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Abstract

Functional data analysis is a growing field of research and has been employed in a wide range

of applications ranging from genetics in biology to stock markets in economics. A crucial but

challenging problem is clustering of functional data. In this thesis, we review the main con-

tributions in this field and discuss the strengthens and weaknesses of the different clustering

functional data approaches. We propose a new framework for clustering functional data and a

new paradigm for model selection that is specifically designed for functional data, which are

designed to address many of the weaknesses of existing techniques. Our clustering framework

is based on first reducing the infinite dimensional space of functional data to a finite dimensional

space by smoothing and basis expansion. Then we implement the spectral clustering approach

by designing a new distance measure which has the flexibility of using the distance between

the original trajectories and/or their derivatives. In addition, we develop a new model selection

criterion, by introducing a technique called ‘downsampling’, which allows us to create lower

resolution replicates of the observed curves. These replicates can then be used to examine the

clustering stability of the existing clustering functional data approaches and select the optimal

number of clusters. Further, we combine the two proposed techniques to develop an integrated

clustering framework to estimate the number of clusters inherently and accordingly cluster the

functional data. An extensive simulation study with existing clustering functional data methods

show a superior performance of our clustering framework and reliable results of the proposed

model selection criteria. The usefulness of these new approaches is also illustrated through

applications to real data.
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Chapter 1

Introduction

1.1 Overview

Functional data analysis is a branch of statistics that analyses information on functions or curves,

widely known as FDA. The functions represent repeated observations of the same process taken

over some continuum such as time or space and they take the form of smooth curves. The term

FDA was first introduced by Ramsay and Dalzell (1991), then Ramsay and Silverman (2005) de-

fined its varied contexts and provided techniques for analysing functional data with applications

on real-life datasets, besides developing the R package fda (Ramsay et al., 2014). According

to Ramsay and Silverman (2005), the definition of FDA is based on considering each curve as

an individual entity instead of a sequence of individual observations along the curve. Therefore,

it simplifies the representation of the important features of the data and the exploration of data

pattern over time (or other continuum) with continuity, which in turn provides more information

about the variation in the data. In addition, FDA can handle sparse data or irregularly spaced

data, and it can estimate the derivatives of functions or other properties of curves for further

analysis. Ramsay and Silverman (2005) have added that FDA techniques can be expanded to

explore curve registration that transforms curves by transforming their arguments for functional

data that display phase and amplitude variation. Due to the flexibility of FDA, it has been widely

used in various applications and fields such as medical and biological sciences, environmental

sciences, social sciences, and economics. Thus, it is of interest to expand FDA approaches with

1
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the potential for many significant applications across varied research fields.

In general, functional data analysis can be viewed as a natural extension to multivariate data

analysis, and therefore many standard multivariate analysis approaches have been expanded and

redesigned to accommodate functional data. On the other hand, several new approaches have

been developed specifically for functional data and are equivalent to some existing multivariate

data analysis approaches. This thesis will primarily focus on clustering functional data. Along

with exploring existing approaches, which are extensions of multivariate clustering approaches,

we will be proposing new approaches which are specifically designed for functional data.

Clustering Functional Data (CFD) is a crucial step for data exploration with the aim of

building homogeneous groups of curves that show similar features and patterns. Identifying

particular clusters in the data will make further analysis more consistent. However due to the

features of functional data, clustering functional data is in general a difficult task. The infinite

dimensional space of functional data, and the lack of a clear definition of probability distribu-

tions on functional data are the main reasons multivariate data analysis techniques cannot be

readily applied to clustering functional data. Nevertheless, several studies discussed CFD and

proposed different approaches. Jacques and Preda (2014a) reviewed the main contributions to

CFD, and found that the initial and the most popular approach is based on reducing the infinite

dimensional space of the data to a finite dimensional space, then applying standard multivariate

clustering approaches. A second approach is based on defining distance measures specific to

functional data, then applying existing non-parametric clustering approaches such as k-means.

A third approach is a model-based approach that assumes the functional data come from a mix-

ture of distributions. Many of the proposed approaches obtained reasonable clustering results

when applied to the specific application they were developed for. However, they are not gener-

alizable. Further, many of these methods are computationally intensive.

On the other hand, there are several techniques for clustering multivariate data, that have

showed good performance but have not been tested extensively on functional data. One of these
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techniques is the spectral clustering algorithm that has been successfully used to cluster vari-

ous data types including complex high dimensional data (Donath and Hoffman, 1973; Fiedler,

1973). The spectral clustering algorithm is considered a flexible method and does not require

any strong distributional assumptions about the data. These features make it an ideal candidate

for building a clustering framework that is specific for functional data. The newly developed

framework will combine the flexibility of spectral clustering and the merits of functional data,

which will allow us to develop a robust functional spectral clustering approach for clustering

functional data.

In general a common problem that all clustering algorithms, even for multivariate or univari-

ate data, face, is the choice of the appropriate number of clusters. A number of approaches have

been developed to determine the number of clusters in CFD literature. Well known approaches

in the context of multivariate data clustering, such as the AIC and BIC have been used for select-

ing the number of clusters for CFD methods (Bouveyron and Jacques, 2011; Same et al., 2011;

Giacofci et al., 2013). Beyond the AIC and BIC, more specific criteria have also been intro-

duced in the literature for selecting the number of clusters in the context of CFD. For instance,

Sugar and James (2003) suggested to use the averaged Mahalanobis distance between the basis

expansion coefficients and their closest cluster centre, to choose the number of clusters. Most

Bayesian models for CFD define a framework in which the number of clusters can be directly

estimated from the data based on the Dirichlet Process Prior or DPP, (Ray and Mallick, 2006;

Suarez et al., 2016; Zhang et al., 2015; Scarpa and Dunson, 2009). Many of the proposed criteria

cannot be generalized to existing CFD approaches. Thus, choosing the appropriate number of

clusters in CFD is still an open research question. A technique that is gaining more attention

recently is based on the clustering stability concept. It is a different philosophy from techniques

such as the AIC and BIC in that it does not identify the clustering but it examines the stability

of the corresponding clustering results (Von Luxburg et al., 2010). For instance, detecting the

same clustering structure of several data sets that were generated from the same model would

indicate that the used clustering method shows clustering stability. A number of non-parametric

multivariate clustering approaches proposed the use of clustering stability as a model selection
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technique (Ben-Hur et al., 2001; Lange et al., 2004; Ben-David et al., 2006). However, there

exist very limited applications of clustering stability in the CFD context (Jacques and Preda,

2014a). Therefore, we aim to build a model selection criterion that is based on clustering sta-

bility for functional data. The purpose of the criterion is to provide a general procedure that is

compatible with existing CFD approaches.

Two separate problems are tackled within this thesis; the first is to develop a framework

for clustering functional data that uses the original curves as well as their derivatives, and the

second is to develop a model selection criterion for functional data that relies on the clustering

stability philosophy, and can be applied to different CFD approaches. In the first task, we aim

to make the clustering framework flexible enough to exploit higher order features of curves

including the derivatives, which can inherently cluster functional data with phase and amplitude

variation without explicitly modelling these variations. In the second task, we introduce a new

technique called ‘downsampling’, which is designed to create lower resolution replicates of

a functional dataset based on a designed sampling scheme specific for functional data. The

resulting lower resolution replicates will be used to evaluate the clustering stability of a number

of CFD approaches. Subsequently, we will develop an integrated framework that will combine

the downsampling technique with the proposed functional spectral clustering approach. The

advantage of the integrated clustering framework over the initial proposed approach is the ability

to estimate the number of clusters within the algorithm based on the downsampling technique.

The three proposed approaches will be first explained and demonstrated using the Berkeley

growth data (Ramsay and Silverman, 2005). Then, their effectiveness will be examined through

comprehensive simulation studies and finally the approaches will be applied to a real-life dataset

obtained from (http://statistics.gov.scot/data/house-sales-prices). The aims and objectives of this

thesis can be summarized as follows;

• Main objectives:

– to develop a new framework for clustering functional data based on spectral cluster-

ing.

http://statistics.gov.scot/data/house-sales-prices
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– to develop a new model selection criterion for choosing the appropriate number of

clusters.

• Minor objectives:

– to summarize the existing clustering functional data techniques.

– to compare the performance of some chosen CFD methods among the existing meth-

ods with our proposed clustering approach.

– to explore the advantage of using information from the first derivatives and the sec-

ond derivatives in defining the clustering structure of the functional data.

– to investigate the performance of the proposed methods on real-life datasets.

– to build a comprehensive simulation scheme for functional data clustering.

1.2 Thesis Outline

This thesis is divided into a total of nine chapters. The remainder of the thesis is structured as

follows:

Chapter 2 provides an overview of functional data analysis, and discusses its main tech-

niques. The chapter starts with defining the general structure and statistics of FDA and its main

features. It introduces some commonly used functional datasets, the Canadian weather data

and the Berkeley growth data that will be used throughout the thesis to demonstrate our newly

developed techniques. The important aspects of FDA, smoothing models and basis expansions

are detailed through equations and examples. A brief overview of exploratory functional data

analysis is also given, along with its applications. In addition, the chapter looks at different

contexts of functional data, such as data with phase and amplitude variation, and derivatives of

the functional data, which will be extensively considered in this work. Readers familiar with

functional data analysis can skip this chapter.

Chapter 3 discusses challenges of clustering and reviews some of the techniques in this area.

We especially focus on spectral clustering for multivariate data by describing the method and
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referring to the most popular algorithm for implementing spectral clustering. The second half of

the chapter provides an overview of clustering functional data and details the main categories of

CFD and their approaches. In additions, it lists all the available R functions for CFD, and selects

a few of them for further application later in the thesis. It discusses two evaluation measures

that will be used to assess the clustering results: the correct classification rate (CCR) and the

adjusted Rand index (ARI).

Chapter 4 introduces a new framework for clustering functional data based on the spectral

clustering algorithm (FSC-S). It defines our general smoothing model that will be associated

with the proposed clustering technique. This chapter also introduces the choice of distance mea-

sure and the need to extend the measure to the curves’ derivatives. Following the definition of

smoothing and distance, we define the functional spectral clustering algorithm. It demonstrates

the application of the proposed algorithm on the Berkeley growth data. Finally, the chapter dis-

cusses the perturbation theory and its relation to spectral clustering and our proposed functional

spectral clustering method.

Chapter 5 presents a new criterion for model selection, by introducing the downsampling

approach (DSC). The criterion is based on the clustering stability philosophy, therefore we dis-

cuss and review a number of existing techniques that considers clustering stability in clustering

multivariate data and functional data. The chapter then defines the downsampling model, and

the criteria that must be satisfied. The downsampling approach requires a designed sampling

technique which is illustrated in the chapter. The new criterion was applied with our proposed

clustering method and the selected CFD methods that were used on the Berkeley growth data.

Chapter 6 extends the proposed functional spectral clustering approach to estimate the num-

ber of clusters within the algorithm (FSC-DSC). It discusses the importance of the scaling pa-

rameter σ in defining the structure of the data and subsequently the parameter k, the number

of clusters. The extended algorithm uses the eigengap heuristic to estimate k with the aid of

σ , while these estimates will be further examined through the stability concept. The chapter
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illustrates the new approach of FSC-DSC for selecting the number of clusters and clustering the

Berkeley growth data.

Chapter 7 presents an extensive simulation study with a range of scenarios that possess dif-

ferent levels of difficulty in terms of extracting the clusters and estimating the correct number of

clusters. The simulated data will be used to investigate the effectiveness of the three proposed

approaches FSC-S, DSC, and FSC-DSC.

Chapter 8 considers the application of our new methods on a real-life dataset, the average

house prices in Scotland from 1993 to 2018. The chapter illustrates the application of DSC and

FSC-DSC to the house prices data and compares and discusses the results obtained by these

approaches.

Chapter 9 summarizes the main findings of the thesis. It highlights the advantages and limi-

tations of the proposed methodology and suggests possible directions for future work.

Software and articles: Additionally, we have compiled the computational codes for imple-

menting functional spectral clustering approach (FSC-S) as a github repository FSC. The down-

sampling approaches (DSC) and (FSC-DSC) will be added to the same repository in the near

future. In addition, we published an article (Al Alawi et al., 2019) that discusses the proposed

functional spectral clustering approach and its applications, and presented the work at the 34th

IWSM workshop in 2019. Further, we are currently preparing another manuscript based on this

thesis: Al Alawi,M., S.Ray, and M.Gupta. Downsampling based model selection for functional

data clustering (2021).



Chapter 2

Review of Functional Data Analysis (FDA)

This chapter introduces functional data analysis and demonstrates some of the widely used tech-

niques, based on (Ramsay and Silverman, 2005). The first section introduces FDA and its main

model. Section 2.2 describes two widely used functional data sets. Section 2.3 explains the

smoothing techniques and the basis expansions. Section 2.4 presents the exploratory functional

data analysis tools, including functional principal component analysis. Section 2.5 discusses

functional data that are defined by phase and amplitude variations and introduces derivatives of

the functional data. Readers familiar with the literature on FDA can skip this chapter.

2.1 Introduction

Functional data are realizations of a smooth process that vary over a continuum, usually time,

but it could take any other domain1, and they take the shape of smooth curves. Functional data

are considered to be infinite dimensional, and involves repeated measures of the same process.

It is difficult to propose a statistical distribution for functional data, which makes their analysis

and inference more challenging. The general model of functional data can be written as:

yi = x(ti)+ εi, (2.1)

1These continuum can be space, or weight, or probability, etc.

8
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where:

• yi represents the observed data vector over time t at i ∈ [1,T ].

• x(ti) represents the estimated curve that is usually expanded using basis functions x(ti) =

∑
k
j=1 c jφ j(ti), where φ j(ti) represents the basis functions and c j represents the coefficients.

• The error ε is i.i.d and distributed as N(0,σ2).

The term Functional Data Analysis (FDA) dates back to Ramsay and Dalzell (1991). To our

knowledge, Ramsay (1982) was the first to discuss what happens if the data are considered as

functions. A reader may ask how functional data is different from time-series data, or longitu-

dinal data, or even high dimensional data. It depends on how the data is structured and viewed

and what type of questions are asked. According to Ramsay and Silverman (2005), what makes

FDA unique is the curve registration that is based on transforming curves, and the estimation

of the curves’ derivatives. Indeed, FDA can answer questions that other methods cannot, for

example, predicting a scalar response from functional covariates.

In recent years functional data analysis has gained more attention from different scientific

fields and has been applied to solve numerous real-life problems. Ramsay and Silverman (2005)

provided many statistical techniques to handle this type of data, and created the software package

‘fda’ in R to implement the techniques (Ramsay et al., 2014).

2.2 Examples of Real Life Data

In this section we introduce some data sets that have been frequently used in functional data

analysis, to give the reader an insight about these data. The chosen data have been widely

used by many researchers and they are also available in the R package fda. Both the Cana-

dian weather data set (Section 2.2.1) and the Berkeley growth data set (Section 2.2.2) will be
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used throughout the thesis, to illustrate some of their important features and to demonstrate our

proposed techniques of clustering functional data.

2.2.1 The Canadian Weather Data

This dataset consists of the daily temperature and precipitation measures of 35 selected cities

distributed across Canada. There are 365 records for each city, which makes this data very dense.

There are also the monthly measures of temperature and precipitation, giving only 12 records

for each city over the year and that is a relatively sparse data set. Figure 2.1 shows curves of

the daily temperature and precipitation measures for the selected Canadian cities, where each

curve represents a city. The temperature data usually show the shape of sinusoidal functions,

as the coldest days are during December and January, while the warmest days are in June and

July, which is seen in Figure 2.1a. We can also notice the noise over the curves specifically

the precipitation data. To understand the underlying process and to accommodate the error, one

proposal is to smooth the data (see Section 2.3) and then perform statistical analysis on the

smooth data.

(a) Temperature curves (b) Precipitation curves

Figure 2.1: The Canadian weather data (a) Daily temperature of 35 cities (b) Daily precipitation
of 35 cities.

2.2.2 The Berkeley Growth Data

The Berkeley growth study data includes the heights of 39 boys and 54 girls. These heights

have been measured from age 0 to 18 years old, and the time points are not evenly spaced.
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The measurements were taken every quarter until the child is 1 year old, then annually from

2 to 8 years old, and every 6 months from 8 to 18 years old. Every curve represents a child

and they are independent of each other and the noise in each curve is relatively small. The

three panels in Figure 2.2, from left to right, show the heights (in cm) for the children, the first

derivatives, which reflect the rate of change in the height functions (growth rates), and finally

the second derivatives, which reflect the acceleration that happen to their heights over the years.

The first derivative graph holds more information about puberty and it is clearly displayed as

a bump between age 11 and 14 for most children. The acceleration graph also shows a strong

positive acceleration in the age between 1 and 5 years old followed by a negative deceleration.

This example demonstrates the importance of derivatives in some data, and that is why it is

of interest to consider the data as functions instead of taking them as vectors of discrete values.

FDA researchers have used this rich feature of the data and their derivatives to cluster this dataset

into different subgroups.

Figure 2.2: The Berkeley growth data in their original trajectories (left)
and as first derivatives (middle) and as second derivatives (right).
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2.3 Smoothing and Basis Expansions

Although functional data are initially observed as discrete data points, the concept of functional

data is to assume every vector yi is a single object. Thus, a vector yi is the collection of all the

points {y1,y2, ...,yT}, while ti represents time over which the data are recorded. The vector yi

can be smoothed by applying the basis functions.

A basis function system is a set of known functions φ j that are linearly independent of each

other and their linear combinations are able to effectively model the true structure of the data.

There is a wide range of basis function systems to choose from, such as: polynomials, Fourier,

splines, wavelets, and kernels. Ullah and Finch (2013) reviewed 84 studies with FDA applica-

tions and showed that B-spline smoothing was the most popular technique; about 30% of the

studies used B-splines with a large number of knots. They hypothesized that this is probably be-

cause of their simplicity and flexibility in handling different situations. Ramsay and Silverman

(2005) stated that the choice of the smoothing technique depends on the the behaviour of the

data. For instance, Fourier functions are used for data with periodic or cyclic behaviour, while

splines are typically used for data that do not show cyclical forms. Moreover, wavelets are used

for data with discontinuities or rapid changes (Ullah and Finch, 2013).

The smoothing technique is considered as a key aspect of functional data analysis, because

it is the process that moves the raw data at discrete times into continuous functions. This new

representation of data allows the researcher to evaluate the records at any time point, which is

helpful specially when the data are not equally spaced. A proper smoothing technique can re-

duce the noise and allows the evaluation of derivatives.

Looking back at equation (2.1), if we assume yi represents the observed data vector, these

data are converted into a curve or function f (ti) via expanding the basis ∑
k
j=1 c jφ j(ti). This

expression gives the combination of the basis functions φ(ti), and the coefficients c of k dimen-

sions. Thus, yi = x(ti)+εi will be yi = c1φ1(ti)+c2φ2(ti)+ ...+ckφk(ti)+εi. In a matrix format,
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this is written as yyy = xxx(((ttt)))+ εεε , where:

yyy =



y1

y2

...

yT


,

xxx(((ttt))) = ΦΦΦ(((ttt)))TTT ccc =



φ1(t1) φ2(t1) ... φk(t1)

φ1(t2) φ2(t2) ... φk(t2)
. . .

φ1(tT ) φ2(tT ) ... φk(tT )





c1

c2

...

ck


, and

εεε =



ε1

ε2

...

εT


.

Smoothing by least squares

In order to get a smoother version of the raw data vector yi, we estimate the coefficients c j of

the expansion by minimizing the least squares criterion:

SSE(ccc) =
T

∑
i=1

[
yi−

k

∑
j=1

c jφ j(ti)
]2
. (2.2)

Writing the above in a matrix format gives:

SSE(ccc) = (yyy−ΦΦΦccc)T (yyy−ΦΦΦccc), (2.3)

and solving for c:

ĉcc =
(

ΦΦΦ
T

ΦΦΦ

)−1
ΦΦΦ

T yyy. (2.4)

It is optimal to estimate c j by the least squares fit when the errors are independently and
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identically distributed, following a normal distribution with mean 0 and a constant variance.

However, this situation is not always true, for instance the variance of y might vary over the

observed time. In this case, we can add a weight matrix W to the least square equation (2.2), so

c can be estimated as in equation (2.5), and the estimated data values ŷ as in equation (2.6):

ĉ =
(

Φ
TWΦ

)−1
Φ

TWy, (2.5)

ŷ = Φ

(
Φ

TWΦ

)−1
Φ

TWy = Sy. (2.6)

After defining the basis function Φ, the researcher can estimate ĉ, and thus find the smooth-

ing matrix S, which in turn will lead to the smoothed version of the raw data ŷ. Consider the

Canadian weather data example, and for simplicity we will talk about only one vector (i.e. one

city). The average daily temperature of Vancouver in Canada over a year is shown in Figure

2.3a. To smooth the data as shown in Figure 2.3b, we used a B-splines basis of order 4 with

knots at the end of every month.

(a) from data (b) to functions

Figure 2.3: Vancouver temperature over a year: (a) as raw data, and (b)
as smooth curves.

B-splines (De Boor et al., 1978) have been commonly used in FDA research. B-splines

are polynomial segments on specific subintervals and zero otherwise. These segments are con-

strained to be smooth at the join (knot). Their functions are defined by the order of the spline
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(n) and the number and location of the knots, consequently the number of basis functions = n

+ the number of interior knots. The total number of basis functions in the above example is

15, coming from 4 + 11 interior knots2. It should be mentioned that a B-spline of order n is

equivalent to polynomials of degree n− 1. B-splines of order 4 are the most popular choice

that can give up to the second derivative3 and allows controlling the smoothness, with the knots

either being placed evenly or by placing more knots in sharp curves (where the values change

fast). Another approach, however, is to use a saturated model, with applying a penalty term. A

saturated model refers to placing a knot at every data point. Going back to our example, if we

fit B-splines of order 4 again but with placing a knot at every day this time, we can control the

smoothness of the curve by applying a smoothing parameter λ as shown in Figure 2.4. If the

smoothing parameter is small, the curve will look wiggly (Figure2.4a), while if the parameter

is large, the curve will look more flattened (Figure 2.4c). The optimal choice of λ must give

a balanced form that shows the important features of the curve as in Figure 2.4b, which looks

similar to the previous model (Figure 2.3b).

(a) λ = 1 (b) λ = 1,000 (c) λ = 1,000,000

Figure 2.4: The smoothed Vancouver temperature curve around the year when applying different
smoothing parameters λ .

Smoothing with roughness penalty

The curves in Figure 2.4 were achieved by minimizing the Penalized Sum of Squared Error

(PENSSE).

PENSSEλ (x) = [y− x(t)]T [y− x(t)]+λ

∫
[D2x(t)]2dt. (2.7)

2Note there is one knot at t = 0, so total number of knots is 13.
3If the researcher wants to get a p derivative, then the number of order must be p + 2.
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Equation (2.7) is similar to equation (2.3) but with adding the term λ
∫
[D2x(t)]2dt, where

this additional term, λ , is a scalar that measures the smoothness, D2x(t), is a scaler that measures

the roughness of the curve x, and can be summarized by the penalty matrix R as below. Note

that in equation (2.7), increasing λ will penalize the roughness and consequently gives a smooth

fit. It should be also mentioned that in many studies, the roughness penalty and smoothing

parameter are used for the same meaning. Now the roughness scalar value can be written as,

∫
[D2x(t)]2dt

=
∫
[D2cΦ(t)]2dt

=
∫

cT D2
Φ(t)D2

Φ(t)c.dt

= cT [
∫

D2
Φ(t)D2

Φ
T (t).dt].c,

= cT Rc.

(2.8)

Accordingly, we can rewrite equation (2.7) as in equation (2.9), while the estimated coeffi-

cients ĉ and the estimated data values ŷ are as in equation (2.10) and (2.11) respectively.

PENSSEλ (x) = [y− x(t)]T [y− x(t)]+λcT Rc, (2.9)

ĉ =
(

Φ
TWΦ+λR

)−1
Φ

TWy, (2.10)

ŷ = Φ

(
Φ

TWΦ+λR
)−1

Φ
TWy. (2.11)

Regardless of the selected fitting/smoothing model, there is always a concern about get-

ting a balance between over-fitting and over-smoothing. Over-fitted curves will possess high

noise/variation, while over-smoothed curves will fail to project the true structure of the data. In

other words, selecting the proper number of bases or choosing the optimal λ in the saturated

model is a trade-off between bias and variance. This relationship can be represented by the
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Mean Square Error (MSE), which can be written as:

MSE[x̂(t)] = Bias2[x̂(t)]+Var[x̂(t)], (2.12)

where Bias[x̂(t)] = x(t)−Ex̂(t), and Var[x̂(t)] = E[{x̂(t)−Ex̂(t)}2]. Figure 2.5 illustrates this

relationship for the Vancouver temperature data example. This time the observation has been

smoothed by a Fourier basis over different numbers of basis functions. We have applied 1000

simulations of the smoothing model, by randomly sampling and relocating the error. Then, for

each instance, we fit the model and calculate the bias, variance, and SME. The graph shows

using 14 basis functions might be a good choice for smoothing this observation.

Figure 2.5: Simulating Bias and Variance for Vancouver city from the
Canadian weather data.

Therefore to balance that bias and variance, it is appropriate to use a saturated model with a

smoothing parameter λ , and use cross-validation to choose between the λ ′s. This can be done

through minimizing the Generalized Cross Validation (GCV) criterion:
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GCV (λ ) =
( n

n−d f (λ )

)( SSE
n−d f (λ )

)
. (2.13)

In the example of Vancouver temperature, λ = 1000 gives low SSE and the curve looks

smooth. However, note that sometimes a range of λ values can give similar GCV as in Figure

2.6. In this case we can check visually for the λ that gives a good-enough fit. Considering the 35

cities in the Canadian weather data, we can find the overall λ for all the observations by using

the same approach (Figure 2.7).

Figure 2.6: GCV curve shows the dip when λ values between 10−3 and
105 for Vancouver temperature.
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Figure 2.7: GCV curve shows the dip when λ values between 10−2 and
102 for all the Canadian cities.

Instead of the B-spline basis the researcher can also use Fourier basis. Fourier basis are

usually used to represent periodic curves, where these functions repeat themselves over a period

of time. They are very popular basis functions, however, they are primarily used to fit periodic

functions with no extreme changes or abrupt features (Ramsay and Silverman, 2005). In liter-

ature, there is a number of FDA applications that have used Fourier basis to smooth the data

Ratcliffe et al. (2002); Guo (2004); Laukaitis and Račkauskas (2005).

