meridional velocities, and r is a ‘rain mass frac-

tion’ (a proxy for precipitation). All variables are defined on a one-dimensional do-

main, whereas the meridional components of the spatial derivative are dropped (i.e.

∂y (·) = 0). Other parameters in (2.1) include the Coriolis frequency f and the bottom

topography b.

The model (2.1) comprises two fluid depth thresholds which act like switches and

modify the model dynamics in order to generate convection and precipitation. In par-

ticular, the definition of P , Q and β̃ in (2.1) depend on the convection (Hc) and rain

(Hr) thresholds (as well as convergent flow). Their expressions read:

P (h; b) =

{
1
2
g(Hc − b)2 if h+ b > Hc,

1
2
gh2 otherwise;

(2.2.a)

Q(h; b) =

{
g(Hc − b) if h+ b > Hc,

gh otherwise;
(2.2.b)

β̃ =

{
β if h+ b > Hr and ∂xu < 0,

0 otherwise;
(2.3)

in which g indicates the acceleration due to gravity. The remaining model parameters

c2
0 [m2s−2], β (dimensionless) and α [s−1] in (2.1) control: the intensity at which

convection is suppressed in areas where rain is present, the rate at which rain is

produced, and the velocity with which rain is removed from the system, respectively.
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2.1 The modRSW model: dynamics and numerics

From equations (2.2)-(2.3), one can note that whenever h + b < Hc < Hr and r = 0,

the system (2.1) reduces to the classic rotating shallow water equations.

The system (2.1) can be non-dimensionalised by introducing horizontal and vertical

length scales L0 and H, the scale velocity V0 and the corresponding time scale L0/V0.

By using this scaling, the model variables, parameters and coordinates can be non-

dimensionalised as follows:

t = t̃
L0

V0

, x = x̃L0, (u, v) = (ũ, ṽ)V0, h = h̃H, α = α̃
V0

L0

, c2
0 = c̃2

0V
2

0 . (2.4)

After substituting (2.4) into (2.1) and some reordering, and once the tildes on x, t, u

and v are dropped, one obtains the scaled modRSW system:

∂th+ ∂x(hu) = 0, (2.5.a)

∂t(hu) + ∂x(hu
2 + P ) + hc̃2

0∂xr −
1

Ro
hv = −Q∂xb, (2.5.b)

∂t(hv) + ∂x(huv) +
1

Ro
hu = 0, (2.5.c)

∂t(hr) + ∂x(hur) + α̃hr + hβ̃∂xu = 0; (2.5.d)

in which the parameters α̃ and c̃2
0 are now non-dimensional, Ro = V0/fL0 indicates

the Rossby number, and the gravitational acceleration g within P gets redefined as

g = 1/Fr2, with Fr being the Froude number:

Fr =
V0√
gH

. (2.6)

2.1.2 Model dynamics

In this section we summarise the dynamical mechanisms associated with the onset of

convection and the production of precipitation in the modRSW model. We refer to

section §2.2 of Kent (2016) for a more detailed description.

Onset of convection (Hc < h+ b < Hr)

When the total fluid depth h+ b overcomes the convection threshold Hc, the effective

pressure P is maintained at a constant value (cf. eq. (2.2a)). This modification implies

that, above Hc, the fluid experiences a lower pressure value than the one it would

normally have. Ultimately, this relative reduction in the effective pressure causes the

fluid to rise.
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From a meteorological perspective, the threshold Hc can be interpreted in the context

of cumulus convection as the Level of Free Convection (LFC), which is defined as the

height at which an air parcel needs to be lifted for it to become unstable and naturally

more buoyant (i.e. less dense) then the surrounding environment.

Generation of precipitation (Hc < Hr < h+ b and ∂xu < 0)

Model rain r is generated upon satisfying of two requirements: the depth of the fluid

column h + b overcoming the convection threshold Hr and a positive local wind con-

vergence given by ∂xu < 0. These two conditions lead to the activation of the source

term hβ̃∂xu in the model equation (2.1d) via (2.3).

This mechanism can be interpreted in physical terms by considering that rain is gener-

ally produced at a later stage with respect to the onset of convection (hence Hr > Hc)

and is often associated with areas of wind and moisture convergence. In order to pre-

vent the convection from growing indefinitely in the modRSW model, the momentum

equation (2.1b) is coupled to the rain equation (2.1d) via the term hc2
0∂xr. As high-

lighted in Kent (2016); Kent et al. (2017), this term counteracts the fluid rise generated

by the constant effective pressure P in a way that is comparable to the suppression of

the updraft in a cloud when precipitation starts. Eventually, rain is removed from the

system via the sink term αhr in eq. (2.1d).

2.1.3 Hyperbolicity and numerical implementation

Shallow water models are hyperbolic systems of partial differential equations (PDEs)

which can be expressed as:

∂tU + ∂xF(U) + T(U) = 0. (2.7)

The problem of how to deal with them numerically has been addressed extensively

in the literature (see, for example, LeVeque (2002)). The modRSW model, however,

represents a special case, as the addition of terms associated with convection and rain

turns it into a non-conservative system in which eq. (2.7) becomes:

∂tU + ∂xF(U) + G(U)∂xU + T(U) = 0, (2.8)

in which the presence of the non-conservative products (NCP) G(U)∂xU prevents the

expression above from being written in divergence form.
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2.2 Forecast-assimilation experiments with the modRSW model

The numerical scheme used in Kent (2016) and Kent et al. (2017) to integrate the

modRSW model was the Discontinuous Galerkin Finite Element Method (DGFEM)

developed by Rhebergen et al. (2008) at the lowest order (i.e. DG0), in which the

NCP terms were dealt with as per the Dal Maso, LeFloch and Murat’s theory (DLM;

see Dal Maso et al. (1995); Le Floch (1989)). Although this method generally offers

a robust solution for non-conservative hyberbolic systems of PDEs, the presence of

topography in the modRSW model constituted an additional challenge, as the DGFEM

does not handle the preservation of the steady states at rest in a satisfactory way (Kent

& Bokhove, 2020). To tackle this limitation, the NCP theory was combined with the

well-balanced scheme of Audusse et al. (2004), leading to a comprehensive and robust

numerical scheme for the modRSW model (we refer again to Kent (2016) and Kent

et al. (2017) for full details).

2.2 Forecast-assimilation experiments with the

modRSW model

In this section we describe the setup used in the forecast-assimilation experiments de-

scribed in section §2.5. First, we give an illustration of the twin-setting configuration,

which is the basis of the data assimilation simulations realised with the modRSW

model. Later, we will describe the data assimilation scheme in detail, with a step-by-

step description of the algorithm implementation reported in section §2.3.

Some of the parameters mentioned in this section (namely those regarding the ob-

serving system and the ensemble size) have been selected at the end of a lengthy

tuning process, which for sake of simplicity is not outlined here. The tuning of further

parameters related to the data assimilation scheme will be discussed in section §2.5.

2.2.1 The twin-setting configuration

In order to conduct data assimilation experiments using the modRSW model, a twin-

setting configuration is adopted. This approach amounts to running the same numer-

ical model to obtain both a nature run simulation – treated as the ‘true’ evolution of

the physical system – and the forecasts. In this regard, two methods are possible: a

perfect model scenario in which the nature run and the forecast are generated with
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Figure 2.1: Effects of the resolution mismatch between the nature run and the fore-

casts. The nature run trajectory for h (Nnat
el = 400, blue line) is plotted alongside

a single model integration with Nel = 200 (orange line) after t = 0.144. Both are

initialised with (2.11). Topography b(x) is in black.

two identical versions of the same model and an imperfect model scenario in which

they differ in some respect.

In this thesis, we adopt a twin-setting configuration based on an imperfect model

scenario, in which we utilise different spatial resolutions for the nature run and the

forecasts. In particular, the single, deterministic integration of the modRSW model

representing the nature run is carried out at twice the resolution of the forecasts. This

resolution mismatch implies that the forecast is unable to resolve some of the features

present in the nature run (this can be observed in Figure 2.1), akin to the struggles

of real NWP models in representing small-scales and sub-grid phenomena, which are

common at convective scales.

The nature run is used to generate a set of pseudo-observations which are included in

the data assimilation algorithm to adjust the forecast towards the ‘true’ state of the

system. A schematic representation of the twin-setting configuration applied to the

modRSW model is shown in Fig. 2.2.

Nature run

We express the nature run solution as a time-dependent 3Nnat
el -dimensional vector

xt(t) which results from a single, numerical integration of the modRSW model (2.1)
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2.2 Forecast-assimilation experiments with the modRSW model

modRSW model Data assimilation

Forecast

Nature run Observations
Nnat
el

Nel

Figure 2.2: Schematic representation of the twin-setting configuration used to conduct

forecast-assimilation experiments with the modRSW model. Nnat
el and Nel indicate the

number of grid points used for the numerical discretisation of the nature run and the

forecast, respectively.

(denoted by the operator M) from time t− dt to t:

xt(t) = M(xt(t− dt)) (2.9)

on a horizontal grid of Nnat
el = 400 points over a periodic domain of length L0, in

the absence of rotation (i.e. Ro = ∞) and under supercritical flow conditions (i.e.

Fr = 1.1). The bottom topography b(x) is formed by a series of hills covering part of

the domain defined by a series of sinusoidal functions (see the black line in Fig. 2.1)),

i.e.:

b(x) =


3∑
i=1

bi, for xp < x < xp + 0.5;

0, elsewhere;

(2.10.a)

with bi = Ai
(
1 + cos

(
2π(ki(x− xp)− 0.5)

))
, (2.10.b)

in which xp = 0.1, k = {2, 4, 6} and A = {0.1, 0.05, 0.1}. The nature run is initialised

with initial conditions:

h(x, 0) + b(x, 0) = 1; hu(x, 0) = 1; hv(x, 0) = 0; hr(x, 0) = 0, (2.11)

and is integrated for a total of 48 hours, equivalent to t = 6.912 non-dimensional model

time units. Given the absence of rotation and hv(x, 0) = 0 in (2.11), it follows that

the meridional momentum equation in (2.1) can be neglected. The convection and

rain thresholds are set to Hc = 1.02 and Hr = 1.05, respectively. A summary of the

model parameters used in the nature run simulations is reported in Table 2.1.
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Figure 2.3: Hovmöller plot of each model variable in the nature run simulation: h (left

panel), u (central panel) and r (right panel). The corresponding topography b(x) is

shown underneath each panel.

The presence of topography (2.10) in a periodic domain, together with the initial

horizontal flow, creates the conditions for a continuous production of gravity waves,

which are subsequently advected eastward and re-enter the domain on the opposite

side. This process results in a self-sustained generation of convection and precipitation

and contributes to keeping the simulations dynamically interesting without the need

for external forcings. The model dynamics are represented in Fig. 2.3, which displays

the Hovmöller plot of each model variable in the nature run simulation. Indeed, most

of the convection (gray shades) and potential precipitation ranges (yellow to brown

shades) in h (left panel) leading to rain r (right panel) is generated in correspondence

with or downstream of the topography (bottom panels), and then travels across the

domain until it reappears at x = 0. The underlying travelling gravity waves also

have an effect on the horizontal velocity u, which experiences a regular alternation of

increases and decreases in the second half of the domain, although in a way that seems

out-of-phase with (and faster than) the presence of convection and precipitation.

The nature run will be used as the reference ‘true’ state in section §2.5 to compute

various diagnostics, including the root mean squared error (RMSE) of the ensemble

mean (as defined in section §2.4.2). This possibility figures as one of the advantages

of using an idealised configuration instead of an operational NWP model, as the ‘true’

state of the atmosphere is not available in the real world.
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2.2 Forecast-assimilation experiments with the modRSW model

Observations

A set of p = 28 pseudo-observations yo (also called synthetic observations) are obtained

from the 3Nnat
el -dimensional nature run xt every 60 minutes (i.e. every t = 0.144

non-dimensional model time units). To this aim, an observation generator function

G : R3Nnat
el −→ Rp, mapping the nature run at the time t into the p-dimensional

observation space can be defined:

yo(t) = G(xt(t)) + εεεo(t), (2.12)

in which εεεo is a p-dimensional vector representing the observation error.

The observing system used in the forecast-assimilation experiments described in sec-

tion §2.5 is obtained by simply sub-sampling the nature run at fixed, evenly spaced

locations along the domain, with the spacing of each observation type dh,u,r reported

in Table 2.1. This simplification makes it possible to express the observation generator

function as a (p×Nnat
el ) linear operator G (a sparse matrix of 0 and 1), that is:

yo(t) = Gxt(t) + εεεo. (2.13)

The observation error vector εεεo at any assimilation time t is sampled from the distri-

bution:

εεεo ∼ N(0,R), (2.14)

in which R is the static (p× p) observation error covariance matrix, defined as:

R = diag(s2
hIh, s

2
uIu, s

2
rIr), (2.15)

where Ih,u,r represents the identity matrix with dimensions equal to the number of

h,u and r observations, and s2
h,u,r are the variances associated with the observation

errors sh, su and sr reported in Table 2.1. In other words, the observation errors εεεo are

assumed to be Gaussian and unbiased (i.e. zero mean), in line with the assumptions

typical of an Ensemble Kalman filter like the one described later, in section §2.2.2.

Since the matrix R in (2.15) is taken to be diagonal, the observation errors are also

uncorrelated.

Forecasts

The forecast simulations xf are generated by running the modRSW model with the

same parameters used in the nature run simulation (cf. Table 2.1), but on a coarser
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grid of Nel = 200 points. Taking into account the domain length scale of L0 = 500km,

this is equivalent to a model resolution of 2.5km, a value in line with most operational

convection-resolving NWP models currently available (Gustafsson et al., 2018).

At the initial time t = 0, the initial condition (2.11) is perturbed in order to obtain

an ensemble of j = 1, ..., N = 18 initial conditions, defined as:

hj(x, 0) = h(x, 0) + sic
hzj (2.16.a)

huj(x, 0) = hu(x, 0) + sic
huzj (2.16.b)

hrj(x, 0) = hr(x, 0) + sic
hrzj (2.16.c)

in which zj is an Nel-dimensional vector sampled independently for each variable from

zj ∼ N(0, I) (with I being an (Nel × Nel) identity matrix), and sic = (sic
h , s

ic
hu, s

ic
hr) =

(0.1, 0.05, 0) defines the standard deviation of the initial errors.

The value shr = 0 implies that the initial condition hr(x, 0) = 0 in (2.11) remains

unperturbed in all ensemble members (2.16c): this choice prevents the generation of

nonphysical negative initial values of the mass rain fraction r. Moreover, the variable

r is positively correlated with h via the rain threshold mechanism (cf. §2.1.2) and

therefore the perturbation of h(x, 0) alone will affect r(x, t) at later times, i.e. t > 0.

The possibility of spurious, negative values of r and h arising during the application of

the data assimilation scheme described in the next section cannot be excluded. There-

fore, a non-negativity constraint is imposed on both variables after each analysis step.

In practice, any negative values of either h or hr are set to zero (h is reset to h = 0.001)

after the observations have been assimilated into the system. This is, of course, a very

crude approach that has the benefit of solving the problem efficaciously, but does not

address other issues such as the conservation of mass. More elegant alternatives have

been proposed, such as in Janjić et al. (2014), in which mass conservation principles

are incorporated within the data assimilation algorithm.

2.2.2 The Deterministic Ensemble Kalman Filter (DEnKF)

The data assimilation scheme used in this thesis is the Deterministic Ensemble Kalman

Filter (DEnKF) developed by Sakov & Oke (2008). This algorithm is part of a broader

family of DA schemes – including the so-called deterministic and square-root filters,

see Tippett et al. (2003) – which, differently from the prevailing formulation of the

EnKF proposed by Burgers et al. (1998), do not require the addition of random per-

turbations to the observations before their assimilation. This procedure constitutes a
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2.2 Forecast-assimilation experiments with the modRSW model

Model parameters

Rossby number, Ro ∞ Initial conditions Eq. (2.11)

Froude number, Fr 1.1 Boundary conditions Periodic

Convection threshold, Hc 1.02 Domain length L0 [km] 500

Rain threshold, Hr 1.05 Velocity scale V0 [ms−1] 20

α̃ 10 Forecast Nel 200

β 0.2 Nature Nnat
el 400

c̃2
0 0.085 Time-scale T0 [h] 6.94

Observing system

Total number of observations, p 28

Observations per variable (ph, pu, pr) (8,10,10)

Update frequency [min] 60

Obs. spacing (dh, du, dr) [km] (62.5, 50, 50)

Obs. error (sh, su, sr) (0.05, 0.02, 0.003)

Table 2.1: A summary of the non-dimensional model parameters and the properties

of the observing system used in the idealised experiments. Units are dimensionless

unless specified otherwise.

well-known source of sampling error for ensemble filters and makes the analysis error

suboptimal, as discussed in Whitaker & Hamill (2002).

In our idealised system based on the modRSW model, only a small number of ob-

servations are assimilated, and they are already perturbed at the moment of their

generation from the nature run, via (2.13). In this sense, the DEnKF offers a conve-

nient setup, easy to implement and similar to the original EnKF, while at the same

time it avoids the risks associated with perturbing the (few) observations twice.

Like other sequential filters, the DEnKF is characterised by a forecast step during

which an ensemble of forecasts xfj , with j = 1, ..., N is integrated forward in time,

alternated with an analysis step during which the observations yo are combined with

the model states xfj to obtain a new ensemble of states called analyses, xaj , which are

used to initialise the subsequent forecasts.

41



Hence, the forecast step for each ensemble member xfj between two consecutive anal-

ysis steps at times ti and ti+1 can be expressed as:

xfj (ti) = M(xaj (ti−1)). (2.17)

At the analysis step, the DEnKF computes the analysis mean xa according to the

usual Kalman filter equation:

xa = xf + Ke(y
o −H(xf )), (2.18)

in which xf is the forecast mean, defined as:

xf =
1

N

N∑
j=1

xfj , (2.19)

whereas H represents the observation operator, i.e. a function H : R3Nel → Rp able to

map a model state into the observational space. Given the observing system described

earlier, in our system the function H can be linearised and it reduces to a sparse matrix

H of dimension (p× 3Nel). The matrix Ke in (2.29) is called a Gain matrix, has size

(3Nel × p) and is defined as:

Ke = Pf
eH

T (HPf
eH

T + R)−1, (2.20)

in which R represents the observation-error covariance matrix of dimensions (p × p)
defined in section §2.2.1, whereas Pf

e is the time-dependent forecast (or background-)

error covariance matrix of size (3Nel × 3Nel), which is calculated as:

Pf
e =

1

N − 1

N∑
j=1

(xfj − xf )(xfj − xf )T =
1

N − 1
Xf (Xf )T , (2.21)

with Xf called a forecast perturbation matrix of dimensions (3Nel × N), formed by

the j = 1, ..., N column vectors:

(Xf )j = xfj − xf . (2.22)

The expression (2.21) represents an approximation of the ‘real’ forecast-error covari-

ance Pf based on the uncertainty conveyed by the ensemble xfj . This is a fundamental

assumption of any ensemble filter and comes with its own limitations. For example,

there are sampling errors which commonly arise when using (2.21), which will be ad-

dressed in the next section.
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2.2 Forecast-assimilation experiments with the modRSW model

Once the analysis mean xa is computed, the DEnKF prescribes the redefinition of the

analysis perturbation matrix as:

Xa = Xf − 1

2
KeHXf . (2.23)

Finally, the analysis ensemble xaj is recalculated as:

xaj = (Xa)j + xa. (2.24)

Our implementation of the DEnKF scheme is detailed in section §2.3 and presents

some differences from what we have described so far, which will be illustrated in the

next section.

2.2.3 Limitations and remedies

The DEnKF is subjected to a series of issues which are common to most ensemble

Kalman filters and that make the final analysis suboptimal. In particular:

• the small, finite-size ensemble forecast leads to sampling errors: these are re-

flected in the forecast-error covariance matrix Pf
e (2.21), which underestimates

the real forecast uncertainty and causes the ensemble to have too little spread

(Van Leeuwen, 1999), that is, the degree of dispersion of the ensemble members

(a formal definition is given in section §2.4.2).

• The impossibility for a small ensemble to span the entire model space (i.e. N �
3Nel) risks creating spurious correlations in the covariance matrix Pf

e , which are

not representative of real physical relationships between the variables.

• The issue of inbreeding, as identified by Houtekamer & Mitchell (1998), in which

the jth ensemble member is updated using a covariance matrix Pf computed

from the perturbation matrix Xf based on the ensemble average xf , including

the jth ensemble member itself.

• The imperfections and intrinsic limitations of the forecast model M, which is

inevitably a simplification of the real system (in our case, this aspect is mimicked

by the resolution mismatch displayed in Fig. 2.1).
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As a consequence, a series of remedies are adopted to mitigate the effects of the

above issues. The solutions considered in this thesis include: adaptive multiplicative

and additive inflation to correct for sampling and model errors, respectively; a self-

exclusion technique to avoid inbreeding, and localisation to damp spurious correlation

in the forecast covariance matrix Pf
e . Below, we discuss each remedy applied to our

system in detail.

Adaptive multiplicative inflation

In order to counteract the lack of ensemble spread resulting from the sampling error

due to the finite-size ensemble forecast, an adaptive multiplicative inflation technique

called Relaxation To Prior Spread (RTPS) is utilised. This method was proposed by

Whitaker & Hamill (2012) and exploits the fact that the assimilation of the obser-

vations in the analysis step causes the ensemble spread of the analysis to be smaller

than the spread of the forecast. Therefore, the RTPS comprises the recomputing of

the analysis spread σa at the analysis step as:

σa ← (1− αRTPS) · σa + αRTPS · σf , (2.25)

in which σf represents the forecast spread and αRTPS ∈ [0, 1] is a tunable parameter.

More information on the actual implementation of the RTPS in our algorithm can be

found in section §2.3.

We note here that an alternative type of adaptive multiplicative inflation was proposed

by Whitaker & Hamill (2012), called Relaxation To Prior Perturbations (RTPP). This

technique is based on the recalculation of the analysis perturbation matrix Xa as:

Xa ← (1− αRTPP )Xa + αRTPPXf , (2.26)

in which Xf represents the forecast perturbation matrix (cf. (2.22)) and αRTPP ∈
[0, 1] is a tunable parameter. Similarly to the RTPS, also the RTPP exploits the

reduction in spread of the analysis ensemble, as the perturbation matrix depends on

the ensemble dispersion (see definition in (2.22)). Duc et al. (2020) presents a unifying

theory about covariance inflation techniques, including RTPP, RTPS and other types

of multiplicative inflation. We show in Appendix A how the DEnKF formulation

is equivalent to an ensemble Kalman filter with no perturbations and a RTPP of

αRTPP = 1/2. We exploit this equivalence in coding our DA algorithm (see step 2,

part vi in section §2.3).
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2.2 Forecast-assimilation experiments with the modRSW model

Self-exclusion

To avoid the ensemble inbreeding, each analysis member xaj is calculated using a

different Kalman gain Ke,̂j computed as:

Ke,̂j = Pf

e,̂j
HT (HPf

e,̂j
HT + R)−1, (2.27)

in which each Pf

e,̂j
is defined as in (2.21) but with the exclusion of the jth ensem-

ble member. This method was first proposed by Houtekamer & Mitchell (1998) and

subsequently applied by Hamill & Snyder (2000), while was first referred to as ‘self-

exclusion’ by Bowler et al. (2017).

In order to incorporate the self-exclusion into the DEnKF, the analysis mean xa is

computed as:

xa =
1

N

N∑
j=1

xaj ; (2.28)

after the application of the Kalman filter equation:

xaj = xfj + Ke,̂j(y
o −Hxfj )). (2.29)

We note that this represents a slight modification of the algorithm originally defined

by Sakov & Oke (2008).

Localisation

Localisation techniques are employed to eliminate spurious long-range correlations

in the forecast-error covariance matrix (Hamill et al., 2001). In practice, the (self-

excluded) matrix Pf

e,̂j
is redefined as:

Pf

loc,̂j
= ρρρ ◦Pf

e,̂j
, (2.30)

in which ρρρ is a (3Nel × 3Nel) localisation matrix made of coefficients ρl,m representing

the correlation between the elements l and m, computed according to the Gaspari-

Cohn taper functions (Gaspari & Cohn, 1999), whereas the symbol ‘◦’ represents

the element by element matrix multiplication ρl,m · P f

e,̂j l,m
(also known as the Schur

product, cf. Schur (1911)). The shape of the Gaspari-Cohn taper functions depends

on a parameter Lloc which defines the length-scale of the localisation, with Lloc = 0

representing the absence of localisation. Fig. 2.4 shows the shape of these functions

for different values of Lloc as a function of the distance in grid points (left panel),

together with a plot of the matrix ρρρ for Lloc = 1.0 (right panel). The mathematical

expression of the Gaspari-Cohn function is given in Appendix B.
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Figure 2.4: Gaspari-Cohn taper functions for different values of localisation scales and

length distance (Lloc = {0.5, 1.0, 1.5, 2.0}, c = {1.0, 0.50, 0.33, 0.25}, cf. Appendix B)

as a function of distance in number of gridpoints (left) and plot of the matrix ρρρ for

Lloc = 1.0 (right). The values Lloc = 1.0 will be selected at the end of the tuning

process presented later in this chapter.

Additive inflation

Additive inflation is implemented by injecting random perturbations ηηη into the forecast

model during its numerical integration, that is, by modifying (2.17) into:

xfj (ti) = M(xaj (ti−1)) + ηηηj, j = 1, ..., N, (2.31)

in which the 3Nel-dimensional vector ηηηj is sampled from a Gaussian distribution ηηη ∼
N(0, γ2

aQ), with Q being the model-error covariance matrix and γa a tunable additive

inflation parameter controlling the magnitude of ηηη.

In general, the best way to compute the matrix Q for an operational system is not

trivial and is still very much an active field of research. However, since the scope of

this study is not to investigate the best model for Q, we adopt a very straightforward

approach, exploiting the fact that, in the idealised system that we have constructed, the

only source of model error comes from the difference in spatial resolution between the

forecasts and the nature run. Therefore, we launch a total of 48 deterministic one-hour

forecasts (with Nel = 200) initialised at each analysis steps with the nature run so that
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2.3 Step-by-step algorithm

there is no initial condition error, and take the differences at each grid point between

the forecast and the nature run (conveniently sub-sampled) at the end of each hour-

long simulation, chosen to match the forecast-assimilation system’s cycling period. The

resulting space-dependent error distribution is subsequently used to generate a model-

error covariance matrix Q, in which the non-diagonal terms are neglected for simplicity.

In addition, the hr components are set to zero in order to avoid the overinflation of the

fluid depth h, which is non-linearly related to r via the system of thresholds described

in section §2.1.2. The result is shown in Figure 2.5, where the diagonal terms of the

matrix Q multiplied by different values of γ2
a are shown. From the graph, one can note

the impact that topography has on shaping the model error, which is larger in the

second half of the domain, where most convection and rain takes place (cf. Fig. 2.3).

In order to avoid the introduction of biases, once ηηηj is drawn from the distribution

ηηη ∼ N(0, γ2
aQ), it gets redefined by subtracting the ensemble average from the sampled

perturbations, which leads to the unbiased additive inflation vector η̃ηη:

η̃ηηj = ηηηj − ηηη (2.32)

to be used in (2.31) instead.

Finally, the implementation of the additive inflation in (2.31) is performed via the

Incremental Analysis Updates (IAU, cf. Bloom et al. (1996)). In other words, η̃ηηj is split

into small increments and injected continuously throughout the forecast step, rather

than added all at once at the analysis step (see forecast step, step ii and equation (2.34)

in section §2.3). Again, any negative values of h and r emerging upon the injection of

additive inflation are reset to h = 0.001 and r = 0, respectively. The choice of adopting

the IAU method is also in line with the operational implementation of the additive

inflation at the Met Office (cf. Bowler et al. (2017)), while noting that the Met Office

samples from an archive of scaled and adjusted historical analysis increments rather

than drawing the perturbations from a Gaussian distribution.

2.3 Step-by-step algorithm

Note that this section is an adaptation of Appendix A in Kent et al. (2020).

A compact algorithm for our implementation of one complete cycle (forecast plus anal-

ysis) of the DEnKF is summarised here. Throughout, the subscript j = 1, ..., N de-

notes the jth ensemble member and the subscript i = 1, ..., 48 denotes the analysis step
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Figure 2.5: Values of the (Nel × Nel) diagonal matrix γ2
aQ for γa = {0.15, 0.2, 0.3},

representing the spatial structure of the model error used to generate the additive

inflation in (2.31). The vertical dashed lines delimit the h, hu and hr components of

γ2
aQ. The different values of γa are tested in the tuning process outlined in section

§2.5.
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2.3 Step-by-step algorithm

(i.e. time). Note that prior to the start of the DA algorithm, p pseudo-observations

yi are generated by stochastically perturbing the nature run xt valid at the observing

time ti:

yi = Gxt + εoi , where εoi ∼ N(0,R), (2.33)

in which R = diag(s2
hIh, s

2
uIu, s

2
rIr) is a matrix of size (p × p), for prescribed error

variances s2
h,u,r and identity matrices Ih,u,r with dimension equal to the number of

observations of h, u, and r, respectively. Unphysical negative pseudo-observations

of h and r are then reset to zero. A prescribed model-error covariance matrix Q of

dimensions (N el ×N el) needs also to be estimated.

1. FORECAST STEP:

i An ensemble of initial conditions xic
j is generated by taking the values from

Eq. (2.11) and adding Gaussian noise for each variable according to sic, as

per Eq. (2.16). Unphysical negative initial conditions for hr are reset to

zero while negative h values (very rare) are reset to 0.001.

ii The model is integrated forward in time. Additive inflation is drawn from

the model-error covariance matrix Q as ηj ∼ N(0, γ2
aQ) and potential biases

are removed by applying equation (2.32). The unbiased model-error vec-

tor η̃j is injected throughout the numerical integration by dividing it into

(small) allocations proportional to the duration of each dynamical time-step

δt. For time-step details, we refer to Kent (2016) and Kent et al. (2017),

implemented here with a Courant-Friedrichs-Lewy (CFL) number of 0.5.

Therefore, within each forecast step of duration ∆t = ti+1 − ti at any time

t̃ ∈ [ti, ti+1], we compute:

x̃fj (t̃+ δt) = M[x̃fj (t̃)] +
δt

∆t
η̃j, j = 1, ..., N, (2.34)

with x̃fj (ti) = x̃aj (ti). In order to ensure that the algorithm does not over-

shoot the time of the next forecast-assimilation cycle ti+1, we take the final

time-step to be the reduced value ti+1 − t̃ when this is smaller than the

optimal δt determined by the CFL value.

ti ti+1t̃

∆t

δt

δt
∆t
η̃j
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iii At later times, the forecast uses the analysis ensemble from the previous

cycle as initial condition to integrate forward in time. A 12-hour forecast

is launched at the end of each analysis step, with the additive inflation

re-sampled and injected hourly as in ii.

