
Quantitative Modelling of Climate 

Change Impact on Hydro-climatic 

Extremes 

Han Wang 

Faculty of Science and Engineering 

Swansea University 

Submitted to Swansea University in fulfilment of the requirements 

for the degree of Doctor of Philosophy 

2021 

Quantitative Modelling of Climate Change Impact on Hydro-climatic Extremes 
© 2021 by Han Wang is licensed under a CC-BY-SA license.

A.A.ZASHEVA
New Stamp





 

 

 

 

 

 

 

 

 

I would like to dedicate this thesis to my beloved parents. 

  



 

 

 

  



 

 

Declaration 

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree. 

Signed: 

Date: 03/11/2021 

 

This thesis is the result of my own investigations, except where otherwise stated.  Other 

sources are acknowledged by footnotes giving explicit references. A bibliography is 

appended. 

Signed: 

Date: 03/11/2021 

 

I hereby give consent for my thesis, if accepted, to be available for photocopying and for 

inter-library loan, and for the title and summary to be made available to outside 

organisations. 

Signed: 

Date: 03/11/2021 

 

The University’s ethical procedures have been followed and, where appropriate, that 

ethical approval has been granted. 

Signed: 

Date: 03/11/2021 

  



 

 

 

  



 

i 

 

Acknowledgements 

In the past four years of my Ph.D. research, I received a great deal of support and 

encouragement from many people which made the thesis possible. 

Firstly, I would like to express my sincerest gratitude to my supervisor, Assoc. Prof. Dr 

Yunqing Xuan, for his constant guidance and support, great encouragement and patience 

through each stage of my Ph.D. progress. At the initial phase of my research where I was 

puzzled by many unsure concerns, Dr Xuan guided me in a clear direction and supported me 

with his insightful knowledge. In the following years, I learned a lot from our regular meetings 

and discussions where not only many technical problems were solved promptly but also his 

intelligent and inspiring ideas motivated me to explore this challenging but exciting research 

area of extreme quantification under climate change. Meanwhile, Dr Xuan trained me by 

providing me with many opportunities for presenting my research work to both general public 

and research communities, communicating and collaborating with peer researchers, which 

helps me immensely build up my scientific research career. Apart from the research, Dr Xuan 

also cares about my wellbeing and self-development. I could not have current accomplishments 

without his continued mentoring and support.  

I wish to thank Prof. Dr Harshinie Karunarathna for her always help and encouragement. Her 

expertise, comments and feedback were invaluable and important to my work. And I also wish 

to thank Assoc. Prof. Dr Leonardo Alfonso and Assoc. Prof. Dr Schalk Jan van Andel for their 

always support which made it possible for me to continue my study on decision making under 

uncertainty in the context of flood forecasting and early warning.  

I would also like to thank all examination committee members, Assoc. Prof. Dr Gerald Corzo 

Perez and Dr Ji Li for providing me with an inspiring and enjoyable viva, and for your 

constructive comments that helped me to improve the quality of this thesis. 

Thank you all my colleagues in Energy and Environment Research Group who always provide 

a friendly and enjoyable atmosphere for both working and recreation. It was a great pleasure 

to work with you all and I enjoyed our outdoor social gatherings.  

I would like to thank the Centre of Hydrology and Ecology (CEH), The Bureau of Meteorology, 

Australia, European Centre for Medium-Range Weather Forecasts (ECMWF) and Met Office 

Hadley Centre for providing me research datasets, the Southern Regional Hydrometeorological 

Centre (SRHC), Vietnam for providing the data to support the case study of compound flood 

analysis in Ho Chi Minh City.  

Thank you my housemate Yanan Sun for accompanying me especially during a hard time of 

the Covid-19 pandemic. The old happy time we studied, cooked, had fun, travelled, and much 



 

 

more…were so unforgettable and will remain as treasure in my memory. I would also like to 

thank my whole life friends, Ji Xiaochen, Li Tianxia and Shen Lin, for our great friendship 

since high school. Your kindness, enthusiasm and positive attitude to life encouraged me to 

keep improving myself in my way.  

Last but not least, I wish to thank my dear parents for their unconditional love, understanding 

and support throughout my life which help me enormously to pursue my dream and interests 

and accomplish each milestone successfully. 

  



ii 

Abstract 

In recent decades, climate change has caused a more volatile climate leading to more extreme 
events such as severe rainstorms, heatwaves and floods which are likely to become more 
frequent. Aiming to reveal climate change impact on the hydroclimatic extremes in a 
quantitative sense, this thesis presents a comprehensive analysis from three main strands.  

The first strand focuses on developing a quantitative modelling framework to quantify the 
spatiotemporal variation of hydroclimatic extremes for the areas of concern. A spatial random 
sampling toolbox (SRS-GDA) is designed for randomizing the regions of interest (ROIs) with 
different geographic locations, sizes, shapes and orientations where the hydroclimatic extremes 
are parameterised by a nonstationary distribution model whose parameters are assumed to be 
time-varying. The parameters whose variation with respect to different spatial features of ROIs 
and climate change are finally quantified by various statistical models such as the generalised 
linear model. The framework is applied to quantify the spatiotemporal variation of rainfall 
extremes in Great Britain (GB) and Australia and is further used in a comparison study to 
quantify the bias between observed and climate projected extremes. Then the framework is 
extended to a multivariate framework to estimate the time-varying joint probability of more 
than one hydroclimatic variable in the perspective of non-stationarity. A case study for 
evaluating compound floods in Ho Chi Minh City, Vietnam is applied for demonstrating the 
application of the framework.  

The second strand aims to recognise, classify and track the development of hydroclimatic 
extremes (e.g., severe rainstorms) by developing a stable computer algorithm (i.e., the SPER 
toolbox). The SPER toolbox can detect the boundary of the event area, extract the spatial and 
physical features of the event, which can be used not only for pattern recognition but also to 
support AI-based training for labelling/cataloguing the pattern from the large-sized, grid-based, 
multi-scaled environmental datasets. Three illustrative cases are provided; and as the front-end 
of AI study, an example for training a convolution neural network is given for classifying the 
rainfall extremes in the last century of GB. 

The third strand turns to support decision making by building both theory-driven and data-
driven decision-making models to simulate the decisions in the context of flood forecasting 
and early warning, using the data collected via laboratory-style experiments based on various 
information of probabilistic flood forecasts and consequences.  

The research work demonstrated in this thesis has been able to bridge the knowledge gaps in 
the related field and it also provides a precritical insight in managing future risks arising from 
hydroclimatic extremes, which makes perfect sense given the urgent situation of climate 
change and the related challenges our societies are facing. 
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Chapter 1 Introduction 

1.1 Background and motivation 

It is well established that climate change causes a more volatile climate and hence more 

extreme storms and flooding, more frequent the occurrence of these events or the combination 

of both (Hall et al., 2014; Hirabayashi et al., 2013; Milly et al., 2002). However, it is yet to 

know such impact in a quantitative sense, which has caused great difficulties in both designing 

flood defence structures as well as in evaluating their reliability and effectiveness. A most 

recent, yet classical example was the aftermath of the 2015 Christmas severe flooding in North 

England (Spencer et al., 2018) where such questions were raised but failed to be answered for 

another time. Many so-called “climate-proof” design measures hallmarked by incorporating an 

arbitrary “safe” margin can neither be scientifically validated nor be economically justified. 

