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Abstract

Cardiac mechanical dyssynchrony describes the variation in the timing of contraction or re-
laxation within the ventricle and can be assessed using various imaging techniques. Electrical
dyssynchrony has previously been used as a surrogate for mechanical dyssynchrony. However,
it is now widely recognised that mechanical dyssynchrony can occur without the presence of
electrical dyssynchrony. Therefore, it has become increasingly important to develop quantita-
tive measures of mechanical dyssynchrony. Although echocardiography has led in this area,
radionuclide ventriculography (RNVG) imaging can also be used.

This research aims to investigate the use of novel phase parameters from RNVG, including
synchrony, entropy, phase standard deviation, approximate entropy, and sample entropy, to pro-
vide a quantitative measure of cardiac dyssynchrony. There is limited published data applying
these parameters to phase images, and there is currently no established normal range. To achieve
these aims, each parameter has been optimised and tested on both simulated and clinical data.
In addition, the optimised parameters have been applied to clinical data sets to assess the ability
to predict patient outcome.

The results highlight the importance of optimising input parameters for approximate entropy
and sample entropy and demonstrate that the selected values are appropriate for application to
RNVG phase images. The clinical results using the optimised parameters are promising for as-
sessing patients prior to receiving cardiotoxic cancer therapy. Approximate entropy combined
with left ventricular ejection fraction was able to predict those at a higher risk of cardiac dys-
function before treatment commenced. The dyssynchrony parameters were also used to assess a
group of patients with heart failure with reduced ejection fraction. The results demonstrated that
dyssynchrony, left ventricular ejection fraction, and right ventricular ejection fraction improved
after beta-blocker. In addition, patients with non-ischaemic heart failure and dyssynchronous
left ventricular contraction were more likely to respond to beta-blocker therapy.

This research has successfully investigated novel dyssynchrony parameters for radionuclide
ventriculography imaging. Overall, this research strengthens the idea that dyssynchrony can
predict patient outcomes and improve clinical decision making.
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Chapter 1

Introduction

1.1 Introduction

There has been increased interest in assessing left ventricular mechanical dyssynchrony within
cardiology due to the potential to effect patient treatment and outcome. Mechanical dyssyn-
chrony can be measured using various different imaging modalities, including echo (2-D M-
mode, spectral Doppler, and tissue Doppler imaging parameters), single photon emission com-
puted tomography myocardial perfusion imaging (SPECT MPI), radionuclide ventriculography
(RNVG), and magnetic resonance imaging (MRI). In nuclear cardiology, dyssynchrony can be
assessed using phase images from RNVG with various different parameters without requiring
any additional imaging time or radiation dose. To date, measures of dyssynchrony from echocar-
diography have led the field, but it has not yet been adopted into widespread clinical practice.
There is currently limited published data for dyssynchrony assessed by RNVG phase and it has
not been widely investigated as a predictor of patient outcome. This research will build on the
current dyssynchrony knowledge and attempt to expand the understanding in this area using
novel parameters.

1.2 Aims and Objectives

The aim of this PhD is to investigate novel quantitative measures of cardiac left ventricular
dyssynchrony using RNVG phase analysis. The main objectives of this PhD are listed below.

1. Develop code for calculating novel dyssynchrony parameters from RNVG phase
images.

2. Optimise novel RNVG phase parameters for assessing dyssynchrony.

3. Investigate the normal range and reproducibility for each parameter.

4. Demonstrate the application of novel dyssynchrony parameters and validate using
clinical data.

1
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5. Determine if dyssynchrony measured from RNVG phase has the potential to predict
clinical outcome.

1.3 Outline of Thesis

A brief introduction to the imaging and clinical terms that will be used throughout the thesis
will be given in Chapter 2. Chapter 3 will introduce cardiac mechanical dyssynchrony and the
parameters that will be calculated from radionuclide ventriculography (RNVG) phase images
to quantify mechanical dyssynchrony. This is followed by a short overview of the statistical
tests and machine learning algorithms that will be applied in this research in Chapter 4. To
meet the objectives of this thesis, the phase parameters will be optimised using both simulated
data and clinical images in Chapter 5. A normal range will be defined using the optimised
parameters, and the reproducibility will be assessed in Chapter 6. The predictive value of these
novel parameters of left ventricular function will be tested on various patient groups, including
patients who are receiving cardiotoxic cancer therapy in Chapter 7. The phase parameters will be
applied to the baseline scans to determine if dyssynchrony can predict which patients are more
likely to experience a decline in cardiac function during or after chemotherapy. In Chapter 8, the
dyssynchrony parameters will be used to assess patients in heart failure with reduced ejection
fraction, both pre and post beta-blocker treatment. The research in Chapter 8 will investigate
the effect of beta-blocker on dyssynchrony and discover if dyssynchrony at baseline will predict
response to beta-blocker. Chapter 9 will summarise and conclude the results of this research.



Chapter 2

Background and Clinical Context

This chapter gives a brief introduction to the imaging and clinical terms that will be used
throughout Chapters 3-8. The cardiovascular system will be introduced along with a brief intro-
duction to the cardiac conditions relevant to this research. An overview of the cardiac imaging
modalities will also be given.

2.1 The Heart

2.1.1 Cardiovascular System

The heart is divided into four chambers - right atrium, right ventricle, left atrium, and left ventri-
cle, which work together to circulate oxygenated blood around the body. The diagram in Figure
2.1 shows the main components of the heart, including ventricles, atria, and myocardium. The
cardiac valves between the chambers operate to ensure that blood flows in only one direction.
The left ventricle pumps oxygen-rich blood through the aorta and delivers blood through the ar-
teries to the rest of the body before the veins return the deoxygenated blood to the right atrium.
The blood is then passed from the right atrium to the right ventricle through the tricuspid valve
and pumped to the lungs via the pulmonary arteries. The blood is oxygenated in the lungs and
returned to the left atria, then passed through the mitral valve to the left ventricle. The my-
ocardium is thicker on the left side of the heart because the left ventricle needs to use more force
than the right ventricle to pump the blood to the rest of the body.

2.1.2 Cardiac Conduction System

In a normal heart, ventricular contraction is a highly coordinated process, which is essential to
maintain high cardiac output. In a normal contraction, the base and apex of the left ventricle
will twist in opposite directions, creating a wringing motion. Cardiac contraction is a complex
system that uses a combination of cardiac muscle cells and conducting fibres. Figure 2.2 shows
an illustration of the electrical conduction path. The conduction starts in the sinoatrial node,

3
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Figure 2.1: Labelled diagram of the heart [1]

where an electrical stimulus is generated, activating the atria. The electrical signal then travels
towards the atrioventricular node via the internodal pathways, where the signal is slowed for a
brief time before travelling via the bundle of His conduction pathway towards the ventricles.
The bundle of His splits into the right and left bundle branches, then into the Purkinje fibres to
stimulate the ventricles. This causes the left and right ventricle to contract and pump out blood.
The cardiac cycle must be coordinated to function efficiently. Any damage or disruption to the
conduction system can cause dyssynchronous contraction.

The electrical signal of the heart can be assessed using an electrocardiogram (ECG). The
ECG signal is recorded using 12 leads connected to the patient. An ECG can be used to de-
termine the rate, rhythm and conduction of the heart. The letters P, Q, R, S, T, and U are used
to describe each deflection on the ECG, where each deflection represents a different part of the
conduction cycle, as seen in Figure 2.3. The P wave is associated with the atria contracting,
the QRS complex reflects the depolarization and contraction of the ventricles, and the T wave
is associated with the repolarisation of the ventricles. The U wave is thought to represent the
repolarisation of the papillary muscles, but it is not usually visible on the ECG. Figure 2.3 shows
the shape of a normal QRS from the ECG. The time between two R waves is the R-R interval
and can be used for cardiac gating.

2.1.3 Ischaemic Heart Disease

Ischaemic heart disease is a leading cause of death in the UK, and it was the leading cause
of death worldwide in 2019 [4, 5]. The disease is caused by plaque building up along the
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Figure 2.2: Cardiac conduction system [2] showing the position of the sinoatrial node where the
electrical stimulus is generated and the path that the electrical signal travels through the heart.

Figure 2.3: ECG waveform. The P wave is associated with contraction of the atria, the QRS
complex reflects the contraction of the ventricles, and the T wave is associated with the repolar-
isation of the ventricles.
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coronary arteries’ inner walls, causing narrowing and subsequently reduced blood flow to the
myocardium. When an obstructed coronary artery supplies the muscle of the heart, it may not be
possible to meet the oxygen demands of the body during exertion. This is known as myocardial
ischaemia. Ischaemic heart disease can be diagnosed by various imaging modalities, includ-
ing coronary angiography, nuclear medicine, computed tomography (CT), and magnetic reso-
nance imaging (MRI). The ischaemic cascade is illustrated in Figure 2.4. This figure shows the
changes that occur with increasing duration and severity of ischaemia, along with techniques for
diagnosis. ECG changes and chest pain are late symptoms of ischaemia, but a perfusion abnor-
mality can be detected with a myocardial perfusion scan (MPI) or contrast MRI much earlier.
Ischaemic heart disease can be treated with medication, angioplasty or surgery. Once the cardiac
tissue is necrotic, it is no longer reversible.

Figure 2.4: Ischaemic cascade. Imaging tests, shown by the yellow arrows, can detect ischaemia
before ECG changes or chest pain occurs. Prolonged absence of blood supply to the cardiac
muscle will lead to necrosis (represented by the dotted line) and the damage will no longer be
reversible.

2.1.4 Myocardial Infarction

Myocardial infarction (MI), also commonly known as a heart attack, can occur when there is
a sudden or severe blockage to one of the coronary arteries. This is usually caused by a blood
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clot that stops blood from flowing to a part of the heart muscle. The prolonged absence of
blood supply will lead to necrosis, meaning heart cells in the occluded territory will die and
will not regenerate. These cells are replaced by non-functional scar tissue that will not recover.
Scar tissue in the myocardium can affect cardiac contraction and cause dyssynchrony. Patients
with a history of previous MI will be compared to normal and LBBB patients in Chapter 5 and
Chapter 6 to optimise the radionuclide ventriculography (RNVG) phase parameters and assess
the normal range and reproducibility.

2.1.5 Left Bundle Branch Block

Left bundle branch block (LBBB) is a conduction abnormality. For patients with LBBB, the sig-
nal from the atrioventricular node is transmitted via the ventricular myocardium, which is slower
than the normal conduction system. As a result of the delayed conduction, the left ventricular
free wall will contract later than the septum and right ventricle, resulting in dyssynchronous con-
traction. LBBB can range from very mild, where no treatment is required, to very severe, where
the ventricle can no longer operate effectively. LBBB can be diagnosed from an ECG, where
the delayed electrical signal from the left ventricle can be seen. On an ECG for a patient with
LBBB, the QRS complex would be wider than normal (>120 ms) due to the conduction delay.
LBBB can be caused by several different conditions, including but not limited to coronary artery
disease, high blood pressure, valve disease, enlarged or weakened heart muscle (cardiomyopa-
thy), infection, myocardial infarction or congenital heart defects. LBBB can also occur when
there is no underlying condition. The conduction delay caused by LBBB can affect the timing of
contraction, causing mechanical dyssynchrony. In Chapter 5 and Chapter 6, a group of patients
with LBBB will be compared to patients with normal conduction as part of the optimisation
work for the phase parameters.

2.2 Cardiac Imaging Modalities

2.2.1 Coronary Angiography

Coronary angiography is the gold standard for assessing ischaemia. An interventional cardi-
ologist carries this technique out in a catheterisation laboratory (known as a cath lab). In this
procedure, a catheter guide-wire is directed through the blood vessels, with x-ray images to
help guide the catheter into the coronary arteries. X-ray fluoroscopy images combined with
contrast allows the arteries to be visualised and assess blocked or narrowed coronary arteries.
Fractional flow reserve measurements can be used to evaluate the functional significance of
stenosis (narrowed artery). Fractional flow reserve measurement is the ratio between the maxi-
mum achievable blood flow in a narrowed coronary artery and the theoretical maximum blood
flow in a normal coronary artery. Narrowed arteries can be reopened using angioplasty or per-
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cutaneous coronary intervention (PCI), also known as a stent. Angioplasty involves using a
balloon to reopen a narrowed or blocked artery, and a stent is a small wire-mesh tube that can
be expanded in the artery to reopen the artery and improve blood supply. To insert a stent into a
narrowed artery, a balloon covered with a stent is inflated once the tip of the catheter is in place.
This compresses the plaque and expands the stent, as seen in Figure 2.5. The balloon is then be
deflated and withdrawn. A stent can improve blood flow and reduce the patient’s symptoms of
angina. This procedure is not without risk, so a non-invasive test is often preferred to determine
if the patient has ischaemia and if they would benefit from revascularisation with a stent. Results
from coronary angiography and MPI are used in Chapter 8 to split the heart failure patients into
ischaemic and non-ischaemic groups.

Figure 2.5: Diagram of coronary stent placement. The stent is expanded within the coronary
artery during a coronary angiogram to improve blood flow. The cross sectional view shows the
stent around the walls of the of the artery and the compressed plaque.

2.2.2 Echocardiography

Echocardiography (echo) uses sound waves to image the heart. The structure and function of
the heart, including valve assessment, ejection fraction, and wall motion, can be assessed using
echo. This imaging modality has the advantage of being inexpensive, portable, and it does not
use ionising radiation. However, it is very dependant on the skill of the operator, so high-quality
training is essential. In addition, image quality can be challenging for larger patients or those
with scar tissue. Trans-oesophagal echo is a type of echo imaging that uses an endoscope to pass
the ultrasound transducer down the oesophagus. This can provide superior imaging because the
probe is close to the heart without ribs or lung in the way, but it is more uncomfortable for the
patient and has higher associated risks such as oesophageal rupture.

Speckle tracking is an echo imaging technique that can track the motion of tissues in the
heart by following the speckle pattern in either the myocardium or blood through each image
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frame. Global longitudinal strain (GLS) is a simple parameter derived from speckle tracking to
assess cardiac dyssynchrony. GLS measures the change in length of the ventricle as a percentage
of the baseline length. An example image showing the GLS assessment can be seen in Figure
2.6. This figure shows how the myocardium is fitted in each longitudinal view. The myocardium
is then tracked during the cardiac cycle using speckle tracking. The plots next to the longitudinal
views show the motion for each myocardial segment, allowing assessment of regional as well
as global measures of strain. The bulls-eye plot on the right of Figure 2.6 displays the measured
GLS values for each segment in the ventricle.

Figure 2.6: Example of global longitudinal strain assessment by echo [3]. The myocardium is
automatically fitted then tracked during the cardiac cycle using speckle tracking. The plots next
to each longitudinal view show the motion for each segment within the ventricle. The bulls eye
plot on the right displays the measured GLS value for each segment in the ventricle.

2.2.3 Cardiac Magnetic Resonance Imaging

MRI uses a magnetic field and radiofrequency coils to image tissues in the body. The measured
signal depends on the relaxation times, proton density and other factors such as flow and motion.
Cardiac MRI is becoming an increasingly popular tool to investigate cardiac anatomy and assess
wall motion and function of the heart. However, it remains expensive and time-consuming, with
limited access in some centres for cardiac indications and is unsuitable for some patients who
have an older pacemaker.
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2.2.4 Computerised Tomography

Computerised Tomography (CT) uses X-rays to produce high-resolution images of the body. CT
has made many recent advancements in cardiology and is now recommended in the guidelines to
assess ischaemia for low risk symptomatic patients. A contrast agent is used during the cardiac
CT scan to visualise any calcification in the coronary arteries. A cardiac CT can provide useful
information on the structure of the heart and arteries. This test has good negative predictive
power for ischaemia, but it can be challenging to assess the severity of lesions in the arteries.

2.3 Nuclear Cardiology

Nuclear cardiology uses radioisotopes to image the heart non-invasively. There a number of tests
available to assess the perfusion and function of the heart. This section will introduce nuclear
medicine and describe two of the most common imaging tests in nuclear cardiology - MPI and
RNVG. The research carried out in this thesis is based on parameters calculated from RNVG.
However, MPI results will be used to define patient groups in Chapters 5 and 8; therefore a brief
introduction to MPI will be included.

2.3.1 Radiopharmaceuticals

In nuclear medicine, radiopharmaceuticals are administered to the patient intravenously or orally,
depending on the test. The ideal radiopharmaceutical should have a half-life similar to the length
of the test to ensure there is enough time to acquire the data, but not so much time that the pa-
tient receives an unnecessary radiation dose. A pure gamma emitter with an energy of 50-300
keV is ideal for imaging. Any alpha or beta emission will be absorbed within the patient and
increase the patient dose without contributing anything to the image. The radiopharmaceutical
should ideally localize only at the target site to improve image quality and reduce radiation to
other organs and tissues.

Technetium-99m labelled tracers are the most commonly used radionuclides for medical
imaging. Technetium-99m is produced by bombarding Molybdenum-98 with neutrons to cre-
ate Molybdenum-99, which then decays with a half-life of 66 hours to Technetium-99m. The
longer decay time of Molybdenum-99 allows it to be easily transported to medical facilities,
where Technetium-99m can be extracted for nuclear medicine imaging tests. Thallium-201 is a
cyclotron produced radioisotope that can be used for myocardial perfusion imaging. Thallium-
201 is a potassium analogue that uses the sodium-potassium pump to cross into cells of various
organs. A summary of the properties of Technetium-99m and Thallium-201 can be seen in Table
2.3.1. Thallium-201 decays by electron capture. Thallium-201 emission has lower energy and a
longer half-life than Technetium-99m, resulting in a higher patient dose.
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Table 2.1: Commonly used radionuclides in nuclear cardiology

Technetium-99m Thallium-201

Half Life 6 hours 73 hours

Energy 140 keV 67-82 keV (88%), 135 and 167 keV (12%)

2.3.2 Gamma Camera

The gamma camera was developed by Hal Anger in 1957 and is well known in the field, so only
a brief description is provided here. The gamma camera uses a scintillation detector to image
the distribution of radioisotopes within the body. The main components of the gamma camera
are shown in Figure 2.7. The gamma camera uses a collimator with lead septa to stop gamma
photons that are not travelling parallel to the collimator. Therefore, gamma photons travelling
from an oblique angle will be absorbed in the lead septa and do not contribute to the final image.
The parallel hole collimator is the most commonly used, but other designs can also be used,
including pinhole, diverging, and converging collimators. A parallel collimator was used for all
of the research described in this thesis. The parameters that define the collimator’s sensitivity
and resolution are the hole diameter, length of septa, septal thickness, and the distance from the
source.