2. ANALYSIS STEP:

i Each jth T + 1 hr model state obtained from the most recently launched

T + 12 hr forecast is transformed into the state vector for assimilation:

xfj (ti) = Ψ(x̃fj (ti)), i.e., (h, hu, hr) 7→ (h, u, r).

ii Compute the (p × 1) innovations dj = yi −Hxfj using the forecast states

from step 1 and the pre-computed pseudo-observations.

iii Compute the (diagonal) observational-error covariance matrix R, described

after Eq. (2.33).

iv Compute the forecast perturbation matrix X of size (N el×N) and therefore

the N forecast-error covariance matrices Pf

e,̂j
of dimension (N el×N el) (see

Eq. (2.21)), each of them computed excluding the jth ensemble member of

the forecast states from step 1, in order to avoid inbreeding.

v Apply (model-space) localisation using the Gaspari-Cohn function ρ for a

given length-scale Lloc to each forecast-error covariance matrix Pf

loc,̂j
:

Pf

loc,̂j
← ρρρ ◦Pf

e,̂j
; (2.35)

compute the jth Kalman gain Ke,j of size (N el × p) and the subsequent

analysis ensemble:

xaj = xfj + Ke,jdj. (2.36)

vi The Deterministic Ensemble Kalman Filter is implemented. The analysis

perturbation matrix Xa of dimensions (N el × N el) is computed with the

N members xaj (as per Eq. (2.21)); using the RTPP implementation of the

DEnKF (Appendix A), Xa is then redefined as:

Xa =
1

2
Xa +

1

2
Xf (2.37)
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2.4 Relevance of the modRSW model for NWP data assimilation

vii Relaxation to Prior Spread (RTPS) is applied by recomputing the analysis

ensemble spread σa (as per Eq. (2.25)) and then the analysis ensemble per-

turbations Xa are adjusted using Eq. (3) from Whitaker & Hamill (2012):

Xa =

(
1− αRTPS + αRTPS

σf

σa

)
Xa. (2.38)

viii The final analysis ensemble is recomputed using the redefined perturbation

matrix:

xaj = xa + (Xa)j, j = 1, ..., N, (2.39)

where (Xa)j is the jth column of Xa. If h is negative then it is reset to

0.001 while if r is negative it is reset to 0.

ix Return to step 1: analysis states from step 2viii are transformed back

x̃aj (ti) = Ψ−1(xaj (ti)) for integration and the sequential cycle continues.

Recall that, in this implementation, the parameter Lloc defines the number of grid

points in model space (Nel/Lloc) beyond which correlations are set to zero. In the case

of the ground observations, the observation location always coincides with the model

grid, and therefore H is a linear operator.

2.4 Relevance of the modRSW model for NWP

data assimilation

As outlined in the introduction, the use of idealised models in DA research is a common

strategy that presents substantial computational and logistical advantages. Nonethe-

less, an assessment of their relevance for operational NWP systems is often overlooked,

despite being a crucial aspect impacting on their usefulness. After all, an idealised

setup able to closely reproduce most of the features of a state-of-the-art DA scheme

can become a precious tool in orienting future decisions and choices involving a full-

scale system.

It is worth mentioning at this point that the model developed by Würsch & Craig

(2014) – of which the modRSW model represents a more physically consistent ver-

sion – has already been used in a number of studies to investigate various aspects of

convective-scale DA, such as the use of particle filters (Haslehner et al., 2016), pa-

rameter estimation for the representation of clouds (Ruckstuhl & Janjić, 2018) and
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the representation of model error (Zeng et al., 2018, 2019). In this regard, we note

that the aim of this study is considerably different from those applications, as we want

neither to compare DA methods, nor to propose suggested changes to operational DA

schemes, but instead want to provide convincing evidence that DA experiments using

the modRSW model show consistency with operational forecast-assimilation systems.

In doing this, we achieve two objectives. On the one hand, we develop a protocol

– or at least a consistent framework – to assess the relevance of idealised forecast-

assimilation systems for DA research in an operational setting. On the other hand, we

can demonstrate that the modRSW model itself constitutes a useful and relevant tool

for investigating DA in the presence of complex dynamics associated with convection

and precipitation.

2.4.1 A protocol for assessing performance and relevance of

idealised model experiments

We approach the question of whether (and to what extent) an idealised system is able

to replicate the main characteristics of an operational DA scheme in a rigorous and

systematic way, which is summarised in Table 2.2.

In the first column on the left, we have listed a series of parameters and properties

that characterise real-world data assimilation schemes and that any idealised systems

should aim to reproduce. Among these, we have also included some of the aspects

and criteria that are utilised (or need to be taken into account) during the tuning

and the validation processes which will be analysed in detail in the next section, §2.5.

The second column reports the typical values that these aspects assume in opera-

tional convective-scale DA systems (see Gustafsson et al. (2018) for a good summary),

whereas the third column displays how those are reflected in our forecast-assimilation

experiments based on the modRSW model. Lastly, the fourth column presents a self-

assessed evaluation of whether or not each aspect (unless inapplicable) is imitated

successfully.

The values of the ‘prescribed parameters’ reported in the table are based on those

reported in Table 5 of Gustafsson et al. (2018), which provides a useful overview of

the operational convective-scale data assimilation systems in use at the time. Since

the use of idealised models aims at reducing the computational costs, the number of

observations and the size of the state vector in our system are by construction not
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2.4 Relevance of the modRSW model for NWP data assimilation

comparable with those of a full-scale scheme. However, the rank deficiency relation-

ship which holds in a typical operational system is maintained by choosing a number of

ensemble members (i.e. N = 18) and observations (i.e. p = 28) such that N < p < n,

with n = 3Nel.

The observing system chosen for the idealised experiments is an extremely simple one

(i.e. linear observation operator, uncorrelated observations error, cf. section §2.2.1),

although it replicates the network density of the ground observations assimilated at

the Met Office, which is approximately 40 km1.

The filter configuration of our idealised experiments depends on localisation and in-

flation parameters (such as the RTPP and RTPS) which are widely used in other

operational systems. Although we do not expect the precise values of these parame-

ters to be comparable (as they reflect the characteristics of a specific data assimilation

system rather than representing a universal target value), both the RTPS and the

RTPP found in our final configuration are in line with those reported in the literature

for other operational implementations (Bick et al., 2016; Bowler et al., 2017; Gustafs-

son et al., 2018; Schraff et al., 2016).

In addition, we used common diagnostic tools such as the ensemble spread (SPR), the

root mean square error of the ensemble mean (RMSE) and the Continuous Ranked

Probability Score (CRPS) as tuning criteria for our Deterministic Ensemble Kalman

filter (these quantities are defined in section §2.4.2). Ensemble filters are considered

well–tuned when the spread of their ensemble is comparable to the RMSE of the en-

semble mean2; we therefore set the target ratio between SPR and RMSE to unity.

We also seek to minimise the values of both RMSE and CRPS for forecasts with a

lead time of three hours: this reflects the objective of operational centres of optimis-

ing their data assimilation systems to produce the forecast with the smallest possible

error, other than generating an accurate initial condition. Moreover, a lead time of

three hours is also fully within what is considered to be the nowcasting range (0 − 6

hours) for a weather forecast (Ballard et al., 2012; Sun et al., 2014), which is the most

relevant time-scale for convective-scale NWP.

1Source: https://www.metoffice.gov.uk/weather/guides/observations/uk-

observations-network. Accessed on 26/05/2021.

2Leutbecher & Palmer (2008) show that this results is actually dependent on the ensemble size.

In the case of an ensemble of N = 18 members, a theoretical convergence is expected for RMS =

1.1 SPR, cf. equation (7) therein.
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2.4 Relevance of the modRSW model for NWP data assimilation

Once the tuning criteria mentioned above are met, it is possible to validate an idealised

system for its relevance for NWP data assimilation. This is assessed by calculating the

Observational Influence diagnostic (OID) and the error doubling time Td and subse-

quently comparing them against the values found in operational systems (see section

§2.4.2 for their definitions). In this regard, our well–tuned forecast-assimilation exper-

iments produced an OID of approximately 30%, which compares with a value of 18%

calculated for the global ECMWF model by Cardinali et al. (2004), but is expected to

be higher (i.e. between 20% and 40%) in a convective-scale system. In addition, the

value of the error-doubling time found in the experiments (i.e. 6− 9 hours) is close to

those found in other operational convection-permitting models (Hohenegger & Schar,

2007).

2.4.2 Diagnostics definitions

In this section we summarise the definitions of some of the main diagnostics used

in this thesis to evaluate the forecast-assimilation experiments described here and in

Chapter 5.

Root mean squared error, RMSE

The root mean squared error (RMSE) is used to measure the accuracy of the ensemble

mean. The value of the RMSE averaged over the state vector is computed as:

RMSE =

√√√√ 1

N

N∑
k=1

(x
(•)
k − xtk)2,where x

(•)
k =

1

N

N∑
j=1

x
(•)
j,k , (2.40)

in which the subscript k refer to each component (i.e. variable) of the state vector,

the superscript t indicates the nature run xt, whereas the symbol (•) stands for either

the analysis xa or the forecast xf . All vectors are of size Nel, with the nature run

sub-sampled on the forecast model grid). The integer N represents the size of the

ensemble.
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Ensemble spread, SPR

The spread (SPR) is used to measure the uncertainty (or dispersion) conveyed by an

ensemble. Its average over the state vector is computed as:

SPR =

√√√√ 1

n

n∑
k=1

1

N − 1

N∑
j=1

(x
(•)
j,k − x

(•)
k )2 ≡

√
1

n
Tr(Pe

(•)), (2.41)

in which ‘Tr’ indicates the trace of a matrix (i.e. the sum of its diagonal entries), and

P
(•)
e is the forecast-error covariance matrix (cf. eq. (2.21)).

Continuous Ranked Probability Score, CRPS

The continuous ranked probability score (CRPS) is used to evaluate the quality of

a probabilistic forecast. In this thesis, we apply the definition for ensemble systems

presented in Hersbach (2000). Therefore, after reordering the ensemble members such

that xi ≤ xj (with i < j), we can compute the cumulative distribution P (x):

P (x) =
1

N

N∑
j=1

Θ(x− x(•)
j ), (2.42)

and the transition values pj = j/N , in which Θ(·) represents a Heaviside function

which is one when its argument is non-negative.

The CRPS is then computed as:

CRPS =
N∑
j=0

cj, with cj = αjp
2
j + βj(1− pj)2 (2.43)

in which αj and βj are coefficients defined as:

0 < i < N αj βj
xj+1 < xt xj+1 − xj 0

xj < xt < xj+1 xt − xj xj+1 − xt
xj > xt 0 xj+1 − xj

The CRPS is therefore a scalar quantity included between 0 and 1, in which CRPS = 0

indicates a ‘perfect’ forecast. In the results reported here and in Chapter 5, the CRPS

is averaged over the domain and/or each variable.
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2.4 Relevance of the modRSW model for NWP data assimilation

Observation Influence Diagnostic, OID

The observation influence diagnostic (OID, cf. Cardinali et al. (2004)) is used to eval-

uate quantitatively the sensitivity of the analysis xa with respect to the observations

yo. In order to compute this quantity, we start first by calculating the projection of

the analysis in the observation space for each ensemble member, that is:

ŷj = Hxaj = HKe,jy
o + (I−HKe,j)Hxfj , (2.44)

in which: H is the (linearised) observation operator1, Ke,j is the Kalman gain matrix,

I is the p × p identity matrix, and j a subscript indicating the ensemble member

excluded by the self-exclusion (cf. section § 2.2.3). Therefore, the analysis sensitivity

with respect to the observations for each ensemble member is defined as:

Sj =
∂ŷj
∂yo

= HKe,j, (2.45)

and the global observation influence is hence computed as:

OIDj =
Tr(Sj)

p
. (2.46)

The values of OID reported later are averaged over the whole ensemble. Moreover,

since the OID is an additive quantity (as (2.46) implies), it is possible to split the

OID into contributions related to each type of observation, by considering only the

diagonal entries of S associated with them.

Error doubling time, Td

The error doubling time (Td) is used to estimate the error-growth rate of the forecast-

assimilation system. Here, it is computed such that:

E(Td)

E(T0)
= 2 (2.47)

in which E(T0) is defined as the analysis RMSE (based on the difference xaj − xt)

of each analysis ensemble member used to initialise a medium-range forecast during

which E(Td) (i.e. the forecast RMSE, based on xfj − xt) is calculated hourly.

1This is the case for the satellite observation, for which we compute dIsat

dσ .
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Tuning parameters

Localisation scale, Lloca {0.5, 1.0, 1.5, 2.0}

Adaptive inflation, αRTPS {0.1, 0.3, 0.5, 0.7, 0.9}

Additive inflation, γa {0.05, 0.08, 0.1, 0.12, 0.15, 0.2, 0.3, 0.4, 0.5}

Table 2.3: An overview of the assimilation parameters varied during the tuning of the

filter configuration.

2.5 Forecast-assimilation experiments: tuning and

results

The results summarised in the third column of Table 2.2 represent the endpoint of a

long tuning process that has involved the assessment of a large number of forecast-

assimilation experiments until it was possible to select a single set of parameters that

on the one hand delivered a well-tuned ensemble filter and on the other hand proved

the relevance of our idealised configuration for convective-scale NWP data assimila-

tion.

Despite working with an idealised system, the tuning of the system described in sec-

tion §2.2.2 has required a large number of adjustments to the observing system (the

number of observations p, their spacing d and their errors sh,u,r), the cycling frequency,

the resolution ratio between the forecast model and the nature run, and the filter con-

figuration (e.g. the number of ensemble members N , the localisation and inflation

parameters Lloc, γa and αRTPS). For sake of simplicity, here we restrict our analysis

to the variation of the filter parameters, keeping the observing system and the other

aspects fixed, including the ensemble configuration illustrated in the previous section.

A summary of the parameters varied in the forecast-assimilation experiments is given

in Table 2.3.

The tuning process described in this section is aimed at producing the best forecast

with a three-hour lead time. This time-scale lies within the definition of nowcasting

for NWP forecasts (0-6 hours), that is the most relevant for convective-scale weather

forecasting. We define as ‘well-tuned’ an experiment that satisfies three criteria:

(i) the ratio SPR/RMSE is near 1,
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2.5 Forecast-assimilation experiments: tuning and results

(ii) the RMSE is minimised and,

(iii) the CRPS is minimised.

The definitions of spread (SPR), root mean squared error (RMSE) and the continuous

ranked probabability score (CRPS) are found in section §2.4.2 and are calculated with

reference to the nature run simulation.

2.5.1 Assessment of filter performance

Figure 2.6 displays a summary of the main statistics computed for the 180 simula-

tions resulting from the combination of the assimilation parameters listed in Table

2.3. Each cell represents the average value computed over the whole domain, across

all three variables1, and for the entire duration of the experiments (after excluding

the first 12 hours to remove any spin-up effects). The target values for a well-tuned

simulation as set out by the criteria (i)-(iii) are highlighted by cells in white or light

colors. Of course, the aim is to find an area of the parameter space that satisfies all

the criteria at once.

We start by considering the first criterion, namely the ratio between the ensemble

spread and the ensemble mean error, i.e. SPR/RMSE. Since it would be unrea-

sonable to expect the experiments to return a value of exactly 1, we consider all

simulations with a ratio within [0.8, 1.2], which are highlighted in red in the top-left

panel of Fig. 2.6. Among these, those showing the smallest values of RMSE and CRPS

are outlined in black in the bottom panels of the same figure. As a result, we have

restricted our search for a well-tuned experiment from 180 candidates to just 12.

The top-right panel of Fig. 2.6 shows the observational impact diagnostic (OID, see

section §2.4.2) of each experiment. The values of OID as a function of γa and αRTPS

reflect the impact that inflating the forecast-error covariance matrix Pf
e has on the

assimilation of the observations. Higher values of inflation (both multiplicative and

additive) correspond to higher values of OID, as the Kalman filter relies more on the

observations when the spread (and hence the uncertainty) in the forecast ensemble is

increased. Conversely, small values of γa and/or αRTPS lead to small values of OID

as, in the absence of inflation, the ensemble spread becomes small, and so does the

1Before averaging over the variables, the SPR and RMSE values of r are multiplied by a factor

100 to be comparable in magnitude with those of h and u.
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Figure 2.6: Summary of the results of the forecast-assimilation experiments for differ-

ent statistics: SPR/RMSE (top-left panel), OID (top-right panel), RMSE (bottom-

left panel) and CRPS (bottom-right panel). Within a panel, each sub-panel indicates

a different value of Lloc, and each cell represents a single experiment characterised

by the pair (γa, αRTPS) averaged over the whole duration of the experiment, domain

and variables. The white/light cells indicate the target values of the corresponding

statistic. The cells highlighted in red in the top-left panel indicate experiments with

0.8 < SPR/RMSE < 1.2. Among these, the cells with low values of RMSE and

CRPS are outlined in black in the bottom panels. Note that the OID is computed at

the analysis time.
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2.5 Forecast-assimilation experiments: tuning and results

Figure 2.7: Effects of localisation (for different values of the localisation scale Lloc)

on the forecast-error correlation matrices (derived from the covariance matrices Pf
e

used in the DEnKF). Left: before localisation; right: after localisation. Values of γa

and αRTPS: γa = 0.08, αRTPS = 0.7 (top left), γa = 0.15, αRTPS = 0.7 (top right),

γa = 0.12, αRTPS = 0.7 (bottom left), γa = 0.12, αRTPS = 0.7 (bottom right). Note

that since the self-exclusion prescribes the computation of a different covariance matrix

Pf

e,̂j
for each jth ensemble member (cf. §2.2.3, eq. (2.27)), an ‘average’ matrix is shown

above.
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2.5 Forecast-assimilation experiments: tuning and results

Experiment Lead time h u r Average

γa = 0.15,

αRTPS =

0.7

3hr 0.0755 0.0371 0.00293

9.7%

4hr 0.0835 0.0405 0.00330

% diff 9.6% 8.4% 11.2%

γa = 0.2,

αRTPS =

0.3

3hr 0.0740 0.0379 0.00279

8.8%

4hr 0.0815 0.0399 0.00318

% diff 9.2% 5.0% 12.2%

γa = 0.3,

αRTPS =

0.1

3hr 0.0756 0.0369 0.00287

9.2%

4hr 0.0838 0.0396 0.00322

% diff 9.8% 6.8% 10.9%

Table 2.4: Summary of the RMSE values (and percentage reduction between the 4hr

and the 3hr forecasts) of the three experiments shown in Fig. 2.8.

forecast uncertainty. Although this quantity has not been used as a tuning criterion, it

is worth noting how the simulations selected above display values of OID around 30%,

which is fully within the range of values expected for an operational NWP system, in

which 20% / OID / 40%. This is a promising sign in terms of finding a configuration

which both satisfies the criteria for a well-tuned filter and meets the conditions to be

considered relevant for NWP data assimilation. We will return to these considerations

in the next section.

The impact of localisation in Fig. 2.6 seems less relevant than that of inflation (al-

though, this is not true in general and might depend on the observation spacing se-

lected for these experiments). Therefore, in order to visualise better the impact of

localisation on the experiments, Figure 2.7 shows the forecast correlation matrices1

(at T = 36 hours) of four of the 12 simulations selected earlier, before and after the

application of localisation, each one for a different value of the localisation length Lloc.

The purpose of localisation should be one of damping the long-distance spurious cor-

relations, which are an artefact produced by a finite ensemble rather than the result of

1Because of self-exclusion (cf. §2.2.3, eq. (2.27)), Fig. 2.7 reports the average of the N correlation

matrices obtained by excluding one ensemble member at a time.
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a true dynamical signal. At the same time, it is also important to preserve the actual

intra-correlations present in the system. In this regards, Fig. 2.7 shows how values of

Lloc bigger than one (bottom panels) might go too far in suppressing the correlations

away from the diagonal bands, whereas a value of Lloc = 0.5 has a very limited effect,

leaving the matrix almost unaffected. As a compromise, we decide to retain only the

simulations with Lloc = 1.0. As we have seen in Fig. 2.4 (and Appendix B), this value

of Lloc corresponds to a localisation length scale of 500 km (i.e. 200 grid points), which

is also in line with the values used in NWP systems (cf. Table 2.2).

At this point, the tuning process has reduced the number of experiments to just three

(see the outlined cells in Fig. 2.6 with Lloc = 1.0). However, there is one essential

aspect that has not been taken into account yet, namely the impact that the data

assimilation has on reducing the forecast error. Fig. 2.8 shows the time series of both

SPR (solid line) and RMSE (dashed line) for each variable of the three remaining

simulations, computed for lead times of 3 hours (blue lines) and 4 hours (red lines)

valid at the same analysis time. Each panel reports also the average values (computed

by excluding the first 12 hours) and Table 2.4 complements this information with the

RMSE percentage difference between the two lead times. As one would expect, the

forecast with the shorter lead time (i.e. 3 hours) is more accurate (i.e. displays a

smaller RMSE), as it has been initialised more recently with observations generated

from the nature run. The results show a reductions of RMSE in the range of 5− 12%

between the variables (with rain showing the biggest improvements) and around 10%

on average across the three experiments (cf. Table 2.4).

The oscillatory behaviour of both SPR and RMSE time series in Fig. 2.8 is a sign

of the time-dependence of the forecast error, accentuated in our configuration by the

periodic domain, which allows the continuous circulation of gravity waves. Yet, these

variations look stationary in time, and this aspect makes it possible to exclude a ‘filter

divergence’ situation in which the error increases in time while the ensemble spread

collapses. This would be a sign that the data assimilation has failed, as the forecasts

would then become at the same time inaccurate (large errors) and overconfident (little

spread), leading the observations to be discarded entirely.

One final consideration on Fig. 2.8 can be made about the SPR/RMSE ratio. While

the top-left panel of Fig. 2.6 presented a single number resulting from averaging the

experiments in time and space, Fig. 2.8 displays the same information in a more gran-

ular way. The match between SPR and RMSE (producing a ratio close to unity) is

still visible, although there are clear differences between the variables. In particular, h
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2.5 Forecast-assimilation experiments: tuning and results

and r seem to be more underspread than u (i.e. SPR/RMSE < 1 for h and r, while

SPR/RMSE ∼ 1 for u); this fact makes sense from a dynamical point of view, as

h and r are the most non-linear variables in the system and the Kalman filter might

struggle to capture their spread correctly, especially in regions of strong convection.

Overall, these results are encouraging when compared with those obtained for opera-

tional systems (see, for instance, Figures 3-8 and 13-14 in Bowler et al. (2017)).

Finally, in order to select one of the three experiments left, we choose the simulation

displaying the biggest reduction in RMSE in Table 2.4, that is, the one with γa = 0.15

and αRTPS = 0.7 (and Lloc = 1.0). We will examine this selected experiment further

in the next section, where we will also analyse in detail its relevance for NWP data

assimilation.

2.5.2 Validation and relevance for convective-scale NWP

Until now, our analysis has focussed on various diagnostics and statistics that have

helped us understand how well the ensemble forecast was performing and therefore

which experiments could be considered as ‘well-tuned’. Here, we proceed with the

next step, that is, assessing the relevance of the tuned idealised system that we have

built for NWP data assimilation. To this aim, we will use two additional validation

diagnostics:

• the observational influence diagnostic (OID), and

• the error-doubling times statistics.

The definitions of both diagnostics can be found in section §2.4.2.

Observational influence diagnostic (OID)

The OID for each variable and for all observations is calculated at each analysis step

(cf. (2.46)) and its value as a function of the assimilation time is dispalyed in Figure

2.9. The OID is flow-dependent and varies depending on the forecast uncertainty (as

the observation error is constant in time, see §2.2.2). For example, a large OID is ex-

pected in situations when the uncertainty in the forecast is large and the Kalman filter

must rely heavily on the observations, which will have a stronger impact on the final

analysis. On the other hand, the OID will be smaller when the forecast has a lower

uncertainty (i.e. a smaller spread), leading the observations to have less influence.
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Figure 2.9: Time series of the observational influence diagnostic (OID), as a percentage

(%). The total OID and the OID computed for the single variables are reported in

different colours (see legend). Values on the x-axis are in hours.
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2.5 Forecast-assimilation experiments: tuning and results

Indeed, the time series of OID seen in Figure 2.9 displays these ‘hourly weather’ os-

cillations, with the total OID fluctuating between 25 − 35%. The influence of the

u observations on the final analysis seems to be the dominating contribution, with

values between 10 − 20%, followed by the impact given by h and r, each oscillating

between 5− 10%. The predominance of the u observations over h and r is probably a

consequence of the specific observing system chosen for our experiments.

The value of total OID matches the estimates for operational systems of 20% / OID /

40%, demonstrating the relevance of our forecast-assimilation experiments in the con-

text of NWP data assimilation.

Error-doubling time statistics

In order to evaluate the error-doubling time statistics of the selected experiment, we

have run a 24 hour forecast for each of the N = 18 members in the ensemble, repeated

for the first 25 consecutive analysis cycles. This gives a sample of 25·18 = 450 forecasts,

each lasting 24 hours. We then calculate the initial analysis RMSE and compute the

number of hours Td that it takes for this error to double, cf. (2.47). Figure 2.10 shows

the histogram of the distribution of the doubling times Td for each variable. We note

that while h and u display very similar values (around 9 hours), the error in r grows

at a faster rate (approximately every 6 hours). This is not surprising, given the high

non-linearity of r.

Doubling times of 6 to 9 hours are of the same order of magnitude (i.e. O(1) hours)

as those found for convection-resolving NWP models (Hohenegger & Schar, 2007). It

is also worth noting that in a previous round of experiments with Nnat
el = 800 (as well

as in Kent (2016)) the doubling time was approximately half of the values shown in

Fig. 2.10 (i.e. 4 hours). This behaviour is not surprising given the use of a nature

run simulation with a higher spatial resolution, in which the small scales features are

better resolved. As the observations are generated from the nature run, the analysis

will end up resolving those small scales better; however, small-scale errors grow faster

than large-scale ones, causing a reduction in the error doubling times when a higher

ratio between nature run and forecast resolution is adopted.
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Figure 2.10: Error-doubling times distribution based on 450 24hr forecasts. Top panel:

h; middle panel: u; bottom panel: r. Each panel reports the number of forecasts in

which the initial time has doubled within 24 hours, the mean and the median of the

distribution.
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2.5 Forecast-assimilation experiments: tuning and results

Figure 2.11: Model snapshot valid at T = 40 hours. Left: 4hr forecast starting

at T = 36 hours. Right: 3hr forecast starting at T = 37 hours. The nature run

trajectory is in green, the ensemble trajectories are in blue and the forecast mean is

in red. The observations (at T = 40 hours) – shown in comparison only and not yet

assimilated – are indicated by the green dots with error bars.
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Figure 2.12: Model snapshot valid at T = 40 hours. Left: 1hr forecast starting at

T=39 hours. Right: analysis. The nature run trajectory is in green, the ensemble

trajectories are in blue, the forecast mean is in red and the analysis mean is in cyan.

The observations are indicated by green dots with error bars and have been assimilated

in the trajectories in the right column but not for those in the left.
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2.5 Forecast-assimilation experiments: tuning and results

2.5.3 Subjective verification

In this final section, we examine a couple of snapshots of the model dynamics drawn

from the selected experiment (i.e. Lloc = 1.0, γa = 0.15, αRTPS = 0.7). These snap-

shots are depicted in Figures 2.11-2.12 and show: the nature run solution (green lines),

the observations drawn from it (green dots), the topography (black line), the forecast

mean (red line), the analysis mean (cyan line) and the individual ensemble members

(blue lines). The purpose of this analysis is purely qualitative, as we have already

evaluated this experiment from a quantitative point of view in the previous sections.

Figure 2.11 compares the forecast launched at T = 37 hours with a 3-hour lead time

(right panel) with the forecast launched at T = 36 hours with a 4-hour lead time (left

panel). Clearly, both forecasts are valid at the same time (i.e. T = 40 hours), but the

one with the shorter lead time is expected to be more accurate, thanks to its more

recent initialisation.

The dynamical situation defined by the nature run simulation (green lines) at T = 40

hours is as follows. The flow is moving eastward (u > 0) and the strongest area of con-

vection and rain (h > Hr > Hc) is occurring downstream of the topography, around

x = 0.75. Convection and rain are also present in correspondence to the topography

(i.e. 0.2 < x < 0.4) and at the end of the domain (around x = 1). The velocity field

u displays large gradients and oscillations, mostly in the second half of the domain.

Both forecasts are accurate (i.e. similar to the nature run, with small spread) away

from the areas with convection and precipitation. Conversely, they seem to struggle

in representing the intensity (although not the position) of the convective updraft at

x = 0.75 and the area near the thresholds around x = 1. In the first case, there is al-

most no difference in h and r between the 3 and the 4 hour forecasts, implying little to

no improvement produced by the assimilation of the observations at T = 37 hours; on

the other hand, the impact of data assimilation is more noticeable at x = 0/1, where

both forecasts produce spurious precipitation due to some of the ensemble members

exceeding the rain threshold. This precipitation is not present in the nature run (green

line), and although it is produced in both forecasts, its intensity is significantly dimin-

ished in the more recent one, which is therefore more accurate. Overall, looking back

at Fig. 2.8, we notice that at T = 40 hours, the improvement given by the 3 hour

forecast is larger in u and r than h.

Finally, we consider Figure 2.12, in which are plotted the forecasts initialised at T = 39

hours and valid at T = 40 hours (left panel) and the analysis at the same time (right
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panel). This comparison is used to highlight the direct impact of data assimilation,

in that the analysis on the right is the product of the combination of the observations

(green dots) with the forecast on the left. First, we notice how even the 1 hour forecast

struggles in representing the convection updraft at x = 0.75 (although this feature is

greatly improved with respect to the 3 and 4 hour forecasts). In this case, however,

the effect of the assimilation is strong, and the analysis captures the intensity of the

peak in h very well, thanks to h being observed exactly at the same location. In ad-

dition, the benefit of adjusting h towards the nature run solution impacts positively

also on the other variables; for example, the physical correlation between h and r in

the covariance matrix Pf
e (cf. Fig. 2.7, top-right panel, although valid at a different

time) means that even if r is not observed in the same position, its maximum is also

revised accordingly. In general, the analysis is visually more accurate but also more

precise (that is, the spread is reduced) with respect to the forecast on the left.

One final feature can be observed in the velocity field u: the observation at location

x = 0.7 forces the analysis away from the nature run trajectory. This is not totally un-

expected, as the observations are generated by perturbing the nature run with random

perturbations (cf. (2.13)), and it is sometimes the case that inaccurate observations

produce inaccurate analyses.

Chapter highlights and summary

• Idealised models constitute a common and practical tool used to fa-
cilitate research in data assimilation for NWP models. The use of
idealised models represents a numerically inexpensive alternative to
full-scale operational systems. Disappointingly, the ability of these
idealised models to reproduce the features and the characteristics of
operational NWP systems is rarely explored. The work summarised
in this chapter has tried to filled this gap by developing a protocol in
which the properties of an idealised forecast-assimilation system are
systematically compared against those commonly found in an opera-
tional system (cf. Table 2.2). This protocol can be adapted and applied
to other idealised models.

