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Abstract

Traditional text classification approaches may be ineffective when applied to texts with in-
sufficient or limited number of words due to brevity of text and sparsity of feature space.
The lack of contextual information can make texts ambiguous; hence, text classification ap-
proaches relying solely on words may not properly capture the critical features of a real-world
problem. One of the popular approaches to overcoming this problem is to enrich texts with
additional domain-specific features. Thus, this thesis shows how it can be done in two real-
world problems in which text information alone is insufficient for classification. While one
problem is depression detection based on the automatic analysis of clinical interviews, an-
other problem is detecting fake online news.

Depression profoundly affects how people behave, perceive, and interact. Language re-
veals our ideas, moods, feelings, beliefs, behaviours and personalities. However, because
of inherent variations in the speech system, no single cue is sufficiently discriminative as
a sign of depression on its own. This means that language alone may not be adequate for
understanding a person’s mental characteristics and states. Therefore, adding contextual in-
formation can properly represent the critical features of texts. Speech includes both linguistic
content (what people say) and acoustic aspects (how words are said), which provide impor-
tant clues about the speaker’s emotional, physiological and mental characteristics. Therefore,
we study the possibility of effectively detecting depression using unobtrusive and inexpensive
technologies based on the automatic analysis of language (what you say) and speech (how
you say it).

For fake news detection, people seem to use their cognitive abilities to hide information,
which induces behavioural change, thereby changing their writing style and word choices.
Therefore, the spread of false claims has polluted the web. However, the claims are relatively

short and include limited content. Thus, capturing only text features of the claims will not
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provide sufficient information to detect deceptive claims. Evidence articles can help support
the factual claim by representing the central content of the claim more authentically. There-
fore, we propose an automated credibility assessment approach based on linguistic analysis

of the claim and its evidence articles.
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Chapter 1

Introduction

1.1 Motivations

Over the last few decades, the number of computer users has significantly increased, espe-
cially due to the popularisation of the Internet and the possibility of automating office pro-
cesses using dedicated software [214]]. This induces a continuing growth in the amount of
computer readable text produced, stored and handled, although the text information remains
widely in hard copy format. Over the last twenty years, ‘word processing’ software of some
form has been used to produce nearly most of the printed text information globally. Although
text is an extremely rich source of information, extracting insights from text can be challeng-
ing and time consuming due to its unstructured nature. For example, 80% of the entity data,
including person, place or thing, is provided only in unstructured form, such as email, views,
news or interviews [151]]. This unstructured data is considered a problem in most areas of
data-intensive applications—business, universities and research institutions [151]. While it
would be impossible to manually analyse these data, text analytics has become increasingly
popular to automate this process.

Text analytics analyses the hidden relationships between entities to discover meaningful
patterns that reflect the knowledge contained in the dataset. This knowledge is utilised in
decision-making [48]. Text analytics typically employs various methodologies to process the
text: one of the most important is natural language processing (NLP). It applies computa-
tional linguistics principles to analyse lexical and linguistic patterns [48]. Text classification,
also known as text categorisation, is a classical problem in NLP that aims to assign labels or

tags to textual units, such as sentences, queries, paragraphs and documents. It has different
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applications, including question answering, sentiment analysis, misinformation detection and
depression detection. The widely studied cases of text classification are binary text classifi-
cation in which a textual text is classified into one of two mutually exclusive categories or
classes. In 1960, Hans Peter Luhn [189] utilised the document-frequency method to automat-
ically obtain literature summaries, which is also called the basis of text classification research.
In 1970, [275]] proposed a vector space model for text representation. Within the 1990s, ma-
chine learning became a new trend after the development of statistics, enabling researchers to
apply machine learning algorithms to text classification. Recently, the increasing popularity
of deep learning has induced the application of advanced methods to text classification.

Computers need a vast amount of common-sense and domain-specific world knowledge
to understand natural language [84,|174]. However, the previous studies on semantic re-
latedness were purely based on a statistical approach that discarded background knowledge
[23,87] or on lexical resources that incorporated limited knowledge about the world [49,/144]].
This is especially true when standard text classification approaches are applied to texts that
have insufficient or limited words; thus, it may cause text brevity and feature space spar-
sity [103]. In this thesis, insufficient or limited words are defined as when text features
alone underperform compared to their combination with other sources of data. Compared
with paragraphs or documents, texts with a limited number of words are more ambiguous
due to the lack of contextual information. Thus, simple text classification approaches based
on words only may not properly represent the critical features of texts. One of the efficient
solutions to overcome the mentioned problems is to enrich texts by using domain-specific in-
formation, which can be called the feature space augmentation method or, more specifically,
feature enrichment [[103]]. In this thesis, we aim to study two different real problems in which
their text inputs alone are insufficient for classification. The common solution is to enrich
the text features with additional contextual features, and these additional features are based
on the problem that we address. We comprehensively analyse and address the two problem
scenarios separately.

