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Polarizable force fields are considered to be the single most significant development in the next-

generation force fields used in biomolecular simulations. The self-consistent computation of induced

atomic dipoles in a polarizable force field is expensive due to the cost of solving a large dense linear

system at each timestep in molecular dynamics simulations. Methods are developed that reduce

the cost of computing the electrostatic energy and force of a polarizable model from about 7.5 times

the cost of computing those of a non-polarizable model to less than twice the cost. The reduction

is achieved by an efficient implementation of the particle–mesh Ewald method, an accurate and

robust predictor based on least squares fitting, and two non-stationary iterative methods whose fast

convergence is empowered by a simple preconditioner. Furthermore, with these methods, we show

that the self-consistent approach with a larger timestep is faster than the extended Lagrangian

approach. The use of dipole moments from previous timesteps to calculate an accurate initial

guess for iterative methods leads to an energy drift and compromises the volume-preserving property

of the integration. Iterative methods with zero initial guess do not lead to perceptible energy drift

if a reasonably strict convergence criterion for the iteration is imposed and the numerical integrator

is volume-preserving. The approximate solution computed by an iterative method ruins the

symplectic property of the integrator. To address this problem, a non-iterative method has been

developed based on an approximation to the electrostatic potential energy and has been efficiently

implemented. The method preserves the symplecticness of the integrator and is suitable for long

time simulations. The research will help polarizable force fields modeling and computation to

become a routine part of molecular dynamics simulations for biomolecular systems.
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Chapter 1

Polarizable force fields

Polarization refers to the electron density redistribution due to the electric field. Current generation

non-polarizable force fields for biomolecular simulations, such as OPLS [72], CHARMM [87], AM-

BER [33], MMFF [61], and GROMOS [15, 124], include the polarization implicitly in the charge–

charge and Lennard-Jones parameterizations [62, 114, 108]. They have serious theoretical and

practical limitations because the polarization is treated only in an average sense [62, 108, 104, 52].

The treatment cannot reflect the dependency of the electron density on the positions of atoms,

nor can it respond dynamically to different environment, which varies from almost non-conductive

inside the protein cavities to very conductive on the protein–water interface. The explicit inclu-

sion of polarization can significantly improve a force field’s (i) accuracy, when being compared

to quantum computation or experimental results [139], and (ii) transferability, when applying the

same force field to a wide range of temperature and pressure [122]. Much research has shown

promising results for polarizable force fields [25, 42, 12, 59, 146, 66, 69, 145, 56, 122, 11]. In

fact, the inclusion of polarizability is considered the single most significant development in the

next-generation force fields [62, 108, 86] in biomolecular modeling and simulations. Polarizable

models have the prospect to enable accurate computation of the binding energies of proteins and

ligands in drug design [108], an application of huge industrial importance. What is more, polariz-

ability is indispensable for studies of interfaces [37, 123], and of some ionic or hydrophobic solvation

processes [127, 17, 28, 137, 106, 73, 69, 147].

Reference [114] gives a thorough description of polarizable force field modeling principles and

their computational costs; reviews [108] and [86] focus on polarizable force fields within the bigger

picture of classical force field development, while an earlier paper [62] summarizes the growing effort
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on polarizable force field modeling in studies of water, solvation, and some small biomolecules.

The next two sections present the “big picture” into which the current dissertation is embedded.

This is followed by an overview of the dissertation.

1.1 Polarization models

Polarization models can be roughly divided into two categories: point dipole models and fluctuating

charge models. A variation of the point dipole model is the shell (Drude) model; a variation of the

fluctuating charge model is the semi-empirical model [114].

+q

−q

d/q

Figure 1.1: A point dipole �d can be regarded as two charges of opposite signs in the limit of q → ∞.

A point dipole model represents the charge distribution of an atom by a charge and an induced

dipole. The model can be considered as a natural extension of the point charge model by including

the next term in the multipole expansion [134][70, chapter4]. In a point dipole model [6, 5, 133,

116, 130, 1, 24, 17, 117, 25, 26, 21, 31, 38], the pairwise potential energy between atoms at �ri and

�rj , with charges qi and qj and dipole moments �di and �dj , respectively, is

(qi + �di · ∇i)(qj + �dj · ∇j)
1

|�ri − �rj | . (1.1)

In general there is a pre-factor K/εs, where K is a constant and εs is the relative permittivity of

the medium. Here we use CGS units, for which K = 1, and assume a vacuum medium, for which
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εs = 1. The total electrostatic energy of an N -atom system can be represented in matrix form as

E(r,d) =
1
2
qTG0(r)q + dTG1(r)q +

1
2
dTG2(r)d +

1
2
dTD−1

α d , (1.2)

where q is the collection of charges, d the collection of dipole moments, G0, G1, and G2 are the

charge–charge, charge–dipole, and dipole–dipole interaction matrices defined through (1.1), and

Dα is a block diagonal matrix incorporating the polarizability of each atom. The last term is

essentially the “polarization energy,” which atoms must overcome to have nonzero dipole values.

Induced dipoles assume values that minimize the energy (1.2):

∂

∂d
E(r,d) = 0 ⇒ (D−1

α + G2)d = −G1q . (1.3)

Once the dipole is known, the energy and force can be computed subsequently.

Eq. (1.3) reflects the “non-additive” nature of a polarizable force field: adding one more atom

would change the dipole value on each atom, thus changing the interaction between every atom

pair. So a total re-computation is needed, instead of simply adding the interaction of this new

atom with all other atoms. An important observation is that D−1
α + G2 must be positive definite

since the total electrostatic energy, a quadratic in d, must be lower-bounded. However, D−1
α + G2

can become indefinite when two dipoles are too close to each other. This is a shortcoming of the

model, known as a “polarization catastrophe” [6, 138], where unreasonably large dipole values are

computed from (1.3), which do not correspond to the minimum of the electrostatic energy. The

Lennard-Jones potential can keep atoms from being too close. But when it is not enough, model

designers add damping terms to the dipole–dipole interaction at small distances [138, 17, 112], or

choose particularly small polarizability values [6, 5] so that it is unlikely the polarization catastrophe

occurs in molecular dynamics simulations. Notice that the second approach may not be able to

avoid the catastrophe in Monte Carlo simulations, where moves are unphysical.

In shell (Drude) models [143, 47, 82, 81, 148, 149, 129, 122], an induced dipole is emulated

by two charges of opposite signs, as is shown in Fig. 1.2. Each polarizable atom is represented

by a pair of point charges bound by a stiff spring. Shell models can be easily implemented in a

computer program since the charge–charge and bonding interactions are already present in current

3



atom

Q
−q

Figure 1.2: In a shell (Drude) model, a positively charged atom is represented by two charges
(Q > q) bound together by a stiff spring.

force fields. However, the number of charges is doubled in a shell model and the computational

cost is doubled at least.

Polarization can also be modeled by allowing the value of partial charges to change in response to

the local electric field. A fluctuating charge model [8, 84, 9, 29, 136, 29, 99, 100, 125] approximates

the energy required to create a charge q by a Taylor expansion in q to second order:

U(q) = χq +
1
2
Jq2 ,

where χ is the “electronegativity” and 1
2J > 0 is the “hardness” of the atom. The total energy

of the system is the summation of these single-atom energies and the electrostatic interactions

between the charges:

U(q) =
∑

i

(χiqi +
1
2
Jiiq

2
i ) +

∑
i>j

Jij(rij)qiqj , (1.4)

where Jij(rij) is equal to 1/rij at large distances but can be different at short distances to account

for the finite spatial distribution of each charge. The charges take values to minimize the total

electrostatic energy with the constraint that the total net charge is a constant [114]:

q = arg min
q

[
U(q) + µ(

∑
i

qi − qtot)
]
, (1.5)

where µ is the Lagrangian multiplier. This gives

−∂U(q)
∂qi

= µ , for i = 1, 2, . . . , N . (1.6)
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The left hand side of the above equation is called the “chemical potential” of atom i, so (1.6) means

all atoms should have the same chemical potential. In many cases, the charge flow is confined

artificially inside each molecule to avoid model deficiencies [114]. Computationally speaking, the

fluctuating charge model is probably the most efficient model: it does not have dipole interactions,

so it is simpler than point dipole models; its number of charges remains the same as the number of

atoms, a clear advantage over shell models.

However, the fluctuating charge model has some limitations. Probably the most significant

one is due to a geometry effect. For example, water, a planar three-atom molecule, can only have

a planar polarizability according to this model, although experiments show a water molecule’s

polarizability is nearly isotropic [62, 114]. A current trend is to combine fluctuating charge models

with the point dipole model [131, 132, 77, 76].

Semi-empirical models [50, 51, 23, 22, 58, 71] are based on systematic approximations to quan-

tum mechanics descriptions and can be considered as an “advanced” type of fluctuating charge

model [114] in the sense that the fluctuating charge is represented by atomic orbitals. They gen-

erally have better agreement with experiments but computationally are even more expensive than

other polarizable force fields. For large systems and long simulations, these models are still too

expensive to use.

In this dissertation, we choose to compute the point dipole models, since they have less modeling

limitations and are widely used in literature.

1.2 Computational methods

Forces are computed in various contexts: deterministic dynamics, stochastic dynamics, Monte Carlo

simulations, and energy minimization. The context has important implications for the polarizable

force computation. In deterministic dynamics, energy conservation is important. This generally

requires the computed force to be the exact negative gradient of a potential to a very high accuracy.

On the other hand, the continuity of molecular dynamics simulation enables accurate predictions

(initial guesses) for the point dipoles, which can help greatly in solving the self-consistent equation,

though the use of history undermines badly the symplecticness of the integrator. In stochastic

dynamics, e.g., integrating the Langevin equation, damping terms in the equation of motion gen-
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erally enhance the stability, so the force can be computed with approximations which destroy its

conservative property as long as it is accurate. The flip side is the initial guess of dipoles generally

is not as good as that in deterministic dynamics. Monte Carlo simulation can be very expensive for

polarizable force fields since a trial move of one atom or molecule results in a total re-computation

of the energy and force if treated rigorously. Current Monte Carlo methods either compromise the

detailed balance for efficiency [90, 121, 102], or use techniques similar to the extended Lagrangian

method [88, 30].

We are mainly concerned with deterministic molecular dynamics (MD) simulations, for which

two methods are widely used for polarizable force field computation [62, 114]: the self-consistent

method and the extended Lagrangian method. At each timestep, the self-consistent method overtly

minimizes the electrostatic energy with respect to the polarizable degrees of freedom, which are

induced dipoles in a point dipole model, auxiliary charge positions in a shell model, and charge

values in a fluctuating charge model. In other words, Eq. (1.3) is solved for the point dipole model,

and Eq. (1.5) is solved for the fluctuating charge model. This is generally very expensive. The ex-

tended Lagrangian method [27, 130] treats the polarizable degrees of freedom as dynamic variables,

which are assigned kinetic energies with fictitious masses. Their masses serve for computational

convenience and do not have any physical meaning. Starting from a configuration with the elec-

trostatic potential minimized, the method simply does normal dynamics with a small timestep.

Although it does not explicitly minimize the electrostatic energy at each timestep, it can keep the

electrostatic energy close to its minimal values for a certain time. The length of the time depends

on the coupling of the fictitious subsystem with the rest of the system: the weaker the coupling,

the longer the time. It has been proven that, under certain conditions, the atom position error is

proportional to the square-root of the fictitious mass [19]. Small fictitious mass values are required

to keep the fictitious kinetic energy (temperature) low as well as to reduce the error [111, 98].

The extended Lagrangian method is faster than the self-consistent method since it only approx-

imately minimizes the electrostatic energy. But it has the following drawbacks:

• The fictitious mass must be small to reduce the dynamic coupling between the polarizable

degrees of freedom and the atomic coordinates so that a low temperature of the polarizable

degrees of freedom is maintained [111]. This, in turn, requires a smaller integration timestep.

6



For example, timesteps of 0.2 and 1 fs (1 fs = 10−15 second) have to be used in references [129]

and [140], respectively. This effectively reduces the efficiency.

• It introduces artifacts. First, the physical system’s linear momentum is no longer conserved.

Reference [92] further points out when coupling different subsystems to different reservoirs by

Nosé–Hoover method, no properly defined linear momentum can be defined, and a large heat

flow is observed between a reservoir and a subsystem. Secondly, since the polarizable degrees

of freedom are, in fact, at a much lower temperature than that of the rest of the system, the

system is in a metastable state [111, 101]. The heat flow from other degrees of freedom to

the polarizable degree of freedom is undesirable, yet unavoidable. In a recent paper [63], even

though the timestep is limited to 0.75–1 fs, the system has to have a full energy minimization

every 300 ps (1 ps = 103 fs), making the dynamics irreversible.

In this dissertation, we choose the self-consistent approach because it is suitable for kinetic as

well as thermodynamic calculations and because it is a standard for induced dipole calculation

against which other more compromised approaches can be compared.

The self-consistent computation of point dipole models has been very expensive. In fact, the slow

adoption of polarizable force fields is partly due to its much higher computation cost [86, 122]. Com-

pared with the charge-only models, references [116] and [97] reports respectively a nine- and eight-

fold increase in the computational cost with the standard Ewald sum implementation, while [140]

reports a more than six-fold increase with the particle–mesh Ewald [39, 44] implementation. Re-

view [114] says the computation of the Ewald sum of a point dipole model is, as “a widely used rule

of thumb”, four times more expensive than that of a charge-only model. The next two chapters of

this dissertation are devoted to improving the result of reference [140]. We are able to compute the

self-consistent solution for an induced dipole model with less than 100% extra computation cost.

1.3 Dissertation outline

The fundamental problem is solving the dipole equation efficiently in MD simulations. Our effort

on this is presented in Chapter 3. The problem is intimately related to two other topics in MD:

fast electrostatic solvers and dynamics. The first topic is handled quite satisfactorily in Chapter 2.
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The second topic is tackled in Chapters 4 and 5.

The slow decay (1/r) of the charge–charge interaction makes the computation of the electrostatic

interaction the most expensive task in biomolecular simulations. A simple cut-off treatment can

have serious unphysical effects [57, 85, 2, 46, 97, 80, 16, 89, 113]. On the other hand, the Ewald

summation [3] is considered a reliable way for describing the electrostatic interaction [3], although

it could lead to bias in free energy computation [16, 78] and to artificial stability if the cell size is

too small [144]. The straightforward implementation of the Ewald sum is O(N3/2) at best [49, page

304-306] where N is the number of the atoms. So the computation should be carried out with a

fast electrostatic solver such as the particle–mesh Ewald (PME) method [39, 44], whose asymptotic

cost is O(N log N).

Chapter 2 provides our matrix formulation and implementation of the Ewald sum and the

PME method for a point dipole model. PME is widely used in biomolecular simulation software

packages, such as NAMD [74] and AMBER [33, 103]. Our formulation reveals that PME can

be easily extended to multipole computations [120] and can be implemented very efficiently. In

our implementation, the energy/force computation with the dipole moments given incurs only

about one quarter extra cost compared to a charge-only model. The most significant extra cost

of the implementation in reference [140] comes from solving the dipole equation (1.3) iteratively:

one iteration is almost as expensive as one full energy/force evaluation for a charge-only model.

The major contribution of this chapter is an algorithm that reduces the cost to one third. The

implementation based on our formulation selectively stores intermediate values to avoid most re-

computations.

