
Probing Methods for Generalized Saddle-Point Problems

Chris Siefert and Eric de Sturler

Abstract

Several Schur complement-based preconditioners have been proposed for solving (generalized) saddle-
point problems. We consider probing-based methods for approximating those Schur complements in the
preconditioners of the type proposed by [Murphy, Golub and Wathen ’00], [de Sturler and Liesen ’03]
and [Siefert and de Sturler ’04]. This approach can be applied in similar preconditioners as well. We
discuss the implementation of probing-based approximations to Schur complements. We consider the
application of those approximations in preconditioners for Navier-Stokes problems and metal deformation
problems. Finally, we present eigenvalue clustering for the preconditioned matrices, and convergence and
timing results. These demonstrate the effectiveness of the proposed preconditioners with probing-based
approximate Schur complements.

1 Introduction

Generalized saddle-point problems [23] are of the form,

A
[

x
y

]
≡

[
A BT

C D

] [
x
y

]
=

[
f
g

]
, (1)

where A ∈ IRn×n, D ∈ IRm×m, and here n > m. For some problems, especially those arising in constrained
optimization, D = 0. For others, such as those arising from stabilized finite elements [2, 13, 25], D �= 0, but
‖D‖ is small. For still others, the non-zero D arises from another source, such as a very slight compressibility
in metal deformation problems [30]. For all the problems we consider D = 0 or ‖D‖ is small, so that these
problems retain the character of a generalized saddle-point problem. In addition, certain finite element
stabilization schemes yield B �= C [1, 23] and [25, Sections 7.5 and 9.4], while many other schemes yield B =
C. We consider the problem and preconditioners in the generalized form, B �= C, mainly to emphasize the
general applicability of the proposed methods. However, most of the paper is not specific to the generalized
problem, and there is no particular emphasis on the generalized problem. A number of preconditioners for
this class of problems have been developed that employ a Schur complement [3, 10, 11, 19, 22], or some
approximation thereof [12, 14, 20, 24, 28]. Section 2 will present a summary of the convergence results for
one such family of preconditioners [28].

For some problems, there is an obvious approximation to the Schur complement arising in these precon-
ditioners that yields good convergence, like the pressure mass matrix for the Navier-Stokes problem [29].
For other problems, however, no obvious approximation exists. Probing [4, 18] provides a general, algebraic
method for building matrix approximations. It was designed to construct narrowly-banded approximations
to matrices arising in 2-D domain decomposition [4], but we require approximations with a more general
sparsity pattern. Graph coloring techniques used by the optimization community for sparse Jacobian and
Hessian approximations [6, 7, 16, 17, 21] have been recently adapted to allow the approximation of any
matrix, so long as the sparsity pattern is known a priori [8].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We propose to apply these techniques for approximating Schur complements. A potential problem is
that the matrices formed by these more general probing techniques can be expensive to factor. However, in
previous experiments for exact Schur complements we found that using an incomplete factorization has a
negligible effect on convergence. Therefore, we propose to use incomplete factorizations for these probing-
based approximate Schur complements. This will keep the total cost of constructing and applying the
approximate Schur complement linear in m. Finally, we note that any matrix that has entries which decay
with distance on some underlying graph, e.g. a graph derived from the underlying finite element mesh, is a
candidate for these more advanced probing methods, and this relationship will be explained in more detail
in Section 3. Algorithmic and implementation details will be the focus of Sections 4, 5 and 6.

Approximating Schur complements by probing with general sparsity patterns combined with incomplete
factorizations for the resulting approximation gives cheap and effective preconditioners with excellent per-
formance. We demonstrate our preconditioners for two applications, the first in fluid flow and the second
in metal deformation. Analysis of the eigenvalues of the preconditioned systems, as well as GMRES conver-
gence results and timings will be provided in Section 7. Section 8 summarizes our conclusions and presents
directions for future work.

2 Preconditioning Saddle-Point Problems

In [28], we developed two classes of preconditioners for (1) and provided eigenvalue bounds for the corre-
sponding preconditioned systems that allow for the use of approximate Schur complements. Both classes of
preconditioners require the choice of a splitting of the (1,1) block of (1), namely A = F − E, where F is
cheap to solve with. Let S1 = −(D −CF−1BT) be the exact Schur complement for the preconditioner, and
let S2 be an approximation to S1. Also, let E = S−1

2 S1 − I. If we precondition from the left, the system
looks as follows,

[
F−1 0

0 S−1
2

] [
A BT

C D

] [
x
y

]
=

[
I − S N

M Q

] [
x
y

]
=

[
f̃
g̃

]
, (2)

where S = F−1E, N = F−1BT , M = S−1
2 C and Q = S−1

2 D. We will refer to this as the block-diagonally
preconditioned system. The second preconditioned system, which will be referred to as the related system,
is derived from a further splitting of the block-diagonally preconditioned system as follows [28],

[
I − S N

M Q

] [
x
y

]
=

([
I N
M MN − I

]
−

[
S 0
0 E

])[
x
y

]
=

[
f̃
g̃

]
. (3)

Note that,
[

I N
M MN − I

]−1

=
[

I − NM N
M −I

]
. (4)

Multiplying (3) by (4) yields
[

I − (I − NM)S −NE
−MS I + E

] [
x
y

]
=

[
f̂
ĝ

]
. (5)

This is the related system for the fixed-point iteration derived from the splitting in (3). Multiplying with this
matrix is more expensive than with the block-diagonally preconditioned matrix. It requires two additional

2

applications of F−1, one additional multiplication with C and two with BT . However, the greatly improved
eigenvalue clustering of (5) makes the second method much cheaper in practice, and in general we recommend
solving the related system over solving the block-diagonally preconditioned system.