Therefore, there is an urgent need to study how the changing hydroclimatic extremes affect the 

engineering standard design procedure in a quantitative way.  

Conventionally, the design of water engineering structures relies on the understanding of the 

dynamics and behaviour of these extremes such as extreme storms, floods, by applying a 

frequency analysis with long term historical records. For example, flood defence structures are 

designed to withhold floods up to a certain threshold, e.g. flood size, which in turn is 

determined by fitting historical extremes such as annual maximum flood peaks using a 

probability distribution whose parameters are assumed to be stationary (Coles and Tawn, 1996; 

Mannshardt-Shamseldin et al., 2010; Miniussi et al., 2020; Morrison and Smith, 2002; 

Szulczewski and Jakubowski, 2018). As it has become increasingly clear that climate change 

has already altered the environment hence the flooding process, such a stationary view needs 

to be changed (Herring et al., 2018). 
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Further, although the impact of climate change has been appreciated globally, it is far from 

being homogeneous. For example, whilst certain regions may suffer more severe flooding, 

others simply observed more water deficiencies (Güneralp et al., 2015; Lehner et al., 2006). 

Although many hydrology phenomena such as the precipitation process are part of the global 

hydrological cycle and hence (laterally) boundless, the local and regional changes which 

directly affect human society are of great concern of stakeholders and policymakers (Jha et al., 

2012). Therefore, understanding the spatial variability of the changing hydroclimatic extremes 

is another important dimension to be explored. In the past decades, research in the spatial 

variability in hydrology is usually based on gauge or station records to explore the correlations 

among different locations (Celleri et al., 2007; Ciach and Krajewski, 2006),  which often is not 

comprehensive due to the scarce data and the lack of measurements. More recently, with the 

rapid advances in environmental monitoring technology, spatially disaggregated, grid-based 

hydro-climatic datasets have become gradually available with steady improvements in both 

accuracy and resolutions and their application has become a foundation to support further 

analyses on the environment or climate change both spatially and temporally (Nashwan et al., 

2019; Peleg et al., 2018). Meanwhile, many environmental or hydroclimatic models nowadays 

are also tuned to make use of these new, grid-based, high-resolution datasets (Muthusamy et 

al., 2017b). However, it raises some important and new challenges as well. For example, these 

data usually come with spatial patterns and characteristics linked to certain changing factors 

that need to be diagnosed; those from climate projection models or field observations are often 

highlighted by the intermittent spatial variations, with often chaotic, nonstationary, multi-scale 

temporal distributions, which leads to difficulties in pattern identification using techniques 

such as deep machine learning and heavy overhead of computer programming.   

1.2 Scope of research 

This section presents an overview of the research in hydroclimatic extremes and recent progress 

in the last few decades. Hydroclimatology is defined as an interdisciplinary scientific field that 

synthesizes hydrology and climate, including the impacts that the movement, storage, and 
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phase change of water between and within the terrestrial and atmospheric systems have on the 

global climate, and the impacts of climate patterns and changes on the global hydrological 

cycle (Wendland, 1987). The hydrological cycle involves the total process where liquid water 

moves from the land and water surface (e.g., ocean, river) to the atmosphere by evaporation 

and back in form of precipitation or snow (Kuchment, 2004). It is significantly linked with 

climate and can be affected by natural climate variability, e.g., the changes in the atmospheric 

temperature and radiation balance (Inglezakis et al., 2016). Warming of the climate system in 

recent decades has caused more frequent occurrences of extreme phenomena such as drought, 

flooding and extreme precipitation. It is because that the hydrological cycle may be 

strengthened by rising temperature with more evaporation and an increased ability of the 

atmosphere to hold water which leads to more intense precipitation events in some areas, but 

the extra areas of the world may suffer from significant reductions in precipitation, so-called 

droughts. Although it is unequivocal that many hydroclimatic extremes result from natural 

climate variability, the link between climate change (such as global warming) and local 

changes in precipitation especially at the extreme level has proved harder to establish (Dadson 

et al., 2019). Therefore, it is worth having a broader review of the recent progress in assessing 

climate change impacts on hydroclimatic extremes. Apparently, there can be many ways of 

carrying out such review, in this thesis, however, I shall focus on the following four strands: 

1) identification and quantification of trends, cycles or characteristics in observed records of 

meteorological and hydrological extremes (section 1.2.1),  

2) attribution analysis of historical climate change and variability which may lead to the 

changes of extreme phenomena (section 1.2.2), 

3) evaluation of the climate projected effects on extremes (section 1.2.3) and 

4) computer vision and its application in recognising hydroclimatic extremes (section 1.2.4). 

1.2.1 Quantification of hydroclimatic extremes from observed records 

Hydroclimatic extreme events are usually regarded as the most unexpected, unusual, rare but 

severe events such as heavy rainfall, floods, droughts, cyclones, avalanches, heat waves, and 

cold waves which can have a significant impact on socioeconomic aspects such as agriculture, 
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water resources, ecosystem services and urban infrastructure, sometimes can cost the severe 

loss of human lives and properties. The term “extreme” is generally defined as the occurrence 

of a value of a weather or climate variable (e.g., heavy rainfall) above (or below) a threshold 

value near the upper (or lower) tail of the range of observed values of this variable (Seneviratne 

et al., 2012). Different disciplines have different selections of the threshold. For example, the 

Intergovernmental Panel on Climate Change (IPCC), defines the extremes as those are in the 

top (or below) 10% of severity for the given event type at a particular place and time of year. 

NCDC (NOAA's National Climatic Data Centre) defines extreme events (weather or climate) 

as those lying in the outermost 10% of the natural events based on the historical weather records 

(e.g., long-term rainfall records).  

Despite the differences in defining extreme events, two approaches have been adopted in many 

studies and are considered as the most frequently used. The first approach, namely the “Annual 

Maxima (Minima) method”, is to select the maximum or minimum value within a fixed period, 

e.g., a year from the observed data series (Jenkinson, 1955). As it only includes the single 

extreme event for every year, the second or third highest/lowest extreme events which may as 

well be very important are ignored, thereby some information will be lost especially when the 

data length is not long enough (e.g., < 50 years). However, this approach is beneficial for water 

resources management which requires providing a single extreme event per year. To obtain a 

sufficient number of events and maintain as many characteristics of extreme events as possible, 

the other approach, namely the “Peak over Threshold (POT) method”, was proposed to select 

extreme events based on a defined threshold (e.g., > 95th or 99th percentiles) during a period 

(Leadbetter, 1991). More extreme events will be involved by applying the POT method, but a 

further question needs to be addressed, e.g., how to choose an appropriate threshold, as an 

inappropriate selection will result in inaccurate quantification of hydroclimatic extremes; and 

how to prove that the data over the threshold are independent when applying a distribution type 

to fit them. Therefore, the selection of two approaches should be considered and normally 

based on the study objective and data availability. 

• The production of hydroclimatic data and the challenge for data application  
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As hydroclimatic regimes vary in both spatial and temporal dimensions, spatiotemporal 

analysis is an essential approach to quantifying the characteristics of hydroclimatic extremes 

such as intensity, magnitude, duration, spatial extent and variability (Ljungqvist et al., 2016). 