Chapter 3 presents new methods that reduce the number of iterations from six in reference [140]

to two when solving the dipole equation to a given accuracy level. Our improvement comes from

two contributions: a more accurate prediction and a faster converging iteration method. We first

show that polynomial extrapolation of degree from four to six can give very accurate predictions,

even though the underlying integrator is only second order accurate. However, polynomial predic-

tion suffers from the numerical instability and possibly from the Runge phenomena [35, §4.3.4]. So

we propose and implement a new predictor based on a least squares fitting of previous values of

the dipole moment. The new predictor is accurate, because its predictions are as good as or better

8



than those from polynomial extrapolations, and robust, because the prediction quality does not

degrade as more dipoles are used. To accelerate convergence for the iteration process, we propose

and implement the Chebyshev semi-iterative method [41] and a modified conjugate gradient (CG)

method, both methods taking advantage of the matrix D−1
α +G2 being symmetric positive definite.

A disadvantage of the standard CG implementation is that two matrix–vector multiplications are

needed to get the first update to the solution. Although the residual is obtained simultaneously

as the converged solution is obtained, it cannot be used. So one matrix-vector multiplication is

wasted. We make use of this last matrix-vector multiplication by a suboptimal last step so that

CG becomes competitive with the Chebyshev method. The performance of the two non-stationary

iterative methods depends on the condition number of the matrix in the linear system being solved.

For this purpose, we design and implement a simple but efficient preconditioner based on a local

approximation to the dipole–dipole interaction matrix and, furthermore, a polynomial approxima-

tion to the inverse of the local approximation [141]. The comparison of the computational cost

between a polarizable point-dipole model and a charge-only model shows that our implementation

incurs less than 100% extra cost. The following table summarizes the computational costs of our

implementation. Costs are expressed in work units. One work unit is the computation cost for a

full energy/force evaluation of the charge-only model.

cost of computing dipoles cost of computing overall

(cost per iteration × iterations) energy and force cost

reference [140] (≈ 1) × 6 1.25–1.30 ≈ 7.5

our implementation 0.34 × 2 1.28 1.94

Moreover, our implementation with a larger timestep, e.g., 2 fs, is faster than the extended La-

grangian method.

Chapter 4 discusses the effect of dipole moment quality on dynamics. Foremost, we discuss the

the energy drift problem of the self-consistent computation. For Hamiltonian system simulations,

the conservation of the Hamiltonian is strongly assisted by the symplectic integration. However,

self-consistent computation compromises the symplecticness in two ways: (1) inexact solution makes

the force nonconservative, and (2) prediction from previous values makes the self-consistent solution

history-dependent. By examining each effect separately, we find non-conservativeness alone does not
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cause significant energy drift if the computed dipole moments are reasonably accurate. But history

dependence is more detrimental and for tolerable energy drift, it requires the computed dipole

moments to be two orders of magnitude more accurate than what is suitable in MD simulations.

In Chapter 4, we also discuss the always-stable-predictor-corrector (ASPC) method [79], which can

maintain a constant energy for a long time with only one iteration if the timestep is 1 fs. The

method has a poor accuracy and does not have a direct accuracy control mechanism. We improve

the method by combining its quasi-time-reversible prediction with the least squares prediction

and requesting the iteration not to stop until the solution is accurate enough. The improvement

maintains accuracy with a small amount of extra cost. Furthermore, we observe that the method

fails to conserve energy when a larger timestep is used. Preservation of phase space volume is a

property weaker than the symplecticness, but still desirable for a numerical integration. We point

out that the self-consistent computation is volume-preserving if it does not use history.

Our recommendations of method and parameters depend on quality and cost. If a short timestep

(∆t = 1, 2 fs) is used, use the least squares predictor with 8 or more previous dipoles and require

high accuracy for the dipole solution (to keep the energy drift tolerable). If a longer timestep

(∆t > 2 fs) is used, e.g., in a multiple-time-stepping method, prediction helps very little to obtain

an accurate initial guess. So use zero as an initial guess and declare convergence for a relatively

low accuracy. This is still good enough to compute the energy and force with an accuracy suitable

for MD simulations and maintain the energy at a constant level for long time simulations.

Chapter 5 details a non-iterative method to avoid the secular energy drift problem. The elec-

trostatic energy is (re)defined through an appropriate polynomial which approximates the matrix

inverse accurately. Then the force is computed as the exact negative gradient of the energy. By

doing this, the energy drift problem is eliminated while we still maintain a reasonable accuracy for

the computed dipoles.

Appendix A introduces the physical models and discusses some implementation issues. We have

designed many nontrivial numerical tests to ensure implementation correctness. We also point out

a pitfall when the constraint enforcement is combined with velocity rescaling methods.

In summary, our major contributions include the following:

• The Ewald sum and the PME method for induced point-dipole model computations are
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formulated in a clear and concise matrix form. The PME method is implemented efficiently.

• A least squares predictor is designed which is more accurate than polynomial extrapolation

predictor and more robust against numerical instability.

• Efficient iteration algorithms are developed for solving the dipole equation. We improve

the CG method by peeking ahead one step to get an accurate solution sooner. We also

design a simple and efficient preconditioner based on a local approximation to the dipole–

dipole interaction matrix and furthermore a polynomial approximation to the inverse of the

preconditioner. With the efficient algorithms we have developed, we demonstrate that the

self-consistent computation with 1 fs timestep incurs less than 100% computational cost, and

the self-consistent approach with a larger timestep is faster than the extended Lagrangian

approach.

• The energy drift problem is clarified. Two sources in the self-consistent computation lead to

the energy drift: a nonconservative force and the use of information from previous timesteps.

The second source is more detrimental in leading to the energy drift. We also point out that

the computation without using history is volume-preserving.

• The ASPC method is improved by an accuracy control mechanism with a small extra cost.

which is achieved by the efficient iteration algorithm as well as the combination of the quasi-

time-reversible predictor in the ASPC method with the least squares predictor.

• A novel non-iterative method based on an accurate polynomial approximation to the matrix

inverse is proposed and an efficient implementation is carried out. The idea is to make it

feasible to compute the force as the negative gradient of the potential. The method eliminates

the energy drift problem and is suitable for long time simulations.
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Chapter 2

Computation of the Ewald sum

Ewald summation [45] is a description of the long-range electrostatic interactions. The simulated

systems are generally of limited size due to limited computing resources, leading to unwanted

surface effects. To avoid them, periodic boundary conditions are applied [3], namely, the system

is replicated infinitely to fill the space, as is illustrated in Fig. 2.1. Unfortunately, the resulting

infinite sum of the charge–charge interaction converges only conditionally, if the total charge is 0,

and diverges otherwise. Ewald summation corresponds to a special summation order specified in

Eq. (2.1) [40, 3].

Figure 2.1: Periodic boundary conditions in two dimensions.

Computing the Ewald sum is the most expensive task in biomolecular simulations. For a given

accuracy, direct implementation of the Ewald sum is O(N3/2) at best [49, page 304-306]. Fast

electrostatic solvers reduce the cost significantly. Grid-based methods, such as particle–mesh Ewald
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(PME) [39, 44] and particle–particle particle–mesh (P3M) [67] methods, map charges at arbitrary

positions to the nodes of a uniform grid using a “restriction operator,” thus enabling use of the

fast-Fourier transform (FFT) to compute the reciprocal sum efficiently at a cost of O(N log N).

Tree-code based methods, such as the fast multipole method [55, 54], recursively divide the space

into cells and each cell into sub-cells, thus forming a tree structure. Close-range pairs are computed

exactly, while charges far away are grouped by their cell ID, and the corresponding interactions

are approximated by the multipole expansion. Although the cost is O(N), the coefficient of N is

so large that it is actually slower than PME or P3M method for systems of tens of thousands of

atoms [107]. Furthermore, when a charge moves and switches its role from “nearby” to “far away”

relative to another charge, their interaction changes discontinuously from being treated exactly to

being treated approximately. This leads to energy drift within the range of a few picoseconds [126]

unless very high accuracy approximation is used. A promising O(N) method is the multilevel

summation method [126, 20]. The method recursively employs the separation of length scale and

the approximation of the smoother (“far away”) interactions on a coarser grid. For a non-periodic

system, the multilevel summation method is four times faster than the fast multipole method for an

accuracy suitable for molecular dynamics simulations; for a periodic system, its speed is comparable

to the PME method. We choose the PME method because it is fast, efficient, and widely used in

biomolecular simulation software packages, such as NAMD [74] and AMBER [33, 103].

Sections 2.1 and 2.2 present the matrix formulation of the Ewald sum of an induced point dipole

model and the PME method, respectively. Compared to other formulations [96, 140], our approach

is concise and simple. It promotes a high-level understanding of computation and implementation,

and it is particularly suitable for representing the dipole equation. It reveals why PME can be

easily generalized to high-order multipole computations [120] and why iteratively solving the dipole

equation can be expensive.

Some data are repeatedly used in the matrix–vector multiplications when solving a dipole

equation, while a single use is enough for computing a charge-only model. Section 2.2 shows by

selectively storing intermediate data to avoid re-computations, we reduce the computational cost

for a matrix–vector multiplication from about 100% reported in reference [140] to about 34%.
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2.1 Ewald sum for a point dipole model

A simulated physical system is generally a parallelepiped box with edges given by three linearly

independent basis vectors �a1, �a2, �a3, and its volume V = det(�a1,�a2,�a3). The corresponding recip-

rocal lattice basis vectors are �b1, �b2, and �b3, which are defined so that for α, β = 1, 2, 3, �aα ·�bβ = δαβ ,

where δαβ is 1 if α = β, and 0 otherwise.

For a system of atoms, each having a point charge and a point dipole, the electrostatic potential

with periodic boundary conditions is given as

Eel = lim
R→∞

1
2

N∑
i=1

N∑
j=1

∑
|�nr|<R

′(qi + �di · ∇i)(qj + �dj · ∇j)
1

|�ri − �rj + �nr| , (2.1)

where qi, �di, and �ri are the charge, dipole and position of atom i respectively, ∇i is the gradient

with respect to �ri, and �nr is a lattice vector defined as �nr = n1�a1 + n2�a2 + n3�a3, where n1, n2, and

n3 are integers. The prime on the summation over �nr means some terms are excluded: if i = j,

the �nr = 0 term is excluded; or if j ∈ χ(i), where χ(i) is the list of excluded atoms of atom i,

then the interaction of the closest distance is excluded. For example, the 1–2 pairs (two atoms

connected directly by a bond) and 1–3 pairs (two atoms connected to the same third atom) are

often excluded. The coefficient 1
2 corrects the double counting in i- and j-sum for �nr = 0 terms

and counts half of the Coulomb potential for �nr �= 0 terms.

Reference [40] proves that Eq. (2.1) can be written as a sum of four terms:

Eel = Edir + Erec + Eself + Esurface , (2.2)

where the first two terms are computationally expensive:

Edir =
1
2

N∑
i,j=1

′∑
�nr

(qi + �di · ∇i)(qj + �dj · ∇j)
erfc(β|�ri − �rj + �nr|)

|�ri − �rj + �nr|

− 1
2

N∑
i=1

∑
j∈χ(i)

(qi + �di · ∇i)(qj + �dj · ∇j)
erf(β|�ri − �rj + �nr|)

|�ri − �rj + �nr| , (2.3)

Erec =
1

2πV

∑
�m�=0

exp(−π2|�m|2/β2)
|�m|2

∣∣∣∣
N∑

i=1

(qi + �di · ∇i) exp (2πi�m · �ri)
∣∣∣∣
2

, (2.4)
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while the other two terms are computationally trivial:

Eself = − β√
π

N∑
i=1

q2
i − 2β3

3
√

π

N∑
i=1

�di · �di , (2.5)

Esurface =
2π

3V

∣∣∣∣
N∑

i=1

qi�ri + �di

∣∣∣∣
2

. (2.6)

Here �m = m1
�b1 + m2

�b2 + m3
�b3, where m1, m2, m3 are integers, and β is a parameter adjusting the

workload distributions on direct and reciprocal sums. The overall Ewald sum, with or without the

surface term, is independent of β. The error function erf(x) and the complementary error functions

erfc(x) in Eq. (2.3) are defined as

erf(x) =
2√
π

∫ x

0
e−t2dt =

2√
π

(x − 1
3
x3 + · · · ) , (2.7)

erfc(x) = 1 − erf(x) . (2.8)

In Eq. (2.1), it is implicitly assumed that the spherical set of boxes is surrounded by vacuum.

In general, if the surrounding’s relative permittivity is εs, the Ewald sum still has the same direct,

reciprocal, and self energy terms, but the surface term is changed to [40]

Esurface =
2π

(2εs + 1)V

∣∣∣∣
N∑

i=1

qi�ri + �di

∣∣∣∣
2

. (2.9)

For example, vacuum has εs = 1, while metal has εs = ∞. The surface energy is zero if εs = ∞ is

assumed (the “tin-foil” boundary condition). In most biomolecular simulations, the environment

is water with εwater ≈ 80 
 1, so the surface term is considered negligibly small. The surface

potential is not continuous when a particle crosses the boundary, so including this term requires

special care. For example, reference [115] treats �ri in the surface term as “itinerant” positions,

instead of those confined in the box. Generally, the Ewald sum does not include the surface term,

and in this dissertation, the surface term is neglected.
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Before we represent the Ewald sum in a matrix form, we need to define some basic functions

gdir(�r, �r′) =
∑
�n�r

erfc(β|�r − �r′ + �nr|)
|�r − �r′ + �nr| , (2.10)

gexcld(�r, �r′) =

⎧⎪⎨
⎪⎩

erf(β|�r−�r′+�ν|)
|�r−�r′+�ν| �r �= �r′

2β√
π

�r = �r′
(2.11)

gdirx(�r, �r′) =
∑
�n�r �=�ν

erfc(β|�r − �r′ + �nr|)
|�r − �r′ + �nr| − gexcld(�r, �r′) (2.12)

grec(�r, �r′) =
1

πV

∑
�m�=0

exp(−π2|�m|2/β2)
|�m|2 exp (2πi�m · (�r − �r′)) . (2.13)

Here �ν = �ν(�r − �r′) is the lattice vector such that |�r − �r′ + �ν| is minimal among all possible lattice

vectors. Note that gexcld has no singularities. Next, we define the “direct sum” G matrices as

(Gdir
0 )ij =

⎧⎪⎨
⎪⎩

gdirx(�ri, �rj) (i, j) ∈ χ , or i = j,

gdir(�ri, �rj) otherwise,
, (2.14)

(Gdir
1 )ij =

⎧⎪⎨
⎪⎩

∇gdirx(�ri, �rj) (i, j) ∈ χ , or i = j,

∇gdir(�ri, �rj) otherwise,
, (2.15)

(Gdir
2 )ij =

⎧⎪⎨
⎪⎩

∇(∇′)Tgdirx(�ri, �rj) (i, j) ∈ χ , or i = j,

∇(∇′)Tgdir(�ri, �rj) otherwise,
, (2.16)

where ∇ and ∇′ are the gradients with respect to the first and second arguments of the target

functions. Define the reciprocal G matrices as

(Grec
0 )ij = grec(�ri, �rj) , (2.17)

(Grec
1 )ij = ∇grec(�ri, �rj) , (2.18)

(Grec
2 )ij = ∇(∇′)Tgrec(�ri, �rj) , (2.19)
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and define the overall G matrices as the sum of the direct and reciprocal G matrices:

G0 = Gdir
0 + Grec

0 , (2.20)

G1 = Gdir
1 + Grec

1 , (2.21)

G2 = Gdir
2 + Grec

2 . (2.22)

G1 is an N × N matrix of 3 × 1 blocks, each block being the Jacobian of the corresponding G0

element; G2 is an N ×N matrix of 3× 3 blocks, each block being the Hessian of the corresponding

G0 element. So the dimension is 3N×N for G1, and 3N×3N for G2. Note that (Gdir
0 )ij = (Gdir

0 )ji

and (Gdir
2 )ij = (Gdir

2 )ji. So Gdir
0 is symmetric and Gdir

2 is “block symmetric.” Since (Gdir
1 )iα,j =

−(Gdir
1 )jα,i, Gdir

1 is “block skew symmetric.” The same is true for the Grec and G matrices. As

shown in Eq. (A.13), the diagonal blocks of G2 are not zero, although they are for non-periodic

systems.