After passing through the collimator, the gamma photons that interact with the scintillation
crystal will produce secondary electrons, which cause the ionisation of several thousand nearby
atoms. As each unbound or loosely bound electron falls into a vacant orbit, a photon of equiva-
lent energy is produced. The resulting large number of practically simultaneous flashes of light is
the scintillation. Sodium iodide crystals doped with Thallium are the most commonly used scin-
tillation crystal in gamma cameras. The number of visible light photons that are emitted will be
proportional to the energy deposited by the incident gamma photon. The conversion efficiency
of the scintillation crystal is approximately 10-15%. A light guide is used to couple the output
from the scintillation crystal to the photomultiplier tubes. In the photomultiplier tubes, the pho-
tons strike the photocathode with enough energy to release electrons. Photoelectrons incident
on the first dynode causes excitation and secondary emission. These electrons are then excited
towards the following dynodes, and the process is repeated, which has the effect of amplifying
the signal. The final signal is proportional to the energy of the incident gamma photon. Position-
ing logic is used to determine the location of a photon striking the photomultiplier tubes. The
detector has a linear response with count rate until the detector saturates. At count rates higher
than this, dead time will occur. During clinical imaging, the count rates should always be below
this count rate. However, when carrying out quality assurance tests using phantoms, care must
be taken to ensure the detector is not saturated.

When a photon has undergone scattering within the patient or the crystal, it is no longer pos-
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sible to determine where the gamma photon originated. However, scattered photons lose energy,
so some scattered photons can be removed from the final image using the energy spectrum. A
pulse height analyser determines and rejects energy signals outside a designated window. The
shielding around the camera protects it from light and scattered radiation.

Figure 2.7: The main components of a conventional gamma camera. Gamma photons trav-
elling parallel to the collimator will pass through the lead septa, be converted to visible light
by the scintillation crystal before being amplified and converted to an electrical signal by the
photomultiplier tubes.

Newer solid-state cardiac gamma cameras are also available, but widespread use in hospitals
has been limited by cost. In these detectors, solid-state technology replaces scintillation crystals
and photomultiplier tubes. Solid-state cameras used cadmium zinc telluride (CZT) detectors
to convert incident gamma photons to an electrical signal directly. CZT gamma cameras have
improved sensitivity and spatial resolution compared to conventional gamma cameras, allowing
flexibility to reduce patient dose, scan time, and optimise image quality.

Images acquired by the gamma camera can be planar or single photon emission computed
tomography (SPECT) images. In a planar image, photons detected from structures at differ-
ent depths will be superimposed on a two-dimensional image, so activity from underlying or
overlying structures can obscure information about the organ or tissue of interest. SPECT is a
3D imaging technique achieved by acquiring planar gamma camera images at different projec-
tion angles around the body. The data is then reconstructed into 3D views using either filtered
back projection or iterative reconstruction. SPECT provides advantages over planar imaging for
separating structures at depth, higher contrast and improved quantification.

2.3.3 Cardiac Gating

Cardiac gating is essential in cardiac imaging to improve image quality and allow cardiac func-
tion to be assessed. An illustration of cardiac gating is shown in Figure 2.8. The gating signal is
triggered on the R wave of the ECG, and each bin corresponds to a different phase of the heart.
The temporal sampling needs to be high enough to ensure the peaks and troughs of the cycle
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are not missed. This example is for only 8 frames, but it is more common to use 16 frames,
24 frames, or more depending on the imaging modality. In nuclear cardiology, the maximum
number of gating frames is limited by count statistics. Cardiac gating can be either prospective
or retrospective. The R-R duration is fixed throughout the scan in prospective gating, even if the
heart rate varies. In retrospective gating, the data is binned after the acquisition.

Figure 2.8: Example of 8 frame cardiac gating. The signal is triggered on the R wave of the
ECG. Each of the frames corresponds to a different part of the ECG signal.

2.3.4 Myocardial Perfusion Imaging

Myocardial perfusion imaging is used to provide a functional assessment to detect ischaemic
heart disease. This test can be performed using Technetium-99m based tracers or Thallium-201.
Stress testing can be carried out using a bicycle, treadmill or pharmacological stress agents such
as Regadenoson, Adenosine or Dobutamine. Imaging is performed at both stress and rest to
assess the myocardial blood supply. Comparing the stress and rest images can identify areas of
relatively reduced myocardial blood flow that are associated with ischaemia or scar. Myocardial
perfusion imaging can help identify ischaemia and determine which patients are likely to benefit
from revascularisation. The MPI images are orientated into three standard cardiac views as
shown in Figure 2.9 (a). Example images for a patient with normal perfusion and a patient
with ischaemia are shown in Figure 2.9 (b) and (c). The stress images in Figure 2.9 (c) show a
large area of reduced tracer uptake anteriorly and laterally with substantial improvement on rest
imaging, suggesting severe ischaemia in approximately 50% of the myocardium.
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Figure 2.9: (a) Short axis, horizontal long axis, and vertical long axis views used for MPI images.
(b) Example of three slices from a normal perfusion scan at stress and rest. (c) Example of a
perfusion scan for a patient with severe ischaemia. There is a large anterior and lateral defect on
stress imaging which substantially improves on rest imaging.
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2.3.5 Radionuclide Ventriculography

RNVG is an established cardiac imaging technique used to measure LVEF and assess ventric-
ular wall motion. To perform an RNVG scan, the patient’s red blood cells are labelled with
Technetium-99m pertechnetate (99mTc), allowing the changing volume of blood within the ven-
tricles to be imaged from the resultant gamma emission. Planar or SPECT imaging can be used
for RNVG. However, planar RNVG is still commonly used due to its higher reproducibility for
ejection fraction assessment [6, 7]. Only planar RNVG will be considered in this research. To
acquire a planar RNVG image, the gamma camera must be positioned to achieve the best sepa-
ration between the left and right ventricles, and the images are gated to the cardiac cycle using
an ECG signal. An example of images from planar RNVG can be seen in Figure 2.10. These
images show the frames of the RNVG with the highest counts (end-diastolic) and the lowest
counts (end-systolic) during the cardiac cycle. The atria can also be seen on the end-systolic
frame. Regions of interest (ROI) have been outlined for the left ventricle, right ventricle, and
background to measure the number of counts at end-systole and end-diastole to calculate ejec-
tion fraction. The data acquired from RNVG can be used to create phase and amplitude images
to assess ventricular dyssynchrony. This will be described further in Chapter 3.

Figure 2.10: Example of end-diastolic (left) and end-systolic (right) frames of an RNVG scan,
showing the blood pool in left and right ventricles. At end-systole, the atria can also be seen.
Regions of interest (ROI) have been outlined for each ventricle and background to allow calcu-
lation of ejection fraction.

Measures of left ventricular cardiac function provide important clinical information relating
to diagnosis, treatment, and patient outcome [8–10]. Assessment of LVEF is known to be a pow-
erful prognostic indicator of cardiovascular disease. It predicts morbidity and mortality after a
myocardial infarction (MI), and a low LVEF indicates heart failure. RNVG is a well-established
technique that can provide a reproducible measure of ejection fraction and is commonly used to
assess left ventricular function. Right ventricular ejection fraction (RVEF) can also be assessed
using planar RNVG but it is less accurate than other imaging techniques due to the right ventri-
cle overlapping with the right atrium in the best septal view. The ejection fraction is calculated
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using the following equation,

Ejection fraction =
(EDcounts−Bgcounts)− (EScounts−Bgcounts)

EDcounts−Bgcounts
×100, (2.1)

where EDcounts is the number of counts in the ventricle at end-diastole and EScounts is the number
of counts at end-systole, and Bgcounts is the counts in the background region. Both end-systole
and end-diastole regions are background corrected. Inadequate counts in the region of interest
or high background counts can compromise image interpretation and affect the accuracy of the
measured ejection fraction. Therefore, care must be taken when placing the background region.
If it is in an area of high counts, for example, in the descending aorta, the counts measured
in the background region will increase, and the ejection fraction will be overestimated. If the
background region is outside the body, the ejection fraction will be underestimated.

Echocardiography and MRI can also be used to measure ejection fraction by assessing the
ventricular volume at end-systole and end-diastole. However, ejection fraction measurements
from different techniques are not directly interchangeable. Each method has its own normal
range. Left ventricular ejection fraction will be used to define patient groups or outcome in
Chapters 5, 6, 7, and 8.

2.4 Summary

This chapter has provided a brief background introduction to cardiac imaging and introduced
the clinical terms that will be used throughout this thesis to define patient groups and assess
patient outcome. MI and LBBB patient groups will be used as part of the optimisation work
in Chapters 5 and 6 and ejection fractions will be used to assess patient outcome in the clinical
studies in Chapters 7 and 8. RNVG imaging will be described further in Chapter 3 for measuring
dyssynchrony.



Chapter 3

Ventricular Mechanical Dyssynchrony

3.1 Introduction

The aim of this chapter is to introduce cardiac mechanical dyssynchrony and the parameters
that can be calculated from radionuclide ventriculography (RNVG) phase images as measures
of mechanical dyssynchrony. The term dyssynchrony is used to describe a variation in the
timing of contraction or relaxation within the ventricle (intraventricular dyssynchrony) or the
difference in timings between the left and right ventricles (interventricular dyssynchrony). This
research focuses on intraventricular dyssynchrony of the left ventricle. Parts of the literature
review from this chapter have been published in an invited editorial for the Journal of Nuclear
Cardiology [11].

3.2 Mechanical Dyssynchrony

Mechanical dyssynchrony can lead to decreased left ventricular efficiency and has been linked
to a worse prognosis [12–15]. On the other hand, an improvement in dyssynchrony is associated
with improved survival, as shown in cardiac resynchronisation therapy (CRT) studies [14]. CRT
therapy involves implanting a pacemaker into the chest. The pacemaker will detect any irregu-
larities in the cardiac rhythm and emit electrical pulses to correct them. Electrical dyssynchrony
was historically used as a surrogate for mechanical dyssynchrony, defined as a QRS duration
of >120 ms measured from a 12 lead electrocardiogram (ECG). A wider QRS (>120ms) would
indicate a delay in the conduction, and the electrical activity takes longer than normal to travel
through the conduction system. A normal QRS duration is between 90 - 120 ms. Electrical
dyssynchrony is widely used in clinical decision making. For example, it is part of the decision
criteria for heart failure treatments such as implantable cardioverter-defibrillator (ICD) and car-
diac CRT, as defined by the European Society of Cardiology (ESC) heart failure guidelines [16].
However, it is now widely accepted that mechanical dyssynchrony can exist without the pres-
ence of electrical dyssynchrony [17]. Therefore, it is essential to be able to measure mechanical

17
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dyssynchrony directly.
Mechanical dyssynchrony can be measured by different cardiac imaging techniques, includ-

ing echo (2-D M-mode, spectral Doppler, and tissue Doppler imaging parameters), single photon
emission computed tomography myocardial perfusion imaging (SPECT MPI), RNVG, and mag-
netic resonance imaging (MRI). Dyssynchrony assessment has the potential to help select the
most appropriate treatment for each patient and improve prognosis. To date, measures of dyssyn-
chrony from echo have led the field, but mechanical dyssynchrony has not yet been adopted into
widespread clinical practice.

The main focus to date for dyssynchrony parameters in heart failure has been for predicting
CRT response. This is driven by the fact that despite all the research that the selection criteria is
based on [16], approximately 30% of patients who undergo CRT therapy do not benefit from the
treatment [18]. Therefore, finding methods to predict who will respond would have significant
clinical benefits. There have been many studies published investigating imaging parameters as
predictors to CRT response with varying degrees of success [14, 18–22]. However, comparing
the studies is complex due to the varying definitions of a responder to therapy, patient selection
criteria and lead placement. Definitions of response to therapy include an increase in left ven-
tricular ejection fraction (LVEF), change in end-systolic volume, or change in New York Heart
Association Symptom Class, with many studies using a combination of all these parameters.
In general, the patients labelled as non-responders have no measurable improvement, but it is
unknown if the therapy or treatment has prevented further deterioration in this group. One issue
when using imaging parameters as a marker of improvement is the associated reproducibility of
the technique, which is often not addressed. For example, some studies use an improvement in
Simpsons bi-plane LVEF of 5%, measured by echo, as the definition of response to therapy even
though the reproducibility of this technique is approximately 10% [23]. Assessment of dyssyn-
chrony will be further investigated in Chapter 8 to determine the effect and predictive value of
dyssynchrony for patients with heart failure who are treated with beta-blockers.

Several studies demonstrate the potential of dyssynchrony assessment for breast cancer pa-
tients receiving cardiotoxic chemotherapy [24–28], but further research is required before it is
fully adopted in any of the guidelines and routine clinical practice. The ESC guidelines for
cardiotoxic cancer therapy acknowledge the potential of dyssynchrony, as measured by global
longitudinal strain (GLS), to assess left ventricular dysfunction, but also states that there is not
yet enough evidence to stop or alter cancer treatment based on these measurements [29]. Chapter
7 will further investigate this application of dyssynchrony.

In nuclear cardiology, dyssynchrony can be assessed using RNVG or SPECT MPI, measured
from the average of many cardiac cycles, unlike echocardiography, where measurements are
taken from a single beat. The myocardial wall thickness correlates to the change in maximum
counts extracted from the myocardial region, allowing assessment of myocardial wall thickening
from SPECT MPI. Amplitude and phase images can be created from the regional left ventricle
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count changes during the cardiac cycle using a count based method, [30]. A Fourier transform
can be applied to the time-activity curve from each voxel of the SPECT MPI over the cardiac
cycle to create the phase image, with the resulting phase values relating to the time of myocardial
contraction. Chen et al. proposed using phase SD and bandwidth of the phase histogram from
SPECT MPI as measures of dyssynchrony [30], although the normal range may be software
dependent [31]. Results from the Vision-CRT trial [32] demonstrated that an improvement in
SPECT MPI dyssynchrony parameters predicts clinical outcome for patients undergoing CRT.
SPECT MPI has the added advantage of being able to measure myocardial perfusion and LVEF,
as well as dyssynchrony. Furthermore, this technique is well established, low cost, reproducible
and readily available. While there is the disadvantage of the radiation dose compared to echo
and MRI, the development and increased use of solid-state gamma cameras in nuclear cardiology
have resulted in a significantly lower radiation dose to the patient than the conventional gamma
camera.

There are fewer dyssynchrony studies published using RNVG imaging. However, there are
published studies that have demonstrated some interesting results for predicting CRT response
[33,34], predicting outcome for patients with dilated cardiomyopathy and narrow QRS [35], and
assessing cardiotoxic response to cancer therapy [36]. RNVG dyssynchrony does not have the
same dependence on geometric boundaries as SPECT MPI for assessing dyssynchrony and has
a better temporal resolution.

3.3 RNVG Phase and Amplitude Images

Phase images that represent the timing of contraction can be created from RNVG images to
provide additional information to assess ventricular function [37, 38]. Figure 3.1 is an example
of a time activity-curve that shows the change in activity within the left ventricle during the
cardiac cycle. This example demonstrates normal emptying and filling of the left ventricle.
As the ventricle contracts during systole, the blood in the chamber is pumped out, and the
number of counts reduces. During diastole, the left ventricle begins to fill again. The R-R
duration is measured in seconds but can be converted to degrees, where 360 degrees represents
the length of one cardiac cycle. The timing of ventricular contraction, relative to the R wave of
the ECG, can be estimated from a first harmonic fit of the time-activity curve for each pixel in the
RNVG image to create a phase map. The phase angle defines the point in the time-activity curve
where the Fourier function reaches its peak, representing the onset of contraction. A background
threshold of 20% of the maximum pixel value is used to reduce the effect of noise within the
phase image. A black pixel will replace any pixel with a value below the set threshold. A higher
phase value in the image indicates delayed contraction within the region. It is also possible to
create a dynamic cine image of the phase, setting the pixels with the same phase in each frame to
a single colour. The pixels within the left ventricle should all be a similar phase value for a phase
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image representing normal synchronous contraction. Any areas of dyssynchronous contraction
will appear as delays in the phase images and phase histogram.

The example histogram shown in Figure 3.2 shows the frequency of phase angles for the
pixels in the region of interest with the corresponding phase image in the top right of the figure.
This is an example of a phase histogram for a patient with a normal phase image. First-order
statistics such as mean phase and phase standard deviation can be calculated from the phase
histogram to assess dyssynchrony [38, 39].

Figure 3.1: The time-activity curve shows the number of counts in the left ventricle over the
cardiac cycle. This is a normal shape for a time-activity curve showing normal emptying and
filling of the left ventricle. As the ventricle contracts during systole, the blood in the chamber
is pumped out, and the number of counts reduces. The maximum change in counts is known as
the amplitude and the phase refers to the onset of mechanical contraction.

Figure 3.3 shows the histogram of the left ventricular phase values with the corresponding
phase image for four different patients. The atria can often be seen in the phase image, and
because they contract at the opposite time from the ventricles, they have different phase values,
as illustrated by different colours in the phase image. In Figure 3.3 (a), the phase image has a
similar colour throughout the ventricles, and the phase histogram is a narrow peak. This is how
a phase image for a patient with normal ventricular contraction would appear. Figure 3.3 (b) is
an example of a patient who has had an MI. In the area of the MI, the muscle of the heart is
damaged and unable to contract normally. The damaged region is being pulled in late during
systole. The phase image shows areas with late phase values (green pixels) in the location of the
MI. The associated phase image is no longer a narrow peak but has become more spread out.
Any regional phase delays will broaden the phase histogram. Conduction abnormalities such
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Figure 3.2: Phase histogram showing the frequency of phase angles for the pixels in the left
ventricular region of interest. The corresponding phase image can be seen in the top right. This
is an example of a phase histogram for normal phase.



CHAPTER 3. VENTRICULAR MECHANICAL DYSSYNCHRONY 22

Figure 3.3: Example images showing phase pattern and associated phase histogram for (a) a
normal patient with similar phase values throughout the ventricles, (b) a patient with previous
myocardial infarction (MI) with late phase values in the area of a MI, (c) a patient with left
bundle branch block, where there is a gradual change in phase values across the left ventricle
and (d) a patient with a large aneurysm where two distinctly separate segments within the left
ventricle are contracting at different times.
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as left bundle branch block (seen in Figure 3.3 (c)) also have a distinct phase pattern. There is
a gradual change in phase values across the left ventricle, which is also apparent on the phase
histogram. Figure 3.3 (d) is a patient with an aneurysm. A left ventricular aneurysm is an area of
thinned and weakened tissue in the heart muscle that bulges outward during contraction. Most
often, ventricular aneurysms are caused by damage from a previous MI. It is evident from the
phase image in Figure 3.3 (d) that a large part of the left ventricle is contracting at the same time
as the atria instead of with the rest of the ventricle. There are two distinct parts within the left
ventricle contracting at different times. Two separate peaks can be seen on the corresponding
phase histogram. This has a severe impact on the efficiency of ventricular contraction. This
technique could also detect more subtle phase abnormalities. Quantitative assessment of RNVG
phase images will be investigated throughout this thesis.