2.4 Exploratory Functional Data Analysis

The summary statistics of any data set can give an impression about its general structure and help

exploring the main features. Exploratory analysis for functional data can be carried out similarly

to multivariate data. Consider a set of curves y j(t), j = 1, ...,n, where the mean function will be

represented by one curve and is a result of calculating the average of values each at a time. Thus

called the point-wise mean function, and is found by:

ȳ(t) =
1
n

n

∑
j=1

y j(t). (2.14)
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Similarly the point-wise variance function is given by:

vary(t) =
1

n−1

n

∑
j=1

[y j(t)− ȳ(t)]2. (2.15)

Further, to explore the dependence between the curves at different time points (say ts and tr),

we can find the covariance and the correlation functions by:

covy(tr, ts) =
1

n−1

n

∑
j=1

[y j(tr)− ȳ(tr)][y j(ts)− ȳ(ts)], (2.16)

corry(tr, ts) =
covy(tr, ts)√

vary(tr)vary(ts)
. (2.17)

Figure 2.8 displays the mean function and the covariance function as a set of level contours

for the Canadian weather data. The red curve represents the mean temperature of the Canadian

cities, while the contour plot shows high covariance between days with similar temperature and

low covariance between days with different temperature.
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Figure 2.8: The mean function (red curve) of the Canadian temperature
data (left), the contour plot of the correlation function for the same data
(right).

Principal component analysis has been always a powerful tool to investigate the variation in

a data set. Similarly functional principal component analysis (FPCA) can be used to explore

the variability in functional data. It is considered as a dimension reduction technique, which

recognizes the informative components that explain most of the variation in the functional data.

In terms of computation, FPCA replaces the eigenvectors by eigenfunctions, matrices by linear

operators, and summations by integrations, which makes the FPCA different from PCA.

Assuming again some continuous functions y j(t) with mean µ = ȳ(t) and covariance G(ts, tr)=

cov(y(ts),y(tr)), the covariance can also be written as a decomposition of eigenvalues and eigen-

vectors;

G(ts, tr) =
∞

∑
k

ρkξk(ts)ξk(tr), (2.18)

where ξ (t) represents the eigenfunctions of the variance-covariance function, and ρ are the
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eigenvalues. The eigenfunctions can be calculated by solving the following eigen-equation:

∫
G(ts, tr)ξ (tr).dtr = ρξ (ts). (2.19)

Considering the Canadian weather data again, Figure 2.9 shows the first 4 functional princi-

pal components for the data. These components represent most of the variation in the data.

Figure 2.9: Principal components functions for the Canadian weather data. PC1 displays vari-
ation in the overall temperature, PC2 displays variation of the relative temperature in winter
and summer, PC3 displays variation between fall and spring, and PC4 displays variation of the
relative length of winter and summer.

2.5 More Complex Context of Functional Data

With the advance of modern technology, different types of data are being recorded over various

regular/irregular time points. Thus, functional data come in different forms and each functional

data set is unique and must be treated individually. For instance in a particular functional data

set, some curves exhibit variations in amplitude or phase or both. Further, in some functional

data the derivatives hold more information about the data than the original trajectories, thus it

is of interest to estimate the derivatives of the functions in that case. In this section, we present
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these forms of functional data, as they will be extensively discussed in this thesis.

2.5.1 Functional Data with Phase or Amplitude Variations

One of the situations motivating the development of important tools for FDA is when there are

phase displacements and/or amplitude variations in curves. The presence of these variations

often create challenges in analysing the data. According to Marron et al. (2015), their presence

often inflates data variance, weakening the underlying structure of the functional data, and can

lead to inaccurate analyses. There have been some studies that deal with this type of functional

data, for instance, Sangalli et al. (2010), developed an algorithm that separate amplitude and

phase variability and simultaneously cluster and align the functional data. Further, Srivastava

et al. (2011) introduced a framework based on Fisher-Rao Riemannian metric to derive a proper

distance for separating the phase and the amplitude variability in functional data. Marron et al.

(2015) summarize several current ideas for separating phase and amplitude components, and

motivate the importance of dealing with these variations in functional data.

In Ramsay and Silverman (2005), the authors defined the amplitude variability to be related

to the size of a specific feature (usually a peak), while the phase variability is the shift in the

timing of the specific feature regardless of their sizes. This definition can be illustrated by Figure

2.10. In order to get valid measures from the data, the phase and amplitude variabilities must

be identified and separated. The authors suggested curve registration, which is transforming

the curves by transforming their arguments. Several types of curve registration problems and

examples have been discussed, for further details refer to Chapter 7 of Ramsay and Silverman

(2005).
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Figure 2.10: The original curve is represented as black, the red curve shows the effect of am-
plitude variation, while the blue curve shows the effect of phase variation when applied to the
original curve.

2.5.2 Derivatives of Functional Data

One of the advantages of moving data to functions is the possibility of computing the derivatives

of the functions. Consider a function y(t): the first derivative of the function is Dy(t) = d
dt y(t),

the second derivative is D2y(t) = d2

dt2 y(t), and the mth derivative is Dmy(t) = dm

dtm y(t) 4. The first

derivative of a function of time represents the rate of change in the observations over time, while

the second derivative refers to the acceleration over time. These facts might be important in

analysing some functional data. Looking back at Figure 2.2, the functional data are displayed

in their original trajectories, their first derivatives and the second derivatives of the growth data.

Also we have already seen the second derivative in equation (2.6) to measure the roughness of

the curve.

The use of derivatives is of interest in extending the range of simple graphical exploratory

methods, and in developing comprehensive approaches. This is a scheme that will be discussed

in more detail in Chapter 4.

4Note: the derivatives of functions can be also written as f q
i (t), where q represents the order of derivative.



Chapter 3

Existing Multivariate and Functional

Clustering Techniques

This chapter discusses clustering analysis and reviews the main contributions in this area. The

first section defines clustering analysis in general. Section 3.2 considers the major clustering

approaches for multivariate data and focuses on spectral clustering. Section 3.3 discusses clus-

tering analysis for functional data. Section 3.4 defines two clustering evaluation metrics that

will be of use throughout the thesis.

3.1 Introduction

Clustering analysis is the process of partitioning data to detect patterns. It is considered an un-

supervised technique where there is no predefined labelled data. Cluster analysis groups data

objects based only on information found in the data that describes the objects and their rela-

tionships. The aim is that objects in the same cluster must be similar as much as possible and

objects in different clusters must be different as much as possible (Everitt et al., 2011). The

similarity/dissimilarity measurements must be clearly defined and have practical meaning about

the nature of the data.

Clustering analysis is performed through several steps. These steps can be summarized as

25
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follows:

• Extracting some features that can best represent the data.

• Defining the proximity measure between objects.

• Selecting the clustering algorithm according to the problem.

• Evaluating the results of the clustering algorithm.

• Explaining the results in terms of the practical meaning of the data.

For years, research in clustering has led to a wide range of approaches and paradigms in dif-

ferent fields of application. An overview of these approaches will be given in the next sections.

3.2 Clustering Multivariate Data

This section discusses the different categories of cluster analysis methods and highlights the

principles behind those approaches for clustering multivariate data (Hennig et al., 2015; Nagpal

et al., 2013; Tan et al., 2005; Xu and Tian, 2015).

The traditional way of categorizing clustering is to determine whether it is done by parti-

tions or hierarchical structure. Partition-based methods can find all the clusters simultaneously

as divisions of the data and do not assume any hierarchical structure. Hierarchical clustering

is based on locating nested clusters, thus the large clusters usually contain smaller clusters or

sub-clusters (Johnson, 1967). There have been many hierarchy-based applications, for example,

Guha et al. (2000); Karypis et al. (1999). The centroid-based clustering approach is the most

common application of the partition category, some examples being K-means (MacQueen et al.,

1967), Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1990), and K-medoids

(Lucasius et al., 1993). Partition-based clustering can be hard or soft type. In hard clustering,

each object xi belongs to one and only one cluster, while in soft clustering, the object xi is as-

signed a probability of membership to each of K clusters. This approach is more appropriate
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when an object may be close to several clusters.

Apart from the above main divisions, a more modern categorization of clustering methods

distinguishes between density-based and non-density-based approaches (Menardi, 2016). In

the first category, one assumes a probability distribution to the data. The density-based concept

takes two different directions: the parametric and the nonparametric approaches. The parametric

refers to model-based clustering approach, and the nonparametric refers to mode-based cluster-

ing approach. The concept of model-based is selecting a specific model for each cluster and

finding the data points which best fit that model (Wolfe, 1970). It is based on the assumption

that data are generated from a mixture of probability distributions and it usually employs the

expectation maximization algorithm (EM). One popular and traditional model-based approach

is COBWEB developed by Fisher (1987). An alternative approach to estimating mixtures is to

assume a Bayesian prior for the mixture parameters and the number of components (Richard-

son and Green, 1997). For more profound research of the model-based clustering approaches

go to (Fraley and Raftery, 2002). Whereas, the original concept of modal-based is related to

defining relatively densely regions and relatively empty regions (Carmichael and Julius, 1968).

A taxonomy of more recent modal-based methods that have been proposed in the literature is

provided by (Menardi, 2016). On the other hand, the non-density-based category mostly refers

to the distance-based approaches, which defines the clusters based on some similarity measures

between data objects. One specific approach that is considered under this category and will be

discussed in more detail below is spectral clustering. Spectral clustering aims to define simi-

larities between data points based on the variations in some eigenvectors, where the matrix of

eigenvectors is derived from the data based on a Gaussian similarity function or based on a near-

est neighbour graph. In addition to the above, there exist different approaches that might fall

beyond these categories.

3.2.1 Spectral Clustering for Multivariate Data

A simple description of spectral clustering can be illustrated as; given some data points x1, ...,xn,

the similarity between the data points can be written as w(xi,x j), where w represents the edge
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weight between point xi and point x j. These weights (or similarities) can help partitioning the

data into groups so that edges within a group have high weights and edges between groups

have low weights. The similarities between points are converted to similarity graphA (also can

be defined as W), which can be constructed using different functions. The similarity graphs

that have been used in the algorithms of spectral clustering are the k-nearest neighbour graph,

the ε-neighbourhood graph, and the fully connected graph. Based on the similarity graph, the

degree matrix D is defined as the diagonal matrix of the sum of the degree of weights (simi-

larities) w(xi,x j) over each row. Then, to reduce the dimensions and filter the eigenvectors that

capture most of the variation in the data of the similarity graph. The graph Laplacian matrix

L is constructed from the spectrum of that similarity matrix using multiple ways that can be

either considered as normalized Laplacian or as unnormalized Laplacian. One of the common

unnormalized graph Laplacian matrix is found by L = D−A. In the Laplacian matrix, the

largest k-eigenvalues identify the eigenvectors that will represent the clusters, where k is known

in advanced. The graph Laplacian matrix can be used to find many useful properties of a graph,

thus it is considered as the key element of spectral clustering. However, there is no standard

definition/format of the Laplacian matrix (Von Luxburg, 2007). Spectral graph theory focuses

on studying graph Laplacian matrices and their properties (Chung and Graham, 1997).

The basic idea of spectral clustering is partitioning the graph into two groups by using the

second eigenvector of the graph Laplacian matrix. This work is dated back to Donath and

Hoffman (1973), who first proposed the use of eigenvectors of the adjacency matrices to find

partitions in graphs. On the other side, Fiedler (1973) found that the bi-partitions are associated

with the second eigenvector of the graph Laplacian and thus can be used for partitioning graphs.

Note the use of the second eigenvector is because the first eigenvector consists of constant val-

ues and thus cannot reveal any grouping information. Later, spectral clustering was combined

with linear programming (Barnes and Hoffman, 1984), and since then, spectral clustering gained

more attention with more studies, extended algorithms and extensive applications.

Among the several approaches for spectral clustering, the recursive spectral method and the
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multiway spectral method proposed by Shi and Malik (2000) and Ng et al. (2002) respectively

are the most popular ones. The primary difference between the two is the type of normal-

ized graph Laplacian matrix they use. Where the first used L = I−D−1A while the second

used L = I−D−1/2AD−1/2. To view the full comparisons between the two methods, go to

Von Luxburg (2007), or Verma and Meila (2003).

In addition to these algorithms, there are others that considered as unnormalized spectral

clustering (Barnard et al., 1995; Guattery and Miller, 1998). According to Von Luxburg et al.

(2008), however, the eigenvectors of graph Laplacian matrices converge under very general con-

ditions in normalized spectral clustering, while in the unnormalized case additional assumptions

should be made for the algorithm to be consistent.

Verma and Meila (2003) conducted a comparisons between spectral clustering techniques

and other clustering techniques and concluded that overall the spectral methods lead to compet-

itive results compared to other clustering techniques. They also showed that multiway methods

(Ng et al., 2002) perform slightly better than recursive methods (Shi and Malik, 2000) particu-

larly when there is a clear structure in the data.

The advantages of using spectral clustering is the ability to cluster in high efficiency with

high accuracy of clustering results without a need to make strong assumptions about the data.

In addition, spectral clustering is simple to implement and can be solved efficiently by standard

linear algebra methods. However, some disadvantages of spectral clustering could be time com-

plexity increasing considerably with the increasing of graph complexity. Also, there is no one

unique algorithm of spectral clustering, and there exist different choices of the mathematical

objects involved in the process such as the similarity graph and the Laplacian graph.
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3.3 Clustering Functional Data

This section reviews the main contributions to clustering functional data, and categorizes the

existing methods into three different categories. Additionally, it presents recent algorithms for

clustering functional data that are available in R.

Clustering Functional Data (CFD) has received more attention recently and has expanded

rapidly in the last few years. In theory, standard clustering approaches for multivariate data

can be applied for functional data by imposing some features to accommodate the structures

of functional data. Yet, there have been numerous studies proposed and developed for func-

tional data. Furthermore, some researchers categorized these proposed approaches into different

classes. For instance, Jacques and Preda (2014a) divides CFD into three main techniques. The

first one is the two-stage method, which reduces the dimensions of the data then applies stan-

dard clustering methods. The second approach is non-parametric clustering that uses specific

distances and dissimilarities between the curves. The third technique is model-based clustering,

it assumes the data come from a mixture of distributions. Bayesian model-based approaches

assume probability distributions on some parameters that describe the curves. In addition, there

is one method called the raw-data clustering that discretizes/regularizes the functions at some

time points, so it does not consider the functional structure of the data.

Wang et al. (2016) followed a similar classification of CFD methods by dividing them into

three categories. One category consists of model-based clustering approaches, the second cate-

gory consists of centroid-based clustering approaches, while the last category contains subspace-

based clustering approaches, the concept of this category is based on using combinations of the

basis coefficients, the mean functions, and the set of eigenfunctions to identify the subspace, and

to characterize the clusters. This approach has been proposed by Chiou and Li (2007).

More recently (Yassouridis and Leisch, 2017) gathered different CFD approaches in one R

package named funcy. They used a simulation study to compare the different approaches. The
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Rand index (Rand, 1971) was calculated as a performance measure between true cluster assign-

ments and the resulting clusters from applying the algorithms. Further, a systematic review of

FDA (Ullah and Finch, 2013) showed that the most common clustering technique for functional

data is hierarchical cluster analysis, mostly applied to gene expression data.

Given the large amount of research on CFD, we follow the Jacques and Preda (2014a) clas-

sification, describing some significant studies, and detailing the challenges and drawbacks for

each category. It should be mentioned that the following classification of CFD methods fall

under the non-density-based category, since there is no definition of density for functional data.

Two-stage clustering methods for functional data are a natural extension of the multivariate

clustering approaches and as such there exist a host of clustering approaches that fall under this

category. They range from the initial proposal by Abraham et al. (2003) to a more recent method

developed by Kayano et al. (2010). In this approach, the dimension reduction is done indepen-

dent of the purpose of clustering. Thus, after the projection of the data into a finite dimensional

space we assume the coefficients of the expanded basis are multivariate fixed values. Then, the

regular multivariate clustering approaches can be applied. Some studies perform further reduc-

tion/filtering by applying the functional principal component analysis FPCA (Peng et al., 2008).

One of the potential problems with this method is the possible loss of any discriminative

features between clusters during the process of dimension reduction. Specifically, if using the

principal component scores, we can easily miss the component that best classifies the data. For

instance, assume the fifth functional principal component gives the best clustering characteris-

tics, but the researcher uses the first four components to do the clustering approach. This method

also has the issue of choosing the best basis expansion system that can do clustering properly.

One approach to overcome the issue is to choose a saturated model. Some researchers used a

well-designed basis system to do the clustering stage that are usually related to their algorithm

(Serban and Wasserman, 2005). Nevertheless, the two-stage approach might fail if applied on

data with few values or data on an irregular grid, because the basis coefficients of the sparse data
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will have very high variance leading to unreasonable estimates. For irregular grids, a weighted

variance can be assigned to get accurate estimates, however it is computationally expensive

(James and Sugar, 2003).

The non-parametric approach uses a similar clustering technique as with multivariate data,

like k-means, or hierarchical clustering, but with additional features to suit the functional data.

For instance, Febrero-Bande et al. (2012) created the fda.usc package that performs k-means

clustering on functional data. This method locates the centre of curves in a grouped data for each

k group, then measures the distances between the centre and the curves to assign the groups, the

two steps iterating until convergence. Tokushige et al. (2007) defined the distance between

functions as a function of time t, and applied k-means clustering and fuzzy k-means clustering.

In addition, there are other methods that are dynamic programming-based algorithms (Hébrail

et al., 2010; Yamamoto, 2012).

Another aspect of the non-parametric approach can depend highly on the distance measures

between the functions. For instance, Ieva et al. (2013) created a designed distance to measure

the distances between the curves. The distance d is defined as d =
√

d2
o +d2

1 , where do corre-

sponds to the distances between the curves, while d1 corresponds to the distances between the

first derivatives of the curves. They find the centroids of the clusters randomly and assign the

curves to the nearest centroids to form k clusters. By solving the optimization problem, they

reassign the centroids (that happen to be the means of the clusters) at the end of the process.

Another example of a designed distance-based clustering technique for functional data is Peng

et al. (2008).

The non-parametric approach usually needs a predetermined number of clusters. Besides, in

some proposed methods, it can be subjective to the application, or can be computationally in-

tensive.

Model-based clustering assumes the data come from a distribution that is a mixture of some

distributions (Banfield and Raftery, 1993). However, with functional data, it is not as straight-

forward as in the multivariate case. The curves are first projected on a finite dimensional space,
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then the basis coefficients or the principal component scores can be used for clustering. How-

ever, model-based clustering is different from two-stage clustering because in the model-based

the two tasks are done jointly. The first model-based approach that was proposed specifically for

clustering functional data is James and Sugar (2003). They used a mixed effect of natural cubic

splines model which implies:

Y j = S j(λo +Λαz j + γ j)+ ε j, j = 1, ...n (3.1)

Where: S j is the spline basis matrix for the jth curve, ε j ∼ N(0,R), and γ j ∼ N(0,Γ). The

model is an amended version of Yj = S jη j + ε j, but it assumes the basis coefficients η j are ran-

dom effects and thus can be written as η j = µz j +γ j , with µz j representing the mean of cluster z.

This can be further parametrized to µz j = λo+Λαz j , where λo and αz j are p- and h- dimensional

vectors and Λ is a p× h matrix. The model parameters can then be estimated through an EM

algorithm. Sugar and James (2003) suggested using the distortion function to select the number

of clusters. This function is the average Mahalanobus distance between each coefficient vector

ηi and its closest cluster’s centre czi
1. This model can be applied for any functional form of data

including sparse data, and data with an irregular set of time points.

Alternately, some model-based approaches use the functional principal component scores,

and assume they follow a Gaussian distribution (Bouveyron and Jacques, 2011; Jacques and

Preda, 2013). Bouveyron and Jacques (2011) introduced the funHDDC package that models

and clusters the curves through their eigenspace projection. This is based on the functional prin-

cipal component analysis conditional to some model parameters, and the probabilities of curves

to belong to specific group. The idea is similar to the multivariate HDDC method (Bouveyron

et al., 2007), but for the funHDDC approach they used a functional metric for the eigenspace

projection.

On the other hand, Ray and Mallick (2006) proposed the first model-based Bayesian ap-

proach for clustering curves. They proposed a discrete wavelet transformation on the white noise

1The package fitfclust in R is the application of (James and Sugar, 2003)
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Gaussian model YYY i = XXXβi+εi. They assumed the basis coefficients βi and the error variance σ2
i

are the clustering parameters that can be expressed by θi (where θi = (βi,σ
2
i )). They assumed a

Dirichlet Process Prior (DPP), and used Gibbs Sampling to infer the posterior distribution. The

full model is as follows:

YYY iii|θi ∼ N(XXXβi,σ
2
i IIImmm), (3.2)

θ1,θ2, ...,θn ∼ F,

F ∼ D(α,HHHφφφ ),

θn|θ−n,α,φ =
α

α +n−1
HHHφφφ +

dn−1

∑
i=1

ni

α +n−1
δ

θ̄i
, (3.3)

where HHHφφφ is the base prior with the parameter φ , and α is the concentration. dn−1 is the

number of pre-existing clusters of tied samples in θ−n at the nth draw. The ith cluster has ni tied

samples that can be expressed by θ̄i = (β̄i, σ̄i
2)

The advantage of this model is allowing k (the number of clusters) to be unknown. Thus, it

can be inherent in the process of clustering and estimated from the data.

Suarez et al. (2016) followed a very similar approach by applying the DPP on the wavelet

coefficients but they modelled the coefficients independently instead of placing priors jointly, by

adding a hierarchical parameter to the model. Zhang et al. (2015) developed a method to cluster

curves using elastic shape metric, which is based on joint registration and comparisons of shapes

of curves. The resulting elastic-inner product matrix is modelled using a Wishart distribution,

where the prior come from a Dirichlet Process (DP), and the posterior is sampled through a

Markov Chain Monte Carlo (MCMC) procedure to infer the number of clusters and the clus-

tering configuration. Some Bayesian methods are suitable for a specific data set. For instance,

Scarpa and Dunson (2009) proposed that the distribution of functions come from a mixture of

a parametric and non-parametric model. The parametric part comes from a prior knowledge on

the data while the non-parametric part is based on the DP. In general, most Bayesian approaches

are based on Dirichlet process mixture models, and they frequently use wavelet bases. Wavelets
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are good in detecting quick changes in the curves, also the wavelet basis that represent signifi-

cant parts of the curve are prioritized over the least significant in the smoothing equation.

Technically the proposed methods work well for the selected data sets in the papers. But

generally they have not been tested for other data sets or against each other. Although there are

numerous studies on clustering functional data, few provide their code to allow further applica-

tions. After searching for all the available R packages, below are some of the main functional

data clustering techniques:

• fda.usc (non-parametric approach): includes many utilities for functional data analysis,

it also provides k-means clustering. The number of groups must be predetermined, and

this method searches for the locations that consists of grouped data to locate the curves’

centres. Then it measures the distances to assign the groups, with the two steps iterating

until convergence.

• fitfclust (model-based approach): the package is not available currently, but the

codes are accessible. It implements the James and Sugar (2003) approach.

• funHDDC (model-based approach): clusters the functional data by modelling each group

within a specific functional subspace (Bouveyron and Jacques, 2011). It is a high dimen-

sional data clustering method, but for functional data. It clusters the functional data into

group-specific functional subspaces. The procedure is based on functional latent mixture

models, and the parameter estimation is through an EM algorithm.

• funFEM (model-based approach): allows us to cluster functional data by modelling the

curves within a common and discriminative functional subspace (Bouveyron et al., 2015).

It is a functional EM-like clustering algorithm. It clusters the functional data into discrim-

inative functional subspaces F. This algorithm assumes that the basis coefficients follow a
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mixture of Gaussian distributions.

• Funclustering or funclust (model-based approach): a multivariate functional

clustering. It allows clustering multivariate functional data, while considering the de-

pendence between curves. The algorithm is based on (Jacques and Preda, 2013).

• fdakma (non-parametric approach): It is based on a k-means alignment algorithm that

simultaneously clusters and aligns the functional data that show phase and amplitude vari-

ation. The method uses the original function and its first derivatives. For more information

go to Sangalli et al. (2010), or Parodi et al. (2014).

• fdasrvf (non-parametric approach): It is an extension to the fdakmamethod, performs

the alignments of curves using the square-root velocity framework. This framework in-

troduces the elastic analysis of curves through phase and amplitude separation (Marron

et al., 2015).

• funcy: combines seven model-based methods in one framework to cluster functional

data (Yassouridis and Leisch, 2017). The methods are:

– fitfclust: based on a functional mixed mixture model, allows irregular mea-

surements. (James and Sugar, 2003)

– distFPCA: based on a distance measure, allows irregular measurements. (Peng

et al., 2008)

– iterSubspace: based on a subspace projection, allows irregular measurements.

(Chiou and Li, 2007).

– funclust: based on a functional mixed mixture model. (Jacques and Preda, 2013)

– funHDDC: based on a functional mixed mixture model. (Bouveyron and Jacques,

2011)



CHAPTER 3. CLUSTERING TECHNIQUES 37

– fscm: based on a functional mixed mixture model. (Jiang and Serban, 2012)

– waveclust: based on a functional mixed mixture model. Wavelet basis is the only

possible. (Giacofci et al., 2013)

3.3.1 Selected Functional Clustering Methods for Comparisons

For the purpose of comparing our proposed clustering approach (Chapter 4) with existing meth-

ods, we choose some of the above methods for the comparisons. Our choice is based on the

availability of the algorithm, and the different categories of the CFD approaches. Thus, we

consider funHDDC that belongs to the model-based category, and fda.usc that belongs to

the nonparametric category. However, there is no convenient two-stage algorithm. Therefore,

considering the above techniques, we have programmed an R function based on Abraham et al.

(2003) and named it as B-splines-Km. The function applies a B-splines smoothing to the

data, then uses the basis coefficients to carry out the regular k-means. It is a two-stage clustering

technique where the basis expansion is done independently of the clustering purpose. Never-

theless, it can give good results if the smoothing technique was selected properly. The authors

also mentioned the reason behind choosing B-splines rather than any other basis systems. They

noted that B-splines can capture a lot of different shapes with only a few coefficients, and these

bases have local support, thus every coefficient represents part of the time domain. Also the

coefficients of B-splines are robust as their estimation is not affected by outliers in other parts of

the time domain. These features are important in analysing some patterns of functional data.

Furthermore, we have developed another algorithm as an extension to the above approach. It

is based on a dimension reduction through B-splines as a first step, then it further applies FPCA

to use information that explains the variation in the data. We extract the first k eigenfunctions2

to form a new k-dimensional multivariate dataset X . Finally, we use mclust to cluster the

resulting data by the model-based clustering technique (VVV) 3. We have named the algorithm

as FPCA-mbc. This method combines the power of FPCA and the ability of model-based tech-
2k = predetermined number of clusters k
3The ellipsoidal model with varying volume, shape, and orientation VVV is the most general model among the

other options and is used as a default for starting the EM algorithm.
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nique in clustering any data set. The combination of these two clustering tools could be seen

as a straightforward extension. However to our knowledge, there is no similar functional data

clustering approach in the literature.