For induced dipoles, the polarization energy is an energy expense that atoms must pay to have

nonzero dipoles:

Epolar =
1
2

N∑
i=1

�dT
i α−1

i
�di . (2.23)

Here the dipole �di is a column vector of size 3 and the polarizability αi of atom i is a 3× 3 matrix.

It is diagonal for a simple model, but can be more general for complicated models [134].

Recall that q = [q1, q2, . . . , qN ]T is the charge array, d = [�dT
1 , �dT

2 , . . . , �dT
N ]

T
is the dipole array,

and Dα = diag(α1,α2, . . . ,αN ) is the block diagonal polarizability matrix. If we add in the

polarization energy and neglect the surface term, the Ewald sum is

EEwald(r,d) =
1
2
qTG0(r)q + dTG1(r)q +

1
2
dTG2(r)d +

1
2
dTD−1

α d , (2.24)

Note that the self energy Eself has been absorbed into the direct sum.

In practice, the summation over the direct lattice (�nr) and the reciprocal lattice (�m) will be

truncated when the terms are negligibly small. For a given accuracy requirement ε Å−1, the cutoff
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criteria used in this dissertation are

1Å × erfc(βrc)
rc

≤ ε , (2.25)

exp (−π2m2
c

β2
) ≤ ε . (2.26)

The first appears in reference [140], and the second in reference [48]. For the reciprocal sum,

assuming the simulation box is cubic of size L ≥ 1 Å, then

1Å × 1
2πV m2

c

exp (−π2m2
c

β2
) ≤ 1Å × 1

L
exp (−π2m2

c

β2
) ≤ exp (−π2m2

c

β2
) ≤ ε (2.27)

So Eq. (2.26) is a conservative criterion.

The induced dipoles take the values that minimizes the total electrostatic energy,

∂

∂d
EEwald(r,d) = 0 , (2.28)

which gives the equation for the dipole moments

(D−1
α + G2)d = −G1q . (2.29)

To make things clear, we define d∗(r) = (D−1
α +G2(r))−1(−G1(r)q), which shows the dependency

of d on r explicitly, and Ẽ(r) = EEwald(r,d(r)). In the following force derivation, d is the value

while d∗ is the function:

Fkσ = − ∂

∂rkσ
Ẽ(r)

= − ∂

∂rkσ
EEwald(r,d) −

(
∂

∂d
EEwald(r,d)

)T ∂d∗(r)
∂rkσ

= − ∂

∂rkσ
EEwald(r,d)

= −1
2
qT

(
∂

∂rkσ
G0

)
q − dT

(
∂

∂rkσ
G1

)
q − 1

2
dT

(
∂

∂rkσ
G2

)
d . (2.30)

The three terms in Eq. (2.30) are the charge–charge, charge–dipole, and dipole–dipole force, re-

spectively. With the optimal dipole vector satisfying (2.29), the energy given by (2.24) simplifies
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to

EEwald(r) =
1
2
qTG0(r)q +

1
2
d(r)TG1(r)q . (2.31)

2.2 Particle–mesh Ewald method

In this dissertation, the particle–mesh Ewald (PME) method refers to the Smooth PME (SPME)

method [44], which is preferable to the original PME [39], not only because it is faster, but also

because the force computed by SPME is exactly the negative gradient of the (approximated) po-

tential. For Hamiltonian system simulations, this property along with symplectic integration will

make sure the long-time drift of the Hamiltonian is minimal.

The Ewald sum has two major parts: direct sum and reciprocal sum. Correspondingly, the G

matrices, energy, and force can be split as follows according to Eq. (2.31):

EEwald = Edir + Erec , (2.32)

Edir =
1
2
qTGdir

0 q +
1
2
dTGdir

1 q , (2.33)

Erec =
1
2
qTGrec

0 q +
1
2
dTGrec

1 q , (2.34)

F = F dir + F rec , (2.35)

F dir
kσ = −1

2
qT

(
∂

∂rkσ
Gdir

0

)
q − dT

(
∂

∂rkσ
Gdir

1

)
q − 1

2
dT

(
∂

∂rkσ
Gdir

2

)
d , (2.36)

F rec
kσ = −1

2
qT

(
∂

∂rkσ
Grec

0

)
q − dT

(
∂

∂rkσ
Grec

1

)
q − 1

2
dT

(
∂

∂rkσ
Grec

2

)
d . (2.37)

Note that in PME, the Ewald parameter β is intentionally chosen large so that for direct sum, a small

cut-off radius is needed for a given accuracy (see Eq. (2.25)). This leads to sparse Gdir matrices and

an O(N) computational cost for the direct sum. For the reciprocal sum computation, fast Fourier

transforms (FFTs) are used and the computation cost is O(N log N). The implementation of the

direct sum in PME is described in Section 2.2.1, and here we focus on the reciprocal sum.
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2.2.1 Direct sum implementation

The computation cost of the direct sum can be surprisingly high for the PME method in which the

major work is expected to be done in the reciprocal sum. One reason is that the Ewald sum and

the Lennard Jones interactions are often computed simultaneously, and the latter requires a large

cutoff radius.

From Eqs. (2.30) and (2.35), we have

F dir
kσ = −

N∑
j=1

qkqj(Gdir
1 )kσ,j −

N∑
j=1

∑
α=x,y,z

(djαqk − dkαqj)(Gdir
2 )kσ,jα

−
N∑

j=1

∑
α,β=x,y,z

dkαdjβGdir
3,kσα,jβ , (2.38)

where

Gdir
3,kσα,jβ =

∂

∂rkσ
(Gdir

2 )kα,jβ . (2.39)

In most Ewald sum computations, the direct sum cutoff radius is less than half of the system

size. This means the summation in Eqs. (2.10) and (2.12) has only one term. Following [128, 140],

we define

B0(r) =
erfc(βr)

r
, (2.40)

Bk(r) = −1
r

dBk(r)
dr

, k = 1, 2, 3, (2.41)

B̄0(r) = B0(r) − 1
r

, (2.42)

B̄k(r) = −1
r

dB̄k(r)
dr

, k = 1, 2, 3. (2.43)

It can see shown

Bk(r) =
1
r2

[
(2k − 1)Bk−1(r) +

(2β2)k

β
√

π
exp(−β2r2)

]
k = 1, 2, 3, (2.44)

B̄k(r) =
1
r2

[
(2k − 1)B̄k−1(r) +

(2β2)k

β
√

π
exp(−β2r2)

]
k = 1, 2, 3. (2.45)
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If (i, j) is not an excluded pair, then

(Gdir
0 )ij = B0(r) , (2.46)

(Gdir
1 )ij = −B1(r) · �r , (2.47)

(Gdir
2 )ij = B1(r) · I − B2(r) · �r · �rT , (2.48)

(Gdir
3 )iσα,jβ = B3(r) · rσrαrβ − B2(r) · (rσδαβ + rαδβσ + rβδασ) . (2.49)

For clarity, we have dropped the subscript ij of �r, so �r is actually �rij = �ri−�rj +�ν, a column vector

of size 3 in Eqs. (2.46)–(2.49). Also, r represents the 2-norm of �r.

If (i, j) is an excluded pair, we have similar expressions:

(Gdir
0 )ij = B̄0(r) , (2.50)

(Gdir
1 )ij = −B̄1(r) · �r , (2.51)

(Gdir
2 )ij = B̄1(r) · I − B̄2(r) · �r · �rT , (2.52)

(Gdir
3 )iσα,jβ = B̄3(r) · rσrαrβ − B̄2(r) · (rσδαβ + rαδβσ + rβδασ) . (2.53)

Unlike the permanent multipole (including charge-only model) computations, the matrix G2

is used repeatedly when solving the dipole equation iteratively. Re-computation of G2 for each

iteration is expensive, so we need to store it in some way to save time and cost.

In an implementation, each atom has a list of neighboring atoms whose distance is less than

the direct sum cut-off. For each neighboring pair, the corresponding B1, B2, and B3 are computed

and stored for later use. We do not store �rijs, but compute them when needed. In this way, most

re-computations are avoided while memory is used judiciously.

The above implementation requires an extra storage of approximately 1
2 · 3N 4

3πρr3
c doubles for

storing B1, B2 and B3 for each pair, and 1
2 ·N 4

3πρr3
c integers for maintaining a neighbor list, where

ρ is the average number of atoms per unit volume. The coefficient 1
2 appears because we count

each pair only once. A typical double-type datum takes 8 bytes, while an integer-type datum takes
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4 bytes. So typical storage in bytes is

1
2
· 4
3
πρr3

c · 3N · 8 +
1
2
· 4
3
πρr3

cN · 4 =
56
3

πρr3
c · N . (2.54)

The typical density for a biomolecular system is ρ ≈ 0.1 atoms/Å3. For rc = 8 Å, the memory

requirement is 3003N bytes, and for rc = 10 Å, the memory requirement is less than 6000N bytes.

For a system with N =10,000 atoms, this requires only 30 or 60 megabytes of memory, respectively.

Current personal computers have memory in the range of several hundred megabytes. For larger

systems, parallel computation is needed. For a typical parallel computation setting, each processor

has about 1,000–10,000 atoms. For example, NAMD recommends 1,000 atoms per CPU [105] for

optimal efficiency. The above memory requirement is not a problem .

To avoid the “polarization catastrophe” [6, 138], some point dipole models have a short-range

damping term which takes effect only when the distance of two dipoles is less than a small screening

distance. The implementation of this term in the direct sum computation is straightforward and

similar to the handling of “excluded pairs.” Since our test models do not suffer the polarization

catastrophe in practice, we do not concern ourselves about it in this dissertation.

2.2.2 Reciprocal sum

Two approximations are made in PME for the reciprocal sum computation. The first approximation

truncates the infinite sum in the reciprocal sum to a summation over a cubic region of the reciprocal

lattice, not a sphere as in the standard Ewald summation. The second approximation interpolates

sines and cosines from a uniform grid, which we can do because the range of wave numbers is

restricted.

The first approximation of PME is the following cubic truncation:

grec(�r, �r′)≈ 1
πV

K1/2−1∑
m1=−K1/2

K2/2−1∑
m2=−K2/2

K3/2−1∑
m3=−K3/2

exp(−π2|�m|2/β2)
|�m|2 exp (2πi�m · (�r − �r′)) , (2.55)

where �m = m1
�b1 + m2

�b2 + m3
�b3, m1, m2, and m3 are integers, K1, K2, and K3 are some large

even integers so that the truncation error is negligible.

Corresponding to the truncated reciprocal lattice, we have a grid in the real space and there are
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K1, K2, and K3 grid points along each dimension. This motivates the following “u-representation”

for a position vector �r:

�r = �rcorner + [�a1 �a2 �a3]

⎡
⎢⎢⎢⎢⎣

u1/K1

u2/K2

u3/K3

⎤
⎥⎥⎥⎥⎦ , (2.56)

where �rcorner is the position of a corner of the simulation box, which is chosen so that 0 ≤ uα < Kα

for α = 1, 2, 3 constitutes the simulation box. Equivalently,

�u =

⎡
⎢⎢⎢⎢⎣

K1
�bT

1

K2
�bT

2

K3
�bT

3

⎤
⎥⎥⎥⎥⎦ (�r − �rcorner) = T (�r − �rcorner) . (2.57)

where �b1, �b2, and �b3 are the reciprocal lattice basis vectors.

To present the second approximation made by the PME method, we first introduce the B-spline

functions and the periodic B-spline functions. The B-spline function Mp(u) is defined recursively

as

M1(u) =

⎧⎪⎨
⎪⎩

1 , 0 ≤ u < 1 ,

0 , otherwise ,
(2.58)

Mp(u) =
u

p − 1
Mp−1(u) +

p − u

p − 1
Mp−1(u − 1) , for p > 1. (2.59)

The first few B-spline functions are shown in Fig. 2.2.

The B-spline functions have the following properties [44]:

(1) Mp(u) > 0 , if 0 < u < p, Mp(u) = 0 , otherwise, (2.60)

(2)
∞∑

n=−∞
Mp(u − n) = 1 , (2.61)

(3) M ′
p(u) = Mp−1(u) − Mp−1(u − 1), for p > 1 . (2.62)

The first two properties imply B-spline functions can be considered as discrete weight functions.
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Figure 2.2: The first few B-spline functions.

The third property enables us to get the analytical force expression.

The periodic B-spline functions are defined as

ΦK(u) =
∞∑

i=−∞
Mp(u − iK) . (2.63)

The function has period K because ΦK(u + K) = Φ(u). The local support of Mp reduces the

seemingly infinite sum in (2.63) to a finite sum of no more than p terms. In fact, real applications

have K 
 p, and the summation over i has at most one nonzero term.

The basic interpolation idea is the following:

exp (2πi
mu

K
) ≈ bK(m)

∞∑
n=−∞

Mp(u − n) exp (2πi
mn

K
)

= bK(m)
K−1∑
n=0

ΦK(u − n) exp (2πi
mn

K
) , (2.64)

bK(m) =
exp (2πim(p − 1)/K)∑p−2

n=0 Mp(n + 1) · exp (2πimn/K)
, (2.65)

where m is an integer, 0 ≤ m < K, and bK(m) is a normalization constant. The B-spline functions

are generally not nodal basis functions for spline interpolation, but the factor of bK(m) makes

possible the interpolation of the sines and cosines by the B-spline functions. In Eq. (2.64), the
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summation has about p nonzero terms.

The second approximation made by PME is the following interpolation:

exp (2πi�m · (�r − �rcorner)) = exp (2πi
[
u1m1

K1
+

u2m2

K2
+

u3m3

K3

]
)

≈ b �K(�m)
∑
�n

ϕ�n(�u) exp(2πi[
m1n1

K1
+

m2n2

K2
+

m3n3

K3
]
)
, (2.66)

where

b �K(�m) = bK1(m1)bK2(m2)bK3(m3) , (2.67)

ϕ�n(�u) = ΦK1(u1 − n1)ΦK2(u2 − n2)ΦK3(u3 − n3) . (2.68)

So

exp (2πi�m · (�ri − �rcorner)) ≈ (I0
hFB)i�m , (2.69)

with

(I0
h)i�n = ϕ�n(�ui) , (2.70)

F �n,�m = exp
(
2πi

[
m1n1

K1
+

m2n2

K2
+

m3n3

K3

])
, (2.71)

B �m,�m = b �K(�m) . (2.72)

Here, I0
h is a matrix of size N × K, where K = K1K2K3, F is the Fourier transform matrix

of size K × K, and B is a diagonal matrix of size K × K. I0
h is a prolongation operator which

interpolates grid values to particle positions. Correspondingly, (I0
h)T restricts data at particle

positions onto the grid (see Fig. 2.3). Reference [39] and [44] point out that the grid size should be

proportional to the average distance between atoms to have a reasonable accuracy for molecular

dynamics simulations. This means K = K1K2K3 = O(N), which generally guarantees that the

accuracy requirement in Eq. (2.26) is satisfied.
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q

Figure 2.3: In PME, a charge, represented by an empty circle with name q, is mapped (restricted)
to the nodes of a uniform grid.

I0
h is sparse due to the local support of the B-spline basis functions. From Eq. (2.61), we see

∑
�n

(I0
h)i�n =

∑
n1

ΦK1(ui1 − n1) ·
∑
n2

ΦK2(ui2 − n2) ·
∑
n3

ΦK3(ui3 − n3)

=
∞∑

i1=−∞
Mp(ui1 − i1)

∞∑
i2=−∞

Mp(ui2 − i2)
∞∑

i3=−∞
Mp(ui3 − i3)

= 1 · 1 · 1 = 1 . (2.73)

(I0
h)i�n is the weight function, representing how much of the charge qi is distributed to grid node �n.