Amplitude images can be created from time-activity curves to display the magnitude of
contraction within the ventricles on a pixel by pixel basis. Amplitude images are also created
using a background threshold of 20% to reduce the effect of noise in the image. Phase and
amplitude images can help define the ventricles and valve plane when outlining the regions of
interest for the measurement of ejection fraction. They are also more sensitive for detecting
abnormal wall motion when compared to visual assessment of the blood pool images alone [40].

Figures 3.4 and 3.5 are examples of amplitude images with their associated phase image.
Figure 3.4 is a patient with normal contraction. As expected, the pixels within the ventricles in
the phase image are all a similar colour because the contraction is synchronous. In the amplitude
image, red and white represent a bigger change in counts than the green pixels. The example
shows that the lateral and apical segments are contributing more than the septum. This is a
normal finding. Both the left and right ventricles pull the septum during systole, so the septum
does not contract as much as the lateral and apical segments. An example of a patient with a
large aneurysm is shown in Figure 3.5. As previously described, the corresponding phase image
indicates two separate regions are contracting at opposite times within the left ventricle. The
amplitude image for this example shows that the area with the aneurysm has a bigger change in
counts during the cardiac cycle than the remainder of the left ventricle.

3.4 Dyssynchrony Measured From RNVG Phase Analysis

Various statistical parameters calculated from RNVG phase images have been established to
quantify mechanical dyssynchrony. This section defines the parameters that will be investigated
throughout this work.

3.4.1 Phase Standard Deviation

Most of the dyssynchrony parameters calculated from the RNVG phase are from the first-order
statistics calculated from the phase histogram, such as phase standard deviation, which has the
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(a) (b)

Figure 3.4: (a) Amplitude image, (b) phase image for patient with normal RNVG. In the ampli-
tude image, red and white represent a higher change in counts than the green pixels. The lateral
and apical segments are contributing more than the septum, because the septum is also being
pulled by the right ventricle so can not contract as much as the lateral and apical segments.

(a) (b)

Figure 3.5: (a) Amplitude image, (b) phase image for patient with aneurysm. The phase image
has two separate sections within the left ventricle, contracting at opposite times. The associated
amplitude image shows that the area with the aneurysm has a higher change in counts during the
cardiac cycle than the remainder of the left ventricle.
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advantage of being simple to understand and easy to measure. In addition, it is accurate, highly
reproducible [41, 42], and has been used in many published studies to quantify dyssynchrony.
For example, Fauchier et al. [43] demonstrated that phase standard deviation was predictive of
cardiac events in a group of patients with idiopathic dilated cardiomyopathy. Another study
by Kerwin et al. [44] found that atrial sensed biventricular pacing improved left ventricular
dyssynchrony as measured using phase standard deviation.

3.4.2 Synchrony and Entropy

O’Connell et al. derived synchrony as a measure of ventricular coherence (Equation 3.1) to
describe the contraction of the ventricle using the phase and amplitude data extracted from
RNVG images [45]. Synchrony is defined as the vector sum of the amplitudes divided by the
scalar sum. A ventricle with completely synchronous contraction would have a synchrony value
of 1 (Figure 3.6a), whereas for a completely asynchronous contraction the synchrony would be
0 (Figure 3.6b). Synchrony is defined as

synchrony =
| ∑N

i=1 vi |
∑

N
i=1 | vi |

, (3.1)

where N = Number of pixels within the region of interest, vi = vector defined by the phase and
amplitude of the pixel.

(a) (b) (c)

Figure 3.6: Example of phase vectors showing (a) completely synchronous phase, synchrony =
1, (b) completely random phase, synchrony = 0 and (c) two synchronous sub-regions synchrony
= 0.

Entropy, as derived from Shannon information theory [46], can be used as a measure of
randomness of contraction within the ventricle [45] as described in Equation 3.2. A higher
value of entropy would indicate a more random contraction. When comparing a completely
random contraction (Figure 3.6b) and a contraction where two sub-regions are synchronous
(Figure 3.6c), the synchrony value would be equal. However, entropy can make this distinction.
Entropy is defined as

entropy =−∑
M
i=1 pilog2(pi)

−log2M
, (3.2)
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where pi = frequency of occurrence of each phase bin, M = total number of phase angle bins.
O’Connell et al. demonstrated that synchrony and entropy are superior to phase standard

deviation for discriminating between normal and abnormal contraction [45]. However, syn-
chrony and entropy are relatively new measures of dyssynchrony, and there are still very few
published studies investigating these parameters. RNVG synchrony and entropy of the right
ventricle were compared with echo and cardiac MRI for patients with arrhythmogenic right ven-
tricular cardiomyopathy (ARVC) in a paper published by Johnston et al. [47]. The study found
that synchrony and entropy of the RV successfully distinguished between ARVC and healthy
controls and compared well with echo and MRI for ARVC diagnosis. One of the most inter-
esting papers in this area is by Badhwar et al. [34], where synchrony and entropy were used to
predict outcomes in a group of patients with advanced heart failure who were referred for CRT.
In this study, the post CRT improvements in synchrony and entropy were significantly different
between responders and non-responders. This study also suggested that baseline synchrony, but
not entropy, could predict CRT response.

3.4.3 Approximate Entropy and Sample Entropy

Advanced statistical parameters, such as approximate entropy (ApEn) and sample entropy
(SampEn), can also be used for quantitative assessment of the ventricular contraction. ApEn

is a regularity statistic developed from Kolmogorov-Sinai entropy by Pincus [48], originally de-
veloped to measure irregularity in a time series. ApEn calculates the probability that a series of
length m remains similar within a tolerance r at the next point in the data series. Unlike syn-
chrony and entropy, ApEn and SampEn take into account the similarity of adjacent pixel values.
ApEn is well established in other fields including gait analysis and heart rate variability, but has
not previously been widely investigated for assessing ventricular contraction [49–56]. ApEn is
defined as

ApEn = −(N−m)−1
N−m

∑
i=1

ln
(

Cim+1(r)
Cim

)
, (3.3)

where N is the length of data, m is the sequence length, and r is the tolerance. Cim(r) is the
conditional probability that when a sequence is within the tolerance, then the next element will
also be within tolerance.

For example, consider the following short sequence of pixel values

25, 24, 28, 29, 23, 30.

The pixel values are considered as a data series. Each group of ’m’ pixels will be compared
to every other group of ’m’ pixels within the region of interest, including itself. If the group
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is within the tolerance value r, it will be counted. This is carried out for every group of
’m’ pixels then repeated with groups of ’m + 1’ to calculate Cim and Cim+1 . To calculate
Cim(r) for this sequence using m = 2 and r = 5, each group of m = 2 pixels should be
compared to every other group of m = 2 pixels. If they are within tolerance r (in this case
r = 5), it should be counted as a match. The groups of m = 2 pixels for this series are listed below.

x1 = 25, 24
x2 = 24, 28
x3 = 28, 29
x4 = 29, 23
x5 = 23, 30.

where N is the length of data, m is the sequence length, and r is the tolerance. Cim(r) is the
conditional probability that when a sequence is within the tolerance, then the next element will
also be within tolerance.
Now consider x1-x1, x2-x1, x3-x1, x4-x1, and x5-x1. x1 has 3 matches within tolerance r in this
data series, including itself. Therefore,

C1m(r) =
number of matches

(N−m+1)
=

3
5
= 0.6

This would be repeated for each set of m pixels within the sequence to calculate Cim(r), then
repeated for m+1 to calculate Cim+1(r). When counting the number of matches, ApEn includes
a ’self match’ of vectors creating a bias towards regularity. Several publications also suggest
that ApEn lacks relative consistency, meaning that the value of ApEn can ’flip’ when the input
parameters are varied [57, 58]. For example, when using a low value of r, ApEn would be
higher for a normal data series than for an abnormal data series, but using a higher value of
r, ApEn can ’flip’ and be lower for normal data compared to abnormal. For this reason, the
input parameters (m and r) must be fixed when comparing data sets. Cullen et al. published
the first paper applying ApEn to RNVG phase images. The study investigated ApEn for serial
assessment of a small group of patients who received cardiotoxic chemotherapy [36]. This work
found a significant change in ejection fraction and ApEn over the course of treatment.

Sample Entropy is a modification of ApEn described by Richman and Moorman [59]. Un-
like ApEn, SampEn displays relative consistency regardless of sequence length and tolerance
values used and is independent of data length. However, for data sets with less than 100 points,
Richman and Moorman suggested that SampEn diverged from their predictions. Yentes and
Hunt [57] investigated the use of ApEn and SampEn in gait analysis for data sets below 200
points. They suggest that both SampEn and ApEn are sensitive to the input parameters, par-
ticularly for short data sets. They found SampEn to be less sensitive to changes in data length
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and have fewer problems with relative consistency. After accounting for differences in N, m and
r, Yentes and Hunt demonstrated that chaotic data provided higher values of ApEn but lower
SampEn. SampEn is defined as

SampEn = −ln
(

Bm+1(r)
Bm(r)

)
, (3.4)

Bm(r) = (N−m)−1
N−m

∑
i=1

Bm
i (r), (3.5)

where Bm
i (r)= number of sequences of length m that are within tolerance r, excluding self

matches, and Bm(r) is the probability that two sequences of length m are similar.
Unlike ApEn, the SampEn equation does not include a factor 1/(N−m), making it indepen-

dent of the length of the series. The values of sequence length m and tolerance r that are used
will markedly affect the results for both ApEn and SampEn, so it is essential to optimise the
input parameters for the data being considered [58, 60, 61]. At present, there is no established
m, r or normal range for ApEn or SampEn applied to RNVG phase images. SampEn, has not
been previously investigated for assessing left ventricular dyssynchrony from RNVG phase.

3.5 Conclusions

This chapter has introduced and defined the dyssynchrony parameters that will be investigated
in this research. Some of these parameters are established in the field, such as phase standard
deviation, while others, such as ApEn and SampEn, are novel in cardiac imaging. There is
currently no established normal range for ApEn or SampEn applied to RNVG phase images.
For measures of dyssynchrony to be used routinely in clinical practice, it is clear that standard-
isation and a normal cut-off will need to be established for each parameter. There are several
methods for assessing dyssynchrony within each imaging modality, and they are not necessarily
equivalent. Optimising the input parameters is crucial for both ApEn and SampEn. While there
has been some discussion in the literature regarding parameter choice, there is currently no con-
sensus on this subject. Mechanical dyssynchrony has potential for several applications over and
above predicting CRT response. Some of these applications will be investigated in Chapters 7
and 8.



Chapter 4

Statistical Analysis and Machine Learning

4.1 Introduction

This chapter introduces the statistical tests and machine learning algorithms that will be applied
in this research when assessing clinical data. The techniques described in this chapter will
be used to compare various patient groups and build predictive models using dyssynchrony
parameters from the radionuclide ventriculography phase images. Classification models will
be created to predict the outcome for patients receiving cardiotoxic cancer therapy (Chapter 7)
and patients with heart failure with reduced ejection fraction (Chapter 8). All data analysis and
statistics used in this research were performed in R 3.6.3 (R Development Core Team, Vienna,
Austria) [62–66].

Machine learning is a rapidly developing field for many applications, including medical
imaging. The accelerated progress in this field is partly due to the increased available comput-
ing power and the potential to combine large amounts of clinical data. As a result, there has
been significant interest in utilising machine learning in medicine to improve image process-
ing and clinical decision making. There has been a particular interest in deep learning within
medical imaging [67–70]. However, simpler machine learning algorithms can also be of bene-
fit. Medicine is a complex field where patient outcomes depend on many factors, but creating
models that can combine multiple variables can improve the predictive value of individual mea-
sures. This chapter focuses on classification algorithms using logistic regression and LASSO
(Least Absolute Shrinkage and Selection Operator) regression techniques which will be used in
Chapters 7 and 8.

4.2 Logistic Regression

Linear and nonlinear regression methods are often used in medical research to quantify and de-
scribe the relationship between variables. Linear regression is a simple type of regression where
the relationship between variables can be described by a straight line. Logistic regression is

29



CHAPTER 4. STATISTICAL ANALYSIS AND MACHINE LEARNING 30

a supervised classification algorithm often used in machine learning. For supervised learning,
the data contains variables and a known outcome. For example, the outcome may be hospital
admission, the presence of disease, or death. The model can be built using either qualitative
or categorical variables, and a threshold can be selected to determine the decision boundary. A
logistic regression model can be created using interaction terms between variables as well as
individual variables. If there is an interaction, the relationship between one variable and the
outcome will depend on the value of a second variable and vice versa. Adding an interaction
term to a model can change the interpretation of the coefficients. One of the advantages of using
logistic regression over other methods is that it is simple to interpret compared with more ad-
vanced machine learning models. Logistic regression is commonly used in medicine to classify
data into two or more labelled outcomes.

The logistic function is defined by

logistic function = p(x) =
eβ0+β1X

1+ eβ0+β1X
, (4.1)

where β are regression coefficients. β0 = the intercept term, β1 = the slope, and X = the predictor.
The regression coefficients are estimated in the model using training data. The intercept term is
the expected mean value of Y when the predictor X, equals 0.

odds =
p(X)

1− p(X)
= eβ0+β1X (4.2)

The odds is the ratio of the probability of an event occurring to the probability of the event not
happening. The odds ratio measures the association between a predictor and an outcome. If X is
increased by one unit, the log odds ratio will change by β1. If β1 is positive, then an increase in
X will be associated with an increase in p(X), and negative β1 will be associated with a reduced
value of p(X). Taking the log of both sides of equation 4.2 gives the log odds (also known as
logit).

log odds = log
(

p(X)

1− p(X)

)
= β0 +β1X (4.3)

Multiple logistic regression can also be used when there are multiple predictors, as described
by

log
(

p(X)

1− p(X)

)
= β0 +β1X + ...+βnXn, (4.4)

where X = (X1, ...Xn) are n predictors. The logistic function can then be written as
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logistic function = p(x) =
eβ0+β1X1+...+βnXn

1+ eβ0+β1X1+...+βnXn
, (4.5)

The maximum likelihood method is used to fit the model. This method will find estimates
for the regression coefficients that will maximise the likelihood that the results described by the
model will match the observed data. The output of a logistic regression model is converted into
a categorical outcome using a sigmoid function (also known as a logistic function) as shown in
Figure 4.1. The function shown in this figure is an ’S’ shape that cuts through the y-axis at 0.5,
defining the decision boundary as 0.5. Therefore, if the predicted probability (t) is ≥ 0.5, it will
be mapped to class 1, and if it is < 0.5, it will be mapped to class 0. The sigmoid function can
be used to map a prediction to a probability between 0 and 1. The equation below describes the
sigmoid function

sig(t) =
1

1+ e−t , (4.6)

where sig(t) = an output between 0 and 1 and t= the algorithms prediction.
Consider the following example of a logistic regression model to assess the risk of death in

coronary bypass patients from Anderson et al. [71]. This model contains two predictors - age
and history of renal insufficiency. The predictors and coefficients are shown in Table 4.1. The
coefficients for age and history of renal insufficiency are positive, meaning that an increase in
age or history of renal insufficiency will increase the chance of death.

Table 4.1: Example logistic regression results

Predictor Coefficient

Intercept -8.868

Age 0.073

History of renal insufficiency 1.162

To calculate the odds of a coronary artery bypass patient dying using this model, multiply
the coefficient for age by the age, multiply the coefficient for renal insufficiency by 1 if renal
insufficiency is present or 0 if there is no history of renal insufficiency, and add these terms to
the intercept value to obtain the log odds (or logit) of death. The log odds is then converted to
the odds by taking the exponential to calculate the probability of death. For example, for a 65
year old patient with renal insufficiency, the log odds would be calculated as follows,
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log odds = (Age×0.073)+(Renal insufficiency×1.162)−8.868

= (65×0.073)+(1×1.162)−8.868

=−2.961

Taking the exponential of the log odds gives an odds value of approximately 0.052. Logistic
regression is usually reported in terms of the odds rather than the probability of the outcome,
but there is a direct relationship between the probability and the odds. The probability can be
calculated from the odds as shown in the equation below,

Probability =
odds

odds+1
(4.7)

Therefore, the probability of death in this example would be 0.052 / (1 + 0.052) = 0.049 = 5%

Figure 4.1: The sigmoid function that is used in logistic regression to map a prediction to a
probability between 0 and 1. The decision boundary is set to 0.5 on the y-axis.

4.3 Ridge and LASSO Regression

Linear regression is a popular and widely used statistical method, but it has some limitations.
One of the limitations of a regression model is the issue of over-fitting the data. One solution to
this problem is to use either ridge regression or LASSO. Ridge regression and the LASSO are
regression techniques that constrain the regression coefficient estimates, causing them to shrink
towards zero. This has the effect of significantly reducing their variance.
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Ridge regression uses a similar method to least squares, but the coefficients are estimated
by minimising a different quantity. The least-squares fitting procedure estimates the coefficients
(β ) that will minimise the residual sum of squares (RSS), as described in equation 4.8.

RSS =
n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)2

, (4.8)

where β0 = the intercept term, β j= regression coefficient for the jth predictor, yi = outcome, x=
a predictor, p= number of predictors, n= number of observations.

Ridge regression will select coefficients that will minimise equation 4.9,

n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)2

+λ

p

∑
j=1

β
2
j = RSS+λ

p

∑
j=1

β
2
j , (4.9)

where λ is a tuning parameter that must be determined separately. The second term, λ ∑
p
j=1 β 2

j ,
is known as the shrinkage penalty. If λ is equal to zero, the penalty term will have no effect,
and the ridge regression will be the same as the least-squares estimates. Selecting the optimal
value of λ is crucial. The penalty will shrink all coefficients towards zero but never equal zero,
meaning the final model will include all predictors.

LASSO is a commonly used regression technique that has been used for many applications,
including cardiac imaging [72–74]. It is similar to ridge regression, but it penalises the sum of
the coefficients absolute values, as shown in Equation 4.10, resulting in many of the coefficients
being zeroed and excluded from the model. LASSO models perform variable selection, resulting
in a simpler model to interpret, using a subset of the predictors.

n

∑
i=1

(
yi−β0−

p

∑
j=1

β jxi j

)2

+λ

p

∑
j=1
|β j|= RSS+λ

p

∑
j=1
|β j|, (4.10)

A LASSO model will be used for feature selection to identify a subset of predictors related to
the response that will subsequently used to fit a model in Chapter 8.

4.4 Cross-Validation

Machine learning algorithms must be carefully trained to avoid inaccuracies that can lead to
a poorly performing model. A common problem with statistical models is over-fitting to the
training data. This could lead to a fit like the example shown in Figure 4.2. This figure shows
the same data with two different fits. The first one has a linear fit that provides a good separation
between the red and blue points, and the second plot is an example of an overfitted model. This
model would be 100% accurate for the training data but would not perform well for unseen data.
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Overfitting can be caused by a number of things, including a poorly selected training set or using
too many parameters in the model.