As mentioned above, these chosen methods cover the different aspects of clustering func-

tional data, and their codes are available in R (or can be easily programmed). In addition,

fda.usc and B-splines-Km are popular CFD techniques, while funHDDC and FPCA-mbc

are considered to be robust methods. Thus we assume the selected methods are reasonably ap-

propriate for a comparison scheme and simulations.

3.4 Clustering Evaluation Measures

Cluster validation is an integral part of any cluster analysis. Cluster validation refers to ex-

amining the quality and goodness of the clustering. As there is a vast collection of clustering

methods to choose from, there is a need to evaluate them and arrive at the most appropriate clus-

tering approach. According to Hennig et al. (2015), there are a variety of approaches to evaluate

clustering results. The most common approach is calculating cluster evaluation criteria such as

the Rand index, adjusted Rand index, Jaccard indicator, and accuracy rates from the confusion

matrix. The evaluation indicators help the researcher to decide between the different clustering

approaches and to assess to what extent the clustering results are informative and reliable. An

alternative approach that has become more popular recently is the evaluation of the stability of a

clustering. It is based on repeating the clustering several times and if they yield similar results,

the clustering method is considered reliable. More details about clustering stability is in Section

5.1. In addition, data visualization is a method that is basically used for data exploration, which

can also be used for cluster validation.

Among the wide range of available cluster validation indices, in this thesis we we will use

the adjusted Rand index (ARI) and the correct classification rate (CCR) and.
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The adjusted Rand index is based on the Rand index RI (Rand, 1971). Rand index is defined

as the number of pairs of objects that are either in the same group or in different groups in both

partitions divided by the total number of pairs of objects. It takes values between 0 and 1, where

1 indicates a perfect match between two partitions. An issue with the Rand index is that the ex-

pected value of two random partitions does not take a constant value. Thus, Hubert and Arabie

(1985) proposed the ARI to correct this issue by assuming the generalized hyper-geometric dis-

tribution as the model of randomness. The adjusted Rand index is recommended for measuring

agreement even when the partitions compared have different numbers of clusters.

The correct classification rate is often referred to as the accuracy rate, and can be calculated

from the confusion matrix. A confusion matrix is a standard cross-tabulation table for summa-

rizing the performance of a classification algorithm. It requires the user to have knowledge of

the true clusters to figure out the differences between the clustering results and the true clusters.

CCR refers to the total correct outcomes (predictions) among the total outcomes (predictions)

made. It takes values between 0% and 100%, the larger the accuracy rate the better the clustering

technique. From the confusion matrix, we can also calculate the misclassification rate or what is

sometimes called the error rate and it is equal to 1 - CCR. To be able to use the confusion matrix

correctly, the resulting clustering label assignment must match with the standard true cluster

labels. However, a recent work done by Chacón (2021) has compared CCR and ARI in terms

of their properties and differences. The author suggested that it is also possible to use CCR to

compare any pair of partition of the same dataset without a need for true clusters, by permuting

the cluster labels to find the optimal match between labels 4.

Considering the properties of each evaluation measure, we will use the correct classification

rate (CCR) for assessing the clustering results in Chapter 4. While, we will use the adjusted

Rand index (ARI) in Chapter 5 and 6. Since in Chapter 4 we consider the true clusters are

known and they will be used to examine the performance of the clustering methods. Whereas,

in Chapter 5 and 6 the approach is to compare two partitions without knowing the true clusters

4This note was added only after the final revision of the thesis.
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of the data.

3.5 Chapter Summary

This chapter provided the basic definitions of clustering analysis and a discussion of clustering

procedures. It gave a brief overview of the clustering approaches used for multivariate data.

However, the spectral clustering approach was discussed in more detail, as it will be used as a

basis for our proposed clustering method in the next chapter.

In addition, it focused on clustering functional data analysis and explained the most popular

algorithms, listing the available R packages that provide clustering analysis for functional data.

Accordingly, the chapter ended with some chosen functional data clustering methods that will

be useful for clustering examinations and validations. The chosen clustering methods will take

part in the simulation to compare the performance of the chosen methods against each other and

to evaluate the performance of our approach among the other methods.

In this chapter we aimed to review clustering analysis and attempted to look at the major

algorithms from different angles to explore their strengths and weaknesses. However, it is a

challenging task to summarize all the clustering approaches due to the diversity of algorithms

and applications in the different research areas.



Chapter 4

A Spectral Clustering Framework for

Functional Data

In this chapter we present a new framework for clustering functional data. Our clustering frame-

work is built on the spectral clustering approach and is flexible enough to exploit higher order

features of curves, including derivatives. The first section shows the motivation behind our

proposal. Section 4.2 details our proposed technique starting with the smoothing technique,

the distance measure and the clustering model. Section 4.3 evaluates the functional spectral

clustering technique on the Berkeley growth data beside the chosen functional data clustering

techniques in this study. Section 4.4 discusses the perturbation theory, the theoretical basis of

our approach.

4.1 Motivation

Clustering functional data (CFD) has been an active area of research in recent years. One of

the major challenges for clustering functional data is the lack of clear distributional theory for

functional data. In addition, due to the high dimensionality of functional data, the clustering

method becomes more challenging and computationally intensive. The structure and format of

functional data are very diverse and complex.

41
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Taking into account the complex structure of the data, the spectral clustering (Section 3.2.1)

algorithm has been successfully applied to cluster high dimensional data embedded in a nonlin-

ear manifold. The Swiss roll example is commonly used to illustrate the power of the spectral

method which outperforms most other standard clustering methods such as k-means or model

based clustering. The spectral clustering method has been shown to provide good results without

the need to make strong assumptions about the data and its implementation is straightforward. In

comparison, model-based clustering approaches are much more computationally expensive and

rely on distributional assumptions, which are very hard to verify in the context of functional data.

However, applying spectral clustering directly on the Canadian weather data (Figure 4.1b),

does not give reasonable results when compared to the geographical distribution of the Canadian

cities as stated in (Ramsay and Silverman, 2005) (Figure 4.1a). The geographical distribution

divides the cities into north, east south, west south, and inland cities based on mainly the location

of the 35 cities, that might share similar characteristics such as annual temperature, and annual

precipitation.

(a) (b)

Figure 4.1: The Canadian map shows locations of 35 cities involved in this study. Panel (a)
shows the geographical distribution of these cities according to (Ramsay and Silverman, 2005),
(b) shows the cities in 4 clusters when using the spectral clustering method.

Thus, considering the flexibility of the spectral algorithm, and its ability to resolve com-

plex structures through a nonlinear dimension reduction procedure, we propose to develop a
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framework to implement the spectral clustering method specifically for functional data. To our

knowledge this is a completely new framework that utilizes the original trajectories as well as

their derivatives.

4.2 Functional Spectral Clustering Approaches (FSC-S)

This section presents our two-stage functional spectral clustering approach (FSC-S) in its gen-

eral form, which assumes the number of clusters in the data is given. It is considered as the

default approach, while Chapter 6 will present the extended approach.

As was mentioned in Section 3.3, one of the methods of clustering functional data is the

two-stage clustering approach. The two-stage approach is based on splitting CFD technique

into two independent steps. The first step is applying smoothing and basis expansion to project

the data into a functional space. The second step assumes that the evaluated coefficients of bases

from the smoothing are multivariate fixed values. Thus, we have named the proposed algorithm

as FSC-S, where ‘FSC’ stands for Functional Spectral Clustering, while ‘-S’ shows that it is a

two-stage approach where Smoothing is conducted first.

4.2.1 Smoothing

Suppose there is a data matrix S in Rl . The matrix consists of n vectors (individuals), and

the data are measured over a domain (usually time). Unlike the multivariate spectral clustering

where we can directly apply the method on the data, in our case, we first project the data on a

reduced dimensional space through a smoothing technique.

In this study, the default smoothing technique relied on B-splines. B-splines are very pop-

ular basis functions, which have been used earlier for univariate regression and for FDA. Their

main advantage is the ability of performing fast computations and the flexibility in controlling

the smoothness. The B-spline basis is often used for non-periodic functions, but can also be

used for periodic functions. For more details about B-splines and more of their features refer to
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Section 2.3 and Section 3.3.1 respectively.

We propose to use a general smoothing technique with a linear combination of B-splines of

order 4 or above with a knot at every time point in the data (i.e. a saturated model). The reason

behind choosing the basis to be at least of order 4, is for getting continuous first and second

derivatives that are of interest in our clustering approach. The most popular choice is order 4,

however in some data examples order 5 or order 6 might fit the data better.

In regards to the number and locations of knots, we can either place the knots evenly or place

more knots where the data vary rapidly, however, these techniques are ideal for specific data sets

and might not work in general. Thus, to reduce the computation time, we use a saturated model

with fitting a smoothing parameter λ to penalize the representation of the data. Choosing the

appropriate λ can be done through generalized cross-validation (GCV) (see Section 2.3). As was

discussed in detail in Section 2.3, each smoothing problem must be treated individually. Indeed,

smoothing is a crucial part of clustering and there are many choices of smoothing parameters.

A saturated model is usually a preferred smoothing option for clustering in several applications.

There are however, other appropriate smoothing options specific to a given data set. Note that

all the functional data in this thesis have been smoothed based on a saturated B-splines model.

4.2.2 Distance Measure

Carrying out the above smoothing technique creates the curves f = { f1, f2, ..., fn} over time.

Then, the distance between the curve fi and the curve f j (i 6= j) is calculated. A critical choice

here, is how to determine the distance between curves in a set of functional data. Although,

there have been many studies focused on calculating distances for functional data, we utilize the

metric functions that are provided by the fda.usc package (Febrero-Bande et al., 2012). The

package hosts several metric and semi-metric functions to measure the distances between curves.

Considering the L2 spaces, we used metric.lp metric function that is based on Simpson’s

Rule. The metric function can be written as:
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||d||=

√
1∫

T w(t).dt

∫
T
( f1(t)− f2(t))2w(t).dt, (4.1)

where w represents weights (which by default are 1). The second metric function we used

is semimetric.deriv that calculates distances between derivatives of order q; the metric

function is written as:

||dq||=
√

1
T

∫
T

[
f q
1 (t)− f q

2 (t)
]2
.dt. (4.2)

The first reason behind this choice is the ease and the speed of the process. Second, it is

flexible and can calculate the distances between the raw trajectories, equation (4.1), or their

derivatives, equation (4.2), which are of interest. In addition, Tzeng et al. (2016) performed

simulations to compare different distance measures for functional data based on true distances

between the curves. The authors showed that the L2 distance metric is among the best measures

and is unbiased in many situations as there are no missing data.

Taking into account the different ways of measuring the distance, and the importance of both

the curves and their derivatives in the functional data analysis, we split our general approach into

mainly: FSC-S(Do) and FSC-S(D1). The former, FSC-S(Do), refers to the use of the original

trajectories to create the distance matrix, while the latter, FSC-S(D1), refers to the use of rate

of change curves to create the distance matrix. Nevertheless, we have noticed from experience

that in some cases when the distance matrix comes from the accelerations (second derivatives),

the proposed clustering method can distinguish the clusters even better. Thus, we have also

introduced FSC-S(D2), to be used in some examples.

4.2.3 The Model

The pairwise distances, di j, help constructing the similarity graph (also called the affinity ma-

trix or the weight matrix), which in turn models the neighbourhood relationships between the

curves. There are three major approaches to transform pairwise distances into a graph (Section

3.2.1). In our model, we have chosen to use the fully connected graph which is based on using
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the Gaussian Kernel estimation. The other two approaches assume that only neighbour data

points are connected. The Gaussian Kernel estimation is a common and a more straightforward

approach for constructing the similarity graph, besides we prefer assuming that all the curves are

connected with each other in the data. According to Von Luxburg (2007), the ε-neighbourhood

graph is more vulnerable to inappropriate choices of the parameter ε , and thus it is not a pre-

ferred similarity graph. The author also added, it has not been yet proved theoretically whether

the choice of similarity graph will affect the results of spectral clustering. The Gaussian Kernel

estimation is defined by:

Ai j = exp(−|| fi− f j||2/2σ
2), (4.3)

where i 6= j, Aii = 0, while σ is a scaling parameter that is chosen by the researcher (most often

σ = 1). However, the parameter σ in the Gaussian Kernel function plays an important role as it

controls the width of the neighbourhoods between the curves. It is a reference distance, at which

it defines the similar curves and the dissimilar curves. Thus, such parameter should come from

the domain of the data instead of considering a rule of thumb value. In this model, we set σ to

be the standard deviation of the elements of the distance matrix, while in Chapter 6, the model

will consist of a flexible σ that can take a range of values.

In our model, we replace σ2 by σ and represent the similarity graph A ∈Rn×n as:

Ai j = exp(−|| fi− f j||2/2σ), (4.4)

The next step is constructing the diagonal matrix D ∈ Rn×n, whose diagonal elements are

calculated by, Dii = ∑
n
j=1 Ai j. Then, the Laplacian matrix L ∈Rn×n is constructed by:

L=D−1/2
AD

−1/2. (4.5)

The matrix L has n eigenvectors, but we are interested in only the first k eigenvectors

v1, ...,vk, where k represents the number of clusters and is known in advance. The Laplacian

matrix arrange the eigenvectors such that the eigenvectors that show most variation between the

data come first. Stacking these k eigenvectors together forms the matrix V of size n× k. Then,
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the rows of matrix V are normalized to create the matrix Y by finding:

Yil =Vil/(
k

∑
l=1

V 2
il )

1/2. (4.6)

This step shrinks the spread of points in a class to create more compact clusters. Assuming

each row of Y is a point in Rk, for i = 1, ...,n, we cluster the points into k clusters by using the

k-means algorithm. Finally, we assign the original curves to their corresponding clusters with

fi = {l|yi ∈Cl}, where every row yi represent a curve fi that belongs to cluster Cl .

Our functional spectral clustering algorithm borrows ideas from Ng et al. (2002) and it is

based on the perturbation theory. A discussion of perturbation theory is given in Section 4.4. To

the best of our knowledge, no previous research has used spectral clustering to cluster functional

data. Thus, we want to examine the efficiency of our proposed functional spectral method and

compare it to other existing methods. The main difference between classical spectral clustering

and this version appears in the smoothing and the distance calculations.

4.3 Application of FSC-S on the Berkeley Growth Data

The Berkeley growth data (Section 2.2.2) has been widely used in research on clustering func-

tional data, most often the data were clustered according to children gender. A common smooth-

ing technique is using a B-spline basis of order 6 in a saturated model with λ = 10−1/2. This

smoothing model was also suggested by Ramsay and Silverman (2005). It is mainly designed

for minimizing the noise and obtaining the best representation of the smoothed trajectories.

However, after applying the generalized cross validation on the same model but with varying λ ,

we found out that the lowest GCV occurs when λ is between 10−10 and 10−1 as shown in Fig-

ure 4.2. Smoothing with λ = 10−10 gives over-fitted derivatives that will possess high degrees

of noise, while we need smoothed first and second derivatives as well as the original trajecto-

ries. Thus, we avoid λ = 10−10 and consider λ = 10−1 to be the appropriate choice that will

project the proper structure of the data for both the trajectories and their derivatives. The final
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choice of smoothed trajectories and their first and second derivatives are displayed in Figure 4.3.

The figure consists of the height curves of children (original trajectories), the rate of change in

height (or growth rates) (first derivatives), and the acceleration in height (second derivatives).

For the purposes of clustering, we will proceed with our choice of smoothing, i.e. smoothing

with λ = 10−1. However, later we will also present the clustering results based on the common

smoothing model that is with λ = 10−1/2, mainly because we want to evaluate the impact of

smoothing on the clustering results.

In the growth data, some individuals reach puberty earlier than others, which would create

some phase variation in the trajectories. Thus, it is of interest to apply the functional spectral

clustering methods to cluster the data and to investigate how the resulting clusters are associated

with sex. Our main goal is to optimize the functional spectral clustering technique and assess its

overall performance.

Figure 4.2: GCV curves for the Berkeley growth data show the dip when
λ is between 10−10 and 10−1.
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Figure 4.3: The Berkeley growth data as smoothed curves (left), the rate
of change in heights (middle), and the accelerations in heights (right).

To assess the performance of our proposed method on the Berkeley growth data, we first ap-

ply FSC-S(Do) with setting k = 2. The results are shown in Figure 4.4 on both the original height

curves and the rates of change curves. The results visually look plausible and the misclassifica-

tion rate is not high. Yet, applying FSC-S(D1) leads to better results and the misclassification

rate is lower (Figure 4.5).

The accuracy rates (CCR) are calculated for our proposed methods and the other CFD meth-

ods (mentioned in Section 3.3.1) by comparing the results of clustering against the natural group-

ing of girls and boys in the data. As per Table 4.1, the accuracy rates for FSC-S(Do), FSC-S(D1),

and FSC-S(D2) are 86%, 94%, and 85% respectively.
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Figure 4.4: Clustered original trajectories (left), and first derivatives (right), when using FSC-
S(Do) with misclassification rate = 14%. Note the dashed blue curves and the red curves repre-
sent the clustering results and not the true male and female curves.

Figure 4.5: Clustered original trajectories (left), and first derivatives (right), when using FSC-
S(D1) with misclassification rate = 6%. Note the dashed blue curves and the red curves represent
the clustering results and not the true male and female curves.
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Looking into more details, Figure 4.6 illustrates why the first derivatives gives better re-

sults. In this figure there are some curves coloured in green and they represent the misclassified

female curves to be considered as male when applying FSC-S(Do). However, we can avoid

some of this misclassification when applying FSC-S(D1). This is because the rates of change

can discriminate females from males more efficiently than the original curves by employing the

puberty information. Both the height curves and the acceleration curves cannot reveal as much

information as the growth rates.

Figure 4.6: Resulting clusters of male (blue) and female (red) based on FSC-S(D1), and ad-
ditional green curves that represent the 13 misclassified female to be considered as male in
FSC-S(Do).

Considering the other CFD methods, we used the same smoothing model and set k = 2 for

all. The applications of the competing methods were not limited to the original trajectories, but

were also carried out on the first derivatives D(F). There are a few reasons behind this proce-

dure. First, we have noticed that the majority of researchers make use of the first derivatives

to cluster the Berkeley growth data. Second, to compare the methods fairly, we consider using

the first derivatives in this example as we also use the first derivative in FSC-S(D1). As shown

in Table 4.1, the first column displays the accuracy rates of the original method and the second



CHAPTER 4. FSC-S APPROACH 52

column displays the accuracy rates when using the first derivatives D(F). Also note that Table

4.1 consists of two main columns where λ = 10−1 and λ = 10−1/2. The first one represents the

smoothing parameter obtained from GCV, while the second is a standard smoothing parameter

used by other researcher. In fact, we have explored a range of λ values lies between 10−10 and

101. The clustering results based on the other smoothing parameters are not very different from

the results that are displayed in Table 4.1.

According to Table 4.1 at λ = 10−1, in general FSC-S(D1) outperforms all the other clus-

tering methods with a CCR of 94%, while FSC-S(Do) comes in second. FunHDDC and FPCA-

mbc perform similarly, while FD-Kmeans and B-splines-km show the lowest CCR. Moving to

the other side of Table 4.1, FSC-S(D1) again shows the highest CCR followed by FSC-S(Do)

and FPCA-mbc, while the accuracy rates of FunHDDC are similar under the two λ values. Once

again, FD-Kmeans and B-splines-km are performing similarly and slightly better at λ = 10−1/2.

Also note that apart from FunHDDC, the competing methods do better when using the first

derivatives D(F) under the two smoothing models.

Based on the standard smoothing model with λ = 10−1/2, FSC-S(D1) obtains good accu-

racy rates but lower than our optimal choice (when the accuracy rate is 94%). This difference in

accuracy rates demonstrates the effect of smoothing on the clustering results of some methods.

Note that FSC-S(Do) is not affected by changing the smoothing parameter, because the distance

matrix remains the same in the two smoothing models, since the coefficients of the original

curves are less vulnerable to change under the two smoothing models. The smoothing choice

also plays an important role in the clustering results of FPCA-mbc; the reason behind its bet-

ter performance when λ = 10−1/2 relates to the functional principal components scores which

give better representation of the variation between the curves in this smoothing model. As was

discussed in Section 3.3.1, we set the number of functional principal components to be equal to

number of clusters, k. We have also observed that setting functional principal components = k in

this example leads to the best results for FPCA-mbc, while choosing more or fewer components

gives lower accuracy rates in both the original method and the first derivatives.
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The accuracy rates of FD-Kmeans and B-splines-km show that they perform similarly in

this example with B-splines-km performing slightly better. Both clustering methods involve

k-means in their procedure. Whereas FD-Kmeans carries out the smoothing and the k-means

clustering simultaneously, B-splines-km smooths the data first, then clusters the coefficients of

the smoothed curves through k-means.

Finally, in both smoothing models, the accuracy rate for FunHDDC is just 75%, which is rel-

atively low. Although Jacques and Preda (2014b) mentioned that for the Berkeley growth data

the accuracy rate of FunHDDC is 96.77%, we could not replicate their high accuracy. It should

be mentioned that we have used the default model ‘Ak jBkQkDk’ of FunHDDC 1, while their

approach involves a number of models, and it was not mentioned which model led to the high

accuracy rate. It is always possible to choose multiple models that lead to several results, but it is

computationally intensive. Another possible reason behind the difference in the accuracy rates

is the effect of the smoothing model that was used in their application and in our application.

In this example we attempted to cluster the first derivatives besides the original curves for

the chosen CFD methods. However, we will not consider using the first derivatives for these

methods in the next chapters. In general, if the derivatives are important and more informative,

then clustering the derivatives using the same technique would lead to better accuracy rates. But

that means the user chooses to cluster the derivatives directly instead of the original curves. In

all the competing CFD methods, clustering the derivatives is not built-in in their techniques.

Therefore, choosing to cluster the derivatives besides the original methods generalizes their

clustering algorithms beyond their original design and adds more computational load to the

comparisons and simulations that we will implement in Chapter 7.

1In the FunHDDC there exist a number of submodels that are defined based on different parameters.
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Method CCR

λ = 10−1 λ = 10−1/2

original method using D(F) original method using D(F)

FunHDDC 0.75 0.51 0.75 0.52

FD-Kmeans 0.63 0.87 0.66 0.81

B-splines-km 0.64 0.89 0.67 0.88

FPCA-mbc 0.76 0.80 0.86 0.85

FSC-S(Do) 0.86 - 0.86 -

FSC-S(D1) 0.94 - 0.90 -

FSC-S(D2) 0.85 - 0.88 -

Table 4.1: Accuracy rates for clustering the Berkeley growth data ac-
cording to two different smoothing parameters.The left side shows CCR
results when λ = 10−1 and the right side shows CCR results when
λ = 10−1/2.

4.4 Perturbation Theory

Perturbation theory considers the behaviour of the ideal case and the affect of adding perturba-

tion to the ideal case. The ideal case refers to the data set that consists of k clear clusters, in

which all points in one cluster are very similar and they are very different to points in other clus-

ters. Consider the matrix A ∈ Rn×n to be a symmetrical ideal matrix, and its perturbed version is

Ã, where Ã = A+H. The matrix H represents the perturbation added to the ideal case, however,

we usually don’t know what A is. Therefore we raise the question: how much does H affect Ã?

To answer this question we will consider two theorems.

The first theorem is the Weyl inequality in matrix theory, developed by Weyl (1912). For

more recent literature we refer to Fan (1950), Bhatia (1987), Kolotilina (2000), and Tao (2010).

It addresses the changes that occurs in the eigenvalues of a perturbed matrix, and it is stated as

follows:



CHAPTER 4. FSC-S APPROACH 55

Theorem 1 Weyl (1912) For i = 1, ...,n:

λi(A)+λn(H)≤ λi(Ã)≤ λi(A)+λ1(H).

Note that, λ1(H) represents the largest eigenvalue of H and λn(H) represents the smallest eigen-

value of H.

The second theorem is the Davis-Kahan Theorem (Davis and Kahan, 1970). It is considered

to be the fundamental theory of the perturbation approach to spectral clustering. This theorem

is commonly used in statistical procedures to bound the distances between sets of subspaces

spanned by eigenvectors. It has been widely discussed in literature and for further readings, we

refer to Stewart and Sun (1990) and Bhatia (1997), and it is stated as follows:

Theorem 2 Davis and Kahan (1970) Consider the symmetric matrix A, and the perturbation

matrix H ∈ Rn×n. Let Ã= A+H be a perturbed version of A, where A= EoAoET
o +E1A1ET

1 , and

Ã=FoÃoFT
o +F1Ã1FT

1 , with [Eo,E1] and [Fo,F1] orthogonal. Also, assume the eigenvalues of Ao

are contained in [a,b], while the eigenvalues of Ã1 are contained in (−∞,a− δ )∪ (b+ δ ,+∞)

for some δ > 0, then:

||FT
1 Eo|| ≤

||FT
1 HEo||

δ
.

Following arguments discussed by Von Luxburg (2007), and Xie (1997), to interpret spectral

clustering techniques from a perturbation theory point of view, we answer the above question by

looking at two aspects: How are the eigenvalues of Ã affected by H? And how is the eigenspace

of Ã affected by H?

Theorem (1) shows that the ordered eigenvalues of the matrix Ã are fairly stable under small

perturbation. Now considering the effect of the perturbation on the eigenspaces, an eigenspace

of a matrix is a span of some eigenvectors of that matrix. If we decompose the matrix A into

its action on an eigenspace Φ and its orthogonal complement Φc, and following the spectral

theorem, it states that for any matrix M, M = vλvT , with v1, ...,vn orthonormal basis (Xie, 1997).
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Then, we can write A as:

A = EoAoET
o︸ ︷︷ ︸

Φ

+E1A1ET
1︸ ︷︷ ︸

Φc

. (4.7)

Similarly, we can decompose Ã into its action on an eigenspace Φ̃ and its orthogonal com-

plement Φ̃c, so that:

Ã = FoÃoFT
o︸ ︷︷ ︸

Φ̃

+F1Ã1FT
1︸ ︷︷ ︸

Φ̃c

, (4.8)

where Eo and E1 are orthonormal bases for Φ and Φc respectively. Likewise, Fo and F1 are

orthonormal basis for Φ̃ and Φ̃c respectively. Also note the eigenspaces Φ for A and Φ̃ for Ã

represent the eigenvectors that are of interest2. If we assume that any vector in Φ can be written

as Eoα (where α has same dimension as Φ), then the projection of this vector on the perturbed

eigenspace Φ̃ is FoFT
o Eoα , and the distance between the two vectors is:

||Eoα−FoFT
o Eoα||= ||(I−FoFT

o )Eoα||= ||F1FT
1 Eoα||= ||FT

1 Eoα||. (4.9)

Therefore the distance between the eigenspaces Φ and Φc can be calculated by the Frobenius

norm of FT
1 Eo. The Frobenius of any matrix M is: ||M||=

√
∑i ∑ j m2

i j. Yet, there is a condition

that needs to be satisfied. The eigenvalues of Φ and the eigenvalues of Φ̃c must be well separated

by a value δ . For instance, if the eigenvalues of Φ are all contained in the interval [a,b], then

we need the eigenvalues of Φ̃c to come from the interval (−∞,a− δ )∪ (b+ δ ,+∞). In fact,

we want the eigenspaces Φ̃c and Φ to be as far as possible from each other, so that when the

perturbation H occurs the δ value is still large enough relative to H. Looking at Theorem (2),

it states that the distance between the two eigenspaces will be bounded by ||FT
1 HEo||/δ . From

here we notice that the larger δ or the smaller H, the closer the eigenspaces are from each other.