A great effort has been made to provide the measurement of hydroclimatic variables such as 

rainfall with high spatial and temporal resolution due to the rapid developments in 

environmental monitoring technology. Historically, hydrometeorological datasets were often 

relatively scarce in space, and only available at a limited number of locations, because data 

collection was often restricted by technical conditions, instruments and means of storage. To 

make full use of these finite data, statistic methods were applied.  In terms of rainfall data as 

an example, there are many statistical methods developed to translate point rainfall records 

usually collected from certain hydrological gauges or stations to basin/areal rainfall. For 

instance, the areal reduction factor (ARF) has been widely used, possibly under different names 

in different countries (NERC, 1977; US Weather Bureau, 1958). More recently, however, 

spatially disaggregated, grid-based hydroclimatic datasets have become gradually available 

with steady improvements in both accuracy and spatiotemporal resolution. A typical case is the 

NIMROD weather radar system deployed by the UK Met Office which can provide up to 1 

km/5 min precipitation distribution over the country (Fairman Jr et al., 2017; Golding, 1998). 

Similarly, satellite-borne observations, such as the Global Precipitation Measurements (GPM; 

Islam et al., 2014; Ning et al., 2016) can now provide large scale coverage of the precipitation 

coverage in near real-time. 

Another important source of producing high-resolution data is model-simulated hydroclimatic 

fields. In this case, rainfall, temperature as well as soil moisture fields generated by numerical 

weather models or climate models can be used to drive other model simulations. Practices of 

using the so-called coupled model approach started to gain momentum in the early 2000s when 

the numerical weather models and climate models were able to produce simulations with high 

enough spatial resolution, e.g., at tens of kilometres. As such, there have been plenty of studies 

since then, such as Bauer et al. (2015), Moufouma-Okia and Jones (2015) and many more 

inspired by the Hydrological Ensemble Prediction Experiments (HEPEX; Schaake et al., 2007) 

initiative. Datasets such as the ERA40 (Uppala et al., 2005) have been widely used. Although 
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these datasets are not originally produced over sets of grids, or at least not the commonly 

recognised types of grids; they often are interpolated onto regular grids nevertheless in order 

to facilitate further analysis and for being used as other model inputs. For instance, global 

numerical weather models tend to use the Gaussian Grids, e.g., EAR40 grids. The local area 

model (LAM), such as the Weather Research and Forecasting model (WPF; Skamarock et al., 

2001) uses regular grids spatially but does so only on a projected plane. Moreover, the 

importance and hence popularity of using these grid-based forcing data are also underlined by 

the needs of many climate change impact studies where climate projections, such as those from 

the Coupled Model Inter-comparison Project (Covey et al., 2003; Giorgetta et al., 2013), are 

normally provided over a set of regular longitude/latitude grids over the globe. To better 

facilitate the community in using these grid-based data and encourage the interoperability 

among models, the Network Common Data Format (NETCDF; Rew and Davis, 1990) has 

become the de-facto standard in climate change impact studies, although other traditional 

formats such as GRIdded Binary (GRIB; Rutledge et al., 2006) or Hierarchical Data Format 

(HDF; Duane et al., 2000) are well supported as well. And some open-sourced libraries such 

as Geospatial Data Abstraction Library (GDAL) released by the Open Source Geospatial 

Foundation (Warmerdam, 2008) have been developed and published openly for reading and 

writing various types of geospatial data formats (e.g., at least 154 raster and 93 vector data 

formats can be supported by GDAL) and applied in many areas of science (Zhan and Qin, 

2012).  

However, applications of these new datasets also bring some challenges. For example, in the 

context of using grid-based hydroclimatic datasets for providing external forcing field of 

hydroclimatic extreme quantification, an important step is to understand, quantify and if 

possible, correct the errors and/or bias in these fields. The spatially variant nature of these data 

remains the centre of the process. Some efforts have been put where e.g., Rojas et al. (2011) 

applied a statistical bias correction to improve the regional climate model (RCM) driven 

climate simulations across Europe; Rabiei and Haberlandt (2015) proposed to merge rain gauge 

measurements and weather radar data which is grid-based data by bias correction. Specifically 

for weather radar adjustment, many algorithms such as the Mean Field Bias (MFB) method 
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and the Kriging with External Drift (KED) method, adjust the radar data solely by a 

multiplicative factor which does not vary spatially; however, more recently the Conditional 

Merge algorithm introduced by Sinclair and Pegram (2005) and implemented by Guenzi et al. 

(2017), considers the spatial impacts by conditioning the gauge adjustment on the radar 

precipitation values at gauge locations (Silver et al., 2019).   

Apart from being used as inputs to the models, the grid-based hydroclimatic datasets are also 

a foundation to support further analysis on environmental change both spatially and temporally. 

It is clear from the above examples that the grid-based hydroclimatic data have spatial patterns 

and characteristics with regard to certain changing factors that need to be diagnosed. Such 

diagnosis, without exception, is done over analysing targeted variable(s) and/or their 

combinations sampled spatially within predefined boundaries such as political regions (Bell, 

1976) and river catchments (Monteiro et al., 2016). Further, to understand the random nature 

of the errors and uncertainties associated with the spatial data, the Monte-Carlo simulation 

approach is commonly used to be combined with geostatistical stochastic simulation for 

uncertainty quantification. A simple procedure of such is to perform simulations of points (can 

be data or events) randomly distributed in the predefined area, calculate the empirical 

distribution function of such inter-point distances in each case and then obtain further values 

of the statistic by the goodness of fit (Besag and Diggle, 1977). Following this approach, some 

applications have been published, e.g., Smith and Cheeseman (1986); Xu et al. (2005) and Wu 

et al. (2018); however, applications on hydroclimatic grid-based data remain scarce and many 

previous studies on the spatiotemporal analysis of hydroclimatic variables were conducted over 

predefined areas. 

• Spatiotemporal variation analysis of hydroclimatic extremes using grid-based data 

As these new, spatially disaggregated, grid-based hydroclimatic datasets have become more 

accessible to the research community, it is unsurprising that more and more research has started 

to make use of these datasets to study the spatiotemporal variation of hydroclimatic events 

(Peleg et al., 2018), and some are at extreme levels. For example,  Du et al. (2019) identified 

the spatiotemporal variation and trend of precipitation and streamflow extremes in the Xiang 
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river basin using gridded data with the horizontal resolution of 0.5 degrees. They analysed the 

trend of each grid of precipitation extremes at different time scales and revealed the spatial 

distribution. Fairman Jr et al. (2017) studied the effects of size, shape, and intensity of 

precipitation features that are defined as contiguous areas of nonzero precipitation rates on the 

precipitation climatology over Great Britain and Ireland from 2006 to 2015;  Laverde-Barajas 

et al. (2020) proposed a spatiotemporal object-based method and analysed the spatiotemporal 

characteristics of different storm events at catchment scale (duration, spatial extent, magnitude, 

and centroid) by using a 3D pattern (e.g., the storm event changes in the scale of longitude, 

altitude and time) extracted from gauge-adjusted weather radar data. Diaz et al. (2020) 

proposed a method to monitor the spatial paths of drought (i.e., drought centroids localisation 

and linkage) and its severity and duration by using grid data from the Standardized 

Precipitation Evaporation Index (SPEI) Global Drought Monitor over India (1901-2013). And 

more applications focused on spatial variation of grid-based hydroclimatic observations can be 

seen in  Drusch et al. (2004), Thorndahl et al. (2017), Chen et al. (2015) and UKCIP (Banwell 

et al., 2018; Lowe et al., 2018; Prein et al., 2017). Most of the abovementioned studies for 

quantifying or analysing the hydroclimatic extremes varying with time and space, are on a per-

event basis and then use different approaches to explore its development in spatial and temporal 

extent, which is one of the main objectives for spatiotemporal quantitation analysis in 

hydroclimatic extremes. 