Cross-validation is a method used to reduce over-fitting and improve a model when there
is limited data for testing. K-fold cross-validation is a technique where the data is split into
k groups of roughly equal size. A model is trained with the remaining k-1 groups for each
group, and testing is performed on the remaining group. This results in k measures of the model
performance, which can then be averaged to provide the k-fold performance. Cross-validation
is often carried out using 5 or 10-folds. An example of 5 fold cross-validation is illustrated in
Figure 4.3. This illustration shows that 80% of the full data set is used to build the model, and
the remaining 20% is used for testing. This is then repeated with the same data using a different
split, meaning a new model is created using a different 20% of the data kept back for testing.
For 5-fold cross-validation, this process is carried out 5 times, and for each iteration, different
data is used for testing. Cross-validation can be performed for any defined number of folds, and
repeats can also be used. For example, in 5-fold cross-validation with 3 repeats, the process
previously described would be repeated 3 times. The final model would be the average of all of
the models. New unseen data should be used to assess the final statistical model where possible.

X1

X2

X1

X2

Appropriate fitting Over-fitting

Figure 4.2: Example data showing an appropriate fit (left) to discriminate between the red and
blue points and a model that has been over-fitted to the training data (right). The more flexible the
model, the more likely it will overfit the training data. This example is for illustrative purposes
and has not been fitted mathematically.
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Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

TEST TEST TEST TEST

TEST TEST TEST TEST

TEST TEST TEST TEST

TEST TEST TEST TEST

TEST TEST TEST TEST

Figure 4.3: Illustration of the data split for 5-fold cross-validation. Each iteration is performed
using a different test-train split, and the average results are reported.

4.5 Evaluating Model Performance

The performance of a machine learning model can be evaluated using several measures, includ-
ing the mean squared error (MSE), accuracy, and area under the receiver-operator curve (AUC).
These measures allow comparisons to be made between different models.

Mean Squared Error

MSE measures how close the regression line is to a set of data points. The distance from each
data point to the regression line is the error, and it is squared to ensure there are no negative
values. MSE measures the average of the squares of the errors, described by the equation below.

MSE =
1
n

n

∑
i=1

(yi− f (xi))
2, (4.11)

where n is the total number of observations, yi is the true response for the ith observation, and
f (xi) is the prediction for f for the ith observation, An ideal model will have a low MSE using
previously unseen test data.

Accuracy

The accuracy measures the proportion of correct results in the selected population, calculated
from the equation below.
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Accuracy =
(T P+T N)

(T N +FP+FN +T N)
=

(T P+T N)

total number of patients
, (4.12)

where T P = true positives, T N = true negatives, FP = false positives, and FN = false negatives.

Sensitivity and Specificity

Sensitivity is the ability of a test to correctly identify those with a positive result (true positive
rate), and specificity is the ability of a test to identify those with a negative result (true negative
correctly rate).

Sensitivity =
T P

(T P+FN)
=

T P
Total with disease

, (4.13)

Specificity =
T N

(T N +FP)
=

T N
Total without disease

, (4.14)

where T P = true positives, FN = false negatives, T N = true negatives, and FP = false positives.

Receiver-Operator Characteristics

Receiver-operator characteristics (ROC) is a method to compare diagnostic tests, originally de-
veloped during World War II as part of the radar system to differentiate between enemy aircraft
and signal noise (e.g. flocks of geese). ROC is a plot of the true positive rate (sensitivity) against
the false positive rate (1 - specificity), as seen in the example in Figure 4.4. The red dotted line
represents an AUC of 0.5 in Figure 4.4. This would suggest there is no discrimination, and the
chances of predicting an outcome would be no better than a random classifier. A perfect algo-
rithm, with 100% sensitivity and 100% specificity, would have an AUC value of 1, represented
by the blue line in this example. In contrast, an algorithm that is wrong every time would have
an AUC of 0. The area under AUC is commonly used in medical imaging to assess and com-
pare different techniques. Accuracy and AUC will be used to assess the classification models in
Chapters 7 and 8.

4.6 Comparing Samples

It is common in medical statistics to compare a variable for two or more groups of patients.
Several different tests can be used to determine if there is a statistical difference between these
groups. The appropriate test depends on the number of groups in the comparison and the dis-
tribution of the data. Firstly, to determine if the data is normally distributed, a Shapiro-Wilk
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Figure 4.4: An example of an ROC curve. The red dotted line represents a random classifier,
with an AUC of 0.5 and the green line represents a good classifier. The perfect algorithm is
represented by the blue line and would have an AUC of 1, representing 100% sensitivity and
100% specificity.
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normality test can be used for continuous data, or a Chi-Squared test can be used for categori-
cal data. Henze-Zirkler test can be used to test multivariate normality. If the data is normally
distributed, then a two-sample t-test can be used to compare the means of two samples or a one-
way analysis of variance (ANOVA) test for three samples. If the data does not have a normal
distribution, it is appropriate to use a non-parametric test. The Wilcoxon signed-rank test would
be selected for two groups or the Kruskal-Wallis test for comparing the means of three groups.
The resulting p-values from these tests are often used in medicine to summarise the results. In
general, p < 0.05 is considered significant, meaning the difference is unlikely to have occurred
by chance. These tests will be used throughout this research in Chapters 5 - 8.



Chapter 5

Software and Parameter Optimisation

5.1 Introduction

This chapter describes the software that was written to calculate the dyssynchrony parameters
from radionuclide ventriculography (RNVG) phase images and the optimisation of approximate
entropy (ApEn) and sample entropy (SampEn). The optimisation work was performed using R
3.6.3 [62, 75]. The work described in this chapter was the first published optimisation of ApEn

applied to RNVG phase images [76].

5.2 Software

A program was developed using R 3.6.3 to calculate synchrony, entropy, ApEn, SampEn, mean
phase and standard deviation from DICOM phase images of both the left and right ventricles.
DICOM stands for Digital Imaging and Communications in Medicine, and it is the standard
image format used in medical imaging. A DICOM image file contains a header and image data
within a single file. This image format was used to ensure the program could be used for images
from different nuclear medicine software packages and was not restricted by a proprietary image
format.

In addition to the R program, a shell script was written to prepare the input images within the
Link Medical MAPS 10000 system (Link Medical Ltd., Hampshire, UK) converting amplitude,
phase and ROI masks to a DICOM format that can be easily read into the R script. The output of
the code includes the left ventricular and right ventricular phase regions of interest that are used
in the calculation, the phase spread histograms, and the dyssynchrony parameters. The overall
structure of the code is illustrated in Figure 5.1. The region of interest that has been outlined,
plus the phase and amplitude images, are read in the code and defined as a matrix. Both images
are masked by the region of interest to set a value of zero for all pixels outside the region of
interest. The function within the code which is used to calculate the dyssynchrony parameters
is shown in Figure 5.2. The pixel values in the matrix are converted from degrees to radians for
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the calculation and the matrix is converted into a data series. A phase histogram with 1 degree
bins is created, allowing the probability of each phase angle and entropy to be calculated. The
vector and the scalar sum of the phase is then calculated before synchrony is assessed. For the
calculation of ApEn and SampEn, a matrix is created containing rows of the sequences to be
compared. There is a function within the code to calculate ApEn and SampEn as seen in Figure
5.2. Each sequence of m pixels is then compared to every other group of m pixels. The loop in
the code allows for this comparison to be carried out for every group of m pixels and the number
of matches counted before it is repeated. The SampEn calculation is not shown in the flowchart,
but it is calculated within the function using the same method as the ApEn calculation. The final
results are then printed to a text file. An additional output file is created as shown in Figure 5.3.
This file displays the original phase and amplitude images that were read into the code. It also
shows the left and right ventricular phase images after the region of interest has been applied
and the phase histograms for both left and right ventricles.

5.2.1 Software Validation and Testing

Extensive testing was carried out using simple examples and sample data from the original ref-
erence authors, where available, and direct comparison to independently written code. Various
combinations of sequence length m and tolerance r have been tested, giving confidence in the
results of the code.

5.2.2 Generated Data

In order to gain full control of the input data, a Monte Carlo generator based on a simple re-
peated random number sampling algorithm was developed using R 3.6.3. Pixels in a chosen
region of interest were divided into sixteen radial segments as seen in the image in Figure 5.4,
with the phase value for each pixel assigned randomly according to a user-defined probability
distribution function for each segment. This was implemented with Gaussian probability distri-
bution functions for which the user would define the mean and standard deviation of the phase
values. Pixels outside of the left ventricle region of interest were set to zero and excluded from
the calculations. The region of interest size and pixel values of the simulated data were based
on clinical data, to ensure the results were applicable across the clinical range of expected val-
ues. Simulated normal and myocardial infarction (MI) phase images were created to investigate
the effect of the input parameters. Examples of normal and MI generated left ventricular phase
images can be seen in Figure 5.5. These images were created based on the phase and standard
deviation of clinical images. The simulated normal has similar pixel values of phase throughout
the region, represented by the blue pixels. However, the simulated MI image has many pixel
values which do not have the same phase value. This represents a delay in the timing of con-
traction for these areas. In this example, both ventricles are the same size. However, the radius



CHAPTER 5. SOFTWARE AND PARAMETER OPTIMISATION 41

Start

Read in
Dicom
Images

Define phase
and amplitude

matrices

Read in
DICOM
images

Multiply phase and
amplitude matrices
by masked roi to

null pixels outside
ROI

Calculate
phase

parameters

Display
results

End

Figure 5.1: Overview of R code used to extract phase parameters. Phase and amplitude images
are read into the code in DICOM format. The images are then masked by the region of interest
to zero the pixels outside of the region. The phase parameters are then calculated and the results
displayed.
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Figure 5.2: Function within R code used to calculate phase parameters for multiple regions of
interest. The phase pixel values are converted from radians to degrees, and the image matrix
is converted into a 2D sequence before the calculations. Phase histograms for both the left and
right ventricles are created with 1 degree bin width. Synchrony and entropy are calculated, then
a loop is used to compare a sequence of m pixels to every other sequence of m pixels for the
ApEn and SampEn calculations. The calculated phase parameters are then printed to the screen
and saved in a text file.
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Figure 5.3: Example output image from R code showing the phase and amplitude images that
were read into the code, the phase within the selected regions of interest for the left and right
ventricles, and the phase histograms for left ventricle (bottom right) and right ventricle (bottom
left). The phase histogram is a narrow peak for the left ventricle, suggesting it is normal. The
right ventricle has two separate peaks on the histogram.
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of the simulated ventricles can be increased or decreased.

Figure 5.4: Phase image with radial segments, used to acquire mean and standard deviation of
the phase for each of the 16 segments. Simulated data was then created in a 16 segment model
using phase values based on the patient data.

(a) (b)

Figure 5.5: Examples of generated images to represent (a) normal phase within the left ventri-
cle ROI and (b) to represent abnormal phase due to the presence of an MI. These images are
generated based on mean phase and standard deviation from clinical images.

5.3 Selecting Sequence Length (m) and Tolerance (r)

ApEn and SampEn require values of sequence length m, and tolerance r, to be selected for the
calculations. The values chosen will significantly affect the results, so it is important to optimise
the input parameters for the application. ApEn and SampEn were calculated for varying values
of sequence length m and tolerance r to demonstrate the effect of these input parameters. Some



CHAPTER 5. SOFTWARE AND PARAMETER OPTIMISATION 45

publications suggest using a value of r between 0.1 - 0.2 of the standard deviation of the dataset
[48, 77]. However, for improved consistency, it is better to use a constant value of r [60]. For
the groups of patient data used in this work, the average standard deviation of the phase pixel
values was 7.9 degrees for the normal group and 16.1 degrees for the MI group. 0.1 - 0.2 times
the standard deviation for this data would suggest a range of r between 0.79 and 3.22 degrees,
which was initially used as a starting point. Most published papers use m = 2, although there is
limited justification for this choice in the literature. The final range tested was m between 1 and
5, with r from 0.25 degrees extending until ApEn approached zero for a normal phase image.

The initial optimisation was carried out using simulated images representing a normal and
MI phase pattern. This was then repeated using clinical images for normal (187 patients), MI
(164 patients) and left bundle branch block (LBBB) (112 patients). The patient groups were
defined by their clinical diagnosis, so some of the MI patients may still have normal, or close to
normal, left ventricular function with a normal phase image.

The variation of ApEn with sequence length m and tolerance r is shown in Figure 5.6. The
plots demonstrate that both m and r affect the value of ApEn. As the tolerance r is increased,
ApEn reaches zero for the normal data. The plot for the abnormal phase image also decreases
towards zero, but after the peak ApEn value, the abnormal phase image still has a higher value of
ApEn for the same r value. Increasing m has the effect of changing the maximum ApEn value. If
the chosen m is too large, ApEn will be zero. This is not unexpected because at higher values of
m there will be fewer matches, and ApEn will decrease towards zero, meaning there would not
be sufficient separation to distinguish between normal and abnormal phase images. The effect
of m and r for SampEn can be seen in Figure 5.7. As can be seen in this Figure, the selection of
m and r will have an effect on the value of SampEn. Some combinations of m and r values will
produce an infinite value of SampEn (represented as the white areas on Figure 5.7), particularly
at higher m values. As r is increased, SampEn will tend towards zero. When m is increased,
the number of r values that produce infinite SampEn increases. It is important to avoid these
combinations to give a meaningful value of SampEn that can be used for comparison.

The plots in Figure 5.6 and Figure 5.7 illustrate the importance of optimising m and r and
suggests that a value of m equal to 1 or 2 would be most appropriate. However, a value of
1 would result in reduced dependence on the spatial relation of each pixel. For this reason, a
sequence length of m = 2 was chosen.

ApEn was calculated and plotted for simulated normal and MI phase patterns using m=2
and a range of r to determine the optimal value of r, as shown in Figure 5.8. These graphs
demonstrate that ApEn increases from zero, peaks, then decreases gradually to zero again as r

is increased. The maximum discrimination between the two groups that are plotted is r = 1.75.
Importantly, there is a value of r where the ApEn calculated from both normal and MI images
is equal, emphasising the need for using an appropriate value of r. The peak in each plot on
Figure 5.8 represents the ’flip point’. If a value of r is selected that is below the ’flip point’, then
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(a) (b)

Figure 5.6: Simulated data demonstrating how ApEn varies with m and r for (a) normal phase
image and (b) a phase image for an MI

(a) (b)

Figure 5.7: Simulated data demonstrating how SampEn varies with m and r for (a) normal phase
image and (b) a phase image for an MI. The white areas represent an infinite SampEn value.

a higher ApEn is normal, whilst if a larger value of r is used, a higher ApEn would suggest that
the phase is abnormal. These results are consistent with the literature, which suggests that ApEn

can flip when the input values are changed [60].
The dyssynchrony calculations and plots were repeated using patient data to confirm the

results achieved with the simulated data. Plotting the results of the normal, MI, and LBBB
patient groups (Figure 5.9) shows that the maximum discrimination for this group is at r = 1,
and the point where all three patient groups had equal ApEn was at r = 2.75. The normal, MI
and LBBB plots in this figure represent the average ApEn for a large number of patients as
previously described. The graph shows that the normal group had the highest ApEn before the
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peak (also referred to as the ’flip point’) and the lowest ApEn of the three groups after the ’flip
point’. The most critical point when considering the selection of input parameters is avoiding
the area where abnormal and normal are equal and avoiding the ’flip point’. This point on the
graph will vary, depending on how ’abnormal’ the phase is. At this point, work was continued
with two values of r, r = 1 and r = 7. These values were chosen because they provided adequate
separation between normal and abnormal phase but were not close to the ’flip point’.
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Figure 5.8: Simulated data which represents a phase image for normal left ventricular contrac-
tion (in red) and a large MI (in green), demonstrating how ApEn varies with increasing tolerance
r, where sequence length m = 2. The shaded area represents the difference in ApEn between the
normal and MI phase images.

For SampEn, if the value of r is too small then SampEn is infinite, as seen in Figures 5.10
and 5.11, and if r is too high it tends towards zero. The normal group has the lowest value of
SampEn for both the simulated data and patient data. Unlike ApEn, the data is self-consistent,
and a normal phase image will always have a lower SampEn than an abnormal phase image.
This agrees with published data which states that SampEn is more consistent than ApEn [59].
The important factor in selecting an appropriate r value is avoiding an r that is too low and will
produce an infinite value of SampEn. From this work, m = 2 and r = 4 was chosen for SampEn.

The optimisation work carried out with both simulated data and patient data provides con-
fidence that the input values selected for ApEn (m = 2, r = 7) and SampEn (m = 2, r = 4) are
appropriate for the data and their choice can be justified. This work highlights the importance
of selecting and optimising input parameters for the data that they will be applied to.
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Figure 5.9: Average ApEn for normal (red), MI (green) and LBBB (yellow) patient groups using
varying values of tolerance r, where m = 2.
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Figure 5.10: Simulated data which represents a phase image for normal left ventricular con-
traction (in red) and a large MI (in green), demonstrating how SampEn varies with increasing
tolerance r, where sequence length m = 2. The shaded area represents the difference in SampEn
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Figure 5.11: Average SampEn for normal (red), MI (green) and LBBB (yellow) patient groups
using varying values of tolerance r, where m= 2.

5.4 Effect of Data Length

Left and right ventricular volumes vary from patient to patient, and subsequently, the number
of pixels in the region of interest for each ventricle also varies. Therefore, it is important that
ApEn and SampEn are consistent across the range of ventricular volumes.

Simulated data were used to investigate the relation of ApEn and SampEn with the size of
the left ventricle. Simulated data were created with a radius varying from 7 to 15 pixels, covering
the clinically significant range. ApEn and SampEn were calculated for each left ventricle size
to ensure that any difference between patients would be independent of ventricle size.

The results demonstrate that ApEn does not vary significantly as the number of pixels is
increased when r = 7, as seen in Figure 5.12. However, for ApEn[r = 1] the value of ApEn

increases when the left ventricle increases in size, meaning that ApEn[r = 1] is not an appropriate
selection for this data. A possible explanation for this might be that when the chosen value of r is
low, the bias effect due to the self-matches has a more significant impact. Unlike time-series data
like an ECG or gait, it is impossible to control the length of the data series for RNVG phase data.
The data length will depend on the size of the left ventricle, which will be patient dependent,
so ApEn should be consistent across the clinical range. For this reason, a final value of r = 7
was selected for ApEn. As the number of pixels in the phase image increases, SampEn remains
constant using an r = 4 as seen in Figure 5.13. This plot confirms that calculating SampEn using
m = 2 and r = 4 does not depend on data length for the range tested.
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Figure 5.12: Variation of ApEn with left ventricle size for (a) m = 2, r = 1 (b) m = 2, r = 7,
demonstrating a lack of consistency for r = 1 with increasing ventricle size for simulated data.
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Figure 5.13: Variation of SampEn with left ventricle size for m = 2, r = 4, showing consistent
SampEn values with increasing ventricle size for simulated data.