• The modified rotating shallow water (modRSW) model presented in
Kent (2016); Kent et al. (2017) is an example of idealised models de-
veloped to facilitate data assimilation research. The modRSW model
constitutes our starting point to conduct satellite data assimilation re-
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2.5 Forecast-assimilation experiments: tuning and results

search. As a preliminary step, in this chapter we have summarised the
dynamics and the numerics of the modRSW model and have discussed
a series of forecast-assimilation experiments realised with such model,
using a Deterministic Ensemble Kalman Filter (DEnKF). By applying
the protocol mentioned above, we have shown that our idealised ex-
periments reflect a configuration which is both well-tuned and relevant
for NWP convective-scale data assimilation.
Whether the modRSW model is suitable to conduct satellite data as-
similation research will be discussed at the beginning of the next chap-
ter.
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Chapter 3

The ismodRSW model

In this chapter we present a revised version of the modRSW model introduced in

Chapter 2. A new, isentropic 11
2
-layer modified shallow water model (ismodRSW) will

pave the way for further data assimilation experiments featuring idealised satellite

observations. After showing that the modRSW model is not optimal for the purpose,

we discuss both the dynamics and the numerics of the new model, completing the

chapter with a comparison against an analytical solution and a protoype nature run

simulation to be used in the subsequent experiments of chapter §5.

3.1 Motivation

One of the most common types of satellite data assimilated in operational NWP sys-

tems is passive observations of emitted thermal radiation coming from the Earth’s

surface and atmosphere. This radiation can be related to the temperature of the

emitting source (and vice versa) by exploiting the principles of radiative transfer and

blackbody radiation. In view of adopting a similar approach to generate idealised

satellite observations later on (this topic will be covered extensively in Chapter 4), it

is essential that either (i) the model includes temperature among the prognostic vari-

ables or (ii) one (or more) of the model variables can be readily related to temperature.

In this regard, the modRSW model is not particularly well-suited, since it does not

include temperature among its prognostic variables, and even though a physical rela-

tionship between fluid depth and temperature can be formulated, this leads to some
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scaling issues in which DA-relevant model dynamics can be achieved only for unre-

alistic values of the temperature. In order to visualise this limitation, we consider a

straightforward diagnostic equation between the dimensionless fluid depth h and its

dimensional temperature T based on the ideal gas law (p = RρT ) and hydrostatic

equilibrium (p = ρgHh), that is:

T = T0h, with T0 = gH/R, (3.1)

in which g is the acceleration due to gravity (g = 9.81 m s−2), R is the specific gas

constant for dry air (R = 287 J kg−1 K−1) and H the scale height of the fluid. The

scaling used in both Kent et al. (2017) and Chapter 2 – i.e. gH = 330 m2s−2, or H ≈
34 m – is clearly based on an unrealistic fluid depth H which leads to an unreasonable

scale temperature of T0 ' 1.1 K. This configuration is clearly not suitable for satellite

data assimilation purposes and highlights the need for a different approach.

In a paper by Pan & Smith (1999), an isopycnal 11
2
-layer shallow water model is used

to investigate gap winds and wakes in the presence of orography. Although the purpose

of the study is different from ours, the fact that the authors used a shallow water model

and based their scaling on real atmospheric observations makes this study attractive

and interesting. Remarkably, despite the use of an isopycnal model, they employed

the isentropic definition of the reduced gravity g′, that is:

g′ =
θ1 − θ2

θ1

g, (3.2)

to compute the Froude number utilised in their numerical simulations. On the one

hand, this combined use of an isopycnal model with the isentropic definition of the

reduced gravity seems to guarantee a simple but realistic testbed for their numerical

experiments. On the other hand, this choice cannot be seen as an entirely consistent

one. It is precisely to remove this inconsistency that we decided to develop an entirely

consistent 11
2
-layer isentropic model.

The newly derived model, hereafter denoted as ismodRSW (for isentropic modified

Rotating Shallow Water), does not suffer from the scaling issues discussed above, as

it is naturally equipped with a physically consistent definition of fluid temperature

linked to the definition of the potential temperature θ:

θ = T

(
pr
p

)κ
=⇒ T = θ

(
p

pr

)κ
= θηκ, (3.3)
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3.2 Modifications

in which p is the pressure, pr a reference pressure and κ = R/Cp the ratio between

the specific gas constant for dry air and its specific heat capacity at constant pressure

(cp = 1004 J kg−1K−1), with η = p/pr a non-dimensional pressure. The expression

Π = ηκ is often referred in the literature as the Exner function.

On a further note, the transition from a single to a 11
2
-layer model offers additional

benefits for the modelling of idealized satellite observations. Real satellite observations

are radiance measurements shaped by several processes (emission, absorption and

scattering) taking place throughout the atmosphere before the radiance reaches the

satellite. In this sense, the degree of vertical complexity with which the atmosphere

can be modelled plays a crucial role in mimicking the most relevant features of real

satellite observations.

3.2 Modifications

The ismodRSW model is obtained by performing the following modifications to the

modRSW model:

i. the single-layer configuration is replaced with a 11
2
-layer model;

ii. the isopycnal fluid (with its uniform density) is replaced with an isentropic fluid,

in which the potential temperature is constant in each layer.

In general, 11
2
-layer models are derived from two-layers models by imposing the preser-

vation in time of a uniform total fluid depth (also called a rigid lid approximation).

This applies, for example, to isopycnal models, in which this modification leads to the

sole replacement of the acceleration due to gravity with the isopycnal reduced gravity

g′ in the single-layer equations (see, for example, Vallis (2017), §15.2.2). However, as

we will show in the next section, in the case of a two-layer isentropic shallow water

model this approach reveals an apparent inconsistency. Ultimately, the formal deriva-

tion of an isentropic 11
2
-layer shallow water model based on principles of asymptotic

and Hamiltonian fluid dynamics is able to resolve the contradiction, showing that the

fluid in the upper layer needs to be at rest in order for the 11
2
-layer model to emerge.

This derivation is quite long and technical and goes beyond the scope of this thesis,

therefore we refer to Bokhove et al. (2021) for full details.

Lastly, it is important to note here that there are no further changes to the model

setup apart from the two modifications mentioned above: the essential functioning
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and dynamics of the model remain similar to those of the modRSW model, including

the threshold mechanism used to simulate convection and precipitation (see also sec-

tion §3.4.1). However, the presence of bottom topography will not be considered for

the isentropic model.

3.3 11
2layer isentropic shallow water

In this section we illustrate multiple aspects related to the isentropic 11
2
-layer shallow

water model. The full ismodRSW model (including convection and precipitation) will

be presented in full in section §3.4.

3.3.1 A rigid-lid approximation in a 2-layer model

Starting from an isentropic two-layer model, it is possible to show how a closed 11
2
-

layer model emerges by taking a seemingly inconsistent rigid-lid approximation. That

the final model is nonetheless consistent goes beyond the scope of this thesis and is

shown in Bokhove et al. (2021).

A full, geometric derivation of an isentropic N–layer model can be found in Bokhove

& Oliver (2009). Here, we take a two-layer simplification thereof, with N = 2 (see

top image in Figure 3.1). The momentum equations of this model arise by assuming

hydrostatic balance and constant entropy (i.e. constant potential temperature θ) in

each layer. The continuity equations emerge once the space (x, y) and time-dependent

(t) pseudo-density σα(x, y, t) for each layer, numbered by α = {1, 2}, is defined, i.e.:

σα = pr (ηα − ηα−1)/g, (3.4)

in which g refers to the gravity acceleration, ηα = pα/pr is the non-dimensional pressure

at the bottom of the layer α and pr indicates a reference pressure. The pseudo-density

σ arises from the hydrostatic balance dp = −ρ g dz, by integrating an element of mass

flux for some infinitesimal surface element dA: dm/dA = ρ dz = −dp/g across each

layer. In Bokhove (2002) and Ripa (1993) the variational and Hamiltonian formulation

of the isentropic N–layer equations are derived by simplifying the Eulerian variational

principle of the compressible Euler equations.

The resulting four, isentropic two-layer (continuity and momentum) equations read as
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3.3 11
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η0
Z0

u1(x, y, t) ≈ 0

η1(x, y, t)
z1(x, y, t)

u2(x, y, t)

η2(x, y, t)

θ1

θ2

η0

z0(x, y, t)

u1(x, y, t)

η1(x, y, t)
z1(x, y, t)

u2(x, y, t)
η2(x, y, t)

z2(x, y, t)

θ1

θ2

Figure 3.1: Schematic representation of a two-layer isentropic shallow water model

(top) and of a 11
2
-layer isentropic shallow water model (bottom) without topography

(b = 0).
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follows:

∂tσα +∇ · (σαvα) = 0, (3.5.a)

∂tvα + (vα · ∇)vα + fvα
⊥ = −∇Mα, (3.5.b)

with α = {1, 2} and in which: ∇ is the horizontal gradient, vα = vα(x, y, t) = (uα, vα)T

is the horizontal velocity within layer α and v⊥α = (−vα, uα)T the vector perpendicular

to it, f is the Coriolis frequency, and Mα is the Montgomery potential. In order to

close the system, one needs to specify the Montgomery potentials in each layer. As

seen in section §3 of Bokhove & Oliver (2009), for a two-layer model these potentials

can be defined as:

M1 = cp θ2 η2
κ + cp(θ1 − θ2)ηκ1 + gz2, (3.5.c)

M2 = cp θ2 η2
κ + gz2. (3.5.d)

The hydrostatic condition for an isentropic model ∂M/∂z = 0 implies that, in general,

the Montgomery potential M = cpθη
κ + gz is independent of z within each layer.

Therefore, one can evaluate M in the bottom layer (where θ = θ2) at both z = z2 and

z = z1, and M in the upper layer (where θ = θ1) at both z = z1 and z = z0, to find:

gz0 = cp θ1 (ηκ1 − ηκ0 ) + gz1, (3.6.a)

gz1 = cp θ2 (ηκ2 − ηκ1 ) + gz2, (3.6.b)

from which is possible to express the thickness of each layer as:

h1 = z0 − z1 = (cp θ1/g) (ηκ1 − ηκ0 ), (3.7.a)

h2 = z1 − z2 = (cp θ2/g) (ηκ2 − ηκ1 ). (3.7.b)

We note here that the non-dimensional pressure η0 is treated as a constant throughout

this thesis.

Finally, the relations between layer pressure and pseudo-densities can be derived using

the expressions (3.4) for σ1 and σ2 as follows:

η1 = g σ1/pr + η0 and η2 = g (σ1 + σ2)/pr + η0. (3.8)

When one takes a rigid-lid approximation, it is convenient to add a constant K =

−(cpθ1η
κ
0 + gZ0) to M1 in (3.5c), leading to:

M1 = cp θ1 (ηκ1 − ηκ0 ) + cp θ2 (ηκ2 − ηκ1 ) + gz2 − gZ0. (3.9)

80



3.3 11
2
layer isentropic shallow water

Therefore, by substituting (3.6.b) into (3.6.a) and subtracting gZ0 from both sides one

finds:

gz0 = cp θ1 (ηκ1 − ηκ0 ) + cp θ2 (ηκ2 − ηκ1 ) + gz2,

gz0 − gZ0 = cp θ1 (ηκ1 − ηκ0 ) + cp θ2 (ηκ2 − ηκ1 ) + gz2 − gZ0,

gz0 − gZ0 = M1.

If the top surface is fixed, i.e. z0(x, y, t) = Z0 = const, then M1 = g (z0 − Z0) = 0,

and a closed 11
2
-layer model emerges, as is illustrated in the next section. However,

this condition alone produces an inconsistency, since the constraint M1 = 0 is not

preserved in time by the two original continuity equations. In fact, as it is shown in

Bokhove et al. (2021), a closed and fully consistent 11
2
-layer model results after taking

M1 = 0 and v1 = 0 in the momentum equation of the upper layer, with (3.5) still valid

for the bottom layer (with α = 2).

3.3.2 The closed system

In Bokhove et al. (2021) the authors derive an asymptotically consistent 11
2
-layer shal-

low water model in which an isentropic shallow layer of fluid at potential temperature

θ2 lies below a second (relatively) motionless layer at potential temperature θ1 (θ1 > θ2)

capped by a rigid lid. The non-dimensional closed set of equations for such a system

reads:

∂tσ2 +∇ · (σ2v2) = 0, (3.10.a)

∂tv2 + (v2 · ∇)v2 + fv2
⊥ = −∇M2, (3.10.b)

M1 = 0 and v1 = 0; (3.10.c)

in which σ2 is the pseudo-density in the bottom layer defined as (cf. eq. (3.4)):

σ2 =
pr
g

(η2 − η1) . (3.11)

For the purpose of this thesis, we apply two simplifications to the system above: (i)

we assume flat bottom conditions (i.e. z2 = 0 in (3.5d)) and (ii) flow independence in

the meridional direction (i.e. ∂y = 0). A sketch of this model is given in the bottom

image of Figure 3.1. Given these two assumptions, the equations for (σ2, u2, v2) read
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as:

∂tσ2 + ∂x(σ2u2) = 0, (3.12.a)

∂tu2 + u2∂xu2 − f v2 = −∂xM2, (3.12.b)

∂tv2 + u2∂xv2 + f u2 = 0. (3.12.c)

The system of equations (3.12) is closed since the non-dimensional pressure η2 in (3.5d)

is linked to the pseudo-density σ2 via its definition (3.11), with η1 being

η1 =

[
θ2

4θ

(
−ηκ2 +

θ1

θ2

ηκ0 +
g

cpθ2

Z0

)] 1
κ

, (3.13)

in which η0 is the (constant) non-dimensional pressure acting on the upper lid, ∆θ =

θ1 − θ2 is the difference in potential temperature between the layers and Z0 = h1 + h2

represents the total depth of the fluid. We note that such a 11
2
-layer model has the

advantage over a one-layer model that the non-dimensional pressure η1 is active and

not constrained to be constant, as is η0. The expression (3.13) is obtained by isolating

η1 after imposing M1 = 0 (and z2 = 0) in (3.9). A typical function relating σ2 to η2 is

shown in Fig 3.2.

3.3.3 The conservative hyperbolic system

The numerical implementation of the nonlinear hyperbolic system (3.12) can be facil-

itated when it is written in the following conservative form:

∂tU + ∂xF(U) + T (U) = 0. (3.14)

In order to write the system (3.12a-3.12c) in conservative form, we start by multiplying

(3.12b) and (3.12c) by σ2. Replacing M2 in the momentum equation with (3.5d) and

after some manipulation (herein we drop the subscripts for σ, u, v and η), we obtain:

∂tσ + ∂x (σu) = 0, (3.15.a)

∂t (σu) + ∂x
(
σu2
)
− f σv = −cp θ2 σ∂x(η

κ), (3.15.b)

∂t (σv) + ∂x (σuv) + f σu = 0. (3.15.c)

The right-hand-side of eq. (3.15b) can be rewritten as the composite derivative of an

unknown function E(η(x, t)):

− ∂xE (η(x, t)) = −∂ηE∂xη with
∂E

∂η
= κ cp θ2 σ(η) ηκ−1, (3.16)
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Figure 3.2: Plot of non-dimensional σ2 as a function of η2. The parameters used

are the same as reported in Table 3.1 (see also §3.3.4): R = 287 J kg−1 K−1, cp =

1004 J kg−1 K−1, θ1 = 311 K, θ2 = 291.8 K, η0 = 0.48, Z0 = 6120 m and g = 9.81 m/s2.

in which the analytical expression of the pseudo-density σ as a function of η reads

(after substituting (3.13) into (3.11) and dropping the subscript in η2):

σ(η) =
pr
g

{
η −

[
θ2

4θ

(
−ηκ +

θ1

θ2

ηκ0 +
g

cpθ2

Z0

)] 1
κ
}
. (3.17)

Integration of (3.16) with (3.17) yields:

E (η) = cpθ2
pr
g

κ

κ+ 1

[
ηκ+1 +

(
θ2

4θ

) 1
κ
(
θ1

θ2

ηκ0 +
g

cpθ2

Z0 − ηκ
)κ+1

κ

+

−
(
θ2

4θ

) 1
κ
(
θ1

θ2

ηκ0 +
g

cpθ2

Z0

)κ+1
κ

]
.

(3.18)

Therefore, the momentum equation can be expressed as:

∂t (σu) + ∂x
(
σu2 + E

)
− f σ v = 0, (3.19)

and system (3.15) can be written in conservative form (3.14) with U, F(U) and T(U)

defined as follows:

U =

 σ
σ u
σ v

 , F(U) =

 σ u
σ u2 + E

σ u v

 , T(U) =

 0
−f σ v
f σ u

 . (3.20)
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By writing σu2 = (σu)2/σ and σuv = (σu)(σv)/σ, the Jacobian of the system reads:

J(U) ≡ ∂UF =

 0 1 0
−u2 + ∂σE 2u 0
−uv v u

 , (3.21)

with eigenvalues:

λ1,2 = u±
√
∂σE and λ3 = u. (3.22)

Here, ∂σE is computed to be:

∂

∂η
E (σ (η)) =

∂E

∂σ

dσ

dη
=⇒ ∂E

∂σ
=

∂E
∂η

dσ
dη

=
κcpθ2σ (η) ηκ−1

dσ/dη
, (3.23)

after using (3.16) in the numerator and with denominator:

dσ

dη
=
pr
g

[
1 +

(
θ2

4θ

)1/κ(
θ1

θ2

ηκ0 +
g

cpθ2

Z0 − ηκ
)(1−κ)/κ

ηκ−1

]
. (3.24)

The plot of ∂E/∂σ in Figure 3.3 shows that it is positive for non-negative values of

σ, thus confirming the hyperbolic character of system (3.15), with real and distinct

eigenvalues λ in (3.22) for ∂σE > 0. The numerical scheme used to integrate the

model can therefore be chosen to be close to the one in Kent et al. (2017) with minor

adaptations. Details thereof can be found in Appendix C.

3.3.4 Observations-based scaling

The derivation of the isentropic 11
2
-layer shallow water model presented in Bokhove

et al. (2021) relies on a couple of assumptions concerning its physical scaling. In

particular, the values of the parameters:

ε =
U1

U2

, δa =
H2

H1

, (3.25)

with U and H indicating each layer’s scale velocity and fluid depth, are assumed to

be small, i.e. ε, δa < 1.

In view of adding convection and precipitation to the shallow water model here pre-

sented, we want our two-layer configuration to be an approximation of the troposphere

(where such processes are confined), in which a thin bottom layer is surmounted by a

thicker one, almost at rest, that is: H1 > H2 and U2 > U1.
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Figure 3.3: Plot of non-dimensional ∂σE as a function of σ. The parameters

used are the same reported in Table 3.1 (see also §3.3.4): R = 287 J kg−1 K−1,

cp = 1004 J kg−1 K−1, θ1 = 311 K, θ2 = 291.8 K, η0 = 0.48, Z0 = 6120 m and

g = 9.81 m/s2.

Low-level jets (LLJs) are recurrent meteorological features located at various loca-

tions in the world (Rife et al., 2010) and they happen to be particularly common over

the Great Plains in the Southern United States (Djurić & Damiani Jr, 1980; Ladwig,

1980).

Fig. 3.4 shows vertical profiles obtained from radiosonde data of both potential temper-

ature and wind speed during a LLJ event on 10th–11th December 1977 in Brownsville,

Texas (US). We use this as a case study to provide a justification for the scaling

chosen in Bokhove et al. (2021), which satisfies the requirements on ε and δa, as we

are about to show. We approximate the troposphere as a two-layer fluid, exploiting

the change of slope in the potential temperature profile of Fig. 3.4b as a reference.

Mean potential temperature values of θobs
1 = 311.0 K and θobs

2 = 291.8 K follow after

taking Hobs
1 = 4.02 km and Hobs

2 = 2.08 km in Fig. 3.4b. The above values of θobs
1

and θobs
2 are used as a constraint to compute Hobs

1 and Hobs
2 also in the profiles of

Figs. 3.4a-c, in virtue of the isentropic assumption (i.e. constant potential tempera-

ture within each layer). Once the layer depths in each profile are established, mean

wind speed values Uobs
1 and Uobs

2 within each layer are also computed (dashed lines

85



Two-layer troposphere (Low-Level-Jet)

Fig. 3.4(a) Fig. 3.4(b) Fig. 3.4(c) Average

H2 [km] 2.02 2.08 1.65 1.92

H1 [km] 3.98 4.02 4.6 4.2

pobs0 [mbar] 489.6 483.8 475.4 482.9

θobs1 [K] 311.0 311.0 311.0 311.0

θobs2 [K] 291.8 291.8 291.8 291.8

U obs
1 [m/s] 3.6 6.6 7.0 5.7

U obs
2 [m/s] 13.5 12.7 11.0 12.4

δa 0.51 0.52 0.36 0.46

ε 0.27 0.52 0.64 0.46

Table 3.1: Summary of the values of various physical quantities obtained from the

radiosonde data displayed in Fig. 3.4 and resulting values of non-dimensional scaling

parameters δa and ε. The rightmost column reports the average values obtained from

the data seen in Fig. 3.4.

in Fig. 3.4). Table 3.1 summarizes all the relevant physical parameters associated

with the radiosonde data plotted in Fig. 3.4, together with the values of ε and δa

and the values of the observed pressure on the top of the upper layer p0. Overall, the

values of ε and δa lie below one during the LLJ event; moreover, the rigid lid condition

leading to the 11
2
-layer configuration appears to be justified, as the variation in height

of Z0 = H1 +H2 = {6 km, 6.1 km, 6.25 km} is smaller than the change in depth of the

bottom layer H2 = {2.02 km, 2.08 km, 1.65 km}.
The physical scaling summarised in Table 3.1 will be used throughout this thesis and

will form the basis for the forecast-assimilation experiments reported in Chapter 5.

3.3.5 Recovery of the isopycnal model

In this section we show how the isentropic 11
2
-layer shallow water model can be traced

back to its isopycnal counterpart by taking κ = 1 in (3.3). Incidentally, this should

help visualize the inconsistency of using the isentropic definition of the reduced gravity
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(3.2) within an isopycnal model, as we argued earlier.

Starting from (3.7b) with κ = 1, a linear relation between the fluid depth h2 and

non-dimensional pressure η2 (and thus pseudo-density σ2) is restored:

h2 =
cpθ2

g
(η2 − η1) =

cpθ2

pr
σ2. (3.26)

Substituting the above expression back into the continuity equation (3.12a) yields:

∂th2 + ∂x(h2 u2) = 0, (3.27)

equivalent to the continuity equation of the isopycnal model. In addition, we observe

that for κ = 1 the Montgomery potential M2 in (3.12b) becomes:

M2 = cp θ2 η2.

By using (3.7) with κ = 1, we obtain:

cpθ2η2 = gh2 + gh1θ2/θ1 + cpθ2η0. (3.28)

After using the rigid lid constraint H = h1 + h2 and substituting back into the Mont-

gomery potential and the momentum equation (3.12b), we obtain the usual momentum

equation for an isopycnal fluid:

∂tu2 + u2∂xu2 − f v2 = −g′∂xh2, (3.29)

with reduced gravity g′ defined as in (3.2). However, since κ = 1 implies θ = T (pr/p),

we note that:

θ1 − θ2

θ1

=
T1/p1 − T2/p2

T1/p1

=
1/ρ1 − 1/ρ2

1/ρ1

=
ρ2 − ρ1

ρ2

, (3.30)

making use of the ideal gas law (p = ρRT ). In other words, the isopycnal expression

of the reduced gravity is recovered for κ = 1. The numerical convergence of the two

models for κ = 1 will be used as a final check for the full model with convection and

precipitation in section §3.4.3.

3.3.6 Shrira’s solution for nonlinear waves

Here we provide an independent analytical verification of the numerical model using

an extended version of Shrira’s analysis of stationary nonlinear waves propagating on
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3.3 11
2
layer isentropic shallow water

the surface of a rotating isopycnal or shallow-water layer fluid (Shrira, 1981, 1986),

adapted to our isentropic model in a periodic domain. We start by splitting the

pseudo-density σ into a constant state σ0 and a perturbation σ̃:

σ = σ0 + σ̃ with σ̃ =
σ0

f

∂v

∂x
. (3.31)

The validity of (3.31) for σ̃ follows by substituting into the continuity equation (3.15a)

and using the meridional momentum equation, obtaining the identity:

σ0

f

∂2v

∂x∂t
+

∂

∂x

[(
σ0 +

σ0

f

∂v

∂x

)
u

]
= 0,

∂

∂x

[
∂v

∂t
+ fu+ u

∂v

∂x

]
= 0.

Using (3.12c) to express u as a function of ∂v
∂x

and ∂v
∂t

, one finds (assuming ∂v
∂x

+f 6= 0):

u = −∂v
∂t
/(
∂v

∂x
+ f). (3.32)

Differentiating (3.12c) by t and using both (3.12b) and (3.32), yields:

∂2v

∂t2
+ f 2v − f ∂M

∂x
=

∂

∂t

(
∂v
∂x

∂v
∂t

f + ∂v
∂x

)
+
f

2

∂

∂x

( (
∂v
∂t

)2(
f + ∂v

∂x

)2

)
, (3.33)

resembling Eq. (10) in Shrira (1981) and Eq. (4) in Shrira (1986) (once y–derivatives

are dropped in the older paper and the high-frequency dispersion term is neglected).

The gradient of the Montgomery potential becomes:

∂

∂x
M (η (σ)) =

∂M

∂η

dη

dσ

∂σ

∂x
= cpθκη

κ−1

(
1
dσ
dη

)
σ0

f

∂2v

∂x2
, (3.34)

after using σ̃ from (3.31). Substituting (3.34) into (3.33) gives:

∂2v

∂t2
+ f 2v − fcpθκηκ−1

(
1
dσ
dη

)
σ0

f

∂2v

∂x2
=

∂

∂t

(
∂v
∂x

∂v
∂t

f + ∂v
∂x

)
+
f

2

∂

∂x

( (
∂v
∂t

)2(
f + ∂v

∂x

)2

)
.

For travelling waves of phase velocity c, we define ζ = x− ct and rewrite the equation

above, with primes denoting ∂
∂ζ

, to obtain a second order ODE in ζ:

c2 v′′ + f 2 v − f cpθκηκ−1

(
1
dσ
dη

)
σ0

f
v′′ = c2

(
(v′)2

f + v′

)′
+
f c2

2

(
(v′)2

(f + v′)2

)′
. (3.35)
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After some manipulation, one finds:

v′′ =
f2

c2
v

f
c2
cpθκηκ−1

(
1
dσ
dη

)
σ0
f
− f3

(f+v′)3

,

non-dimensionalized as follows:

v′′ =
1

Ro2

v

cpθ

c2
κηκ−1

(
1
dσ
dη

)
σ0 − 1

Ro3
1

( 1
Ro

+v′)
3

, (3.36)

using v = cv, Ro = c/fL and (·)′ = ∂
∂ζ

= 1
L

∂
∂ζ′

= 1
L

(·)′. This ODE is solved with a

Runge-Kutta fourth order method after rewriting it as follows:

χ = v′, χ′ = F (χ, v, ζ) =
1

Ro2
v[

− 1
Ro3

1

( 1
Ro

+χ)
3 + c̃pθκηκ−1

(
1
dσ
dη

)
σ0

] , (3.37)

with c̃p = cp/c
2. For comparison with the full model (3.15), we derive the expressions

also for the (non-dimensional) u and σ̄, using (3.32) and (3.31), and scaling u and σ0

by c and g/pr, respectively:

u = χ/(1/Ro + χ) and σ̄ = σ0 (1 + Roχ) . (3.38)

The solution of (3.37) is stable only within a certain range of initial conditions for v0

and χ0. Once a stable configuration is found, the phase velocity c is tuned in order

to obtain a single-wavelength wave in v, u and σ̄ as solution and subsequently used

as initial condition for the isentropic 11
2
-layer model. A comparison between Shrira’s

solution and its numerical implementation at various times t and up to t = 10T (where

T is the wave period), is shown in Figure 3.5. Although the dissipative character

of the numerical scheme used in this paper contributes to both an amplitude and a

phase error as time goes by, the numerical solution (purple to red solid lines) visually

converges towards the analytical one (gray line) as the resolution increases.

3.4 Modified shallow water: the ismodRSW

model

In this section, we extend the rotating isentropic 11
2
-layer model described above, in

order for it to mimic convection and precipitation in a similar manner to the isopcynal
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modRSW model. In addition, we present the new nature run simulation which will be

used in the forecast-assimilation experiments described in Chapter 5 and we conclude

by additionally by checking the convergence of the full isentropic model towards the

modRSW one by imposing κ = 1 in (3.3).

3.4.1 Model dynamics

Starting from (3.12) – and similarly to what is done in section §2.1.2 – a system of

thresholds is introduced, together with an equation for the (dimensionless) rain mass

fraction r. As a result, the following system of equations is obtained:

∂tσ + ∂x(σu) = 0, (3.39.a)

∂t(σu) + ∂x(σu
2 + Ẽ) + σc2

0∂xr − fσv = 0, (3.39.b)

∂t(σv) + ∂x(σuv) + fσu = 0, (3.39.c)

∂t(σr) + ∂x(σur) + σβ̃∂xu+ ασr = 0, (3.39.d)

in which Ẽ (playing the role of the effective pressure in Kent et al. (2017)) is defined

as:

Ẽ =

{
E(σc) for σ > σc,

E(σ) otherwise;
(3.40)

with σc a convection threshold and:

β̃ =

{
β for σ > σr and ∂xu < 0;

0 otherwise;
(3.41)

in which σr is a rain threshold. Again, the parameters α (s−1) and β (dimensionless)

control the rate at which rain is created and removed from the system. The constant

speed squared c2
0 (m−2s−2) converts the dimensionless rain mass fraction into a poten-

tial, introducing a coupling between the two equations and implicitly controlling the

suppression of convection, cf. §2.1.2, Kent (2016); Kent et al. (2017).

Analogously to the modRSW model, the isentropic model equipped with convection

and precipitation cannot be written in conservative form. Its intrinsic non-conservative

vector formulation reads

∂tU + ∂xF(U) + G(U)∂xU + S(U) = 0, (3.42)
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3.4 Modified shallow water: the ismodRSW model

where:

U =


σ
σu
σv
σr

 , F(U) =


σu

σu2 + Ẽ

σuv
σur

 ,

G(U) =


0 0 0 0
−c2

0r 0 0 c2
0

0 0 0 0

−β̃u β̃ 0 0

 , S(U) =


0
−fσv
fσu
ασr

 .

(3.43)

The Jacobian matrix J = ∂UF + G of the system reads:

J =


0 1 0 0

−u2 − c2
0r + ∂σẼ 2u 0 c2

0

−uv v u 0

−u(β̃ + r) β̃ + r 0 u

 ,

with eigenvalues:

λ1,2 = u±
√
∂σẼ + c2

0β̃ and λ3,4 = u. (3.44)

Again, the numerical discretisation is an adaptation of the one used in Kent et al.

(2017). Details thereof can be found in the Appendix C.