Another objective of the research in this area is to attempt to address the spatiotemporal 

variation of hydroclimatic extremes to support the water infrastructure engineering design, for 

example, the frequency analysis (Li et al., 2015; Overeem et al., 2010). A classical analysis 

approach for designing and validating many infrastructure systems (Climate Data, 2009) is to 

use historical hydroclimatic extreme data, such as maximum rainfall, temperature, river flows 

etc., to estimate the parameters of the required extreme value model which would offer 

probability distributions of the natural phenomenon in question, so as to address its occurrence 

or exceedance probability at given thresholds in a given region of interest. Since Jenkinson 

(1955) proposed a generalised approach to analyse the frequency distribution of annual 

maxima, much effort has been made in quantifying the natural phenomena at extreme levels 
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by using the Generalised Extreme Value (GEV) models with parameter estimation using the 

Maximum Likelihood (ML) method and L-Moments (LM) method, especially in designing and 

planning water engineering systems (Coles and Tawn, 1996; Lazoglou and Anagnostopoulou, 

2017; Mannshardt-Shamseldin et al., 2010; Shukla et al., 2012; Yoon et al., 2015). As the 

parameters are usually assumed to be unchanged, the risk assessment based on frequency 

analysis is defined as to be stationary.  

However, the last few decades have witnessed significant disturbances and changes to the 

hydrological regimes caused by climate change and human activities, which have resulted in 

changing frequency and intensity of hydrological extreme events over the world.  Numerous 

studies have researched many key hydroclimatic variables, such as precipitation, temperature, 

streamflow, as well as the compound events such as extreme flooding related to joint river-

tide-storm surge (De Luca et al., 2020; Zscheischler et al., 2018) which are indeed changing 

due to the impact of climate change (Assani and Guerfi, 2017; Herring et al., 2018). Therefore, 

in view of the reliability of infrastructure designs based upon extreme value analysis, stationary 

risk analysis has been re-assessed from a new adaptive perspective where Sarhadi et al. (2016) 

proposed a multivariate time-varying risk framework for all stochastic multidimensional 

systems under the influence of a changing environment. For the commonly used nonstationary 

GEV model, this is meant to assume that its parameters vary with time or other climate 

covariates. For example, Hasan et al. (2012) proposed two nonstationary GEV models for 

extreme temperature and each model assumes only one parameter as nonstationary depending 

linearly and exponentially in time respectively. Sarhadi and Soulis (2017) defined both the 

scale and location parameters for extreme precipitation analysis using a linear, time-varying 

representation. Their results demonstrated the underestimation of extreme precipitation if 

stationary models are used. Panagoulia et al. (2014) generated 16 nonstationary GEV models 

of extreme precipitation with linear time dependence of location and log-linear time 

dependence of scale, employing the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) for selecting the best model, and examined confidence intervals 

for model parameters. Different from the researches listed above which assume a constant 
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shape parameter, Ragulina and Reitan (2017) explored the change of the shape parameter and 

found that it evidently depends on the altitude of study areas. 

In summary, there has been a growing interest and related studies in quantifying the variation 

of hydroclimatic extremes in space and time, e.g., some focused on the event-based 

development of hydroclimatic variables and studied its duration, magnitude and spatial extent 

whilist others involved non-stationarity to fit a long-term record of series of hydroclimatic 

extremes (e.g., annual/seasonal/monthly maximum daily precipitation or streamflow) and then 

attempted to explore its spatial distribution. However, a limited number of specific domains or 

events were used because of data availability issues in hydrological observations somehow 

affect the outcome of studies e.g., the lack of generalisation over space (Ganguli and Coulibaly, 

2017), therefore, study of spatiotemporal variation of hydroclimatic extremes still has a long 

way to go.  

1.2.2 Climate modes of variability and hydroclimatic extremes 

Many hydroclimatic extremes result from natural climate variability (Dadson et al., 2019). In 

the hydroclimatic extreme study, the climate modes of variability are important for discussion, 

which aims to explain how climate variability triggers the changes of extremes (Field et al., 

2012; Seneviratne et al., 2012). 

In recent decades, many efforts have been made in identifying and quantifying the link between 

extreme events and possible natural climate modes such as El Niño-Southern Oscillation 

(ENSO), North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), Arctic-midlatitude 

interactions, sea surface temperature (SST), anthropogenic mode and land-surface process. For 

example, Scaife et al. (2008) estimated the changes of both temperature and precipitation in 

extreme winter weather events over Europe based on the historical observation of 30 years and 

found that large changes in the frequency of 10th percentile temperature and 90th percentile 

precipitation events are attributed to the changes of NAO on regional and seasonal scales. Zhao 

et al. (2016) quantified the contributions of anthropogenic factors including the greenhouse 

gases (GHGs), anthropogenic aerosols (AAs), and land use (LU) and external natural forcing 
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to climate change in China by using both observed temperature and precipitation records and 

simulations from the Coupled Model Intercomparison Project Phase 5 archive (CMIP5) over 

50 years. They found that both the anthropogenic (GHGs and AAs) and external natural forcing 

contribute to a very high percentage (around 95%) of the changes of observed temperature; and 

both LU and external natural forcing contribute around 70% of changes on the long-term non-

linear trends in precipitation. 

Among all the climate modes that lead to the variability of hydroclimate extremes, the El Niño-

Southern Oscillation (ENSO) has been regarded as one of the most profound climate 

phenomena related to hydroclimate extremes in the tropical Pacific, which has a global effect. 