If this is the case, then we can use Φ̃ to approximate Φ.

Reflecting the above discussion on our spectral clustering approach, consider A to be the

2 eigenvectors that correspond to the first few very large eigenvalues compared to the rest of eigenvalues.
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ideal matrix of size n×n that consists of k clear components (clusters). In this case, all entries

between-clusters are very low (say = 0), and all entries within clusters are very high. Now,

consider the perturbed version Ã that consists of the same k components, but these are not to-

tally disconnected. Due to noise the between-cluster values will no longer be 0’s and thus create

some edges between the k clusters. In the ideal case, L will consist of k orthogonal eigenvectors

v1,v2, ...,vk that hold all the information about the clusters in the data. Next, these vectors are

renormalized to have a unit length, and k-means will trivially find the true clusters. Going to

the real case, L̃ will consist of some ṽ1, ṽ2, ..., ṽk that are supposed to reveal the same informa-

tion about the clusters in the data. The eigenspace Φ̃ does not coincide fully with Φ but they

must be similar “enough" to get plausible results. To measure this similarity between Φ and

Φ̃, we look at dissimilarity between Φ and Φ̃c based on Davis-Kahan theorem. Thus, we want

the eigenvalues of Ao and Ã1 to be as far as possible (large δ ). Then, we bound the distance

between the eigenspaces ||FT
1 Eo|| by their perturbed version ||FT

1 HEo|| over δ . Note that, if Φ̃

fully coincides with Φ, then δ will turn out to be the eigengap |λk+1−λk| (The eigengap will be

discussed in more detail in Chapter 6).

4.5 Chapter Summary

In this chapter we have introduced FSC-S, a two-stage functional spectral clustering technique

for clustering functional data. This clustering technique can be categorized as FSC-S(Do), FSC-

S(D1), and FSC-S(D2) based on the distance metric of original trajectories, first derivatives and

second derivatives respectively. We have given a simple example initially to demonstrate that

the regular spectral clustering technique cannot perform well when directly applied to functional

data. Thus, we require spectral clustering to accommodate the curvature structure of the func-

tional data. This is mainly done by smoothing and basis expansion of the data. Smoothing

techniques and distance measures are two critical choices and they play an important role in the

FSC-S methods.
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We have examined the performance of our proposed method on the Berkeley growth data.

We found that the first derivatives that reflect the rate of growth in children cluster the boys’ and

girls’ groups better than the original curves (heights of children). As is already known, the first

derivatives of the growth data hold information about puberty that is more separable for boys

and girls. In addition, we compared the performance of our methods with other clustering func-

tional data techniques. In general, the accuracy rates of the three proposed methods are higher

than the accuracy rates of the competing methods. Indeed, FSC-S(D1) was favoured among the

CFD methods.

Further, we looked at the clustering results with two smoothing techniques (not differing

greatly) based on two smoothing parameters (λ ). Both models represent adequately smoothed

curves of the growth data. The overall clustering performance was not significantly different

between the two smoothing models. We found that a good smoothing model would lead to

plausible clustering results, on the other hand a poor smoothing model would lead to inadequate

clustering results. In addition, a particular smoothing model that fits the original trajectories

properly might show more noise with the first and second derivatives. Thus, if the user is inter-

ested in the derivatives more than the original curves, then it is important to choose a smoothing

model that will display reasonably smoothed curves as well as smoothed derivatives.

We have additionally attempted to cluster the first derivatives directly using the competing

methods. We assumed that will be a fair comparison in this particular data as it was the routine in

most clustering functional data research. However, we cannot continue with this implementation

throughout the study, due to the huge computational cost. In the end, it should be mentioned that

choosing the derivatives for clustering the data instead of the original curves will often result in

different outcomes.



Chapter 5

A New Framework for Model Selection in

Clustering Functional Data

In this chapter we present a new paradigm for model selection, by introducing the technique of

downsampling, which allows us to create lower resolution replicates of the observed curves. This

procedure aims to provide inference into the number of clusters for any functional clustering

method, and it is based on the concept of stability of clusters. The first section presents an

overview of model selection criteria in general and discusses clustering stability in more detail.

Section 5.2 introduces our downsampling criterion and the sampling scheme used for creating

replicates of the original functional data. The use of this new criterion is illustrated in Section

5.3 through application to the functional clustering of the Berkeley growth data.

5.1 Clustering Stability

In this section, we review the model selection criteria that are widely used in the clustering func-

tional data literature. Additionally, we discuss the clustering stability approach for defining the

appropriate number of clusters in a data set.

Clustering methods always raises the crucial question about how many potential homoge-

neous groups are there in a given data set. In most cases, the number of clusters k is unknown

59
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and must be estimated from the data. In the literature a wide variety of approaches have been

proposed to determine the number of clusters for different clustering methods. Commonly, for

model based clustering techniques, the parameter k is inherent in the model and can be esti-

mated. The best k can then be chosen by one of the popular model selection criteria such as the

AIC (Akaike, 1974) and the BIC (Schwarz et al., 1978).

In particular, under the functional data framework, similar approaches have been proposed

for model selection. For instance, for the frequentist functional model-based clustering methods

Bouveyron and Jacques (2011); Giacofci et al. (2013); Same et al. (2011) used the regular AIC

and BIC to perform model selection. On the other hand, most Bayesian model-based functional

data clustering approaches are based on the Dirichlet Process Prior (DPP) model. Thus k is a

model parameter and can be directly estimated from the data, for instance, see Ray and Mallick

(2006); Scarpa and Dunson (2009); Suarez et al. (2016); Zhang et al. (2015). Further, Sugar and

James (2003) suggested to use the distortion function to select the number of clusters. They de-

fined the distortion function as the Mahalonobis distance between each coefficient vector and its

closest cluster’s centre. On the other hand, there are other model free approaches that determine

the number of clusters before the clustering process starts such as Ieva et al. (2013), using the

silhouette plot.

However, in non-parametric clustering, model selection is a more difficult problem. There-

fore such methods tend to use other techniques to choose the optimal k. A technique that is

widely used for non-parametric methods is testing clustering stability. The basic principle is

that a true cluster is a stable structure in the data set. That is, if there are several data sets cre-

ated from the same distribution, a good clustering technique must detect the same structuring

(grouping) in all these sets. Von Luxburg et al. (2010) discussed the different ways in which

clustering stability can be computed and used for model selection. They also reviewed some

theoretical results for clustering stability that were based on k-means algorithms but can be ex-

tended to other clustering methods like spectral clustering. Several studies have suggested using

the stability approach and proved consistency results and compared the stability approaches to
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well known methods through simulations and real world data, for instance see Ben-David et al.

(2006); Ben-Hur et al. (2001); Hennig (2007); Lange et al. (2004).

In practice, various methods have been proposed to validate the stability scores and use them

for model selection. One of these approaches is based on the perturbation scheme. To be able to

evaluate the stability of a fixed clustering algorithm, the clustering algorithm must run a number

of times on slightly different data sets. Thus, we need to generate perturbed versions of the orig-

inal data set. The most common perturbation schemes that have been used in literature are: (1)

drawing random subsamples from the original data without replacement, or (2) adding different

levels of random noise to the original data points. However, the researcher must be cautious

when creating the perturbed versions, because high perturbation will destroy the structure of the

original data, while low perturbation will create datasets too similar to the original data, which

might be useless in examining clustering stability. It is difficult to achieve this balance in prac-

tice, so studying the data set carefully, and trying different perturbation schemes is crucial to

selecting the right k.

The literature on the use of cluster stability to determine the number of clusters in the con-

text of functional data is very sparse. To date we have only found two references. Kayano et al.

(2010) suggested performing repeated clustering for different number of clusters, then choosing

the cluster count that shows more stability by comparing the sum of squared error criterion for

each clustering. Chiou and Li (2007) followed a more heuristic approach by setting different k

values and retaining the clustering that produces the best physical interpretation.

In the following section we will introduce a new framework of defining cluster stability

especially designed to work in the context of clustering functional data.
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5.2 General Downsampling Criteria (DSC)

This section introduces the downsampling criterion (DSC) in its general form, while in Chapter

6 we will show another downsampling approach specific to the functional spectral clustering

framework.

The framework of downsampling is exclusive to the functional data as it starts with split-

ting the curve into two non-overlapping low resolution copies, each copy containing 50% of the

original functional data. Downsampling can create replicates of the original data set without

losing the important features about the curve, which in turn helps in validating techniques for

functional data analysis.

As mentioned in equation (2.1), the general model of functional data can be written as:

yi = x(ti)+ εi, i = 1,2, ...,T.

In its simplest implementation splitting the data into two non-overlapping replicates with odd

and even time points, gives:

• Replicate one:

yi1 = x(ti1)+ εi1, i1 = 1,3,5, ...,T −1. (5.1)

• Replicate two:

yi2 = x(ti2)+ εi2 , i2 = 2,4,6, ...,T. (5.2)

Note that we assume the error ε’s are i.i.d ∼ N(0,ξ 2), and corr(εi1,εi2) = 0 for all i1, i2 which

implies corr(yi1 ,yi2) = 0. Thus, the two replicates are uncorrelated and they represent two dif-

ferent realizations of the original data over the same timeline.

The procedure depends on the type of functional data. Making replicates of curves that are

dense and have a regular timeline is easier and more straightforward than creating replicates of
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sparse and dynamic with irregular timeline functions. For instance, in the first case, take every

odd time point and its corresponding value to make the first replicate, and take every even time

point and its corresponding value to make the second replicate, as shown in equation (5.1) and

equation (5.2) respectively. While for the second case, dividing the curves into odd and even

might give very different replicates and thus we should be more cautious when applying the pro-

cedure. For instance, if the data are generated by the user, then it might be a good idea to move

the data from sparse to dense by increasing the time points and their corresponding arguments.

Even if the data include an irregular timeline or dynamic features, downsampling still can cre-

ate two similar replicates. However, downsampling may not be able to create similar replicates

when the given functional data is sparse, as in the case illustrated in Figure 5.2.

After preparing the two replicates, they go through the same smoothing and basis expansion.

The bases choice is similar to the one that would be applied for the original data, but we need to

consider the reduced dimensions of the two replicates. This will preserve the functional structure

of the high dimensional data set. Figure 5.1 illustrates the method using the sparse case of the

Canadian weather data (where there are 12 temperature measures) as an example. Clearly, we

can visually see that the odd and even replicates preserve most of the important features of the

35 curves. Also note the dense cases are less affected by the split and the loss will be minimal.

On the other hand, Figure 5.2 shows that splitting the very sparse curves will result in different

replicates. In this example, we assumed the available temperature records are only for January,

March, May, July, September, and November, resulting in only three time points for each of the

two downsampled replicates
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Figure 5.1: Smoothed curves of the Canadian weather data are split into two low resolutions
replicates by the downsampling method, where (left) shows temperature of the odd months and
(right) shows temperature of the even months.

Figure 5.2: Smoothed curves of the Canadian weather data are split into two low resolutions
replicates by the downsampling method, where (left) shows temperature of only January, May,
and September, while (right) shows temperature of only March, July, and November.

The downsampling criterion is considered as a stability-based model selection approach for
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selecting the number of clusters. Its fundamental idea is explained as follows. Given two low-

resolution replicates, the functional clustering method will be performed individually on the two

replicates. Then, the clustering results of replicate 1 and replicate 2 will be compared by the

adjusted Rand index (ARI) (Hubert and Arabie, 1985). Recall, ARI measures the agreement

between two partitions without a need for a standard true cluster. Thus, it is convenient to use

ARI values and they are considered as the stability scores in our approach. This step will be

repeated for a range of number of clusters, K = {kmin, ...,kmax}. By default we will use kmin = 2

and kmax = 15. However, to speed up the algorithm we can shrink the range by studying the

data first. Finally, there will be one stability score, which is the ARI index for each value

of K from kmin to kmax. The appropriate number of clusters will achieve the highest stability

score. However, this is not sufficient to choose the best number of clusters. Thus, to control the

uncertainty of the downsampling results, we create more replicates than just one pair of odd and

even copies. The general procedure we have proposed for generating more low-resolution copies

of the original functional data is through borrowing ideas from systematic sampling, which is

described in the next section.

5.2.1 The Sampling Scheme

One of the ways to evaluate the stability of a fixed clustering algorithm is by performing the clus-

tering algorithm several times on slightly different data sets. As mentioned above the new sets

can be created through sampling the original data. Our sampling scheme is based on projecting

the original high-dimensional data to low-dimensional spaces. To keep the sampling scheme

consistent over the new low-dimension (low-resolution) copies we proposed a semi-systematic

sampling scheme.

Based on the well-known systematic sampling, we have developed a sampling scheme to

create different samples. Before describing our sampling scheme, we will briefly review the

systematic sampling scheme. In the standard systematic sampling the first element is selected

randomly, then the remaining are selected automatically according to a predetermined pattern.

Suppose there are N elements in the population and the required sample size is n. Then we

define some p integer such that N = np. Assume all the N elements of the population can be
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arranged in a list. The first element i is selected randomly, where 1≤ i≤ p, then include every

pth element of the population in the sample. For instance, see Figure 5.3 for easy illustration of

this sampling procedure.

Figure 5.3: This chart illustrates a toy example of the systematic sampling procedure. When
N = 20 and n = 5, then p = 4. Starting randomly with 2 will include {2,6,10,14,18} in the
sample.

However, in downsampling we aim to include 50% (for a discussion, see below) of the full

functional data. Thus we will only borrow the idea of having a predetermined pattern for the

sample selection by defining integer p. The procedure will divide the original timeline into

subintervals each of size p. Then from each subinterval, we will choose 50% of the time points

and their corresponding values. Selecting the time points in the first subinterval will follow a

predetermined pattern and will be repeated over the rest of the subintervals. To simplify the

procedure and generalize it so that it can be applied in different functional data scenarios, we

fixed p = 6 and defined the selection scheme in terms of logical sets. All the possible sets are

listed in Table 5.1. The number of possible logical sets can be calculated using the combination

of p points taken p
2 at a time. Thus,

( p
p/2

)
=
(6

3

)
= 20, and these 20 logical sets will be listed

as pairs of opposite sets. The key idea is to create two non-overlapping sets at every pair. For

instance, the first line shows the sampling of odd values versus the sampling of even values to

create the first downsampled functional data as mentioned above. Since we need more copies

in a low-dimensional space of the original functional data, we generated different sets of odd

and even pairs. Note that set 1 always starts with T thus we call it the odd set, while set 2

always starts with F thus we call it the even set, for simplicity. Based on this selection scheme

each generated downsampled functional data set will be unique. Also see Figure 5.4 for an

illustration of the our sampling scheme when applied to a line of data points using some of the



CHAPTER 5. DSC APPROACH 67

patterns.

pair set 1 (odd) set 2 (even)

1 T,F,T,F,T,F F,T,F,T,F,T

2 T,T,T,F,F,F F,F,F,T,T,T

3 T,T,F,T,F,F F,F,T,F,T,T

4 T,T,F,F,T,F F,F,T,T,F,T

5 T,T,F,F,F,T F,F,T,T,T,F

6 T,F,T,T,F,F F,T,F,F,T,T

7 T,F,F,T,F,T F,T,T,F,T,F

8 T,F,F,F,T,T F,T,T,T,F,F

9 T,F,T,F,F,T F,T,F,T,T,F

10 T,F,F,T,T,F F,T,T,F,F,T

Table 5.1: Sampling scheme for generating pairs of downsampled functional data based on
logical sets of True and False. T stands for selected values from the original time points, while
F are the omitted values. Set 1 and set 2 are opposite to each other and non-overlapping.

(a) pattern {T,F,T,F,T,F}

(b) pattern {T,T,F,T,F,F}

Figure 5.4: These charts illustrate a toy example of our sampling scheme in different patterns.
When N = 18, p = 6, and n = 9. Then (a) subset will include {1,3,5,7,9,11,13,15,17}, and
(b) subset will include {1,2,4,7,8,10,13,14,16}.

After explaining the sampling procedure, a few points must be clarified. First we discuss the
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reason behind specifically choosing 50% when sampling the original curves. The simplest way

to obtain similar but non-overlapping sets of curves is by dividing them into odd and even, thus

every set contains 50% of the time points and their corresponding values from the full curves.

Hence this percentage preserves the equality between the downsampled curves in holding the

important features of the functional data set. A higher percentage will create overlapping pairs

of odd and even sets, which in turn will result in dependency between the sets, while a lower

percentage might fail to catch some information related to clustering. In fact, Lange et al. (2004)

have proposed a stability approach that is based on splitting the data into two disjoint and equal

size subsets because the overlap could already determine the clustering structure. This in turn

will create dependence and would lead to artificial stability. Further, Hennig (2007) stated that

choosing a large subset will not generate enough variation to be informative, while choosing a

small subset might obtain poor clustering results. Thus, the author proposed a subsetting scheme

that uses half of the original dataset for evaluating the clustering stability.

As mentioned above, one pair of odd and even sets is not sufficient for choosing the number

of clusters, more pairs must be sampled. Dividing the full timeline into subintervals and restrict-

ing the procedure to sample 50% of the points within each subintervals avoids missing the main

structure and does not lead to a confused copy of the original functional data.

One might question why p = 6 and why the sampling is systematic and not random. Since

we want to include 50% of the data at every sample, we are restricted to an even p integer, to

have equal values of True and False. Thus the potential values are p = 4, p = 6, and p = 8.

Looking at p = 4, the possible odd combinations are only {T,F,T,F}, {T,T,F,F}, and {T,F,F,T},

and their even pairs. This limited number of samples is not enough to compute the overall sta-

bility scores. On the other hand, setting p = 8 can give 35 pairs of odd and even sets. However,

most timelines of the functional data are not divisible by 8, which might lead to omitting more

time points to adjust the timeline. Therefore, we assumed obtaining 10 pairs of odd and even

when p = 6, is adequate to carry out comparisons and draw conclusions. Besides, it is more

likely to get timelines divisible by 6 than 8. Nevertheless, in some examples, we will have to



CHAPTER 5. DSC APPROACH 69

omit a few values to make the timeline divisible by 6. The common procedure is to omit the

very last time points. Despite that, it is recommended to study the data in advance to insure the

omitted values are not playing a major role in defining the structure of the curves.

We now briefly discuss why we choose systematic sampling over random sampling. Ran-

dom sampling of 50% of the data points in a curve usually disorders the main structure of the

functional data and leads to correlated sub-sampled sets. For instance, sampling randomly from

the original time points and their corresponding values might omit the first 10 points, or it can

omit all the points that reflect a major peak or a sudden shift. Further, the downsampling ap-

proach attempts to create non-overlapping copies of the original functional data to keep the two

replicates uncorrelated, which is unattainable with random sampling with replacement. Finally,

random sampling will create different sampled curves within the sampled set, and it will be

challenging and computationally expensive to smooth every curve individually. In fact, we have

attempted to apply downsampling based on the random sampling. The resulting curves lose the

original structure of the data. Further, every curve needs a different smoothing model, which is

time consuming.

5.2.2 The Criteria

Now we describe the procedure of applying the downsampling criteria and the sampling scheme,

as explained above. First the functional data will go through the sampling scheme to create 10

pairs of odd and even replicates. Each of these replicates will be smoothed and clustered by

applying a functional clustering method. Then, for each pair of opposite sets, the clustering

results of the odd and the even sets will be compared by ARI to compute the stability scores.

This step will be repeated over a range of K values, where kmin ≤ K ≤ kmax. Thus, there will

be 10 stability scores for each k value, which can be represented graphically by boxplots. Then,

the number of clusters k with the highest stability is chosen. Algorithm 1 (Figure 5.5) explains

our proposed paradigm for choosing the number of clusters based on the stability arguments for

functional data. The algorithm is written in the general format, where the user can specify p and

accordingly m.



CHAPTER 5. DSC APPROACH 70

In our proposal we set p = 6 which gives m = 10 pairs. Also, we find letting 2≤ K ≤ 15 is

appropriate to examine the optimal k value among the given range.

Algorithm 1 General Downsampling Criterion
1: procedure CLUSTER & ESTIMATE(k)

2: for i← 1,m do

3: Split the data into odd and even . based on p

4: for each replicate do

5: Smooth the data

6: for K← kmin,kmax do

7: Cluster the data . with any CFD method

8: end for

9: return clustering results ∀K

10: end for

11: Compute ARI: ari(odd,even) . one stability score for each k

12: end for

13: Record final results . m stability scores for each k

14: Create boxplots of ARI vs K

15: Boxplot with largest medium will lead to optimal k

16: end procedure

Figure 5.5: The general downsampling criterion algorithm.

5.3 Application of DSC on the Berkeley Growth Data

Considering the Berkeley growth data again, we can apply the general downsampling criterion

to estimate the number of clusters. Recall in Section 4.3 we set k = 2 that refers to the male

and female clusters in the data. However, we are also interested in looking at the performance

of DSC on this data and what will be the resulting k. This functional data set is a hard example
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as it consists of an unequally-spaced timeline. Implementing our sampling scheme gives 10

pairs of odd and even sets of the growth data. Figure 5.6 displays the odd subsample sets from

the original curves. The overall structure of the curves is maintained, despite the fact that each

individual curve has changed.

Figure 5.6: The odd subsamples of the growth data

Considering the first pair of odd and even copies, we can apply the permutation T-test using

tperm.fd in the fda package to test for a difference between the two sampled copies. The

null hypothesis assumes that there is no difference between the odd set and the even set in terms

of children heights over the timeline. The resulting p-value= 0.92, and the graph with the T-test

pointwise critical values is shown in Figure 5.7. The results suggest that there is no significant

evidence to reject the null hypothesis, thus there is no significant difference between the two sets

of curves.
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Figure 5.7: Permutation t-test for odd copy and even copy of the original functional data.

In our first trial, we applied the downsampling approach on only one pair of the regular odd

and even sets. Including all the functional data clustering methods that have been explained in

this thesis, we examined its performance for 2≤ K ≤ 6. The results are shown in Figure 5.8; in

general, there is no clear trend of the ARI lines to conclude the optimal k value. Thus, it is not

enough to judge on the optimal number of clusters from only one pair of replicates. However,

looking at each clustering method separately, there are some peaks at k = 2. Therefore, it would

be of interest to carry out the general DSC on each of the clustering methods.
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Figure 5.8: Results of ARI for each K when using the downsampling criteria with different
clustering techniques

The general DSC was applied on the following clustering methods: FunHDDC, FD-Kmeans,

B-splines-km, FPCA-mbc, FSC-S(Do), and FSC-S(D1), for 2 ≤ K ≤ 9. As often the basis ex-

pansion is done before clustering, to examine the performance of the criteria we have fixed the

smoothing model for all the methods. The appropriate smoothing technique is B-splines of or-

der 6 in a saturated model (depending on the selected time points) with λ = 101. Comparing

this smoothing choice to the one used for the original Berkeley growth data in Section 4.3, we

can notice that the smoothing parameter λ is slightly bigger which will impose more smoothing

constraints to the downsampled curves. This is because applying smaller λ was noticed to create

some dips between a data point and another which is unrealistic with children’s heights.

The results of the general downsampling criterion are shown in form of boxplots. The box-

plots represent the clusters stability based on the adjusted Rand index for each k. The following
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results relate to FunHDDC (Figure 5.9), FD-Kmeans (Figure 5.10), B-splines-km (Figure 5.11),

FPCA-mbc (Figure 5.12), FSC-S(Do) (Figure 5.13), and FSC-S(D1) (Figure 5.14).

Figure 5.9: Boxplots of the ARI over k values when applying the general DSC with FunHDDC
on the growth data. The approach suggests there are 3 clusters in the data.

Figure 5.10: Boxplots of the ARI over k values when applying the general DSC with FD-Kmeans
on the growth data. The approach suggests there are 3 clusters in the data.
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Figure 5.11: Boxplots of the ARI over k values when applying the general DSC with B-splines-
km on the growth data. The approach suggests there are 2 clusters in the data.

Figure 5.12: Boxplots of the ARI over k values when applying the general DSC with FPCA-mbc
on the growth data. The approach suggests there are 2 clusters in the data.
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Figure 5.13: Boxplots of the ARI over k values when applying the general DSC with FSC-S(Do)
on the growth data. The approach suggests there are 2 clusters in the data.

Figure 5.14: Boxplots of the ARI over k values when applying the general DSC with FSC-S(D1)
on the growth data. The approach suggests there are 2 clusters in the data.

In general, there is a clear preference to choose k = 2 as the optimal number of clusters in

the growth data. However, k = 3 looks to be a reasonable choice too. Apart from FunHDDC

and FD-Kmeans, all the other methods give the highest boxplot at k = 2. Also, in FPCA-mbc,

FSC-S(Do), and FSC-S(D1) the second highest boxplot is at k = 3. While, in FunHDDC and
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FD-Kmeans k = 3 comes before k = 2. Figure 5.15 summarizes the resulting means of the ARI

for each clustering techniques which confirms the results of the individual boxplots.

From experience we noticed changing the smoothing model through varying λ can change

the outcome of the downsampling criterion. For instance, if we set λ = 10−0.5 we get the highest

stability score at k = 2 in both FunHDDC and FD-Kmeans. On the other hand, the same λ will

lead to different results in our proposed methods FSC-S(Do), and FSC-S(D1), where the highest

boxplot will point to k = 7 in FSC-S(Do) and in FSC-S(D1) the highest stability is at k = 2 and

k = 3 equally. Thus, it is crucial to choose the appropriate smoothing model for the sampled data

with care. As the number of clusters is usually unknown in most of the clustering problems, an

inappropriate smoothing model will give misleading results. It should be also mentioned that

the clustering technique did not converge in all the iterations in FunHDDC, FD-Kmeans, and

FPCA-mbc, which resulted in a few missing ARI values.