The problem of insufficient text can occur in any communication, whether it happens
face-to-face (F2F) or online. The most important means of human communication in F2F is
the clinical interview. F2F clinical interviews are the foundation of all clinical activities in

psychotherapy and are typically the first encounter between the mental health professional
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and the patient. One of the more productive arenas for exploring text in clinical interview
has been in the depression literature. More specifically, we studied depression detection
in clinical interviews recorded in three Mental Health Centres (59 interviews). There were
difficulties in obtaining enormous data, a problem that is inherent to depression detection
due to ethical and practical concerns in recruiting depression patients. To effectively tackle
this limited data availability, we segmented the transcription of interviews into clauses, i.e.
to manually extract linguistic units that include a noun, a verb and a complement. These
segmented clauses therefore have a limited number of words that may not provide sufficient
contextual information. This problem of a limited number of words is imperative to study
in depression domain because of several reasons. First, the literature provides evidence that
depressed individuals tend to engage less in social interactions and, therefore, speak less than
people that are unaffected by the pathology [44,/118]]. Second, realistic application scenarios
require one to tackle recordings that contain only a few words (e.g. the use of data collected
at help lines [[140]). Finally, when the speech data are obtained through interviews or other
forms of interaction that involve medical personnel, reducing the amount of time necessary
to gather enough information lowers the costs associated with depression diagnosis.

Major depressive disorder is a mental disease, and over 300 million people suffer from
this disease globally [221]. Depression is considered a major cause of suicide and the sec-
ond primary cause of death among teenagers [222]. Depression cases are increasing with
an increase of around 18% between 2005 and 2015 [221]]. According to the World Health
Organization (WHO), less than half of depressed patients globally (in many countries, fewer
than 10%) receive proper depression treatment. It can be difficult for the depressed to attain
professional attention due to mobility, cost, motivation and hesitation to report since they are
sometimes passive in contacting psychologists or psychiatrists to get treatment. Therefore,
it is imperative to develop a computer-aided automatic depression assessment system that
supports psychiatrists in the diagnosis of clinical depression and reduces subjective bias.

Depression certainly impacts the way people feel, think, and communicate [21]. Lan-
guage reveals our ideas, moods, emotions, beliefs, behaviours and personalities [289]]. The
observed effect of depression on linguistic style is mainly explicated by cognitive mecha-
nisms (e.g. studies in [29,67]]) in which depressed patients reveal increased negative emo-

tions and self-focus. In line with these cognitive models, social integration/disengagement
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theories (e.g. study in [95] ) also study patterns in which suicidal patients become less so-
cially engaged with community. These underlying mechanisms manifest themselves through
language, indicating an increased self-focus, splitting from others and negative emotion
[65,[310]. Therefore, studying language to detect and assess human mental health diseases
is considered an appropriate mental health modelling. For example, a Russian speech study
(298] found a more frequent use of all pronouns and verbs in the past tense among depression
patients. This means that patients suffering from depression will reveal linguistic behaviours
that vary from those of healthy individuals. Therefore, language reflects the mind [[100]].

Although studies have shown the strength of predictive factors of linguistic features for
the depression status of individuals, no single feature on its own has enough distinctive power
as a sign of depression due to the inherent differences in the speaking method [79]. This
means that linguistic cues alone may not be sufficient to understand the mental traits and
states of the person; thus, information from other modalities needs to be supplemented.
Interview reveals the linguistic contents (what people say) and has paralinguistic/acoustic
speech (how words are said) that show significant clues about the emotional, neurological
and mental features of the speaker. Therefore, the recent speech technologies are suggested
for the evaluation, diagnosis and monitoring of different mental disorders that affect the sub-
ject’s voice [77]. Particularly, depression may induce cognitive and motor changes that af-
fect speech creation, where decreases in verbal activity efficiency, prosodic speech impropri-
ety and monotonous speech have all been revealed to be symptomatic of depression [300]].
For example, spectral-based features of depressed people change remarkably in depressive
states [228]]. Considering the broad clinical outline of depression, it appears that a multimodal
approach to identifying depression from collections of linguistic and paralinguistic/acoustic
channels of communication yields significant benefits. The first part of this thesis aims to
help clinicians and psychiatrists through the development of automatic approaches for iden-
tifying people affected by depression based on the automatic analysis of language (what you
say) and speech (how you say it).