An El Niño episode is usually associated with abnormal/different frequencies of occurrence of 

climate extremes such as very heavy rainfall and extreme temperatures, which brings 

challenges for organizations coping with natural disasters. And the climate variability induced 

by El Niño is worldwide and its impacts have been observed in many regions, e.g., North 

America (Larkin and Harrison, 2005; Neale et al., 2013; Shimizu et al., 2017), Western Pacific 

and Indian Oceans (Ratnam et al., 2014; Yadav et al., 2013), East Asia (Jiang et al., 2019; Liu 

et al., 2014), Europe and the Atlantic Ocean (Amaya and Foltz, 2014; Graf and Zanchettin, 

2012), and Arctic (Hu et al., 2016; Kim et al., 2020). However, an El Niño episode is difficult 

to predict because of its diverse properties, e.g., El Niño can sometimes be observed in the 

eastern Pacific and sometimes occur in the centre and sometimes in both portions of the Pacific 

simultaneously. In other words, the generation mechanisms of different ENSO events may not 

be the same, which cannot be fully described by one single index. By tracking the central 

location of the ENSO-associated SST anomalies, Trenberth and Stepaniak (2001) proposed 

that the different types of ENSO can be contrasted by differentiating the ENSO-associated SST 

anomalies between the central and eastern Pacific. Therefore, the different generation 

mechanisms and underlying dynamics of two distinct types of ENSO have been identified (Kim 

and Yu, 2012; Ashok et al., 2007; Fedorov et al., 2015; Yu and Kim, 2010), i.e., a Central-

Pacific type located in the central tropical Pacific and less sensitive to thermocline variations 

during its generation and an Eastern-Pacific type located mainly in the tropical eastern Pacific 

and its generation involves equatorial thermocline variations. And in recent two decades, there 
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is a growing interest in studying different impacts produced by these two types Central-Pacific 

El Niño and Eastern-Pacific El Niño and their teleconnection associated with the change of 

hydroclimate extremes. 

In summary, these climate modes of variability, which span a range of time and space scales, 

can greatly help risk managers to understand the physical mechanisms and variability of the 

extreme phenomenon in hydrology and meteorology. 

1.2.3 Climate models, climate projections and hydroclimatic extremes 

Another strand of research to quantify the possible changes in hydroclimatic extremes driven 

by climate change has concentrated on the provision of projections of the relevant 

meteorological components of the water balance in the future (Dadson et al., 2019). Many 

climate models (CM) are well established for simulating climate dynamics and forecasting the 

future. A commonly applied method is to use the outputs of general circulation models (GCMs; 

Colman, 2003) as the driving boundary conditions, simulating various hydroclimatic variables, 

such as the changes of rainfall, flood and groundwater etc, at a specific scale by using regional 

climate models (Im et al., 2015; Sato et al., 2007). The GCMs are the basic tools for simulating 

global changes due to greenhouse gas emissions which lead to the changes of hydroclimatic 

variables under the effects of climate change on a global scale. However, it is widely recognised 

that all climate models can contain various uncertainties coming from, e.g., the assumption of 

initial conditions of the atmosphere and ocean, the dynamic and physical formulation of the 

model structure and the scenarios of economic activity on which the models are based. Thus, 

how to reduce/quantify uncertainties thereby improving the accuracy of climate simulation and 

projection is the main issue to be addressed (Weigel et al., 2010; Weigel et al., 2008).  

A typical approach is to combine and upgrade the CP models, e.g., using ensemble/coupled 

climate simulations with various combinations of RCMs and GCMs that can provide a better 

simulation under climate change within an uncertainty range. It exploits the strengths of diverse 

methods or perspectives and yields a more appropriate approach to reduce the simulation errors 

and increase the accuracy of climate prediction, which is currently in use as a matter of routine 
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within national meteorological services (Buontempo et al., 2015; Meehl et al., 2007; Randall 

et al., 2007).  

Moreover, in multi-model climate model projection developments, the Coupled Model Inter-

comparison Project (CMIP) is one of the well-known foundational frameworks of climate 

science used for the design and distribution of global climate model simulations of the past, 

current, and future. The CMIP project has evolved over six phases and has been applied to 

various international multi-model research (Eyring et al., 2016; Waliser et al., 2020). Besides, 

it remains an authentic data source for producing national and international climate-change 

assessment and impact studies by making the outputs available in a standardised format for 

public use.  

In recent decades, many efforts have been made to evaluate the skills of CMIP and to improve 

the climate simulations. For example, Ramirez-Villegas et al. (2013) assessed 24 CMIP3 and 

26 CMIP5 models of their simulation skills by studying the mean climate and interannual 

variability for four seasons in five tropical regions. They found that the simulation on seasonal 

precipitation and wet-day frequency depicts a larger error than seasonal mean temperature and 

in more than 30% of the study areas, no single GCM matches observations for monthly 

precipitation and wet-day frequency, 50% for diurnal range and 70% for mean temperatures. 

Comparing the generations of CMIP, Cannon (2020) found that the latest generation (i.e., 

CMIP6) of climate models provide less biased simulations for use in regional dynamical and 

statistical downscaling efforts than previous generations by comparing historical simulations 

of daily sea-level pressure circulation types over 6 continental-scale regions (North America, 

South America, Europe, Africa, East Asia, and Australasia) by 15 pairs of global climate 

models from CMIP5 and CMIP6. Di Luca et al. (2020) explored and quantified the skill of 

CMIP5 and CMIP6 models for simulating daily temperature extremes by composing the 

temperature extremes errors and found that although CMIP models systematically exaggerate 

the magnitude of daily temperature anomalies for both cold and hot extremes, they can simulate 

temperature extremes well. Besides, the CMIP6 improvements relative to CMIP5 are 

systematic across most land areas and are only partially explained by the increase in horizontal 

resolution and other differences must therefore help explain the higher CMIP6 skill. Some 
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other studies also have been carried out to explore the gap between the latest CMIP6 with 

previous generations when simulating variables such as precipitation, sea levels and 

temperature in different regions, e.g., Séférian et al. (2020); Xin et al. (2020); Gusain et al. 

(2020); Stouffer et al. (2017). 

Another approach is to use the downscaling technique to increase the accuracy of simulation 

as the horizontal grid spacing of most global climate models is widely recognised as too coarse 

to adapt to the local-scale decisions (Dadson et al., 2019; Maraun et al., 2010). Normally, 

downscaling can be done statistically by either using the empirical relationship between 

predictors in a global model and variables of interest, or dynamically using a regional model 

with a higher resolution within a limited area which is a subdomain of the global model. For 

instance, due to the limitations in resolution and physical parameterisations of GCMs, e.g., the 

typical horizontal resolution of GCM is 250 to 600 km (IPCC., 2021), in order to simulate the 

hydroclimate variables at smaller scales such as a regional or local scale, the dynamical 

downscaling (DDS; Xu et al., 2019) technique has been proposed and applied to estimate 

various climatic conditions with a fine/higher resolution (such as ~50 km, ~25 km and even 

~10 km) in a physical model by involving detailed geographic information such as topography. 

It can be carried out by the regional climate model (RCM) nested within GCM simulations.  