The results demonstrate consistency over the clinical range of left ventricle sizes for ApEn[m
= 2, r = 7] and SampEn[m = 2, r = 4]. Using a lower value of r for ApEn could result in a
dependency on sequence length.
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5.5 Data Order

First-order measures such as synchrony and entropy have no dependence on data order. How-
ever, for ApEn and SampEn, the order is important. The algorithm reads the phase image and
converts it into a matrix, with each pixel representing a phase value. The matrix is then con-
verted into a one-dimensional data series for the calculation. The direction that the matrix is
read in will change the order of the pixel values used in the ApEn calculation. This section aims
to demonstrate the effect of reading the image data in different orders.

ApEn and SampEn are usually applied to time series data where the order is set. To investi-
gate the effect of reading the image matrix in different directions, the code was modified to read
the data in different orders to allow comparison. The m and r values used for testing the data
order were selected based on the optimisation work.

The diagram in Figure 5.14 illustrates the four different directions that the image data were
read. In Figure 5.14 (a), the data is read from left to right, and in (b), it is read top to bottom, but
this means that in a group of m pixels, they may not be adjacent to each other in the image even
though they are adjacent in the data series. For order (a), one pixel could be from the lateral
wall of the left ventricle, and the next pixel would be from the septum at the start of the next
line. This is unlikely to make a difference in a normal phase image where all the pixels have a
similar value but could have an impact when investigating a patient with a more abnormal phase
image. The directions shown in Figure 5.14 (c) and (d) will result in groups of ’m’ pixels being
adjacent to each other, unlike orders (a) and (b). The group tested consisted of 187 normal and
164 MI patients. Receiver operator characteristic (ROC) analysis was used to determine if the
data order affected the ability to discriminate between normal and MI patients. The mean ±
standard deviation, area under the curve (AUC) for separating normal phase from an MI, with
95% confidence intervals (CI) were calculated for each data order.

Figure 5.14: The four directions tested for reading the image matrix, reading image from (a) left
to right, (b) top to bottom, (c) left - right, right - left etc (d) top - bottom, bottom to top etc.

Tables 5.1 and 5.2 summarise the statistics for ApEn and SampEn for phase data read in
different directions. As expected, there is a small difference in ApEn and SampEn for different
data orders. However, the results indicate that the data order does not affect the ability of ApEn

or SampEn to discriminate between normal and abnormal phase. The ROC curves for each data
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Table 5.1: Summary of statistics for ApEn with data order
Data Order Normal Group MI Group AUC 95% CI

Mean ± SD Mean ± SD

(a) 0.460 ± 0.138 0.556 ± 0.116 0.72 0.66-0.77

(b) 0.457 ± 0.129 0.566 ± 0.119 0.75 0.67-0.77

(c) 0.418 ± 0.135 0.520 ± 0.118 0.73 0.65-0.76

(d) 0.414 ± 0.133 0.524 ± 0.124 0.74 0.67-0.77

Table 5.2: Summary of statistics for SampEn with data order
Data Order Normal Group MI Group AUC 95% CI

Mean ± SD Mean ± SD

(a) 0.683 ± 0.186 0.816 ± 0.222 0.70 0.64-0.75

(b) 0.672 ± 0.182 0.822 ± 0.213 0.72 0.67-0.77

(c) 0.659 ± 0.187 0.802 ± 0.233 0.71 0.65-0.76

(d) 0.656 ± 0.188 0.811 ± 0.225 0.72 0.67-0.77

order are shown in Figure 5.15 for ApEn and Figure 5.16 for SampEn. As seen on these plots,
the AUC values for the four variations on data order range from 0.72 to 0.75 for ApEn and
0.70 to 0.72 for SampEn. ApEn and SampEn are lower for directions (c) and (d), this is likely
because for each group of m the pixels are next to each other, resulting in more matches and
lower ApEn and SampEn.

The data order did not significantly affect the AUC values. However, intuitively order (c)
and (d) are preferred because the pixels in each group of sequence length m are adjacent. Order
(c) has been used for the optimisation work for m and r and will be used throughout the rest of
this work.
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Figure 5.15: ROC analysis of ApEn for each data order, comparing the difference between
normal and MI groups.
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Figure 5.16: ROC analysis of SampEn for each data order, comparing the difference between
normal and MI groups.
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5.6 Conclusions

Appropriate input parameters for ApEn and SampEn applied to RNVG phase images have been
established using both simulated and patient data. The results justify the input parameters se-
lected and demonstrate that they are appropriate for application to RNVG phase images. This
work highlights the importance of optimising input parameters when using novel indices, such
as ApEn and SampEn, to characterise clinical images. Standardisation is crucial, and although
this work investigates ApEn and SampEn for the specific application of RNVG phase, it demon-
strates the importance of optimisation and standardisation.



Chapter 6

Normal Range and Reproducibility

6.1 Introduction

The work described in this chapter will investigate the normal range, reproducibility, and corre-
lation for dyssynchrony parameters investigated in this thesis. There is currently no standardisa-
tion or established normal range for dyssynchrony measured from radionuclide ventriculography
(RNVG) phase images. Normal range, reproducibility, and an understanding of the correlation
between dyssynchrony parameters will be essential to provide meaningful results and allow
comparison between different sites, techniques, and software.

6.2 Normal Range

It is important to establish a normal range for any technique to give the results clinical context.
Several studies have investigated the normal range for synchrony, entropy and phase standard
deviation calculated from RNVG phase images. The results of these studies are summarised in
Table 6.1. The data is limited to small sample sizes from single centre studies and have varying
results. For example Singh et al. [42] suggest a normal cut-off for phase standard deviation of
13.2 degrees, while Marcassa et al. [78] suggest a cut of of 18 degrees (both defined using mean
+ 2 standard deviations). The variation in ’normal’ phase values between the studies in Table 6.1
highlights how dependent a normal range can be on the protocol and software used. Currently,
there is no published assessment of the normal range for ApEn and SampEn applied to RNVG
phase.

Work was carried out to establish a normal range for each parameter using retrospective data.
The patients used to define the normal range were selected based on the following criteria; nor-
mal myocardial perfusion, normal LVEF, normal wall motion and no previous cardiac history.
However, all of the ’normal’ patients were referred to the Department of Nuclear Cardiology
with cardiac symptoms. The group consisted of 187 patients (51 male and 136 female). The
dyssynchrony parameters were calculated using the optimised m and r values for ApEn and
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Table 6.1: Comparison of RNVG dyssynchrony normal range from the literature
n Synchrony Entropy Phase SD

O’Connell et al. 2005 [45] 22 0.99 ± 0.01 0.37 ± 0.08 12.2 ± 5.4
Johnson et al. 2015 [47] 49 0.97 ± 0.08 0.41 ± 0.12 13 ± 3
Badhwar et al. 2016 [34] 30 0.99 ± 0.01 0.45 ± 0.02 NA
Vallejo et al. 2010 [41] 22 NA NA 10 ± 2
Singh et al. 2013 [42] 108 NA NA 8.2 ± 2.5
Marcassa et al. 2007 [78] 56 NA NA 9.1 ± 4.5
Results are presented as mean± standard deviation (SD). n = number of patients included
in the study.

SampEn that were established in Chapter 5, and a 1 degree bin width for entropy. Results are
presented as mean± standard deviation. A normal cut off is suggested for each parameter in Ta-
ble 6.2 using two standard deviations. Although the ’normal’ group used for this work met all of
the previously defined criteria, they may have unknown underlying cardiovascular conditions or
mildly abnormal phase images. All of the ’normal’ patients were referred to Nuclear Cardiology
with symptoms of ischaemic heart disease. Therefore, this normal range should be confirmed
using healthy normal volunteers. A comparison of patients with normal dyssynchrony, as de-
fined by global longitudinal strain, would also be of interest. However, this is outwith the scope
of this work and would require ethics approval.

Each parameter was also used to compare 187 normal patients to the 164 myocardial in-
farction (MI) patients and 112 left bundle branch block (LBBB) patients. A Shapiro-Wilks test
was used for each parameter to assess if the data were normally distributed before selecting
the appropriate statistical test for comparison. The results of this comparison are summarised
in Table 6.3. The table shows the mean and standard deviation for each parameter and the re-
sults of the significance test between the three groups. Plots for each parameter are shown in
Figures 6.1-6.5. The boxplots for each dyssynchrony parameter show the median and interquar-
tile range for the normal, MI and LBBB. Synchrony, entropy, phase standard deviation, and
SampEn were normally distributed, so ANOVA was used to compare all three groups, and a
two-sample t-test was used for pairwise comparison. The data for ApEn was not a normal distri-
bution, therefore, Kruskal-Wallis was used to compare the groups and Wilcoxon sign-rank test
was used for pairwise comparison. When comparing the normal, MI and LBBB patients, all of
the dyssynchrony parameters tested showed a significant difference between the three groups
and for pairwise comparison. The results demonstrate that both the LBBB and MI groups are
more dyssynchronous than the normal group. The biggest difference in dyssynchrony is be-
tween the normal and MI group, with the MI group being the most dyssynchronous, which is
not surprising. There is some overlap in dyssynchrony values for each of the parameters, but
there will be some patients with LBBB or history of an MI who do not have any dyssynchrony.
The LBBB group all have electrical dyssynchrony, but not all will have associated mechanical
dyssynchrony. Some patients in the normal group may also have some mild dyssynchrony, so



CHAPTER 6. NORMAL RANGE AND REPRODUCIBILITY 58

some overlap is expected between the groups. There is one outlier on the synchrony plot for
the MI group. Further investigation revealed that this point represents a patient with a large
aneurysm with two regions within the left ventricle contracting at opposite times, resulting in a
synchrony value close to zero.

Table 6.2: Normal Range (n=187)
Mean ± SD Normal cut-off

Synchrony 0.99 ± 0.01 > 0.97
Entropy 0.56 ± 0.04 < 0.64
ApEn 0.42 ± 0.14 < 0.70
SampEn 0.66 ± 0.19 < 0.84
Phase SD 7.9 ± 2.0 < 9.9
SD = standard deviation. The normal cut-off for each parameter is de-
fined from the mean + 2 SD of 187 patients.

Table 6.3: Results comparing normal, MI and LBBB groups.
Normal MI LBBB P-value

Synchrony 0.99 ± 0.01 0.96 ± 0.08 0.98 ± 0.03 p < 0.001
Entropy 0.56 ± 0.04 0.64 ± 0.06 0.61 ± 0.06 p < 0.001
ApEn 0.42 ± 0.14 0.52 ± 0.12 0.48 ± 0.12 p < 0.001
SampEn 0.66 ± 0.19 0.81 ± 0.23 0.72 ± 0.19 p < 0.001
Phase SD 7.9 ± 2.0 16.1 ± 11.6 11.7 ± 7.6 p < 0.001
Results are presented as mean ± standard deviation for each group. Significance was tested using ANOVA
or Kruskal-Wallis test depending on the normality of the data.

The mean normal values are compared with the studies in Table 6.1. There is only published
normal data available for synchrony, entropy and phase standard deviation. There is some vari-
ation between the studies, which could be attributed to different processing software. Most of
the studies use software that was written in-house rather than a commercially available prod-
uct. The phase pixel values may not be interchangeable between different software, as they
depend on various factors including histograms bins, temporal and smoothing filters, and noise.
Smoothing filters and bin size have not been investigated in this work. Only clinically used
filters and matrix size were used. In a comparison of normal and LBBB patients, Wassenaar et

al. [79] concluded that the bin size and the histogram threshold value did not impact AUC (area
under the receiver-operator curve). Wassenaar et al. also demonstrated that the smoothing did
not impact the ability of synchrony and entropy to detect abnormal phase; however, the AUC
did improve with decreased smoothing. Phase standard deviation was demonstrated to have a
stronger dependence on the image smoothing than synchrony or entropy. Therefore, the normal
range will apply only to the Link Medical Maps software with the image parameters used in
clinical practice that were used in this research. The criteria for defining a ’normal’ patient also
varies between the studies.
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Figure 6.1: Comparison of synchrony for normal, MI and LBBB groups. Kruskal-Wallis was
used to compare all three groups and Wilcoxon rank-sum test was used for pairwise comparison.
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Figure 6.2: Comparison of entropy for normal, MI and LBBB groups. Kruskal-Wallis was used
to compare all three groups and Wilcoxon rank-sum test was used for pairwise comparison.
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Figure 6.3: Comparison of phase standard deviation for normal, MI and LBBB groups. Kruskal-
Wallis was used to compare all three groups and Wilcoxon rank-sum test was used for pairwise
comparison.
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Figure 6.4: Comparing ApEn for normal, MI and LBBB groups. Kruskal-Wallis was used to
compare all three groups and Wilcoxon rank-sum test was used for pairwise comparison.
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Figure 6.5: Comparison of SampEn for normal, MI and LBBB groups. Kruskal-Wallis was used
to compare all three groups and Wilcoxon rank-sum test was used for pairwise comparison.
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6.3 Reproducibility

Ideally, all imaging parameters that are used clinically should have high reproducibility. It is
important to be aware of all of the limitations of a technique, including the reproducibility of
the measurement, particularly if the measurement is being used to guide clinical decisions. This
section will assess the intra-operator variability for phase standard deviation, synchrony, entropy,
ApEn, and SampEn.

For each RNVG, two ROIs were compared, both drawn by a single trained operator to assess
intra-operator variability. For the second attempt, the operator could not see their first attempt.
For each ROI, synchrony, entropy, phase standard deviation, approximate entropy (ApEn) and
sample entropy (SampEn) were calculated from the phase image. The group investigated con-
sisted of 463 patients, including a mixture of normal and abnormal phase. The results for intra-
operator variability are summarised in Table 6.4. The correlation and Bland-Altman plots for
each parameter are shown in Figures 6.6-6.10. The Bland-Alman plots show the difference
between the two paired dyssynchrony measurements plotted against the average of the two mea-
surements. The plots for synchrony (Figure 6.6) show that it has the highest correlation of all of
the parameters, but the synchrony values are all tightly clustered around 0.99. The other param-
eters have a larger range of dyssynchrony values and also demonstrate a high correlation. There
does not appear to be any change in the difference as the dyssynchrony value changes for any
of the parameters. Overall, the results demonstrate a high correlation for all parameters tested
with no evidence of bias, suggesting there is good intra-operator reproducibility for assessing
dyssynchrony with RNVG phase parameters.

Further work to investigate the inter-operator variability should also be carried out, but good
intra and inter-operator variability have been previously demonstrated for synchrony, entropy,
and phase standard deviation [41, 45, 78, 79]. Inter-operator variability is often only assessed
for image processing. However, to fully assess the inter-operator reproducibility, each patient
should be positioned and scanned by the technologist, then removed from the camera before
being set up and the scan repeated by a second independent operator.

The intra-operator reproducibility measured for the dyssynchrony parameters was higher
than some studies report [78]. This may be due to the fact that this study was carried out
in a specialised nuclear cardiology department, where the clinical technologists have received
extensive training and feedback on processing RNVGs.

Table 6.4: Correlation values for intra-operator variability
Correlation

LV Synchrony 0.999
LV Entropy 0.995
LV ApEn 0.986
LV SampEn 0.994
LV Phase SD 0.998
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(a) (b)

Figure 6.6: Comparing intra-operator variability of synchrony. ROI 1 vs ROI 2 in Bland Alman
plot (a) and correlation (b).

(a) (b)

Figure 6.7: Comparing intra-operator variability of entropy. ROI 1 vs ROI 2 in Bland Alman
plot (a) and correlation (b).



CHAPTER 6. NORMAL RANGE AND REPRODUCIBILITY 64

(a) (b)

Figure 6.8: Comparing intra-operator variability of phase standard deviation. ROI 1 vs ROI 2 in
Bland Alman plot (a) and correlation (b).

(a) (b)

Figure 6.9: Comparing intra-operator variability of ApEn. ROI 1 vs ROI 2 in Bland Alman plot
(left) and correlation (right).
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(a) (b)

Figure 6.10: Comparing intra-operator variability of SampEn. ROI 1 vs ROI 2 in Bland Alman
plot (a) and correlation (b).

6.4 Correlation Between Dyssynchrony Parameters

This section aims to determine if there is any correlation between the phase parameters that are
under investigation. If there is a high correlation, then there may be no benefit in using multiple
measures of dyssynchrony, and a single measure may be sufficient.

Clinical phase images were separated into normal and MI groups. The correlation was tested
between all pairs of dyssynchrony measures for both normal and MI groups, and the results were
plotted in a pairs correlation matrix using R.

The results demonstrate a high correlation between the dyssynchrony measures for normal
phase patients (Figure 6.11). In this matrix of plots, the labels along the top and right edges show
the dyssynchrony parameters that are being considered for each plot, while the x and y-axis la-
bels are shown on the left and bottom of the matrix. The diagonal boxes display the distribution
for each individual variable. The scatter plots on the lower triangle show the relationship be-
tween each pair of variables, and the Pearson correlation coefficient for each pair of variables
is displayed on the upper triangle. The high correlation between dyssynchrony parameters is
not unexpected because all of the parameters are measured from the same phase data. However,
when the MI group is considered, the correlation is reduced between the parameters as shown in
Figure 6.12. This suggests there may be additional clinical benefit using multiple dyssynchrony
parameters for the assessment of abnormal phase.
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Figure 6.11: Scatter plots for the normal group, showing the correlation for each pair of variables
with the associated correlation value, with the variable names displayed along the edges of the
matrix. The diagonal boxes display the distribution for each variable. The scatter plots on the
lower left area show the relationship between each pair of variables, and the Pearson correlation
coefficient for each pair of variables is displayed on the upper right area.
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Figure 6.12: Scatter plots for the MI group, showing the correlation for each pair of variables
with the associated correlation value, with the variable names displayed along the edges of the
matrix. The diagonal boxes display the distribution for each variable. The scatter plots on the
lower left area show the relationship between each pair of variables, and the Pearson correlation
coefficient for each pair of variables is displayed on the upper right area.
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6.5 Conclusions

Reproducibility and normal range have been established with clinical data from the nuclear car-
diology department at Glasgow Royal Infirmary for data processed using MAPS Link Medical
10000 software. This work confirms that the dyssynchrony parameters have high intra-operator
reproducibility, in agreement with the results of other published work. It is clear that standardi-
sation will be essential for these parameters to become widely used. This is an issue not unique
to RNVG; it has also been an issue for new parameters in other imaging techniques, such as
global longitudinal strain by echo. It is well established that different software can produce dif-
ferent results with a different normal range for global longitudinal strain [80]. Operator training
and experience is one aspect that can significantly impact the reproducibility of each imaging
parameter, and it is important for any technique that requires operator input for acquisition or
processing. Further investigation would be required to confirm the reproducibility and normal
range for clinical use at other sites.