3.4.2 The new nature run

In Chapter 2 we demonstrated how the modRSW model is a viable tool to conduct DA

research for operational Numerical Weather Prediction (NWP). In particular, forecast-

assimilation experiments have been conducted and subsequently analysed to show how

the system, despite its idealizations, performs akin to operational DA schemes follow-

ing a variety of metrics and criteria. Therein, a so-called twin-setting configuration

was used, in which observations are obtained from a high-resolution nature run simu-

lation, whereas the forecasts are generated by running the model at a lower resolution.

Similarly, in order to conduct new satellite DA experiments for our novel ismodRSW

model, it is essential to find a dynamically interesting nature run, characterized by

continuous production of convection and precipitation. The absence of topography in

the new configuration complicates the task somewhat since the presence of topogra-

phy in a periodic domain with a zonal flow constituted a convenient setup to obtain

self-generation of gravity waves with the modRSW model.

To compensate for the absence of topography, both rotation and a forcing term are
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Figure 3.6: Initial condition (in red) and relaxation solution (in blue) of the nature

run simulation (parameters listed in Table 3.1). The relaxation solution vrel mimics

a Low Level Jet (approximated by a smoothed top-hat transverse jet at the centre of

the domain). All variables are non-dimensional.
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3.4 Modified shallow water: the ismodRSW model

Initial conditions Fig. 3.6 η0 0.48

Boundary conditions Periodic Z0 [m] 6.12 · 103

Relaxation solution Fig. 3.6 c2
0 1.8

τrel 4 α 6.0

CFL 0.1 β 2.0

θ1 [K] 311 σc 0.21

θ2 [K] 291.8 σr 0.24

Ro 0.248 L [km] 500

U [m/s] 12.4 Nel 400

T (L/U) [h] 11.2 Fr 0.36

Table 3.2: Model parameters associated with the ismodRSW nature simulation shown

in Fig. 3.7. CFL indicates the Courant-Friedrichs-Lewy number. The values of σc, σr

and τrel are reported as non-dimensional variables. The Froude number Fr is computed

as Fr = U/
√
g′h2, with g′ given by (3.2) and H2 from Table 3.1.
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used, with the latter consisting of a relaxation term in the meridional momentum

equation:

∂tv + u∂xv + fu = (vrel − v)/τrel, (3.45)

in which τrel is a relaxation time-scale defining the speed at which the meridional

velocity v relaxes towards vrel(x, t). The relaxation profile vrel is shown in Fig. 3.6

(blue line) and represents a smoothed top-hat meridional jet. This type of forcing is

chosen to reflect the troposphere-based scaling used in the derivation of the ismodRSW

model (cf. section §3.3.4 and Bokhove et al. (2021)), which is based on Low Level Jet

(LLJ) conditions (here approximated by a transverse jet in the meridional direction) in

a two-layer troposphere. In this regard, it is worth noting that vrel does not represent

an equilibrium solution and is not meant to be one, as its purpose is solely to excite

new instability and gravity waves, counteracting the highly dissipative character of

the numerical solver.

The initial condition used in the nature run is also shown in Fig. 3.6 (red lines). In

this case, the shape of both the pseudo-density profile and the meridional velocity

simply represents an unstable setup that maximises the production of convection and

rain at the beginning of the simulation. Finally, in Table 3.2 we list the parameter set

used in the ismodRSW model to generate a 48 hours-long nature run with continuous

production of rain and precipitation.

The dynamical evolution of the nature run is shown in Hovmöller diagrams, one for

each variable, in Fig. 3.7. The two top panels (right: σ, left: r) show how convection

and rain are continuously generated across the (periodic) domain, as travelling waves

move along it. Grey-shaded areas in the top-left panel indicate locations where only

convection is activated (σc < σ < σr), whereas yellow-to-brown shadings denote areas

of rain production (σ > σr). The fluid velocities are depicted in the bottom two panels

(left: u, right: v). Areas of rain in the top right panel are spatially correlated with

areas where convergence in u arises, e.g. at locations where a negative gradient of

u exists. The Hovmöller diagram of the meridional velocity v (bottom-right panel)

shows a much smoother time evolution than the other three variables as it shows the

transition from the initial condition towards the relaxation solution.

The unsettled character of the nature run is further illustrated in Fig. 3.8, where the

time series of all variables at location x0 = 0.5 are shown. The peaks and troughs in

the pseudo-density σ(x0) indicate the passage of the gravity waves at this location,

with corresponding generation and removal of rain r(x0). The transit of waves is
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3.4 Modified shallow water: the ismodRSW model

also correlated with some irregular oscillations in the horizontal velocity u(x0), while

the meridional velocity v(x0), initially zero, gradually settles towards its relaxation

solution vrel, that is, a jet at the centre of the domain (cf. Fig. 3.6).

3.4.3 Recovery of the modRSW model in presence of

convection and rain

As a final check performed on the full model, we compare the evolution in time of the

modRSW against the ismodRSW model with κ = 1. The two models are initialized

with the same initial condition and the parameters reported in Table 3.2. The initial

values of the fluid depth H0, and the related thresholds Hc and Hr are scaled to H0 = 1,

Hc = σc/σ0 = 1.05 and Hr = σr/σ0 = 1.2 with σ0 = 0.2 (see Table 3.2 and Fig. 3.6).

The value of Froude number in the bottom layer Fr2 (which needs to be specified in

the modRSW model) is reported in Table 3.2 and is computed as:

Fr2 =
U2√
g′h2

=
U2√

g∆θ
θ1

Rθ2
g

g
pr
σ
, (3.46)

in which we have used the definition of the isentropic reduced gravity g′ in (3.2), the

expression of the bottom layer depth h2 in (3.7b) and the definition of σ in (3.11),

noting that cp = R when κ = 1.

We run the two models side-by-side in three different configurations: (i) classic rotating

shallow water (σc, σr → ∞), (ii) convection-only regime (σr → ∞) and (iii) fully

modified shallow water. The results (limited to h, σ and r) are shown in Figure 3.9.

While in the first two cases (left and central panels) the two models behave identically

(we notice the good agreement between the solid black for h and the dashed gray line

for σ in the left and central panels), we observe a gradual divergence in time between

the two once both convection and rain are turned on (right panels, after t = 1.0). The

differences are particularly noticeable in the rain solutions (blue solid and cyan dashed

lines). This divergence seems to originate (and grow thereafter) at various locations in

the domain where σ (and similarly h) decreases until it falls below the rain threshold.

We believe this is an indirect effect of rounding errors generated by the computation

of the different flux expressions in the two models (cf. (3.43) in this thesis with (6) in

Kent et al. (2017)), which in turn has an impact on the values of the non-conservative

products. This type of behaviour is not surprising given the non-linear character of

the two models.
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Figure 3.7: Hovmöller diagrams of the nature run simulation (parameters listed in Ta-

ble 3.2). Non-dimensional variables: σ (top-left panel), r (top-right panel), u (bottom-

left panel) and v (bottom-right panel). The gray and yellow shading in the top left

panel indicates the areas where σ is above the convection (e.g. σc < σ < σr) and the

rain (σ > σr) thresholds, respectively. Note that the length of the y axis (t = [0, 4.272])

is the non-dimensional equivalent of a 48 hours period, given the scaling in Table 3.2.

The values of σc and σr are also reported in Table 3.2.
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3.4 Modified shallow water: the ismodRSW model

Figure 3.8: Time series of the nature run variables at location x0 = 0.5 (parameters

listed in Table 3.2).
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Figure 3.9: Comparison between the isopycnal and the isentropic model with κ = 1

at times (from top to bottom panels) t = {0, 0.5, 1.0, 1.5, 2.0}. Left panels: classic

rotating shallow water with σc, σr, Hc, Hr →∞; central panels: convection-only regime

with σc = 0.21, Hc = 1.05 (green dashed-dotted line) and σr, Hr → ∞; right panels:

fully modified shallow water with σc = 0.21, Hc = 1.05 and σr = 0.24, Hr = 1.2

(dashed-dotted red line). Variables: isopycnal fluid depth h (black solid line) and

mass rain fraction r (blue solid line), isentropic pseudo-density σ (dashed gray line)

and mass rain fraction r (cyan dashed line).
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3.4 Modified shallow water: the ismodRSW model

Chapter highlights and summary

• At the start of the chapter we have discussed the limitations of the
modRSW model that hamper its use for satellite data assimilation re-
search. In particular, we have showed how the lack of a robust fluid
temperature definition leads to some scaling issues when a simple prog-
nostic relationship based on the ideal gas law and the hydrostatic equi-
librium is formulated.

• A revised version of the modRSW model is therefore presented, namely
the isentropic modified rotating shallow water (ismodRSW) model.
The ismodRSW model is naturally equipped with a physically consis-
tent temperature definition and includes an additional layer for in-
creased vertical complexity. At the same time, the revised model
retains most of the dynamical and numerical characteristics of the
modRSW model, including a threshold mechanism to imitate convec-
tion and precipitation. The revised model (without convection and pre-
cipitation) is checked numerically against an analytical solution based
on Shrira (1981, 1986).

• The ismodRSW model equipped with convection and rain is used to
create a new nature run simulation for the anticipated satellite data
assimilation experiments. A combination of fluid rotation and relax-
ation to a meridional jet creates an interesting dynamics characterised
by continuous production of convection and precipitation via the gen-
eration of traveling gravity waves.
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Chapter 4

Idealised satellite observations

This chapter describes how satellite observations are generated using the ismodRSW

model introduced in Chapter 3 and subsequently used in the forecast-assimilation ex-

periments discussed in Chapter 5.

Since the aim of this study is to replicate the characteristics of real satellite observa-

tions in an idealised fashion, some context regarding the theoretical background and

the historical perspective on the use of meteorological satellites in data assimilation is

also provided.

Therefore, this chapter will start with an overview of the main concepts related to

radiative transfer (RT) and atmospheric radiation, and will continue with a review of

the historical developments of satellite DA, before moving to the actual description of

how these aspects have been replicated in our idealised configuration.

4.1 Weather satellites: a theoretical overview

The main task of meteorological satellites is to measure electromagnetic (EM) radia-

tion to extrapolate information about the earth’s surface and atmosphere. In order to

understand how this is achieved in practice, a basic understanding of the main RT pro-

cesses is required. To this aim, we start this section by introducing some fundamental

concepts and definitions about EM radiation and its interaction with matter. Later

on, we will introduce the full RT equation, discuss the main features of atmospheric
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radiation and how they are exploited by satellites for meteorological purposes. To-

wards the end, we will summarise the main characteristics and properties of satellites

and the instruments they are equipped with.

We refer to Petty (2006); Salby (1996); Stamnes et al. (2017) and Kidder et al. (1995)

for a more extensive discussion of the content of this section.

4.1.1 Radiative transfer: definitions and processes

In this thesis, we will primarily describe EM radiation in terms of its wave properties,

that is: its frequency ν, measured in Hertz (s−1, [Hz]), and wavelength λ [m], which

are related by the formula:

λ =
c

ν
, (4.1)

in which c represents the speed of light. Indeed, this is the speed at which the EM

radiation travels, and its value depends on the medium in which it is propagating.

The speed of light in vacuum is c = 2.998 · 108 m s−1. Of course, EM radiation does

not propagate in vacuum when atmospheric processes are concerned, and the way

it interacts with various components of the atmosphere will be at the centre of this

section. However, the reduction of c caused by these processes is marginal and it

appears safe to neglect these effects for the rest of the thesis.

In the context of RT applications, it is also useful to introduce a quantity called the

wavenumber [cm−1], defined as:

ν̃ =
1

100 · λ
. (4.2)

Exactly like all waves, EM radiation has the important property of carrying energy.

This property helps define the quantities that are generally used to measure EM ra-

diation quantitatively. To this aim, two physical quantities typically used in RT are

defined below: radiance and irradiance.

Irradiance By considering the oriented surface element dA with unit vector n̂ in

Fig. 4.1, we define the spectral (or monochromatic) irradiance1 Fλ as the net amount

of radiant energy dE in the wavelength interval λ, λ+ dλ flowing through dA from all

1Irradiance is sometimes called flux density in the literature, hence the symbol F .
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4.1 Weather satellites: a theoretical overview

Figure 4.1: Geometrical representation of an oriented surface dA with unit vector n̂.

A solid angle dω oriented in the Ω̂ΩΩ direction forms an angle ϑ with n̂.

directions during the time interval t, t+ dt, that is:

Fλ =
dE

dAdλdt

[
W

m2 ·m

]
. (4.3)

Radiance By considering again the oriented surface element dA in Fig. 4.1, we call

spectral (or monochromatic) radiance1 Iλ the amount of radiant energy dE in the

wavelength interval λ, λ + dλ coming from the direction Ω̂ΩΩ (forming an angle ϑ with

n̂) within the solid angle dω flowing through dA during the time interval t, t+dt, that

is:

Iλ =
dE

dAdλdtdω

1

n̂ · Ω̂ΩΩ

[
W

m2 ·m · sr

]
. (4.4)

From the definitions above, it can be noted that the radiance, unlike the irradiance,

is a directional quantity and provides information on the direction of propagation of

the radiation. In practice, the (spectral) radiance and irradiance are related by the

integrals:

F ↑λ =

∫
2π

I↑λ(Ω̂ΩΩ)n̂ · Ω̂ΩΩ dω, F ↓λ =

∫
2π

I↓λ(Ω̂ΩΩ)n̂ · Ω̂ΩΩ dω, (4.5)

1Radiance is sometimes called intensity in the literature, hence the symbol I.
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in which the arrows indicate upward (↑) or downward (↓) propagation of radiation

with respect to the oriented surface in Fig. 4.1 and the integrals are performed over

the upper (↑) and lower (↓) hemisphere. In those cases when the spectral radiance is

isotropic (i.e. independent of the direction of propagation, Iλ(Ω̂ΩΩ) = Iλ = const), the

relations (4.5) simplify to1:

F ↑λ = π · I↑λ, F ↓λ = π · I↓λ. (4.6)

It is very common for natural EM radiation (for example solar radiation) to be a

broadband (or incoherent) quantity, hence spanning a wide range of non-interfering

wavelengths or frequencies. However, the use of spectral quantities is a practical

theoretical approximation that will be applied throughout the chapter.

The nature of EM radiation and its interactions with a medium can be characterised

by three fundamental processes: thermal emission, absorption and scattering, which

we will examine briefly below.

Thermal emission

Every object or substance with a temperature above absolute zero (i.e. T = −273.15◦C)

emits EM radiation. This process can be seen as the conversion of part of its internal

energy into radiant energy and can be explained in terms of the decay of quantum

states, which release energy in the form of photons.

In order to quantitatively describe the emission of thermal radiation, we introduce the

concept of a blackbody. A blackbody is an idealised object able to absorb all radia-

tion at any wavelengths, and as we will discuss in a later paragraph on absorption, a

perfect absorber behaves also like a perfect emitter. A common thought experiment

to visualise the concept of blackbody is that of a cavity with a hole (see, for exam-

ple, section §6.1 in Petty (2006)). The (isotropic) spectral radiance Bλ(T ) dλ emitted

in the interval λ, λ + dλ by a blackbody at temperature T is defined by the Planck

function:

Bλ(T ) =
2hc2

λ5
(
e

hc
kBλT − 1

) , (4.7)

1Note that the infinitesimal solid angle dω can be expressed in spherical coordinates as dω =

sin(ϑ)dϑdφ, with φ being the azimuthal angle.
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4.1 Weather satellites: a theoretical overview

in which: c is the speed of light, h is Planck’s constant (h = 6.626 · 10−34 m2 kg s−1)

and kB is Boltzmann’s constant (kB = 1.381 ·10−23 m2 kg s−2 K−1). Given a blackbody

at temperature T , its emitted spectral radiance determined by (4.7) peaks at a specific

wavelength λmax determined by the Wien Displacement law :

λmax =
2897.8

T

[
µm ·K

K

]
. (4.8)

For certain RT applications, the broadband radiation emitted by a source can also be

of interest. In particular, the broadband energy flux density emitted by a blackbody

FBB follows the Stefan-Boltzmann law, which is obtained by substituting (4.7) into

(4.5) and integrate the result over the whole EM spectrum. Its final expression reads:

FBB(T ) = σBT
4, (4.9)

in which σB is called the Stefan-Boltzmann constant:

σB =
2π5k4

B

15c2h3
= 5.67 · 10−8

[
W

m2 ·K4

]
. (4.10)

The blackbody theory becomes useful when the thermal emission of a real-world source

(for example a certain surface) is considered. Since a blackbody is a perfect emitter,

no real surface will emit as much radiation as the Planck function (4.7) prescribes.

Therefore, the thermal emission of a surface at temperature T at any given wavelength

λ can be characterised in terms of its spectral emissivity ελ, defined as the ratio between

the radiation Iλ emitted by the surface in a certain direction Ω̂ΩΩ over the radiation Bλ(T )

that a blackbody would emit at the same temperature, that is:

ελ =
Iλ(Ω̂ΩΩ)

Bλ(T )
. (4.11)

Clearly, ελ takes values comprised in the interval [0, 1] and ελ = 1 in the case of a

blackbody. The spectral emissivity of a surface as defined in (4.11) can also depend

on other physical properties, such as its temperature T and the direction considered

Ω̂ΩΩ.

An object (or surface) whose emissivity ελ is constant throughout the EM spectrum is

called a graybody. Therefore, a coefficient ε called a graybody emissivity (i.e. ελ = ε)

can be defined as the ratio:

ε =
F

FBB
, (4.12)
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in which F is the total broadband irradiance emitted by the object (or surface).

A useful concept related to these considerations regarding thermal emission and com-

monly used in many satellite applications is that of brightness temperature. Given a

source of (monochromatic) thermal radiation, this quantity is defined as the temper-

ature T of an equivalent blackbody emitting the same amount of radiation according

to the Planck function (4.7).

Finally, as this thesis will later focus on microwave radiation, it is useful to introduce

an approximation of the Planck function (4.7) that is applicable in this part of the

EM spectrum (i.e. with λ > 1mm). For large enough values of the wavelength λ, the

argument of the exponential in (4.7) becomes small, that is:

hc

kBλT
� 1;

a Taylor expansion of e
hc

kBλT in (4.7) leads to the Rayleigh-Jeans law :

Bλ(T ) ≈ 2ckB
λ4

T. (4.13)

The validity of (4.13) depends on the value of λ at a given T . We will discuss this

approximation in detail in the section regarding the radiative scheme developed for

the ismodRSW model (see section §4.3.1).

Absorption

The absorption of EM radiation involves the conversion of radiant energy into the

thermal or chemical energy of an object. Hence, the process can be seen as the inverse

of thermal emission, in which the quantum states of atoms and molecules are promoted

to higher energy levels by the absorption of photons.

The ability of a surface to absorb EM radiation is inherently linked to its ability to

emit it. In fact, according to Kirchhoff’s law of thermal radiation, the absorptivity aλ

of a surface for radiation at a certain wavelength λ coming from a certain direction Ω̂ΩΩ

equals the value of emissivity for the same surface:

aλ(Ω̂ΩΩ) = ελ(Ω̂ΩΩ). (4.14)

Theoretically, the validity of Kirchhoff’s law is restricted to the spectral and directional

dependence present in (4.14) and depends on the fulfilment of Local Thermodynamic

Equilibrium (LTE) conditions, in which the energy exchange between the molecules
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Figure 4.2: Layer of medium crossed by a beam of EM radiation of wavelength λ along

the path s.

of a medium is dominated by their collisions rather than by radiative processes, such

as the emission and the absorption of photons. In this thesis, we will often generalise

this concept more broadly to the emission and absorption of surfaces and objects that

can be treated as graybodies.

The absorption of EM radiation propagating through a medium is described by Beer’s

Law (or extinction law). Given a layer of medium like the one in Fig. 4.2 and a beam

of EM radiation at a certain wavelength λ travelling through it along the path s in

the direction Ω̂ΩΩ, the radiance attenuated by absorption at any point along the path s

can be defined as:

Iλ(s, Ω̂ΩΩ) = Iλ(0, Ω̂ΩΩ)e−τs(λ), (4.15)

in which τs(λ) is a dimensionless quantity called optical depth, reading:

τs(λ) =

∫ s

0

βa(λ, s
′)ds′, (4.16)

with βa(λ, s) [m−1] being the absorption coefficient along the path s for radiation of

wavelength λ. In other words, because of absorption processes, the radiance travelling

through a medium decreases exponentially.

Equation (4.15) can also be rewritten as:

Iλ(s, Ω̂ΩΩ) = tλ(0, s)Iλ(0, Ω̂ΩΩ),
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in which tλ(0, s) is called a transmittance along the path s, that is:

tλ(0, s) = e−τs(λ). (4.17)

Scattering

We call scattering the process by which the radiation travelling through a medium is

redirected from the original direction in which it was travelling. In certain applications,

scattering and absorption are considered jointly as a single process called extinction

(or attenuation). To this aim, the (absorption) optical depth of Eq. (4.16) can be

redefined as an extinction optical depth τe(λ), that is:

τe(λ) =

∫ s

0

(βa(λ, s
′) + βs(λ, s

′)) ds′ =

∫ s

0

βe(λ, s
′)ds′, (4.18)

in which βe(λ, s) [m−1] and βs(λ, s) [m−1] represent the extinction and the scattering

coefficients, respectively. Hence, both scattering and absorption will contribute to the

attenuation of a beam of EM radiation travelling through a layer of medium like the

one in Fig. 4.2. Beer’s Law can also be modified in order to include scattering processes

by redefining (4.15) as:

Iλ(s, Ω̂) = Iλ(0, Ω̂)e−τe(λ). (4.19)

The properties of scattering processes depend on many factors, but two are of partic-

ular importance: i) the size of the particles which the radiation is scattering from, and

ii) the wavelength λ of the radiation itself. A size parameter χ can be defined as the

ratio:

χ =
2πr

λ
, (4.20)

in which r indicates the radius of a sphere approximating the particles in the medium.

The size parameter χ can therefore be used to define three different regimes (see, for

example, Kidder et al. (1995)):

• Geometric optics (χ > 50): the laws of geometric optics apply whenever EM

radiation scatters from particles or objects much greater than its wavelength; in

this regime, the shape of the particles subject to the scattering is generally very

important. The interaction between solar radiation and most hydrometeors can

be described in terms of geometric optics.
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4.1 Weather satellites: a theoretical overview

• Mie scattering (0.1 < χ < 50): this is the regime in which the size of the

particles and the wavelength of the radiation are comparable. Mie scattering is

used in radar meteorology to describe the scattering of radio waves generated by

radars on snow and rain droplets (approximated to spherical particles).

• Rayleigh scattering (χ < 0.1): in this regime, the particles are much smaller

than the wavelength of the EM radiation and the shape of the particles them-

selves is generally unimportant. One area of application is the interaction of

solar radiation with atmospheric molecules of O2 and N2. Rayleigh scattering is

strongly dependent on the wavelength of the incident radiation and becomes less

relevant for processes involving infrared and microwave radiation (cf. sections

§4.1.3).

4.1.2 Radiative Transfer equations

In the previous section we have defined several concepts related to the propagation of

EM radiation in a generic medium. It is now time to apply some of those notions to

the transmission of radiation in the atmosphere.

Figure 4.3 presents a schematic representation of a satellite located at altitude zsat,

zenith angle θ and azimuthal angle φ in a plane-parallel atmosphere: a geometrical

approximation in which the radiative properties of the atmosphere are considered as

uniquely dependent on the vertical coordinate z, while all horizontal variations are

neglected. Under these assumptions, the infinitesimal optical path ds defined in the

previous section can be rewritten in terms of an infinitesimal atmospheric layer of

thickness dz as ds = dz/µ, where µ is the cosine of the zenith angle θ, i.e. µ = cos(θ).

The amount of radiation reaching the satellite in Fig. 4.3 is the result of various

processes (thermal emission, absorption, scattering) occurring between the surface and

the sensor, within any infinitesimal layer of depth dz. Formally, they are summarised

in the Radiative Transfer equation (cf., for example, equation (3.32) in Kidder et al.

(1995)):

µ
dIλ(µ, φ)

dτ
= (1− ω̃)Bλ(T )− Iλ(µ, φ) +

ω̃

4π

∫
4π

p(µ, φ;µ′, φ′)Iλ(µ
′, φ′)dµ′dφ′, (4.21)

which describes the variation of the spectral radiance Iλ with respect to the extinction

vertical optical depth, defined as:

τ =

∫ z2

z1

βe(λ, z)dz. (4.22)
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Figure 4.3: Schematic representation of a plane-parallel geometry with a satellite

located at altitude zsat, zenith angle θ and azimuthal angle φ (indicating the rotation

around the axis z). The infinitesimal layer depth dz is related to the infinitesimal

optical path ds by dz = ds · cos(θ) = ds · µ. Iλ(µ, φ) and I0 indicate the radiance

reaching the satellite and leaving the surface, respectively.
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In particular, the terms on the right-hand side of equation (4.21) represent (from the

left to the right): the emitted thermal radiation emerging from the layer (and possibly

attenuated by scattering); the extinction of radiation passing through the layer; the

radiation redirected by scattering processes within the layer towards the direction of

propagation (µ, φ). In the third term, p(µ, φ;µ′, φ′) represents the scattering phase

function, which describes the likelihood of the radiation coming from any direction

(µ′, φ′) of being redirected towards (µ, φ). Finally, ω̃ = βs/βe is the so-called single-

scatter albedo defined as the ratio between the scattering and the extinction coefficients.

Depending on the situation, equation (4.21) can be simplified by neglecting the terms

which are deemed unimportant. For example, by ignoring all scattering processes (i.e.

βs = ω̃ = 0), one obtains the Schwarzchild’s equation, that is:

µ
dIλ(µ, φ)

dτ
= Bλ(T )− Iλ(µ, φ). (4.23)

We will turn to this equation and its solution at the end of the next section.

4.1.3 Atmospheric radiation

The EM radiation that pervades the atmosphere and is measured by satellites comes

primarily from two sources of emission: the Sun and the Earth. By approximating

them to blackbodies, and using their surface temperature as brightness temperature,

we can utilise the Planck function in Eq. (4.7) to calculate their emission spectra,

which are shown in Fig. 4.4. Clearly, their different surface temperatures (here we

take Ts = 5700 K for the Sun, in red, and Te = 300 K for the Earth, in blue) lead to

very different results. As predicted by the Wien-displacement law (4.8), the intensity

of the solar radiation peaks at λsmax ≈ 0.51 µm, which is the typical wavelength of

green visible light, whereas the radiation emitted by the Earth peaks in the infrared

spectrum at λemax ≈ 9.7 µm (see the black dashed lines in Fig. 4.4). Moreover, as

highlighted by the two different vertical axes, the radiation emitted by the Sun is ap-

proximately 106 times more intense than that produced by the Earth. However, their

spectra barely overlap, and this aspect makes it possible to separate clearly the two

sources of radiation in most satellite-related applications.

As a consequence, atmospheric radiation can be split into two intervals: shortwave

(SW) radiation emitted by the Sun and longwave (LW) radiation emitted by the

Earth’s surface and atmosphere, including clouds, water vapour, and other gases. The

SW radiation spans a broad range of wavelengths which includes ultraviolet light (UV,
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Figure 4.4: Emission spectra computed via the Planck function (4.7) for a blackbody

at T = 5700 K (red line) and one at T = 300 K (blue line). These functions are

meant to approximate the emission spectra of the Sun and the Earth, respectively.

The black dashed lines indicate the wavelength of maximum emission estimated with

the Wien-displacement law (4.8).
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0.1 < λ < 0.4 µm), the visible spectrum (0.4 < λ < 0.7 µm) and near-infrared radi-

ation (NIR, 0.7 < λ < 4.0 µm). The LW radiation also includes a wide spectrum of

wavelengths, which covers the whole infrared range (0.7µm < λ < 1 mm), microwaves

(1 mm < λ < 1 m) and radio waves (λ > 1 m).

This separation between SW and LW radiation is particularly useful when their inter-

action with various gaseous components of the atmosphere (e.g. water vapour, carbon

dioxide (CO2), Ozone (O3)) is concerned, as these effects vary strongly across the

EM spectrum. In addition, there are other atmospheric components that perturb the

transmission of EM radiation, such as clouds, precipitation, and aerosol particles.

The impact of atmospheric gases on EM radiation can be analysed by comparing

the theoretical emission spectra shown in Fig. 4.4 with a measured spectrum. Many

books on radiative transfer and atmospheric sciences report such comparisons and one

example is shown in Figure 4.5 (this appears in Fig. 8.2 of Salby (1996)), where the

EM spectra of solar radiation measured at sea level and at the top of the atmosphere,

as well as the theoretical emission spectrum of a blackbody at T = 5900 K, are shown.

In general, the intensity of solar radiation reaching the surface (grey shaded area) is

only a fraction of its theoretical estimated maximum. This reduction in intensity is the

result of various processes that contribute to the extinction of solar radiation while it

travels through the atmosphere. As an example, a broad reduction in intensity of UV

light can be explained by the thermochemical reactions involving ozone taking place

in the stratosphere (the layer of the atmosphere between 10 and 50 km above the

surface), leading to a smaller portion of UV radiation reaching the ground. Moreover,

the molecules of O2 and N2 play a big role in the scattering of solar radiation at small

wavelengths (see, for example, section §9.4 of Salby (1996) on Rayleigh scattering),

resulting in further extinction of UV and visible solar radiation. In addition, Fig. 4.5

shows a significant reduction in the transmitted radiance in various bands (both in the

visible and the infrared spectrum) centred on specific wavelengths which are associated

with absorption from various gases, such as water vapour, CO2 and O2 (each absorption

band is indicated and its respective absorber are indicated in the figure). The nature

of these bands and their position within the spectrum can be explained in terms of the

interaction between the molecules of a gas and the EM radiation. Many books have

covered this subject in detail: see for example section §8.3 of Salby (1996) and section

§4.3 of Stamnes et al. (2017). In the context of satellite observations, it is more

interesting to compare the LW radiation measured by an instrument located at the

top of the atmosphere against various blackbody emission spectra, representing the
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Figure 4.5: Spectrum of solar radiation measured (in irradiance) at the surface (grey

shaded area) and at the top of the atmosphere (white area) against the theoretical

emission spectrum of a blackbody at T = 5900 K. This figure is shared with the

permission of Elsevier and was published in Fundamentals of Atmospheric Physics,

Murry L. Salby, Chapter 8, page 201, Copyright 1996 by ACADEMIC PRESS and

is an adaptation of Figure 3.1 in Solar and Terrestrial Radiation, Kinsell Coulson,

Chapter 3, page 40, Copyright 1975 by ACADEMIC PRESS.
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theoretical emission of the Earth’surface (i.e. T = 300 K) and that of the atmospheric

layers above it (T = 275 K, T = 250 K, etc.). This is shown, for example, in Fig. 4.6

(this appears in Fig. 8.5 of Salby (1996)). In this case, since the scattering of LW

radiation by gas molecules is negligible, most of the differences between the predicted

and the measured spectrum can be explained in terms of the absorption and emission

properties of various gases, as well as their concentration profiles. As a result, since

the temperature in the troposphere decreases with height, one observes a reduction in

the measured radiance (or equivalently brightness temperature) within the absorption

bands of various optically active gases (for example around λ = 15µm for the CO2, or at

λ = 9.5µm for O3). In other words, the majority of the radiation reaching the satellite

at these wavelengths comes from higher (and colder) layers in the atmosphere, where

these gases reside. Overall, the values of brightness temperature associated with these

absorption bands will be strongly influenced by the temperature of the atmospheric

layer where most of the absorption has taken place.