Figure 5.15: Results of the ARI mean values for each K when using the downsampling criteria
with different clustering techniques.
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5.4 Chapter Summary

In this chapter we have introduced the general downsampling criterion (DSC), a model selection

technique based on clustering stability. It is a new paradigm designed for functional data that

attempts to identify the number of clusters in the data. The paradigm is based on first creat-

ing low-resolution replicates of the original data by using a designed sampling scheme. This

sampling scheme creates 10 pairs of two non-overlapping sampled sets (odd replicates and even

replicates). The downsampled sets go through smoothing and clustering over a range of K val-

ues using any of the functional clustering methods. At each k, the clustering results of the two

replicates are compared by the ARI which refers to the stability score in our paradigm. This

process is repeated for the 10 pairs of odd and even replicates, and the stability score at every

iteration is calculated. Finally, the stability scores are represented as boxplots for the specified

range of K, and the highest boxplot will indicate the optimal k value.

Performing the downsampling criterion in 10 pairs of odd and even replicates instead of just

one pair is more informative and reliable. As every sampled set consists of different data points,

some of the sampled sets might miss important information relating to the clustering structure of

the data. Through applications on the Berkeley growth data, the downsampling criterion showed

acceptable results in most functional data clustering methods.

It should be mentioned that due to the possibility of some lost in the quality of the replicates

and accordingly the clustering results, the DSC is only used as a model selection criterion and

is not preferred for finalizing the clustering results. The basic concept is to identify the optimal

number of clusters k, and not clustering the data into groups. The resulting k will be used to

cluster the original functional data. This is because the fact that if a clustering structure is stable

in low-resolution space, it will be stable in high-resolution space (original data), but it does not

necessarily reflect the optimal assignment of curves into clusters. It is also worth mentioning

that in case the data consists of only one cluster, then the approach should give very low ARI for

all k > 1 without a peak at a specific k. However, in real datasets it might be hard to achieve this
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and the criterion might provide some misleading k rather than suggesting that the data cannot be

clustered, which is in fact a common issue with distance-based clustering approaches.

Downsampling is best used for dense functional data, and not recommended for sparse func-

tional data, since in the latter case the sampling scheme will create replicates that will fail to

retain the original structure of the functional data, which in turn will give misleading results.

Also it is important that the smoothing technique is selected thoughtfully. As is always the case

in any functional data analysis, smoothing and basis expansion play a critical role in determining

the final outcomes. Finally, we should consider the fact that the success of the downsampling

criterion depends on the performance of the chosen clustering method.



Chapter 6

Downsampling Criterion with Functional

Spectral Clustering Approach

In this chapter we introduce the integrated functional spectral clustering-downsampling ap-

proach. As discussed in the previous chapter, downsampling allows us to create lower resolution

replicates of the observed curves. These replicates will now be used to provide insight into the

parameters k and σ for the FSC-S approach. The first section defines the eigengap heuristic

and explores the potentials of using it for examining the clustering stability, and briefly reviews

some corresponding studies. Section 6.2 details the extended approach of functional spectral

clustering based on downsampling criteria. The use of the integrated approach is illustrated in

Section 6.3 through application of our approach on the Berkeley growth data.

Recall, in Chapter 4, we have explained our proposed framework FSC-S. The approach

showed favourable results compared to other methods when applied to the Berkeley growth

data. Later, in Chapter 5, we have introduced the general DSC as a model selection criterion

for identifying the number of clusters in a functional data set. Again we evaluated the criterion

on the Berkeley growth data and it showed encouraging results. One limitation of the FSC-S

approach is the need to specify the number of clusters a-priori. In this chapter we will address

this limitation by employing the downsampling criterion in selecting the number of clusters.

Based on the concept of stability clustering we aim to estimate the parameter k, the number of

80
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clusters, within the functional spectral clustering technique.

6.1 Conceptual Understanding and Motivation

Spectral clustering is one of the most popular clustering approaches that falls under the broad

category of non-parametric clustering. In this category, the clustering techniques do not rely on

an underlying model. Therefore, the well established techniques for choosing the number of

clusters that work well for model-based clustering approaches, would not be valid in the non-

parametric approaches. Instead, a wide range of criteria and techniques have been developed

in the literature to choose the number of clusters in non-parametric settings. Since our plan

is to employ the cluster stability concept for spectral clustering, we briefly list some of the

techniques that have been used particularly in this context in the literature. For instance, Wang

(2010) developed a scheme for choosing the number of cluster that minimizes the algorithm’s

instability based on cross validation. Hess and Duivesteijn (2019) suggested a method that

is based on determining whether two clusters are likely to come from a single distribution,

and accordingly proposed a probability bound specified only by the sample mean and variance.

More recently, Andreotti et al. (2020) introduced a stability measure for spectral clustering by

computing the structured distance to ambiguity, which refers to the minimal distance of the

Laplacian to Laplacians of graphs with the same vertices and edges but with weights that are

perturbed such that there is no clear kth spectral gap. In addition to the above, a traditional

tool that is linked to clustering stability and has been frequently used in spectral clustering is the

eigengap heuristic (Chung and Graham, 1997). This approach has been particularly designed for

spectral clustering and its concept is to compute the difference between each eigenvalue λ j and

eigenvalue λ j+1, and the eigengap will be the maximum value which can be written as: eigengap

= max(λ j+1−λ j). Then, all eigenvalues that come before the maximum eigengap will indicate

how many clusters ki would be in the data. This procedure can be justified by the perturbation

theory (Section 4.4). According to the perturbation theory, in the ideal case there will be k very

small eigenvalues {λ1,λ2, ...,λk} compared to the rest of the eigenvalues; the gap between λk

and λk+1 represents the eigengap. Besides, the Davis-Kahan theorem (Section 4.4) illustrates
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that the distance between the ideal eigenspace and the perturbed eigenspace is bounded by some

value which is proportional to the perturbation size and inversely proportional to the eigengap.

Thus, it has been suggested in the literature that the eigengap can be used as a stability indicator

of the clustering (Von Luxburg, 2007). In a similar direction, our proposed method is motivated

by the perturbation theory and Davis-Kahan theorem, as it will be explained in more details

throughout this chapter.

Now, we will be presenting the eigengap heuristic using a toy example to illustrate the con-

cept. Consider some functional data over the time 0≤ t ≤ 2π that come from the 3 functions:

• 1
2t +u1 +2− cos(t)+ ε , with u1 ∼N (µ = 1,ξ 2),

• 1
2t +u2 +1+ sin(t)+ ε , with u2 ∼N (µ = 0,ξ 2),

• 1
2t +u3 + cos(2t

π
)+ ε , with u3 ∼N (µ =−1,ξ 2),

where ε ∼N (µ = 0,ξ 2), while the standard deviation ξ takes the values 0.1,0.25,0.45, and

0.8 to move from low-noise functional data to high-noise functional data in 4 different scenar-

ios. In other words, we want to vary the difficulty of the clustering and observe the change in

the eigengap for each scenario. Figure 6.1 displays the created functional data in four levels ac-

cording to the noise along with the eigenvalues graphs after clustering the data with FSC-S(Do).

Before explaining the results, it should be mentioned that σ of the similarity matrix Ai j (defined

in Chapter 4) is fixed and equal to 1. In our proposed clustering approach (Section 4.2) we set

σ = the standard deviation of the elements of the distance matrix. However, in this example we

fixed σ to be 1. This is because we want to observe the change in the eigengap heuristic only

by increasing the noise (perturbation) in the data, keeping all other parameters e.g. σ and the

smoothing parameter λ fixed.

The first set of functional data displayed in the first row of Figure 6.1 consists of 3 well

separated clusters, and we can see the first 3 eigenvalues are very small compared to the rest of

the eigenvalues. The gap between the third and the fourth eigenvalues represents the eigengap.

The same behaviour can be observed from the second set of functional data (second row of

Figure 6.1). In the third set, although the separation between clusters is not very visible, the

eigengap heuristic still indicates 3 clusters in the data (third row of Figure 6.1). But clearly the
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eigengap shrinks as the noise increases. In the last functional data set, there is no clear eigengap.

In fact, the noise in this data is very high and thus there is no clear pattern of clusters, which

makes it a hard clustering problem. This toy example illustrates that the eigengap heuristic often

works well if the data consists of well defined clusters, but would not give optimal results when

the clusters in the data overlap very much, which is expected in most criteria for choosing the

number of clusters.

Figure 6.1: Different functional data sets with the smallest 10 eigenval-
ues according to FSC-S(Do). From top to bottom: low-noise to high-
noise functional data.

Note that in this example, we have fixed σ to be 1, however, there is a strong relation be-

tween the eigengap heuristic and the parameter σ . The effect of σ on the eigengap heuristic

is illustrated in Figure 6.2. Consider again the toy example explained above, specifically the

scenario when ξ = 0.25. According to the graphs of the eigenvalues, FSC-S(Do) can indicate
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that there are 3 clusters based on the eigengap for σ = 0.5,0.75,1 and 1.25. However, when

σ ≥ 1.5, the eigengap comes after the first eigenvalue which gives only one cluster. On the other

hand, at σ = 0.25 all eigenvalues will be stacked in a line with no eigengap, which assumes

there are as many clusters as number of curves in the data. Overall, this example illustrates

that the parameter σ influences the eigenvalues and accordingly the eigengap. In more details,

choosing a smaller σ tends to stack all eigenvalues together while a large σ tends to create a

big gap between the first eigenvalues and the rest. In between, some σ values will support the

appropriate eigengap which in turn will reveal the correct number of clusters in the data.

Figure 6.2: Graphs of the 10 smallest eigenvalues when applying FSC-
S(Do) with a range of σ values for the toy functional data.

Another point of discussion is associated with the choice of optimal values of σ and the

proper eigengap if the functional toy data is slightly altered. Consider the above toy example

obtained by multiplying all data values by 100. Then, the optimal value(s) of σ that will support
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the eigengap to reveal the right number of groups will change too. Figure 6.3 shows the 10

smallest eigenvalues when applying FSC-S(Do). In this case, the new optimal σ values are

different and 10 times higher than the previous values.

Figure 6.3: Graphs of the 10 smallest eigenvalues when applying FSC-
S(Do) with a range of σ values for the toy functional data multiplied by
10.

From above, we attempted to explore three different forms of relationship as follows:

• The relation between the eigengap and the perturbation in the data,

• The relation between the eigengap and the values of σ ,

• The relation between the values of σ and the domain of the data.

The outcomes contribute to our understanding of the role of σ in finding k, and the effects

of perturbation on these parameters. Although our main interest is not σ itself, the value(s)
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of σ will help in revealing the optimal eigengap and accordingly the optimal k. Based on the

above facts, we are interested to move forward and introduce our new proposal in the following

section.

6.2 Specific Downsampling Criterion (FSC-DSC)

In this section, we design a downsampling criterion that is specific for the functional spectral

clustering approach by considering σ as a flexible parameter in the process. This proposed cri-

terion leads to extending the default FSC-S method to FSC-DSC, that additionally estimates k

when clustering the data.

In Section 4.2, we assumed k is known a-priori and σ is fixed. However, from the toy ex-

ample we found that the parameter σ plays an important role in spectral clustering as it controls

the width of the neighbourhoods. Von Luxburg (2007) stated that the choice of σ depends on

the domain of the data, and no general advice is given. The author also added that σ has direct

influence on the choice of number of clusters in the data. In the context of the standard spectral

clustering, there exist some studies that show the significant influence of σ in changing the clus-

tering results and proposed self-tuning methods (Afzalan and Jazizadeh, 2019; Bruneau et al.,

2014; Zelnik-Manor and Perona, 2005).

To our knowledge, there has been no prior application of spectral clustering on functional

data, and there does not exist any method for finding the best σ or k when employing spectral

techniques to cluster functional data. In fact, the tasks of finding the right number of clusters k

and the optimal σ are still an active area of research for multivariate spectral clustering.

We propose the use of the downsampling criterion to estimate both σ and k by modifying the

general approach of downsampling explained in Section 5.2. This criterion can only be applied

to functional data, and thus it gives our functional spectral clustering approach an advantage

over the standard multivariate spectral clustering methods.
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How does downsampling help in estimating the optimal σ and k for clustering the data?

From the toy example, we observed that a large σ combines all eigenvectors (based on the

eigengap heuristic approach) in one big cluster, while a very small σ forces each eigenvector in

its own cluster. Hence, the number of clusters in the data can vary from 1 to n over a specified

range of {σ1, ...,σt} values. We can then find K = {k1, ...,kt} by using the eigengap heuristic

approach for every σ . Initially, we will explore pre-fixed ranges of σ values, consisting of short

equispaced discrete intervals such as: {0.05, ...,0.50}, {1, ...,5}, {10, ...,15}, {40, ...,60}, and

{100, ...,120}. These ranges will depend on the calculated standard deviation of the elements

of the distance matrix and should not exceed the calculated standard deviation. For instance,

if the standard deviation is 44, then we will explore the ranges of σ that are below this value.

Later, we will only select the range that shows variations among the 15 smallest eigenvalues 1 for

further and more detailed search, and will avoid any range of σ that result in only k = 1 or k = 15.

Based on our downsampling approach, the original data will be split into low resolution

replicates as odd and even. It is possible to use all 10 pairs of odd and even replicates in the

specific downsampling criterion as it was the case with the general downsampling criterion

(Section 5.2). However, considering the computational cost of this practice we can rely on just

the simplest form of odd and even pairs (i.e. the first pair). Each replicate will go through the

same smoothing and then will be clustered by FSC-S technique over a pre-determined range

of σ . Each value of σ will yield some k value resulting from the eigengap heuristic, and the

clustering process will be repeated over the range of σ until K hits 1. Then, the clustering

results of the odd replicate and the even replicate will be compared using the ARI to compute

the stability score. Based on the concept of clustering stability, the highest stability score reflects

the best choice of σ and k. However, usually a range of σ values will give the optimal results

instead of only one specific value, indicating robustness in the choice of σ . For instance, if the

range [σi,σ j] gives the same value of k in both replicates along with high ARI values, it would

indicate clustering stability for those σ values and would support the choice of k. Obviously,

1We assume 1 < k < 15, while if the number of curves n is less than 15, then 1 < k < n.
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high ARI values that are associated with k = 1 and a very large k (k ≈ number of curves in

the data) will not be counted as clustering stability and will be excluded from the choices. Our

extended algorithm is detailed in Figure 6.4:

Algorithm 2 FSC-S with downsampling approach
1: procedure CLUSTER FD & ESTIMATE(K,σ )

2: Split the data into odd and even

3: for each replicate do

4: Smooth the data

5: Compute the Distance matrix

6: Examine global σ values

7: Zoom in a specific range of σ

8: for i← 1,z do

9: σ = i/d . where d take any value: {1,2, ...,100}

10: Compute matrices: A,D, and L . regular steps of FSC-S

11: Find k: ki = arg{max(λ j+1−λ j)}

12: Create V based on the k eigenvectors

13: Normalize V←Y

14: Find k clusters by applying k-means on Y

15: end for

16: return K,σ ,and the k clusters . K = {k1,k2, ...,kz,1}

17: end for

18: for i← 1,z do

19: Compute ARI: ari(odd,even)

20: end for

21: end procedure

Figure 6.4: The specific downsampling criterion algorithm.

Applying the algorithm leads to results shown in Table 6.1. The table displays a list of σ
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values besides their corresponding k for each copy, and the adjusted Rand index (ARI). Apart

from k = 1 and k = n, the table suggests the highest ARI is 1 for k = 4 from both data sets at

σ = σi. This is a simple example to show how the concept of our algorithm works, however,

in real world examples it might not be as straightforward as this example. We might never get

a match of k between the two copies, which usually occurs if the two sets are not alike, or if

the data can be explained by more than one k. Either way, the specific downsampling criteria

can still provide some information about the optimal clustering structure. Recall from Section

5.2, we observe that the downsampling criterion is not appropriate for sparse functional data

analysis, which is also true while using downsampling for selection of σ and k. We have also

observed that the optimal σ in the lower resolution replicates is slightly smaller than the optimal

σ of the original functional data, but they reveal the same k. Thus, the resulting k from FSC-

DSC is appropriate and in most clustering problems the clustering assignments of curves are

appropriate. FSC-DSC works best when the functional data are dense, with a regular timeline.

σ K (odd set) K (even set) ARI

σ1 ≈ 0 n n 1
...

...
...

...

σ5 6 7 0.32
...

...
...

...

σi−1 4 4 0.91

σi 4 4 1
...

...
...

...

σz−6 3 2 0.40
...

...
...

...

σz ≈ 1000 1 1 1

Table 6.1: Simulated results of FSC-DSC algorithm to indicate the opti-
mal σ and k for the functional data. The table suggests the optimal k is
4 with σ = σi.

We have initially attempted to use additional criteria to aid our choice of k such as the
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AIC and BIC. However, since our approach is not a maximum likelihood estimation, we used a

commonly presented version of AIC and BIC for K-means as presented in Towers (2013). Based

on kmeans function in R and using the information of the residual sums of squares (RSS) after

fitting the data. The formulas of AIC and BIC can be written as follows:

AIC = RSS+2mk, (6.1)

BIC = RSS+ ln(n)mk, (6.2)

where:

• n = number of observations,

• k = number of clusters, and

• m = number of dimensions.

In FSC-DSC, n = number of curves, and m = number of eigenvectors of the Laplacian

graph chosen by the eigengap heuristic. Since in our approach the number of clusters is also

determined by the eigengap heuristic, then m always equals k in equation (6.1) and equation

(6.2). However we have observed that as k decreases and σ increases, the calculated AIC and

BIC values decrease. Therefore, we could not rely on these values to confirm the results of

FSC-DSC.

6.3 Application of FSC-DSC on the Berkeley Growth Data

We will now revisit the Berkeley growth data. We will apply FSC-S(D1) to cluster the data based

on its superior performance over FSC-S(Do), as illustrated in Section 4.3. Unlike in Section 4.3

where we assumed k = 2 based on the natural grouping of gender among the children, here we

will be estimating k by performing FSC-DSC.

The outcome of applying the algorithm on the first pair of odd and even replicates of the

growth data is shown in Table 6.2. The two replicates give similar results of k with high ARI
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from σ = 0.5 to σ = 0.69. Although we have mentioned that in general we will limit the appli-

cation of FSC-DSC on only one pair of odd and even replicates, we have used all the pairs in the

growth data, mainly because we want to make sure that the different pairs will perform similarly.

We found that all pairs yield more or less similar results, as is evident from Table 6.2. There is

only one set, where the replicates coming from the logical set {T,T,T,F,F,F} and {F,F,F,T,T,T}

for odd and even, respectively, showed different results. In this case, the odd replicate was able

to detect the 2 clusters in the curves, while the even set gave a further split for one of the clusters

to be in total 3 clusters. A summary of the results for this case is shown in Table 6.3.

For more detailed outcomes of the algorithm, Figure 6.5 displays some selected results of

the first replicate for the odd set at σ = 0.32,0.5, and 1, shown in Figure 6.5a, 6.5b, and 6.5c

respectively. The figures explicitly show the effect of σ on the eigenvalues which in turn will

lead to the choice of k through the eigengap heuristic approach. In addition, Figure 6.6 sum-

marizes the ARI of comparing the two replicates over a range of σ values. It shows that when

k of the odd set (set 1) fully matches with k of the even set (set 2), the ARI achieves a value

of 100%. On the other hand, when there is a mismatch between the two k’s, the ARI drops to

lower values. The figure also illustrates that the estimated k values from the algorithm take only

a few unique values: 92, 84, 42, 3, and 2. The algorithm assigns very high k for both sets over

σ = {0.01, ...,0.33} and then drops quickly to smaller k until the two sets settled at k = 2 before

they finally reach k = 1. Considering the clustering results of k = 2 at the optimal range of σ

gives an accuracy rate of 91% when compared to the gender grouping of the data.
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σ K (odd set) K (even set) ARI

0.01 92 92 1

0.30 92 84 0.27

0.33 92 42 0.022

0.34 2 42 0.04

0.36 3 42 0.064

0.38 3 2 0.70

0.5 2 2 0.96

0.54 2 2 1.00
...

...
...

...

0.69 2 2 1.00

0.70 2 1 0

0.71 1 1 1

1.00 1 1 1

Table 6.2: Selected results of FSC-S(D1) algorithm with FSC-DSC on
the growth data. The table suggests k = 2 according to the highest ARI.
The shaded area shows the highest ARI reflected from a match of the
two K’s over the optimal σ values.

σ K (odd set) K (even set) ARI

0.01 92 92 1

0.40 2 29 0.073

0.41 2 3 0.63

0.50 2 1 0

0.99 2 1 0

1.00 1 1 1

Table 6.3: Selected results of FSC-S(D1) algorithm with FSC-DSC on
the growth data. Where there is no match for a pair of odd and even
sets in terms of k. Note that using the ARI criterion we arrive at 2 or 3
clusters for ARI = 0.63.
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(a) σ = 0.32,k = 92

(b) σ = 0.5,k = 2

(c) σ = 1,k = 1

Figure 6.5: Some of the resulting graphs of the application of FSC-DSC to the Berkeley growth
data (the odd replicate). The left panel shows the eigenvalues based on the given σ while the
right panel shows the clustered curves based on the chosen k.
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Figure 6.6: A diagram of ARI shows the overall results of comparing k of the odd (set 1) and
even (set 2) over a range of σ . Initially at σ ' 0, the ARI starts as 100% since both sets give
k = 92 but it immediately drops to very low values as σ increases. Starting from around 0.5 the
two sets start to coincide in clustering the curves which is reflected in high ARI and this ends
when σ hits 0.7 where first k = 1 and by that the ARI drops to 0. The zoomed-in picture shows
the match between the two sets at σ = [0.5,0.69].
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On the other hand, if we consider the specific downsampling criterion with FSC-S(Do), the

optimal number of clusters is different. The original curves of the growth data represent the

heights of children, thus these curves will normally group the data into different heights cate-

gories regardless of their gender. The results of applying the algorithm of the first pair of odd and

even replicates is shown in Table 6.4 and in Figure 6.7. According to the results, the value for k

is 5 clusters, which is clear from the significant jump from k > 90 for both sets to k = 5 before

the two sets settle at k = 1. We notice that the ARI fluctuates around 87%, due to a few curves

moving between clusters at different σ values. Figure 6.8 represents the clusters for k = 5. The

bigger group consists of 46% of the curves including both boys and girls, which could be con-

sidered as a middle category (displayed as green curves in Figure 6.8), while the children with

relatively lower heights are only 8 and are all girls (the red group). Whereas, children who are

relatively tall are only 5 boys and 1 girl (the black group).

σ K (odd set) K (even set) ARI

0.1 92 92 1

0.2 92 92 1

0.3 92 91 0.67
...

...
...

...

1.5 92 91 0.67

1.6 91 91 1

1.7 5 5 0.84

1.8 5 5 0.89
...

...
...

...

3.5 5 5 0.87

3.6 1 1 1

Table 6.4: Some selected results of FSC-S(Do) algorithm with FSC-DSC
on the growth data. The table suggests k = 5 according to the highest
ARI. The shaded area shows the highest ARI reflected from a match of
the two K’s over the optimal σ values.
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Figure 6.7: A diagram of ARI shows the overall results of comparing k
of the odd and even sets over a range of σ . Both sets start at k = 92 and
k = 91, then at σ = 1.7 they give k = 5 with ARI averaged 87%.

Figure 6.8: The left graph shows the eigenvalues with clear eigengap
at 5, while the right graph shows the 5 clusters of the Berkeley growth
data. Results from the odd set.
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It is well known that the original scale will often demonstrate a different interpretation of

the data than the first derivatives. This concept is clear with the growth data, where the original

curves hold information about the heights of children while the first derivatives hold information

about the rate of change (growth rates) in children’s heights. The rate of change in heights is

linked to puberty, thus it can often discriminate boys from girls. Therefore, if we are interested

in clustering the data based on gender, then using FSC-DSC with FSC-S(D1) is more informa-

tive than using FSC-S(Do).

It should be mentioned that the results of FSC-S(D1) in the general DSC (Section 5.3) are

compatible with its results in the specific FSC-DSC. However, FSC-S(Do) in the general DSC

suggests k = 2, but it does not support k = 5. There are two main reasons for this apparent

mismatch. First, while FSC-DSC estimates the number of clusters from the domain of the

data, general DSC clusters the data according to pre-determined k values. Second, and most

importantly, σ in the general DSC is fixed and equal to the standard deviation of the elements

of the distance matrix as explained in Section 4.2, whereas σ is a variable parameter and plays

an important role in the final clustering results in FSC-DSC. For instance using FSC-S(Do),

σ = 18 in the general DSC, which is far bigger than σ = [1.7,3.5] in the specific DSC. While

for FSC-S(D1), σ = 2.8 in the general DSC and σ = [0.5,0.69] in the specific DSC. Based on

the Berkeley growth data, we noticed that even if the specific and general DSC do not fully agree

in the final clusters, they both lead to reasonable results. More details will follow in Chapter 7

and Chapter 9.

6.4 Chapter Summary

In this chapter, we have addressed the limitations of the FSC-S approach with respect to the

number of clusters, and proposed a criterion to optimally estimate the number of clusters. In

particular we have proposed the specific downsampling criterion to estimate the optimal num-

ber of clusters k at the optimal range of σ . The addition of the downsampling method added a

distinctive feature to our approach. The choice of k and σ is an open-ended question in spectral



CHAPTER 6. FSC-DSC APPROACH 98

clustering and our FSC-DSC approach provides promising results in answering the question in

the context of clustering functional data.

The success of our approach can be explained by the behaviour of σ and the Laplacian graph.

For instance, moving from low σ to high σ , we move from the scenario where each curve is a

cluster to the scenario where all curves in one big cluster. During this process k does not change

continuously but abruptly, which suggests that the k values tend to identify inherent clustering

in the data structure. We can presume that σ creates a natural threshold which in turn divide the

data into groups. The Laplacians graph makes sure that the block diagonal of eigenvectors are

in a meaningful order, where the eigenvectors that hold more information about the variation in

the data come first. Hence, it does not miss a cluster nor duplicate a cluster, and thus preserve

all the information about the clusters in the first k eigenvectors.

Based on several applications we have found that the parameter σ may change the eigen-

values but does not alter the eigenvectors. This explains why the functional spectral clustering

algorithm is capable of performing efficiently if k is known a-priori and was provided to run the

algorithm, irrespective of the chosen σ value. To illustrate the concept we will reuse the toy

example that was introduced in Section 6.1 with relatively high noise ξ = 0.45. First, we will

assume that k is known and equal to 3 clusters, FSC-S(Do) will perform nicely and cluster the

curves properly given that σ = 3 which is calculated from the standard deviation of the elements

of the distance matrix (Figure 6.9a). Second, we will assume k is unknown, and the algorithm

will attempt to estimate k from the eigengap heuristic given σ = 3. In this case, k will be esti-

mated as 1 cluster, due to the way σ determines the width of the neighbourhoods (Figure 6.9b).