Chapter 7

Risk Stratification for Chemotherapy
Patients

This chapter aims to determine if phase parameters applied to baseline radionuclide ventricu-
lography (RNVG) phase images can measure contraction abnormalities prior to cardiotoxic
chemotherapy to predict which patients are at a higher risk of cardiac dysfunction. The work
described in this chapter was published in the Journal of Nuclear Cardiology and was the first
published study investigating RNVG phase parameters as a predictor of cardiac dysfunction
following chemotherapy [81].

7.1 Introduction

Survival from breast cancer has improved substantially over the last 30 years due to earlier
diagnosis and advances in treatment with adjuvant radiotherapy and chemotherapy. However,
cardiotoxicity associated with cancer therapy is now the leading cause of morbidity and mor-
tality for survivors [82, 83]. Anthracycline/trastuzumab-based chemotherapy regimens have
been linked with increased risk of cardiovascular disease [84]. Anthracyclines are a class of
chemotherapy drugs that come from Streptomyces bacterium and can treat many different can-
cers. Anthracyclines have several modes of action, including increasing DNA breaks and pre-
venting DNA and RNA synthesis. Trastuzumab, also commonly known by the brand name
Herceptin, is a targeted cancer drug used to treat HER2 receptor-positive cancers. Trastuzumab
attaches to HER2, a protein that causes cancer cells to grow and divide, to control the growth
and help the immune system attack and destroy the cancer cells. Trastuzumab is commonly used
to treat some types of breast cancer, oesophageal cancer, and stomach cancer. Anthracycline
and trastuzumab are highly effective therapies against many types of cancer, but anthracycline-
based regimens are associated with the dose-dependent risk of cardiotoxicity and heart failure,
whilst trastuzumab is not generally associated with reversible cardiotoxicity. However, non-
reversible cardiac dysfunction can occur with both trastuzumab and anthracycline, despite inter-
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vention [85]. There is a significantly increased risk of cancer therapy-related cardiac dysfunction
(CTRCD) when trastuzumab is combined with anthracyclines [86].

Cardiac monitoring is recommended for patients receiving anthracycline/trastuzumab-based
treatments, which currently relies on the serial assessment of left ventricular ejection fraction
(LVEF). Each patient will have a baseline LVEF measurement using echo or RNVG, then serial
LVEF assessment every three months during treatment. The European Society of Cardiology
guidelines (ESC) considers a 10% point decrease of left ventricular ejection fraction (LVEF)
to below the lower limit of normal (<50%) to be an indicator of cardiotoxicity and recommend
altering or stopping treatment to prevent further left ventricular dysfunction or the development
of symptomatic heart failure [29].

One potential limitation of the current guidelines is that LVEF decline is often a late phe-
nomenon. Therefore, it would be useful to identify sub-clinical cardiac abnormalities and iden-
tify patients at higher risk before treatment starts. In addition to LVEF assessment, there is
growing interest within the field in using early markers of myocardial changes, including speckle
tracking longitudinal strain from echocardiography, as previously described in Chapter 2, to as-
sess myocardial deformation. Published data suggest that longitudinal strain may be able to
detect myocardial changes earlier than LVEF [26], but this has not previously been investigated
using RNVG dyssynchrony parameters.

7.2 Methods

7.2.1 Data Acquisition

A retrospective study was undertaken to review 193 consecutive female breast cancer patients
(mean age: 54) who had RNVG scans at Glasgow Western Infirmary Hospital between 2005 and
2008. All patients included in this study had a baseline RNVG before receiving cardiotoxic can-
cer therapy and follow up scans. The RNVG scans were acquired at intervals of approximately
3 months for up to 2 years following the baseline study, with each patient having between 2 and
9 RNVGs. Based on the current guidelines, patients with a baseline LVEF of <55% would not
start treatment; therefore, these patients were excluded from the study.

In-vivo labelling was performed using an intravenous administration of pyrophosphate 20
minutes prior to injection of 800 MBq (21.6mCi) of Technetium-99m pertechnetate. Each study
was acquired using a Picker 3000XP 3-headed gamma camera (Picker International, Cleveland
Heights, Ohio, USA) with a low energy high-resolution collimator. The gamma camera was
carefully positioned to achieve the best septal separation, and the scan was acquired for 5 million
counts using frame mode acquisition, a matrix size of 64x64, and 24-frame gating. The LVEF
was assessed by an experienced operator using Picker Lightbox software with a manual dual
region technique to measure the ejection fraction.
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Only the raw images were available for this study. Therefore the baseline RNVG for all 193
patients was reprocessed using MAPS Link medical software to create the phase and amplitude
images from the first-order Fourier harmonic, as described in Chapter 2. A single left ventricle
region was manually outlined for each baseline study, using the end-diastolic image with ref-
erence to the phase and amplitude images. 16 patients were excluded at this stage (11 patients
with gating problems were picked up from the phase image and time-activity curve, 4 patients
with a baseline LVEF below 55% and 1 patient with a baseline scan below diagnostic quality
due to poor radiopharmaceutical labelling), leaving 177 patients. The gating issues were due to
the fact that prospective cardiac gating was used rather than retrospective. The gating bins and
beat acceptance window are determined before the scan and cannot be adjusted afterwards in
prospective gating. This is a problem if the patient’s heart rate changes during the acquisition.

7.2.2 Data Analysis

The LVEF from all follow up RNVG studies were compared to the baseline to establish the
maximum LVEF drop for each patient. The reported LVEF from the initial analysis was used
along with the phase images created using MAPS Link Medical software. Based on the ESC
guidelines, patients were split by LVEF decline into 2 groups. In-house software written in R
3.6.3 (R Development Core Team, Vienna, Austria) [62, 75] was used to calculate synchrony,
entropy, phase standard deviation, approximate entropy (ApEn), and sample entropy (SampEn)
for the baseline scans, using input parameters m = 2 and r = 7, as described in Chapters 3 and 5.

7.2.3 Statistical Analysis

Shapiro-Wilk’s test was used to check the normality of the distribution for each parameter, and
the Henze-Zirkler test was used to test multivariate normality. Significance testing was per-
formed for each parameter, using the unpaired t-test or Wilcoxon rank-sum test, depending on
the outcome of the univariate test of normality. In addition, Hotelling’s T2 test was used to
determine if there was a significant difference between multivariate means of the different pop-
ulations [66]. A logistic regression model, as described in Chapter 4, was fitted in R using the
interaction between one of the significant dyssynchrony parameters and baseline LVEF [62,65].
The area under the receiver operator curve (AUC) and accuracy were reported for the model. A
p-value of < 0.05 was considered significant for all tests. The correlation between the parameters
was also tested.

7.3 Results

Patients were split into two groups based on the change in LVEF during treatment. Group 1
maintained a normal LVEF (> 50%) during treatment, and Group 2 had a decline in LVEF of
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more than 10% to below 50%. The guidelines would recommend that the treatment for Group 2
is altered or stopped. Figure 7.1 displays the scatter plots showing the correlation for each pair of
variables on the lower left area with the associated Pearson correlation value on the upper right
area of the figure. The variable names are displayed along the edges of the matrix. The diagonal
boxes show the distribution for each individual variable. This figure shows that dyssynchrony
predictors had high a correlation with each other. This compares well with the correlation plots
for normal patients in Chapter 6. ApEn and SampEn had the highest correlation of 0.95. The
scatter plots and associated Pearson correlation values demonstrate that LVEF does not correlate
strongly with any of the dyssynchrony parameters.

ApEn, SampEn, phase SD and age were normally distributed while synchrony, entropy and
baseline LVEF were not. Multivariate normality testing for ApEn combined with baseline LVEF
revealed that both groups were normally distributed. A Chi-squared test was used for categorical
data, and a two-sample t-test or Wilcoxon rank-sum test was used depending on the normality of
the specific variable for the significance tests. Boxplots comparing the results for each dyssyn-
chrony parameter can be seen in Figures 7.2 - 7.6. The boxplots for each dyssynchrony param-
eter show the median and interquartile range for the patients who maintained a normal ejection
fraction and those who had a significant decline in ejection fraction during or after treatment.
These plots demonstrate that the left ventricle is more dyssynchronous at baseline for the group
with decreased LVEF during or after treatment.

However, ApEn, SampEn were the only measures of dyssynchrony that were significantly
different between the two groups. The dyssynchrony values measured for both group 1 and
group 2 are all within the normal cut-off defined in Chapter 6. There was also a significant
difference in LVEF at baseline as shown in Figure 7.7. Patients with a lower (but still normal
LVEF) at baseline were more likely to go on to develop cardiac dysfunction, as measured by
LVEF decline. The results for all predictors are summarised in Table 7.1. This table shows the
mean and standard deviation for each dyssynchrony parameter, along with the significance test
used and the p-value. Age and number of patients for each group are also reported. There was no
significant difference (p > 0.05) in age, synchrony, entropy, or phase standard deviation between
the two groups. However, there was a significant difference (p < 0.05) in ApEn, SampEn, and
baseline LVEF. The combination of ApEn and baseline LVEF was also significantly different
between the two groups.

Figure 7.8 demonstrates that combining the baseline LVEF with the baseline ApEn can im-
prove the separation between the groups. This figure shows the baseline LVEF plotted against
baseline ApEn for both groups, with the dashed lines representing the mean ApEn and mean
LVEF of the test population. The majority of patients who experienced a significant decline in
LVEF are in the lower right quadrant of this graph, indicating that patients with a lower LVEF
and higher ApEn at their baseline RNVG are more likely to have an LVEF drop of more than
10% to below 50%. In contrast, none of the patients in the upper left quadrant on this graph
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(higher LVEF and lower ApEn) experienced a significant decline in LVEF. Due to the high
correlation between ApEn and SampEn, only one was used in the logistic regression model.
ApEn was selected because it had previously been investigated for the assessment of RNVG
phase [36]. A summary of the logistic regression model, created with 10-fold cross-validation
and 3 repeats as previously described in Chapter 4, is shown in Table 7.2. The table shows the
coefficient and p-value for each predictor and the AUC and accuracy for the model. All of the
individual predictors within this model were significant. The fitted logistic regression modelling
demonstrated that ApEn, baseline LVEF and their interaction were significant predictors for
cardiac dysfunction following cancer therapy. The logistic regression model achieved an AUC
of 0.88 and an accuracy of 93% using only ApEn, baseline LVEF, and the interaction between
them.

Table 7.1: Summary of results for each phase parameter for predicting cardiac dysfunction

Mean (SD) Significance Test P -Value

Group 1 Group 2

Number of patients 166 11 − −

Age 55 (11) 56 (15) Wilcoxon rank-sum 0.799

Synchrony 0.991 (0.004) 0.989 (0.004) Wilcoxon rank-sum 0.121

Entropy 0.559 (0.040) 0.584 (0.028) Wilcoxon rank-sum 0.054

ApEn 0.348 (0.107) 0.418 (0.076) Two sample t-test 0.014

SampEn 0.291 (0.091) 0.342 (0.070) Two sample t-test 0.039

Phase SD 7.9 (2.0) 8.9 (1.8) Wilcoxon rank-sum 0.094

Baseline LVEF 73.5 (6.1) 64.5 (6.7) Two sample t-test 0.001

(ApEn, baseline LVEF) − − Hotelling’s T 2 0.001

Data are presented as mean (± SD) for continuous variables and absolute number of the population for categorical data. Group 1

maintained a normal LVEF (> 50%) during treatment, and Group 2 had a decline in LVEF of more than 10% to below 50%. To test

significance, a Chi-squared test was used for categorical data and two sample t-test or Wilcoxon rank-sum test was used for continuous

data depending on the normality of the specific variable. The p-values for significant variables are in bold.

7.4 Discussion

The results confirm a significant difference in ApEn between the group with LVEF decline
of more than 10% to below 50% (Group 2) and the group that maintained a normal LVEF
throughout treatment (Group 1). In addition, ApEn performed better than synchrony, entropy
and phase SD for predicting cardiac dysfunction in this cohort. SampEn was also significantly
different between the groups, but it was highly correlated with ApEn. The high correlation is



CHAPTER 7. RISK STRATIFICATION FOR CHEMOTHERAPY PATIENTS 74

Figure 7.1: Scatter plots showing the correlation for each pair of variables with the associated
correlation value, with the variable names displayed along the edges of the matrix. The diagonal
boxes display the distribution for each individual variable. The scatter plots in lower left area
show the relationship between each pair of variables, and the Pearson correlation coefficient for
each pair of variables is displayed in the upper right area.
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Figure 7.2: Synchrony for patients calculated from baseline RNVG phase image, split into two
groups based on LVEF decline.
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Figure 7.3: Entropy for patients calculated from baseline RNVG phase image, split into two
groups based on LVEF decline.



CHAPTER 7. RISK STRATIFICATION FOR CHEMOTHERAPY PATIENTS 76

P = 0.12 

6

9

12

Maintained 
 normal LVEF 

>10% drop to 
 EF below 50% 

P
h

a
s

e
 S

D

Figure 7.4: Phase SD for patients calculated from baseline RNVG phase image, split into two
groups based on LVEF decline.
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Figure 7.5: ApEn for patients calculated from baseline RNVG phase image, split into two groups
based on LVEF decline.
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Figure 7.6: SampEn for patients calculated from baseline RNVG phase image, split into two
groups based on LVEF decline.
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Figure 7.7: Baseline LVEF for patients, split into two groups based on LVEF decline.
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Figure 7.8: Baseline LVEF plotted against baseline ApEn for both groups. The dashed lines
represent the mean ApEn and mean LVEF of the test population.
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Table 7.2: Logistic Regression Model to predict response to cardiotoxic chemotherapy

Predictor Coefficient P value AUC Accuracy

(Intercept) 53.7263 0.013

ApEn -99.1931 0.004

Baseline LVEF -0.8518 0.009

ApEn, LVEF interaction 1.5253 0.033

Model 0.88 93%

Logistic regression model results built from 10-fold cross validation with 3 repeats. The p-values for sig-

nificant variables are in bold.

not unexpected as SampEn is a modification of ApEn, and they were calculated from the same
data.

Improved discrimination between the groups was achieved by considering the combination
of baseline LVEF and baseline ApEn. The results suggest that patients with a lower LVEF and
higher ApEn at their baseline RNVG (lower right quadrant in Figure 7.8) are at a higher risk
of developing cardiac dysfunction during or after treatment. Of the patients tested, no one who
fell within the top left quadrant in Figure 7.8 had an LVEF drop to below 50%. In addition, the
logistic regression model demonstrated that the interaction between ApEn and baseline LVEF
was significant, suggesting that LVEF combined with ApEn has predictive value at the baseline
scan.

These results should be interpreted with caution due to the small number of patients who
had a significant LVEF decline during treatment. Further work with additional data for testing
would be desirable. The results agree well with published studies using echocardiography which
have investigated global longitudinal strain to detect sub-clinical changes before any decline in
LVEF, with several studies demonstrating that a change in global longitudinal strain during
treatment precedes the drop in LVEF [24–27]. Ali et al. [28], found that global longitudinal
strain could detect subtle left ventricular abnormalities prior to chemotherapy and was predictive
of cardiac events. They also found a significant difference in baseline LVEF between the groups.
Cullen et al. investigated the use of ApEn from RNVG for serial assessment of patients receiving
Herceptin [36]. This small study found a significant change in ejection fraction and ApEn over
the course of treatment, but this study did not assess ApEn as a predictor of LVEF decline.
Despite published results using strain to demonstrate subtle abnormalities before treatment, this
is the first RNVG study investigating ApEn as a predictive measure.

ApEn has shown to be promising in this patient cohort and can be calculated quickly without
any additional scanning, dose or processing time. To summarise, patients with higher ApEn and
low LVEF at baseline may be more susceptible to the cardiotoxic effects of the therapy. Further
improvement could potentially be achieved by combining ApEn with other clinical parameters
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and assessing as part of a wider texture analysis. Additional data would be necessary to define a
decision boundary using these parameters to highlight those most at risk.

Limitations of Study

Due to this study being retrospective, limited information was available detailing the treatment
and doses. Therefore, this study does not discriminate between different chemotherapy regimes.
Of the 177 patients included in this study, only 11 had an LVEF decline of more than 10%
to below 50%. Although the initial results are promising, a larger prospective study would be
desirable to continue this work.

7.5 Conclusions

Patients who have a normal LVEF before treatment may have subtle phase abnormalities, which
can be detected from the baseline RNVG. The results of this study suggest that ApEn combined
with the baseline LVEF could potentially predict which patients are at a higher risk of devel-
oping cardiac dysfunction, as measured by a decline in LVEF, before treatment commences.
If patients who are at a higher risk of cardiac dysfunction can be identified, patient treatment
and monitoring could become more personalised to the individual, helping to achieve the best
outcome for each patient.



Chapter 8

Effect of Beta-blockade on Dyssynchrony

This chapter investigates the effect of beta-blocker therapy on dyssynchrony for symptomatic pa-
tients with heart failure with reduced ejection fraction (HFrEF), as assessed by radionuclide ven-
triculography (RNVG) phase. One of the knowledge gaps highlighted by the European Society
of Cardiology (ESC) guidelines [16] is identifying non-responders to current guideline-advised
medical treatment. Therefore, another aim is to determine whether baseline dyssynchrony can
predict which patients will respond to beta-blockers by investigating baseline clinical data and
dyssynchrony measurements from the RNVG phase. Subgroups split by ischaemic aetiology
will also be investigated. This work detailed in this chapter has been submitted to the Journal of
Nuclear Cardiology.

8.1 Introduction

Heart failure affects approximately 1-2% of the adult population in developed countries, increas-
ing to over 10% for those >70 years old [87–90]. Heart failure occurs when the heart can no
longer meet the demands of the body, resulting from a variety of causes, including abnormalities
of the myocardium, valves, pericardium, endocardium, heart rhythm and conduction. Common
symptoms of heart failure include; shortness of breath, fatigue and ankle swelling. Various
treatments are available which aim to improve symptoms, morbidity and mortality. However,
identifying the underlying cause is crucial to determine the most appropriate treatment.

There are four different stages of heart failure defined by the New York Heart Association
(NYHA) class system [91] as outlined in Table 8.1. The NYHA class system is widely used in
cardiology but has limitations due to being defined only by patient symptoms. Patients with a
higher NYHA class of heart failure are more likely to have severely impaired cardiac function.
It was previously thought that heart failure was associated with reduced LVEF. However, it is
now known that heart failure can occur with reduced LVEF (HFrEF), moderate LVEF (HFmEF),
or preserved LVEF (HFpEF). In the European society of cardiology guidelines, reduced LVEF
is defined as <40%, moderate LVEF is 40-49%, and preserved LVEF is >50%. This chapter

81
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focuses on non-valvular heart failure with reduced ejection fraction HFrEF. In HFrEF, LVEF
is known to be a good predictor of outcome and is included in the decision criteria for many
HFrEF treatments [16].