In [28], we also provide bounds that describe the eigenvalue clustering of the preconditioned systems
proposed. Eigenvalue clustering is a key factor in the convergence of Krylov subspace methods, although
in non-symmetric problems the eigenvector matrix also plays a role. Tight clustering of the eigenvalues
generally leads to fast convergence. We now briefly summarize these eigenvalue bounds.

For the related system (5), the eigenvalues are clustered around 1, and we have the following bound [28,
Theorem 4.2]. Let λR be an eigenvalue of the matrix in (5). Then

|λR − 1| ≤
√

1 + ‖N‖2
2

√
1 + ‖M‖2

2 max (‖S‖2, ‖E‖2) .

We have several bounds for the block-diagonally preconditioned system (2). Let Q̂ = S−1
1 D, with Q̂V = V ∆,

∆ = diag(δj), and δj �= −1 for any j. Furthermore, let ω1 be the cosine of the smallest canonical angle
between range (NM) and null (NM), and let Θ be such that NV Θ−1 has orthonormal columns. We refer
to [28] for details. Finally, let λS,E be an eigenvalue of the preconditioned matrix in (2). Then, depending

on the values of the δj , one of the following bounds on |λS,E − λ| holds for some λ ∈
{

1,
1+δj±

√
4+(1+δj)2

2

}

[28, Theorem 4.1].
If D = 0, we have

|λS,E − λ| ≤ 2
(

1 + ω1

1 − ω1

)−1/2

‖S‖2 +
2
√

5
5

‖E‖2.

If the δj ’s are real, we have

|λS,E − λ| ≤ a1(Θ)
(

1 + ω1

1 − ω1

)−1/2

‖S‖2 + a2(∆, V)‖E‖2.

If δj ’s are complex and ∃α > 0 s.t. |δj | ≤ α <
√

5, we have

|λS,E − λ| ≤ a3(Θ, α)
(

1 + ω1

1 − ω1

)−1/2

‖S‖2 + a4(α, V)‖E‖2.

The functions a1, a2, a3 and a4 are discussed in detail in [28]. Here, it is important that these functions do
not depend on E (explicitly or implicitly). Furthermore, they are large only if Θ or V is ill-conditioned, or
if some δj is near

√
5.

These bounds for the eigenvalues of the related system (5) and the block-diagonally preconditioned system
(2) indicate that the perturbation of the eigenvalues from those of the corresponding preconditioner with
the exact Schur complement is at most linear in ‖E‖2.

3 Probing

The probing method [4] was developed to approximate Schur complements arising from the interfaces in
domain decomposition problems without explicitly forming the matrices. The method approximates a matrix

3

using only matrix-vector multiplication. It multiplies a few carefully constructed vectors by the matrix and
then constructs the approximate matrix from the results, based on a sparsity pattern chosen a priori.

“Classic” probing (as introduced by Chan and Mathew [4]) assumes that the matrix is banded with
bandwidth b, and approximates the matrix based on that assumption. If this assumption is true, then
probing is exact. If not, then probing yields a banded approximation and lumps entries of the matrix outside
the band into the band of the approximate matrix. For example, consider the tridiagonal matrix shown in
Figure 1. We choose e1 + e4, e2 + e5 and e3 as our probing vectors and we multiply these by the matrix.
The resulting product recovers all the non-zero entries in the original matrix exactly.

⎡
⎢⎢⎢⎢⎣

a1 b2

c1 a2 b3

c2 a3 b4

c3 a4 b5

c4 a5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a1 b2 0
c1 a2 b3

b4 c2 a3

a4 b5 c3

c4 a5 0

⎤
⎥⎥⎥⎥⎦

Figure 1. Classic probing on a tridiagonal matrix, using the vectors e1 + e4,e2 + e5 and e3.

Classic probing is cheap to implement. Assume that the matrix we are approximating is n×n and we are
using b vectors, i.e., our a priori sparsity pattern is chosen to construct an approximation with bandwidth
b. Computing the probing vectors and building the approximate matrix cost O(nb) computational work.
However, performing the matrix-vector multiplications will be more expensive. If the matrix we are trying
to approximate has bandwidth b (the case of exact reconstruction), the matrix-vector multiplications cost
O(nb2) work. If the matrix is dense or has a larger bandwidth, then the matrix-vector multiplications will
be even more expensive.

Probing works well for the application in [4], since the entries of the exact Schur complement decay like
O(|i − j|−2). Thus, a banded approximation computed by probing approximates the large entries in the
Schur complement accurately and yields a good overall approximation. We propose to use probing for more
complicated matrices, specifically matrices whose coefficients decay in magnitude as a function of distance
on some underlying graph. Consider the problem

−∆u + .25u = 0 (6)

in two dimensions with homogeneous Dirchlet boundary conditions. We discretize the problem with finite
differences, using 15 grid points in each dimension. Figure 2 shows one column of the inverse of the matrix
from (6) shown over the finite difference grid. Note that the inverse of the matrix from (6) has entries (i, j)
that rapidly decay in magnitude as the distance between nodes i and j on the grid increases. Such a matrix
can be approximated accurately with a probing-based method, but not by classic probing, unless a large
number of vectors is used. The banded reconstruction used by classic probing will only capture decay in one
direction (corresponding to neighbors that are “close” in the node numbering) unless a very large number
of vectors is used. Thus, while classic probing can capture 1-D decay very well, for more complicated decay
patterns, like the one resulting from (6), we need more advanced methods than the classic probing method
[4]. This is even more the case for problems in three spatial dimensions and for systems of partial differential
equations.