Although the performance of climate projection simulations has been remarkably improved 

with even higher resolutions and now can be accessed by the public, the improvements are not 

enough nor effective due to technology limitations, knowledge level of nature, etc, in many 

respects and especially in terms of revealing extreme events. Most abovementioned studies 

treated the climate as a mean level of the state. How to bridge the gap between the climate-

change data produced by climate projections and the in-situ observations for hydro-climatic 

extremes, has yet to be explored fully.  
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1.2.4 Computer vision and its potential application in recognising and 

classifying hydroclimatic extremes 

Computer vision is an interdisciplinary field of science that aims to produce digital systems for 

processing, analysing, and understanding visual data such as images and videos at a high level 

in the same way that the human visual system does (Huang, 1996). It is not a new technology 

since the historical roots of computer vision began in the 1950s (Rosenfeld, 1998). The early 

foundations of computer vision have been constructed in the 1970s with many algorithms are 

proposed e.g., extraction of edges, labelling of lines, non-polyhedral and polyhedral modelling, 

representation of objects as interconnections of smaller structures, optical flow, and motion 

estimation (Baumgart, 1974; Milgram, 1979; Shirai, 1979; Zucker, 1976). Then the studies 

turned to focus on more rigorous mathematical techniques for performing quantitative image 

and scene analysis to deduce the shape by studying shading, texture and contour (HG Barrow 

et al., 1978; Harry Barrow et al., 1978; Rosenfeld and Weszka, 1980; Terzopoulos, 1983). In 

the 1990s, a lot of efforts were made on projective 3-D reconstructions for recognition, e.g., 

multi-view stereo algorithms can produce a complete 3-D surface (Szeliski, 1999). In this 

period, many algorithms/techniques have been improved, such as tracking algorithms (Guo and 

Ljung, 1995; Kass et al., 1988), optical flow methods (Bergen et al., 1992; Bruhn et al., 2005), 

image segmentation (Pavlidis and Liow, 1990; Shi and Malik, 2000), factorization techniques 

(Poelman and Kanade, 1997). Especially, statistical learning techniques emerged and were 

firstly applied in practice to recognise faces from images and it should be highlighted that the 

interaction between computer vision and computer graphics was increased significantly during 

this period (Szeliski, 2010), e.g., in the field of image-based rendering and modelling (Shum 

et al., 2008), image morphing techniques (Wolberg, 1998), view interpolation (Chen and 

Williams, 1993), panoramic image stitching (Chen and Klette, 1999) and full light-field 

rendering (Levoy and Hanrahan, 1996). The 2000s has continued to witness a deepening 

interaction between computer vision and graphics and some notable techniques such as 

computational photography technique that can create and convert the high dynamic images to 

displayable results and extract different regions from even the overlapping images (Agarwala 

et al., 2004), feature-based recognition technique (Betta et al., 2011), Markov random field 



1.2 Scope of research 16 

 

 

(MRF) in reference algorithm (Mehta et al., 2018). Recent progress has been seen in the 

application of machine learning techniques to computer vision problems. Thanks to the rapid 

development of new hardware paired with these sophisticated algorithms, computer vision 

techniques can process more complex problems of identifying, recognising and tracking the 

patterns from the complicated world. Nowadays, computer vision has been applied in various 

fields e.g., bioinformatics, signal processing, image analysis, information retrieval, robotic 

navigation (Paolanti and Frontoni, 2020; Stowell and Plumbley, 2014).  

In the field of hydrology and climate science, computer vision has been applied in some 

research such as flood monitoring and mapping (Arshad et al., 2019), fusing spatiotemporal 

data for hydrological modelling (Jiang et al., 2018), and causal inference for climate change 

events from satellite images (Ramachandra, 2019). In particular, the last decade witnessed a 

dominating trend of applying machine/deep learning techniques to computer vision, for solving 

hydroclimatic pattern recognition problems due to the increased availability of big data (Bishop, 

2006). For example, recently, some researchers applied machine learning methods such as 

artificial neural networks (ANNs) to extract features of spatiotemporal climatic variables (Qiu 

et al., 2017; Wu et al., 2013); others parameterised those features (Gentine et al., 2018; 

O'Gorman and Dwyer, 2018) to realise weather predictions (Liu et al., 2016; Petersik and 

Dijkstra, 2020). Among them, Nayak and Ghosh (2013) developed an algorithm by 

incorporating a machine learning technique based on a support vector machine (SVM), to 

identify the specific patterns before extreme events (a lead time of 6 h to 48 h) therefore 

predicting the extreme rainfall in Mumbai, India, using mesoscale and synoptic-scale weather 

patterns. They introduced two phases of support vector classifier as the significant differences 

that were observed between the weather patterns before the extreme rainfall during night-time 

and day-time and used frequency of high anomaly values of weather variables at different 

pressure for the predictors of SVM. They also compared the performance of the prediction with 

the state-of-the-art statistical technique fingerprinting approach and found a better prediction 

by the SVM algorithm.  

Nguyen-Le and Yamada (2019) used Self-Organizing Maps (SOM) combined with the K-

means clustering technique to classify the anomalous weather patterns (WPs) of heavy rainfall 
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days during the summertime (May–June, MJ, and July–August–September, JAS) in the year 

of 1979 to 2007 over the Upper Nan River basin, Thailand. Their results revealed that the 

primary factors for producing local heavy rainfall are the westerly summer monsoon in MJ and 

westward-propagating tropical disturbances including tropical cyclones in JAS. They applied 

the classification results to predict the occurrence of heavy rainfall days over the basin in 

summer 2008–2017 using prognostic WPs from the operational Japan Meteorological Agency 

Global Spectral Model (GSM) and found a significant improvement to the forecast skills up to 

3-to-33-day lead times.  

Chattopadhyay et al. (2020) applied an unsupervised clustering algorithm to classify the daily 

large-scale weather patterns over North America and then evaluated the performance of the 

deep learning method convolutional neural network (CNN) to re-identify and predict these 

clusters up to 5 days ahead of time. The results showed that CNN that identified 1000 samples 

or more per cluster has an accuracy of 90% or better for both identification and prediction while 

the prediction accuracy scales weakly with the number of lead days and CNN outperforms 

logistic regression, a simpler machine learning algorithm. 

Although there have been a few studies attempting to incorporate machine/deep learning 

techniques into pattern recognition for classifying and predicting extreme events in 

hydroclimatic science, there is still a challenge needing to be addressed due to the properties 

of climate and environmental data. These data provided either by model simulations or via 

observations are usually spatiotemporal, nonlinear, nonstationary, chaotic with high 

dimensions and large scales. For example, large-scale atmospheric circulation significantly can 

affect the daily weather and extreme events, which leads to coherent and correlated patterns 

due to various physical processes, and non-stationarity due to coupling and anthropogenic 

effects. In addition, the observational datasets are usually not long enough for training the 

required algorithm, in addition to the persistent noise in measurements. Therefore, the 

robustness of pattern recognition has not been fully studied yet. 
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1.3 Research objective and questions 

According to Section 1.2, the gaps can be identified as: 

• As more grid-based hydroclimatic data become available, their spatial patterns and 

characteristics concerning possible factors need to be diagnosed. Meanwhile, the 

substantial overhead of computing these large-sized datasets has affected research’s 

capacity of studying the spatiotemporal variation of hydroclimatic extremes, especially 

in the view of non-stationarity. Therefore more efficient sampling tools and methods 

are worthy to be explored. 

• Recent spatiotemporal quantification analysis mostly focused on the hydroclimatic 

extremes on the per-event basis and attempted to study its boundary and spatial 

development. However, corresponding to the common practice where extremes for 

given areas of concern, the spatial features of the regions of interest (ROIs) play a 

crucial role in determining the amount of quantity of hydroclimatic extremes.   

• Many climate projection models and related quantification studies have shown a strong 

ability to capture the average level of hydroclimatic variables under climate change. 

Although some studies focused on the extreme level, they were frustrated by the limited 

length of data, the small number of study areas thereby lacking generalisation.  

• Computer vision algorithms have been developed and used widely in many areas of 

science, however, their techniques and applications in studying climate change and 

quantifying hydroclimatic extremes is a challenge due to the properties of the 

environmental data which are usually interrelated, chaos and large-scaled. 