Patients with heart failure will often have a dyssynchronous ventricular contraction, and there
is interest in quantifying left ventricular dyssynchrony for patients with HFrEF. For example,
there have been many studies published investigating imaging parameters as predictors to car-
diac resynchronisation therapy (CRT) response with varying degrees of success as summarised
in the review by Hawkins et al. [19]. Despite promising results in single centre studies [92, 93],
the results have not been reproduced in larger multi-centre trials [18], leaving many unanswered
questions in this area. RNVG phase parameters offer an alternative index for the quantification
of ventricular dyssynchrony and may be a valuable adjunct in the assessment of patients with
heart failure.

Table 8.1: NYHA Class Definition
Class Patient symptoms

I No limitation of physical activity. Ordinary physical activity does not cause undue

fatigue, palpitation, dyspnoea (shortness of breath)

II Slight limitation of physical activity. Comfortable at rest. Ordinary physical activity

results in fatigue, palpitation, dyspnoea (shortness of breath)

III Marked limitation of physical activity. Comfortable at rest. Less than ordinary

activity causes fatigue, palpitation, or dyspnoea.

IV Unable to carry on any physical activity without discomfort. Symptoms of heart

failure at rest. If any physical activity is undertaken, discomfort increases.

8.1.1 Beta-blockade Therapy

Beta-blockade therapy is well established and currently recommended by the ESC guidelines
as first line treatment for patients in symptomatic HFrEF [16]. Beta-blockers were originally
contraindicated for heart failure patients due to their predicted negative inotropic effect. Neg-
ative inotropes weaken the force of the heart’s contraction. However, somewhat paradoxically,
beta-blockers reverse adrenoceptor downregulation and improve both morbidity and mortality
via several potential mechanisms [94]. In addition, the direct effect of decreasing heart rate may
also be beneficial by decreasing myocardial oxygen demand and improving coronary blood flow.

Several large scale clinical trials have demonstrated the benefits of beta-adrenoceptor block-
ers for heart failure patients, reducing morbidity and mortality. [95, 96]. It is known that post
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beta-blockade therapy, patients show significantly improved LVEF [97], but the effect of beta-
blockade on cardiac dyssynchrony has not been widely investigated.

Several published studies investigate the use of echo derived dyssynchrony parameters, such
as septal to lateral wall delay for heart failure patients [12, 15, 98]. However, there are currently
no published studies investigating the effect of beta-blocker using dyssynchrony measured from
RNVG imaging. Currently, there is no consensus on the definition of a responder, but an im-
provement in LVEF or 10% or more is widely accepted as a significant improvement of left
ventricular function. The importance of right ventricular function has not been as widely inves-
tigated as that of the left ventricle, but there is an increasing interest in the field in understanding
right ventricular involvement in heart failure [99].

8.2 Method

8.2.1 Study outline

A secondary analysis of a previously performed prospective study was carried out on data from
98 patients who were part of a study at Glasgow Royal Infirmary investigating beta-blocker
therapy for HFrEF in 2005-2006. An application to the ethics board to further investigate the
data was approved. Table 8.2 details the recruitment criteria for the original study. All patients
who were enrolled had evidence of left ventricular systolic dysfunction, NYHA class II-IV, and
were stabilised on standard heart failure treatment. Patients who had recent intervention were
excluded to ensure that any change in function would be secondary to beta-blocker and not
intervention related. Those with atrial fibrillation or severe valve disease were excluded as these
conditions can make the assessment of left ventricular systolic function less reliable.

As part of this study, the patients had an RNVG and Thallium-201 myocardial perfusion
imaging (MPI), titration of beta-blocker and a second RNVG six months post beta-blocker.
Patients were initially given 1.25 mg of Bisoprolol (a beta-blocker), with the dose increasing
stepwise to 2.5 mg, 5 mg, 7.5 mg and 10 mg at intervals of two weeks. Before each step increase,
patients underwent clinical review. Each patient continued on their maximum tolerated dose of
Bisoprolol. Patients who did not tolerate the prescribed beta-blockers and those who did not
attend the second RNVG scan were excluded from this study. Of the 12 patients who were
excluded, 8 patients did not tolerate beta-blocker, 3 patients did not attend for the second RNVG
for unknown reasons, and 1 patient died before the second RNVG. After the exclusion criteria
were applied, there were 86 patients remaining. The baseline characteristics are listed in Table
8.3, including Age, Sex, NYHA class, presence of diabetes and hypertension, and whether the
patient has an implantable cardiac defibrillator (ICD).
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Table 8.2: Study inclusion and exclusion criteria

Inclusion Criteria

Left ventricular systolic dysfunction as assessed by echo or RNVG (<40% )

Chronic stable HF symptoms (NYHA class II-IV)

Stabilised on standard HF treatment (without beta-blocker)

Clinically stable and free from all cause admission for 1 month

Exclusion Criteria

Use of beta-blockers in the last 6 months

Asthma or COPD with significant reversibility on PFTs

Atrial fibrillation

PCI within 3 months

CABG within 6 months

MI within 1 year

Resting HR < 60 bpm

Sitting systolic blood pressure < 85 mmHg

Severe valve disease

The patient cohort was split depending on whether or not they had heart failure of ischaemic
aetiology. Ischaemia was defined based on the following criteria,

(i) A stenosis of more than 50% in at least one of the three major coronary
arteries as assessed by coronary angiogram

(ii) Previous MI or PCI

(iii) Thallium-201 MPI (defined by two experienced reporters)

Ischaemia from the myocardial perfusion scan was defined by two experienced reporters. Of
this patient cohort, 54 were ischaemic, and 32 were non-ischaemic. For this study, an improve-
ment in LVEF of 10% was used as the definition of response to beta-blocker therapy.

8.2.2 Data Acquisition and Processing

All patients underwent planar RNVG imaging before and six months after beta-blockade. In-
vivo labelling was performed using intravenous administration of pyrophosphate 20 minutes
prior to injection of Technetium-99m pertechnetate. The administered dose for each scan was
800 MBq (21.6mCi). The gamma camera was positioned to achieve the best septal separation
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between the left and right ventricles. Imaging was acquired on an Optima gamma camera (GE
Healthcare, Waukesha, WI) using list mode acquisition and processed using MAPS Link Med-
ical 10000 software. The raw data were reconstructed into a 24 frame 64 x 64 matrix with the
exclusion of heartbeats 10% greater than the mean inter-beat (R-R) interval.

Left and right ejection fractions were calculated from the gated images by two experienced
operators, using a single region of interest method. This technique systematically underestimates
the ejection fraction, but it has higher reproducibility than a dual region technique. It is essential
to understand the normal range for the technique used because not all ejection fraction mea-
surements are interchangeable. The locally established normal range for LVEF by this method
is > 40% and the inter-observer variability is 3.1% [100]. Synchrony, entropy, approximate
entropy (ApEn), sample entropy (SampEn), and phase standard deviation were calculated from
the RNVG phase images both pre and post beta-blockade as previously described in Chapter 3.

8.2.3 Statistical Analysis

Shapiro-Wilk’s test was used to check the normality for each parameter, and significance testing
was performed, using the t-test or Wilcoxon rank-sum test, depending on the outcome of the
univariate test of normality. For paired data, a paired two-sample t-test or Wilcoxon signed-rank
test was used. The Chi-squared test was used to test the significance of categorical parameters.
Lasso regression was used for feature selection. A logistic regression model was fitted in R using
the selected predictors. Additional logistic regression models were fitted for a subset of the data
using only the most important predictors. The area under the receiver operator curve (AUC),
accuracy and significance were reported for each model. A p-value of < 0.05 was considered
significant for all tests as previously described. The correlation between the parameters was also
tested.

8.3 Results

8.3.1 Effect of Beta-Blocker on Dyssynchrony

The patient baseline characteristics are summarised in Table 8.3 for all 86 patients and split
by ischaemic (54 patients) and non-ischaemic aetiology (32 patients). The data are presented as
mean (± standard deviation) for continuous variables and absolute number (% of the population)
for categorical data. A Chi-squared test was used for categorical data and two sample t-test or
Wilcoxon rank-sum test was used for significance testing depending on the normality of the
specific variable. These results show a significant difference in age between the ischaemic and
non-ischaemic groups; the non-ischaemic group was younger, with a mean age of 54. Not
unexpectedly, there are more diabetic patients in the ischaemic group. There was no significant
difference between sex, hypertension, ICD or NYHA class.
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Figure 8.1 displays the scatter plots showing the correlation for each pair of variables on the
lower left area with the associated Pearson correlation value on the upper right area of the figure.
The variable names are displayed along the edges of the matrix and the diagonal boxes show the
distribution for each individual variable. This figure shows that dyssynchrony predictors do not
correlate as highly as the normal patients in Chapter 6 or breast cancer patients in Chapter 7.
The scatter plots and associated Pearson correlation values demonstrate that LVEF and RVEF
do not correlate strongly with the dyssynchrony parameters.

Comparison was made pre and post beta-blockade as summarised in Table 8.4. This table
shows mean values for each of the dyssynchrony parameters, LVEF and RVEF. The significance
test was selected based on the normality of the data. The p-values demonstrate that there was a
significant improvement in all of the dyssynchrony parameters, LVEF, and RVEF measured post
beta-blockade. The dyssynchrony values summarised in the table suggest that this patient cohort
has severe mechanical dyssynchrony compared with the normal patients in Chapter 6 and the
chemotherapy patients in Chapter 7. The mean values for all of the dyssynchrony parameters,
both pre and post beta-blocker, fall outside of the normal range defined in Chapter 6. The
patients were divided into ischaemic and non-ischaemic groups as shown in Table 8.5, where
the dyssynchrony, LVEF, and RVEF were assessed both pre and post beta-blockade. The table
shows that both the ischaemic and non-ischaemic groups demonstrated improved dyssynchrony,
LVEF, and RVEF after beta-blockade. The only parameter that did not significantly improve
after beta-blockade was ApEn for the non-ischaemic group. ApEn did improve from 0.54 to 0.49
for the non-ischaemic group, but this was not significant, possibly due to the small number of
patients in this group (32 patients). From Table 8.5 it appears that the non-ischaemic group have
more left ventricular dyssynchrony than the ischaemic group at baseline, but this difference was
not significant for any of the dyssynchrony parameters (p > 0.05). There was minimal difference
between the ischaemic and non-ischaemic patients when assessing dyssynchrony with entropy
and ApEn.

8.3.2 Predicting Response to Beta-Blocker

The patients were split into two groups, based on response to beta-blocker, as defined by an
increase in LVEF of 10% or more by RNVG. Based on this definition, 36 patients responded to
beta-blocker, and 50 patients did not. Table 8.6 shows the clinical and dyssynchrony parameters
at baseline for each group. The data in this table are presented as mean (± standard deviation)
for continuous variables and absolute number (% of the population) for categorical data. For the
imaging parameters tested, synchrony, entropy, SampEn, phase standard deviation, LVEF, and
RVEF were significantly different between the two groups. Overall, the patients who responded
to beta-blocker had a more dyssynchronous left ventricular contraction and lower left and right
ejection fractions than those who showed no significant improvement in LVEF. There was no
significant difference in sex, presence of hypertension, or diabetes. The results for the full group
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Figure 8.1: Scatter plots showing the correlation for each pair of variables with the associated
correlation value, with the variable names displayed along the edges of the matrix. The diagonal
boxes display the distribution for each individual variable. The scatter plots on lower left area
show the relationship between each pair of variables, and the Pearson correlation coefficient for
each pair of variables is displayed on the upper right area.
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Table 8.3: Baseline patient characteristics

All Ischaemic Non-ischaemic P value

(n= 86) (n=54) (n=32)

Age 64 (± 14) 69 (± 9) 54 (± 16) < 0.001

Female 31 (36%) 18 (33%) 13 (41%) 0.65

Hypertensive 42 (49%) 29 (54%) 13 (41%) 0.34

Diabetic 19 (22%) 16 (30%) 3 (9%) 0.05

ICD 2 (2%) 0 2 (6%) 0.26

NYHA Class II 48 (56%) 30 (56%) 18 (56%)
NYHA Class III 37 (43%) 24 (44%) 13 (41%) 0.42

NYHA Class IV 1 (1%) 0 1 (3%)

ICD = Implantable cardioverter defibrillator.

Data are presented as mean (± standard deviation) for continuous variables and absolute number (% of the

population) for categorical data. To test significance, a Chi-squared test was used for categorical data and two

sample t-test or Wilcoxon rank-sum test was used for continuous data depending on the normality of the specific

variable.

in Table 8.6 demonstrate a significant difference for ischaemic aetiology and age, suggesting
that younger patients and those with non-ischaemic heart failure were more likely to respond to
beta-blocker therapy. However, age is not significant for either group once the data is split by
ischaemic aetiology. This suggests that the significant difference in age for those who responded
to beta-blocker is because the ischaemic group is older, rather than age itself being a predictor.

Plots for the full group and ischaemic/non-ischaemic subgroups for each parameter are pre-
sented in Figures 8.2 to 8.8. Each plot has three panels showing boxplots for all patients, is-
chaemic patients, and non-ischaemic patients. For each patient group, the boxplots compare the
responders and non-responders. A higher value of ApEn, SampEn, phase standard deviation,
and entropy corresponds to worse dyssynchrony, while a lower value of synchrony corresponds
to worse dyssynchrony. The plots for synchrony, entropy, SampEn, phase standard deviation,
LVEF, and RVEF show a significant difference between the responders and non-responders.
This difference becomes larger when considering only the non-ischaemic group. None of the
parameters assessed demonstrated a significant difference for the ischaemic group.

Splitting the cohort by ischaemic aetiology demonstrates that dyssynchrony was signifi-
cantly worse at baseline for the non-ischaemic patients who responded to beta-blocker ther-
apy. Dyssynchrony also was predictive of the non-ischaemic group’s response. In contrast, for
the ischaemic group, none of the dyssynchrony parameters were significantly different between
responders and non-responders, as seen in Table 8.7. The table shows that there was no signif-
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Table 8.4: Comparing RNVG parameters pre and post beta-blockade

Predictor Pre BB Post BB Significance test P-value

Mean (± SD) Mean (± SD)

Synchrony 0.90 (± 0.14 ) 0.95 (± 0.09 ) Wilcoxon signed-rank < 0.001

Entropy 0.70 (± 0.07 ) 0.65 (± 0.06 ) Paired two sample t-test < 0.001

ApEn 0.54 (± 0.13 ) 0.48 (± 0.13 ) Paired two sample t-test < 0.001

SampEn 0.91 (± 0.3 ) 0.72 (± 0.21 ) Wilcoxon signed-rank < 0.001

Phase SD 28.0 (± 21.2 ) 18.8 (± 14.3 ) Wilcoxon signed-rank < 0.001

LVEF (%) 21 (± 9 ) 30 (± 11 ) Wilcoxon signed-rank < 0.001

RVEF (%) 26 (± 12 ) 33 (± 12 ) Wilcoxon signed-rank < 0.001

SD = standard deviation. A paired significance test for each parameter was selected based on normality of the

specific variable.

icant difference in age, sex, presence of hypertension, or diabetes for both the ischaemic and
non-ischaemic groups.
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Table 8.5: Comparing RNVG parameters pre and post beta-blockage, split by presence of is-

chaemia
Ischaemic (n=54) Non-ischaemic (n= 32)

Predictor Pre BB Post BB P-value Pre BB Post BB P-value

Mean (± SD) Mean (± SD) Mean (± SD) Mean (± SD)

Synchrony 0.91 (± 0.11) 0.94 (± 0.09) <0.001 0.87 (± 0.17) 0.95 (± 0.08) 0.001

Entropy 0.70 (± 0.06) 0.66 (± 0.07) <0.001 0.70 (± 0.08) 0.64 (± 0.06) <0.001

ApEn 0.55 (± 0.12) 0.47 (± 0.13) 0.001 0.54 (± 0.14) 0.49 (± 0.14) 0.103

SampEn 0.86 (± 0.24) 0.71 (± 0.2) <0.001 1.00 (± 0.37) 0.74 (± 0.23) 0.001

Phase SD 25.1 (± 16.8) 19.4 (± 14.5) <0.001 33 (± 26.6) 17.9 (± 14.1) 0.001

LVEF (%) 21 (± 8) 28 (± 10) <0.001 20 (± 11) 32 (± 11) <0.001

RVEF (%) 28 (± 12) 32 (± 10) <0.001 22 (± 10) 35 (± 14) <0.001

SD = standard deviation. Paired two sample t-test and Wilcoxon signed-rank tests were used to test the significance, depending on

normality of the specific variable.
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Table 8.6: Baseline clinical and dyssynchrony measures for the full heart failure cohort (n=86),
for predicting response to beta-blocker

Predictor Response to BB No Response Significance test P-value

(n=36) (n=50)

Age 58 (± 17) 67 (± 11) Wilcoxon rank-sum 0.0182

Female 13 (36%) 18 (36%) Chi-squared 1.0000

Hypertension 6 (17%) 13 (25%) Chi-squared 0.3627

Diabetic 15 (42%) 27 (54%) Chi-squared 0.4438

Ischaemic 17 (47%) 37 (74%) Chi-squared 0.0210

Synchrony 0.86 (± 0.16) 0.92 (± 0.12) Wilcoxon rank-sum 0.0099

Entropy 0.73 (± 0.07) 0.69 (± 0.07) Two sample t-test 0.0081

ApEn 0.57 (± 0.13) 0.53 (± 0.13) Two sample t-test 0.1361

SampEn 1.05 (± 0.34) 0.81 (± 0.23) Wilcoxon rank-sum 0.0008

Phase SD 33.8 (± 23.3) 23.9 (± 18.7) Wilcoxon rank-sum 0.0064

LVEF (%) 17 (± 8) 24 (± 9) Wilcoxon rank-sum 0.0006

RVEF (%) 21 (± 10) 29 (± 12) Wilcoxon rank-sum 0.0002

SD = standard deviation. Data are presented as mean (± SD) for continuous variables and absolute number (% of the population) for

categorical data. Response is defined as an improvement in left ventricular ejection fraction of more than 10%. To test significance, a

Chi squared test was used for categorical data and unpaired two sample t-test or Wilcoxon rank-sum test was used for continuous data

depending on the normality of the specific variable.
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Table 8.7: Comparing baseline clinical and dyssynchrony measures, split by etiology (n=86),
for predicting response to beta-blocker.