The partial matrix estimation technique [8], which has been used in the estimation of sparse Jacobians
and Hessians under different names [6, 7, 16, 17, 21], provides a way for approximating more general matrices.

4

0

5

10

15

0

5

10

15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2. One column of the inverse of the matrix from (6) graphed over the underlying finite difference mesh.

Here, we shall refer to this method as structured probing. In this technique, we first choose a sparsity pattern
for the approximate matrix, based on a priori knowledge of the matrix we are approximating. Second, we
use graph coloring techniques to compute probing vectors such that a matrix of our chosen sparsity pattern
would be reconstructed exactly (see Section 4). Third, we multiply the probing vectors by the matrix.
Finally, we use the results of the matrix-vector multiplication to approximate the matrix according to our
chosen sparsity pattern (see Section 5). Algorithm 1 outlines the process for a given input matrix K.

Algorithm 1 K̃ = Structured Probing(K ∈ IRn×n)

1: Choose a sparsity pattern (matrix) H ∈ {0, 1}n×n for the output matrix K̃.
2: Perform a graph coloring on a graph derived from the matrix H to generate the vector d ∈ {1, 2, . . . , p}n,

where p is the number of colors used by the graph coloring (generally not fixed in advance). The color
for vertex i is given by d(i).

3: Generate p probing vectors, x1, . . . , xp, one for each color.
4: Compute wi = Kxi, for i = 1, . . . , p.
5: Build K̃ using sparsity pattern H and vectors w1, . . . , wp.

Choosing a good sparsity pattern, H, in Step 1 of Algorithm 1, requires a priori knowledge of the matrix
K. If the “big” entries in K are in a certain pattern, we can choose the a priori sparsity pattern accordingly.
For many applications these large entries will be related to locality on some graph. If the problem is derived
from a finite element discretization, the finite element mesh or a subset thereof may provide such a graph. If
such a graph is not available immediately from the problem, we can often derive a suitable graph from the
matrices involved. For example, in our case we are interested in matrices of the type K = (D − CF−1BT)
where F is closely related to A in (1). If A is related to the discretization of an elliptic partial differential
equation, we can expect the large entries in F−1 to be related to the adjacency graph of F or A (or of powers
of these matrices), and we can expect the entries to decay with distance over such a graph. These same
principles have been exploited successfully in the computation of sparse approximate inverse preconditioners
[5]. If the matrices B, C, and D are also sparse, we can in general derive a graph over which the entries of

5

K will decay with distance. This will be the case especially if B and C correspond to local operators such
as the divergence of a vector field and the gradient of a function. Should F not be available, which is the
case if F−1 is approached directly, e.g., using multigrid, we can use the adjacency graph of (D − CAkBT)
(for some modest k) instead. Finally, if we know that our matrix is related to the discretization of some
operator, we can use a reasonable stencil for that operator to form our sparsity pattern.

If we consider probing to approximate the inverse of the matrix that arises from discretizing the problem
(6), the superiority of structured probing over classic probing is quite clear. Figure 3 shows a column
of the inverse of the matrix that arises from discretizing (6) as well as the corresponding columns in the
approximations generated by structured and classic probing. For structured probing, we assume a 13-pt
stencil, which for our particular choice of graph coloring, takes 15 vectors. For proper comparison, we also
use 15 vectors for classic probing. Note that structured probing approximates this inverse martix significantly
better than classic probing.

50 100 150 200 250 300 350 400
0

0.1

0.2

Inverse Laplacian

50 100 150 200 250 300 350 400
0

0.1

0.2

Structured Probing(15)

50 100 150 200 250 300 350 400
0

0.1

0.2

Probing(15)

Figure 3. One column of the inverse of the matrix from (6) and the approximations generated by classic and structured probing with
15 vectors.

4 Graph Coloring

Graph coloring algorithms have long been used in computing sparse Jacobians [6, 7, 9, 16, 17, 21]. The
standard graph coloring problem, also known as distance-1 coloring, is to assign colors to the vertices of a
graph such that neighboring vertices have different colors. The simplest graph coloring algorithm, known as
the greedy algorithm, considers the vertices sequentially and assigns each vertex the lowest numbered valid
color.

In Step 2 of Algorithm 1, we generate a vector of colors, d, which we use in the construction of the probing
vectors. This coloring must ensure that any single probing vector does not capture data from two columns
with overlapping nonzero patterns. Methods known as substitution methods [8, 16] allow this condition to
be relaxed, but they introduce other problems, and we will not consider them in this paper. The above
condition is then a critical requirement for our probing vectors, and it raises two questions about the use of

6

graph coloring. The first question is which graph can we use to generate vectors that meet this requirement.
The second question is how should we color this graph.