To attempt to fill these gaps, three objectives are proposed: the first objective of the study is to 

develop a quantitative modelling framework that is expected to be widely used for quantifying 

spatial and temporal variation of hydroclimatic extremes. Unlike the event-based analysis, the 

framework is further to support an ROI-based analysis that focuses on certain hydroclimatic 

variables in a number of regions with different locations, sizes, shapes and orientations and 

studies how the variability of extremes in time (by involving the perspective of non-



1.3 Research objective and questions 19 

 

 

stationarity) and space can be related/sensitive to different features of regions. The potential of 

the proposed quantitative framework is to be illustrated using two century-long grid-based 

datasets of daily rainfall over Great Britain and Australia, as an example. As one of the most 

representative hydroclimatic variables, rainfall is a dominant component of the global 

hydrological cycle; intense rainfall can lead to floods. Although the rainfall process is a 

boundless phenomenon, its area-oriented variation is of the concern of the engineers and flood 

risk managers. It is clear that the area-oriented rainfall variation and distribution are closely 

related to the climate at large scale (Millán et al., 2005); in the meantime, local features and 

processes, such as the topography, urbanisation, as well as the orientation and the size of the 

area can also affect the rainfall amount in question (Buytaert et al., 2006). 

The framework is also extended to estimate the joint probability of compound events driven 

by more than one hydroclimatic variable in the view of nonstationarity. As very few studies in 

the field of nonstationary multivariate probability analysis, this context should be highlighted 

as one of the innovations of the study. 

Further activity of applying this quantitative framework is to use the simulated rainfall from 

two climate models, then compare the variability of rainfall extremes with the observation, 

aiming to explore the bias of climate projections. 

Different from the first objective of ROI-based analysis, the second objective of the study is to 

attempt to design a more stable algorithm for supporting AI-based training to help classify and 

monitor the development of rainfall events (or rainfall cells over the threshold) from the large-

sized, chaos environmental datasets. This algorithm is further tested by three case studies and 

as the front-end of the deep learning technique, its potential development to support deep 

learning is also involved. 

The third objective is to support decision making under uncertainty in the context of flood 

forecast and early warning, by evaluating the risk attitudes of decision-makers under uncertain 

consequences thereby supporting decision making.  

Seven research questions are therefore raised for realizing each objective and are specified as:  
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Q1 How to sample the large-sized, grid-based hydroclimatic data to generate ROIs and 

extract the spatiotemporal features from them? 

Q2 How do hydroclimatic extremes (rainfall in the study) change over time and space and 

further affect the spatial dependencies? 

Q3 How are the quantitative patterns and variations of rainfall extremes linked to large-

scale climatology? 

Q4 What are the methods for assessing the applicability of quantitative (e.g., stationary or 

nonstationary) models? 

Q5 How to quantify the relationship between observed and climate projected rainfall 

extremes? 

Q6 How to support pattern recognition and classification by applying deep learning 

techniques effectively and robustly? 

Q7 How to understand/represent the decision-making process when providing uncertain 

information of hydroclimatic extremes such as flood forecasts?  

1.4 Study datasets  

There are four grid-based datasets used in this study, two of which are observed rainfall records 

named as the “Gridded Estimates of daily Areal Rainfall” (GEAR; Tanguy et al., 2016) and 

the “Australian Data Archive for Meteorology” (ADAM; Jones et al., 2009). The rest are 

simulated rainfall datasets from climate model projections, which are the “ERA20CM” 

(Hersbach et al., 2015) and “UKCP18” (Lowe et al., 2018). The details are shown in Table 1.1. 

Table 1.1 The datasets applied in the study. 

Types Observation Simulation 
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Name of 

Dataset 
GEAR ADAM ERA20CM 1 UKCP18 2 

Country 

Covered 

Great Britain 

(GB) 
Australia (AU) 

Great Britain 

(GB) 

Great Britain 

(GB) 

Temporal 

Resolution 
24 hours 24 hours 3 hours 24 hours 

Spatial 

Resolution 
1 km × 1 km 

0.05o × 0.05o 

(approx. 5 km × 

5 km) 

0.4o × 3.15o 
 

2.2 km × 2.2 

km 

Overall 

Covered 

Area 

700 × 1250 km2 
44.5S – 9.95S 

112E – 156.3E 
Whole UK Whole UK 

Duration 
1898 – 2010 

(113 years) 

1890 – 2018 

(129 years) 

1900 – 2010 

(111 years) 

1981 – 2000 

(20 years) 

Provider(s) 

Centre for 

Ecology & 

Hydrology (CEH) 

The Bureau of 

Meteorology 

European 

Centre for 

Medium-Range 

Weather 

Forecasts 

(ECMWF) 

Met Office 

Hadley Centre 

The GEAR dataset is a grid-based (1 × 1 km2) rainfall estimation that covers the mainland of 

Great Britain (GB) from 1898 to 2010. It is derived from the UK Met Office national database 

of observed precipitation from the UK rain gauge network. The natural neighbour interpolation 

method with a normalisation step based on the average annual rainfall, was used to generate 

the daily estimates (Tanguy et al., 2016). The geographical origin of the GEAR data matrix 

starts from the location of 400 km west, 100 km north of the true Origin (49°N, 2°W, an 

offshore point in the English Channel which lies between the island of Jersey and the French 

port of St. Malo), spreading 700 km eastward and 1250 km northward. The coordinates are in 

the National Grid Reference (NGR; Ordnance Survey, 1946) which is a projected map 

coordinate system with the easting (x-) and northing (y-) expressed in linear kilometres. 

 

1 To match the spatial and temporal resolutions of the ERA20CM dataset with the GEAR dataset, I firstly project 

the longitude/latitude coordinate of the ERA20CM dataset to the NGR by adopting the transverse Mercator 

projection method, then convert the 3-hour rainfall to the 24-hour-based (9 am-9 am) by statistical aggregation. 
2 To match the spatial and temporal resolutions of the UKCP18 dataset with the GEAR dataset, I firstly rotate the 

coordinate back to be the same with the standard reference NGR and do 1 km interpolation to keep the same size 

of grids. 
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The ADAM dataset is generated using a sophisticated analysis technique described in Jones et 

al. (2009), which is also grid-based (0.05o × 0.05o, approx. 5 × 5 km2) rainfall from 01/01/1900 

to 31/12/2018 over Australia (AU) based on the Geocentric Datum of Australia 1994 (GDA94; 

Collier, 2002) with the origin (44oS, 112oE) i.e., (0,0) km, and easting (x-) and northing (y-) 

transformed to kilometres. 

The recorded rainfall values of both observed datasets are provided as daily rainfall, i.e., the 

total rainfall amount over a predefined 24-hour (9 am-9 am) period which refers to the 24 hours 

prior to the reporting time for the ADAM dataset and the 24 hours after for the GEAR dataset.  

The ERA20CM data is derived from an ensemble climatic projection (with 10 ensemble 

members) at a 0.4o × 3.15o (latitude by longitude) with a 3-hour spatial and temporal resolution 

from 1900 to 2010 (Hersbach et al., 2015), provided by the European Centre for Medium-

Range Weather Forecasts (ECMWF). 