In order to extend these considerations quantitatively, one can consider the solution

to Schwarzchild’s equation (4.23) for the LW radiation reaching a satellite located at

top of the atmosphere (like the one in Fig. 4.3). By choosing τλ =
∫ z

0
βa(λ, z)dz as the

vertical coordinate, one obtains (see section §3.3.1 in Kidder et al. (1995) for a proof):

Iλ(µ, φ) = I0 · e−
τ0
µ +

∫ τ0

0

e−
τ0−τλ
µ Bλ(T )

dτλ
µ
, (4.24)

in which I0 is the radiance leaving the surface and τ0 indicates the optical depth

computed between the surface (z = 0) and the satellite height (z = zsat), that is

τ0 =
∫ zsat

0
βa(λ, z)dz.

Equation (4.24) can be manipulated and rewritten to be a function of z (noting that

from (4.22), and without scattering, dτ = βadz) and exploiting the definitions of the

transmittance functions, that is:

Iλ(µ, φ) = I0 · tλ(0, zsat)
1
µ +

∫ zsat

0

Bλ(T (z))W (z) dz, (4.25)

in which tλ(0, zsat) indicates the transmittance of the whole atmosphere comprised

between the surface (z = 0) and the satellite height (z = zsat):

tλ(0, zsat) = e−τ0 . (4.26)

The function W (z) multiplying the emission term Bλ(T (z)) is called a weighting func-

tion and is defined as:

W (z) =
d

dz

(
tλ(z, zsat)

1
µ

)
=
ρa(z) ka

µ
· tλ(z, zsat)

1
µ , (4.27)
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in which we have expanded the absorption coefficient βa as the product of the gas

density ρa(z) [kg m−3] and a mass absorption coefficient ka [kg−1 m2]. In this case,

tλ(z, zsat) indicates the transmittance of the atmosphere between the altitude z and

the height of the satellite zsat, i.e.:

tλ(z, zsat) = e−(τ0−τ). (4.28)

The solution to Schwarzchild’s equation (4.25) illustrates that, in the absence of scat-

tering, the radiation reaching a satellite is the sum of two contributions. In particular,

the first term in (4.25) represents the radiation coming from the surface (either re-

flected or emitted), attenuated by the whole atmospheric column via the transmittance

tλ(0, zsat), whereas the integral term represents the emission contribution of each in-

finitesimal atmospheric layer dz, possibly attenuated by the atmospheric layers above.

In this regard, we explore the relationship between the transmittance and the weight-

ing function in Fig. 4.7, where both functions are plotted for various absorptivity

profiles determined by the mass absorption coefficient ka. For the same (exponen-

tially decaying) density profile ρa(z), higher values of ka lead to a stronger reduction

in the atmospheric transmittance, and the corresponding weighting functions peak

higher in the atmosphere, where the contribution of the emitted radiance B(T (z))

to the total radiance Iλ(µ, φ) in (4.25) will be maximum. In a situation like the

one in the troposphere where the temperature decreases with height, the equivalent

brightness temperature resulting from (4.25) will be lower for a strongly absorbing gas

(e.g. ka = 5.0 kg−1 m2, red curve in Fig. 4.7) than for a weakly absorbing one (e.g.

ka = 0.1 kg−1 m2, blue curve in Fig. 4.7), in which most of the radiation comes from

the lower troposphere and the surface.

Of course, both solar and terrestrial radiation are subjected to scattering and absorp-

tion processes when they interact with rain, clouds and other hydrometeors. In this

regard, it is possible to model the effects of these interactions by adding additional

terms to (4.25). We will cover this topic in a later section, focussing specifically on

the transmission of microwave radiation through clouds and precipitation, which will

help us set up the cloud model for the ismodRSW model.

4.1.4 Types of satellites and instruments

Satellites used for meteorological purposes can be classified according to various prop-

erties related to their orbit, the type of instruments they carry on board and the
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Figure 4.7: Transmittance profiles (tλ(z, zsat), left) and associated weighting functions

(W (z), right) for four arbitrary values of the mass absorption coefficient ka (assuming

µ = 1). The density of the absorbing gas is defined as ρa(z) = e−z/H with height scale

H = 4 km. The values of ka are reported in the legend.

way they perform their measurements. Here we present some of the most common

terms and definitions used in the literature, which will recur later in the chapter while

summarising past and present developments of satellite DA.

Polar-orbiting and geostationary satellites

Meteorological satellites are classified according to the orbit they travel on. Geosta-

tionary satellites are situated on a geosynchronous orbit over the equator and possess

the same angular velocity as the Earth’s surface. In practice, they hold a constant

view on the same portion of the globe from an altitude of around 36,000 km. They

provide good coverage of most equatorial and extra-tropical areas, but they cannot

view over the poles. Polar -orbiting satellites are situated on a sunsynchronous orbit.

This trajectory is chosen such that the satellite crosses the equator multiple times a

day and at the same local time every day. The satellites travelling on this orbit are

much closer to the surface – that is, they gravitate at altitudes in the range of 600-800

km – and complete a full orbit in about 1 to 2 hours. Therefore, they have a much
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narrower view than most geostationary satellites, but their spatial coverage is more

homogeneous and they also cover the polar regions.

Channels

Most of the definitions and the considerations made in the earlier sections §4.1.1-4.1.2

apply to monochromatic radiation. Unfortunately, no instrument is able to measure

radiation at a single wavelength. Instead, satellites are generally equipped with devices

able to detect radiation within an interval of wavelengths [λ1, λ2] called a channel. In

the case of a radiometer, for example, the radiation measured in a certain channel is

defined as (see also Chapter 3 of Kidder et al. (1995)):

Ichannel =

∫ λ2
λ1
Iλf(λ)dλ∫ λ2

λ1
f(λ)dλ

, (4.29)

in which f(λ) is the response function of the instrument, determining what portion of

the radiation Iλ is detected at a certain wavelength λ within the interval [λ1, λ2]. Their

number, position and width are chosen so that the most important spectral features

are covered. In this regard, a compromise is required between the desire of building

very narrow channels able to capture specific absorption lines and, at the same time,

minimising the amount of noise, which in very narrow bands can hamper the quality

of the measurements.

Field of view

The horizontal resolution of a satellite instrument is generally associated with its Field

of View (FOV). The FOV is defined as the solid angle within which the detector of

a device is able to receive EM radiation. The intersection between the solid angle

defining the FOV and the Earth’s surface is called ground FOV and varies according

to the satellite’s height.

Imagers and sounders

Meteorological satellites have been historically divided into imagers and sounders,

depending on whether their instruments were able to observe the Earth’s surface or not.

Satellite sounders, operating channels that are opaque to the surface, are commonly

utilised to reconstruct the vertical profiles of temperature and water vapour. This
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approach was very common in the early days of satellite DA as we will see in the next

section.

Satellite imagers are particularly useful in the development of the AMVs (cf. section

§4.2.3). They also constituted the first generation of weather satellites.

Passive and active satellites

Another common criterion to classify meteorological satellites is whether they are ac-

tive or passive. Active satellites emit EM radiation towards a target and subsequently

measure the returned signal. Passive instruments measure radiation emitted by an-

other sources (e.g. the Earth or the Sun).

Most satellite applications discussed in this thesis are based on passive instruments,

but active satellites endowed with lidar or radar instruments have gradually occupied

an important place in the global observing system.

4.2 The use of satellites in data assimilation

In this section we will provide an historical overview of the role played by satellite

observations in data assimilation. Of course, this is a very large topic and it would be

impossible to provide a complete and satisfactory review on the subject in just a few

pages. As a consequence, we will present only a summary of the main developments

and advances that can help collocate the work done in this thesis in a broader per-

spective. For more in-depth and detailed reviews we refer the reader to Derber (2014);

Eyre (2007); Eyre et al. (2020); Menzel (2001); Menzel et al. (2018); Saunders (2021).

4.2.1 The early imagers of the 1960s

The era of weather satellites started in 1960 when NASA sent TIROS-1 into orbit

(see Allison & Neil (1962) for a detailed report of the mission). TIROS-1 became

the first meteorological satellite to return images of the Earth and paved the way for

other missions, such as (cf. Table 1 in Eyre et al. (2020)): Nimbus-1 (the first satellite

designated for meteorological research, 1964), the Applications Technology Satellite, or

ATS-1 (the first geostationary weather satellite, 1966) and the Environmental Science

Services Administration satellite, or ESSA-1 (the first operational satellite to be used
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4.2 The use of satellites in data assimilation

for meteorological purposes, 1966). All these satellites carried imaging instruments on

board.

4.2.2 From the sounder retrievals to the assimilation of

radiances

The first satellite sounder, Nimbus-3, was also launched by NASA in 1969. This satel-

lite was equipped with the Satellite Infra-Red Spectrometer (SIRS) and the Infrared

Interferometer Spectrometer (IRIS), and aimed at reconstructing vertical profiles of

temperature, water vapour and ozone. Wark (1970) showed that the retrieved temper-

ature profiles were in agreement with radiosonde measurements, suggesting that the

technique could be used for operational and monitoring purposes. In a similar study,

Smith et al. (1970) illustrated how the operational system in use at the National Me-

teorological Center (NMC) of the United States could benefit from the inclusion of

such retrieved profiles into the objective analysis.

In 1972, the National Oceanic and Atmospheric Administration 2 (NOAA-2) satellite

was launched and started its operations, carrying on board the Vertical Temperature

Profile Radiometer (VTPR). Unlike Nimbus-3, NOAA-2 was a fully fledged operational

polar-orbiting satellite (in fact, it was the first ever operational sounder) and was at

the centre of a number assimilation experiments during the 1970s. Two other satellite

sounders became operational around the same time: Nimbus-6 (launched in 1975) –

which carried on board both the High-resolution Infrared Radiation Sounder (HIRS)

and the SCAnning Microwave Spectrometer (SCAMS) – and TIROS-N (launched in

1978), equipped with the Microwave Sounding Unit (MSU), the Stratospheric Sound-

ing Unit (SSU) and the HIRS (this combination of instruments is historically known

as TIROS-N Operational Vertical Sounder, or TOVS). Ohring (1979) provides a nice

overview of some of the early assimilation experiments realised with these instruments

during the late 1970s and concluded that they provided a small benefit to weather

forecasts.

Between December 1978 and November 1979, the WMO conducted a large campaign

of atmospheric measurements called the First Global Atmospheric Research Program

(GARP) Global Experiment (FGGE). By that time, a variety of satellite observations

were already available and could subsequently be included in the experiment. As a
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consequence, several Observing System Experiments (OSEs) focussing on the assimi-

lation of satellite soundings were carried out in the early 1980s. As an example, Halem

et al. (1982) conducted a series of experiments showing that the assimilation of satellite

data over regions with sparse conventional observations led to a significant reduction

in 6-hour forecast errors downstream of those areas, with a larger improvement in the

Southern Hemisphere (e.g. over Australia) than in Europe and North America.

This widely accepted idea of using satellite sounders to reconstruct vertical profiles

of temperature and other atmospheric variables through inversion techniques (see

Rodgers (1976)) reflected an attempt to treat satellite observations like radiosonde

measurements, which before the advent of satellites constituted the main source of

information on the vertical structure of the atmosphere. This approach, however,

showed its limitations reasonably soon, as the vertical resolution of satellite observa-

tions was poor and could easily lead to inaccurate profiles. Moreover, the generation

of retrievals relied on prior information (such as climatological data) which, whenever

distant from the real atmospheric conditions, could lead to significant errors with com-

plex characteristics, hence complicating their assimilation. A more detailed discussion

of the challenges posed by the assimilation of retrievals is given in section §3.5 of Eyre

et al. (2020).

As hinted already by Halem et al. (1982), since the number of observations available

in the Southern Hemisphere was limited in the first place, the inclusion of satellite

retrievals was initially helpful and contributed positively to the quality of weather fore-

casts (Kelly et al., 1978). Conversely, in the observation-rich Northern Hemisphere,

the impact of satellite observations had been much smaller since the beginning, and

the assimilation of retrieved vertical profiles was producing little or no benefit by the

late 1980s, as both NWP models and assimilation techniques had meanwhile improved

significantly. In other words, it was time for a paradigm shift.

In the early 1990s, the interest of the DA community towards variational schemes

increased, and many operational centres moved towards the direct assimilation of ra-

diances into their DA schemes. The first, intermediate step in this direction was

taken by the European Centre for Medium-Range Weather Forecasts (ECMWF) in

1992, which implemented operationally a 1D-Var algorithm exploiting TOVS data

(Eyre et al., 1993). With this method, satellite observations were converted first into

a vertical temperature profile that was subsequently assimilated within the Optimal

Interpolation scheme (OI, cf. for example Kalnay (2003), section §5.4.1) that was in
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4.2 The use of satellites in data assimilation

use at that time as a DA algorithm. A more radical change was introduced in Jan-

uary 1996, when a full 3D-Var scheme that assimilated radiances directly was adopted

(Andersson et al., 1994). In this regard, Eyre (1997) discussed the challenges and the

advantages of this new, emerging approach. Several other operational weather centres

switched to variational assimilation schemes around the same time. The Met Office

followed a similar path, starting with some experiments on the assimilation of TOVS

data through a 1D-Var scheme (Renshaw et al., 1997) and moving to a later implemen-

tation of a 3D-Var DA scheme which became operational in 1999 and could assimilate

radiances directly (Lorenc et al., 2000). In the meantime, the National Centers for

Environmental Prediction (NCEP) in the United States had already adopted a similar

algorithm in 1995 (Derber & Wu, 1998).

4.2.3 Wind observations: atmospheric motion vectors

(AMVs) and scatterometers

The possibility of carrying out wind observations using satellites represented a positive

development in the history of satellite DA, as conventional wind measurements were

scarce in large portions of the planet (i.e. over the oceans and the Southern Hemi-

sphere). Being located outside the troposphere, satellites estimate the velocity and the

direction of the wind indirectly, resorting to two different techniques: the Atmospheric

Motion Vectors (AMVs) and the use of scatterometers.

Atmospheric Motion Vectors

Atmospheric Motion Vectors (AMVs) are used to estimate the speed and the direc-

tion of the wind in the atmosphere. Menzel (2001) provides an extensive review on

the subject, including a detailed overview of the work done by pioneer Tetsuya Fujita,

whose contribution to this topic goes as back as the first TIROS satellite mission in

1960.

AMVs are obtained by identifying the same clouds or water vapour features in a se-

quence of consecutive satellite images. Once the height of the selected tracer is known,

its displacement in time can be used to estimate both the direction and the speed of

the wind at a certain altitude. Therefore, the use of geostationary satellites represents

a more natural choice for the production of the AMVs, as they have a constant view

on the same portion of the Earth’s atmosphere. To achieve this aim, several channels

125



of various satellite imagers have been used over time, both in the visible and in the

infrared spectrum. AMV data are produced by operational satellite agencies such as

the National Environmental Satellite, Data, and Information Service (NESDIS) in the

United States and the European Organization for the Exploitation of Meteorological

Satellites (EUMETSAT) in Europe. Schmetz et al. (1993) and Nieman et al. (1997)

described the automated algorithms developed for the Meteosat and GOES 8/9 satel-

lites, respectively.

AMVs started to be produced routinely in the 1970s and were already included in

the FGGE experiment of 1979, during which cloud-based motion vectors were derived

from five different geostationary satellites twice a day. An assessment of these early

observations was made at the ECMWF by K̊allberg et al. (1982); in their report, the

authors commented positively on their impact, both on the analysis at the tropics,

and on the global medium-range forecasts. In the meantime, as the new water vapour

imager mounted on Meteosat (1978) became operational, Eigenwillig & Fischer (1982)

started to explore the possibility of tracking areas and gradients of water vapour to

produce AMVs. Later on, other studies on the impact of assimilating AMV-derived

wind observations were conducted at the ECMWF: Tomassini et al. (1999) demon-

strated that the use of such data had a positive impact on the 3D-Var system in use

at the time, especially in the tropics and in the Southern Hemisphere; subsequently,

Rohn et al. (2001) described the inclusion of the new generation of AMV data (with

an improved time sampling of 90 minutes, down from 6 hours) into the 4D-Var scheme

and found neutral impact in the Northern Hemisphere and a positive impact in the

Southern Hemisphere. Similar impact studies were carried out at the Met Office, where

Butterworth & Ingleby (2000) reported a degrading effect on the overall quality of the

NWP forecasts. In a later report, Butterworth et al. (2002) showed that a revised

satellite wind observation error variance in their DA system conveyed better results.

A small positive impact from the same type of data was also reported at the NCEP

by Zapotocny et al. (2008).

Scatterometers

While AMVs are used to reconstruct the wind vector in the atmosphere, scatterom-

eters are used to estimate the speed and direction of winds on the surface of the

ocean. Scatterometers are polar-orbiting, active satellites able to measure the radia-

tion backscatter produced by the roughness of the ocean, which in turn is shaped by
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4.2 The use of satellites in data assimilation

the intensity and the direction of the wind. These instruments generally emit pulses

of radiation in two or more directions and produce two different estimates of wind

direction and speed, an ambiguity that needs to be handled by the DA scheme.

After a couple of early experiments in the 1970s (the Microwave Radiometer Scat-

terometer and Altimeter, MRSA, on board Skylab and the Seasat-A Scatterometer

System, SASS, on board Seasat), the first significant contribution to operational DA

systems was given by the Active Microwave Instrument (AMI) mounted on the 1st

European Remote-Sensing Satellite (ERS-1). A series of papers by Stoffelen & Ander-

son (1997a,b,c) describe in details the functioning and the instrumental properties of

AMI, together with the methods used to interpret, disambiguate and actively assim-

ilate its measurements at the ECMWF. Overall, they reported a positive impact on

both the analysis and the short-range forecast. In addition, Andrews & Bell (1998) at

the Met Office showed that the assimilation of ERS-1 measurements led to a benefit

to the forecast system at all lead times in the Southern Hemisphere. The operational

implementation of these data started at the Met Office in 1992, at NCEP (Caplan

et al., 1997) in 1994, and at the ECMWF in 1996 (Eyre et al., 2020). Later on, in

1999, a new NASA satellite called QuikSCAT, equipped with a wind scatterometer

called Seawinds was sent into orbit (see Hoffman & Leidner (2005) for more details).

The data from QuikSCAT have been assimilated at both the ECMWF and the NCEP

with good results (Chelton & Freilich, 2005; Chelton et al., 2006).

4.2.4 Radio occultation

Another (and more recent) type of satellite observations is represented by Radio Oc-

cultation (RO) measurements, which provide an estimate of the vertical gradient of

the refractive index of the atmosphere1. This quantity can be related to the vertical

profiles of air density and water vapour concentration, from which further information

on various atmospheric quantities, such as temperature and humidity, can be inferred.

The RO technique is based on the communication between two satellites (for example

a navigation system satellite and another satellite with a Global Navigation Satellite

System, or GNSS, receiver) that are separated by the Earth’s limb and exchange a

radio signal. While the two satellites are not in line of sight, the refractivity field bends

1The refractive index n of a medium is defined as the ratio between the speed of light in vacuum

c and the phase velocity in the medium v, that is: n = c
v .
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the emitted signal while crossing the atmosphere, which therefore reaches the receiver.

By knowing the position of the two satellites, it is possible to infer the amount by

which the radio signal has been deflected, which can therefore be related to the gradi-

ent of the refractivity index. Melbourne et al. (1994) provides an extensive description

of the topic.

The assimilation of RO data was discussed initially by Eyre (1994). The first opera-

tional mission started in 2006 with the launch of the GNSS Receiver for Atmospheric

Sounding (GRAS) instrument aboard the MetOp-A satellite. Earlier, other instru-

ments were used for RO campaigns such as the Challenging Mini-satellite Payload

(CHAMP) and the Gravity Recovery And Climate Experiment satellite (GRACE-A).

The former is the focus of a couple of RO assimilation impact studies made at the

ECMWF (Healy & Thépaut, 2006; Healy et al., 2007). The impact of RO data on the

assimilation system at the Met Office is discussed in Rennie (2010).

4.2.5 Recent developments

Until recently, only a fraction of the available satellite observations have been assimi-

lated into operational NWP systems. For example, Bauer et al. (2010) estimated that

more than 75% of satellite observations were discarded at the ECMWF in 2010. One

reason for this large rejection rate was the difficulty in directly assimilating clouds, as

NWP models have been struggling in representing accurately physical and radiative

processes related to them. Obviously, since clouds and precipitation affect continu-

ously a significant portion of the Earth, the rejection of the observations contaminated

by them led to the discard of a great deal of information.

The problems with assimilating cloudy scenes and precipitation are summarised in

Errico et al. (2007), where issues related to both the nature of satellite observations

and their assimilation in NWP models are discussed. Among the aspects that seemed

particularly challenging to the authors, they noted: the importance of selecting the

most appropriate observable (for example between the direct assimilation of radiance

and that of other – indirect – retrieved parameters); the complexity of the satel-

lite observations’ error properties, featuring biases, representativeness issues and non-

Gaussianity; the limitations of forward operator models converting the model state

into simulated radiances, which are affected by a myriad of issues including the ac-

curacy of parametrisation schemes for clouds and precipitation, the modeling of ice

hydrometeors and the poor representation of convection processes; lastly, the high
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degree of nonlinearity in both observations and processes involved that can jeopar-

dize some of the assumptions commonly made in many DA algorithms (for example

Gaussian-shaped error distributions) and can lead to issues with the minimisation of

the cost functions in a variational scheme.

Despite the numerous challenges, a great deal of progress has been achieved in as-

similating clouds directly in DA algorithms over the past decade. The attempts in

this direction are usually referred to as all-sky assimilation, as opposed to clear-sky, in

which all satellite observations contaminated by clouds are discarded. The idea behind

all-sky DA is to convert the output of a forecast model able to represent clouds and pre-

cipitation into modelled values of radiance via the observation operator (comprising,

among others, a RT scheme), thus allowing the assimilation of satellite observations

in all sky conditions.

Assimilating clouds directly is expected to be beneficial to the quality of a weather

forecast, as their presence is typically concentrated over regions of high dynamical and

meteorological interest (e.g. cyclones, fronts), where the assimilation of observations

can be the most impactful. Therefore, their assimilation can contribute to reducing

the uncertainty on the initial conditions in areas which would be otherwise scarcely

observed, leading to a reduction in the forecast error (McNally, 2002).

The early advances in the assimilation of cloudy satellite observations were discussed

in Bauer et al. (2011) and an additional update on all-sky DA specifically is given in

Geer et al. (2018). An overview of observation errors in all-sky DA is given by Geer

& Bauer (2011). As suggested earlier (cf §4.1.3), the properties of radiation and its

interaction with clouds and precipitation are not homogeneous across the EM spec-

trum, and it is therefore convenient to treat the assimilation of all-sky infrared and

microwave radiation separately.

All-sky infrared radiation

For a long time, measurements of infrared radiation made by polar-orbiting sounders

have been an important source of clear-sky observations. Unfortunately, their current

use in all-sky assimilation methods is made difficult by the substantial nonlinear ef-

fects that clouds introduce at these wavelengths. In particular, since clouds are strong

absorbers (and therefore strong emitters) of infrared radiation, their presence results

in an abrupt reduction in brightness temperature, generally associated with the tem-

perature of the cloud top. This issue becomes problematic in a DA system when model
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and observations disagree on the location (or the presence) of a cloud. The large dif-

ference in brightness temperature between the top of a cloud and the surface create

large ‘o− b’ (observations minus background) differences that can hamper the quality

of the analysis, especially when the errors are difficult to characterised.

As a result, there is no operational weather centre currently assimilating all-sky in-

frared radiances into their NWP system, although research is ongoing and a few meth-

ods are under development at Météo-France, NCEP and the ECWMF (cf. Table 3 in

Geer et al. (2018)).

Nonetheless, a few weather centres use infrared cloudy observations in a more restricted

or indirect way. The ECMWF and Météo-France, for example, have extended their

operational scheme to allow for the assimilation of infrared radiances in overcast con-

ditions (Bauer et al., 2011; Lupu & McNally, 2012; Pangaud et al., 2009), whereas at

the Met Office certain cloud parameters (such as cloud-top pressure and effective cloud

fraction) are estimated from infrared sounder instruments (the Atmospheric Infrared

Sounder, or AIRS, the Infrared Atmospheric Sounding Interferometer, or IASI, and

the Cross-track Infrared Sounder, or CrIS) using a 1D-Var algorithm and subsequently

passed on to the operational 4D-Var scheme (Pavelin et al., 2008).

All-sky microwave radiation

When it comes to the interaction with clouds and precipitation, the behaviour of mi-

crowave radiation is less nonlinear than infrared radiation. In fact, microwave radiation

is attenuated only partially by the presence of atmospheric components such as water

vapour, liquid water, ice and precipitation, and, as a result, tends to be sensitive to the

whole atmospheric column rather than just the cloud-top height or the cloud fraction.

Not surprisingly, more progress has been made with the operational assimilation of

microwave radiation in the presence of clouds.

One of the first attempts to assimilate cloudy microwave observations directly was

made by the ECWMF in 2010 (Bauer et al., 2010; Geer et al., 2010), when data from

the Special Sensor Microwave/Imager (SSM/I) and the Advanced Microwave Scan-

ning Radiometer - Earth Obseving System (AMSR-E) over the ocean started to be

assimilated operationally. Since then, the relevance of this type of observations in the

ECMWF assimilation system has been growing and reached a Forecast Sensitivity to

Observation Impact (FSOI, cf. Langland & Baker (2004)) of about ∼ 20%, also thanks

to new instruments added to the observing system (Geer et al., 2017). Since 2016, an
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all-sky assimilation programme has started at the NCEP with the assimilation of the

Advanced Microwave Sounding Unit (AMSU-A) data, although precipitating clouds

are excluded (Zhu et al., 2016).

Geer et al. (2018) reports the details of other microwave all-sky assimilation schemes

under development at various operational centres. The Met Office, for example, is

already assimilating all non-precipitating scenes from AMSU-A and the Microwave

Humidity Sounder (MHS) (Migliorini & Candy, 2019).

4.3 Idealised satellite observations with the

ismodRSW model

We now turn to the critical task of applying the theoretical concepts defined in the

earlier sections to the modelling of idealised satellite observations. In this thesis,

we focus on the mimicking of passive observations of microwave radiation measured

by a polar-orbiting satellite. The reasons for choosing this type of observations are

motivated by an attempt to maximise the relevance of this work in the context of

operational DA research. In particular:

• passive microwave observations are commonly used in most operational weather

services. In this regard, a list of operational satellites providing data of the same

type are listed in Table 4.1;

• they have a significant impact on operational DA systems. For example, the

ECMWF estimated that the overall impact of passive microwave observations

on their system was around 40% in 2017 (cf. Fig. 1 in Geer et al. (2017));

• they are commonly used in most all-sky DA methods, which we aim to replicate

in this work, too.

An important step in mimicking real satellite observations using an idealised model is

establishing the essential characteristics that we want to imitate. Hence, we aim to

reproduce the following aspects:

(i) a radiative scheme able to convert the model state into radiance;

(ii) the spatially varying character of the observations carried out by polar-orbiting

satellites;
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(iii) the horizontal resolution of the observations, which depends on the properties of

the instrument (i.e. the FOV).

In practice, the elements (i)-(iii) will have to be included in an observation generator

function Gs that can be applied to the nature run simulation xt (cf. §3.4.2) to generate

a number psat of satellite observations yosat, that is:

yosat = Gs(x
t) + εεεosat, (4.30)

with εεεosat being the satellite observation error. A discussion on how the properties

(i)-(iii) are mimicked in the context of the ismodRSW model follows next.

4.3.1 Radiative scheme

Radiative schemes are complex algorithms able to convert the state of an NWP model

into values of radiance that can be directly compared with satellite observations. In

the case of the ismodRSW model, we decided to formulate a simple radiative scheme

based on the isentropic definition of fluid temperature valid in each layer (cf. (3.3)),

and the Rayleigh-Jeans law (4.13).

Approximating the fluid temperature (3.3) as a brightness temperature, and substi-

tuting it into (4.13), one obtains an expression for the spectral radiance emitted by

the ith layer (herefrom, we drop the subscript λ):

Bi(T ) = 2
ckB
λ4

Ti = 2
ckB
λ4

θiη
κ
i , (4.31)

which can be conveniently non-dimensionalised as:

B′i(T ) =
Bi(T )

B0,i

= ηκi , withB0,i = 2
ckB
λ4

θi. (4.32)

We note here that given their linear relationship in (4.13), the non-dimensional model

temperature T ′i coincides with the non-dimensional radiance B′i(T ):

T ′i =
Ti
θi

= ηκi . (4.33)

As shown in section §4.1.1, the validity of the Rayleigh-Jeans law depends on the

validity of the condition:

λ� hc

kBT
.
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éo
-F

ra
n

ce

G
lo

b
al

P
re

ci
p

it
at

io
n

M
ea

su
re

-

m
en

t
(G

P
M

)
M

ic
ro

w
av

e
Im

ag
er

(G
M

I)

G
lo

b
al

P
re

ci
p

it
a
ti

o
n

M
ea

su
re

-

m
en

t
(G

P
M

)
C

o
re

O
b

se
rv

a
to

ry
2
0
1
4

E
C

M
W

F
,

J
M

A
,

M
ét

éo
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Figure 4.8: Schematic representation of an idealised satellite observation generated via

(4.30). The satellite is indicated by a bowtie symbol and its position is determined by

(4.34). The way I(x) is calculated is described in section §4.4.4.

Using the bottom layer potential temperature θ2 used in the nature run (θ2 = 291.8

K, cf. §3.4.2), one obtains:

λ & 49 µm.

Since we are interested in modelling microwave radiation (for which λ > 1 mm), the

use of the Rayleigh-Jeans is an acceptable approximation.

4.3.2 Spatially varying observations

As discussed in section §4.1.4, polar-orbiting satellites transit periodically over the

same geographical location. In our idealised one-dimensional setup, this can be ap-

proximated by a satellite travelling across the horizontal periodic domain at constant

velocity vsat and regularly re-entering it. The position of the satellite at any given

time xsat(t) can be expressed as:

xsat(t) = (x0 + vsat t) mod L, (4.34)

in which x0 is its location at the initial time t = 0, L represents the domain length

and mod is the modulo function.