To describe our approaches, we consider the exact reconstruction of a sparse matrix K with at most b non-
zero entries per row using a pattern H ∈ {0, 1}n×n such that hi,j = 1 if and only if ki,j �= 0. The algorithms
discussed below use different graphs, but they have the same vertex set, V = {v1, . . . , vn}, corresponding to
the n unknowns or n rows/columns of the matrix. For each algorithm, let p be the number of colors used.

From the perspective of efficiency, we would like these methods to have about the same cost as the neces-
sary matrix-vector multiplications. For the problem of reconstructing K, the matrix-vector multiplications
cost O(nbp) 1. For all problems, it is known that p ≥ b + 1.

4.1 Choosing a Graph to Color

A natural graph to consider is G1(H) = (V,E1), where (vi, vj) ∈ E1 if and only if hi,j �= 0 or hj,i �= 0.
This is commonly referred to as “the graph of the matrix,” or the adjacency graph of the matrix H [21, 7].
A distance-1 coloring of G1 does not guarantee that our condition on the probing vectors holds; however a
distance-2 coloring does. In a distance-2 coloring no two neighbors, or neighbors of neighbors, have the same
color [21]. If H is stored in a suitable sparse format, generating the graph is effectively free. Computing the
distance-2 coloring takes O(nb2) work.

Another graph to consider is the column intersection graph, G2(H) = (V, E2), where (vi, vj) ∈ E2 if
and only if there is a k such that hk,i �= 0 and hk,j �= 0 [6]. In the nomenclature of graph theory, these
columns are not structurally orthogonal. For this graph, we can use a distance-1 graph coloring to ensure
the aforementioned requirement on our probing vectors. This graph has O(nb2) edges, so it takes at least
that much work to construct [17]. Our implementation [27] uses O(nb2 log b) time to construct the graph in
CSR format, and performing the coloring takes an additional O(nb2) time. If the graphs of both H and HT

are available, one can color the column intersection graph without forming it explicitly [6]. But in general,
coloring the column intersection graph takes more work than doing the appropriate coloring on the adjacency
graph [16].

A final option, which is better suited for rectangular matrices, is to consider a bipartite graph, where
the vertex set V is partitioned into two disjoint subsets, V1, which represents the rows of the matrix and V2

which represents the columns [17]. This method requires a distance-2 partial coloring (the rows need not be
colored) [17].

4.2 Choosing the Method to Color

After we choose the graph to color, we must choose a method to compute the coloring. The greedy algorithm
is an obvious choice, but balanced coloring, as described in [8], may be a better option. In the latter approach,
we balance the number of nodes assigned to each color. A simple heuristic for balanced coloring is to assign
the least used valid color when multiple colors are valid for a node.

Another option is to use probing vectors with regular patterns (like those of [4]), but pick the number of
vectors such that we can exactly reconstruct the desired sparsity pattern. One way to do this is to choose
the number of vectors to be relatively prime to the differences between column indices of nonzero coefficients
in a row, for all rows. More precisely, choose the number of colors p, such that p is relatively prime to
all elements of the set { i − j | for some k, hk,i = 1 and hk,j = 1}. We will refer to this method as the
prime divisor coloring. As the method is based on the adjacency graph, we need a distance-2 coloring. This

1In practice, of course, K is only available implicitly through matrix-vector products. The cost then depends on how the
required data is available and the implementation of the matrix-vector products.

7

approach often requires more colors than the other approaches. However, if H comes from a fixed stencil
on a regular grid, we need only consider a single “representative” row of the matrix (i.e., a row for a point
away from the boundaries), and use that row to choose the number of colors p. While this method takes
O(n(p + b2)) work for an unstructured mesh where b is the highest vertex degree, it takes only O(p + b2)
work for problems on a regular grid.

As noted in [6], graph coloring heuristics are sensitive to the ordering of the nodes. A good ordering
reduces the number of colors, and thus makes the underlying probing process computationally less expensive.
The simplest such reordering is to order the nodes so that all of the high-degree vertices are numbered first.
This is referred to as the largest-first ordering(LFO) in [6]. However, more complicated orderings, where
nodes are colored based on the topology of particular subgraphs (such as the nodes numbered or unnumbered
at the current stage of the algorithm) are discussed in [6].

Once we have a coloring, we can generate the probing vectors (Step 3 of Algorithm 1), perform the
matrix-vector multiplications (Step 4) and construct the output matrix K̃ with the chosen sparsity pattern
(Step 5). The matrix-vector multiplication depends on how K is represented, which in turn depends on the
application. Next, we discuss the other two steps.

5 Building the Probing Vectors and Reconstructing the Matrix

Given the vector d ∈ {1, 2, . . . , p}n that indicates the color for each vertex, we create the vectors x1, . . . , xp ∈
{0, 1}n such that the j-th entry of xi is equal to one if dj = i and zero otherwise. So, the j-th entry of
xi equals one if vertex j has the color i. Thus, the vector wi = Kxi contains entries only from columns
associated with vertices that have color i. By construction such columns do not overlap.

The reconstruction of the matrix is then a matter of using the sparsity pattern H to put the entries in the
vectors wi = Kxi at the right place in the output matrix K̃. Let hk,j = 1. The vector xdj captures the j-th
column of the matrix K. Therefore, the vector wdj gives the value for K̃k,j in its k-th entry; K̃k,j = wdj (k).