The above expression just means the sum of the weights is equal to 1.

From Eqs. (2.17), (2.13), and (2.69), we have

(Grec
0 )ij ≈

K1/2−1∑
m′

1=−K1/2

K2/2−1∑
m′

2=−K2/2

K3/2−1∑
m′

3=−K3/2

(I0
hFB)i,�m′U(�m′)(I0

hFB)∗j �m′ , (2.74)

where

U(�m) =
1

πV

exp(−π2|�m|2/β2)
|�m|2 , �m �= 0 , (2.75)

U(0) = 0 , �m = 0 . (2.76)

The summation in Eq. (2.74) is not [0 : K1 − 1]× [0 : K2 − 1)× [0 : K3 − 1] needed by the FFT.
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The discrepancy is easily fixed by the following: For each �m′, we define a corresponding vector �m,

the components of which are

mα =

⎧⎪⎨
⎪⎩

m′
α , m′

α ≥ 0 ,

m′
α + Kα , m′

α < 0 .
(2.77)

So we have 0 ≤ mα < Kα, F �m′,�n = F �m,�n, B �m′, �m′ = B �m,�m, and (I0
hFB)j �m′ = (I0

hFB)j �m. Define

diagonal D as

D = |B|2U(�m′) . (2.78)

Eq. (2.74) gives

(Grec
0 )ij ≈ (I0

hFDF H(I0
h)T)ij , or Grec

0 ≈ I0
hFDF H(I0

h)T . (2.79)

Similarly, Eq. (2.55) gives

grec(�r, �r′) =
∑
�n

∑
�n′

ϕ�n(�u)(FDF T)�n�n′ϕ�n′(�u′) . (2.80)

To get the expression for Grec
1 , Grec

2 , and later, energy and force, define

(I1
h)i�n = ∇i(I0

h)i�n = T T(Dϕ�n(�ui)) , (2.81)

(I2
h)i�n = ∇i∇i

T(I0
h)i�n = T T(D2ϕ�n(�ui))T , (2.82)

where the second equalities follow from Eqs. (2.70) and (2.57), and Dϕ�n and D2ϕ�n are the Jacobian
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vector and the Hessian matrix of the basis function ϕ�n, which are given by (see Eq. (2.68))

Dϕ�n(�u) =

⎡
⎢⎢⎢⎢⎣

Φ′
1Φ2Φ3

Φ1Φ′
2Φ3

Φ1Φ2Φ′
3

⎤
⎥⎥⎥⎥⎦ , (2.83)

D2ϕ�n(�u) =

⎡
⎢⎢⎢⎢⎣

Φ′′
1Φ2Φ3 Φ′

1Φ
′
2Φ3 Φ′

1Φ2Φ′
3

Φ′
1Φ

′
2Φ3 Φ1Φ′′

2Φ3 Φ1Φ′
2Φ

′
3

Φ′
1Φ2Φ′

3 Φ1Φ′
2Φ

′
3 Φ1Φ2Φ′′

3

⎤
⎥⎥⎥⎥⎦ , (2.84)

where

Φ′
α(x) =

∞∑
i=−∞

M ′
p(x − iKα) =

∞∑
i=−∞

(
Mp−1(x − iKα) − Mp−1(x − iKα − 1)

)
, (2.85)

Φ′′
α(x) =

∞∑
i=−∞

(
Mp−2(x − iKα) − 2Mp−2(x − iKα − 1) + Mp−2(x − iKα − 2)

)
. (2.86)

So each “element” of I1
h is a 3 × 1 block, and each “element” of I2

h is a 3 × 3 block.

From Eqs. (2.79), (2.70), (2.81), (2.21), (2.22), and (2.80), we have

Grec
0 ≈ I0

h(FDF H)(I0
h)T , (2.87)

Grec
1 ≈ I1

h(FDF H)(I0
h)T , (2.88)

Grec
2 ≈ I1

h(FDF H)(I1
h)T . (2.89)

The matrix–vector multiplication for each Grec
i is simple and direct from the above expressions.

For example, to compute Grec
2 d, we first restrict (distribute) d to grid nodes, then do a backward

FFT, then multiply by the diagonal matrix D, then do a forward FFT, and, in the end, interpolate

back to real space.
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We define the following quantities:

grid charges : qh = (I0
h)Tq , (2.90)

grid dipoles : dh = (I1
h)Td , (2.91)

sum of both : sh = qh + dh , (2.92)

grid potential : vh = FDF Hsh . (2.93)

Here, qh, dh, sh, and vh are vectors of size K. From Eq. (2.73), the summations of the components

of qh and dh are 0:

∑
�n

(qh)�n =
∑
�n

∑
i

(I0
h)i�nqi =

∑
i

qi

∑
�n

(I0
h)i�n =

∑
i

qi · 1 = 0 , (2.94)

∑
�n

(dh)�n =
∑
�n

∑
iα

(I1
h)iα�ndiα =

∑
iα

diα
∂

∂riα

∑
�n

(I0
h)i�n =

∑
iα

diα
∂

∂riα
1 = 0 . (2.95)

The first one is true because the system is charge-neutral.

From Eqs. (2.34), (2.87), (2.88), (2.90)–(2.93), the reciprocal energy is

Erec =
1
2
qTGrec

0 q +
1
2
dTGrec

1 q

=
1
2
qTGrec

0 q +
1
2
qT(Grec

1 )Hd

≈ 1
2
qTI0

h(FDF H)(I0
h)Tq +

1
2
qTI0

h(FDF H)(I1
h)Td

=
1
2
qh

Tvh . (2.96)

Next, we derive the force expression. First, from Eqs. (2.24), (2.17), (2.18), and (2.19), we have

F rec
k = −∇k(

1
2
qTGrec

0 q + dTGrec
1 q +

1
2
dTGrec

2 d)

= −∇k
1
2

∑
ij

(qi + �di · ∇)(qj + �dj · ∇′)grec(�ri, �rj)

= −∇k(qk + �dk · ∇)
∑

j

(qj + �dj · ∇′)grec(�rk, �rj) . (2.97)
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Then, from Eqs. (2.87), and (2.90)–(2.93),

F rec
k ≈ −∇k(qk + �dk · ∇k)

∑
j

(qj + �dj · ∇j)(I0
hFDF H(I0

h)T)kj

= −∇k(qk + �dk · ∇k)
∑
�n�n′

(I0
h)k�n(FDF H)�n�n′

∑
j

(qj + �dj · ∇j)(I0
h)j�n′

= −∇k(qk + �dk · ∇k)
∑
�n

(I0
h)k�n

∑
�n′

(FDF H)�n�n′(sh)�n′

= −
∑
�n

(
∇k(qk + �dk · ∇k)(I0

h)k�n

)
(vh)�n . (2.98)

In the end, from Eqs. (2.81) and (2.82),

F rec
k ≈ −

∑
�n

(
qk(I1

h)k�n + (I2
h)k�ndk

)
· (vh)�n . (2.99)

The cost for computing the energy and force, assuming the dipole is known, is counted as follows:

computing qh, dh, and sh from (2.90)–(2.92) costs O(N) since I0
h and I1

h are sparse; computing vh

from (2.93) needs two FFTs; computing the energy from (2.96) and force from (2.99) costs O(N)

since for a given value of k, (I1
h)k�n �= 0 and (I2

h)k�n �= 0 for only p3 values of �n.

A very nice feature of PME shows up in Eqs. (2.87)–(2.89): the G matrices are decomposed

in such a way that the dependence on position is separated from the other part of the reciprocal

sum computation. Taking the gradient of the G matrices becomes easy and straightforward. This

is why generalizing PME to high-level multipole computation does not incur much extra cost. In

PME, the force computation (computing the gradient) and the higher-degree multipole interaction

(also computing the gradient) can be properly arranged so that additional computation is minimal.

Notice from Eqs. (2.87)–(2.89) that although Grec
0 and Grec

2 are still symmetric after the inter-

polation approximation, Grec
1 is not “block skew symmetric” anymore. The consequence is the loss

of linear momentum conservation. Fig. 2.4 shows that the energy and the linear momentum cannot

both be conserved by a simulation employing the PME method. The momentum drift is measured

against the thermal momentum of water molecules. The thermal momentum p is computed by the

equipartition theorem 1
2p2/m = 3

2kBT , where m is the mass of a water molecule, and T = 300 K.

Because the PME method makes an interpolation error in Eq. (2.66), the sum of all the forces con-
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tributed by the reciprocal sum is not zero but a small number instead. If this small extra force is

subtracted out [140] to conserve linear momentum, then the force is not the exact negative gradient

of the potential any more, and this leads to a small energy drift for long simulations. Other fast

electrostatic solvers, including the multilevel summation method [126, 20] and the particle–particle

particle–mesh method [67], cannot conserve energy and momentum simultaneously either.
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Figure 2.4: The energy and momentum of a system of 216 SPC [14] water molecules.

2.2.3 Overall computation sequence

The computation has three major steps: preparation, solving the dipole equation iteratively, and

computing the electrostatic energy and the electrostatic force.

The iteration scheme should be formulated carefully to avoid unnecessary cost. The Picard

iteration

dn+1 = Dα

[ − G1q − G2dn

]
, (2.100)

for example, is formulated as follows to save two FFTs by not explicitly computing −Grec
1 q:

dn+1 = −Dα

(
Gdir

1 q + Gdir
2 dn + I1

hFDF H[(I0
h)Tq + (I1

h)Tdn]
)
, (2.101)
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or for n > 1,

dn+1 = dn − Dα

[
Gdir

2 (dn − dn−1) + I1
hFDF H(I1

h)T(dn − dn−1)
]
. (2.102)

The sequencing of the computation is summarized in the following:

1. preparation

(a) direct sum: compute and store 1
2qTGdir

0 q (scalar), −Gdir
1 q (vector). Compute and store

the B1, B2, and B3. Since Gdir
0 is sparse, the operation and storage cost is O(N).

(b) reciprocal sum: compute and store qh = (I0
h)Tq (vector), and partially compute and

store I1
h and I2

h: for each atom and each dimension, maintain arrays of size 3p storing

Mp, M ′
p, and M ′′

p . This accounts for 9pN double-type data, and requires 72pN bytes on

most platforms. Since p is 4 or 6 in most MD simulations, the memory requirement is

affordable. Mp is computed recursively from order 1 up to p. According to Eq. (2.62),

M ′
p, and M ′′

p are computed simultaneously as Mp is computed and the computation

incurs little extra cost. Since I0
h, I1

h, and I2
h are sparse, the computation cost is O(N).

2. solving the dipole equation

(a) use some predictor to compute the initial guess. The cost is O(N).

(b) use some iterative method to solve the dipole equation. For example, for Picard iteration

(2.100), use Eq. (2.101). The cost for each step is 2 FFTs.

3. computing the electrostatic energy and the electrostatic force

(a) direct sum: compute 1
2dTGdir

1 q, add it to 1
2qTGdir

0 q to get Edir. Compute force F dir

according to Eq. (2.30). The cost is O(N).

(b) reciprocal sum: compute dh = (I1
h)Td, sh = qh + dh, and vh = FDF Hsh (2 FFTs).

Then compute Erec and F rec according to Eqs. (2.96) and (2.99).

(c) the electrostatic energy is Edir + Erec, the electrostatic force is F dir + F rec.

The total number of FFTs is 2 + 2× number of iterations.
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Chapter 3

Self-consistent solution

Given an accuracy (convergence) requirement, how can we solve the dipole equation (2.29) as fast

as possible? This chapter tackles two aspects of the problem: an accurate initial guess and quickly

converging iterations.

An accurate initial guess is pursued in Section 3.1. The continuity of a molecular dynamics

trajectory provides the foundation for making a good initial guess. Previous predictors [53, 1, 117,

21, 31, 135, 140] are mostly based on the polynomial extrapolation. Since the dipole is a continuous

function of time through position, polynomial extrapolation predictor assumes a Taylor expansion

in time exists at the current timestep.

Given the fact that the numerical integrator, the velocity-Verlet method, is only second order

accurate, it is natural to ask if the prediction can be good if the polynomial degree is higher than

two. However, as backward error analysis shows, the velocity-Verlet integrator solves a nearby

Hamiltonian system to a very high degree [110, 43]. The numerical solution we are computing can

be regarded as a smooth function of time restricted at discrete timesteps, so it can be interpolated

by a polynomial.

Although the reference [140] uses only degree-1 polynomial prediction, we demonstrate that

predictions using polynomials of degree four or five provide a much more accurate initial guess.

However, high-degree polynomial extrapolation has two problems: (1) it is ill conditioned, meaning

a small error in the previous dipoles is magnified by the prediction, and (2) the quality can degrade

significantly due to the “Runge phenomenon” [35, §4.3.4]. In practice, the accuracy of the polyno-

mial predictor degrades when the degree reaches five or six. It is also undesirable that the optimal

degree depend significantly on the iteration method and related parameters. So we propose a new
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predictor which uses least squares fitting of previous data to predict the dipole. We show that it is

more accurate and it is numerically more stable than polynomial prediction.

Quickly converging iteration methods are proposed in Section 3.2. As has been pointed out in

Chapter 1, we should take advantage of the matrix D−1
α +G2 being symmetric positive definite. By

using the conjugate gradient (CG) or Chebyshev semi-iterative method with a novel preconditioner,

we can reduce the number of iterations significantly.

Timing result shows, for a 1 fs timestep, the self-consistent approach leads to an extra cost of

94% compared to a charge-only model. When a longer timestep is used, the self-consistent approach

is more efficient than the extended Lagrangian approach.

The widely used root-mean-square (RMS) error for an iteration method is defined as

RMS error =
1√
N

‖dm − dm−1‖2 , (3.1)

where N is the number of atoms and m is the iteration step. Computing the RMS error is an

inexpensive O(N) calculation. For a fast converging iteration, the RMS error is probably a better

estimation of the RMS norm of the previous solution error than the current one since

‖dm−1 − dexact‖2 ≤ ‖dm−1 − dm‖2 + ‖dm − dexact‖2 ≈ ‖dm−1 − dm‖2 . (3.2)

For this reason, RMS error can badly over-estimate the true error. For example, if the initial

guess is not accurate enough, at least two iterations are needed in general, no matter how fast the

iterative method converges.

In this chapter, convergence is claimed if the RMS error is less than 10−6 or 10−7 Debye (1

Debye = 3.33564× 10−30 Coulomb × meter). But the relative error is probably easier to interpret.

Since the average dipole moment of an atom in the RPOL [36] water system is 0.25 Debye from

Eq. (A.3), the above convergence criteria is 4 or 0.4 parts per million (ppm).
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3.1 Initial guess

Degree-(k−1) polynomial extrapolation uses k (k ≥ 1) previous dipole moments to predict the

dipole moment at timestep n:

dn
0 =

k∑
i=1

(−1)i+1

(
k

i

)
dn−i . (3.3)

The superscripts represent timesteps. The first few formulas for polynomial extrapolation are as

follows:

Degree dn
0

0 dn−1

1 2dn−1 − dn−2

2 3dn−1 − 3dn−2 + dn−3

3 4dn−1 − 6dn−2 + 4dn−3 − dn−4

4 5dn−1 − 10dn−2 + 10dn−3 − 5dn−4 + dn−5

...
...