4.3.3 Horizontal resolution

The main parameter to evaluate the horizontal resolution of a satellite instrument

is its FOV (see section §4.1.4). In order to apply this concept to our idealised one-
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4.4 Idealised observations of clouds and precipitation

dimensional system, we compute each satellite observation yosat at any given location

xsat as the weighted average:

yosat(xsat) =

∫ xsat+F/2

xsat−F/2
w(x)I(x)dx∫ xsat+F/2

xsat−F/2
w(x)dx

, (4.35)

in which I(x) is the radiance as it will be defined in section §4.4.4 (cf. (4.37)), F is the

one-dimensional FOV determining the portion of the domain over which the weighted

average is computed, and w(x) is a Gaussian function defined as:

w(x) = e
− 1

2
(x−xsat)

2

(F/6)2 . (4.36)

The role of w(x) is one of imitating the angular response function of a real satellite

instrument. Hence, the radiation measured within the FOV F is weighted by w(x).

As a result, the signal comes primarily from xsat (i.e. w(xsat) = 1) and rapidly decays

away from it (i.e. w(xsat +F/2) ≈ 0.01). Fig. 4.8 shows a schematic representation of

an idealised satellite observation defined according to (4.34) and (4.35).

4.4 Idealised observations of clouds and

precipitation

In view of the recent developments in satellite DA (cf. § 4.2.5), we want our idealised

system to account for the assimilation of clouds in an all-sky approach.

The ismodRSW model does not explicitly include clouds, but rather than modifying

further its equations and dynamics, we can include their effects indirectly via the

observation generator (4.30). Therefore, we construct the function Gs in a way that

mirrors the interaction between microwave radiation and clouds (both precipitating

and non-precipitating ones).

A review of the knowledge on this topic and a description of both the physical and

radiative processes involved in it are discussed in the subsequent sections, followed by

their implementation in the observation generator of the ismodRSW model.
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4.4.1 Retrival of clouds and precipitation using microwave

radiation: a review

Other than for DA purposes, the retrieval of various atmospheric quantities via satellite

observations has helped understand many aspects of cloud physics and has contributed

to better NWP model parametrisation schemes. In addition, many studies have fo-

cussed on reconstructing the spatio-temporal distribution of certain meteorological

variables for climatological purposes - such as global precipitation - which had limited

coverage before the advent of satellites.

The use of microwave radiation to investigate cloud properties, precipitation and other

atmospheric parameters from satellites dates back to the late 1960s, stemming from

studies based on the Russian satellites Cosmos (Akvilonova et al., 1973; Basharinov

et al., 1969). Around the same time, many other satellites equipped with instru-

ments able to measure passive microwave radiation started to be launched into orbit,

leading to further research in the field. Staelin et al. (1975) was one of the first

studies focussing on detecting clouds using microwave radiation through estimates

of vapour and liquid water content in the atmosphere, although the paper was only

interested in the impact of clouds on the retrieval of vertical temperature profiles us-

ing the Nimbus-E Microwave Spectrometer (NEMS); shortly after, and relying on the

same instrument, both Grody (1976) and Staelin et al. (1976) developed algorithms

to convert brightness temperature measurements at ν = 22.235 GHz (λ = 11 mm)

and ν = 31.4 GHz (λ = 9.5 mm) into estimates of integrated water vapour, in an

attempt to use microwave radiation to infer atmospheric parameters other than just

vertical profiles of temperature. Similar algorithms were developed afterwards, for a

variety of instruments and applications: Rosenkranz et al. (1978) estimated various

atmospheric parameters such as water vapour, liquid water contents and surface wind,

to characterise the typhoon June, using the SCAMS mounted on Nimbus 6; Grody

et al. (1980) adapted the algorithm from the 1976 paper to retrieve water vapour and

liquid water content in the Tropical Pacific environment using the SCAMS; Chang &

Wilheit (1979) developed a three-channel retrieval method for water vapour and liquid

water content based on the Electrically Scanning Microwave Radiometer (ESMR) on-

board Nimbus 5; Wilheit & Chang (1980) and Wentz (1983) developed an algorithm

to retrieve a number of ocean surface and atmospheric parameters using the Scan-

ning Multichannel Microwave Radiometer (SMMR) orbiting aboard Nimbus 7; based
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4.4 Idealised observations of clouds and precipitation

on the same instrument, Prabhakara et al. (1982) proposed a retrieval algorithm for

precipitable water over the ocean and Takeda & Liu (1987) presented their method to

retrieve vertically-integrated liquid water amount in the atmosphere whilst identifying

precipitating clouds; a series of papers published in the 1990s (Greenwald et al., 1993;

Jones & Vonder Haar, 1990; Tjemkes et al., 1991; Wentz, 1997) developed similar al-

gorithms for the SSM/I. Back in the 1970s, a number of studies were also trying to

infer information about the intensity of precipitation using satellites. After a prelim-

inary investigation by Savage & Weinman (1975), Wilheit et al. (1977) proposed a

theoretical model to relate brightness temperature measurements over the oceans to

rain rates based on the 1.55 cm channel of the ESMR. Later on, other studies tried

to achieve the same (Huang & Liou, 1983; Liou et al., 1980; Spencer, 1986; Spencer

et al., 1989), and at the same time the impact of frozen hydrometeors in precipitating

clouds started to be acknowledged and incorporated in both theoretical studies and

retrieval algorithms. One of the first papers to highlight the issue of frozen hydrom-

eteors was Spencer et al. (1983), in which very low values of brightness temperature

measured by the SMMR over Kansas during a summer thunderstorm were reported

and attributed to the presence of ice. Soon after, a paper by Wu & Weinman (1984)

developed a comprehensive radiative model for precipitating clouds that included liq-

uid, frozen and combined-phase hydrometeors; Mugnai & Smith (1988) and Smith

& Mugnai (1988) extended the investigation of Wilheit et al. (1977) by developing a

model in which cloud microphysics was dealt with in detail.

Finally, several other papers (Curry et al., 1990; Greenwald et al., 1995; Njoku &

Swanson, 1983; O’Dell et al., 2008; Prabhakara et al., 1983; Spencer, 1984) used similar

techniques and algorithms for climatological purposes, trying to reconstruct timeseries

of precipitation, clouds and other meteorological variables over different areas, surfaces

and time periods.

4.4.2 Microwave radiation and non-precipitating clouds

In order to describe the interaction between microwave radiation and non-precipi-

tating clouds, two aspects need to be considered: the difference in size between the

wavelength of microwave radiation and the average dimension of the cloud droplets

(r ≤ 0.1 mm), and the fact that liquid water is a strong absorber of radiation in the

microwave spectrum.

In general, for microwave radiation of wavelength larger than λ > 5 mm, scattering
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Figure 4.9: Relationship between brightness temperature and integrated liquid water

concentration at 18GHz (i.e. λ ≈ 16mm) in the presence of a clouds above a sea surface

at T = 293 K, for various size droplet distributions, as modelled by Takeda & Liu

(1987). This is Figure 1 in Takao Takeda, Guosheng Liu, Estimation of Atmospheric

Liquid-Water Amount by Nimbus 7 SMMR Data, Journal of the Meteorological Society

of Japan. Ser. II, 1987, Volume 65, Issue 6, Pages 931-947, Released October 19, 2007,

https://doi.org/10.2151/jmsj1965.65.6_931.
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4.4 Idealised observations of clouds and precipitation

processes have a negligible impact and non-precipitating clouds figure as an efficient

absorber of microwave radiation. In other words, the thermal radiation emitted by

the surface gets absorbed by the small liquid water droplets in the cloud, which sub-

sequently re-emit radiation towards the satellite.

The detection of clouds based on these principles is particularly effective over the

oceans. The reason behind this lies in the low emissivity of water surfaces (Petty

& Katsaros, 1994), which display very small values of brightness temperature in the

microwave spectrum. As a result, even the thermal radiation emitted by small water

droplets at high altitudes appear warmer against the ocean, making the cloudy pixels

easy to identify.

We highlight the effect of these processes in Figure 4.9, where we report the relation-

ship between brightness temperature and integrated liquid water contents resulting

from a model built by Takeda & Liu (1987), in which a cloud layer at T = 273 K

lies above a (sea) surface at T = 293 K. Clearly, an increase in the amount of liquid

water content (a proxy for the thickness of a cloud) results in an increase in brightness

temperature against a cold background.

4.4.3 Microwave radiation and precipitating clouds

Precipitating clouds differ from non-precipitating ones in two respects: they are made

of substantially larger water droplets and contain a greater quantity of ice and frozen

hydrometeors. While for microwave radiation of λ > 5 mm (considered in the previous

section regarding non-precipitating cloud) absorption continues to represent the dom-

inant interaction process, at smaller wavelengths (such as λ < 2 mm), the presence of

ice and larger droplets contribute to increase the amount of microwave radiation that

gets scattered by a precipitating cloud.

Scattering processes contribute to deflect the radiation away from its path towards the

satellite, attenuating the signal and reducing the brightness temperature. Therefore,

the presence of precipitating clouds results in a decrease in brightness temperature

when microwave radiation at small wavelength is considered. This process has been

used to estimate precipitation (or rain rates) above both water and land surfaces.

The effect of precipitation on microwave radiation is displayed in Figure 4.10, where

we show the relationship between brightness temperature and rain rate above ocean

(continuous line) land (dashed line) as generated by Spencer et al. (1989) (Fig. 3

therein), using the RT model of Wu & Weinman (1984). The reduction in brightness
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Figure 4.10: Relationship between brightness temperature and rain rate above land

(continuous line) and ocean (dashed line), generated by Spencer et al. (1989) using

the RT model of Wu & Weinman (1984). This figure appears in Spencer, R. W.,

Goodman, H. M., & Hood, R. E. (1989). Precipitation retrieval over land and ocean

with the SSM/I: Identification and characteristics of the scattering signal. Journal

of Atmospheric and Oceanic Technology, 6(2), 254-273. © American Meteorological

Society. Used with permission.
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4.4 Idealised observations of clouds and precipitation

Clear-sky σ < σc

Non-precipitating clouds σc < σ < σr

Precipitating clouds σ > σr

Table 4.2: Range of values of the (non-dimensional) pseudo-density σ associated with

different types of satellite observations. σc and σr indicate the values of the convection

and rain thresholds as illustrated in section §3.4.1.

temperature is clear at all frequencies, but is stronger at higher frequencies (that is,

lower wavelengths1), as the scattering processes become more and more important.

4.4.4 Model implementation

In order to incorporate the processes described above into our idealised system, we

start by defining what constitutes a cloud in the ismodRSW model. Since the model

already includes a ‘rain’ variable (associated with the threshold σr), it is reasonable

to assume the presence of precipitating clouds whenever the condition σ > σr is met

(for simplicity, we will ignore here the condition on flow convergence). In addition, we

make the assumption that a non-precipitating cloud is present whenever the condition

on the generation of convection is satisfied, i.e. σc < σ < σr.

The latter condition is, of course, a simplification, as the presence of convection does

not always translate into the formation of clouds. However, as we discussed in section

§3.4.1, the convection threshold σc can be related to the Level of Free Convection

(LFC), that is, the altitude at which a saturated air parcel in a conditionally unsta-

ble atmosphere becomes warmer than the surrounding environment and starts to rise

without the need for an external force. A parcel reaching the LFC has already satu-

rated and it is therefore reasonable to expect that the condensation of water vapour

into cloud droplets has started by then.

Overall, we have defined three regimes for the generation of satellite observations as-

sociated with values of the pseudo-density σ, as summarised in Table 4.2.

It is worth noting that the dynamics of the model as described in Chapter 3 is not

affected by the presence of precipitating and non-precipitating clouds. Rather, only

1Note that ν = 37 GHz equals to λ ≈ 8 mm and that ν = 85.6 GHz equals to λ ≈ 3.5 mm.
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the observation generator Gs in (4.30) is impacted by it.

In practice, the satellite observations generated by Gs are equivalent to vertically in-

tegrated radiance measurements, with contributions to the ‘measured’ radiance Isat

coming from both layers and defined as:

Isat = α1 α3 B1 + (α2 + α4)B2, (4.37)

in which α1, α2, α3 and α4 are non-dimensional σ-dependent functions determining the

contribution of various radiative processes in each layer (see also Table 4.3), whereas

B1 and B2 are the (σ-dependent) values of radiance emitted by each layer according

to (4.31).

We note here that while Isat is a function of both layers’ brightness temperature B1

and B2, one of the limitations of this idealised configuration is the lack of a surface

emission term in (4.37), which cannot be included in the absence of a ‘bottom surface’

temperature in the ismodRSW model.

Each coefficient αk is defined as a function of the pseudo-density in the bottom layer

σ:

αk = ak + bk · erf(−ck · σ + dk), k = 1, ..., 4, (4.38)

in which erf indicates the so-called ‘error function’:

erf(z) =
2√
π

∫ z

0

e−x
2

dx. (4.39)

Table 4.3 lists the values of ak, bk, ck and dk associated with each αk. These coefficients

have been obtained by manually calibrating the functions αk so that the measured radi-

ance Isat in (4.37) could imitate the interaction of microwave radiation in the presence

of precipitating clouds at small wavelengths (λ < 2 mm) and non-precipitating clouds

at larger wavelength (λ > 5 mm), as described in sections §4.4.2-4.4.3. Plots of the

coefficients αk(σ) in each satellite observation regime (cf. Table 4.2) are reported in

Fig. 4.11. A detailed description of the processes involved in each regime, together

with their impact on Isat, follows.

Clear-sky

Under clear-sky conditions (σ < σc, cf. left panel of Fig. 4.11), the non-negligible terms

contributing to Isat in (4.37) are just α2, α3 and α4. However, since α1 is very small,
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4.4 Idealised observations of clouds and precipitation

a b c d Process

α1 0.5 -0.5 95 21.5 Emission of the top layer

α2 0.425 0.425 95 21.5 Emission of the bottom layer

α3 0.5 0.5 5 3 Scattering in the top layer

α4 0.5 0.5 3 -1.16 Extinction in the bottom layer

Table 4.3: Values of a, b, c and d used in the calculation of αk according to (4.38).

These coefficients have been manually calibrated to obtain a profile of Isat (cf. (4.37),

Fig. 4.12) that reflects the response of passive microwave radiation in the presence of

clouds and precipitation, as outlined in sections §4.4.2-4.4.3.

Figure 4.11: Values of αk as a function of (non-dimensional) σ according to (4.38) for

each regime defined in Table 4.2. Left panel: clear-sky conditions (σ < σc); central

panel: non-precipitating clouds (σc < σ < σr); right panel: precipitating clouds

(σ > σr). Note the different y-axis scale in each panel. The values of σc and σr

are those already used in the nature run described in section §3.4.2, i.e. σc = 0.21,

σr = 0.24.
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the term associated with B1 in (4.37) vanishes. Therefore, only radiation coming from

the bottom layer (B2) will contribute to Isat, that is:

Iclear−sky
sat ≈ (α2 + α4) ·B2. (4.40)

In the expression above, the coefficients α2 and α4 control the thermal emission of the

lower layer and the extinction of radiation in clear-sky conditions. Hence, the radiation

reaching the satellite would be maximum for σ = 0 (where α2+α4 = 0.9) and decreases

slightly as the bottom layer becomes thicker (i.e. α2 + α4 ≈ 0.84 at σ = σc). This

small decrease in the radiation reaching the satellite is only qualitatively in line with

Beer’s law (4.19), which predicts the radiation to decay exponentially as the optical

depth increases.

By fixing the maximum value of α2 +α4 to 0.9, we can imitate the effect of the reduced

surface emissivity exploited in many cloud detection algorithms at large microwaves

(i.e. λ > 5 mm, cf. §4.4.2). As we will see in Fig. 4.12, this reduction will be enough

to obtain an increase in the radiance (or brightness temperature) reaching the satellite

in the presence of non-precipitating clouds, despite a lower fluid temperature in the

upper layer.

Non-precipitating clouds

For values of σ compatible with the presence of non-precipitating clouds (σc < σ < σr,

cf. central panel of Fig. 4.11), the expression of Isat can be approximated with:

Inon−prec
sat ≈ α1 α3 B1 + α2 B2. (4.41)

In this regime, the radiation reaching the satellite consists of contributions from both

layers. In practice, as σ reaches the convection threshold σc and a cloud starts to form,

the coefficient α2 associated with the emission of the bottom layer starts to decay, while

α1 (associated with the emission from the cloud) increases. As this process continues,

the thickness of the cloud increases until σ = σr; at this stage the contribution ofB2 has

almost vanished (as α2 → 0), and is replaced almost entirely by the thermal emission

of the upper layer B1. In this regime the value of α3 is constant and approximately

equal to 1, as this coefficient is used to model the impact of scattering, which we

consider negligible in these circumstances.
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4.4 Idealised observations of clouds and precipitation

Figure 4.12: Values of αk as a function of (non-dimensional) σ (left panel) and resulting

values of (non-dimensional) radiance Isat (right panel). The values of σc and σr are

those already used in the nature run described in section §3.4.2, i.e. σc = 0.21,

σr = 0.24. The left panel combines the three plots shown in Fig. 4.11.

Precipitating clouds

In the precipitating clouds regime (σ > σr, cf. right panel of Fig. 4.11), the sum of

the coefficients α2 + α4 become rapidly negligible, making it possible to approximate

the total radiance with the contribution coming only from the top layer, that is:

Iprec
sat ≈ α1 α3 B1. (4.42)

In this region, the thermal emission of the cloud has reached is maximum (i.e. α1 → 1).

However, as the pseudo-density σ increases beyond σr, more precipitation is produced

in the ismodRSW model, leading to an intensification of the scattering processes at

small microwaves (λ < 2 mm). This phenomenon is modelled via the coefficient α3,

which decreases gradually with σ (see Fig. 4.12).

Finally, the plots of all coefficient αk and the radiation reaching the satellite Isat as

a function of the pseudo-density σ are shown in Fig. 4.12 (left panel). Crucially, the

value of Isat matches the response of microwave radiation in interacting with clouds

and precipitation as outlined earlier, and in particular:
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• it increases in the presence of non-precipitating clouds (σc < σ < σr) at large

microwaves (λ > 5 mm), as the emission from liquid water droplets stands out

against a cold background;

• it decreases in the presence of precipitating clouds (σ > σr) at small microwaves

((λ < 2 mm)), as scattering processes become important in attenuating the ra-

diation emitted by the cloud.

In addition, in agreement with the Beer’s law (4.19), Isat decreases slightly in clear-sky

conditions (σ < σc), as the value of the pseudo-density σ (and therefore the depth of

the bottom layer h2) increases.

Chapter highlights and summary

• At the beginning of the chapter we have given an overview of basic
radiative transfer principles behind the use of meteorological satellites,
followed by a brief historical review of satellite data assimilation.

• By exploiting the principles outlined in the first part of the chapter, we
have subsequently described the generation of pseudo satellite observa-
tions using the ismodRSW model. We chose to recreate measurements
of microwave radiation carried out by polar orbiting satellites, which
constitute a common... and formulated a simple radiative transfer
model based on the Rayleigh-Jeans equation.

• Because of the current interest of the data assimilation community in
all-sky assimilation, we have tried to incorporate the effects of clouds
in our idealised system. To this aim, by exploiting the convection and
the rain thresholds already present in the model, we could define an
observable that imitates the physical response of microwave radiation
to the presence of clouds and precipitation without having to modify
the underlying model equations.
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Chapter 5

Forecast-assimilation experiments

with the ismodRSW model

In this chapter we summarise the modifications made to the DA system described in

Chapter 2, in order to carry out a new series of forecast-assimilation experiments with

the ismodRSW model, including the assimilation of idealised satellite observations. In

addition, we will describe the process undertaken to obtain a well-tuned simulation

and use such a simulation as a control in a series of data denial experiments (in

which different groups of observations are excluded in turn from the assimilation) to

investigate the impact of satellite observations at different spatial scales.

5.1 Modifications to the data assimilation scheme

A new series of experiments have been carried out, based on the twin-setting con-

figuration described in section §2.2.1, and the nature run simulation introduced in

section §3.4.2 (the step-by-step algorithm described in section §2.3 will be revised in

section §5.1.5). However, in order to include the assimilation of the pseudo satellite

observations described in Chapter 4, some aspects related to the DA scheme and the

observing system have to be revisited.

In this section we describe some of these modifications, such as the properties of the

new observing system (i.e. the number and type of observations) and the introduction
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Observing system

Total number of observations, p 38

Obs. per variable (psat, pu, pv, pr) (8,10,10,10)

Update frequency [min] 60

Ground obs. density (du, dv, dr) [km] (50, 50, 50)

Satellite obs. FOV [km] (20, 20, 40, 40, 60, 60, 80, 80)

Satellite obs. initial position [L] (0.1, 0.64, 0.17, 0.75, 0.35, 0.88, 0.41, 0.9)

Satellite velocity vsat [L/hour] (0.2, -0.12, -0.25, 0.18, 0.15, -0.15, 0.1, -0.1)

Obs. error (Isat, σh, σu, σr) (0.01, 0.04, 0.04, 0.01)

Table 5.1: A summary of the observing system used in the idealised experiments.

Units are dimensionless unless specified otherwise.

of a nonlinear observation operator. Moreover, some technical features are discussed,

such as the implementation of a modulated ensemble technique to preserve the direct

localisation of the forecast covariance matrix Pf
e in model space, and a revision of the

model-error covariance matrix Q.

5.1.1 The new observing system

A new and more complex observing system is created, comprising pg ground observa-

tions yog of fluid velocity (u and v) and rain (r), and psat pseudo satellite observations

yosat. This distinction between ground (sometimes also called conventional) and satel-

lite observations is an important one, as it is common in real-world observing systems

and contributes to making our idealised configuration more relevant to that of a typi-

cal NWP DA system.

As a result, the observation generator function G can be split into two components.

On the one hand, similarly to what was described in section §2.2.1, the ground ob-

servations of u, v and r are generated from the nature run xt by sub-sampling their

values at fixed locations along the domain at every analysis step. In other words, a

148



5.1 Modifications to the data assimilation scheme

(pg × 4Nnat
el )1 linear operator G (i.e. a sparse matrix) is defined, such that:

yog = Gxt + εεεog. (5.1)

On the other hand, a non-linear operator is used to generate pseudo satellite observa-

tions (as extensively described in Chapter 4), that is:

yosat = Gsat(x
t) + εεεosat. (5.2)

Together, the vectors yosat and yog form the p-dimensional observation vector yo.

In order for our experiments to be relevant for satellite DA research, the relative

numbers of ground observations pg and satellite observations psat should reflect the

characteristics of a real observing system. In the case of satellite observations, aspects

such as their frequency and availability in time and space vary widely depending on

the type of instrument and the orbit of the satellite it travels on.

Ground observations

Analogously to what was done in Chapter 2, we use the surface density of ground ob-

servations over the UK (around 40 km) as an upper bound for pg. Hence, we generate

10 evenly spaced observations (one every 50 km) for each ground variable (u, v and

r), to give a total of pg = 30 ground observations at each assimilation time.

In this regard, it is worth noting that the meridional velocity v is included among the

observations despite being actively forced towards the relaxation solution vrel (cf. sec-

tion §3.4.2) in both the nature run and the forecast. A further exploration of whether

it is possible to achieve a well-tuned experiment in the absence of v observations (ex-

ploiting the constraint given by vrel) is left for future examination.

Satellite observations

In this study we focus on a very specific type of observation, namely measurements

of microwave radiation carried out by polar-orbiting satellites. Therefore, we are in-

terested in quantifying how many observations of this type are available hourly over

the domain of a high-resolution (and convection resolving) limited area model, as this

1Note that although the number of grid point in the nature run Nnat
el has not changed, the model

state here includes the meridional velocity v, other than σ, u and r.
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represents the closest type of configuration to the ismodRSW model with a domain of

L = 500km. As an example, we consider the UKV model run at the Met Office, which

covers the British Isles and the surrounding area and has a grid spacing of 1.5km in its

interior and 4 km at its extremities (Tang et al., 2013). Milan et al. (2020) describe in

detail the operational 4DVar scheme used for this model, and provide information on

the observing system. In particular, Figures 11 and 13 of their paper report the distri-

butions of the number of microwave and conventional observations assimilated every

hour. The mean values are also shown, with an average of 1900 microwave observa-

tions from sounder instruments and 6830 conventional observations assimilated every

hour. These numbers give a ratio of satellite to ground observations of approximately

0.27 which, given pg = 30 ground (conventional) observations, translates into a value

of psat = 8 in our idealised system. In order to investigate the impact of observations

at various spatial scales, we create four sets of observations with different fields of

view, that is {20, 40, 60, 80} km. The initial position and velocity vsat of each satellite

(cf. (4.34)), which determines the location of the observation at the analysis step, are

reported in Table 5.1.

5.1.2 Nonlinear observation operator

The modifications to the observing system through the generation of pseudo satellite

observations requires a revision of the observation operator, that is, the function that

maps a model state into the observational space (cf. section §2.2.2, eq. (2.18)). In

particular, the relationship between the pseudo-density σ and the radiance Bi,λ(T ) in

the Rayleigh-Jeans law (4.31) makes the observation operator nonlinear.

The development of nonlinear observation operators represents a common challenge in

most operational systems, especially in the context of satellite DA, which comprises the

use of complex radiative transfer schemes able to convert typical model variables such

as temperature and humidity into simulated radiances. In this sense, this modification

contributes further to making our idealised configuration more similar and relevant for

NWP DA research.

In a similar manner to the observation generator, the observation operator can also

be split into a ground and a satellite component. For ground variables (i.e. u, v and

r), it consists of a linear operator Hg (a sparse matrix of 0 and 1) sub-sampling the

model state xf at the positions of the corresponding observations. Conversely, the

observation operator for satellite observations is a nonlinear function Hsat acting on
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5.1 Modifications to the data assimilation scheme

the model state xf such that the predicted radiance Isat is computed at the satellite

observations positions xsat (cf. (4.34)). It is worth noting that the observation operator

Hsat differs from the observation generator Gs in that it does not apply the weighted

horizontal average to the values of the forecast xf near the satellite position xsat.

5.1.3 Modulated ensemble for model-space localisation

Figure 5.1: Localised covariance matrix Pf
loc computed with the modulated ensemble

(cf. (5.9), left) and with the original one (cf. (2.30), right). Both matrices are

computed with the model ensemble forecast valid at T = 49 hours with a lead time of

one hour. Visually, the differences between the two matrices are very small.

In a deterministic ensemble Kalman filter, the observation operator appears twice:

first, in the innovation vector yo − H(xf ) within the analysis equation (2.18) and

furthermore in the expression of the Kalman gain K, cf. (2.20). Although Kalman’s

original approach and its deterministic nonlinear extensions normally require H to be

a linear operator (or the computation of its Jacobian if it is nonlinear), alternative

ensemble formulations of the Kalman filter in the presence of nonlinear observation

operators have also been developed that take a different approach. One of the most

popular approach is adopted in a series of papers from Houtekamer & Mitchell (1998,

2001, 2005), in which the expressions involving the nonlinear observation operator
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within the Kalman gain matrix K, i.e. PfHT and HPfHT , are calculated exploiting

the definition of Pf
e used in an ensemble Kalman filter (cf. (2.21)), that is:

Pf
eH

T =
1

N − 1

N∑
i=1

(
xfi − xf

)(
H(xfi )−H(xfi )

)T
, (5.3.a)

HPf
eH

T =
1

N − 1

N∑
i=1

(
H(xfi )−H(xfi )

)(
H(xfi )−H(xfi )

)T
. (5.3.b)

A possible difficulty in using the expressions above to compute the gain matrix Ke,̂j

in our DA scheme is due to the fact that we apply the spatial localisation directly to

the (self-excluded) ensemble covariance matrix Pf

e,̂j
, as discussed in section §2.2.3. In

practice, we use a redefinition of (5.3) in terms of Pf

loc,̂j
HT and HPf

loc,̂j
HT , adopting

the modulated ensemble technique outlined in Bishop et al. (2017). The objective is

to find the square root matrix Z of Pf

loc,̂j
, that is:

Pf

loc,̂j
= ρρρ ◦Pf

e,̂j
= ZZT . (5.4)

First, we consider the square root of the localisation matrix ρρρ:

ρρρ = WWT , (5.5)

in which W is a (4Nel ×K) matrix, with K ≤ 4Nel being its rank. Here we compute

W exploiting a low-rank approximation of the spectral theorem discussed in Appendix

D. Therefore, we form a new matrix by multiplying each column of W with the N − 1

columns of the (self-excluded) perturbation matrix Xf

ĵ
to obtain Zĵ:

Zĵ =
[
(w1 ◦Xf

1 ,w1 ◦Xf
2 , ...,w1 ◦Xf

ĵ−1
,w1 ◦Xf

ĵ+1
...,w1 ◦Xf

N), ...,

(wK ◦Xf
1 ,wK ◦Xf

2 , ...,wK ◦Xf

ĵ−1
,wK ◦Xf

ĵ+1
, ...,wK ◦Xf

N)
]
.

(5.6)

The matrix above has dimension 3Nel ×M , in which M = (N − 1)K (with N = 20

being the size of the original ensemble, cf. Table 5.3, and K = 8 being the rank of

W). Therefore, a new expanded (or modulated) ensemble of size M = 152 can be

defined exploiting the column vectors of Zĵ (with components zk,̂j) namely:

vf
k,̂j

=

 1

N − 1

N∑
i=1
i 6=ĵ

xfi

+ (
√
M)zk,̂j. (5.7)
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5.1 Modifications to the data assimilation scheme

Equation (5) in Bishop et al. (2017) shows that the column vectors zk,̂j have zero

mean, provided that this applies also to the ensemble perturbations Xf

ĵ
. As a result,

the modulated ensemble vf
k,̂j

has the same mean value as the original forecast ensemble

without the jth member, that is:

vf
ĵ

=
1

M

M∑
i=1

vf
i,̂j

=
1

N − 1

N∑
i=1
i 6=ĵ

xfi = xf
ĵ
. (5.8)

Finally, the covariance matrix obtained from the ensemble vf
k,̂j

is equal to Pf

loc,̂j
:

Pf

loc,̂j
=

∑M
i=1(vf

i,̂j
− vf

ĵ
)(vf

i,̂j
− vf

ĵ
)T

M
. (5.9)

Overall, what Bishop et al. (2017) have obtained is a new, expanded ensemble of size

M with the same mean as the original and a covariance matrix that is equal to the

localised matrix Pf

loc,̂j
. Using the new modulated ensemble, we can redefine (5.3) as:

Pf

loc,̂j
HT =

1

M

M∑
i=1

(
vf
i,̂j
− vf

ĵ

)(
H(vf

i,̂j
)−H(vf

i,̂j
)
)T

, (5.10.a)

HPf

loc,̂j
HT =

1

M

M∑
i=1

(
H(vf

i,̂j
)−H(vf

i,̂j
)
)(

H(vf
i,̂j

)−H(vf
i,̂j

)
)T

. (5.10.b)

Figure 5.1 shows a comparison between Pf
loc computed with (2.30) and (5.9). The

two matrices are visually equal, demonstrating that the two methods lead to the same

result.

5.1.4 Model-error covariance matrix

The use of a new nature run means that the model-error covariance matrix Q used to

generate the additive inflation perturbations ηηη (cf. section §2.2.3, Fig. 2.5) needs to

be recomputed.