However, implementing FSC-DSC in this example will give the right k at the proper range of σ

as shown in Figure 6.10. Since the clustering structure will be stable at the optimal range of σ ,

the eigengap heuristic approach will repeatedly give k = 3 in both the odd and the even sets. The

final clustering results from applying FSC-S(Do) providing k = 3, and from applying FSC-DSC,

fully agree with the correct grouping of the data.
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(a) FSC-S(Do) with σ = 3 and k = 3

(b) FSC-S(Do) with σ = 3 and k is estimated by the eigengap to be 1

Figure 6.9: Results of applying FSC-S(Do) with any random choice of
σ on the toy example (a) when k is known priori and supplied, and (b)
when k is unknown and is estimated by the eigengap heuristic.
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Figure 6.10: Results of applying FSC-DSC approach on the toy exam-
ple suggests k = 3 at σ = {0.2, ...,1.4} for both the odd and the even
replicates.

Based on this work we can suggest that if k is given, the FSC-S technique is an appropriate

choice to cluster the data and computationally very fast. Whereas if k is unknown, it is recom-

mended to use FSC-DSC to estimate the optimal parameters k and σ and use their corresponding

clustering results. It should be mentioned that although the algorithm cluster several replicates

and compare the pairs repeatedly, the computational time is still relatively low. However, the

computational time increases as the range of σ values to be explored increases. Besides, the

algorithm runs slower when k is very large (k ≈ number of curves in the data) but runs fast at

small k values.



Chapter 7

Simulation Studies and Comparisons with

Existing Methods

In this chapter we set up a host of different simulation scenarios to compare the performance

of the chosen clustering functional data approaches, to our newly proposed functional spectral

clustering techniques. In addition, we examine the performance of the general and the specific

downsampling criteria for a wider set of scenarios beyond the examples demonstrated in Chapter

5 and 6. The first section outlines our aims and objectives and highlights the main points of

interest behind the study. Section 7.2 presents several examples of functional data that consist

of variations primarily in phase and amplitude. Using these examples we also demonstrate how

downsampling is effective in choosing the number of clusters. Section 7.3, presents another

simulation scheme, obtained by perturbation of the Canadian weather data, together with the

comparison of clustering techniques on these perturbations.

7.1 Introduction

A common strategy used to evaluate the performance of a new statistical approach is through

well designed simulations. To examine the performance of our algorithms, we developed a com-

prehensive simulation scheme that cover different scenarios and formats of functional data. In

this study our primary interest is to investigate the performance of the proposed algorithms on

101
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specific scenarios, such as; (1) functional data with phase and amplitude variations, (2) dense

functional data, and (3) sparse functional data. Further, we will attempt to create different levels

of difficulty within the above mentioned scenarios by varying the inherent noise in the data,

creating scenarios which are hard to cluster. We will also demonstrate a procedure that uses

a real functional data set to create simulated data based on perturbation. In addition, we will

evaluate the model selection ability of the downsampling criteria which are designed to select

the optimal number of clusters. In some cases we may not get a unique answer and which case

we will provide the interpretation of super-clusters and sub-clusters.

Despite the wide range of clustering functional data methods, there exists no comprehen-

sive study to compare their performances beyond their own contexts and specific examples they

have been applied on. Therefore, based on the simulations we aim to compare our clustering

algorithms with the chosen CFD methods (as detailed in Section 3.3). Recall that among the

different CFD approaches, FunHDDC is a model-based clustering technique, FD-Kmeans is a

nonparametric clustering technique, and B-splines-Km and FPCA-mbc are two-stage clustering

techniques.

The main objective is to investigate the strengths and weakness of our functional spectral

clustering techniques (FSC-S(Do), FSC-S(D1), FSC-S(D2)) and the downsampling based model

selection approaches (the general DSC, and the specific FSC-DSC). We aim to gain more insight

and knowledge about their use in the different scenarios. This chapter provides key contributions

to the field of clustering functional data in terms of simulation schemes, clustering analysis, and

model selection.

7.2 Functional Data with Phase/Amplitude Variations

In this section, we build a framework to develop a simulation study to show the performance

of the functional spectral clustering approaches on functional data, that involves shifts in either

phase, or amplitude or both. A similar simulation scheme was previously introduced by Sangalli



CHAPTER 7. SIMULATIONS 103

et al. (2010), but we have expanded and made a few modifications to the scheme to cover more

scenarios. Sangalli et al. (2010) clustered the data by a k-means alignment algorithm which

aligns and clusters the curves simultaneously, and is based on detecting the amplitude cluster

and the phase clusters in curves. The primary goal of our investigating is to determine whether

FSC-S techniques can inherently find the clusters in the functional data without explicitly mod-

eling the phase and amplitude variations. In addition, we will apply the downsampling-based

approaches to investigate if the proposed approaches are capable of detecting the true clusters

in the data. We have previously worked with this simulation in slightly different settings of the

scenarios as discussed in Al Alawi et al. (2019).

7.2.1 Simulation Scheme

The simulation was generated as aperiodic data spanning the range from 0 to 2π . The initial

model of the data is coming from prototype (7.1), that is, a simple function with neither phase

shift nor amplitude shift. Introducing an amplitude shift in the data can be done through proto-

type (7.2) which gives a slightly different shape. Further, we add to (7.2) a phase shift, and we

stretch the function over a larger period to form prototype (7.3). In a similar manner to (7.3), we

create prototype (7.4) that displays a different phase shift and a more stretched function.

f (t) = sin(t)+ sin
(

t2

2π

)
, (7.1)

f (t) = 2sin(t)− sin
(

t2

2π

)
, (7.2)

f (t) = 2sin
(
−1

3
+

3
4

t
)
− sin

(
(−1

3 +
3
4t)2

2π

)
, (7.3)

f (t) = 2sin
(
−1

3
+

1
2

t
)
− sin

(
(−1

3 +
1
2t)2

2π

)
. (7.4)

A simple illustration of the above mentioned functions is displayed in Figure 7.1. The figures

show 5 smoothed curves from each prototype with very small error. Since some of our proposed
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clustering techniques involve the functions’ derivatives, the figures also show the first derivative

(second row) and the second derivative (third row) of each prototype. From the figure, we notice

that there is some similarity between prototype 1 and prototype 2, because they only vary in their

amplitudes, and this is even more clear from their second derivatives. In contrast, prototype 3

and prototype 4 each led to a distinct curvature structure and this is also reflected in their first and

second derivatives. To develop the full simulation scheme we will generate a series of curves

along with a set of noise variance to generate the raw data. Thus, we set a general equation for

each prototype to simulate functional data with observational error ε’s distributed normally with

mean = 0 and standard deviation = 0.05. Equations: (7.5), (7.6), (7.7), and (7.8) represent an

extended format of the prototypes (7.1), (7.2), (7.3), and (7.4) respectively.

f (t) = (1+ ε1i)∗ sin(ε3i +(1+ ε4i)∗ t)

+(1+ ε2i)∗ sin
(
(ε3i +(1+ ε4i)∗ t)2

2π

)
,

(7.5)

f (t) = (2+ ε1i)∗ sin(ε3i +(1+ ε4i)∗ t)

− (1+ ε2i)∗ sin
(
(ε3i +(1+ ε4i)∗ t)2

2π

)
,

(7.6)

f (t) = (2+ ε1i)∗ sin
(

ε3i +(1+ ε4i)∗ (−
1
3
+

3
4

t)
)

− (1+ ε2i)∗ sin
((
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3
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)
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f (t) = (2+ ε1i)∗ sin
(
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1
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− (1+ ε2i)∗ sin
((

ε3i +(1+ ε4i)∗ (−1
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1
2t)
)2

2π

)
.

(7.8)
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Figure 7.1: Curves simulated from prototype 1, 2, 3, and 4 are displayed in first row. Second row
displays the first derivatives of each prototype while third row displays their second derivatives.

While fitting the curve from the raw data we go through our general smoothing approach,

which is using B-splines of order 4 with a saturated model and a penalty term that best fits the

data, which is λ = 10−3. Based on the above, we created 4 different scenarios of functional data

sets as shown in Figure 7.2. The description of how each case was obtained is detailed below:

• The first scenario is case A that consists of 90 simulated curves from equation (7.5). Case

A consists of only 1 group, thus it would not be included in the clustering process later,

but it is considered as a template to build the other scenarios.

• The second scenario is case B. In this case there are two groups where the first group

consists of 45 curves (i=1, ..., 45) that come from equation (7.5), while the other group

consists of another 45 curves (i=46, ...,90) that come from equation (7.6).
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• The third scenario is case C. In this case there are 3 groups; the first 30 curves (i=1, ... ,

30) come from equation (7.5), the second 30 curves (i=31, ... , 60) come from equation

(7.6), and the last 30 curves (i=61, ... , 90) come from equation (7.7).

• The last scenario (and the most difficult for clustering) is case D. In this case, the curves

are obtained as follows: 20 curves (i= 1, ... , 20) come from equation (7.5), 20 curves

(i=21, ... , 40) come from equation (7.6), 20 curves (i=41, ... , 60) come from equation

(7.7), and finally 30 curves (i=61, ... , 90) come from equation (7.8). This pattern suggests

the existence of 4 groups. However, we also attempted to create a higher level of grouping

in the curves, where, the first and second sets of curves form the first super-cluster, and

the third and fourth sets of curves form the second super-cluster. This clustering comes

from the fact that in the first super-cluster there is no phase shift and the curves span over

a range of 2π . On the other hand, the second super-cluster consists of curves that display

phase shift and span over a more stretched period, since the coefficient of t2 is not 1 in

equations (7.3) and (7.4).

It is of interest to test the performance of our proposed functional spectral clustering method

FSC-S on these simulated data, and comparing that with the performance of the other chosen

functional clustering approaches. In addition, we intend to examine the general downsampling

criteria DSC and the specific downsampling criteria FSC-DSC in finding the optimal k of the

simulated data. For this reason, we have created case D, which is a more challenging scenario

in terms of number of clusters. A visual representation of the different scenarios with their true

clusters is shown in Figure 7.3.
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Figure 7.2: Smoothed curves simulated in case A, case B, case C, and case D. Note the colours
are generated by the fda package and have no specific meaning.

Figure 7.3: Sampled curves with low noise to show the clusters in the different scenarios. Case
B displays 2 groups, case C displays 3 groups, while the groups in case D can be considered as
4 groups or 2 groups.
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7.2.2 Application of FSC-S Approaches

In this section we present the results of clustering the simulated functional data with phase and

amplitude variation using the FSC-S techniques and the competing CFD approaches.

We created 100 sets of data for each scenario and applied every clustering algorithm on these

100 sets. Initially, we provided correct number of clusters k for all the clustering approaches.

At each iteration we calculated the correct classification rate (CCR) based on the true clusters

for each scenario. The final results will be the average of the correct classification rate for the

100 iterations. The results are summarized in Table 7.1, while more details of CCR are shown

in terms of boxplots in Figures 7.4, 7.5, 7.6, and 7.7 for case B, case C, case D (4 groups), and

case D (2 groups) respectively.

Mean of Correct Classification Rate (CCR)

Method Case B Case C Case D Case D

(2 groups) (3 groups) (4 groups) (2 groups)

FunHDDC 0.86 (0.055) 0.83 (0.215) 0.85 (0.109) 0.75 (0.042)

FD-Kmeans 0.83 (0.071) 0.80 (0.150) 0.76 (0.128) 0.95 (0.035)

B-splines-km 0.90 (0.044) 0.92 (0.170) 0.95 (0.036) 0.80 (0.051)

FPCA-mbc 0.73 (0.123) 0.97 (0.032) 0.90 (0.109) 0.78 (0.023)

FSC-S(Do) 0.93 (0.028) 0.99 (0.014) 0.96 (0.022) 0.92 (0.046)

FSC-S(D1) 0.72 (0.046) 0.91 (0.024) 0.84 (0.047) 0.98 (0.018)

FSC-S(D2) 0.72 (0.080) 0.81 (0.079) 0.65 (0.066) 0.98 (0.019)

Table 7.1: Mean CCR of the clustering methods when applied on the simulated data. Note:
Bold digits represent the best value within a column, and values in brackets represent standard
deviation of the CCR.

According to the average accuracy rates, the clustering methods perform differently in the

different scenarios. For instance, FSC-S(Do) achieves high accuracy rates in all scenarios except

in case D if we assume that the truth is 2 clusters. On the other hand, FSC-S(D2) is performing
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poorly in all scenarios except in case D (2 groups). Whereas, FSC-S(D1) is performing well in

specific scenarios, which are case C and case D (2 groups). In general, there is a tendency to

achieve high CCR in case C compared to the other cases, which suggests it is relatively easy

scenario. However, FunHDDC, FD-Kmeans, and B-splines-Km consists of many iterations that

give very low accuracy rates and thus lower average CCR in this case. It is also noticed that

FPCA-mbc performs worst in the scenarios that assume only 2 clusters. In addition, the cluster-

ing methods that show good performance in detecting the super-clusters of case D, show poor

performance in detecting the 4 sub-clusters (true clusters). To consider the overall performance

of the clustering methods at each scenario individually, we refer to the boxplots of CCR in Fig-

ures 7.5, 7.6, 7.7, and 7.8. In general, the results of the median CCR support the mean CCR in

Table 7.1. There are only a few cases when the median CCR is very different from the mean

CCR, for instance, in case C of FunHDDC the median CCR (Figure 7.6) is much higher and

approximately 98% compared to 83% for mean CCR.

Further, we compare only the FSC-S techniques against each other. We notice that FSC-

S(Do) can detect the true clusters properly and locate the super-clusters with good accuracy

rates as well. While the use of first derivatives (FSC-S(D1)) can achieve good accuracy rates,

the use of second derivatives (FSC-S(D2)) does not in general add any advantages to the clus-

tering results, in fact it gives lower accuracy rates, except for that case D (2 groups) where the

derivatives can reveal the distinct structures in the super-clusters more efficiently, see Figure 7.1.

Based on this, we can say that if there are phase and amplitude variations on the original curves

scale, then FSC-S(Do) is able to identify the hierarchical clustering structure that is embedded in

these variations. On the other hand, the first and second derivatives would not reflect the phase

and amplitude variations as in their original form, thus it would be harder to detect the clustering

structure when using the derivatives to measure the distances between the functions in order to

apply spectral clustering. However, FSC-S(D1) and FSC-S(D2) were able to find the 2 super-

clusters in case D with very high accuracy rates. This is mainly because the first super-cluster

spans over a different period than the second super-cluster and this fact can be more obvious in

the derivatives than in the original curves. Figure 7.4 displays the clustered curves of data based

on the FSC-S(Do) results.
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Figure 7.4: The clustering results of FSC-S(Do) on the simulated data.

Figure 7.5: Mean CCR for the clustering methods when applied to the simulated data case B.
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Figure 7.6: Mean CCR for the clustering methods when applied to the simulated data case C.

Figure 7.7: Mean CCR for the clustering methods when applied to the simulated data case D,
assuming there are 4 groups.
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Figure 7.8: Mean CCR for the clustering methods when applied to the simulated data case D,
assuming there are 2 groups.

7.2.3 Application of Specific Downsampling Criterion

In this section we will again consider the above simulated functional data and now apply the

specific downsampling criterion. However, as these data are very sparse and dynamic, splitting

them up directly into odd and even replicates will not create similar copies. In fact, the split

replicates will sometimes lose the original structure of the generated curves, see Figure 7.9.

Taking into account these limitations, we simulated the data set by adding more time points

within the same range [0,2π] to make it dense. Now, dividing the adjusted simulated data into

odd and even replicates keeps the structure of the original curves and creates similar copies, see

Figure 7.10. Note that we followed a similar smoothing model to the previous one but changed

the smoothing parameter to λ = 10−2 for each replicate based on the updated value of the GCV.
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Figure 7.9: Example of downsampling the sparse aperiodic data case A into 2 replicates. The
new functional data sets diverged from the original curves.

Figure 7.10: Example of downsampling the dense aperiodic data case A into 2 replicates. The
two copies retains the structure of the original curves.

Proceeding with the newly simulated data we present the results of applying the FSC-DSC

approach on the simulations of case B, case C, and case D. We will use FSC-S(Do) to cluster

the data based on its superior performance in Section 7.2.2. The simulations were run on 100



CHAPTER 7. SIMULATIONS 114

data sets, but first we will explain the results on one data set (as shown in Tables 7.2, 7.3, and

7.4). In these tables we only show the important outcomes (rows) of applying FSC-DSC over

the range of σ = {0.1, ...,3.0}. Considering Table 7.2, we notice that in case B the highest ARI

is for k = 2. While in Table 7.3 for case C, the highest ARI is for k = 3, and finally in Table

7.4 for case D the highest ARI is for k = 4 and k = 2. The approach is showing a clear jump

from very large k values to the true k value in each scenario. Further, the approach can detect

both the super-clusters and the sub-clusters in case D at different ranges of σ . The above initial

results give a good insight of the approach when applied to one set of the simulated functional

data. However, to examine the robustness of the approach and the stability of the outcomes,

we show the overall results in Figures 7.11, 7.12, and 7.13 for case B, case C, and case D

respectively. The percentages that are displayed in the figures are results of 100 simulations (i.e

100 comparisons tables) over 30 σ values each, which gives a total of 3000 outcomes. However,

we only consider the outcomes that satisfy the following: (1) show a match between kodd and

keven, and (2) only if k is within the range [2,15]. Let the outcomes that satisfy the two points be

given as K = {k1, ...,ki, ...,kl}, then we calculate the percentage of K = ki over the total outcomes

and consider the associated ARI.

In case B (Figure 7.11) the majority of the matched outcomes found k = 2 to be the optimal

number of clusters with ARI=1, and ARI=0.95. In case C (Figure 7.12) the majority of the

outcomes found k = 3 with ARI ranges from 0.86 to 1, while there were a few results choosing

k = 2 with low ARI and even fewer cases choosing k = 4. In case D (Figure 7.13) almost 67%

of the cases detected the sub-clusters in the data and thus gave k = 4, while about 31% of the

results detected the super-clusters and so gave k = 2. It should be mentioned that the results in

case B looks better than the results in case C and case D, due to the fact that stability tends to

increase for decreasing k, besides that there is more chance for FSC-DSC to cluster the 3-group

data (case C) into 2 while it is meaningless to cluster the 2-group data (case B) into 3 clusters.

Note that the percentages displayed in the figures must sum up to 100%, apart from missing

error.
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Case B

σ K (odd set) K (even set) ARI

0.1 88 88 1

0.2 88 88 1

0.3 2 2 1
...

...
...

...

0.9 2 2 1

1.0 1 2 0

1.1 1 1 1

Table 7.2: Some selected results of FSC-DSC from a random iteration of case B. The shaded
area shows the highest ARI reflected from a match of the two K’s, which gives k = 2.

Case C

σ K (odd set) K (even set) ARI

0.1 88 89 0.76

0.2 84 89 0.43

0.3 32 37 0.22

0.4 3 32 0.28

0.6 3 3 0.97
...

...
...

...

1.1 3 3 1

1.2 3 1 0

1.3 1 1 1

Table 7.3: Some selected results of FSC-DSC from a random iteration of case C. The shaded
area shows the highest ARI reflected from a match of the two K’s, which gives k = 3.
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Case D

σ K (odd set) K (even set) ARI

0.1 88 89 0.76

0.2 59 63 0.012

0.3 4 4 1
...

...
...

...

1.4 4 4 1

1.5 2 4 0.43

1.6 2 2 1
...

...
...

...

2.1 2 2 1

2.2 1 1 1

Table 7.4: Some selected results of FSC-DSC from a random iteration of case D. The shaded
area shows the highest ARI reflected from a match of the two K’s, which gives k = {2,4}.

Figure 7.11: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC. For case B, it is clear that k = 2 is favoured
over the other k values with showing high ARI.
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Figure 7.12: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC. For case C, it is clear that k = 3 is favoured
over the other k values with showing high ARI.

Figure 7.13: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC. For case D, it is clear that k = 4 is favoured
over the other k values with showing high ARI.
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Despite the fact that it is a better practice to employ FSC-S(Do) in the specific downsampling

criterion since it showed better performance, in our experience using FSC-S(D1) and FSC-S(D2)

can still lead to good estimate of k. For instance, both the derivative-based FSC-S approaches

are able to find k = 2 in case B at smaller values of σ . In case C, it was not as straightforward

as in case B, because the smoothing parameter λ that permits finding the optimal k is slightly

different from the one used originally for smoothing the data. Likewise in case D, we had to use

different values of λ to find the optimal k, yet both FSC-S(D1), and FSC-S(D2) could not detect

k = 4 and only suggested k = 2. The procedure of changing λ in order to obtain the optimal k

will complicate the algorithm. In fact, our proposed approaches are two-stage based approaches,

which means that the smoothing stage is independent of the clustering stage. However, we at-

tempted to show here how the smoothing is crucial in changing the clustering. The ranges of the

smoothing parameter λ that can be used to smooth the data (i.e appropriate λ for smoothing)

and at the same time lead to optimal k in each approach are summarized in Table 7.5. It is clear

that across FSC-S(Do) cases, the range of λ is almost the same, while we need finer intervals of

λ at FSC-S(D1) and FSC-S(D2) to get the best clustering results. It should be mentioned that

the values of σ that lead to optimal k are unlikely to be similar in these examples. As it was

explained in Section 6.2, the parameter σ is obtained based on the domain of the data. Since the

domain of the derivatives is different from the domain of the original trajectories, the values of

σ will be different in each dataset.

Case optimal k FSC-S(Do) FSC-S(D1) FSC-S(D2)

Case B 2 10−2 ≤ λ ≤ 102 10−2 ≤ λ ≤ 102 10−2 ≤ λ ≤ 102

Case C 3 10−2 ≤ λ ≤ 101 100 ≤ λ ≤ 101 100 ≤ λ ≤ 102

Case D
2 10−2 ≤ λ ≤ 101 101 ≤ λ ≤ 102 10−2 ≤ λ ≤ 100

4 10−2 ≤ λ ≤ 10−1 - -

Table 7.5: A summary of the smoothing parameter values that are appropriate for smoothing the
data, also can support the FSC-DSC algorithm to detect the optimal k.
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7.2.4 Application of General Downsampling Criterion

In this section we demonstrate the application of the proposed general downsampling criterion

on the simulated data. Considering the modified simulated data as in Section 7.2.3 we will apply

the approach on all the chosen clustering functional data methods. We will start with FSC-S(Do)

and will give more details of the application, as it showed better performance when compared

to the other clustering techniques on this simulated functional data set.

The results of applying the general downsampling criterion using FSC-S(Do) is displayed in

Figures 7.14, 7.15, and 7.16 for case B, case C, case D respectively. The algorithm runs twice

on each pair, one for the odd set and one for the even set. Thus, the algorithm will run 20 times

for every simulated data set, since there are 10 pairs and 2 opposite replicates for each pair.

Therefore for the 100 simulated data sets, there will be 2000 iterations at K that will build the

boxplots. We examined the approach at K = {2,3, ...,9}; selecting this smaller range of K to

save computational time, since we know the true clusters.

Considering case B first, Figure 7.14 illustrates that the optimal k = 2 is achieved with a

very high ARI (almost 1) compared to any other values of k. In case C (Figure 7.15) the highest

boxplot corresponds to k = 3, which reflects the true clusters in the data. Whereas in case D

(Figure 7.16) the algorithm leads to choosing 3 optimal numbers of clusters k = 2,3, and 4. As

explained above, case D contains 2 super-clusters and 4 sub-clusters, thus we have k = 2 and

k = 4. However, k = 3 might arise if curves generated from equation (7.5) and equation (7.6)

are put in one cluster, and curves arising from equation (7.7) and equation (7.8) stay in their own

distinct clusters. This is because the first two equations show no phase variations and span over

the same period, while the other 2 equations each show a different phase variation and spans

over a different period. Thus, when the algorithm examines k = 3, the FSC-S(Do) approach

will attempt to locate the 3 clusters by defining the 3 levels of variation in the data as we have

explained. We notice that the general DSC results confirm the specific FSC-DSC results, except

in case D where the general criteria results in a different clustering structure.
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Figure 7.14: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(Do) on case B. The approach suggests there are 2 clusters in the data.

Figure 7.15: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(Do) on case C. The approach suggests there are 3 clusters in the data.
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Figure 7.16: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(Do) on case D. The approach suggests there are 2, 3, or 4 clusters in the data.

It was discussed in Chapter 5 that the general downsampling criterion was designed to work

with any CFD method. Hence, we will now expand the use of the criterion for selecting the

optimal k for the other CFD methods. The results are illustrated in Figure 7.17, 7.18, and 7.19

for case B, case C, and case D, respectively. The graphs summarize the mean ARI at each k based

on applying the algorithm 200 times for each method, since there are 20 downsampled sets and

the process is repeated 10 times. In case B, all the clustering methods can easily detect the

2 clusters without giving any other suggestions. In case C, FunHDDC, B-splines-Km, FPCA-

mbc, and FSC-S(Do) are all able to detect the true number of clusters k = 3, while FD-Kmeans

gives k = 4 as well as k = 3. FSC-S(D1) gives k = 2, while FSC-S(D2) fails to identify any k

value, as the ARI is very low. In case D, FSC-S(Do) and Bsplines-Km propose k = {2,3,4}, but

Bsplines-Km prefers k = {2,4} over k = 3 based on the ARI. While FPCA-mbc only identifies

the sub-clusters and gives k = 4, FunHDDC, and FSC-S(D1) can only identify the super-clusters,

thus preferring k = 2. FD-kmeans is different from the other approaches and suggests k = {2,3}.

Finally, FSC-S(D2) once again fails to detect any k value. It should be mentioned that both FSC-

S(D1) and FSC-S(D2) will give better results if the smoothing parameter λ was adjusted to
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support the clustering structure better (see Table 7.5).

Figure 7.17: Results of the mean ARI for each K when using the general downsampling criteria
with different clustering approaches on case B functional data.

Figure 7.18: Results of the mean ARI for each K when using the general downsampling criteria
with different clustering approaches on case C functional data.



CHAPTER 7. SIMULATIONS 123

Figure 7.19: Results of the mean ARI for each K when using the general downsampling criteria
with different clustering approaches on case D functional data.
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7.3 The Canadian Weather Data

In this section, we set up a simulation study based on a real-world data set, to examine the per-

formance of our proposed clustering techniques and the model selection techniques in functional

dense data sets as well as sparse data sets.

The Canadian weather data consists of temperature and precipitation measures of 35 selected

cities distributed across Canada. We introduced this data briefly in Section 2.2.1, as a data set

that has been widely used by FDA researchers. However, in this section we will only consider

the temperature data in its two forms; the dense daily measures (365 time points), and the sparse

monthly measures (12 time points). Figure 7.20 shows the raw observations of the daily and

monthly temperature data for the 35 Canadian cities. This data set was selected for setting up

the simulations because it has been widely employed in FDA research, and it can be used as

sparse or dense data. Also, Ramsay and Silverman (2005) have clustered the temperature data

according to the geographical distribution of the Canadian cities as 4 groups (see Figure 4.1a

and Section 4.1). We will assume this is the true clustering of the data when carrying out the

simulation and comparisons between the CFD methods in Section 7.3.2.