Figure 4 shows MATLAB-style pseudo-code for implementing these portions of Algorithm 1. This exam-
ple is derived from the relevant routine in our C-language structured probing software library [27]. A more
extensive C++ library (focused on sparse Jacobian and Hessians) is under development by Alex Pothen and
his collaborators. In this example, we store the matrix in compressed sparse row (CSR) format [26, p. 90],
with the entries in a row ordered by increasing column number. We assume that a graph p-coloring has been
computed in advance and is given by the vector d.

6 Implementing Structured Probing

Implementing graph coloring algorithms efficiently can be complicated. The prime divisor and greedy meth-
ods discussed in Section 4 are straightforward to implement. However, the balanced coloring approach of [8]
is more complicated and warrants further discussion.

The key difficulty in implementing balanced coloring [8] is efficiently finding the valid color that has been
assigned to the smallest number of nodes. Since we need at least as many colors as our highest degree node
plus one [17], we start the algorithm using that many colors. We increase the number of colors when a node
cannot be assigned any of the existing colors. Algorithm 2 outlines a method for computing a balanced
coloring on a graph.

8

Algorithm 2 d = Balanced Coloring Heuristic(V, E)
1: Let n be the number of nodes in V . Let p = 1 + max deg(V), the initial number of colors.
2: Let ci = 0, for i = 1, . . . , p, be the number of times each color has been used.
3: For j = 1, . . . , n
4: Let S ⊆ {1, . . . , p} be the set of colors that are valid for node j.
5: if S = ∅ then
6: Let p = p + 1, k = p and ck = 0 (use a new color).
7: else
8: Find k = arg minl∈S {cl}, the color to use.
9: Let dj = k and ck = ck + 1 (assign color k to node j and update the color counts).

Efficiently computing S and k is key to an efficient implementation. We consider two approaches. Both
rely on a list of colors sorted by the number of nodes with that color (ci). The first approach is to consider
each color and check all neighbors to see if that color is allowed (for distance-2 coloring this includes checking
distance-2 neighbors). The second approach is to consider each neighbor and remove the invalid colors. Our
implementation follows the second approach. We maintain a doubly linked list of colors sorted by the number
of nodes with that color. To remove colors from the list in constant time as we consider each neighbor, we
maintain a set of external indices to each color on the list. After checking all the neighbors, if the list is
non-empty, the head of the list points to the color that meets the balanced coloring criterion. This allows us
to compute S in O(b2) time for each node for a distance-2 coloring. Updating the sorted list after coloring
a node takes O(b2 + p) time. Thus the overall time complexity of doing a distance-2 balanced coloring is
O(n(b2 + p)). We note that for finite element problems we generally have small b and p and very large n.

7 Results

We consider two applications for our numerical experiments, The first application models a leaky lid-driven
cavity using the Navier-Stokes equations. For this applications we use the MATLAB software of [13]. This
particular problem has A �= AT , B = C and D �= 0 in the notation of (1). We use a 16 × 16 grid with
viscosity parameter ν = 0.1 and stabilization parameter β = 0.25. After removing the constant pressure
mode, our system has 705 unknowns. For the splitting of the (1,1) block, A = F −E, we use one multi-grid
V-cycle with three SOR-Jacobi pre- and post-smoothing steps and relaxation parameter ω = 0.25.

The second application uses the modified Hart’s model [15] to model elastic, plastic, anelastic, micro-
plastic and micro-anelastic strain and their effects on the permanent deformation of bent beams [30]. The
linear system has 6422 unknowns and arises from a Newton iteration to solve the nonlinear problem at each
timestep. For this problem, we study the following structural splittings of the (1,1) block A: the diagonal of
A, a banded splitting of A with a semi-bandwidth of four, and the ILU(0) factorization of A.

In addition to demonstrating the effectiveness of our preconditioners with approximate Schur comple-
ments generated by structured probing, we use the Navier-Stokes problem to illustrate the superiority of
structured probing to classic probing. Specifically, we focus on the role of the sparsity pattern chosen for
the approximate matrix. We use the prime divisor method for graph coloring to isolate the role of this
chosen sparsity pattern. This allows us to use the same probing vectors for classic probing and for struc-
tured probing; so, the only difference between the two methods is in the sparsity pattern that we use for the
construction of the approximate matrix. Hence, we are not trying to get the most out of structured probing,
but rather demonstrate that even using the same vectors as classic probing, reconstruction based on a better

9

function nzval=sp_probe_given_coloring(func, N, rp, ci, p, d)
%Input parameters
% func - Function such that func(x) = A x
% N - (int) number of columns of the matrix
% rp - (vector of ints) the matrix row pointers of H, CSR style
% ci - (vector of ints) the matrix column indices of H, CSR style
% p - (int) the number of colors used by the graph coloring
% d - (vector of ints) a N-vector containing the color of each vertex
%Return Value
% nzval- (vector of doubles) the matrix non-zero entries of
% the output matrix, \tilde{K}, CSR style

%Local variables
% I,J - (ints) counters
% X - (matrix) Matrix of probing vectors X = [x_1,...,x_p]
% W - (matrix) Matrix of resulting vectors W = [w_1,...,w_p], where W=AX

% Allocations
W=zeros(N,p);
X=zeros(N,p);

% Generate vectors to be used by probing
for I=1:N, X(I,d(I))=1; end

% Do the matvecs
for I=1:p, W(:,I)=func(X(:,I)); end

% Matrix assembly - put resulting entries into the right place
for I=1:N,

for J=rp(I):rp(I+1)-1,
nzval(J)=W(I,d(ci(J)));

Figure 4. Structured probing pseudo-code: probing with a given graph coloring.

sparsity pattern leads to much better eigenvalue clustering and convergence.
Furthermore, we examine the use of incomplete factorizations (ILU(0)) for the approximate Schur comple-

ment matrices generated by structured probing as a means of further reducing the cost of the preconditioners
(2) and (5).