Figure 5.2 (left panel) shows the new elements of diagonal matrix Q, obtained with

the same procedure outlined in Chapter 2, that is, by running a series of 96 hourly

forecasts (re-initialised hourly with the nature run) and generating a covariance matrix

from the distribution of the differences xt − xf computed at the end of each forecast;

the non-diagonal terms of the Q matrix are set to zero for simplicity. The vertical

dashed lines in Fig. 5.2 separate the σ, σu, σv and σr components of Q.
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Figure 5.2: Entries of the (diagonal) model-error covariance matrix Q. The black

dashed lines separate the vector components σ, σu, σv, σr. The matrix on the right

has the σ components set to zero and is used to compute the additive inflation ηηη as

per (2.31).

In Chapter 2, the hr component of Q was set to zero to avoid twice perturbing twice

two positively correlated variables (h and r). Here, we decide to set to zero the

σ component instead. This decision was taken in the course of the tuning process,

during which the pseudo-density σ has shown the smallest benefit from the DA in

terms of reduction of error (see also Table 5.4). In particular, the σ component of

Q (left panel of Fig. 5.2) displays a high degree of noise, which would be reflected

in the spatial pattern of the additive inflation perturbations. Hence, setting the σ

component to zero (and therefore limiting the additive inflation to the σr component,

right panel of Fig. 5.2) has the effect of both mitigating the possible negative impact

of adding excessive noise to σ (which would degrade the analysis), and avoiding the

double perturbation of two correlated variables, that is σ and r.

5.1.5 Algorithm modifications

Given the modifications described above and the model revision discussed in Chapter

3, the algorithm described in section §2.3 is revised accordingly:

• The matrix R used to generated the observations yi in 2.33 is redefined as

R = diag(s2
Isat

IIsat , s
2
uIu, s

2
vIv, s

2
rIr), with error variances s2

Isat,u,v,r
and identity

matrices IIsat,u,v,r with dimension equal to the number of observations Isat, u, v

and r, respectively.
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5.2 A well-tuned experiment

• In step i of the forecast step, σr is reset to zero and σ is reset to 0.001.

• In step i of the analysis step, the transformation before the assimilation reads

(σ, σu, σv, σr) 7→ (σ, u, v, r).

• Step iv and v of the analysis step are merged together via the calculation of the

modulated ensemble technique discussed in section §5.1.3.

5.2 A well-tuned experiment

Tuning parameters

Localisation scale, Lloca {0.5, 1.0, 1.5, 2.0}

Adaptive inflation, αRTPS {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Additive inflation, γa {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

Table 5.2: An overview of the filter parameters used during the tuning of the forecast-

assimilation experiments.

In this section we summarise the process undertaken to obtain a well-tuned experiment

to be used as control in the data-denial simulations described in the next section. The

procedure follows the same approach outlined in Chapter 2, conveniently modified to

infer the relevance of the new idealised system for satellite DA research. We report in

Table 5.3 a revised version of Table 2.2, in which the main modifications associated

with the new system and the assimilation of idealised satellite observations are high-

lighted in red.

We start with the simultaneous evaluation of 216 experiments in which the observing

system is kept fixed (cf. Table 5.1) and only the filter-related parameters are varied,

that is, the localisation scale Lloc, the RTPS coefficient αRTPS and the additive infla-

tion scaling factor γa. The initial ensemble perturbation applied to all experiments

is injected as in (2.16), here with (sic
σ , s

ic
σu, s

ic
σv, s

ic
σr) = (0.02, 0.008, 0.1, 0.0). The com-

bination of parameters utilised is displayed in Table 5.2. The meridional velocity v is

not included in the tuning process because of its peculiar role as both a forced and

observed variable, and also for its less interesting dynamical behaviour.
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5.2 A well-tuned experiment

In the initial stage, we seek the experiments that satisfy the following tuning criteria

(all diagnostics have been defined in full in section §2.4.2):

(i) a SPR/RMSE ratio around 1 (i.e. 0.8 ≤ SPR/RMSE ≤ 1.2);

(ii) minimum RMSE;

(iii) minimum CRPS.

Figure 5.3 summarises the values of these three diagnostics across the experiments.

Each box represents a 96 hour simulation corresponding to a specific combination of

parameters {Lloc, αRTPS, γa}, which has been averaged over time (excluding an initial

spin-up period of 12 hours), space and the model variables σ, u and r.1 The target

values for each criterion are highlighted in white or brighter colours.

The top left panel shows the values of SPR/RMSE, in which the experiments satis-

fying the condition (i) are outlined in red. For all localisation scales, these are located

in the top half of the parameter space. In fact, larger ratios are found to correspond to

higher inflation values (both additive and RTPS), which is to be expected as inflation

acts to increase the ensemble spread. The bottom panels display the corresponding

RMSE (bottom left) and the CRPS (bottom right), respectively. The experiments

with the lowest values of RMSE and/or CRPS (highlighted in lighter colours) among

those already selected in the previous step are contoured in black. This subset of ex-

periments satisfies the tuning criteria listed above and is therefore subject to further

examination. In particular, we now turn to select a value of Lloc.

To achieve this aim, Figure 5.4 shows a comparison of the correlation matrix obtained

from Pf
e before and after localisation is applied; the matrices of four of the experiments

remaining after the previous tuning based on SPR, RMSE and CRPS are plotted,

one for each value of Lloc (the values of αRTPS and γa are reported in the caption).

Similarly to what we observed in Chapter 2, a localisation scale of Lloc = 1.0 seems

to represent a good compromise between the excessive suppression of off-diagonal

signal for larger Lloc values (i.e. Lloc = {1.5, 2.0}, cf. bottom panels in Fig. 5.4)

and a value of Lloc = 0.5 which may not go far enough in dampening the spurious

correlations emerging from a small ensemble. Interestingly, the experiments with a

value of Lloc = 0.5 resulted also in larger RMSE and CRPS values, as highlighted by a

1Note that, differently from Chapter 2, here there is no need to multiply r by a factor 100, as the

error across the variables are of similar magnitude.
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Figure 5.3: Results summary of the 216 experiments obtained with the parameters

listed in Table 5.2. Top: SPR/RMSE; bottom left: RMSE; bottom right: CRPS.

The experiments satisfying the condition 0.8 ≤ SPR/RMSE ≤ 1.2 are contoured in

red in the top figure; among these, the ones with the lowest values of RMSE and/or

CRPS for each value of Lloc are contoured in black in the panels below.
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5.2 A well-tuned experiment

Figure 5.4: Effects of localisation (for different values of the localisation scale Lloc) on

the forecast-error correlation matrices (derived from the covariance matrices Pf
e used

in the DEnKF). Top left: γa = 0.6, αRTPS = 0.5; top right: γa = 0.5, αRTPS = 0.6;

bottom left: γa = 0.6, αRTPS = 0.6; bottom right: γa = 0.5, αRTPS = 0.7. For each

value of Lloc, two correlation matrices are shown: before (left) and after (right) the

localisation. Note that since the self-exclusion prescribes the computation of a different

covariance matrix Pf
e,j for each j-th ensemble member (cf. §2.2.3), the average matrix

is shown instead.
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larger number of orange and dark red boxes in the Lloc = 0.5 panels at the bottom of

Fig. 5.3. Selecting Lloc = 1.0 narrows the search for a well-tuned experiment further,

leaving only 4 simulations as candidates (cf. Fig. 5.3). At this point, we focus on

evaluating the impact of data assimilation on the quality of the forecasts by looking

at the difference in RMSE between two forecasts with different lead times (and valid

at the same analysis time). To this end, we repeat the choice made in Chapter 2

and use 3 and 4 hours forecasts (in short: 3hrs and 4hrs). Again, the expectation is

that the 3hrs forecasts have a smaller error than 4hrs forecasts, as the former have

been initialised more recently benefiting from more recent observations. In Figure

5.5 we show the domain averaged time series of both 3hrs (blue) and 4hrs (red) SPR

(continuous lines) and RMSE (dashed lines) of all variables for each experiment. The

average values of all scores are also displayed in each panel (these are again computed

after excluding the first 12 values to avoid any spin-up effects). As expected, both

the spread and the error of the 3hrs forecasts are smaller than for the corresponding

4hrs forecasts, indicating an increase in accuracy due to a more recent assimilation of

new observations. Other than being qualitatively visible in all experiments reported

in Fig. 5.5, this feature is also confirmed quantitatively in Table 5.4, where both the

RMSE values of 3hrs and 4hrs forecasts and the relative percentage reductions are

showed. In particular, decreases in a range of 3% to 14% are found for the single

variables, with an average reduction of 5%-8% for the overall experiments. It is worth

noting that the two variables most prone to non-linear effects, σ and r, display very

different behaviour. On the one hand, the pseudo-density σ, which is also the variable

most affected by the satellite observations, shows a rather small percentage reduction

(3%-6%). On the other hand, the rain mass fraction r displays the largest RMSE

improvements across the experiments (9%-14%).

Figure 5.5 can also be used as a further confirmation of the ratio between the ensemble

spread and the error being close to one in all experiments, highlighted by a general

overlap between the dashed and the continuous lines. Nonetheless, we note that the

meridional velocity v, which we previously excluded from the computation of the

tuning diagnostics, is considerably underspread in these experiments (that is, it has

a SPR/RMSE ratio below 1). Moreover, the oscillatory behaviour displayed by all

variables (especially in the RMSE) can be attributed to the cyclical passage of gravity

waves moving around and re-entering the (periodic) domain. We also note an increase

in RMSE for both lead times at the very end of the time series, affecting σ and u in

particular in all experiments shown in Fig. 5.5, with the exception of the simulation
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5.2 A well-tuned experiment
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5.3 Relevance for NWP data assimilation

shown in the subplot (c).

In the end, we select the experiment with parameters Lloc = 1.0, αRTPS = 0.6 and

γa = 0.5 as our well-tuned simulation to be used as the control in the data-denial

experiments which will follow in section §5.6. This choice is motivated by our interest

in the impact of satellite observations: indeed, this experiment produces the highest

RMSE reduction in the pseudo-density σ (cf. Table 5.4), which we expect to be the

most impacted by the assimilation of satellite observations, and therefore the one

that can act as the best reference in the data-denial experiments. In addition, this

experiment is also the only one in Fig. 5.5 not showing a increase in RMSE at the very

end of the time series.

5.3 Relevance for NWP data assimilation

In order to assess the relevance for NWP DA of the experiment selected in the pre-

vious section, we turn to two further diagnostics already utilised in Chapter 2: the

observation influence (OID) and the error doubling time. Both these quantities have

already been defined in detail in section §2.4.2.

Figure 5.6 shows the time series of the OID, including a break-down by observation

type. Interestingly, the impact of both u and r observations (blue and purple lines,

respectively) fluctuates around 10% for the entire duration of the experiment. Con-

versely, the impact of satellite observations (red line) is more irregular and displays

several oscillations between 0% and 10%, with some occasional peaks above this value.

This behaviour depends on the spatial distribution of the satellite observations, which

are at times concentrated in areas of the domain where there is neither convection nor

rain and the forecast uncertainty is very low. The impact of v observations (cyan line)

is initially very high, but it rapidly decreases and subsequently stays low for the rest

of the experiment. The reason for its initial large impact is due to an artificially high

ensemble spread at the start of the experiment, which is meant to counterbalance the

tendency of v to be underspread, as we have observed in the previous section. Overall,

the total OID starts at around 40% and gradually decreases until it settles around

20%; overall, these values are in line with the observation influence to be expected in

a high-resolution NWP model.

Lastly, Figure 5.7 shows the distribution of the error doubling times for each variable.

These are obtained from a series of 36-hour long forecasts for each of the 20 ensemble
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Experiment Lead time σ u r Average

γa = 0.3,

αRTPS =

0.7

3hr 0.0113 0.0493 0.0189

8.8 %

4hr 0.0119 0.0529 0.0221

% diff 5.0% 6.8% 14.5%

γa = 0.5,

αRTPS =

0.6

3hr 0.0110 0.0482 0.0189

7.7%

4hr 0.0117 0.0507 0.0215

% diff 6.0% 4.9% 12.1%

γa = 0.5,

αRTPS =

0.7

3hr 0.0114 0.0504 0.0194

5.2%

4hr 0.0118 0.0522 0.0213

% diff 3.4% 3.4% 8.9%

γa = 0.6,

αRTPS =

0.5

3hr 0.0113 0.0500 0.0199

8.5%

4hr 0.0120 0.0542 0.0226

% diff 5.8% 7.7% 11.9%

Table 5.4: Summary of the RMSE values (and percentage reduction between the 4hr

and the 3hr forecasts) of the four experiments shown in Fig. 5.5.
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5.3 Relevance for NWP data assimilation

Figure 5.6: Time series of the observational influence diagnostic (OID), as a percentage

(%). Overall OID and the OID computed for the single variables are reported in

different colours (see legend).

members initialised with the analysis ensemble of the first 60 analysis steps, for a total

of 1200 forecasts. The doubling times of u and r are similar to those found in Chapter

2. In particular, by comparing Figures 2.10 and 5.7 we note that the doubling times

of u are slightly larger (median from 9 to 10 hours, mean from 9.9 to 11.6 hours),

whereas those of r are slightly smaller (median from 6 to 5 hours, mean from 8.1 to

7.1). Similarly to the findings in Chapter 2, r continues to be the variable of the

system that is the quickest to double. Conversely, σ and v display considerably larger

doubling times, with values around 16-17 hours for both. In the case of the merid-

ional velocity v, the larger doubling times can be explained by the relaxation towards

vrel (cf. (3.45)), which forces both the forecast and the nature run towards the same

solution, and therefore slows down the error growth. The large doubling time of σ

has a less clear explanation. One hypothesis is that the assimilation scheme is still

not optimised for σ (which the limited improvement in RMSE highlighted in Table

5.4 might also be a sign of) and therefore the initial analysis error may be too large

or close to its saturation value, hampering its ability to grow further in time.
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Figure 5.7: Error-doubling time distributions based on 1200 forecasts. Panels from

top to bottom: σ, u, v and r. Each panel reports the number of forecasts in which the

initial error has doubled within 36 hours, the mean and the median of the distribution.
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5.4 Subjective verification

5.4 Subjective verification

In order to visualise the effects of the DA scheme, we show in Figure 5.8 a snapshot

of the model variables (plus Isat) at time T = 54 hours, before (left panels) and after

(right panels) the assimilation of the observations. The figure displays the nature run

trajectory (solid green line), the forecast ensemble mean (solid red line), the observa-

tions with their error bars (green dots), the analysis ensemble mean (solid cyan line)

and the ensemble members (blue lines).

The top two panels show the action of the observation generator function Gs in (4.30)

in mapping the pseudo-density σ into a set of psat = 8 idealised satellite observations

of radiance Isat. In particular, the comparison between σ and Isat reveals the effect of

the non-linearity in Gs, which shrinks the values of σ below the convection threshold

into quasi-constant values of Isat, contributing to the reduction of the ensemble spread.

This distortion therefore has the effect of reducing the impact of the four observations

in the first half of the domain (x < 0.5) and suggests that the dips in the observation

influence diagnostic of Fig. 5.6 are caused by the concentration of satellite observations

in areas with no convection nor rain.

Furthermore, Figure 5.8 shows in practice the action of the DA scheme in adjusting

the forecast towards the observations (and the nature run). This is clearly noticeable

in r, where the observations at x = 0.6 and x = 0.7 improve both the shape and the

peak of the large area of rain in the second half of the domain. A small adjustment

is also made in σ around x = 0.6, where the forecast mean is struggling to resolve

a single convection updraft located at the same location; in this case, the presence

of a few satellite observations plays a crucial role in correcting the trajectory. Minor

adjustments are also visible in u, whereas the DA seems to have a marginal impact on

v, which is expected given the relaxation process being applied to this variable.

5.5 Observations impact and spatial scales

The purpose of this thesis is to investigate the impact of assimilating satellite obser-

vations at various spatial scales. More generally, the relationship between the impact

of the observations on the analysis and their spatial structure – including their den-

sity and error properties – has been already investigated in several studies covering
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Figure 5.8: Model snapshot valid at T = 54. Left: 1hr forecast. Right: analysis. The

nature run trajectory is in green, the ensemble trajectories are in blue, the forecast

mean is in red and the analysis mean is in cyan. The observations are indicated by

green dots with error bars.
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5.5 Observations impact and spatial scales

various data assimilation topics, such as: the role of both the background and the ob-

servation covariance matrices in shaping the analysis, the use of observations thinning

techniques, the adoption of ensemble covariance localisation, and the role of represen-

tation errors. We present a brief literature review for each of these subjects below.

The interplay between the background error covariance matrix and the impact of the

observations on the analysis is nicely summarised in a review article by Bannister

(2008). Here it is shown with both theoretical and practical considerations how one

of the role of the background error matrix is to spread the information carried by the

observations both horizontally and vertically, depending on the strength of the spatial

correlations between grid points and model levels.

The impact of the spatial scale, density and geographical distribution of the obser-

vations on the analysis is also linked to how the observation error covariance matrix

is modelled, and in particular to whether the observation errors are treated as corre-

lated or uncorrelated. For example, a number of studies have shown that while dense

observation networks of truly uncorrelated observations lead to a more accurate anal-

ysis at the small scales, this ceases to be true when dense correlated observations are

treated as uncorrelated (Dando et al., 2007; Forsythe, 2007; Liu & Rabier, 2002, 2003).

Treating the observations as explicitly correlated is only a recent development in data

assimilation, which can benefit the representation of the small scales in the analysis,

as shown by Rainwater et al. (2015) and in section §4.8 of Daley (1993).

In practice, the background and observation error covariance matrices interact with

each other and both affect the impact of the observations on the analysis, as noted

in Fowler et al. (2018). In this paper, for example, it is shown how a denser network

is most useful when the observations provide a better description of the small scales

than the background.

The thinning and superobbing of observations are common techniques that allow to

reduce the absolute number of observations to be assimilated, as well as optimising

the assumptions of uncorrelated observations made in many operational DA systems

(Berger et al., 2004; Fowler et al., 2018). As an example, Dando et al. (2007) esti-

mated the optimal thinning distance for the ATOVS satellite observations (assumed

as uncorrelated) within the Met Office DA system (with a grid resolution of 60 km),

finding a value in the range 110-150 km, and observing a degradation of the forecast

error for shorter distances. They also noticed that in the areas with strong horizontal

gradients, a shorter thinning distance of 40 km produced the smallest forecast error:

a finding in line with the conclusions of an earlier paper by Seaman (1977).
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Experiment # of sat. obs. FOV [km]

control 8 {20,20,40,40,60,60,80,80}

small scales 4 {20,20,40,40}

large scales 4 {60,60,80,80}

no sat 0 —

Table 5.5: Summary of the data denial experiments carried out.

The property of an observation network can also influence the choice of an optimal

localisation scale. As we observed in section §2.2.3, the localisation damps the long-

distance background error correlations, implicitly reducing the scale over which the

information carried by an observation can be spread. In this regard, Perianez et al.

(2014) have shown how the optimal localisalisation scale for an EnKF depends on both

the observation error and the observation density.

Finally, the representation error constitutes the preeminent source of observation error

in data assimilation, is clearly related to the scale of the observations and can impact

negatively on the quality of the analysis when is not properly identified and dealt with.

Janjić et al. (2018) offer an overview on the subject, providing many examples. As

highlighted in the paper, one of the source of representation error lies in the mismatch

in spatial scale between the model and the observations, with the latter often reflecting

much more local and small-scale atmospheric conditions than NWP models are able

to resolve. The paper discusses various methods to identify and quantify the repre-

sentation errors properly, and highlights the importance of a better understanding of

observation-error statistics, including the role of correlated observations.

5.6 Data denial and single-observation

experiments

In this section we analyse the results of a series of data denial and single-observation

experiments conducted to investigate the role of satellite observations on the idealised

forecast-assimilation system described so far. In particular, we are interested in study-

ing the impact of satellite observations of different spatial scales on our DA system.
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5.6 Data denial and single-observation experiments

First, we investigate the impact of a single satellite observation of varying spatial

resolution (or FOV), located at the center of the domain, in the presence of a con-

vection updraft. In order to study the impact of the spatial scale of the observation,

we compute the analysis increments (analysis minus background) for each FOV value

FOV = {20, 40, 60, 80} km and for all localisation scales Lloc = {0.5, 1.0, 1.5, 2.0}.
Furthermore, we carry out a series of data-denial experiments, which are summarised

in Table 5.5. We use the well-tuned simulation selected in section §5.2 (with Lloc = 1.0,

γa = 0.5, αRTPS = 0.6 and psat = 8) as a control simulation, and subsequently com-

pare it against three experiments which differ only in the number (and the FOV) of

the satellite observations assimilated. To achieve this aim we run: one experiment in

which only four ‘small scale’ (SS) satellite observations (with FOVs of 20 and 40 km)

are assimilated; a second one in which only four ‘large scale’ (LS) satellite observations

(with FOVs of 60 and 80 km) have been used; and a third one in which only ground

observations have been included (no sat).

In order to assess the performance of each configuration, we will consider a number of

diagnostics. In particular, we will assess the accuracy of the ensemble mean (RMSE),

the quality of the ensemble (using both the CRPS and rank histograms) and the impact

that the observing system has on the analysis (OID) (more details on their definitions

are reported in section §2.4.2). We will compute these diagnostics for both the analysis

and 3hrs forecasts in order to understand the impact of satellite observations both at

the time when they are assimilated and in a subsequent forecast.

The results presented in this section should be treated as preliminary, and further

work should follow.

5.6.1 Single-observation experiments: results

Starting from the same initial condition and using the same filter configuration ob-

tained at the end of section §5.2, we conduct a series of 3 cycles experiments (t =

[0, 0.267]), assimilating only one, stationary satellite observations located at x = 0.5

for each FOV value. Here, we analyse the impact of such observation on the analysis.

Figure 5.9 shows the nature run trajectory (green line), the +1hr forecast ensemble

members (blue lines) and their ensemble mean (red line) for each variable (including

of the satellite radiance I(x)) valid at the second analysis step (t = 0.178), when a

convective updraft appears at the centre of the domain. Because of its lower spatial
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Figure 5.9: Snapshot of model dynamics at t = 0.178, displaying the +1hr forecast

ensemble members (blue lines), the ensemble mean (red line) and the truth trajectory

(green line). Top panel: satellite radiance I(x); second panel: pseudo-density σ; third

panel: horizontal velocity u; fourth panel: meridional velocity v; bottom panel: rain

r.
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5.6 Data denial and single-observation experiments

Figure 5.10: Top panel: detail of the nature run trajectory (or truth) of the satellite

radiance I(x) at t = 0.178 (green line) and pseudo satellite observations Isat (with error

bars) valid at the same time, for each FOV value. Bottom panel: weight function w(x)

defining the horizontal resolution of the pseudo-satellite observations for each FOV

value, as per (4.36).
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resolutions and the perturbed initial conditions, the ensemble mean is unable to re-

solve the peak in I(x) (first panel) and σ(x) (second panel) as accurately as the nature

run; in fact, a number of ensemble members even predict a value of pseudo-density

below the convection threshold, while others show a displaced updraft. As a result,

the ensemble mean presents a much broader and shallower area of convection than the

truth trajectory and this becomes an excellent test bench for our data assimilation

system, as the presence of an observation in the same location as the updraft will help

adjust the model towards the nature run.

Figure 5.10 zooms in on the portion of domain where the observations (one for each

FOV value) are located, in correspondence of the convective area (top panel). The

value of each Isat observation depends on its FOV, that is, its horizontal averaging

functions w(x) (cf. (4.36)), which is reported in the bottom panel. Clearly, larger

FOVs correspond to smaller values of Isat, as the contribution of the smaller radiance

away from the peak increases. As a result, the observation with the highest spatial

resolution (a FOV of 20km, green dot) is also the closest to the truth trajectory, while

the one with the lowest resolution (a FOV of 80km, grey dot) largely underestimates

the value of the nature run at the same location. It is worth noting that all observa-

tions are an underestimation of the actual ‘true’ value of the radiance I(x).

The left panels of Figure 5.11 show the analysis increments (i.e. the difference between

the analysis and the forecast) for each variable and each experiment. As expected,

the experiment with the smallest FOV (green line) produces the largest adjustment

in σ near the observation location (top panel). The experiments with intermediate

values of FOV (blue and yellow lines) still produce an adjustment in the right direc-

tion, although of smaller magnitude. Finally, the experiment with the largest FOV

(grey line) produces an adjustment in the wrong direction. Much smaller increments

are generated away from the centre of the domain, but are largest in the experiment

with the smallest FOV. A similar pattern is repeated in the rain variable r (bottom

panel), whereas wider and more complex adjustments are visible in u and v (middle

panels); also in this case, the experiments with the smallest FOV produces the biggest

increments.

Finally, the right panels of Figure 5.11 show the analysis increments of each variable

for the experiment with the smallest FOV (20 km) when the localisation scale Lloc is

varied. As expected, the smallest value of Lloc (green line, corresponding to a locali-

sation length equal to the domain size) produces significant increments away from the

observation location (at x = 0.5), as the forecast covariance matrix retains most of
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the off-diagonal signal which leads to long-range adjustments in the analysis; this is

especially visible in r, where a large adjustment is made around the end of the do-

main. Conversely, as the value of Lloc increases and the localisation length shortens,

the analysis increments become smaller away from the centre of the domain.

5.6.2 Data-denial experiments: results

RMSE

Figure 5.12 shows the time series of the analysis (domain-averaged) RMSE for each

model variable and for all the experiments listed in Table 5.5. To facilitate the com-

parison between them, each panel is complemented with its time-averaged values in

the plot legends.

Overall, the differences in RMSE between the experiments are very small and more

work needs to be done to ascertain the statistical significance of these results. However,

the large scale only simulation (LS, blue line) consistently underperforms the control

(green line) across all variables, displaying an increase in RMSE of 1%-5%. Instead, it

is more difficult to interpret the performance of the small scale (SM, yellow line) and

the no sat (gray line) simulations: the former slightly overperforms the control in σ

and u (with a reduction in RMSE between 0% and 2%), underperforms the control in

v and produces the same results for r; the latter displays larger RMSE values in all

variables (that is, an increase of 1%-4%) but in v, where it shows the lowest error.

Figure 5.13 reports equivalent RMSE time series for 3hrs forecasts. Even at this time

from the initialisation, the LS experiment continues to underperform the control in

all variables, with an increase in RMSE of 1%-8%. Interestingly, the ‘no sat’ experi-

ment, which relies only on ground observations, appears to be more accurate than the

control in all variables, with a small reduction in RMSE (i.e. 0%-2%) in σ, u and r,

and a larger decrease (around 3%) in v, suggesting a sub-optimal tuning configuration.

Lastly, the small scale experiment appears to be marginally better (RMSE reduction

of 0%-1%) than the control in all variables but σ.

CRPS

Figure 5.14 displays the time series of the (domain-averaged) analysis CRPS. Again,

the differences between the experiments appear small, and the interpretation of the
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5.6 Data denial and single-observation experiments

Figure 5.12: Time series of (domain-averaged) analysis RMSE for each model variable:

σ (top left), u (top right), v (bottom left) and r (bottom right). All experiments listed

in Table 5.5 are shown, together with a time average to facilitate their comparison.

Note that there are no direct observations of σ, as Isat is observed instead.
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Figure 5.13: As in Figure 5.12, but for 3hrs forecasts.
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5.6 Data denial and single-observation experiments

results is not straightforward. However, similarly to what was observed in Fig. 5.12,

the LS experiment underperforms the control and produces higher CRPS values by

3%-8% in all variables except v. Conversely, the SS experiment produces better results

than the control (except in v), with a CRPS reduction in σ, u and r of 1%-5%; this

experiments has also a lower CRPS than the other two experiments (both LS and ‘no

sat’) in all variables but v.

The CRPS values for 3hrs forecasts are shown in Figure 5.15. Once again, the LS sim-

ulation displays the largest CRPS values (with the exception of v) and underperforms

the control by 4%-11%, indicating that assimilating large scale satellite observations

only may have a negative effect on the ensemble quality for this observational configu-

ration. The results of the other experiments are less clear, although it is worth noting

that the ‘no sat’ simulation produces the smallest CRPS values across all variables

at this lead time, hinting that some adjustments to the observing system might be

needed.

Rank histogram

Figure 5.16 shows the rank histograms of each model variable and each data denial

experiment computed with the analysis ensemble and the value of the nature run sub-

sampled at each observation location.

A rank histogram is a graphical tool used to assess the quality of an ensemble fore-

cast. In particular, it is used to verify to what extent the verifying reference, usually

observations or an independent analysis, fall within the range predicted by the ensem-

ble members. An extensive discussion on the interpretation of rank histograms can

be found in Hamill (2001). A brief description of how the rank histograms of figures

5.16-5.17 have been obtained follows.

In an operational system, comparing the output of an ensemble forecast against inde-

pendent observations yo or an independent analysis is a natural choice. In our idealised

system, however, the ‘true’ state of the atmosphere is represented by the nature run

simulation xt, and the observations are obtained by just adding a random perturbation

to it. For this reason, in this work it seemed more appropriate to use the truth xt

(conveniently sub-sampled at the observation location) to generate a rank histogram.

Therefore, for each observation, we have sub-sampled the true trajectory xt at the

same location and subsequently create a set of values by merging it with the N = 20

ensemble members valid at the same time and location. By sorting these values from
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Figure 5.14: Time series of analysis CRPS for each model variable: σ (top left), u (top

right), v (bottom left) and r (bottom right). All experiments listed in Table 5.5 are

shown, together with time-averaged values included in the legends to facilitate their

comparison.
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5.6 Data denial and single-observation experiments

Figure 5.15: As in Figure 5.14, but for 3hrs forecasts.
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the smallest to the largest, we could assign an integer (or rank) between 1 and N+1 to

the sub-sampled truth, depending on the its position within the set. By repeating this

procedure for all observations, it is possible to build a histogram with the distribution

of the rank values obtained (cf. figures 5.16-5.17).

The principle behind a rank histogram is that if the observations and the ensemble

members are drawn from the same distribution, then all the rank values between 1 and

N + 1 are equally likely, and therefore the expectation for a good ensemble forecast

is that the histogram should be flat (rank uniformity). In general, the shape of the

histogram is descriptive of the performance (or problems) of an ensemble: for example,

a U-shaped histogram is a sign that the ensemble has insufficient spread, as many ob-

servations fall outside its range of values; on the other hand, a bell-shaped histogram

is associated with an ensemble with too much spread, in which most observations fall

in the central region. Lastly, rank histograms that show an overpopulation of large

(small) rank values are associated with an underforecasting (overforecasting) bias, as

most observations fall in the upper (lower) region of the predicted values.

The pseudo-density σ is close to rank uniformity in all experiments, although a peak

of low rank values in both the control and the LS simulation indicates a small positive

bias (i.e. the forecast ensemble values are typically too large compared to the nature

run); interestingly, this effect seems to be attenuated in the SS experiment. The zonal

velocity u is close to rank uniformity in all experiments, whereas the meridional ve-

locity v is visibly overconfident in all simulations (a result of the forecast ensemble

being underspread, as already noted in Fig. 5.5). Finally, the rain variable r appears

to suffer from some overdispersion effects in all experiments, with histograms peaking

around the central rank values. A different behaviour can be detected in the ‘no sat’

simulation, which displays a positive bias, with the number of occurrences decreasing

at high rank values.