We examine the accuracy of the predictions by their relative errors. Define

δd =
‖d − dexact‖2

‖dexact‖2
. (3.4)

Table 3.1 shows the prediction error in terms of δd computed for some snapshots drawn from a

molecular dynamics simulation. The numbers change from case to case, but the trend remains

about the same.

degree 0 1 2 3 4 5 6 7 8
δd (ppm) 1.6e4 2.2e3 4.9e2 1.4e2 58 26 29 53 99

Table 3.1: The polynomial extrapolation error.

A good initial guess reduces the computational cost significantly (see Fig. 3.1 and 3.2; the various

iterative methods will be described in Section 3.2). However, numerical instability degrades the

results when the degree is greater than five. A rough estimate of the error magnification effect is
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given as follows:

‖εn
0‖ =

∥∥∥∥
k∑

i=1

(−1)i+1

(
k

i

)
εn−i

∥∥∥∥ ≤ max
1≤i≤k

‖εn−i‖ ·
k∑

i=1

(
k

i

)
= (2k − 1) max

1≤i≤k
‖εn−i‖ , (3.5)

where ‖ · ‖ denotes some norm. A degree–5 (k = 6) polynomial prediction could amplify the error

by a factor of 63. Since the convergence factor is about 0.34 (see Fig. 3.3), four Picard iterations

would be needed to compensate such error growth.
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Figure 3.1: Average number of iterations for different methods. The superfluous RMS convergence
criteria is 4 ppm.

The least squares prediction arises by asking the following question after the dipole dn is

computed: what is the best prediction of dn we could have made from a linear combination of

dn−1, . . . ,dn−k ? The answer is obtained by choosing coefficients c1, c2, . . . , ck that minimize the

objective function

T = ‖dn −
k∑

i=1

cid
n−i‖2

2 . (3.6)
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Figure 3.2: Average number of iterations for different methods. The superfluous RMS convergence
criteria is 0.4 ppm.

Numerical methods solving this least squares problem has been discussed in textbooks such as [141].

The fastest method is the normal equation method, in which we obtain the optimal coefficients

c1, . . . , ck by solving the equations

∂T

∂ci
= 0 ⇒

k∑
j=1

(dn−i)Tdn−jcj = (dn−i)Tdn , (3.7)

Eq. (3.7) is k equations for k unknowns (c1, . . . , ck), and can be solved by Gaussian elimination.

After we compute these coefficients, we use them to predict the dipole at the next timestep:

dn+1
0,least squares =

k∑
i=1

cid
n+1−i . (3.8)

Other more numerically stable methods for solving the least squares problem include the QR

factorization and the singular value decomposition methods [141]. We have also implemented the

QR factorization method with column pivoting, but find that numerical instability is not a serious
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issue in most cases.

A closer look at the data shows that least squares prediction is a little better than the optimal

polynomial prediction:

δdoptimal, polynomial ≈ 2 × 10−5 , (3.9)

δdoptimal, least squares ≈ 1 × 10−5 . (3.10)

Least squares prediction incurs a negligibly small amount of extra work at each step: in our test

cases, the prediction cost is less than 1% of the overall electrostatic computation. we need to do k

inner products of vectors, and solve a k × k linear system, where k is a small number, generally no

larger than 10. Extra memory to store k − 1 previous vectors is also needed.

3.2 Iteration method

Iterative methods can be classified into two categories: stationary iterative methods, such as the

Jacobi, Picard, and Gauss-Seidel method; and non-stationary iterative methods, such as the con-

jugate gradient (CG) method and the Chebyshev semi-iterative method.

Stationary methods split the matrix into two matrices, one of which is easy to invert. For our

problem, there is little choice but to split the left-hand-side matrix into D−1
α and G2, and use the

following Picard iteration:

dm+1 = Dα(−G1q − G2dm) . (3.11)

We do not call it Jacobi iteration because the diagonal elements of G2, although small, are not

zero (see Eq. (A.13)). The natural breakup into a simple dominant part plus a lesser part leads

us to call it Picard iteration. This iteration is used widely in the literature to solve the dipole

equation probably for two reasons. First, it is simple and has a clear intuitive meaning: the dipole

is proportional to the electric field with the linear “coefficient” Dα, while the electric field comes

from charges (−G1q) and other dipoles (−G2d). Second, the eigenvalues of the iteration matrix

DαG2 cluster around zero, as shown in Fig. 3.3. If we decompose the error vector into components
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each parallel to an eigenvector, those components whose corresponding eigenvalues are close to zero

are damped away after one Picard iteration. So the method is fairly efficient for solving the dipole

equation.
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Figure 3.3: Eigenvalue distribution of matrix −DαG2.

The convergence factor of a stationary method is determined by the spectral radius of the iter-

ation matrix [65]. For Picard iteration, the spectral radius ρ(−DαG2) is about 0.34 (see Fig. 3.3).

If the spectrum of the iteration matrix is not symmetric about zero, a damping scheme can be used:

dm+1 = ωDα(−G1q − G2dm) + (1 − ω)dm , (3.12)

where ω is the damping factor, whose optimal value can be determined by the largest and smallest

eigenvalues of the iteration matrix:

ωopt =
2

2 − (λmax + λmin)
. (3.13)

The convergence factor is

r =
λmax − λmin

2 − (λmax + λmin)
. (3.14)
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Given a typical value of λmax ≈ 0.26, λmin ≈ −0.34, the convergence factor for damped Picard

method with optimal damping factor is 0.29: damping helps only a little.

Direct inversion in the iterative subspace (DIIS) method [109] is a popular acceleration method

in ab initio molecular dynamics simulations. For a stationary iteration method, after a few itera-

tions, the error is dominated by components corresponding to largest absolute eigenvalues, and the

convergence slows down. At this point in the computation, DIIS accelerates the convergence by

making a least squares approximation to zero in the linear space {xi}n
i=0. However, we find that

by the time that DIIS does better than the Picard method, after about five iterations, the solution

is already good enough to be considered converged. So we do not explore DIIS further.

The conjugate gradient (CG) [41, §8.3] or Chebyshev semi-iterative method [41, §8.2] are two

non-stationary methods for solving symmetric positive-definite linear systems. CG is a popular

method that minimizes the energy norm of the error, while the Chebyshev method, with optimal

parameters, is targeted at minimizing the 2-norm of the error. The error is bounded by [41]

‖dm − dexact‖
‖d0 − dexact‖ ≤ 2

(√
κ − 1√
κ + 1

)m

, (3.15)

where κ = λmax/λmin is the condition number of the preconditioned matrix and ‖ · ‖ is the energy

norm for CG and the 2-norm for the Chebyshev method.

It takes two matrix–vector multiplications for the standard CG method to get the first update

of the solution: one for computing the residual to determine the search direction, another for

computing the optimal distance to move along the search direction. After that, each iteration

requires one matrix–vector multiplication. So for the same number of updates of the solution, CG

does one more (expensive) matrix–vector multiplication than other methods. This extra cost can

be saved by a “peek” step which uses the available residual to do one Picard iteration:

d′ = d + Dαr = Dα(−G1q − G2d) , (3.16)

where r is the residual. The following pseudo code for the modified CG method follows reference [41,
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§8.3]:

r := −G1q − (D−1
α + G2)d;

solve Ms = r for s;

c := rTs;

for iter := 1, 2, . . . ,maximum iteration

u := (D−1
α + G2)s;

a :=
c

sTu
;

d := d + a · s; r := r − a · u;

/ ∗ peek ∗ / d′ := d + Dαr; if (‖d′ − d‖2
2 < ε2) break;

solve Mt = r for t;

cnew := rTt ; b :=
cnew

c
; c := cnew;

s := t + b · s;

end iter;

claim d′ as the solution.

Here s is the search direction, M is a preconditioner, t and u are temporary vectors, ε is the

convergence criteria, a is a scalar marking the optimal position along the direction s, and b, c,

and cnew are scalars. Compared to the standard CG implementation, the only change is the added

“peek” step. This inexpensive O(N) computation does not alter the CG search path, but allows us

to find a converged solution one step earlier than the standard CG method in most cases. It does

not mean to peek at the next solution computed by the CG method. In fact, we replace the last

CG step by a suboptimal but acceptable solution.

The straightforward implementation of the Chebyshev method follows the description in refer-

ence [41, §8.2]. The method requires a good estimation of the spectrum range, which, according to

our experience, changes little during MD simulations. So this expensive computation can be done

once for all, and the long-time performance suffers little.
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3.3 Preconditioner

A preconditioner is an easy-to-invert approximation to the left-hand-side matrix and is used to

reduce the condition number of that matrix, since Eq. (3.15) indicates that reducing the condition

number accelerates the convergence. This section first presents a preconditioner constructed by the

“local approximation” idea [141, page 317] and then provides a “polynomial approximation” [141,

page 318] to the inverse of the local approximation preconditioner, which effectively solves the

preconditioned problem Mt = r by a single matrix–vector multiplication.

For Eq. (2.29), an obvious local approximation to D−1
α +G2 is the matrix M = D−1

α +N with

N ij =

⎧⎪⎨
⎪⎩

T (�rij) i �= j, |�rij | < rc, and (i, j) /∈ χ

0 otherwise
, (3.17)

where χ is the set of excluded pairs used in Chapter 2, the cutoff radius rc is a parameter, and

T (r) is the dipole–dipole interaction tensor:

T (�r) =
1
r3

(I − 3
�r�rT

r2
) , (3.18)

where �r is a column vector of size 3, r is the 2-norm of �r, and I is the identity matrix of size 3.

For a dipole, the above preconditioner considers only nearby dipoles whose distance is within the

cutoff radius, since they have the most significant influence. We can consult the radial distribution

functions to determine rc. From Fig. A.2 , we see 3 Å is just after the first peak of the O–H, H–H,

and O–O radial distribution functions. Table 3.2 provides the convergence factor for a typical

matrix arising from molecular dynamics simulations.

Method condition number convergence factor
Picard −− 0.34

vanilla CG,Chebyshev (Cheby) 4.31 0.35
CG,Cheby preconditioned by M with rc = 0 Å 1.80 0.15
CG,Cheby preconditioned by M with rc = 3 Å 1.44 0.09
CG,Cheby preconditioned by M with rc = 4 Å 1.38 0.08

Table 3.2: Convergence factors of different iteration methods.

On average, each atom has less than 6 neighbors whose distances are less than 3 Å for the
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RPOL water system. Since the intra-molecular electrostatic interaction is excluded, we only need

to maintain a list whose average length is less than 4 for each atom. If the cutoff is 4 Å, the list

has an average length of less than 12.

It is important that the effectiveness of the preconditioner should not depend on the system

size, in other words, that the preconditioner “scales.” For a cutoff radius larger than 4 Å, the gain

in reducing the number of iteration is less significant, but the cost in solving the preconditioner

problem, which is proportional to r3
c , increases significantly.

Long distance dipole effects can be incorporated into the preconditioner through reaction field

approximations [94]: all atoms outside a cutoff radius are approximated by a continuum media, and

are represented as a dielectric constant. A dipole induces dipoles in the continuum, which interacts

with other dipoles whose distances are within the cutoff sphere. The dipole–dipole interaction

tensor is modified to [94]:

T RF(r) = T (r) +
2(εRF − 1)
2εRF + 1

1
|rc|3 I , r < rc , (3.19)

where εRF is the dielectric constant. For water, its value is about 80. However, this correction does

not give perceptible improvement.

The next question is how to quickly solve Ms = r for s. We do not have to solve it exactly and

solving it approximately is equivalent to using another preconditioner close to M . The following

expansion allows us use a polynomial to approximate M−1 directly

M−1 = (I + DαN)−1Dα = Dα − DαNDα + (DαN)2Dα − · · · . (3.20)

We can truncate at a certain point and include the terms before that. More terms being included

means better approximation to M−1. The truncation matrix is symmetric, a desirable feature of

our design. The above preconditioners are simple and easy to implement since only matrix–vector

multiplications are needed. In practice, for rc = 3 Å, or 4 Å, including the first two terms is as good

as M−1 in reducing the number of iterations. Eq. (3.20) can be improved by better expansions

used in Chapter 5. But the improvement makes the parameters model dependent.

Reference [93] also uses preconditioners when solving the self-consistent equation by the CG
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method for a fluctuating charge model when the underlying fast electrostatic solver is PME and

FMM. But these preconditioners limit themselves to the use of existing software modules. For the

PME method, reference [93] uses D−1
α +Gdir

2 as the preconditioner. But in our tests, D−1
α +Gdir

2 is

not effective in reducing the condition number of the left-hand-side matrix, nor it is computationally

efficient to solve (D−1
α +Gdir

2 )s = r. For the FMM method, the preconditioner used by reference [93]

is similar to ours. But the cutoff radius in [93] is 6 Å, the size of a leaf cell in the fast multipole

method. Our tests show using a cutoff radius of larger than 4 Å does not reduce the number

of iterations for the CG method but increases the computation cost significantly for solving the

preconditioned problem. Reference [93] solves the preconditioner problem also by the CG method,

which needs global synchronization in a parallel environment and can slow down the computation.

Since the preconditioner problem Mt = r is not easy to solve approximately, we have considered

several widely used techniques other than the polynomial approximation. Incomplete Cholesky

factorizations is not scalable [10] for parallelism. The “approximate inverse” method [10] tries to

find an approximate inverse of the left-hand-side matrix by reducing the Frobenius norm. But it

may not be easy to make the approximate inverse symmetric in a parallel computing environment.

The block diagonal inverse method might be applicable after a reordering of M by a standard

method such as the reverse Cuthill-McKee method [119, §3.3]. In a few test cases for rc = 2 Å,

the maximum block size is 45. But the size of the block quickly increases with the cutoff radius.

So an upper limit on the block size should be implemented: if a block size is larger than, say, nc,

then the block is split into sub-blocks of size at most nc large, and only the diagonal sub-blocks are

inverted. The method needs complicated data structure for bookkeeping, and it is not as effective

as the polynomial approximation in reducing the number of iterations in our tests.

3.4 Timing results

Table 3.3 shows a comparison between the computation of the polarizable RPOL water model and

the charge-only SPC [14] water model. For both systems, there are 216 water molecules. The Ewald

sum accuracy (ε in Eq. (2.25)) is set to 10−6, the direct sum cutoff radius is 8 Å, and the grid size

for the reciprocal sum computation is 18× 18× 18. β is chosen so that the equal sign in Eq. (2.25)

is satisfied. The time is averaged over 1000 MD steps with a 1 fs timestep. To solve the dipole
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equation for the RPOL water model, the least squares prediction is used with 10 previous dipoles

and the peek-CG method is used with the preconditioner designed in Section 3.3 having a 4 Å cutoff.

The machine on which we test our code has an Intel Pentium 4 CPU of 3.06 GHz, the compiler is

icc 8.0 with flags “-fast -unroll -xN.” We define the cost for computing the charge-only model to

be 1 work unit. Then the cost of one iteration is about 0.33 work units, much faster than about

1 unit in [140]. It is not clear how they implement the matrix–vector multiplication. One possible

explanation is that they do not use the neighbor list nor store the B arrays (see Section 2.2.1).

Note also that with dipole moments given, the polarizable model incurs only about 28% overhead

with respect to the nonpolarizable model computations. This is consistent with reference [140], in

which the corresponding cost is 25–30%. Detailed timing results can be found in Fig. 3.4.

Time (second) SPC RPOL increase
direct sum 0.02116 0.02651 25%
reciprocal sum 0.00204 0.00331 62%
solving dipole −−− 0.01511 −−
overall 0.02320 0.04494 94%

Table 3.3: The cost for computing the electrostatic energy and force of the RPOL and SPC models.

The prediction cost is negligible. The worst relative cost happens when the largest number of

previous dipole moments are used, and fastest convergence is achieved. In our cases, this is when

15 previous dipole moments are used and two iterations lead to convergence. When this happens,

the cost for prediction is only 0.88% of the total electrostatic computation.