For the metal deformation application we use structured probing with the distance-2 balanced coloring
algorithm of [8]. We also use ILU(0) to factor the approximate Schur complement generated by structured
probing. Here we focus on GMRES convergence and wall-clock time.

10

7.1 Benefits of Structured Probing

Figures 5(a) and 5(b) show the eigenvalue distributions for the related system (5) for classic probing and
structured probing using 13 probing vectors. For scaling purposes, we exclude two negative eigenvalues at
approximately (−73, 0) and (−113, 0) for the classic probing case. We use a nine-point stencil on the element
connectivity graph to define the sparsity pattern H for structured probing (SP). The prime divisor method
described in Section 4, yields a graph coloring requiring 13 vectors. The vectors used for structured probing
and classic probing are the same. The only difference between the two methods is in the construction of the
approximate matrix.

0 2 4 6 8 10 12 14

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Real

Im
ag

in
ar

y

(a) Classic Probing (13 vectors)

0 2 4 6 8 10 12 14

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Real

Im
ag

in
ar

y

(b) Structured Probing (9pt. stencil / 13 vectors)

Figure 5. Eigenvalues for the related system (5) derived from the Navier-Stokes problem with one V-cycle as splitting of the (1,1)
block and approximate Schur complements using classic and structured probing with exact factorizations.

Structured probing yields much better clustering than classic probing, especially near the origin. Struc-
tured probing has only one small eigenvalue (about 0.01); the others are well separated from zero. Classic
probing has many eigenvalues clustering near the origin. This leads to worse convergence behavior; see
Figure 7(a).

We see similar results for the eigenvalues of the block-diagonally preconditioned system (2) for classic
and structured probing; see Figures 6(a) and 6(b). Both probing and structured probing have one small
eigenvalue (about 0.01), but structured probing clusters eigenvalues much further away from the origin.

Figures 7(b) and 7(a) show the convergence of GMRES for the preconditioned systems. The difference
between classic and structured probing is quite pronounced. For both preconditioned systems, structured
probing from a five-point stencil using seven vectors has a lower iteration count than classic probing even
with thirteen vectors. We also note that using the related system (5) leads to significantly faster convergence
than using the block-diagonally preconditioned system (2) for all probing variants.

Figures 8(a) and 8(b) show the eigenvalues for the related system and block-diagonally preconditioned
system for structured probing with both five-point (seven vector) and nine-point (thirteen vector) stencils.
Note that, barring a few outliers, for both kinds of preconditioners the eigenvalue clustering is significantly
better for the nine-point stencil, especially near the origin. Krylov-subspace methods tend to find and

11

−3 −2 −1 0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

Real

Im
ag

in
ar

y

(a) Classic Probing (13 vectors)

−3 −2 −1 0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

Real

Im
ag

in
ar

y
(b) Structured Probing (9pt. stencil / 13 vectors)

Figure 6. Eigenvalues for the block-diagonally preconditioned system (2) derived from the Navier-Stokes problem with one V-cycle
as splitting of the (1,1) block and approximate Schur complements using classic and structured probing with exact factorizations.

10 20 30 40 50 60 70 80

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

||r
k||/

||r
0||

Classic Probing(7)
Classic Probing(13)
SP−Exact(5−pt [7])
SP−Exact(9−pt [13])

(a) Related system (5)

20 40 60 80 100 120 140 160 180

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

||r
k||/

||r
0||

Classic Probing(7)
Classic Probing(13)
SP−Exact(5−pt [7])
SP−Exact(9−pt [13])

(b) Block-diagonally preconditioned system (2)

Figure 7. GMRES convergence for the Navier-Stokes problem with one V-cycle as splitting of the (1,1) block and approximate Schur
complements using classic and structured probing with exact factorizations.

“remove” outlying eigenvalues quickly. Therefore, these eigenvalues do not affect the convergence rate after
some number of initial iterations. Thus, the significantly better eigenvalue clustering obtained using the
nine-point stencil leads to a significantly improved convergence rate for GMRES.

12

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y

SP 5pt
SP 9pt

(a) Related system (5)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Real

Im
ag

in
ar

y

SP 5pt
SP 9pt

(b) Block-diagonally preconditioned system (2)

Figure 8. Eigenvalues for the related system (5) and the block-diagonally preconditioned system (2) derived from the Navier-Stokes
problem with one V-cycle as splitting of the (1,1) block and approximate Schur complements using structured probing with exact
factorizations.

7.2 Employing ILU(0) for the Approximate Schur Complement from Struc-
tured Probing

The benefits of structured probing come at the cost of having an approximate Schur complement that is
more expensive to factor. For instance, if the chosen sparsity pattern looks similar to an n-dimensional
Laplacian (because A and hence F are related to a Laplacian), the large bandwidth can yield significant
fill-in, making the exact factorization of the approximate Schur complement matrix expensive to compute
and apply. Therefore, we use an inexact factorization of the approximate Schur complement to define S−1

2 .
In practice, this leads to a negligible deterioration in convergence while reducing the overhead of applying
structured probing significantly. We use an ILU(0) factorization for this problem. For symmetric problems
an IC(0) factorization should be used. Since ILU(0) and IC(0) have linear cost in the number of unknowns,
the overall cost remains O(m).