The other type of communication can happen in online websites. The innovative invention
of the World Wide Web has enabled data sharing to the world very easy. People these days
completely depend on news from the internet than the classic organisations. For example, a

recent study showed that around 68% of U.S. adults get and share news using social media
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applications and websites [54]. This explosive growth of the web, including online news
and social media, has enabled the delivery of relevant content to the right users based on
limited context information and implicit knowledge. Despite being a vast resource of valuable
information, the spread of false claims has polluted the web. Therefore, we address the
misinformation problem of exploring text on online websites.

According to the World Economic Forum, ‘the rapid spread of misinformation online’
is one of the top ten greatest challenges facing the world [[111]. Recently, this rapid spread
has widely emerged on online sites for different commercial and political influences. While
this spreading of misinformation (also known as ‘Fake News’) deceives people to accept
false beliefs and change the way they respond to the truth, it breaks the reliability of the
entire information ecosystem [296]. During the 2016 U.S. presidential election campaign,
misinformation was identified and became a severe risk to journalism, democracy, freedom
and the public’s trust in governments. The chance to mislead or to be misled increases during
news production, dissemination and consumption, thereby necessitating many fact-checking
websites, where people research claims, manually assess their credibility and present their
verdict along with evidence, such as background articles and quotations [193]. However,
human can detect deceptive claims just 4% better than chance based on a meta-analysis in
over 200 studies [43]]. This problem calls for credibility assessment tools that can automate
the verification process of claims.

Individuals seem to employ their cognitive efforts to modify or hide information. This
induces changes in behaviour, thereby inducing changes in verbal and written texts. For par-
ticular reasons, they attempted to change their writing style and to change their word choices
to fabricate individual facts. This contains linguistic feature changes, and one may discover
fabricated text by analysing these features. This challenge encourages researchers to con-
sider several ways to detect deceptive texts [[253]]. Within this framework, writing misleading
claims appears to be done by carefully selecting words because words are the richest and
most distinguished way to communicate [98]]. Also, to maintain ‘cohesion’ and ‘coherence’
in their claim, it is based heavily on lexicalisation and complex syntactic structures [55./126].
Therefore, it produces more linguistic leakage to deception, meaning that linguistic patterns
may leak information that people try to hide and indicate the claim’s credibility.

Considering the structure or origin of the claim, it is relatively short and contains a very
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limited context. Thus, analysing only textual claims will reveal limited clues that probably
cannot sufficiently identify deception. Therefore, studies often combine this approach with
other auxiliary features to improve detection, such as other linguistic or network analysis
techniques (e.g. studies in [106] and [107]). Since any fact can be demonstrated as genuine
with supporting evidence, gathering evidence is an ultimate step in assessing the credibility
of claims or facts. Evidence articles, also referred to in this thesis as supporting articles, help
to support the factual claim by representing the central content of the claim more authenti-
cally. The second part of this thesis aims to propose an automated credibility assessment that
reduces the burden by assisting humans in verifying the veracity of the claim. More specifi-
cally, we linguistically analyse the claim along with its relative evidence articles to determine

their opinions regarding the credibility of the input claim.

1.2 Thesis Statement

Binary text classification is becoming important in many problems, such as depression detec-
tion and misinformation identification. The classification of texts that include an insufficient
or limited number of words is particularly challenging. This thesis asserts that enriching tex-
tual data with contextual information (domain-specific information) can help to impact the
performance of text classification. Understanding the required contextual information will
help build a more effective text classification for a problem. Also, the way how to leverage
additional information to text directly influences the performance of text classification prob-
lems. Two different application scenarios—depression and misinformation—are studied to
explore the effectiveness of leveraging additional information. Overall, the statements set

forth by the thesis are as follows:

» Statement 1: Developing an objective, effective system that supports psychiatrists in
their diagnosis of clinical depression was based on linguistic and acoustic/paralinguistic
aspects of speech. We focus on estimating the likelihood that individuals could be con-
sidered depressed/non-depressed given their clauses. In this thesis, the clause is defined

as a multimodal analysis unit that includes both speech signals and their transcription.

» Statement 2: Developing an objective credibility assessment system that reduces the

burden by assisting humans in verifying the veracity of the textual claims that are ex-
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pressed freely in Internet. The assessment is based on a linguistic analysis of the claims
regarding evidence articles. We focus on estimating the likelihood that the claims could

be considered credible/not-credible given the claims along with their evidence articles.