The current implementation constructs the preconditioner before the iteration at each timestep.

The construction has an estimated cost of 8% of a working unit. This step could have been

integrated into the “preparation” phase thereby saving time even further. But for the sake of

implementation simplicity, we do not do it. The result is, for methods that use preconditioner,

there is a relatively high start up cost. In fact, estimated from table 3.4, each iteration costs less

than 0.3 work unit.

Table 3.4 provides the timing results presented in work units for the peek-CG method with

4 Å cutoff when the initial guess is zero. The data gives the worst case scenario for the peek-CG
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Figure 3.4: Computational cost in work units for different timesteps. The relative RMS convergence
criteria is 4 ppm.

method when prediction is not used: a little more than three times as much as the charge-only

computation. Note when we do not predict, the computational cost is independent of the timestep.

The table is discussed further in Chapter 4.

3.5 Comparison to the extended Lagrangian approach

The extended Lagrangian approach is considered faster than the self-consistent approach since the

former does not solve the dipole equation. However, the longest timestep an extended Lagrangian

method can take is 1 fs [140, 129], while the self-consistent approach does not pose an upper limit on

the possible timestep and the cost increase is modest when a larger timestep is used. In molecular
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relative convergence criteria 400 ppm 40 ppm 4 ppm
average number of iterations 4.000 5.000 6.000

computational cost 2.50 2.77 3.09

Table 3.4: The cost of the self-consistent computation if the iteration starts from d0 = 0.

dynamics simulations, the timestep for computing the electrostatic energy/force can vary from 1 fs

for velocity-Verlet method with fully flexible bonds, to 2 fs when covalent hydrogen bonds are rigid,

to as large as 6 fs using multiple-time-stepping method [142, 105]. We carry out simulations with

longer timesteps up through 4 fs, the largest timestep one can take without incurring significant

energy drift with the velocity-Verlet method for the RPOL and SPC water systems.

Table 3.5 tells us that the self-consistent computation with a timestep no less than 2 fs is

faster than the extended Lagrangian approach. The dipole equation is solved by the least squares

prediction with 10 previous dipoles and the peek-CG method whose preconditioner is constructed

with a 4 Å cutoff radius. Detailed timing results are summarized in Fig. 3.4.

timestep 1 fs 2 fs 3 fs 4 fs Extended Lagrangian [140]
computational cost per fs 1.94 1.11 0.83 0.70 1.25–1.30

Table 3.5: The cost in work units for computing the electrostatic energy and force per femtosecond.

The average number of iterations needed for different timesteps are given in Fig. 3.5. The

upper left figure is essentially the same as Fig. 3.1. It is repeated here for comparison purpose. The

relative RMS convergence tolerance is 4 ppm, and all graphs in the figure have the same legend.

We see the least squares predictor is consistently better than, or at least as good as, the polynomial

predictor for all timesteps. For larger timesteps, prediction helps less, while the iteration method is

more important. Empirically, we have optimal number of iterations is one more than the timestep

in femtoseconds.
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Figure 3.5: Average number of iterations for different timesteps.
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Chapter 4

Energy drift

For deterministic simulations, conservation of energy or equivalent conserved quantity is very im-

portant. But Fig. 4.1 shows that self-consistent computations can lead to significant energy drift

unless fully converged. This chapter discusses the origin of the energy drift and methods to control

it.
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Figure 4.1: Energy drifts from 1 ns simulations for a RPOL water system.

For numerical integration of a Hamiltonian system, the energy conservation is strongly assisted

by the numerical integrator being symplectic [60, Theorem IX.8.1]. However, for self-consistent

computations, the symplecticness of the numerical integrator is compromised in two ways: (i) the

computed force is not conservative due to the iterative solution being not exact, and (ii) the solution

is history dependent due to the prediction. A conclusion of this chapter is that history dependency
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is more detrimental than non-conservativeness in causing the energy drift.

Section 4.1 first analyzes the non-conservative effect on the self-consistent solution by excluding

history from the self-consistent computation and then analyzes the history effect by examining

the energy drift for different predictors. We determine that the dipole solution needs only 400

ppm RMS convergence criteria for a suitably accurate energy/force evaluation. Then, we consider

long-time NVE simulations with the dipole equation solved by starting from d0 = 0 (no history).

The energy drift is hardly perceptible even if the convergence criteria is 400 ppm. This is in sharp

contrast with Fig. 4.1, where the same convergence criteria leads to significant energy drift. When

history (prediction) is used, the energy drift strongly depends on the type of the prediction.

Section 4.2 discusses the always-stable-prediction-corrector (ASPC) method proposed in [79].

With a timestep of 1 fs, the ASPC method can maintain a constant energy level with only one

damped Picard iteration by using a quasi-time-reversible predictor and a proper damping factor.

The method is very fast since only one iteration is needed, but it fails to conserve energy when the

timestep is 2 fs. Another drawback of the method is its low accuracy and lack of direct accuracy

control. To improve its accuracy, we employ the time-reversible requirements as constraints into

least squares fitting. This combination can have benefits from both approaches: stability with a

low convergence accuracy criteria from quasi-time-reversible prediction and accuracy from least

squares prediction. We demonstrate the improved approach has better accuracy and maintains a

constant energy level for long time simulations with an average iteration of less than 1.5 only.

Section 4.3 shows that symplecticness is compromised in self-consistent computations but the

volume-preserving property is maintained if history is not used. Integrators which do not preserve

volume can lead to serious problems, such as the flying-ice cube phenomena [64].

Since energy drift is sometimes unavoidable for MD simulations, a practical energy drift criterion

is needed when we evaluate a method. Currently, the simulation length is tens of nanoseconds, so

a reasonable criterion is

the total energy drift in a 20 ns simulation be no more than

a 5 Kelvin change of the system temperature.

For our system of 216 RPOL water molecules, the energy drift should be no more than 0.321

kcal/mol/ns.
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Accuracy needs and cost decide which method to use. Although symplecticness is not preserved

if the dipole solution is not exact, phase-space volume-preservation and energy conservation prob-

ably suffice. So with respect to quality, zero-guess self-consistent computation is better. However,

as Table 3.4 shows, the extra cost will be about 150% compared to the charge-only computation.

On the other hand, if we use accurate prediction, we can obtain very accurate dipole moments

with about 94% extra cost compared with the charge-only computation and keep the energy drift

negligibly small. When the computed dipole moment has a small error, we would expect the phase

space volume change is small.

If a short timestep (∆t = 1, 2 fs) is used, we should use the least squares predictor using 8 or

more previous dipoles, and require high accuracy (4 ppm) for the dipole solution. If longer timesteps

(∆t > 2 fs) are used (e.g., in multiple-time-stepping method), prediction helps very little to obtain

an accurate initial guess, so we should use zero-guess and claim convergence for a relatively low

accuracy (400 ppm) dipole solution, which is still good enough to accurately compute the energy

and force and maintain the energy at a constant level for long time simulations.

4.1 Accuracy and history

We first determine a suitable convergence criterion for the iteration based on PME accuracy. For

this purpose, we look at the relative errors in the 2-norm of the dipole moment, the electrostatic

energy, and the electrostatic force. Exact values are computed by the standard Ewald sum method,

not PME, with the Ewald sum error tolerance (ε in Eq. (2.25)) set to 10−20 and the relative dipole

convergence criteria set to 4 × 10−15.

Table 4.1 shows the error introduced by PME as well as by iteration with different convergence

criteria. The quantity δd is defined in Eq. (3.4), δF el is defined similarly, and

δEel =
|Eel − Eel

exact|
Ek

(4.1)

where Ek is the kinetic energy of the system. We do not use |Eel
exact| in the denominator because the

potential energy can be redefined by adding an arbitrary constant without affecting the dynamics.

The Ewald sum accuracy (ε in Eq. (2.25)) is set to 10−6, the error used routinely in our simulations.
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For the “0 ppm” column, the relative dipole convergence criteria is set to 4 × 10−15, so the error

dominantly comes from the PME method. For other columns, each corresponds to a specified

convergence error. Observe that the relative error introduced by PME is at the level of 10−4. Also,

observe that the relative RMS convergence tolerance can be as high as 400 ppm without introducing

any significant error.

0 ppm 4 ppm 40 ppm 400 ppm 4000 ppm
δd (ppm) 153 153 153 167 689

δF el (ppm) 136 136 136 138 240
δEel (ppm) 0.209 0.209 0.209 0.210 0.240

Table 4.1: The error of the dipole, the electrostatic force, and the electrostatic energy of the PME
method and of different convergence criteria.
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Figure 4.2: Energies in NVE ensemble simulations when iteration starts from d0 = 0. The relative
RMS error is 400ppm.

To study the energy drift dependency on predictions, we carefully exclude other factors which

can cause the energy drift. The van der Waals potential is smoothed and is a C1 function (see

Appendix A), constraints are enforced by the SETTLE method [91], and the net force generated

by the PME method is not subtracted out (see Fig. 2.4).

Fig. 4.2 shows the energies of NVE ensemble simulations using 400ppm as the relative RMS

convergence criteria with 0 initial guess. The integrator is the velocity Verlet method. The iteration
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method is the peek-CG method, and the preconditioner is constructed with a 4 Å cutoff. The energy

drift is hardly perceptible. This means an inexact solution alone, and hence a nonconservative force,

does not necessarily cause significant energy drift.

On the other hand, when history is used, the drift can be significant as is seen from Fig. 4.3.

The iteration method is peek-CG with an rc = 4 Å cutoff preconditioner. The line with legend

“400ppm, 0” is the energy drift from a simulation in which the dipole equation is solved by 0

initial guess and a relative RMS convergence criteria of 400 ppm. We have a few observations from

Fig. 4.3:

• The energy drift is approximately proportional to the RMS convergence error.

• For polynomial extrapolation, the energy drift strongly depends on the polynomial degree.

Higher degree leads to less drift in general. For least squares prediction, the dependence on

the number of previous dipole moments is less significant.

4.2 ASPC method

The ASPC method computes the dipole moment at step n by two steps

predict : dn
0 =

k∑
i=1

cid
n−i , (4.2)

iterate once : dn = ωDα(−G2d
n
0 − G1q) + (1 − ω)dn

0 , (4.3)

where ci are chosen in such a way that if we assume d is a smooth function of time and do a Taylor

expansion at t = tn, then we will get

dn
0 = dn + c̃2∆t2 + c̃4∆t4 + · · · + c̃2k−4∆t2k−4 + O(∆t2k−2) . (4.4)

where vectors {c̃2i}k−2
i=1 are some uninteresting coefficients. All the odd power terms of ∆t up through

∆t2k−3 are eliminated. The intention is to improve the “time-reversibility” of the prediction, since

when ∆t → −∆t, odd power terms change sign, while even power terms remain the same. The
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Figure 4.3: Energy drifts when dipoles from previous timesteps are used for an accurate initial
guess.

ASPC method does only one damped Picard iteration. The damping factor ω in Eq. (4.3) is chosen

by a frozen coefficient analysis in which G2 is assumed constant and G1q is assumed 0. By requiring

that the dipole moments converge to 0 as the timestep increases, an upper limit on the value of ω

can be obtained. The paper points out that using

ω =
k + 1
2k + 1

(4.5)

guarantees the dynamics to be stable. The energies of the NVE ensemble simulations using the

ASPC method are presented in Fig. 4.4. When ∆t = 1 fs, the energy drift is tolerable for k = 5, 6, 7.
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If the damping factors ω is too large, the energy quickly drifts away or even jumps: the dynamics

is unstable. The optimal damping factor is obtained by a trial-and-error process: reduce the value

ω gradually until the dynamics is stable for a few picoseconds. The results are ω = 0.82 for k = 5,

ω = 0.81 for k = 6, ω = 0.80 for k = 7, and ω = 0.79 for k = 8. When ∆t = 2 fs, the energy drift

is unavoidable even with those “safe” damping factors defined in Eq. (4.5). Note the energy and

time scale are different for the two figures.
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Figure 4.4: MD simulations using the ASPC method.

The dynamics of many physical systems can be approximated by oscillations near its potential

minimum. This motivates us to study a one-dimensional toy problem with unit mass and the

following potential energy:

U(x, d) =
1
2
x2 +

1
2
(2 + x2)d2 − d . (4.6)

where d is an auxiliary variable, whose value is determined by minimizing the potential

∂U(x, d)
∂d

= 0 ⇒ d =
1

2 + x2
. (4.7)

The system is integrated by the velocity-Verlet method while the dipole is computed by four

methods:

1. Exact: solve d exactly at each step according to Eq. (4.7).
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2. Polynomial: use degree-3 polynomial extrapolation to compute the initial value, then iterate

by dm+1 = 1
2(1 − x2dm) until the RMS error (Eq. (3.1))is less than 0.5.

3. Zero-guess: start the same iteration with d = 0 until the RMS error is less than 0.5.

4. ASPC method: use k = 6 and the “safe” damping factor as given by Eq. (4.5).

Fig. 4.5 shows the trajectories in phase space spanned by x and momentum p. 10000 steps are

integrated. To be “fair” to all the methods, we choose the RMS criteria to be 0.5. The average

number of iterations for polynomial prediction (“Poly.” in the figure) is 2.0 and the average number

of iterations for zero prediction (“Zero” in the figure) is 1.0 for both timesteps. For small timesteps,

ASPC is very good. But for a larger timestep, the ASPC trajectory collapses to the center. Note

that the zero-guess method is excellent for both timesteps. The reason is that the method preserves

phase space volume, a topic discussed in detail in Section 4.3.
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Figure 4.5: Phase space trajectories for different prediction methods.

For molecular dynamics, dipole moments predicted by Eq. (4.2) of the ASPC method have a

relatively poor accuracy compared to polynomial extrapolation and least squares prediction, and

the ASPC method does not have a direct control over the solution accuracy. In our simulations,

the errors of the ASPC method are

δd ≈ 770 ppm , δF ≈ 250 ppm . (4.8)
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Energy Drift (kcal/mol/ns) Average Iterations
m\k 12 13 14 15 12 13 14 15

5 0.12 −0.07 −0.21 0.07 1.48 1.50 1.51 1.53
6 0.18 0.16 0.19 −0.01 1.47 1.49 1.57 1.65
7 0.41 0.06 −0.05 0.02 1.59 1.63 1.64 1.63

Table 4.2: Energy drifts and average number of iterations for the quasi-time-reversible-least-square
predictor.

After we enforce an accuracy control by requesting the iteration stops only if the RMS error is small

enough, we find at least two Chebyshev semi-iterative iterations are needed even if the convergence

criteria is 400 ppm. To do better, we need to improve prediction accuracy. For this purpose, we

combine the ASPC method with the least squares predictor to achieve both accuracy and stability.

Suppose the new predictor is

dn
0 =

k∑
i=1

cid
n−i , (4.9)

and we have m + 1 (k ≥ m + 1 ≥ 1) time-reversibility constraints

k∑
i=1

ci = 1 ,

k∑
i=1

cii = 0 ,

k∑
i=1

cii
3 = 0 , . . . ,

k∑
i=1

cii
2m−1 = 0 . (4.10)

The objective function is

Tk,m = ‖dn − dn
p‖2 + λ0(

k∑
i=1

ci − 1) + λ1

k∑
i=1

cii + λ2

k∑
i=1

cii
3 + · · · + λm

k∑
i=1

cii
2m−1 . (4.11)

where λ0, λ1, . . . , λm are Lagrangian multipliers. Minimizing it gives the coefficients we need to

predict the dipole at timestep n+1. The dipole solution error is controlled by requesting the RMS

error to be less than a certain tolerance.