Ischaemic Non-ischaemic

Predictor Responded to No Response P-value Responded to No Response P-value

BB (n=17) (n=37) BB (n=19) (n=13)

Age 68 (± 7) 70 (± 10) 0.2878 50 (± 18) 60 (± 11) 0.1788

Female 6 (35%) 12 (32%) 1.0000 7 (37%) 6 (46%) 1.0000

HTN 5 (29%) 11 (30%) 0.3627 1 (5%) 2 (15%) 0.3627

Diabetic 10 (59%) 19 (51%) 0.4438 5 (26%) 8 (62%) 0.4438

Synchrony 0.93 (± 0.07) 0.9 (± 0.13) 0.8682 0.8 (± 0.18) 0.96 (± 0.08) 0.0003

Entropy 0.7 (± 0.06) 0.7 (± 0.06) 0.7606 0.75 (± 0.06) 0.64 (± 0.06) < 0.0001

ApEn 0.56 (± 0.12) 0.54 (± 0.13) 0.5426 0.57 (± 0.14) 0.48 (± 0.13) 0.0727

SampEn 0.9 (± 0.27) 0.84 (± 0.23) 0.4945 1.19 (± 0.33) 0.73 (± 0.21) 0.0002

Phase SD 22.3 (± 10.1) 26.4 (± 19) 0.8393 44.1 (± 26.9) 16.8 (± 16.3) 0.0003

LVEF (%) 20 (± 7) 22 (± 9) 0.4562 14 (± 8 ) 29 (± 8 ) 0.0003

RVEF (%) 26 (± 12) 29 (± 12) 0.3763 16 (± 6) 30 (± 9) 0.0001

SD = standard deviation. Data are presented as mean ± SD for continuous variables and absolute number with % of the population for

categorical data. To test significance, a Chi squared test was used for categorical data and two sample t-test or Wilcoxon rank-sum test was

used for continuous data depending on the normality of the specific variable.
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Figure 8.2: Synchrony for heart failure patients, calculated from baseline RNVG phase image
and split into two groups based on response to beta-blocker therapy. A lower value of synchrony
corresponds to worse dyssynchrony. Significance was tested using a Wilcoxon rank-sum test.
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Figure 8.3: Entropy for heart failure patients, calculated from the baseline RNVG phase image
and split into two groups based on response to beta-blocker therapy. Higher entropy corresponds
to worse dyssynchrony. Significance was tested using a two-sample t-test.
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Figure 8.4: ApEn for heart failure patients, calculated from the baseline RNVG phase image
and split into two groups based on response to beta-blocker therapy. A higher value of ApEn
corresponds to worse dyssynchrony. Significance was tested using a two-sample t-test.
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Figure 8.5: SampEn for heart failure patients, calculated from the baseline RNVG phase image
and split into two groups based on response to beta-blocker therapy. A higher value of SampEn
corresponds to worse dyssynchrony. Significance was tested using a Wilcoxon rank-sum test.



CHAPTER 8. EFFECT OF BETA-BLOCKADE ON DYSSYNCHRONY 95

p = 0.0064 p = 0.84 p = 0.00031

All Patients Ischaemic Non−ischaemic

0

25

50

75

100

125

P
h

a
s
e

 S
D

No response 
 to BB 

Responded 
 to BB 

Figure 8.6: Phase standard deviation for heart failure patients, calculated from the baseline
RNVG phase image and split into two groups based on response to beta-blocker therapy. Sig-
nificance was tested using a Wilcoxon rank-sum test.
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Figure 8.7: Baseline LVEF for heart failure patients, calculated from the baseline RNVG phase
image and split into two groups based on response to beta-blocker therapy. Significance was
tested using a Wilcoxon rank-sum test.
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Figure 8.8: RVEF for heart failure patients, calculated from the baseline RNVG phase image
and split into two groups based on response to beta-blocker therapy. Significance was tested
using a Wilcoxon rank-sum test.
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8.3.3 Predictive Models

Logistic regression models were used to try to predict which patients would respond to beta-
blockade. The first logistic regression model was created using 6 predictors selected by Lasso
regression based variable selection; SampEn, ischaemic aetiology, presence of diabetes, LVEF,
RVEF and age. There were no significant individual predictors within this model. The accuracy
for this model was 71% and the AUC was 0.73.

The non-ischaemic group had a larger proportion of responders and number of individually
significant predictors. Therefore, a second model was proposed for the non-ischaemic subgroup,
using the same predictors with the exception of ischaemic aetiology. Improved accuracy of 80%
and AUC of 0.87 was achieved when considering only the non-ischaemic subgroup. For a sim-
pler interpretation, a third model was fitted for the non-ischaemic subgroup using only SampEn

and LVEF, achieving an accuracy of 84% and AUC of 0.90. The accuracy and AUC values for
each model are summarised in Table 8.8. The three logistic regression models proposed are
shown in Table 8.9. The coefficient and corresponding p-value for each predictor within the
model are shown.

Table 8.8: Summary of Logistic Regression Models

Model AUC Accuracy (%)

1 - All HF (SampEn, ischaemic aetiology, diabetic, LVEF, RVEF, Age) 0.73 71%

2 - Non-ischaemic (SampEn, diabetic, LVEF, RVEF, Age) 0.87 80%

3 - Non-ischaemic (SampEn, LVEF) 0.90 84%
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Table 8.9: Logistic Regression Models for predicting response to beta-blockade

Model 1 Model 2 Model 3

Predictor Coefficient P-value Coefficient P-value Coefficient P-value

(Intercept) 2.3771 0.3233 17.2665 0.1905 -0.9410 0.7968

SampEn 1.3457 0.2733 5.4841 0.1559 3.6943 0.1799

LVEF -0.0554 0.1699 -0.2980 0.2065 -0.1017 0.1462

RVEF -0.0280 0.3256 -0.0622 0.5776 - -

Diabetic -0.5273 0.4245 -2.1039 0.7037 - -

Age -0.0335 0.1700 -0.2369 0.1744 - -

Ischaemic 0.4520 0.4585 - - - -



CHAPTER 8. EFFECT OF BETA-BLOCKADE ON DYSSYNCHRONY 99

8.4 Discussion

The results suggest that beta-blockers improve dyssynchrony for HFrEF of both ischaemic and
non-ischaemic aetiology. As expected LVEF and RVEF also improve post beta-blockade. The
results compare well with the studies by Kaya et al. and Takemoto et al. [98, 101]. Both studies
used septal to lateral delay as measured by echo to assess dyssynchrony and did not include
any patients with ischaemic heart failure. Kaya et al. found that beta-blockade improved left
ventricular dyssynchrony and LVEF for heart failure patients with idiopathic dilated cardiomy-
opathy and left ventricular dyssynchrony. Takemoto et al. also found that patients experienced
an improvement in both LVEF and dyssynchrony after beta-blocker therapy for patients with a
QRS <120ms and sinus rhythm. The mechanism for this improvement is not fully understood.

A second finding of this study is that patients with HFrEF with non-ischaemic aetiology with
more severe dyssynchrony were more likely to respond to beta-blocker therapy (defined as an
improvement in LVEF of 10% or more). In contrast, dyssynchrony was not predictive of beta-
blocker response in the ischaemic subgroup. The difference in response between ischaemic and
non-ischaemic aetiology is an interesting finding.

The improvement in left ventricular dyssynchrony may in part be due to the reduced heart
rate caused by beta-blockade. There are a number of studies investigating this relationship with
varying results. A study using SPECT MPI dyssynchrony by Al-Jaroudi et al. found no cor-
relation between heart rate and dyssynchrony for patients with end-stage renal failure [102].
However, this study investigated correlations rather than heart rate changes for individual pa-
tients. Another SPECT MPI dyssynchrony study by Barron et al. demonstrated that there was
a strong correlation between heart rate and dyssynchrony measured by bandwidth and standard
deviation when the phase was measured in time but found that bandwidth and standard deviation
were unrelated to heart rate when measured in degrees [103].

Several echocardiography studies have also investigated the correlation between heart rate
and dyssynchrony. Lafitte et al. found that exercise did not have an effect on dyssynchrony for
patients with normal left ventricular function, but for patients with heart failure, 37% had no sig-
nificant change in dyssynchrony, 34% had worsened dyssynchrony, and 29% improved [104].
They also found a significant association between the presence of ischaemic cardiomyopathy
and exercise-induced changes in dyssynchrony. Research carried out by Valzania et al. found no
increase in dyssynchrony for heart failure patients undergoing Dobutamine stress echocardiog-
raphy [105]. Conversely, Chattopadhyay et al. carried out Dobutamine stress echocardiography
for heart failure patients and demonstrated a significant increase in dyssynchrony [106]. The
studies referred to here were all relatively small studies with varying inclusion criteria for pa-
tient selection. The relationship between heart rate and dyssynchrony is not yet fully understood,
and further work is needed to answer this question.

Previous research has suggested that response to therapy may differ for ischaemic and non-
ischaemic aetiologies. The CIBIS-I trial [97] suggested a difference in ischaemic and non-
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ischaemic survival post beta-blocker. However, the trial had lower than expected deaths. No
difference in survival between ischaemic and non-ischaemic aetiologies was found in the CIBIS-
II trial [107]. The investigators assessed the patients enrolled in CIBIS II and classed them as
NYHA class III to IV. However, the mortality rate observed in the trial’s placebo arm suggests
most patients in the study were likely to be compatible with NYHA class II rather than classes
III to IV [108]. This is an example of the limitations and subjective nature of the NYHA class
system. The CIBIS trials did not measure dyssynchrony. Possible reasons for the difference
could be differing levels of dyssynchrony within the cohorts or different levels of disease.

Improved dyssynchrony has been linked with improved survival, as shown in CRT studies.
For example, a sub-study of the EchoCRT trial found that persistent or worsening dyssynchrony
six months post CRT was associated with worse clinical outcomes, in particular, heart failure
hospitalisations [14]. Bader et al. [12] used tissue doppler imaging to measure the maximum
delay between septal, lateral, anterior and inferior walls as a measure of dyssynchrony and
reported that mechanical dyssynchrony is predictive of heart failure worsening. A study by
Cho et al. used the maximum delay in an eight segment model to assess dyssynchrony, and
they reported that dyssynchrony is a predictor of clinical events for patients with heart failure
[15]. Another study by Askari et al. suggested that for patients with ischaemic heart failure,
the presence of dyssynchrony could be a predictor of heart failure progression [109]. The study
assessed dyssynchrony by calculating the standard deviation of time to peak systolic myocardial
velocity and the maximum segment delay using a six basal and mid-segment model. There
are several methods for assessing dyssynchrony within each imaging modality, and they are not
necessarily equivalent. More research is required to establish standardised methods and compare
the different techniques.

There are a limited number of studies investigating the effects of the right ventricle in heart
failure. This work has suggested that beta-blocker improves RVEF as well as LVEF. There are
some small studies published which support this result, including a study by Tatli et al. [110]
which found that right ventricular systolic performance improved for heart failure patients post
beta-blocker, with an associated improvement in left ventricular systolic function. Another study
by Giardini et al. [111] found that beta-blocker therapy improved RVEF and reduced right ven-
tricular volumes in patients with a systemic right ventricle. Future work investigating dyssyn-
chrony of the right ventricle would be of interest in this cohort.

Knowing which patients will respond to the currently available therapies may be crucial to
ensure each patient receives the most appropriate treatment. For this reason, logistic regression
models were created to predict beta-blocker response. Limited accuracy (71%) was achieved
with Model 1, which was based on all HFrEF patients. Greater success was achieved by con-
sidering only HFrEF of non-ischaemic aetiology. The accuracy achieved with Model 2 was
84%. Of the models created, Model 3 (SampEn and LVEF) is preferred due to achieving high
accuracy with only two predictors for non-ischaemic heart failure patients.
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While the effect of dyssynchrony and beta-blockers on survival would be of clinical interest,
this cohort is too small to provide any meaningful results. Treatment for these patients would
have varied, and some went on to have percutaneous coronary intervention (stent), coronary
artery bypass graft, or heart transplant after the study. Previous attempts to create models to
predict mortality for heart failure patients have had only moderate accuracy, and those trying to
predict a combined endpoint of hospitalisation or death had even poorer results [112, 113].

There are currently no studies using newer echo dyssynchrony parameters, such as global
longitudinal strain, to investigate the effect of beta-blockers on cardiac dyssynchrony. This
study is the only work to date assessing dyssynchrony for heart failure patients using RNVG
phase parameters. Heart failure treatment would benefit from further investigation of mechanical
dyssynchrony in larger trials.

8.4.1 Limitations

The results are from a single centre study, limited by a small patient sample with no control
group. The model for predicting beta-blocker response had high accuracy but would require
further testing with an unseen data set. This study also assumes patient compliance with taking
prescribed drugs. Assessment of the right ventricular ejection fraction by planar RNVG is less
accurate than other techniques due to the right ventricle overlapping with the right atrium in the
best septal view.

8.5 Conclusions

An improvement in dyssynchrony, LVEF, and RVEF, was measured six months post beta-
blockade for both ischaemic and non-ischaemic groups. This research also suggests that pa-
tients with non-ischaemic heart failure and dyssynchronous left ventricular contraction are more
likely to respond to beta-blocker therapy. A larger study with data from multiple centres would
be desirable to confirm the interesting results of this study.



Chapter 9

Summary and Conclusions

This research has successfully demonstrated the value of novel dyssynchrony parameters cal-
culated from radionuclide ventriculography (RNVG) phase images, including synchrony, en-
tropy, phase standard deviation, approximate entropy (ApEn), and sample entropy (SampEn).
A methodology to optimise ApEn and SampEn for this application has been developed, demon-
strated using simulated data, then validated with clinical results. The results of this work high-
light the importance of optimising input parameters when using novel indices, such as ApEn

and SampEn, to characterise clinical images. The dyssynchrony parameters demonstrated high
intra-operator reproducibility, in agreement with the results of other published work that investi-
gated RNVG phase. Further investigation would be required to confirm the reproducibility and
normal range for clinical use at other sites. All of the dyssynchrony parameters that were as-
sessed demonstrated a significant difference between myocardial infarction, left bundle branch
block, and normal patients. A normal range has been suggested for each parameter based on the
analysis carried out with the normal patient group using the optimised sequence length m, and
tolerance value r for ApEn and SampEn.

The optimised parameters were applied in the assessment of various clinical patient groups.
This is the first time ApEn and SampEn have been used to measure cardiac dyssynchrony to pre-
dict patient outcomes. The dyssynchrony parameters were used to assess breast cancer patients
who received cardiotoxic cancer therapy and patients with heart failure (with reduced ejection
fraction) pre and post beta-blockade therapy. Predictive models using logistic regression were
successfully established for both of these patient cohorts. The predictive models achieved a
high accuracy using 10-fold cross-validation. However, further testing with unseen data would
be necessary to validate the models fully. In both the breast cancer and heart failure clinical
studies, SampEn performed better than synchrony, entropy and phase standard deviation. ApEn

and SampEn both performed well for the group of breast cancer patients, suggesting that ApEn

may be useful for detecting mild dyssynchrony. However, SampEn was superior to ApEn when
applied to the heart failure patients with more severe dyssynchrony.

The results from the study investigating patients who received cardiotoxic therapy suggest

102
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that dyssynchrony parameters applied to the baseline RNVG can detect subtle phase abnormal-
ities. The data from this study indicates that ApEn combined with the baseline LVEF could
potentially predict which patients are at a higher risk of developing left ventricular dysfunc-
tion following cardiotoxic chemotherapy, as measured by LVEF decline before treatment com-
mences. This is a novel result that has not previously been demonstrated with RNVG. Patient
treatment and monitoring could become more personalised if patients at a higher risk of cardiac
dysfunction could be identified earlier, helping to achieve the optimal outcome for each patient.

The beta-blocker study for patients with heart failure demonstrated that dyssynchrony, and
left and right ventricular ejection fraction improve after beta-blocker for both ischaemic and non-
ischaemic groups. This result compares well with several small published echo dyssynchrony
studies. It is already established that beta-blockade therapy significantly improves LVEF, but its
effect on cardiac dyssynchrony has not previously been widely investigated. A second finding
from this study is that patients with non-ischaemic heart failure and dyssynchronous left ventric-
ular contraction are more likely to respond to beta-blocker therapy. Identifying non-responders
to current guideline-advised medical therapy is essential to ensure each patient receives the
most appropriate treatment. The difference in response between ischaemic and non-ischaemic
aetiology is an interesting finding which is discussed in the literature, but there is currently no
consensus in this area. This study is the only work to date assessing dyssynchrony for heart fail-
ure patients using RNVG phase analysis. A larger study with data from multiple centres would
be desirable to confirm the interesting results of this study.

The results have demonstrated that dyssynchrony can be measured by RNVG phase analy-
sis and has been shown to be useful in predicting patient outcomes for several different patient
groups. This research suggests that assessing and quantifying mechanical dyssynchrony could
be of clinical benefit. Combining ApEn or SampEn with LVEF provided additional information
in both studies. Predictive models that combine dyssynchrony with other known predictors may
improve clinical decision making. This research was carried out using dyssynchrony measures
from RNVG phase; however, the clinical results may apply to other imaging modalities. Com-
parisons between dyssynchrony measured from different imaging modalities will be important
as dyssynchrony starts to play a more significant role in cardiac guidelines and decision making.
Currently, there is no gold standard for evaluating mechanical dyssynchrony, but standardisation
and normal ranges will be essential to provide meaningful results and allow comparison between
different sites, techniques, and software.

Future work investigating the potential of dyssynchrony calculated from RNVG phase im-
ages to predict cardiac resynchronisation therapy (CRT) response would be an interesting ap-
plication for this research. The ability to predict response in this patient cohort would have
substantial clinical benefits. Approximately 30% of patients who currently undergo CRT ther-
apy are classified as non-responders. However, some echocardiography studies have suggested
a significant difference in dyssynchrony between responders and non-responders before CRT
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implantation. At present, there is not enough evidence to suggest that the selection criteria for
cardiac resynchronisation should include mechanical dyssynchrony, but there has been a sig-
nificant amount of interest in using dyssynchrony for this application. To date, the research is
primarily using echo derived dyssynchrony parameters rather than RNVG phase. This is an area
where further research is necessary.

Overall, this research strengthens the idea that dyssynchrony can predict patient outcomes
and improve clinical decision making. This proof of concept work was carried out as a sin-
gle centre, retrospective study with a single processing system and fixed imaging parameters.
A larger prospective multi-centre trial would be required to confirm and expand on the results
within this thesis before being implemented clinically. In addition, full testing of the prediction
models would require further work with new unseen data. There would also be a clinical benefit
in comparing dyssynchrony measured from RNVG against dyssynchrony from other modalities,
such as echocardiography and MRI. In particular, the comparison of RNVG phase parameters to
more established echocardiography dyssynchrony measures such as global longitudinal strain.
Where possible, the results of this research have been compared to dyssynchrony studies using
echocardiography, but a further study with direct comparison would be necessary before clinical
implementation. Nevertheless, it is becoming clear that dyssynchrony plays an important role in
assessing cardiac function and will continue to play an increasing role in the constantly evolving
field of cardiac imaging. Combining dyssynchrony with other novel approaches, such as con-
traction patterns, image texture and more advanced dyssynchrony measurements, with known
clinical predictors, may potentially improve the results.
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