Figure 9 shows the eigenvalue distributions for both preconditioned systems with structured probing
using a nine point stencil (13 vectors) for both the exact and ILU(0) factorizations of the approximate Schur
complement. Figure 10 shows the convergence results for both preconditioned systems, using structured
probing with 9 and with 13 vectors. Using ILU(0) instead of an exact factorization changes the eigenvalue
distribution slightly, and leaves the clustering is essentially equivalent. The impact of such a change on
the convergence behavior is negligible. Given the significant difference in cost between exact and inexact
factorizations, using ILU(0) is more cost-effective than an exact factorization.

7.3 Computational Results for Metal Deformation

The metal deformation problem arises from a finite element mesh, where the second set of variables corre-
sponds to nodes in the center of the elements. For structured probing, we approximate the Schur complement

13

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y

Structured/Exact
Structured/ILU(0)

(a) Related system (5)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Real

Im
ag

in
ar

y

Structured/Exact
Structured/ILU(0)

(b) Block-diagonally preconditioned system (2)

Figure 9. Eigenvalues for the related system (5) and the block-diagonally preconditioned system (2) derived from the Navier-Stokes
problem with one V-cycle as splitting of the (1,1) block and approximate Schur complements using structured probing (13 vectors)
with exact and ILU(0) factorizations.

10 20 30 40 50 60 70

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

||r
k||/

||r
0||

SP−Exact(5−pt [7])
SP−Exact(9−pt [13])
SP−ILU(0)(5−pt [7])
SP−ILU(0)(9−pt [13])

(a) Related system (5)

20 40 60 80 100 120 140 160

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

||r
k||/

||r
0||

SP−Exact(5−pt [7])
SP−Exact(9−pt [13])
SP−ILU(0)(5−pt [7])
SP−ILU(0)(9−pt [13])

(b) Block-diagonally preconditioned system (2)

Figure 10. GMRES convergence for the Navier-Stokes problem with one V-cycle as the splitting of the (1,1) block and an inexact
Schur complement computing using structured probing, using both exact and ILU(0) factorizations.

with a matrix that has the sparsity pattern of the element-element connectivity graph of the original problem
(i.e. G1 in subsection 4.1). Using a distance-2 balanced coloring, we can build our approximation using only
nine probing vectors.

14

50 100 150 200 250

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations

||r
k||/

||r
0||

Exact
Classic Probing(9)
Structured Probing(9)
Structured Probing(9)/ILU(0)

(a) GMRES Convergence for ILU(0) Splitting

ILU(0) sbw=4 Diagonal
0

20

40

60

80

100

120

Splitting

T
im

e(
se

co
n

d
s)

Structured Probing(9) w/ ILU(0)
Structured Probing(9)
Probing(9)

(b) Wall Clock Time

Figure 11. GMRES convergence and wall clock time for the metal deformation problem, for various probing-based inexact Schur
complements in the related system (5) for three different splittings of the (1,1) block (ILU(0), banded matrix with semibandwith 4,
and diagonal).

We present GMRES convergence results and wall clock time for a single linear system from the metal
deformation problem in Figures 11(a) and 11(b), respectively. For the convergence results, we use an ILU(0)
splitting of the (1,1) block, A, and we compare the convergence for the exact Schur complement, an ap-
proximate Schur complement using classic probing, and an approximate Schur complement using structured
probing with both exact and ILU(0) factorizations. With respect to the choice of approximate Schur com-
plement, Figure 11(a) shows that structured probing leads to faster convergence than classic probing. In
terms of execution time, Figure 11(b) shows structured probing leads to a savings in time of 15% to 40%
over classic probing, with the inexact factorization saving an additional 5% or so of execution time.

It should be noted that this problem models a long, thin, piece of metal. So, although the problem
is three dimensional, it is similar in nature to a one-dimensional problem (the elements are also ordered
appropriately). Therefore, classic probing for the Schur complement does very well, as this problem shows
the same type of 1-D decay as the Schur complements for 2-D domain decomposition problems for which
classic probing was designed. This is a relatively easy 3-D problem for classic probing and the improvements
due to structured probing should be viewed in that light. Our results show not only the efficacy of structured
probing, but also the potential benefit of the use of inexact factorizations for the approximations from
structured probing.

8 Conclusions and Future Work

We have shown that classic probing [4], although it was designed for 2-D domain decomposition problems,
can be generalized to reconstruct exactly matrices of arbitrary sparsity structure or approximate matrices
that have a suitable decay property relative to a chosen sparsity structure. This makes probing a very
powerful technique in preconditioning saddle-point problems, if a good estimate of the probing pattern can

15

be made a priori. The results presented in this paper show the effectiveness of these preconditioners using
structured probing in terms of eigenvalue clustering, rate of convergence and execution time.

As future work, we seek to develop estimates for ‖E‖ for structured probing methods. We also seek
to dynamically adapt the a priori chosen sparsity structure for structured probing. Furthermore, we plan
to identify additional problems that yield decay properties that can be exploited by structured probing,
especially based on more algebraic criteria. We will also work on developing an accurate eigenvalue analysis
for systems preconditioned using structured probing. Finally, we intend to look at schemes for updating and
reusing (generalized) saddle point preconditioners with probing-based inexact Schur complements.