Representing this data set as functional data can be done through smoothing and basis ex-

pansion. A good fit and commonly used smoothing model for the Canadian temperature data is

given by B-splines of order 6, placing knots at the end of every month for the daily data and a

knot at every quarter for the monthly data. Figure 7.21 shows the smoothed curves of the daily

and monthly temperature data over a year. After fitting the smoothing model, we have estimated

the error values (residuals) as shown in Figure 7.22. The error values will be used to set up the

simulation scheme, which we also call ‘the perturbation scheme’.
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Figure 7.20: Raw data of the daily temperature (left), and the monthly temperature (right) for a
year. Note the colours represent the 4 clusters according to the geographical distribution of the
cities.

Figure 7.21: Smoothed curves of the daily temperature (left), and the monthly temperature
(right) for a year.
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Figure 7.22: Estimated error for both the daily temperature data (left), and the monthly temper-
ature data (right). Note the colours represent the 4 true clusters of the data.

7.3.1 Simulation Scheme

The simulation scheme is based on adding perturbation to the estimated error (residuals) of the

functional data. The residual vector for each curve was evaluated by εi = yi−x(ti). As there are

35 temperature curves, there is an associated error vector for each smoothed curve. Thus, there

will be an error matrix of size 35× 365 related to the dense data, and another error matrix of

size 35×12 related to the sparse data. The perturbation to the error matrices can be divided to

two main categories, where the first is nonparametric-based and the second is parametric-based.

In the nonparametric-based perturbation, we mix and relocate the error randomly to perturb the

original error vectors within each group. Whereas in the parametric-based perturbation, we first

estimate the standard deviation ξ̂ of the error in every group. Then for each group, we create new

error values that are normally distributed with mean (µ = 0) and standard deviation (ξ = ξ̂ ). To

perturb the data more, we created a varied scale of the estimated standard deviations, so that we

can move from simple scenarios to more complicated scenarios. The simulation scheme through

adding perturbation to the error is summarized below in Table 7.6.
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Scenario New Error ε∗ iteration

1 randomly mixing the error and relocating them 100 times

2 creating error, ε ∼ N
(
µ = 0,ξ 2 = ξ̂ 2) 100 times

3 creating error, ε ∼ N
(
µ = 0,ξ 2 = (2ξ̂ )2) 100 times

4 creating error, ε ∼ N
(
µ = 0,ξ 2 = (5ξ̂ )2) 100 times

5 creating error, ε ∼ N
(
µ = 0,ξ 2 = (10ξ̂ )2) 100 times

Table 7.6: Simulation setup for creating perturbed sets of the original data set.

Considering the new error values (ε∗), we create new data sets y∗ by adding the evaluated

x(ti) from the basis expansion of the initial smoothing model to the simulated error values ε∗.

As a consequence we will obtain new raw observations of the Canadian weather data. Through

bootstrapping each scenario 100 times, there will be 500 data sets as dense data, and another 500

as sparse data {y∗1,y∗2, ...,y∗1000}. Finally, the created data sets will be smoothed by a different

smoothing choice from the initial one. The basis expansion will be B-splines again but with

order 4, also the model will be saturated (i.e knots at every data point), while the smoothness

will be controlled by the penalty term λ . Based on the GCV and by checking the effect of dif-

ferent λ values on the smoothed curves visually, we used λ = 104 for the dense case, while we

used λ = 10−2 for the sparse case. Note that we have used the same penalty term (smoothing

parameter) for all the scenarios, mainly because we attempt to examine the performance of the

clustering approaches on more noisy functional data while fixing the effect of the smoothing

model. Figure 7.23 displays some perturbed data of scenarios 3, 4, and 5 after smoothing. It is

clear that the varied scale of error created varied sets, while scenarios 1 and 2 look more similar

to the original data.
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Figure 7.23: Examples of perturbed data for scenarios 3, 4, and 5. Note the colours represent
the 4 true clusters of the data.

7.3.2 Application of FSC-S Approaches

In this section we present the results of clustering the simulated Canadian weather data using

the FSC-S techniques and the chosen CFD approaches.

For all the clustering approaches, we fixed the smoothing model and we provided the number

of clusters as k = 4. At each iteration we calculate CCR based on the true clusters, then we

compute the mean and the standard deviation of the CCR for 100 simulated data of each scenario

for the dense and the sparse case. The final results are shown in Table 7.7 below.
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Mean of Correct Classification Rate (CCR)

Dense Data

Methods Nonparametric Parametric

1ξ̂ 2ξ̂ 5ξ̂ 10ξ̂

FunHDDC 0.66 (0.074) 0.68 (0.087) 0.68 (0.076) 0.67 (0.075) 0.62 (0.102)

FD-Kmeans 0.65 (0.093) 0.65 (0.085) 0.66 (0.086) 0.63 (0.072) 0.63 (0.069)

B-splines-Km 0.55 (0.030) 0.55 (0.026) 0.53 (0.031) 0.55 (0.034) 0.55 (0.040)

FPCA-mbc 0.71 (0.018) 0.70 (0.076) 0.66 (0.103) 0.68 (0.048) 0.56 (0.088)

FSC-S(Do) 0.54 (0.000) 0.54 (0.000) 0.54 (0.000) 0.55 (0.018) 0.58 (0.044)

FSC-S(D1) 0.82 (0.015) 0.83 (0.000) 0.83 (0.013) 0.76 (0.072) 0.67 (0.123)

FSC-S(D2) 0.76 (0.075) 0.75 (0.061) 0.67 (0.082) 0.50 (0.057) 0.42 (0.058)

Sparse Data

Methods Nonparametric Parametric

1ξ̂ 2ξ̂ 5ξ̂ 10ξ̂

FunHDDC 0.65 (0.087) 0.73 (0.076) 0.60 (0.091) 0.49 (0.088) 0.44 (0.072)

FD-Kmeans 0.72 (0.151) 0.64 (0.085) 0.64 (0.099) 0.44 (0.049) 0.46 (0.061)

B-splines-Km 0.60 (0.040) 0.59 (0.038) 0.58 (0.039) 0.56 (0.103) 0.51 (0.083)

FPCA-mbc 0.62 (0.100) 0.58 (0.079) 0.55 (0.095) 0.53 (0.075) 0.55 (0.070)

FSC-S(Do) 0.54 (0.010) 0.54 (0.023) 0.59 (0.047) 0.59 (0.051) 0.55 (0.042)

FSC-S(D1) 0.73 (0.031) 0.73 (0.047) 0.74 (0.061) 0.67 (0.100) 0.50 (0.075)

FSC-S(D2) 0.87 (0.057) 0.86 (0.038) 0.70 (0.069) 0.48 (0.080) 0.41 (0.033)

Table 7.7: Mean CCR for the clustering methods when applied to the Canadian weather per-
turbed data sets. Note: Bold digits represent the best value within a column and values in
brackets represent standard deviation of CCR.
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Examining the performance of the functional clustering approaches on the dense data set, we

noticed that FSC-S(D1) shows relatively high performance in all scenarios. It should be noted

that as the noise increases, the accuracy rates of FSC-S(D1) decrease. The decrease in CCR with

the increase of noise can also be observed for the other clustering methods. FSC-S(D2) is also

performing reasonably in general but the accuracy rates quickly drop to low values when the

noise increases. Also, FPCA-mbc gave reasonable results and again its performance is affected

by the level of noise in the data. In contrast, for all noise levels, FunHDDC, and FD-Kmeans

gave lower accuracy rates than the approaches mentioned above. B-splines-Km, and FSC-S(Do)

performed poorly and uniformly in all scenarios. It should be mentioned that in the dense case,

FunHDDC, FD-Kmeans, and FPCA-mbc could not converge in all iterations and created some

missing accuracy values (less than 15%). In our calculations we accounted for the the missing

value issue by creating more iterations for these clustering approaches, then we calculated the

mean CCR out of 100 that give clustering results. We acknowledge this might leave out some

poorly performing cases and give a higher CCR for those methods.

On the other hand, the performance of the clustering methods changed in the sparse data. In

this case, FSC-S(D2) gave high CCR in the simplest scenarios (1 and 2). Further, FSC-S(D1)

showed reasonable results in scenarios 3 and 4. However, in the highest level of perturbation

(scenario 5), both FSC-S(D1) and FSC-S(D2) did not give good results, while FSC(Do) con-

stantly gave low accuracy rates in all scenarios. The accuracy rates of FPCA-mbc were lower

in this case than in the dense case. FunHDDC, FD-Kmeans, and B-splines-Km in general per-

formed better in the sparse case, yet they still gave low accuracy rates in the more noisy data.

To understand the behaviour of the functional spectral clustering approaches we illustrate

their performance on one perturbed data set of scenario 2 as shown in Figure 7.24. On the

left hand side of the figure there are the dense data, and on the right hand side there are the

sparse data. While the top row displays the original curves clustered by FSC-S(Do), the middle

row displays the first derivatives clustered by FSC-S(D1), and the last row displays the second
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derivatives clustered by FSC-S(D2).

According to the accuracy rates, FSC-S(D1) gave the best results in the dense data case,

which is shown in the second row, left panel of Figure 7.24, while, FSC-S(D2) gave the best re-

sults in the sparse data case, which is shown in the third row, right panel of Figure 7.24. Visually

the two examples show clear amplitude variations and some phase shifts. The FSC-S techniques

can often detect these variations (if they exist), which in turn will support identifying the clus-

ters. These two sub-figures demonstrate the clearest appearance of the 4 clusters among the

other sub-figures. In the dense case, the first derivatives (the rate of change in temperature) hold

more information about the data than the original trajectories and at the same time they are less

disordered than the second derivatives (the acceleration in temperature), therefore FSC-S(D1)

achieves high accuracy rates. Similarly in the sparse case, the accelerations in monthly temper-

atures can reveal more information about the different clusters in the data. Hence, FSC-S(D2)

showed better performance than FSC-S(Do) and FSC-S(D1). Note that we use the graphs of the

derivatives for illustration of how the derivative-based distance metric (refer to Section 4.2.2)

can support the FSC-S algorithm to detect the groups more efficiently in some situations.

The clustering of the Canadian cities according to the best results of the dense case and the

sparse case is shown in Figure 7.25. In general, the allocation of groups based on FSC-S(D1)

for the daily data and FSC-S(D2) for the monthly data are similar to some extent and not very

different from the geographical distribution of the cities. Overall, the northern cities appear in

one cluster as they are colder than the other cities throughout the year, while the southern cities

located on the Atlantic shore can be in one cluster. Likewise, the southern cities located on the

Pacific shore can be in another cluster as they are warmer and more affected by the seasonal

climate changes. Further, the south inland cities could have similar temperatures over the year

thus will be in the same cluster.
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Figure 7.24: Resulted clusters using FSC-S(Do), FSC-S(D1), and FSC-S(D2), are displayed in
first row, second row and third row respectively, for both the daily data (left panel), and the
monthly data (right panel). The above curves come from the second scenario of simulation
when the error ε ∼ N(µ = 0,ξ 2 = ξ̂ 2).

(a) (b)

Figure 7.25: The Canadian maps show results of clustering the cities according to the FSC-S
approaches, where (a) displays the clusters according to FSC-S(D1) when applied to the daily
temperature curves and (b) displays the clusters according to FSC-S(D2) when applied to the
monthly temperature curves.
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It is worth mentioning that the smoothing choice plays a critical role in clustering functional

data, thus it is of importance to select the best smoothing technique for the data before moving

to the clustering stage. The number and order of bases along with the smoothing parameter λ all

define the smoothness of the data. Further, the selected smoothing model for the original curves

will influence the smoothness of the derivatives.

Finally, we want to highlight an observation on the standard deviations of the CCR for FSC-

S(Do) and FSC-S(D1). Note the 0 standard deviations in a few cases in the dense data in Table

7.7. The reason behind that can be explained by the behaviour of the functional spectral clus-

tering approach, specifically the Laplacian matrix L, which generates the first k eigenvectors.

In every iteration, these k eigenvectors are very similar and they lead to the same clusters when

applying the k-means as a last step. While the more perturbed errors introduce slight changes

to the k eigenvectors, which in some iterations give different results than the common clustering

results.

7.3.3 Application of Specific Downsampling Criterion

In this section we will examine the performance of the downsampling criteria on both the dense

data and the sparse data. We will only consider the simulated data of scenario 2 when the errors

are perturbed based on a normal distribution ε ∼N(µ = 0,ξ 2 = ξ̂ 2). Limiting the application to

the least perturbed data (scenario 2) is to minimize the uncertainty of the results that will come

from the more noisy data (scenarios 3, 4, and 5). Downsampling the dense curves will still main-

tain all the features of the original data, since there are 365 time points, while downsampling

the sparse data can maintain most but not all the important features of the Canadian weather

data. The downsampled curves will go through the same smoothing model as mentioned above

but with reduced smoothing parameter λ . For instance, we set λ = 102 for the dense case and

λ = 10−3 for the sparse case.

Despite previously assuming that the geographical distribution of the Canadian cities de-
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fine the true clusters of the data, we will not rely on this fact when examining the performance

of FSC-DSC on the Canadian weather data. To discuss the performance of the algorithm, we

will first present one sample out of the 100 total results for each FSC-S technique on both the

dense case and the sparse case. Starting with FSC-S(Do), the algorithms detects two k values

for the dense case as shown in Table 7.8. According to the results, k could be 8 or 3 clusters

at σ = [8,20] showing high ARI. Likewise, Table 7.9 shows the results of the sparse case and

again suggests k = 3 with high ARI at σ = [1.6,3.6]. Although K decreases more gradually in

the sparse case than in the dense case, the sparse case does not show any other match of K over

the range of σ . Note that the values of σ in the dense case are bigger than the values of σ in the

sparse case, this selection is based on the domain of the data.

σ K (odd set) K (even set) ARI

1 34 34 1
...

...
...

...

4 33 34 0.67

5 33 24 0.25

6 17 24 0.42

7 8 17 0.44

8 8 8 0.99

9 8 8 0.99

10 8 8 1

11 3 3 1
...

...
...

...

19 3 3 1

20 3 3 0.89

21 1 1 1

Table 7.8: Some selected results of FSC-S(Do) algorithm with downsampling criteria on the
Canadian weather dense data. The shaded area shows the highest ARI reflected from a match
of the two K’s over the optimal σ values, which gives k = {3,8}.
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σ K (odd set) K (even set) ARI

0.1 34 34 1

0.2 34 34 1

0.3 34 34 1

0.4 27 34 0.2

0.5 27 21 0.37

0.6 27 21 0.37

0.7 27 21 0.37

0.8 16 7 0.48

0.9 16 7 0.48

1.0 8 7 0.78

1.1 6 7 0.67

1.2 6 7 0.67

1.3 6 7 0.67

1.4 6 7 0.67

1.5 6 3 0.21

1.6 3 3 1
...

...
...

...

2.1 3 3 1

2.2 3 3 0.88
...

...
...

...

3.6 3 3 0.88

3.7 1 1 1

Table 7.9: Some selected results of FSC-S(Do) algorithm with downsampling criteria on the
Canadian weather sparse data. The shaded area shows the highest ARI reflected from a match
of the two K’s over the optimal σ values, which gives k = 3.

On the other hand, the results of applying the algorithm using FSC-S(D1) are displayed in

Table 7.10 and Table 7.11 for the dense and the sparse case, respectively. The results of the

algorithm on the dense data suggests k = 5 for σ = [0.13,0.15], yet k = 13 is also a possible
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option as it shows high ARI. Moving to the sparse case, the results in Table 7.11 are not as

encouraging as the previous results. For instance, there exist more k values on each replicate

that do not often match, while the match at k = 5 gave low ARI and occurs at a small range of

σ , which means the clustering structure is not very stable at k = 5. Also the algorithm cannot

detect any other clustering structure at different range of σ values.

Further, we attempted to apply the algorithm using FSC-S(D2) to see if the second deriva-

tives scale would be able to detect any clustering structure in the data. The results are displayed

in Table 7.12 and Table 7.13 for the dense case and the sparse case, respectively. It is clear that

for the dense case the algorithm moves instantaneously from k' n to k = 1 even at small values

of σ . The even set occasionally can detect k = 3 but only at one value of σ , which reflects no

clustering stability, probably due to the high noise in the second derivatives. Whereas, in the

sparse case, there appear a few k values in each set that did not match, which suggests that each

replicate consists of a different clustering structure.

σ K (odd set) K (even set) ARI

0.01 34 34 1
...

...
...

...

0.08 30 34 0.22

0.09 13 13 0.91

0.10 13 13 0.91

0.11 13 9 0.73

0.12 13 5 0.44

0.13 5 5 1

0.14 5 5 1

0.15 5 5 1

0.16 1 1 1

Table 7.10: Some selected results of FSC-S(D1) algorithm with the specific downsampling cri-
teria on the Canadian weather dense data. The shaded area shows the highest ARI reflected
from a match of the two K’s over the optimal σ values, which gives k = 5.
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σ K (odd set) K (even set) ARI

0.01 34 34 1

0.02 31 24 0.08

0.03 31 24 0.08

0.04 31 24 0.08

0.05 23 24 0.03

0.06 23 24 0.03

0.07 23 24 0.03

0.08 23 5 0.04

0.09 9 5 0.09
...

...
...

...

0.17 9 5 0.08

0.18 5 5 0.14

0.19 5 5 0.19

0.20 5 5 0.19

0.21 5 3 0.10
...

...
...

...

0.28 5 3 0.08

0.29 4 3 0.14

0.30 4 1 0
...

...
...

...

0.35 4 1 0

0.36 2 1 0
...

...
...

...

0.51 2 1 0

0.52 1 1 1

Table 7.11: Some selected results of FSC-S(D1) algorithm with the specific downsampling cri-
teria on the Canadian weather sparse data. The shaded area shows the highest ARI reflected
from a match of the two K’s over the optimal σ values, which gives k = 5.
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σ K (odd set) K (even set) ARI

0.01 34 34 1

0.02 34 34 1

0.03 1 3 0

0.04 1 1 1

Table 7.12: Some selected results of FSC-S(D2) algorithm with the specific downsampling cri-
teria on the Canadian weather dense data. The table does not suggest any k.

σ K (odd set) K (even set) ARI

0.01 30 31 0.26

0.02 30 31 0.26

0.03 22 21 0.25

0.04 22 6 0.19

0.05 10 6 0.38
...

...
...

...

0.08 10 6 0.34

0.09 3 6 0.31
...

...
...

...

0.13 3 6 0.31

0.14 1 4 0

0.15 1 4 0

0.16 1 1 1

Table 7.13: Some selected results of FSC-S(D2) algorithm with the specific downsampling cri-
teria on the Canadian weather sparse data. The table does not suggest any k.

In order to confirm the selected k of the above results, we examine the approach on the 100

simulated data sets of scenario 2 over the associated optimal range of σ . This means there will

be 100 comparison tables for each algorithm. Then, we only consider the results when there is

a match between kodd and keven for 2≤ k ≤ 15 (as discussed in Section 7.2.3).



CHAPTER 7. SIMULATIONS 139

Figures 7.26, 7.27, 7.28, and 7.29 summarize the possible k values and their associated ARI

based on the percentage of matches. For instance, the percentage of k = 3 with ARI=1 is 69%

in the dense case and 73% in the sparse case when using FSC-S(Do), see Figure 7.26 and Figure

7.27. In addition, using FSC-S(D1) showed that 41% of the results gave k = 5 with ARI=1 in

the dense case (Figure 7.28). Similarly in the sparse case, 52% of the results gave k = 5 but with

very low ARI (Figure 7.29). Also, note that there are other k values with high ARI in Figure

7.26 and Figure 7.28. For instance, FSC-S(Do) can also detect k = 8 with high ARI, but this

occurs only 16% of the total matches in the algorithm. Besides, FSC-S(D1) can detect k = 13

with high ARI, but their percentage of occurring is much lower than the optimal k. In addition,

Figure 7.29 displays more k values scattered over the range [2,15], but they all show low ARI

and occur less often than k = 5. Note that there is no rule of identifying whether ARI is high or

low, however, in our study we set the minimal acceptable ARI to be 0.6.

Finally, we should discuss the situations where FSC-DSC could not give results (i.e. suggest

any k). The first was using FSC-S(D1) and FSC-S(D2) in the sparse case. This can be explained

by the nature of the data and the derivative-based FSC-DSC approaches, and to clarify this point

we will recall Figure 7.24. We have already mentioned that downsampling the original curves

of the sparse data will still maintain most of the curves’ structure. Therefore, if the specific

downsampling algorithm is based on FSC-S(Do) we expect to get reasonable results similar to

the results of the dense case. However, this is not true when FSC-DSC is based on FSC-S(D1)

or FSC-S(D2), because the lower resolution replicates of the original curves will lead to slightly

different derivatives’ formats of each replicate and that will be more obvious in the second

derivatives. Therefore, the derivative-based distance metrics will be different in each replicate

which in turn will give varied results, thus less or no match between the two K’s. The second

situation was using FSC-S(D2) in the dense case. Due to the pattern of the second derivatives

and the associated noise (Figure 7.24), the eigengap heuristic was not able to detect a clustering

structure except k = 1.
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Figure 7.26: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC in scenario 2 of the simulated dense data. Based
on FSC-S(Do), the chosen number of clusters is k = 3.

Figure 7.27: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC in scenario 2 of the simulated sparse data.
Based on FSC-S(Do), the chosen number of clusters is k = 3.
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Figure 7.28: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC in scenario 2 of the simulated dense data. Based
on FSC-S(D1), the chosen number of clusters is k = 5.

Figure 7.29: The graph displays percentages of choosing K = ki from the total outcomes along
with the associated ARI based on the FSC-DSC in scenario 2 of the simulated sparse data.
FSC-S(D1) is unable to detect a specific k as the ARI values are very low.
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According to the results, we can conclude that if we consider the original curves scale, which

refers to clustering and locating the Canadian cities into temperatures categories, then there are

3 clusters in the data as displayed in Figure 7.30a. The figure shows the Canadian map with the

cluster labels, the algorithm places Resolute city in its own cluster (cluster 1), while the other

northern cities in another cluster (cluster 2), and all the southern cities in a cluster (cluster 3).

This classification is reasonable, as Resolute is much colder than the other cities around the year,

while the southern part is often warmer than the other parts of Canada. The clustered curves are

also displayed in Figure 7.31 (left).

If we consider the first derivative scale, which refers to the rate of change in the temperatures

over the year, then there are 5 clusters in the data as displayed in Figure 7.30b. The algorithm

places the northern cities Resolute, Inuvik, and Iqaluit in one cluster (cluster 1) as per the geo-

graphical distribution. Most of the south-eastern cities are tied up in a cluster (cluster 4), while it

places the warmest coastal cities Vancouver, Victoria, Prince Rupert, St. Jones, and Yarmouth in

one cluster (cluster 2). Most of the remaining cities are inland and are divided into two clusters

(cluster 3 and cluster 5). This clustering looks reasonable when considering the cities that are

most and least affected by the seasonal climate changes. Also, Figure 7.31 (right) shows the

clustered first derivatives of the data, where the algorithm can detect the phase and amplitude

variations in the curves.

(a) k = 3 (b) k = 5

Figure 7.30: The Canadian cities clustered according to the FSC-DSC using (a) FSC-S(Do) and
(b) FSC-S(D1).
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Figure 7.31: Clusters of the Canadian temperature curves using FSC-DSC with FSC-S(Do)
(left), that shows 3 clusters, and FSC-S(D1) (right) that shows 5 clusters.

7.3.4 Application of General Downsampling Criterion

In this section we demonstrate the application of the proposed general downsampling criterion

on the perturbed Canadian weather data of scenario 2. We will examine the performance of the

general DSC at K = {2,3, ...,15} by compiling 100 simulated data each 20 times to build the

ARI boxplots.

First, applying FSC-S(Do) with general DSC on the dense and the sparse case gave the

results as shown in Figure 7.32 and Figure 7.33 respectively. Consider the ARI in Figure 7.32,

we notice there is no clear peak at specific k. Based on the simulation, the clustering results at

k = {2,3,4,8} are relatively more stable than at the other k values. On the other hand, the same

algorithm applied to the sparse case results in first k = 2, then k = 3, based on the highest ARI

(Figure 7.33).
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Second, applying FSC-S(D1) with general DSC on the dense and the sparse case gave the

results as shown in Figure 7.34 and Figure 7.35 respectively. In the dense case, the highest

boxplot is at k = 4, however we cannot rely on this answer as the median ARI for all k values

are below 0.6 which suggests a low degree of match between the odd and the even replicates

in most of the simulations. Furthermore, applying the same algorithm on the sparse case finds

k = 2 with high ARI as it was the case in FSC-S(Do).

Third, the application of FSC-S(D2) on the dense and the sparse case are displayed in Figure

7.36 and Figure 7.37 respectively. The results demonstrate the poor performance of FSC-S(D2)

in detecting any k in both cases since the ARI values are very low.

The technique of the general DSC is based on the assumption that the data will achieve

some clustering stability at the optimal k, which can be confirmed by obtaining a match of the

odd/even replicates in every pair at that k. However, this is not the case in the daily Canadian

weather data, where the clustering stability occurs at most k values when using FSC-S(Do),

while, this clustering stability is never achieved when using FSC-S(D1). The artefact of not

getting a unique k in these scenarios is related to the denseness and the smoothness of the data.

For further explanation, we should refer again to Table 7.7 that displayed some 0 standard devi-

ations in the dense case. We have explained the reason behind the 0 values in Section 7.3.2 by

the phenomenon of the Laplacian matrix generating very similar k eigenvectors at each iteration.

For the same reason FSC-S techniques repeatedly locate the same curves to the same cluster in

every odd set/pair and in every even set/pair. Whether the odd set will always match the even set

(as in FSC-S(Do) application) or it will not (as in FSC-S(D1) application), the generated results

from {pair1, pair2, ..., pair10} will be the same, and this is applied to all K. However, this

issue did not occur in any example except in the dense case of the Canadian weather data. We

assumed that the used smoothing model created very condensed functional data, and reducing

the number of bases in the model by using a few knots instead of a saturated model might avoid

this issue. However, we will not explore this option as it is beyond our designed smoothing

model. Therefore, we will limit the application of this data on our FSC-S techniques and will

not examine the other clustering techniques.
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Figure 7.32: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(Do) on scenario 2 simulations of the dense data. The approach cannot detect a
unique k.