Figure 5.17 displays the same diagnostics computed with 3hrs forecast ensembles.

Overall, we observe a shift towards underdispersion in all variables, especially in σ

and u. A tendency towards negative bias (i.e. forecasting values that are typically too

small compared to the nature run) appears in r across all data denial experiments (LS,

SS, no sat): a sign that the 3hrs ensemble systematically underestimates the nature

run.
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5.6 Data denial and single-observation experiments

Figure 5.16: Rank histograms computed with the analysis ensemble for each data-

denial experiment and for each model variable. The rank histogram for σ of the no sat

experiments is blank as no satellite observations are assimilated. The interpretation

of a rank histrogram is covered in Hamill (2001), while a description of how it is

computed can be found in the text.

Figure 5.17: As in Fig. 5.16, but computed for 3hrs forecasts.
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OID

Figure 5.18 shows the time series of the observation influence diagnostics (OID) of each

type of observation in each data denial experiment. The impact of satellite observations

is highest in the control simulation and is clearly zero in the ‘no sat’ experiment;

moreover, the satellite observations appear to have a slightly larger impact in the

small scale experiment than in the large scale one. All experiments show a succession

of peaks and dips which we already observed in Fig. 5.6.

In addition, the ‘no sat’ experiment compensates the lack of satellite observations by

using the other observations more, as proven by its larger OID values in u, v and

r. The overall OID value of the ‘no sat’ experiments is approximately the same as

the LS experiment (i.e. OIDnosat = 25.8%, OIDLS = 25.7%) whereas the other two

experiments produce smaller impacts (OIDcon = 23.6%, OIDSS = 23.8%). Finally,

we note that the LS simulation has larger OID values than the SS one.

5.6.3 Discussion

The main research question of this thesis concerned whether there exists a relative ben-

efit in assimilating satellite observations at small spatial scales rather than large scales,

or vice versa. The results of the experiments presented above highlight only small dif-

ferences between the various configurations and therefore provide only a preliminary

answer. Nevertheless, both the single-observation and data denial experiments consid-

ered in this thesis represent an interesting starting point for further work and a more

in-depth investigation.

Some evidence that limiting the assimilation to just large scale satellite observations

may have a detrimental effect on the idealised forecast-assimilation system based on

the ismodRSW model has emerged in the data denial experiments conducted so far.

In particular, the accuracy of the ensemble mean and the quality of the ensemble both

deteriorate with respect to the control simulation, at both the analysis time and after

3 hours from the initialisation, as the results for the RMSE and the CRPS reported

in section §5.6.2 demonstrate. Moreover, the LS experiment tends to perform worse

than the ‘no sat’ simulation, suggesting that, in the current setup, the assimilation of

satellite observations of large spatial scales seem to have a net negative impact on the

overall system.
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5.6 Data denial and single-observation experiments

Figure 5.18: Time series of the observation influence diagnostics (OID) for each type

of observation: Isat (top left), u (top right), v (bottom left) and r (bottom right).

All experiments listed in Table 5.5 are showed, together with time-averaged values

included in the legends to facilitate their comparison.
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At the same time, it is less clear whether assimilating only small scale satellite obser-

vations bring a benefit to the DA system, although there is some evidence supporting

this hypothesis too. For example, the small scale-only simulation slightly overperforms

the control in terms of both RMSE and CRPS at the analysis time in all variables

except v, and displays a more uniform rank histogram in σ with respect to the control,

indicating a better match between the forecast ensemble and the nature run. However,

the results for the 3hrs forecasts are more neutral, with the SS experiment performing

similarly to the control simulation. The potential advantage of the small scall satel-

lite observations over the large scale ones seem to be related to their better ability in

resolving narrow convection updrafts, as highlighted in the single-observations exper-

iments presented section §5.6.1.

In all experiments, one interesting aspect is the role of the meridional velocity v, which

behaves differently from the other variables: this is not surprising given the peculiar

role of v as both observed and forced variable.

Overall, in order for these experiments to produce clearer results, some features of the

observing system (such as the observation error) might need further adjustments and

more tuning. Indeed, running additional data denial experiments for a wider range

of configurations might help to determine the sensitivity and the robustness of our

preliminary findings.

Finally, the OID results indicate a larger impact from all observation types when large

scale satellite observations only are used, with respect to small scales only; this is a

sign of the LS experiment somehow increasing the forecast uncertainty, driving a larger

contribution of the observations to the final analysis.

Chapter highlights and summary

• At the start of this chapter, the data assimilation algorithm already
used in Chapter 2 has been revised in order for it to include the as-
similation of the psuedo satellite observations. The modifications con-
cern the observing system, the observation operator and the way the
ensemble-space localisation is performed.

• A new series of forecast-assimilation experiments has been carried out
using the ismodRSW model, in which a combination of ground and
satellite observations are assimilated. The protocol and the tuning
process introduced in Chapter 2 has been re-applied here to the new
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5.6 Data denial and single-observation experiments

configuration, and a well-tuned simulation has been selected at the end
of the process.

• The initial research question of this thesis asked whether there is a
relative benefit in focussing on the assimilation of satellite observations
at small or large spatial scales. To address this question, a series of
single-observation and data-denial experiments are used to assess the
impact that the scale of the satellite observations have on the system.
The results show some evidence of degradation of both the analysis
and short-range forecasts when only large scale satellite observations
are assimilated.
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Chapter 6

Conclusions and future work

Satellites constitute one of the most important sources of observations in current NWP

DA systems and their use is considered crucial in the day-to-day production of accu-

rate weather forecasts. As operational centres move to extend their use beyond clear

sky scenes, including in precipitating conditions, and the number of usable satellite

observations increases, it is important to understand more about how to make best

use of this growing amount of data.

In this thesis we set out to investigate the impact of satellite observations at different

spatial scales on a DA system. In particular, we were interested in finding benefits

in focussing on the assimilation of small scale rather than large scale observations (or

vice versa), in view of improving future strategies for satellite DA research.

The work conducted in this thesis was based on an idealised model of the atmosphere

using modified shallow water equations. On the one hand, the use of an idealised model

has allowed us to avoid the logistical challenges posed by the complexity and the com-

putational costs of state-of-the-art NWP models and their DA schemes. On the other

hand, working with an idealised configuration has required us to put a considerable

amount of effort in identifying – and subsequently imitating – the indispensable char-

acteristics of real-world systems (including the properties of operational systems and

those of satellite observations), so that our study would be relevant for NWP satellite

DA research.

This final chapter has three purposes: summarising the content of the thesis, revisiting

the objectives that were presented in the introduction (cf. §1.2) and concluding with
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an overview of future work which may stem from this study.

6.1 Summary

This thesis has originated from the idealised model of the atmosphere for convective-

scale DA research based on modified shallow water equations described in Kent (2016)

and Kent et al. (2017). Chapter 2 summarised the dynamics and the numerics of

such a model (called modRSW, for modified Rotating Shallow Water), including the

thresholds-based mechanisms used to mimic convection and precipitation. The model

description was followed by an illustration of the so-called ‘twin-setting’ experiments,

which made it possible to conduct DA experiments in an idealised setup. In this

configuration, a single high-resolution model integration (referred to as nature run

simulation) was used to generate a set of observations, which were subsequently com-

bined in a Deterministic Ensemble Kalman filter (Sakov & Oke, 2008) with en ensemble

of forecasts obtained by running the same model at a lower resolution.

In the final part of Chapter 2, we presented a protocol to assess the performance and

the relevance of DA experiments conducted with an idealised model, which we sub-

sequently applied to a series of forecast-assimilation simulations performed with the

modRSW model. Hence, we showed that the setup described in Chapter 2 is both

well-tuned and relevant for convective-scale NWP DA research, with a summary of

the results reported in Table 2.2.

The modRSW model was initially considered as our test-bed for investigating satellite

DA. Unfortunately, it displayed some limitations (such as the lack of a built-in fluid

temperature definition) which we have outlined at the beginning of Chapter 3. A

revised model was presented thereafter, still based on shallow water equations, but

altered in two respects: the replacement of an isopycnal fluid (i.e. constant density)

with an isentropic one (i.e. constant potential temperature), and the addition of a sec-

ond motionless layer capped by a rigid lid. Next, this new, isentropic 11
2
-layer model

(in the absence of convection and precipitation) was manipulated to be put in con-

servative form in order to facilitate its numerical implementation (which is described

in Appendix C), and the observations-based scaling at the basis of its mathematical

derivation (not included in this work) is discussed. In addition, both the analytical

and the numerical consistency of the model were checked: first, the isopycnal model
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6.1 Summary

was recovered by imposing κ = R/cp = 1; second, the numerical model was verified

against an independent analytical solution based on the stationary wave solutions dis-

cussed in Shrira (1981, 1986).

The final part of Chapter 3 presented the fully modified ismodRSW (isentropic modi-

fied Rotating Shallow Water) model (which includes convection and precipitation) and

illustrated a prototype nature run simulation based on the scaling discussed earlier in

the chapter, which included rotation and was forced by a relaxation solution in the

meridional velocity vrel. As a final check, the covergence of the full ismodRSW model

with κ = 1 towards the modRSW model was verified.

Chapter 4 started with a brief summary of basic principles of radiative transfer and

atmospheric radiation, followed by a discussion on how they are exploited by meteoro-

logical satellites. In addition, a short historical overview of satellite DA was presented,

from the first missions in the 1960s to the most recent developments regarding the as-

similation of clouds and precipitation.

Later in the chapter, the actual generation of pseudo satellite observations was dis-

cussed, with the aim to mimicking the measurements of passive microwave radiation

carried out by polar-orbiting satellites. This aim was achieved by: developing a simple

radiative transfer model based on the Rayleigh-Jeans law, generating spatially varying

observations that travel along the domain and re-enter it periodically, and defining the

measured radiance as a horizontally weighted average in order to imitate the FOV of

satellite observations. In addition, clouds were implicitly modelled by exploiting the

built-in system of thresholds and by taking into account their impact (as well as the

effect of precipitation) on the measured microwave radiation.

Chapter 5 started with a description of the modifications required for the DA scheme

outlined in Chapter 2 to deal with the assimilation of the pseudo satellite observations

described in Chapter 4. These adjustments included a revision of the observing system,

the new (nonlinear) observation operator, the implementation of the the modulated

ensemble technique presented in Bishop et al. (2017) to preserve the background-space

localisation, and the new model-error covariance matrix Q.

Next, the chapter revisited the protocol presented in Chapter 2 (slightly modified to

take into account the revised observing system, such as the ratio between conven-

tional and satellite observations) and discussed the tuning of a series of new forecast-

assimilation experiments from which a well-tuned simulation emerged. The new setup
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was also validated to verify its relevance in the context of NWP DA systems and is

subsequently used as a control simulation in a series of data denial experiments which

try to address the initial research question of this thesis. To this end, the control

experiment was compared against three other experiments which differed only in the

number and the resolution (i.e. the FOV) of the satellite observations assimilated:

small scale only, large scale only and no satellite observations. In addition, a series of

short-range single-observation experiments are conducted, in which only one pseudo

satellite observations of various FOVs is assimilated, and the analysis increments pro-

duced by each of them subsequently compared.

The single-observations experiments showed the importance of small scale observations

in resolving correctly the narrowest convection updrafts. The data denial experiments

produced some evidence of a degradation caused by the assimilation of large scale

satellite observations in both the analysis and a 3 hour forecast, whereas the assimila-

tion at the small scales produced a small positive benefit to the analysis. In general,

the differences between the different configurations were small and we considered these

findings as preliminary. Further tuning of the control simulation and additional ex-

periments might be needed in order to confirm the robustness of our results.

6.2 Objectives revisited

In Chapter 1, we set out a list of objectives to orientate the research conducted in this

thesis. Here, we revisit each of them, discussing if (and how) they have been met.

1. Show that it is possible to obtain a well-tuned idealised experiment with the

modRSW model which is also relevant for operational NWP DA research and

formulate a protocol to assess other idealised systems in the same way.

The forecast-assimilation experiments performed with the modRSW model were

discussed in sections §2.4-2.5 and the results were summarised in Table 2.2,

where the criteria to assess the tuning and the relevance of an experiment for

convective-scale NWP DA were established. After the systematic comparison of

a large number of simulations, we selected a well-tuned experiment (with local-

isation and inflation parameters: Lloc = 1.0, αRTPS = 0.7 and γa = 0.15) that

satisfied all the requirements: a SPR/RMSE ratio near 1, minimum CRPS and

RMSE (of the ensemble mean), an observation influence around 30% and an

error doubling time of about 6-9 hours. The process described in Chapter 2 can
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6.2 Objectives revisited

be re-applied to a different idealised systems, as we did in Chapter 5, where we

adopted the same procedure for the experiments performed with the ismodRSW

model.

2. Show that the modRSW model needs to be modified for satellite DA research, and

then develop a new, revised version of the model that is fit for purpose.

We achieved both these aims in Chapter 3. First (section §3.1), we showed that

the modRSW model was not suitable for satellite DA since the lack of an in-

built definition of fluid temperature (which is essential for the formulation of any

radiative transfer model) led to an unrealistic scaling when a simpler temperature

definition was adopted. Afterwards, the ismodRSW model was developed, on the

basis of two modifications which made it a much more suitable option for satellite

DA: the replacement of the isopycnal fluid with an isentropic one (which ensured

a physically consistent temperature definition, cf. (3.3)), and the addition of a

passive second layer, which increased the vertical complexity of the model. The

ismodRSW model adopted the same thresholds mechanism used in the modRSW

model to imitate convection and precipitation.

3. Construct a complex (and idealised) observing system, comprising both simulated

ground and satellite observations, in which the characteristics of real-world ob-

serving systems and satellite observations are imitated closely, and include the

effect of clouds.

Sections §5.1.1 described the new idealised observing system, which included

both ground observations at fixed locations of fluid velocities and rain (u, v

and r) and spatially varying satellite observations (Isat(σ)) recreating passive

microwave radiation measured by polar-orbiting satellites (widely assimilated

at most operational centres). The way these satellite observations were gener-

ated was described thoroughly in Chapter 4, where we also modelled the impact

that clouds and precipitation have on these observations, exploiting the in-built

system of threshold for convection and rain (cf. §4.4.4). In order to make the ob-

serving system more realistic, the ratio of satellite to conventional observations

assimilated in the experiments of Chapter 5 reflected the ratio of 0.27 found in

the UKV model run at the Met Office (Milan et al., 2020).

4. Conduct new forecast-assimilation experiments in which satellite observations

are assimilated that are relevant for operational NWP systems.
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A series of new forecast-assimilation experiments which include the use of pseudo

satellite observations is outlined in section §5.2. Table 5.3 summarises the criteria

utilised to assess the performance and the relevance of the experiment selected

at the end of the tuning process (with localisation and inflation parameters:

Lloc = 1.0, αRTPS = 0.6 and γa = 0.5). The results show a SPR/RMSE ratio

near 1, minimum CRPS and RMSE, an observation influence around 25% and

an error doubling time of about 5-17 hours.

5. Perform a series of data denial experiments – i.e. simulations in which a portion

of the observations are intentionally excluded from the assimilation – to investi-

gate the impact of satellite observations at different spatial scales.

The data denial experiments are discussed in section §5.6. The experiment se-

lected at the end of the tuning process in objective 4 is used as the control and

three more configurations are tested: one with no satellite observations, one that

assimilates only small scale satellite observations, and one that assimilates only

large scale satellite observations. The results showed a degradation of the exper-

iment which assimilated only large scale satellite observations, with an increase

in both RMSE and CRPS with respect to the control, both at the analysis time

and at a lead time of 3 hours. Conversely, the experiment in which only small

scale satellite observations were used produced marginal improvements against

the control, and mostly at the analysis time. Overall, further tuning of the

control simulation and additional experiments might be needed to establish the

robustness of the current findings.

6.3 Future work

As outlined at the end of Chapter 5, in order to confirm the validity of the results of the

data denial experiments reported therein, additional simulations should be conducted

in the future, following further tuning of the DA scheme combined with adjustments

to the observing system. A list of possible modifications to the current configuration

comprises:

• varying the number of ensemble members;

• varying the observation error of any of the observed quantities;
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6.3 Future work

• varying the number and spacing of ground and/or satellite observations;

• revisiting the role of the meridional velocity v as both an observed and forced

variable;

• modifying the observation generator Gs to allow for hourly cycles with no satellite

observations assimilated, akin to real systems (cf. Fig. 11 in Milan et al. (2020));

• redefining the functions αk(σ) in the measured radiance expression Isat – eq. (4.37)

– in terms of simpler analytical functions, resulting in an expression that is ide-

ally linear in the coefficients.

Moreover, in order to obtain more robust results in the future, it might be necessary

to repeat the same set of simulations more than once (for example by generating a

new set of observations, or with different random perturbations), to avoid the risk of

drawing conclusions from possible random effects or fluctuations.

The flexibility of an idealised model also opens up a series of possibilities which go

beyond the scope of this thesis. Among them, it is worth mentioning:

• Explore alternative types of satellite observations. In this thesis, we have

chosen to focus on microwave radiation measured by polar-orbiting satellites,

but as we have seen in section §4.1.4, many other types of satellite observations

are currently assimilated at operational centres. In this regard, for example,

geostationary satellites (with their constant view over the same portion of the

Earth) constitute a more reliable (and continuous) source of observations for

limited area models such as the UKV. Therefore, by redefining the observa-

tion generator function Gs, it is possible to imitate geostationary observations

and subsequently investigate their impact on the DA system. Incidentally, as

most instruments mounted on geostationary satellites measure infrared radia-

tion, a new (and nonlinear) radiative transfer model would also be needed, as

the Rayleigh-Jeans law is not valid for infrared radiation.

• Explore more complex observation error. Since radiances started to be

directly assimilated into operational DA systems, a lot of research has been done

on how to model their observation errors. In particular, it has become common

practice to inflate the errors of the radiance observations that are believed to be
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contaminated by clouds and precipitations. This approach was not included in

this thesis, but can represent a possible way to increase the level of complexity

and explore the impact of a widely adopted solution on our idealised system.

• Explore bias correction algorithms. Bias correction has been an important

area of research in satellite DA (Dee, 2004; Derber & Wu, 1998), as both instru-

ments and radiative transfer models can produce systematic errors. Since most

DA algorithms are based on the assumption that the observations are unbiased,

correcting for this type of error is crucial in order to obtain reliable analysis

estimates. Biases can therefore artificially added to the idealised satellite obser-

vations and the DA scheme conveniently adapted in order to investigate their

impact on the system or to explore other solutions to correct for biased observa-

tions.

• Adding topography to the ismodRSW model. The ismodRSW model

presented in Chapter 3 and used in the experiments of Chapter 5 did not include

topography. Adding topography to the system would expand the number of

dynamical configurations that can be used as test-bed in future DA experiments.

In order to include topography, the numerical scheme needs to be revisited, as

an additional term appears in the momentum equation (3.15b), stemming from

the full definition of M2 (cf. 3.5d); moreover, the well-balancedness of the model

(i.e. the preservation of the rest state) needs to be investigated, as this issue was

present in the zero order Discontinuous Galerkin scheme used in Kent (2016)

and Kent et al. (2017), as further discussed in Kent & Bokhove (2020), and led

to the adoption of the method proposed by Audusse et al. (2004).
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Appendix A

Equivalence of DEnKF with

‘no-perturbation’ EnKF with

RTPP αRTPP = 0.5

Note that this appendix is present in a similar form in Kent et al. (2020) as Appendix

B.

In this appendix we show that the EnKF without perturbed observations (i.e. ‘no-

perturbation’ EnKF) together with an adaptive RTPP inflation with αRTPP = 0.5 (cf.

(2.26)) is formally equivalent to the Deterministic Ensemble Kalman Filter (DEnKF)

developed by Sakov & Oke (2008), even when using self-exclusion (cf. section §2.2.3).

This configuration is currently in use at the Met Office within the global ensemble

forecast system (i.e. MOGREPS-G, cf. Bowler et al. (2017)).

In order to prove this, we note that the analysis step of the ‘no-perturbation’ EnKF

reads (by taking the self-exclusion into account):

xaj =
(
I−Ke,̂jH

)
xfj + Ke,̂jy

o, (A.1)

with the ensemble mean xa being:

xa =
(
I−Ke,̂jH

)
xf + Ke,̂jy

o. (A.2)
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The jth column of the analysis perturbation matrix (Xa)ĵ can therefore be expressed

as:

(Xa)ĵ = xaj − xa =
(
I−Ke,̂jH

)
(Xf )ĵ, (A.3)

in which Xf is the forecast perturbation matrix. The RTPP equation (2.26) together

with the above result yields:

(Xa)ĵ = (1− αRTPP )
(
I−Ke,̂jH

)
(Xf

ĵ
) + αRTPP (Xf

ĵ
). (A.4)

For αRTPP = 1
2
, we obtain:

(Xa)ĵ = (Xf )ĵ −
1

2
Ke,̂jH(Xf )ĵ, (A.5)

which is Eq. (15) in Sakov & Oke (2008), generalized to include self-exclusion.
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Appendix B

The Gaspari-Cohn taper function

The localisation matrix ρρρ described in section §2.2.3 is a symmetric matrix with entries

ρi,j based on the Gaspari-Cohn taper function (Gaspari & Cohn, 1999), that is:

ρ(z, c) =


f1(z/c) for 0 ≤ z ≤ c;

f2(z/c) for c ≤ z ≤ 2c;

0 for 2c ≤ z;

(B.1.a)

where:
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in which z represents the distance between 2 grid points, and c is a length-scale that de-

termines the amount of localisation. The function ρ(z, c) is similar to a half-Gaussian

function (cf. Fig. 2.4), which has a maximum at ρ(0) = 1 and subsequently decreases

as z increases, with values that go to zero beyond a ‘cut-off’ distance of twice the

characteristic length-scale c.

In the case of the experiments described in Chapter 2, c is a function of the (dimen-

sionless) localisation parameter Lloc, that is: c = Nel∆x/(2Lloc), with ∆x being the

grid spacing. As a result, and according to (B.1), the value of ρ(z, c) drops to zero
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beyond z = 2c = Nel∆x/Lloc. For example, a localisation scale of Lloc = 1.0 translates

into a cut-off distance 2c equal to the scale of the horizontal domain (i.e. 500 km),

beyond which ρ = 0 and thus every correlation is suppressed.
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Appendix C

Numerics of the ismodRSW

Note that this appendix appears also in Cantarello et al. (2020) as Appendix B.

In this appendix we summarize the numerical methods utilised to integrate the is-

modRSW model. Despite some modifications, the scheme has remained the same

used in Kent (2016); Kent et al. (2017), which we refer the reader to for a more

comprehensive and satisfactory description.

C.1 Classic shallow water

To integrate numerically the model in absence of convection and rain, a 0-degree dis-

cretization of the Discontinuous Galerkin Finite Element Method (DGFEM) developed

by Rhebergen et al. (2008) is used (equivalent to a finite volume method), in combi-

nation with HLL fluxes (Harten et al., 1983). As we saw in section §3.3.3, the shallow

water model is hyperbolic and can be put in conservative form.

We split the horizontal domain [0, L] into Nel open elements Kk = (xk, xk+1) of con-

stant length |Kk| = xk+1 − xk with k = 1, 2, ..., Nel, delimited by Nel + 1 nodes where

0 = x1, x2, ..., xN , xNel+1 = L. Therefore, we derive the weak formulation of equation

(3.14) (see §3.1.2 of Kent (2016) and more extensively Zienkiewicz et al. (2014)). The

zero-degree discretization (henceforth DG-0) implies that the function U in (3.14) is
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approximated with a piece-wise constant function within each element Kk such as:

Uh(x, t) = Uk =
1

|Kk|

∫
Kk

U(x, t)dx. (C.1)

In the end, the DG-0 discretization for each element |Kk| reads:

dUk

dt
+

Fk+1 − Fk

|Kk|
+ T (Uk) = 0, (C.2)

where Fk represents the numerical flux computed at each element’s node, which in the

case of the HLL fluxes is defined as:

Fk =


FL if SL > 0,

FR if SR < 0,

FHLL if SL < 0 < SR,

(C.3)

with FHLL defined as:

FHLL =
FL SR − FR SL + SL SR (UR − UL)

SR − SL
, (C.4)

in which SL and SR are the numerical velocities arising from the eigenvalues in Eq.

(3.22):

SL = min
(
uk −

√
∂σEk, uk+1 −

√
∂σEk+1

)
; (C.5.a)

SR = max
(
uk +

√
∂σEk, uk+1 +

√
∂σEk+1

)
. (C.5.b)

It is worth noticing that in order to compute the fluxes F and the numerical velocities

SL, SR, the non-dimensional pressure η needs to be calculated at each time step from

the pseudo-density σ. However, since inverting analytically eq. (3.11) is not possible,

an alternative which is efficient enough needs to be found. Here we chose to precompute

the corresponding values of σ and η (with a resolution of δσ = 0.0001) and to perform

a linear interpolation during the model integration. A polynomial interpolation is also

possible.

We refer to Kent (2016) for the (adaptive) time step implementation.

C.2 NCPs for the full model

We noted in section §3.4 that the model in its full form – comprising convection and

rain – cannot be put in conservative form, and that non-conservative products arise
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C.2 NCPs for the full model

and need to be handled numerically (see (3.42)). To achieve this aim, notwithstanding

the DGFEM method outlined above, the DLM theory introduced by Dal Maso et al.

(1995) is used. Again, more details about the mathematical formulation of this scheme

can be found in Kent (2016) and Kent et al. (2017), although in this case (because

of the missing topography term) there is no need to apply the theory about state

reconstruction used therein and the scheme developed by Audusse et al. (2004).

The following semi-discrete space-DGFEM scheme for a single element Kk is found:

dUk

dt
+

P
p
k+1 − Pmk

|Kk|
+ S(Uk) = 0, (C.6)

in which the numerical fluxes P
p
i and Pmi read as:

P
p
i = PNCi +

1

2

∫ 1

0

Gij(φφφ)
∂φj
∂τ

dτ, (C.7)

Pmi = PNCi − 1

2

∫ 1

0

Gij(φφφ)
∂φj
∂τ

dτ. (C.8)

In the expressions above, Gij(φφφ) indicates the {i, j} matrix element of the NCP G

matrix of (3.43), with φφφ being a Lipschitz continuous path connecting the left and the

right state: φφφ(τ ; UL,UR) = UL + τ
(
UR −UL

)
, as per the DLM theory. Moreover,

the NCP flux contributions PNCi read as:

PNCi (U
L

i , U
R

i ) =


FL
i − 1

2
V NC
i , if SL > 0;

FHLL
i − 1

2
SL+SR

SR−SLV
NC
i , if SL < 0 < SR;

FR
i + 1

2
V NC
i , if SR < 0.

(C.9)

with the numerical velocities SL and SR (cf. eq. (3.44)) being:

SL = min

(
uL −

√
∂σE|L + c2

0β̃|L, uR −
√
∂σE|R + c2

0β̃|R
)
, (C.10)

SR = max

(
uL +

√
∂σE|L + c2

0β̃|L, uR +

√
∂σE|R + c2

0β̃|R
)
. (C.11)

VNC is a vector containing the worked out contribution of the NCP integral expressions∫ 1

0
Gij(φφφ)

∂φj
∂τ
dτ :

VNC =


0

−c2
0[[r]]{{σ}}

0
−β[[u]]Θ([[u]])

(
σRIβ + [[σ]]Iτβ

)
 , (C.12)

where: Θ(·) indicates the Heaviside function, [[·]] = (·)L − (·)R the jump across the

node and {{·}} = 1
2

(
(·)L + (·)R

)
the average quantity. Iβ and Iτβ are still expressed by
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(C18) and (C22) as per appendix C of Kent et al. (2017), with analogous derivation

upon the redefinition of X and Y as X = σR − σL and Y = σL − σr. The derivation

of the elements in VNC is also analogous to the one performed in the same appendix,

by replacing all references to z and h with σ.
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Appendix D

Square root of localisation matrix

This appendix summarises the method used to compute the square root of the locali-

sation matrix ρρρ, that is, the matrix W such that:

ρρρ = WWT . (D.1)

The procedure described here is a formalisation of the coded algorithm found in Jeff

Whitaker’s Github repository1 and is based on a low-rank approximation of the spec-

tral theorem.

First, the eigenvalues and the eigenvectors of ρρρ are computed:

λ1, λ2, λ3, ..., λN eigenvalues of ρρρ; (D.2)

v1, v2, v3, ..., vN eigenvectors of ρρρ. (D.3)

Subsequently, the negative eigenvalues of ρρρ are set to zero and all eigenvalues are

summed together, giving the matrix trace:

Λ =
N∑
i=1

λi. (D.4)

In order to exclude very small eigenvalues for numerical reasons, we order the eigen-

values in descending order and consider the first K, such that their sum approximates

Λ, that is:

S =
K∑
i=1

λi ≥ a · Λ, (D.5)

1URL: https://github.com/jswhit/L96/blob/master/L96ensrf.py
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with a a factor close to 1 (for example, one can take a = 0.99). Finally, the square

root matrix W is built by defining the column vectors wi, that is:

wi = vi ·
√
λi
S

i = 1, 2, ..., K. (D.6)
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N., Kim, M.J., Köpken-Watts, C. & Schraff, C. (2018). All-sky satellite

data assimilation at operational weather forecasting centres. Quarterly Journal of

the Royal Meteorological Society, 144, 1191–1217. 26, 129, 130, 131, 133

Goodliff, M., Amezcua, J. & Van Leeuwen, P.J. (2015). Comparing hybrid

data assimilation methods on the Lorenz 1963 model with increasing non-linearity.

Tellus A: Dynamic Meteorology and Oceanography, 67, 26928. 27

213

https://www.ecmwf.int/en/elibrary/9445-atmospheric-motion-vectors-past-present-and-future
https://www.ecmwf.int/en/elibrary/9445-atmospheric-motion-vectors-past-present-and-future


Greenwald, T.J., Stephens, G.L., Vonder Haar, T.H. & Jackson, D.L.

(1993). A physical retrieval of cloud liquid water over the global oceans using Special

Sensor Microwave/Imager (SSM/I) observations. Journal of Geophysical Research:

Atmospheres, 98, 18471–18488. 137

Greenwald, T.J., Stephens, G.L., Christopher, S.A. & Vonder Haar,

T.H. (1995). Observations of the global characteristics and regional radiative effects

of marine cloud liquid water. Journal of Climate, 8, 2928–2946. 137

Grody, N. (1976). Remote sensing of atmospheric water content from satellites using

microwave radiometry. IEEE Transactions on Antennas and Propagation, 24, 155–

162. 136

Grody, N.C., Gruber, A. & Shen, W.C. (1980). Atmospheric water content over

the tropical Pacific derived from the Nimbus-6 scanning microwave spectrometer.

Journal of Applied Meteorology, 19, 986–996. 136
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