References

[1] C. Bernardi, C. Canuto, and Y. Maday. Generalized inf-sup conditions for Chebyshev spectral approx-
imation of the Stokes problem. SIAM J. on Numer. Anal., 25(6):1237–1271, 1988.

[2] D. Braess. Finite Elements: Theory, fast solvers and applications in solid mechanics. Cambridge
University Press, 2nd edition, 2001.

[3] J.H. Bramble and J.E. Pasciak. A preconditioning technique for indefinite systems resulting from mixed
approximations of elliptic problems. Mathematics of Computation, 50(181):1–17, January 1988.

[4] T.F. Chan and T.P. Mathew. The interface probing technique in domain decomposition. SIAM J.
Matrix Anal. Appl., 13(1):212–238, January 1992.

[5] Edmond Chow. A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM
J. Sci. Comput., 21(5):1804–1822, 2000.

[6] T.F. Coleman and J.J. Moré. Estimation of sparse Jacobian matrices and graph coloring problems.
SIAM J. Numer. Anal., 20(1):287–209, 1983.

[7] T.F. Coleman and J.J. Moré. Estimation of sparse Hessian matrices and graph coloring problems. Math.
Programming, 28:243–270, 1984.

[8] J. Cullum and M. Tuma. Matrix-free preconditioning using partial matrix estimation. Technical Report
898, Institute of Computer Science, Academy of Sciences of the Czech Republic, April 2004.

[9] A.R. Curtis, M.J.D. Powell, and J.K. Reid. On the estimation of sparse Jacobian matrices. J. Inst.
Math. Appl., 13:117–119, 1974.

[10] E. de Sturler and J. Liesen. Block-diagonal and constraint preconditioners for nonsymmetric indefinite
linear systems. Part I: Theory. Technical Report 36-2003, Institute of Mathematics, Technical University
of Berlin, September 2003. Accepted for publication in SIAM J. Sci. Comput.

[11] H.C. Elman. Preconditioning for the steady-state Navier-Stokes equations with low viscosity. SIAM J.
Sci. Comput., 20(4):1299–1316, 1999.

[12] H.C. Elman and D. Silvester. Fast nonsymmetric iterations and preconditioning for Navier-Stokes
equations. SIAM J. Sci. Comput., 17:33–46, January 1996.

16

[13] H.C. Elman, D.J. Silvester, and A.J. Wathen. Iterative methods for problems in computational fluid
dynamics. In Winter School on Iterative Methods in Scientific Computing and Applications. Chinese
University of Hong Kong, 1996.

[14] H.C. Elman, D.J. Silvester, and A.J. Wathen. Performance and analysis of saddle point preconditioners
for the discrete steady-state Navier-Stokes equations. Numer. Math., pages 665–688, 2002.

[15] H. Garmestani, M.R. Vaghar, and E.W. Hart. A unified model for inelastic deformation of polycrystalline
materials — application to transient behavior in cyclic loading and relaxation. International Journal of
Plasticity, pages 1367–1391, 2001.

[16] A.H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? Graph coloring for
computing derivatives. To appear in SIAM Review.

[17] A.H. Gebremedhin, F. Manne, and A. Pothen. Graph coloring in optimization revisited. Technical
Report 226, Department of Informatics, University of Bergen, January 2002.

[18] L. Giraud and R.S. Tuminaro. Schur complement preconditioners for anisotropic problems. IMA J.
Numerical Analysis, 19:1–17, 1999.

[19] I.C.F. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput., 23(3):1050–
1051, 2001.

[20] D. Loghin and A.J. Wathen. Schur complement preconditioners for elliptic systems of partial differential
equations. Numer. Linear Algebra Appl., 10:423–443, 2003.

[21] S.T. McCormick. Optimal approximation of sparse Hessians and its equivalence to a graph coloring
problem. Math. Programming, 26:153–171, 1983.

[22] M.F. Murphy, G.H. Golub, and A.J. Wathen. A note on preconditioning for indefinite linear systems.
SIAM J. Sci. Comput., 21(6):2969–1972, 2000.

[23] R. Nicolaides. Existence, uniqueness and approximation for generalized saddle point problems. SIAM
Journal on Numerical Analysis, 19(2):349–357, 1982.

[24] I. Perugia and V. Simoncini. Block-diagonal and indefinite symmetric preconditioners for mixed finite
element formulations. Numer. Linear Algebra Appl., 7:585–616, 2000.

[25] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer-Verlag,
2nd edition, 1997.

[26] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.

[27] C. Siefert. Structured Probing Toolkit, 2005. http://www.cse.uiuc.edu/∼siefert/structured
probing/.

[28] C. Siefert and E. de Sturler. Preconditioners for generalized saddle-point problems. Technical Report
UIUCDCS-R-2004-2448, Department of Computer Science, University of Illinois at Urbana-Champaign,
June 2004.

[29] J.C. Tannehill, D.A. Anderson, and R.H. Pletcher. Computational Fluid Mechanics and Heat Transfer.
Taylor & Francis, Philiadelphia, 2nd edition, 1997.

17

[30] L. Zhu, A.J. Beaudoin, and S.R. MacEwan. A study of kinetics in stress relaxation of AA 5182. In
Proceedings of TMS Fall 2001: Microstructural Modeling and Prediction During Thermomechanical
Processing, pages 189–199, 2001.

18