Figure 7.33: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(Do) on scenario 2 simulations of the sparse data. The approach suggests there are
2 clusters in the data.
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Figure 7.34: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(D1) on scenario 2 simulations of the dense data. The approach suggests there are 4
clusters in the data with low ARI.

Figure 7.35: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(D1) on scenario 2 simulations of the sparse data. The approach suggests there are
2 clusters in the data.
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Figure 7.36: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(D2) on scenario 2 simulations of the dense data. The approach cannot find any k.

Figure 7.37: Boxplots of the ARI over k values when applying the general downsampling criteria
with FSC-S(D2) on scenario 2 simulations of the sparse data. The approach cannot find any k.
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Considering the clustering results of the sparse case, FSC-S(Do) simply divided the curves

into 2 big clusters, one consisting of all the northern cities and the other consisting of all the

southern cities in Canada (see Figures 7.38a and 7.39 (left)). FSC-S(D1) however, is related

to the rate of change in temperatures, therefore the allocation of the two clusters’ members is

different and based on the amplitude variations as shown in Figures 7.38b and 7.39 (right).

(a) FSC-S(Do) (b) FSC-S(D1)

Figure 7.38: The Canadian cities clustered according to the general DSC using (a) FSC-S(Do)
and (b) FSC-S(D1) when applied to the sparse case.

Figure 7.39: Clusters of the monthly Canadian temperature curves using the general DSC with
FSC-S(Do) (left), and FSC-S(D1) (right).
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7.4 Chapter Summary

In this chapter we have presented two simulation studies that cover different aspects of functional

data formats. In each of the simulated data sets, we applied our proposed FSC-S techniques be-

side the other chosen CFD approaches. In addition, we investigated the performance of the

model selection based criteria; the general DSC and the specific FSC-DSC.

According to the simulations, our proposed FSC-S techniques outperform the other clus-

tering techniques in most scenarios. We noticed that the FSC-S techniques are very good in

detecting phase and amplitude variations in the functional data. Whether these variations exist

in the original trajectories scale or in the derivatives scale, FSC-S technique will cluster the data

based on them. Several data sets can be made more informative by their first derivatives such as

the daily Canadian weather data and the Berkeley growth data, therefore it is ideal to consider

the first derivatives when clustering functional data. Thus, we prefer to plot the first and sec-

ond derivatives beside the original curves to visually check for phase and amplitude variations.

However, in case the derivatives display high noise and the variation is not clear, then it is better

to avoid them because they will lead to poorer results. Based on our studies, we noticed that the

second derivatives are not as informative as the first derivatives, and the only example where it

showed better performance was the sparse case of the Canadian weather data. However, as a

general procedure and to avoid uncertainty in the clustering results, FSC-S(Do) and FSC-S(D1)

are favoured over FSC-S(D2).

In addition, this chapter demonstrated the remarkable success of the specific downsampling

approach in determining the appropriate number of clusters in functional data. Based on the sim-

ulations, FSC-DSC was able to detect the true number of clusters with a high success rate. Note

that, it is better to avoid using FSC-S(D2) within this approach and limit it to FSC-S(Do) and

FSC-S(D1). However, deciding between FSC-S(Do) and FSC-S(D1) is a key point, and the ideal

practice is to apply both. They will agree in some examples but most often they will provide

different results. This is related to the nature of the data and the interpretation each technique
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will provide. For instance, the expected clusters might be hidden in the first derivatives as in the

Canadian weather data and the Berkeley growth data, yet using FSC-S(Do) in these examples

resulted in plausible and meaningful clusters.

On the other hand, the general downsampling criterion showed a fluctuating performance

in identifying the appropriate number of clusters. In general, the approach attained very good

results in the functional data with phase and amplitude variations using most of the chosen CFD

methods. Whereas in the Canadian weather data, the approach showed poor performance in the

dense case, and acceptable results in the sparse case.

We have noticed that the general DSC and the specific FSC-DSC cannot agree in all cluster-

ing problems, yet they often lead to sensible results. The general criterion depends on a fixed

σ that is always much larger than the range of σ we explore in the specific criterion. As we

have stated above, σ is a crucial parameter that can change the clustering structure of the data.

However, we find that the specific FSC-DSC is more accurate than the general DSC. This may

be because the specific criterion estimates k from the domain of the data that reflects the clus-

tering structure based on the evaluated σ , while the general criterion requires providing a set of

k values in order to examine each k, with keeping σ fixed at all K. In addition, the general DSC

could be more sensitive to the noise and the sparseness of the data. We should implement more

simulations to understand the reasons and to address the limitations of the general DSC in order

to improve the approach (Chapter 9).



Chapter 8

Application: House Prices in Scotland

In this chapter we will consider a real-life dataset to examine the performance of our proposed

methods. The first section introduces the original dataset, then in Section 8.2 we convert it to a

functional dataset and perform exploratory analysis to summarise the functional data. Section

8.3 illustrates the use of the model selection downsampling criteria (general DSC and specific

FSC-DSC) on the data. The last section summarizes the outcomes of the cluster analysis.

8.1 Data Description

The house prices data consists of the average value of house-sale transactions within each coun-

cil area per year for 32 areas across Scotland from 1993 to 2018. The council areas are responsi-

ble for the provision of a range of public services, and they reflect the geographical, economical

and population diversity in different parts of Scotland. The data were obtained from the Scottish

Statistics website Scottish Government (2021). The data from each council area consists of 26

discrete points that represent the average sale price of houses every year in that area. Note that

we have excluded one council area ‘Na h-Eileanan Siar’ as it contains some missing values.

Figure 8.1a shows the average house prices (in GBP) for the council areas from 1993 to 2018.

In general there is a clear increase in the prices over this time range. The prices from 1993

to 2002 were stable in all areas and ranged between £50,000 and £120,000. However a sharp

increase in the prices started from 2003, which inflated the prices by more than double by the

151
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end of 2008. After that, the council areas showed varied figures and the prices were clearly

fluctuating in some areas. We have also demonstrated the data in a logarithmic scale as shown

in Figure 8.1b. The logarithmic scale reveals the percentage change of the average house prices

per year. Considering the time component and the temporal smoothness of the data, we can use

FDA techniques to represent the data as functions in time. Note that we will refer to the data by

AHP that stands for average house prices.

(a) Raw data

(b) Logarithmic scale

Figure 8.1: The average houses prices for the council areas in Scotland from 1993 to 2018 in
(GBP) as raw data (a), and as price in logarithmic scale (b).
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8.2 Smoothing Techniques

A first step in functional data analysis is to convert the observed data from discrete points to con-

tinuous functions through smoothing techniques. We will apply our general smoothing model

that was used throughout the thesis, which is a B-splines of order 4 with a basis at every time

point. Then the smoothing level is controlled by the smoothing parameter λ , which is chosen by

the GCV. Based on the GCV (Figure 8.2) the dip of λ occurs within [0.01,1] and the minimum

is 0.1. In addition, we examine the effect of using the other smoothing parameters on the esti-

mated smoothed trajectories by visual inspection. We found that λ = 0.1 gives the best fit to the

data. The resulting smoothed curves of the AHP data are displayed in Figure 8.3. We have also

applied the same smoothing model on the logarithmic scale of AHP as displayed in Figure 8.4.

Figure 8.2: GCV curve shows the dip when λ = 10−1 for the AHP data.
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Figure 8.3: Smoothed curves of the AHP for the council areas in Scotland from 1993 to 2018.

Figure 8.4: Smoothed curves of the log(AHP) for the council areas in Scotland from 1993 to
2018.
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In this application we will focus more on the log(AHP), to deal with the logarithmic scale

instead of the natural scale. Figure 8.5 displays some summary statistics of the logarithmic scale

to give us some insight into the data. The mean and correlation functions calculate the mean and

correlation of the data values at every pair of time points along the curves. In Figure 8.5 (left)

the red curve represents the mean of the data, while Figure 8.5 (right) shows that there is high

correlation between the years.

Figure 8.5: The mean function (red curve) of the log(AHP) data (left), and the contour plot of
the correlation function of the same data (right).

Beyond the original smoothed data we inspect the first and second derivatives of the curves

to check for any forms of amplitude and phase variation in the data. Figure 8.6 shows the first

derivatives (left) and the second derivatives (right) of the log(AHP) data. The derivatives do

not present any clear variation in phase and/or amplitude, note the derivatives of the original

data show similar patterns in a different scale. Therefore, we will only rely on FSC-S(Do) for

clustering the data and we will not use FSC-S(D1) or FSC-S(D2), since their distance metrics
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are based on the derivatives.

Figure 8.6: First derivatives (left), and second derivatives (right) of the log(AHP) data.

8.3 Data Clustering

In this section we apply our proposed downsampling approaches on the AHP data. The algo-

rithm is based on splitting the functional data into two replicates as displayed in Figure 8.7. The

odd replicate considers the values from 1993 and then takes every second value to 2017, while

the even replicate considers the values from 1994 and then takes every second value to 2018,

and thus they show some variation. Considering the downsampled data sets we will apply the

specific FSC-DSC in Section 8.3.1 , then we will apply the general DSC in Section 8.3.2. The

aim of these applications is to explore the clustering structure of the AHP dataset.
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Figure 8.7: The downsampled log(AHP) data into 2 replicates odd (left) and even (right). Each
replicate consists of 13 time points.

8.3.1 Specific Downsampling Criteria (FSC-DSC)

In this section we present the results of applying the specific downsampling criteria FSC-DSC

to the AHP data. Although we have mentioned previously that we will focus on the logarithmic

scale, we also show the results of the approach on the original data. Carrying out FSC-S(Do)

within the FSC-DSC approach on the log(AHP) data gave the results as displayed in Table 8.1.

The results displayed two matches of Kodd and Keven, that are k = 2 and k = 5. Based on the

highest ARI we would prefer 2 clusters over 5 clusters, yet k = 5 also gave a relatively high ARI.

To consider the results of the algorithm when applied to the original data of AHP, see Table

8.2. The only match of Kodd and Keven is at k = 2 with ARI=1, while the odd set gave some

k = 5, the even set gave k = 3 at that range of σ . It is important to notice a large value of the
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scale parameter σ is used in Table 8.2, due to the domain of the original data.

In addition, we attempted to cluster both the original data and the data on the logarith-

mic scale based on FSC-S(D1) and FSC-S(D2) within FSC-DSC. However, neither of these

approaches was able to detect a clustering structure in the data.

σ K (odd set) K (even set) ARI

0.01 29 30 0.67

0.02 29 30 0.67

0.03 18 30 0.22

0.04 18 30 0.22

0.05 18 5 0.26

0.06 5 5 0.89

0.07 5 5 0.89

0.08 2 5 0.46

0.09 2 2 1

0.10 2 2 1
...

...
...

...

0.21 2 2 1

0.22 2 1 0

0.23 1 1 1

Table 8.1: Results of FSC-S(Do) with FSC-DSC on the log(AHP) data. The shaded area shows
the highest ARI reflected from a match of the two K’s over the optimal σ values. The table
suggest k = 2 according to the highest ARI. In addition, based on the match of Kodd and Keven
we can also arrive to k = 5 clusters with ARI=0.89.
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σ K (odd set) K (even set) ARI

1000 30 29 0.67

2000 30 21 0.11

3000 29 21 0.29

4000 29 17 0.21

5000 18 17 0.89

6000 7 17 0.29

7000 5 3 0.49
...

...
...

...

11000 5 3 0.49

12000 2 3 0.89

13000 2 3 0.79

14000 2 2 1
...

...
...

...

31000 2 2 1

32000 2 1 0

33000 1 1 1

Table 8.2: Results of FSC-S(Do) with FSC-DSC of the AHP data. The shaded area shows the
highest ARI reflected from a match of the two K’s over the optimal σ values. The table suggest
k = 2 according to the highest ARI. Note, the large values of σ in this application.

8.3.2 General Downsampling Criteria (DSC)

In this section we present the results of applying the general downsampling criteria to the AHP

data. As we have mentioned in Chapter 5, the general DSC was designed to work with all CFD

approaches. However, we will look into using FSC-S(Do) in more detail and will interpret the

outcomes based on FSC-S(Do). Consider the results on the logarithmic scale as shown in Figure

8.8. The highest median ARI is at k = 5 and then k = 2, which suggests similar clustering

structure to the results of the specific FSC-DSC, while applying the algorithm on the original

data gave the results as shown in Figure 8.9. There is a clear peak at k = 2, which is consistent
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with the results of the specific FSC-DSC when applied to the original AHP data.

Figure 8.8: Boxplots of the ARI over K based on the general DSC with FSC-S(Do) on the
log(AHP) data. The approach suggests there are 2 and 5 clusters in the dataset.

Figure 8.9: Boxplots of the ARI over K based on the general DSC with FSC-S(Do) on the AHP
data. The approach suggests there are 2 clusters in the dataset.
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Further, applying the approach with the chosen CFD methods gave the results as displayed in

Figure 8.10 and Figure 8.11 for the logarithmic scale and the original data respectively. In Figure

8.10, we notice that FunHDDC, FD-kmeans, Bsplines-Km, and FPCA-mbc all detect k = 2 in

the data. However, both FD-kmeans and FPCA-mbc could not converge in all replicates from

k = 5 and above, hence leading to missing ARI values. FSC-S(D1) and FSC-S(D2) could not

detect any clustering structure in the data. Although there is a peak at k = 3 in the FSC-S(D1)

curve, we cannot rely on this value as the ARI is low and below 0.4. The only approach that

suggests k could be 2 or 5 is FSC-S(Do).

In Figure 8.11, we see that all the methods gave k = 2, apart from FSC-S(D2) that showed no

peak at any k, while FD-kmeans and FPCA-mbc could not converge in most iterations at k > 4

values. Again FSC-S(D1) suggested k = 3 besides k = 2 but both at low ARI values.

Figure 8.10: Results of the mean ARI for each K based on the general DSC with different CFD
approaches on the log(AHP) data.
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Figure 8.11: Results of the mean ARI for each K based on the general DSC with different CFD
approaches on the AHP data.

8.4 Results

The house sale market is influenced by many factors such as location and property-based char-

acteristics, and these factors vary from one council area to another. In this chapter, we attempted

to identify the clustering structure of the house prices in Scotland based on the annual average

house prices recorded within a council area from 1993 to 2018. There are 32 council areas,

however ‘Na h-Eileanan Siar’ consists of some missing values, thus it was excluded from the

study. According to the model selection downsampling approaches, the council areas could be

categorized as 2 clusters or as 5 clusters based on clustering the logarithmic scale. The 2 clusters

of AHP curves are shown in Figure 8.12, and in general it divides the curves into “low-price”

and “high-price” ranges across the time range. Although the discrimination between the two

groups might not be very clear at the beginning of the timeline, it is more obvious after 2008.

The 5 clusters of the data curves are shown in Figure 8.13. This clustering structure is a further
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division of the 2 super-clusters, where the “low-price” category is clustered into 2 sub-clusters,

and the “high-price” category is clustered into 3 sub-clusters.

Figure 8.12: Smoothed curves of the AHP data clustered based on FSC-S(Do) for k = 2.

Figure 8.13: Smoothed curves of the AHP data clustered based on FSC-S(Do) for k = 5.
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We allocate the council areas into super-clusters and sub-clusters as shown in Table 8.3. In

addition, we projected the resulted clusters on the Scottish map to see if any spatially-related

clusters appear. Figure 8.14a shows the 2 super-clusters, and Figure 8.14b shows the 5 sub-

clusters on the Scottish map.

Super-clusters Sub-clusters Council Areas

One

1
City of Edinburgh
East Dunbartonshire
East Lothian
East Renfrewshire

2 Aberdeen City
Aberdeenshire

3
Midlothian
Perth and Kinross
Scottish Borders
Stirling

Two
4

Angus
Argyll and Bute
Clackmannanshire
Dumfries and Galloway
Falkirk
Fife
Glasgow City
Highland
Inverclyde
Moray
Renfrewshire
South Ayrshire
South Lanarkshire
West Lothian

5

Dundee City
East Ayrshire
North Ayrshire
North Lanarkshire
Orkney Islands
Shetland Islands
West Dunbartonshire

Table 8.3: The Scottish council areas categorized as 2 super clusters and 5 sub clusters based on
the DSC approaches. The sub-clusters from 1 to 5 are arranged in ascending order from highest
to lowest AHP.
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(a) k = 2 (b) k = 5

Figure 8.14: The council areas clustered according to the DSC approaches with FSC-S(Do).

In Figure 8.14a we notice that there are some specially-related clusters which appear in the

two super-clusters. This is because neighbouring areas are more likely to share similar socio-

economic characteristics in terms of deprivation and population behaviour. Although that might

not be very clear in Figure 8.14b, yet to some extent there are some neighbouring areas that fall

in the same sub-clusters.



Chapter 9

Conclusion

This research focused on the cluster analysis of functional data and tackled two separate prob-

lems; proposing a new two-stage clustering approach for clustering functional data, and propos-

ing a new model selection criteria for choosing the appropriate number of clusters in clustering

functional data. We started by defining the statistical aspect of functional data analysis and we

reviewed the main contributions of functional data clustering methods. There have been a wide

range of approaches proposed for clustering functional data in the literature, mentioned in Chap-

ter 3. Based on the literature, we found that spectral clustering has not been used previously as a

functional data clustering method. In addition, we reviewed the proposed approaches for choos-

ing the appropriate number of clusters in the context of clustering techniques for functional data

as well as multivariate data. We found that the clustering stability concept was used frequently

in the non-parametric methods of multivariate clustering analysis, but there were very limited

applications of clustering stability in the context of clustering functional data.

In this thesis, we developed the functional spectral clustering framework (FSC-S) by em-

ploying spectral clustering and using the features of functional data. We also introduced the

downsampling approach and initially proposed the general downsampling criteria (DSC) that

can be used with any functional data clustering methods. Later, we combined the proposed

functional spectral clustering approach and the downsampling criteria to build the integrated

FSC-DSC, that can inherently estimate the number of clusters in the data. The three proposed

166
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approaches were first illustrated on the Berkeley growth data. Then, they have been extensively

examined through a comprehensive simulation study and an application of Scottish house price

data. In general, the proposed approaches showed promising results in clustering functional

data and in identifying the appropriate number of clusters, both in simulations and in real-life

datasets. However, there are a number of limitations and a range of unresolved questions that

can be addressed by extending the current work.

9.1 Discussion and Limitations

Here we briefly review the proposed techniques to highlight some points and discuss some of

the limitations.

9.1.1 FSC-S

The developed FSC-S approach falls within the two-stage clustering category that applies the

dimension reduction first and then moves to clustering. One of the potential problems with this

type of approach is the possibility of losing any discriminative features between clusters during

the process of dimension reduction. One way to overcome this issue is by applying a saturated

smoothing model. Thus we defined the general smoothing model to be a saturated model of

B-splines of order 4 or above that can give up to the second derivatives, while the smoothness

is controlled by the smoothing parameter λ which is chosen based on the GCV. We found that a

good smoothing model that reflects a good data fit will lead to reasonable clustering results.

The resulting smoothed curves are used in the clustering process. Then, the distance between

the smoothed curves is measured by Simpson’s Rule. In addition, we created more distance mea-

sures that are based on the first derivatives and the second derivatives. We found that measuring

the distances between the derivative functions gives new information about the structure of the

data. Based on the possible different ways of measuring the distances in functional data, we

created the FSC-S(Do), FSC-S(D1), and FSC-S(D2) approaches. Beyond this step, comes the

application of the spectral clustering technique and projecting the resulting clusters on the orig-
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inal trajectories of the functional data.

The three FSC techniques proposed in this thesis did not always give the same accuracy

rates. In the data sets where the original functional data show clear structure of phase and/or

amplitude variations, FSC-S(Do) can detect the clusters better than FSC-S(D1) and FSC-S(D2).

Whereas, if the first derivatives of the functional data provide more information about the data,

FSC-S(D1) will be more accurate in defining the clustering structure of the expected groups in

the data. In limited datasets, the second derivatives of the curves will be informative in terms

of the clustering structure, in which FSC-S(D2) will give better clustering results. In fact, we

noticed that the FSC-S technique that outperformed the other two techniques is most often asso-

ciated with curves that show clear pattern of phase and/or amplitude variation. For instance, if

the original data consists of these variations, then FSC-S(Do) would outperform the derivative-

based FSC-S techniques. Beyond the original curves, if the first or second derivatives show

phase and amplitude variation, then FSC-S(D1) or FSC-S(D2) will perform better.

One of the limitations of the FSC-S technique is the need to provide the parameters k (num-

ber of clusters) and σ (scaling parameter in the similarity matrix). Another limitation is that we

usually cannot know in advance which FSC-S technique will perform best. A good practice is

to plot the original curves, the first derivatives and the second derivatives and visually inspect

their patterns. Also, we found that we can exclude FSC-S(D2) in most applications. Therefore,

we can limit the implementation to FSC-S(Do) and FSC-S(D1). In most situations, the two tech-

niques are able to define an appropriate clustering structure based on their scale, but often lead

to different inferences about the data.

9.1.2 DSC

The developed paradigm for model selection is based on the downsampling technique, which

divides the original data into two non-overlapping replicates (odd and even). The newly created

low-resolution replicates represent 50% of the original data. However, to be able to examine

the clustering stability, we needed to create more than 2 replicates. Therefore, we developed a
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semi-systematic sampling scheme that is based on splitting the timeline into subintervals each

consisting of 6 time points (i.e. p = 6). There are 20 possible combinations of 6 taken 3 at a

time, thus we defined 20 different sampling patterns based on logical sets of T and F. We paired

every 2 opposite sets to make 1 pair of odd and even replicates to avoid any correlation between

the two replicates. As a result, there were 10 different pairs each consisting of 2 unique logical

sets. According to this sampling scheme, the number of replicates for examining clustering

stability is limited and cannot exceed 20 replicates. However, we can explore different sampling

patterns beyond p = 6, for instance, it would be of interest to set p = 8 or 10 in dense functional

data. On the other hand, we can set p = 4 in sparse data that do not show dynamic curvature

structure.

Based on this sampling scheme, the original observed data yi was downsampled into 10 yoddi

and 10 yeveni unique replicates each consisting of half of yi, and the same smoothing model was

applied to all replicates. Then, a set of number of clusters, K was provided, where generally we

set K = {k = 2, ...,k = 15}, and the clustering was applied to each downsampled replicate for

each number of clusters. The two opposite replicates in the same pair were compared by ARI,

finally the number of clusters k that led to the highest stability of the partition was retained.

In this thesis we proposed that the DSC techniques could be used with any method for

clustering functional data. However, in some situations the clustering approaches that involve

model-based clustering such as Fun-HDDC, FD-Kmeans, and FPCA-mbc could not converge in

all iterations specifically when K was large.

The main limitation of this criterion is that it does not work on sparse data and might fail

in data that show high levels of noise. Another limitation of this approach is that it depends on

the success of the used CFD method, and if the method performs poorly then it is not possible

to retain any information about the number of clusters in the data, as was the case when using

FSC-S(D2).
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9.1.3 FSC-DSC

We have addressed the limitation of FSC-S by employing the downsampling criteria to select

the number of clusters k over a range of σ values and accordingly cluster the functional data.

Using one pair of odd and even replicates, each replicate was smoothed and then at every value

of σ , spectral clustering was applied and k was estimated by the eigengap heuristic. As a con-

sequence, the functional data was clustered based on the resulting k at each σ . Based on the

stability clustering, the stable clustering structure was reflected by a range of σ that in turn led

to an optimal k. In addition, this outcome was obtained by the two replicates, which were com-

pared by the ARI.

The additional of downsampling criteria added a distinctive feature to our integrated ap-

proach. However, as was the case for the general DSC, the specific FSC-DSC cannot be applied

to sparse data or functional data with high noise. Yet, usually the noise can be controlled by

the smoothing parameter. Another limitation is related to the appropriate range of σ that must

be inspected for exploring the k values. We have mentioned that we set pre-fixed ranges of σ

consisting of short equispaced intervals. However, so far, these intervals are checked manually,

and the interval that shows variations among the 15 smallest eigenvalues (since largest possi-

ble k = 15) is selected for further more detailed exploration of k. We are currently working on

enhancing the FSC-DSC algorithm so that it can estimate the appropriate range of σ inherently.

Some further notes of interest

Further, we have noticed a few interesting aspects while working on this thesis, which could

benefit from further exploration. These are:

• A designed distance measure that comes from the original curves and first derivatives can

sometimes lead to better accuracy rates when clustering in some scenarios of simulated

data. In contrast, the same designed measure, in other scenarios, gave low accuracy rates.

For this reason, we didn’t proceed with a measure that combines both the original curves

and the first derivatives, since we could not explain that behaviour.
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• FSC-S(D2) cannot support estimating k in both the general DSC and the specific FSC-

DSC approaches. The main reason is that the second derivative functions are critically

affected by the downsampling process that takes place in the original data scale.

• In some examples it is possible to use multivariate information resulting from FSC-S(Do)

and FSC-S(D1) within the specific FSC-DSC to interpret the final clustering results.

9.2 Future Work

There are several potential extensions to the proposed algorithms in this thesis in terms of both

methodology and application. From a methodological perspective, the FSC-S techniques can be

applied with different smoothing models. In addition, it is possible to enhance the FSC-DSC

approach to be able to simultaneously apply the smoothing and the clustering. The new model-

based FSC-DSC approach will avoid the issue of choosing the appropriate smoothing parameter

λ and the effect of dimension reduction on the clustering results. In addition, it is of interest to

try different distance measures for estimating the distance matrix. Then, the remaining of the

FSC-S algorithm can be applied as suggested in the thesis. Some suggestions for alternative

distance metrics are based on Marron et al. (2015) or Tzeng et al. (2016). Further, the similarity

graph can be replaced by another measure. In this thesis, we used the fully connected graph,

however the k-nearest neighbour graph, or the ε-neighbourhood graph could also be used. Al-

though Von Luxburg (2007) stated that it has not been yet proved theoretically whether the

choice of similarity graph will affect the results of spectral clustering, it is of interest to study

the effect of the similarity graph practically on functional data.

From an application perspective, in this thesis, we have focused on one-dimensional func-

tional data, the axis being time (t). However, many applications involving functional data come

as multi-dimensional output such as time-space data (t,s). It is of interest to expand the applica-

tions of our proposed FSC-S techniques and FSC-DSC approach to multi-dimensional functional

data. Moreover, all the applications of our proposed approaches were examined on functional

data that consists of less than 100 curves (data objects). It would be interesting to examine the
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approaches on functional data that consists of a larger number of curves. We believe that the per-

formance of FSC-S and DSC are likely to be similar in larger data sets. However, for FSC-DSC,

we may need to adjust the method of calculating the eigengap, because including all the possible

eigenvalues n (where n = number of curves) could obscure the optimal eigengap. Finally, since

we applied the general DSC on a limited number of CFD techniques, it is of interest to consider

different clustering techniques beyond the ones chosen in this thesis.
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