Tables 4.2 summarizes the simulation results using this quasi-time-reversible-least-square pre-

dictor. Each row corresponds to a set number of quasi-time-reversible (TR) constraints (5–7), each

column corresponds to a set number of previous dipole moments (12–15) used in the least squares

prediction. The Chebyshev semi-iterative method with preconditioner constructed with 4 Å cut-

off is used to iterate to 400 ppm. The computational cost is further reduced, the energy drift is
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tolerable, and we have suitable accuracy.

4.3 Prediction undermines the volume-preserving property

Energy preservation during the numerical integration is strongly assisted by the symplectic property.

A weaker property of a numerical integration method is the volume-preserving property, which is

corresponding to the Liouville theorem [7]. This section shows that the volume-preserving property

is conserved if the iteration starts with the zero initial guess, but compromised by prediction. This

section also reveals that the symplecticness is compromised in the self-consistent computation.

For positions r and momenta p, both being 3N -vectors, define

Φ(

⎡
⎢⎣ r

p

⎤
⎥⎦) =

⎡
⎢⎣ r

p + ∆t
2 F (r,d(r))

⎤
⎥⎦ , (4.12)

Ψ(

⎡
⎢⎣ r

p

⎤
⎥⎦) =

⎡
⎢⎣ r + ∆tM−1p

p

⎤
⎥⎦ , (4.13)

where M is the diagonal mass matrix and F is the forces. Here we assume prediction is not used,

so d is a function of r only. The velocity-Verlet method can be written as

⎡
⎢⎣ rn+1

pn+1

⎤
⎥⎦ = Φ ◦ Ψ ◦ Φ(

⎡
⎢⎣ rn

pn

⎤
⎥⎦) (4.14)

Define z = [rT pT]T. A R6N → R6N mapping φ(z) is symplectic [60] if

(∂φ

∂z

)T

J
∂φ

∂z
= J , (4.15)

where J is

J =

⎡
⎢⎣ 0 I

−I 0

⎤
⎥⎦ , (4.16)
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and I is the identity matrix. A map φ is volume-preserving if it preserves the phase space volume:

det(
∂φ

∂z
) = 1 (4.17)

From these definitions, we see a symplectic map is volume-preserving. We can verify that Ψ is

symplectic, Φ is symplectic if F is a gradient of a scalar potential which depends only on r. Since

the composition of symplectic maps is still symplectic [60], the velocity-Verlet method is symplectic.

In the self-consistent computation, the inexact dipole solution makes the force not a gradient

of the potential anymore and the symplecticness of the velocity-Verlet integrator is compromised.

But

det(
∂Φ
∂z

) = det(

⎡
⎢⎣ I 0

∆t
2 (∂F

∂r + ∂F
∂d

∂d
∂r ) I

⎤
⎥⎦) = 1 . (4.18)

The volume-preserving property is still conserved.

When prediction is used, the state vector becomes (rn,pn,dn, . . . ,dn−k+1). It is a complicated

task to determine if the molecular dynamics simulation preserves phase space volume and in general

there is no reason to believe that the volume is preserved.
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Chapter 5

A non-iterative method

In this chapter, we use a fixed polynomial approximation to (I + DαG2)−1

(I + DαG2)−1 ≈ Pn(DαG2) (5.1)

where Pn(DαG2) is a degree-n polynomial in DαG2 designed to have optimal accuracy. The

electrostatic energy, written as

EEwald =
1
2
qTG0q − 1

2
(G1q)T(I + DαG2)−1DαG1q , (5.2)

is therefore approximated by

Eel =
1
2
qTG0q − 1

2
(G1q)TPn(DαG2)DαG1q . (5.3)

Then it is feasible to define and compute the force to be the exact negative gradient of the potential

energy. This ensures the symplecticness of the integrator, thus eliminating the energy drift problem.

The dipole, if needed, is

dn = Pn(DαG2)(−DαG1q) . (5.4)

A possible drawback of the non-iterative method is that it may change the physical process.

For example, computed by this method, the dynamics is free of polarization catastrophes even if

the physical model is badly designed and leads to a catastrophe if the exact matrix inverse is used.
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A degree-2 polynomial of DαG2 is used in [75] in a Monte Carlo simulation of water and

methanol. But the polynomial is not optimal since it is from a Neumann expansion.

5.1 Polynomial approximation

We start with degree-1 polynomial to demonstrate the process:

d ≈ (aDαG2 + bI)(−DαG1q) , (5.5)

where a and b are two parameters. The error introduced by the above approximation is

∆d =
[
(aDαG2 + bI) − (I + DαG2)−1

]
(−DαG1q) . (5.6)

Because D−1
α is positive definite, we define the α-norm of a vector v to be ‖v‖α = vTD−1

α v. Then

‖∆d‖2
α = (−D1/2

α G1q)
T
[aD1/2

α G2D
1/2
α + bI − (I + D1/2

α G2D
1/2
α )−1]2

·(−D1/2
α G1q) . (5.7)

Since D
1/2
α G2D

1/2
α is symmetric, it is unitarily diagonalizable [141, Theorem 24.7] and has the

following decomposition:

D1/2
α G2D

1/2
α =

n∑
i=1

λiuiui
T , (5.8)

n∑
i=1

uiui
T = I, ui

Tuj = δij , (5.9)

where the λi and ui are the eigenvalues and eigenvectors of the matrix D
1/2
α G2D

1/2
α . So

‖∆d‖2
α =

n∑
i=1

(aλi + b − 1
1 + λi

)2[ui
T(−D1/2

α G1q)]2

≤ max
λm≤λ≤λM

(aλ + b − 1
1 + λ

)2
n∑

i=1

[ui
T(−D1/2

α G1q)]2

= max
λm≤λ≤λM

(aλ + b − 1
1 + λ

)2‖ − G1q‖2
α , (5.10)
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where λm and λM are the least and greatest eigenvalues of DαG2, which has the same eigenvalues

as D
1/2
α G2D

1/2
α does. The goal then is to find a and b so that the maximum of |aλ + b− 1/(1 + λ)|

is minimized over the range [λm, λM], i.e., we are to use a linear polynomial aλ + b to do a uniform

approximation to the function 1/(1 + λ). The equioscillation theorem [83, Theorem2.19] is readily

applied:

aλm + b − 1
1 + λm

= −δ , (5.11)

aλ∗ + b − 1
1 + λ∗

= δ , (5.12)

aλM + b − 1
1 + λM

= −δ , (5.13)

d
dλ

(aλ + b − 1
1 + λ

)
∣∣∣∣
λ∗

= 0 . (5.14)

where δ is the maximum error, and λ∗ ∈ (λm, λM). The solution is

a = − 1
(1 + λm)(1 + λM)

, (5.15)

b =

√
(1 + λm)(1 + λM) + (λm + λM)/2

(1 + λm)(1 + λM)
, (5.16)

λ∗ =
√

(1 + λM)(1 + λm) − 1 , (5.17)

δ =
(
√

κ − 1)2

2(1 + λM)
, (5.18)

κ =
1 + λM

1 + λm
. (5.19)

The value κ is the condition number of I + DαG2. For a RPOL water model, λm ≈ −0.34,

λM ≈ 0.26, so δ ≈ 3.1%.

The degree-0 polynomial d0 = a(−DαG1q) should have the following parameter value and

error estimate:

a =
1
2
(

1
1 + λm

+
1

1 + λM
) , (5.20)

δ =
1
2
(

1
1 + λm

− 1
1 + λM

) . (5.21)

The degree-2 polynomial can be constructed in a similar way. This time, for the sake of clarity,
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we use µ = 1 + λ, µm = 1 + λm, µM = 1 + λM, and so on. Assume the optimal polynomial is

aµ2 + bµ + c, or aλ2 + (2a + b)λ + (a + b + c), then

1
µm

− (aµ2
m + bµm + c) = δ , (5.22)

1
µ1

− (aµ2
1 + bµ1 + c) = −δ , (5.23)

1
µ2

− (aµ2
2 + bµ2 + c) = δ , (5.24)

1
µM

− (aµ2
M + bµM + c) = −δ , (5.25)

1
µ2

1

+ (2aµ1 + b) = 0 , (5.26)

1
µ2

2

+ (2aµ2 + b) = 0 , (5.27)

where µ1, µ2 ∈ (µm, µM). We can first solve for µ1 and µ2:

µ1 =
1
2
µm(

√
κ + 1) , (5.28)

µ2 =
√

κ · µ1 , (5.29)

and then

a =
1
µ3

1

√
κ + 1
2κ

, (5.30)

b = − 1
µ2

1

κ +
√

κ + 1
κ

, (5.31)

c =
1

µm

κ + 4
√

κ + 1
2κ

, (5.32)

δ =
1

µm

κ
√

κ − 3κ + 3
√

κ − 1
2κ(

√
κ + 1)

. (5.33)

For the given practical values (µm = 1 − 0.34 = 0.66, µM = 1 + 0.26 = 1.26), we have δ ≈ 0.93%.

From degree-1 to degree-2, the accuracy is improved from 3.1% to 0.93%. The optimal degree-2

dipole is

d2 =
[
aDαG2DαG2 + (2a + b)DαG2 + (a + b + c)I

] · (−DαG1q) . (5.34)
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5.2 Efficient implementation

The key to the efficient implementation is to carefully define the intermediate quantities and reuse

them to avoid re-computations.

For the optimal degree-0 polynomial approximation, we have, from Eq. (5.3),

Eel
0 (r) =

1
2
qTG0(r)q − a

2
(G1(r)q)TDαG1(r)q , (5.35)

F el
0,kσ = − ∂

∂rkσ
Eel

0 (r) = −1
2
qT

(
∂

∂rkσ
G0

)
q + a(G1q)TDα

(
∂

∂rkσ
G1

)
q , (5.36)

where a is the constant determined by Eq. (5.20). We can define d0 = −aDαG1q and have

Eel
0 =

1
2
qTG0(r)q +

1
2
d0

TG1(r)q , (5.37)

F el
0,kσ = −qk(G1q)kσ − d0

T

(
∂

∂rkσ
G1

)
q . (5.38)

Since each G matrix is a sum of its direct sum and reciprocal sum parts, as shown in Eqs. (2.20)–

(2.22), we look at each part separately. The direct sum contribution is straightforward:

Edir
0 =

1
2
qTGdir

0 q +
1
2
d0

T(Gdir
1 q) , (5.39)

F dir
0,kσ = −qk(Gdir

1 q)kσ +
N∑

i=1

∑
α=x,y,z

(Gdir
2 )kσ,iα[(d0)kαqi − (d0)iαqk] (5.40)

Note that Gdir
1 is “block skew symmetric” and Gdir

2 is block symmetric.

From Eqs. (2.87), (2.88), and (2.90), the reciprocal sum contribution is

Erec
0 =

1
2
qh

TFDF Hqh +
1
2
d0

TI1
hFDF Hqh . (5.41)

F rec
0,kσ = −qk(I1

hFDF Hqh)kσ − d0
T

(
∂

∂rkσ
I1

h

)
FDF Hqh − d0

TI1
hFDF H

(
∂

∂rkσ
I0

h

)T

q ,

(5.42)
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It is natural to define two intermediate vectors:

e0 = FDF H(I0
h)Tq , (5.43)

e1 = FDF H(I1
h)Td0 , (5.44)

so we have (also from Eq. (2.81), and (2.82))

Erec
0 =

1
2
qh

T(e0 + e1) , (5.45)

F rec
0,kσ = −qk(I1

he0)kσ − d0
T

(
∂

∂rkσ
I1

h

)
e0 − e1

T

(
∂

∂rkσ
I0

h

)T

q

= −qk

∑
�n

(I1
h)kσ,�n(e0 + e1)�n −

∑
α

(d0)kα

∑
�n

(I2
h)kσα,�n(e0)�n , (5.46)

For the reciprocal sum , we first compute compute e0 by Eq. (5.43), then compute

d0 = −aDαG1q = −aDα(Gdir
1 q + I1

he0) , (5.47)

then compute e1 by Eq. (5.44). In the end, we compute the energy according to Eq. (5.45) and the

force according to Eq. (5.46). After the direct sum and the reciprocal sum are computed, we sum

up the two parts to get the total electrostatic energy and force. Overall, 4 FFTs (when computing

e0 and e1) are needed.

For the optimal degree-1 polynomial approximation, we can do similar analysis. Here we only

present the results. First we have

e0 = FDF H(I0
h)Tq , (5.48)

d0 = −DαG1q = −Dα(Gdir
1 q + I1

he0) , (5.49)

e1 = FDF H(I1
h)Td0 , (5.50)

d1 = (aDαG2 + bI)d0 = aDα(Gdir
2 d0 + I1

he1) + bd0 , (5.51)

e2 = FDF H(I1
h)Td1 . (5.52)
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where a and b are computed from Eqs. (5.15) and (5.16). The energy is

Eel
1 =

1
2
qTG0q +

1
2
d1

TG1q =
1
2
qTGdir

0 q +
1
2
d1

T(Gdir
1 q) +

1
2
qh

T(e0 + e2) . (5.53)

Accordingly, the force is

F 1,kσ = − ∂

∂rkσ
Eel

1 = − ∂

∂rkσ

[
1
2
qTG0q − 1

2
(G1q)T(aDαG2Dα + bDα)G1q

]
,

= −qk(G1q)kσ +
(

∂

∂rkσ
G1q

)T

(aDαG2Dα + bDα)G1q +
a

2
(G1q)TDα

(
∂

∂rkσ
G2

)
DαG1q

= −qk(G1q)kσ − d1
T

(
∂

∂rkσ
G1q

)
+

a

2
d0

T

(
∂

∂rkσ
G2

)
d0 . (5.54)

The direct sum contribution is

F dir
1,kσ = −qk(Gdir

1 q)kσ +
∑
iα

(Gdir
2 )kσ,iα[(d1)kαqi − (d1)iαqk]

+ a
∑
iαβ

(d0)kα(Gdir
3 )kσα,iβ(d0)iβ , (5.55)

and the reciprocal sum contribution is

F rec
1,kσ = −qk

∑
�n

(I1
h)kσ,�n(e0 + e2)�n −

∑
α

(d1)kα

∑
�n

(I2
h)kσα,�n(e0)�n

+ a
∑
α

(d0)kα

∑
�n

(I2
h)kσα,�n(e1)�n . (5.56)
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For the optimal degree-2 polynomial approximation, we start with

e0 = FDF H(I0
h)Tq , (5.57)

d0 = −DαG1q = −Dα(Gdir
1 q + I1

he0) , (5.58)

e1 = FDF H(I1
h)Td0 , (5.59)

d1 = (I − DαG2)d0 = d0 − Dα(Gdir
2 d0 + I1

he1) , (5.60)

e2 = FDF H(I1
h)Td1 , (5.61)

d2 = (aDαG2DαG2 + bDαG2 + cI)d0

= −aDαG2d1 − (a + b)d1 + (a + b + c)d0 , (5.62)

e3 = FDF H(I1
h)Td2 . (5.63)

where a, b, and c are computed by Eqs. (5.30)–(5.32). The definition of d1 is motivated by Neumann

expansion (see Eq. (5.68)). We have

Eel
2 =

1
2
qTG0q +

1
2
d2

TG1q =
1
2
qTGdir

0 q +
1
2
d2

T(Gdir
1 q) +

1
2
qh

T(e0 + e3) , (5.64)

F 2,kσ = −qk(G1q)kσ − d2
T

(
∂

∂rkσ
G1

)
q + (a +

b

2
)d0

T

(
∂

∂rkσ
G2

)
d0

−ad0
T

(
∂

∂rkσ
G2

)
d1 , (5.65)

F dir
2,kσ = −qk(Gdir

1 q)kσ +
∑
iα

(Gdir
2 )kσ,iα[(d2)kαqi − (d2)iαqk]

+
∑
iαβ

(Gdir
3 )kσα,iβ

[
(2a + b)(d0)kα(d0)iβ − a(d0)kα(d1)iβ − a(d0)iβ(d1)kα

]
, (5.66)

F rec
2,kσ = −qk

∑
�n

(I1
h)kσ,�n(e0 + e3)�n −

∑
α

(d2)kα

∑
�n

(I2
h)kσα,�n(e0)�n

+
∑
α

[
(2a + b)(d0)kα − a(d1)kα]

∑
�n

(I2
h)kσα,�n(e1)�n

−a
∑
α

(d0)kα

∑
�n

(I2
h)kσα,�n(e2)�n . (5.67)

Note that the above expressions reuse partial computation results as much as possible. The com-

putation sequence is (i) compute e, d sequence up to dk and ek+1, (ii) compute the energy, (iii)

compute the force. Overall, for a degree-k polynomial approximation, 2(k +2) FFTs are needed to

compute the e vectors. Other parts of the computation are O(N).
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5.3 Results

The reason to use approximate dipoles is to avoid secular energy drift. It is evident in Fig. 5.1 that

this goal is achieved. For the momentum drift graph, the y-axis shows the ratio of the magnitude

of the total momentum to the magnitude of the thermal momentum at 300K, a measure which

is discussed in presenting Fig. 2.4. We do not zero out the reciprocal sum contribution to the

electrostatic force in PME in Fig. 5.1. If we do, we see a small energy drift (Fig. 5.2).
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Figure 5.1: Energies and momenta for the non-iterative methods.
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Figure 5.2: Small energy drifts for the non-iterative methods caused by PME.
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The accuracy of the non-iterative method is low. The errors and computational cost are shown

in Table 5.1 and Table 5.2 respectively. These errors are one order of magnitude larger than those

in Table 4.1, which are obtained with more computational effort (see Table 3.4).

degree 0 1 2
δd (ppm) 10877 2787 3949
δF (ppm) 5222 6765 1197
δE (ppm) 5.85 1.66 2.52

Table 5.1: Errors of non-iterative methods.

degree 0 1 2
computational cost in work units 1.28 1.62 2.05

Table 5.2: Computational costs of non-iterative methods.