1.3 Contributions

This thesis’s main contribution is the use of additional domain-specific information (con-
textual information) to enrich textual data for text classification in different forms of com-
munication. In F2F communication, clinical interviews for depression are studied, while in
online communication, misinformation is studied. We contribute a series of approaches to
analyse the data in both depression and misinformation domains. More specifically, the work
described makes the following contributions in each domain:

The main contributions and novel findings to the field of depression are as follows:

1. Distinguishing between depressed and non-depressed participants, in the data of
this work, was done by psychiatrists and not by administering self-assessment
questionnaires. Half of the participants have been diagnosed with depression by a
professional psychiatrist, while the other half, referred to as control participants, have
never experienced mental health issues. This is an important advantage because it in-
creases the chances of the data being representative of the actual difference between
depressed and non-depressed speakers. Alternatively, it ensures that the problem ad-
dressed in the work is depression detection and not the inference of self-assessment
scores. This is important because self-assessment questionnaires are subject to mul-
tiple biases and, furthermore, the data show that they can be filled out inconsistently,

especially by people affected by depression.

2. Developing an objective, effective system that supports psychiatrists in their di-
agnosis of clinical depression from linguistic and acoustic aspects of speech. The
experiments show that the approach appears to be in condition to discriminate between
cases that are sufficiently clear to be processed automatically and cases that require
medical attention, thus allowing the system to potentially reduce by two-thirds the

workload of the medical personnel while still keeping the accuracy above 90%.
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3. Structuring the input data by a clause which is a subject, a finite verb and possibly
a complement that express part of a speech act such as narrating, explaining or
interrupting. Unlike the other works that utilise entire interviews, interviews are seg-
mented into clauses. This methodological contribution is beneficial for tackling limited

data availability.

4. Manifesting conditions in non-depressed subjects tend to be much better in lin-
guistic cues (what you say), while depressed patients seem to be better in man-
ifesting their condition in speech (how you say it). It means that people tend to
manifest their condition either through what they say or through how they say it but not
through both. This induces different types of errors in each modality; thus, the mul-
timodal approaches benefit from these error differences as one modality compensates
for the error of the other modality. This highlights the importance of utilising another

source of information with text.

5. Performing depression detection in less than 10 seconds (this equals less than eight
clauses) can be possible without significant performance losses, especially for re-
call. The experiment shows that the observed results do not depend on the protocol
applied at the beginning of the interviews but on the amount of data. This finding can
explain why depression patients tend to manifest their condition so consistently and

that there is a high probability of correctly classifying any clause they utter.

The main contributions and novel findings to the field of misinformation are as follows:

1. Developing an objective credibility assessment system that reduces the burden by
assisting humans in verifying the veracity of the textual claims that are expressed
freely in Internet. The experiments show that the approach can reduce by four-fifths

the workload of the trained journalists while still keeping the accuracy above 73.4%.

2. Utilising complementary information beneficially classifies textual claims. The
experiments demonstrate that relying solely on claim inputs without enriching them
with relevant articles is insufficient. This is because they underperform, to a statistically

significant extent, compared with claims supplemented with relevant articles.
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3. Increasing the length of the supporting articles can capture all the key factors
that contribute to identifying the claim identity. This observation conforms with the
actual process of manual fact-checking that entails reading the entire article to make a

final decision towards a claim [45]].

4. Using multiple evidence articles for a claim constitutes an important source of
information for improving the system’s performance. This finding conforms with
the manual fact checking process since the journalists scan the web to investigate the
claim identity. The more reliable articles the journalists read, the more confident the

results are.

1.4 Organisation of Thesis

This section mainly discusses the remainder of the thesis with core ideas. The thesis is divided

into three parts.

* Part I Depression Detection by Linguistic and Acoustic of Speech:This part com-
prises of Chapters [2] [3]and ] Chapter [2] provides the background of depression from
psychology, linguistics and acoustics aspects. Different diagnostic tools are also de-
scribed, including clinical interviews and self-assessments. Also, the objective mark-
ers and indicators for depression, including speech, linguistic and the combination of
them, are highlighted. It covers the relevant datasets used in the depression litera-
ture. Chapter [3]shows how efficiently linguistic and acoustic/paralinguistic features are
combined for identifying depression. We proposed a model that uses network architec-
tures combining textual transcriptions with speech signals through a wide spectrum of
multimodal approaches that consider both what people say and how they say it. The
effectiveness of the proposed approaches on real-world dataset are investigated. The
efficacy of utilising advanced text embedding that considers the context of the word is

analysed. In Chapter [ detailed motivations and extensive experiments are provided.

* Part IT Assessment of the claim’s credibility: This part is divided into two different
Chapters [5]and [6] Chapter [5] introduces the problem of misinformation by disc