Table 5.3 summarizes the result for computing various physical quantities of RPOL water mod-

els. Percentages enclosed in parentheses are relative errors compared to those in the first row which

are obtained from much more accurate self-consistent computations. The Neumann polynomial

refers to the expansion used in [75]:

(D−1
α + G2)−1 = Dα − DαG2Dα + (DαG2)2Dα + · · · . (5.68)

For the Neumann expansion, a polynomial of at least degree 2 is needed to have an acceptable

accuracy. The optimal expansion used in our computation is more accurate and a degree-1 optimal

polynomial is probably accurate enough.

Polynomial degree Potential Energy Diff. Const. Dielectric Mol. Dipole
Type (kcal/mol) (10−5 cm2/s) Constant (Debye)
self-consistent −9.88 2.44 119.7 2.604

Neumann 0 −8.92 (−9.7%) 4.20 (72.1%) 101.2 (−15.4%) 2.440 (−6.3%)
1 −9.62 (−2.6%) 2.92 (19.7%) 111.7 (− 6.7%) 2.560 (−1.7%)
2 −9.82 (−0.6%) 2.58 ( 5.7%) 118.8 (− 0.8%) 2.593 (−0.4%)

Optimal 0 −9.39 (−5.0%) 3.44 (41.0%) 102.8 (−14.5%) 2.520 ( 3.2%)
1 −9.97 (−0.9%) 2.40 ( 1.6%) 127.5 ( 6.5%) 2.620 ( 0.6%)
2 −9.90 (−0.2%) 2.45 ( 0.3%) 122.0 ( 1.9%) 2.607 ( 0.1%)

Table 5.3: Physical quantities and errors of the RPOL model computed by the non-iterative meth-
ods.
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Appendix A

Miscellaneous

Section A.1 presents two physical water models studied extensively in our research: the polarizable

RPOL water model, and the non-polarizable SPC water model, with the emphasis on the former.

Section A.2 presents the tests we have designed and implemented to debug the code. Section A.3

provides some β-independent quantities and an equality for the G matrices. Section A.4 describes

a pitfall related to the misuse of velocity when the constraints are present.

A.1 Mathematical models

O

1A 1A

HH

109.5

q  = 0.365e

α
α

= 0.170 A
= 0.528 A

3

3

q  = −0.730eo

H

H

o

Figure A.1: RPOL water geometry

In the revised polarizable (RPOL) water model [36], water molecules are rigid. The distance

between the oxygen atom and a hydrogen atom is 1 Å and the H–O–H angle is 109.5◦. The

Lennard-Jones interaction exists only between oxygen atoms:

ELJ(r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6

]
, (A.1)
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with σ = 3.196 Å and ε = 0.160 kcal/mol. Effective charges are qO = −0.730 e and qH = 0.365 e,

where e is the charge of a proton. The isotropic polarizabilities are αO = 0.52Å3 and αH = 0.170Å3 .

Electrostatic interactions between atoms in the same molecule are excluded.

Some typical values for an RPOL water system are helpful in understanding our results:

‖F dipole‖2

‖F el‖2

≈ 28%,
|Edipole|
|Eel| ≈ 22%, (A.2)

〈|�di|〉 ≈ 0.25 Debye, 〈|�dO|〉 ≈ 0.38 Debye, 〈|�dH|〉 ≈ 0.14 Debye, (A.3)

where F are forces, E is energy, Edipole includes charge–dipole and dipole–dipole interactions, and

〈|�di|〉 stands for average magnitude of a dipole

〈|�di|〉 =

√√√√ 1
N

N∑
i=1

�di · �di . (A.4)

The simulated system has 216 RPOL water molecules. With density 0.99 g/cm3, the system

size is 18.688Å. The Lennard-Jones potential has an 8 Å cutoff. For constant energy simulations,

we apply a switching function to make the potential C1. So for rs < r < rc, where rs = 6 Å is

the switching radius, and rc = 8 Å is the cutoff radius, the potential is multiplied by a switching

function s(r), with

s(r) =
(r2

c − r2)2(r2
c + 2r2 − 3r2

s )
(r2

c − r2
s )3

. (A.5)

s(r) is chosen to be a function of r2 for fast computation and it satisfies

s(rs) = 1 ,
d
dr

s(rs) = 0 , (A.6)

s(rc) = 0 ,
d
dr

s(rc) = 0 . (A.7)

Because the constant temperature simulations are meant to be compared to [140], Berendsen’s

rescaling method [13] is used, a long range correction [3, §2.8] for the Lennard-Jones potential is

included, and the switching is turned off. The major result is summarized in Table A.1. Our

self-consistent computation uses a relative RMS convergence criteria of 4 ppm.
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Potential Diff. Const. Dielectric Mol. Dipole
(kcal/mol) (10−5 cm2/s) Constant (Debye)

[140] −9.88 2.4 ± 0.2 115 2.604
Ours −9.88 2.5 ± 0.2 117 2.604

Table A.1: Physical quantities of the RPOL water model.

The radial distribution functions are shown in Fig. A.2. The result is obtained from a 10 ps

simulation, positions are stored every 0.1 ps. They are almost the same as those in [140]. The only

observable difference is the peak value of gOO(r), Ours is a little smaller, but we are consistent

with [127].
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Figure A.2: Radial distribution function of RPOL water. The solid line is for 300K, the dotted line
is for 573K.

In the non-polarizable simple point charge (SPC) water model [14], water molecules are rigid.

The O–H bond length is 1 Å and the H–O–H bond angle is 109.28◦. The hydrogen atom has charge

0.41 e, and the oxygen atom has charge −0.82 e; the Lennard-Jones interaction is represented as

ELJ(r) = −(
A

r
)6 + (

B

r
)12 , (A.8)

with A = 2.924 Å(kcal/mol)1/6 and B = 3.043 Å(kcal/mol)1/12.
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A.2 Tests

Tests are important to ensure implementation correctness. The tests we have carried out are

summarized in the following list:

1. Madelung constant test

The system has 8 charges, sitting on vertices of a cube centered in the simulation box. The

cubic side length is half of that of the simulation box. The nearest neighbors of each +e

charge are −e charges. For such a system, the total electrostatic energy can be computed by

+e

-e +e

-e

+e-e

+e

-e

Figure A.3: Madelung system, the cubic has side length half of that of the simulation box.

the “Madelung constant” [34, page 73–79], a physical constant computed in the same way as

the Ewald sum, namely, summation over each box, then summation over spherical shells of

boxes to infinity. The Madelung constant has been computed to a very precise level, so it can

be used to represent the exact value. The results are (the unit is e2/Å)

Ewald sum −0.19423898606067433

Exact value −0.19423898606067430

The Ewald sum value is computed from C code, with accuracy, (ε in Eqs. (2.25) and (2.26))

set to be 1× 10−20. By symmetry, the force acting on each atom should be zero, while the C

code output gives ‖F‖∞ < 2 × 10−19, smaller than machine ε.

2. reimplementation of the energy and force computation by Matlab scripts
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Although much slower to execute, the script can be written down much easier, and in a

relatively high-level way. Then a comparison of energy and force is made between the two

implementations for the same set of atom positions. For the Ewald sum, the comparison is

made for a 408 artificial atom system, which takes 12 hours for the scripts to finish. The

differences between the Matlab scripts output and the C code implementation are

‖dc − dm‖∞ = 3.3 × 10−16,
‖dc − dm‖2

‖dc‖2
= 2.8 × 10−15 , (A.9)

|Ec − Em| = 1.0 × 10−15,
|Ec − Em|

|Ec| = 2.1 × 10−14 , (A.10)

‖F c − F m‖∞ = 1.1 × 10−16,
‖F c − F m‖2

‖Fc‖2
= 2.6 × 10−15 , (A.11)

where the subscript “c” means the result is from C code, “m” means the result is from the

Matlab script. Comparison is also made for every element of the G matrices for a three

particle system. The artificial system has side length 1, and the three particles have charge

e, −0.7e and −0.3e. Their locations are random. The accuracy (ε in Eqs. (2.25) and (2.26))

for the Ewald sum is 1 × 10−6. The differences are summarized in Table A.2.

Difference G0 G1 G2 Gdir
2 Gdir

3

absolute 3.9 × 10−16 8.9 × 10−16 7.1 × 10−16 8.9 × 10−15 8.5 × 10−14

relative 1.9 × 10−15 3.4 × 10−16 5.1 × 10−16 6.4 × 10−16 9.8 × 10−16

Table A.2: Comparison between the C code and the Matlab script implementations.

3. β-independence tests

The electrostatic energy should be independent of β. In the following table, E is computed

with Ewald parameters set for MD simulation, Eexact is computed with accuracy of 1×10−20.
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β E Eexact

0.1 −1.166737 −1.16673608068544

0.2 −1.166736 −1.16673608068545

0.3 −1.166736 −1.16673608068546

0.4 −1.166738 −1.16673608068546

0.5 −1.166738 −1.16673608068548

0.6 −1.166736 −1.16673608068549

0.7 −1.166738 −1.16673608068551

0.8 −1.166738 −1.16673608068556

The relative change of E with respect to β is about 2×10−6, while that of Eexact is 1×10−13.

4. the Ewald energy and force of a system of only one dipole are 0, by Eq. (A.14).

A test shows they are 0 within the machine ε.

5. α → 0 test

Since d = Dα(−G1q−G2d), as Dα → 0, the energy cost for polarization (dTD−1
α d/2) drives

d to be smaller and smaller, so that G2d � G1q, and d ≈ −DαG1q. A test shows this is

truly the case: a linear fit between ‖d‖ and ‖ − DαG1q‖ gives a slope of 1.003.

A.3 β-independence

The Ewald sum is independent of the parameter β. Here we present three more β-independent

quantities and one equality. The three β-independent quantities are

(G0)ii − (G0)ij , G1 , and G2. (A.12)

The total electrostatic energy for a two-charge system (charges are q and −q) with the periodic

boundary conditions, given by (2.2) with �d = 0, is independent of β. This means (G0)11 − (G0)12

is independent of β. Since the result should not depend on the choice of charges, it must be true

for arbitrary pairs. Taking the derivative of (G0)ii− (G0)ij − (2β)/
√

π with respect to the position,

we see all non-diagonal blocks of G1 are independent of β, because (G0)ii is independent of the
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position. The diagonal blocks of G1 are zero. Looking it in another way, the quantity −G1q is

the electric field generated by the charge. So it must be independent of β. Because q can be an

arbitrary vector, G1 must be independent of β. If a system has no charges, but only dipoles, the

total electrostatic energy, which is 1
2dTG2d+ 2π

3V dTd according to Eq. (2.2), should be independent

of β. Since d can be arbitrary, G2 must be independent of β.

The one equality is

(G2)iα,iα = − 4π

3V
, (A.13)

where V is the volume of the simulation box. Consider a cubic system having only one dipole �d

having the same component along each axis (dx = dy = dz) in periodic boundary conditions. The

total electrostatic energy, summed in the same order as the Ewald summation shown in Eq. (2.1),

is [70, (4.20)]

Eel = lim
R→∞

∑
|�n|<R

′ 1
2

[ �d · �d

|�n|3 − 3(�n · �d)2

|�n|5
]

=
1
2

lim
R→∞

[
|�d|2

∑
|�n|<R

′ 1
|�n|3 − 3(d2

x

∑
|�n|<R

′ n2
x

|�n|5 + d2
y

∑
|�n|<R

′ n2
y

|�n|5 + d2
z

∑
|�n|<R

′ n2
z

|�n|5 )
]

=
1
2

lim
R→∞

[
|�d|2

∑
|�n|<R

′ 1
|�n|3 − |�d|2

∑
|�n|<R

′ 1
|�n|3

]

= lim
R→∞

0 = 0 , (A.14)

where
∑′ means the summation excludes the �n = 0 term. Eq. (2.2) should give the same result:

1
2
dTG2d +

2π

3V
dTd = 0 . (A.15)

So the diagonal elements of G2, which should be all equal, must satisfy (A.13).

A.4 A velocity rescaling pitfall in constraint dynamics

For comparison purpose, we implement the Berendsen’s rescaling method [13] since it is used

in [140]. We are aware that the method can lead to problems such as flying ice cube [64, 32].
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The implementation of the rescaling method is tricky when holonomic constraints (e.g., constant

bond lengths) are present. SHAKE [118] or RATTLE [4] is usually used to enforce the constraint.

So if the velocity-Verlet method is the underlying integration algorithm, we have the following

pseudocode

for i = 1,2, ...

half kick

drift

SHAKE (modify position and velocity)

half kick

(RATTLE, modify velocity)

compute and output energy

end

After the drift step, the positions do not satisfy the holonomic constraints, so SHAKE changes the

position and modifies velocity so that it is the centered difference of positions at two consecutive

timesteps. At the end of each MD step, the optional RATTLE further modifies the velocities to

make them satisfy their implicit constraints.

Unphysical velocities that do not satisfy the constraints appear temporarily right after each

half-kick step. In particular, the velocities of light atoms, such as hydrogens, are unphysically

large due to their small masses. It is wrong to rescale the velocity right after a kick step. Doing

this effectively drives the system to a lower temperature. The computed physical quantities may

not show observable errors if they are not very sensitive to temperature. So sometimes, many of

them seem right except one or two, making the user confused. This problem can cause troubles

in implementing the Nosé-Hoover [95, 68] or the Nosé-Poincaré [18] method too. The correct way

is always rescaling physical velocities, e.g., after the RATTLE step. If the leapfrog formulation is

used and we do not compute the velocities at integer timesteps, the rescaling step should be done

after the SHAKE step, as shown in reference [13].
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