The UKCP18 (short for ‘the UK Climate Projection 2018 project’) data are produced by the 

UK Met Office Hadley Centre, providing changes in various climate variables over the GB in 

rotated pole coordinates, downscaled to a high spatial resolution (2.2km). The entire 

projections have three time-slices (1981-2000, 2021-2040 and 2061-2080), for a high 

emissions scenario, RCP8.5. In this research, I selected the first time-slice 2.2 km × 2.2 km 

grid-based daily rainfall data compared with the GEAR data which are observed rainfall.  

1.5 Layout of thesis 

This thesis is structured with nine chapters which are further organised into five parts: the 

introduction, conclusion and the three main technical parts which correspond to the three 

objectives proposed in Section 1.3. The structure is depicted in Figure 1.1 and described below:  

Introduction presents the research background, current literature, objectives and research 

questions and datasets which are applied in the study (Chapter 1). 
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Part I is the most comprehensive part that discusses the quantitative modelling framework for 

analysing spatiotemporal extreme patterns, including the development of an important toolbox 

of spatial random sampling (SRS-GDA) to support the spatial analysis for large-sized, grid-

based data (Chapter 2); quantifying the extremes changing over space (geographical location, 

sampling size and orientation) and time using the proposed probability models framed as the 

stationary and nonstationary and generalised linear models with the assistance of high-

performance computation (HPC) as presented in Chapter 3 and Chapter 4. This framework is 

further examined by using two series of datasets coming from two types of climate projection 

models, aiming to reveal its bias on quantifying extremes compared with observations (Chapter 

5). Moreover, the framework is extended to estimate the joint probability of the multivariate 

extremes and a case study for evaluating the risk of compound flood is then applied, which is 

presented in Chapter 6.  

Part II presents the development of a spatial pattern recognition toolbox (SPER) that is used 

to quantify and extract both spatial and physical features of the hydroclimatic patterns over the 

threshold. Its applicability and potential ability for supporting AI-based training (such as a 

convolution neural network) are discussed (Chapter 7).  

Part III discusses the building and testing of the two decision-making models driven by 

decision theory and data respectively to simulate human behaviour in the context of flood 

forecasting and early warning system. The risk attitudes confronting extreme events are 

analysed, which contributes to the understanding of the decision-making under uncertainty 

(Chapter 8). 

Conclusion highlights the innovation and contribution of the thesis and discusses the future 

work (Chapter 9).  
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Figure 1.1 Layout of the thesis.



 

 

Part I 

 

Quantitative modelling framework for hydroclimatic extremes
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The quantitative framework has three main steps i.e., sampling (Chapter 2), modelling and 

quantifying (Chapter 3 and Chapter 4), and is depicted in Figure I.1 where the grid-based 

rainfall dataset is exemplified.  

 

Figure I.1 Quantitative modelling framework for analysing the spatiotemporal variation of hydroclimatic 

extremes. 

 

  





 

 

Chapter 2 The Development of a Spatial Random 

Sampling Toolbox 

Studying hydroclimatic extremes often needs to deal with large-sized, grid-based forcing 

datasets. How to effectively process such datasets to reveal the patterns and characteristics of 

hydroclimatic extremes with regard to different spatial features of the regions of interest (ROIs) 

is the first challenge as discussed in Chapter 1, e.g., as one of the proposed research questions 

Q1. To address this question and to provide an effective tool for supporting the environmental 

change studies and my subsequent work (i.e., the ROI-based analysis), a new, open-source 

SRS-GDA toolbox was developed, aiming to provide a random spatial sampling for grid-based 

hydroclimatic datasets, which can be used to carry out random spatial sampling of grid-based 

quantities with various constraints: shape, size, location, dominant orientation and resolution. 

This toolbox is a fundamental tool to support spatiotemporal analysis on extremes presented in 

Chapter 3 and Chapter 4. 

 

2.1 Introduction 

This chapter 3 presents the development of a Spatial Random Sampling toolbox for Grid-based 

Data Analysis (SRS-GDA) which can generate arbitrary samples from grid-based 

environmental observation and modelling dataset automatically, aiming to answer the research 

 

3 Part of the contents of Chapter 2 has been published in “Wang, H., & Xuan, Y. (2020). SRS-GDA: A spatial 

random sampling toolbox for grid-based hydro-climatic data analysis in environmental change studies. 

Environmental Modelling & Software, 124, 104598. https://doi.org/10.1016/j.envsoft.2019.104598.” 

https://doi.org/10.1016/j.envsoft.2019.104598
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question Q1: how to sample the large-sized grid-based hydroclimatic data and extract the 

spatiotemporal features from them? The main function of this open-source toolbox is 

highlighted in that it can assist in spatial random sampling with various constraints such as 

shape, size, location, dominant orientation and resolution which can be regarded as the spatial 

properties (features) of the data. In the field of environmental change impact studies where the 

spatial properties of grid-based datasets remain the focus, this toolbox addresses the need of 

quantifying how hydro-climatic responses vary with location and scale. The grid size of the 

SRS-GDA toolbox can be defined in line with any resolution of the base grid map. To increase 

the applicability of this toolbox, users can customise various sampling conditions and their 

combinations which can be directly applied to many environmental change studies. 

This chapter is structured as follows: first, a brief introduction of the study background and the 

main objective is provided in Section 2.2, followed by the presentation of the methodology 

section.  An example use case of analysing hydro-climatic extremes, i.e., extreme precipitation 

over Great Britain using the GEAR dataset is provided to demonstrate the application of the 

toolbox, shown in Section 2.3. Finally, a discussion on further applicability and availability of 

the toolbox are presented in Section 2.4. 

2.2 The design of SRS-GDA toolbox 

The main aim of designing and implementing the SRS-GDA toolbox is to enable random 

spatial sampling of grid-based data within a pre-defined Region of Interest (ROI) of different 

sizes, shapes, locations and resolutions. The sampling procedure starts with a user-supplied 

grid dataset with spatial reference. It is also common to have an overall boundary (OB) from 

which the sampling is to be conducted, as many grid datasets have a coverage normally much 

larger than that of the user’s interest, such as the General Circulation Model (GCM) output 

around the globe.  Normally, the OB should be set large enough for studying how the variation 

of locations can affect certain quantities represented by an ROI.   
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The randomisation of the sampling process is manifested by the ways in how the ROI is 

constructed: 

1) Randomisation of the shape of the ROI. The shape of an area often plays an important 

role in various applications. For example, in hydrology, a so-called donor catchment is 

often desired to have a shape analogous to that of the ungauged, target one. 

Understandably, this process sets to be the most complex one in the SRS-GDA toolbox. 

There are two options are offered with regards to whether the shape of the ROI is 

concerned: the shape-unconstrained sampling which randomises the shape of ROI; and 

the shape-constrained sampling that makes use of a predefined geometric shape 

supplied by the user e.g., a polygon at a given scale. A special case is a point or single 

grid sampling whose ROI reduces to a single grid. This is also useful, for example, 

when studying the variation of point-measured quantities. 

2) Randomisation of the location of the ROI.  The location of an ROI can be varied using 

the coordinates of its centroid of predefined ROI or its origin for randomly generating 

ROI. This operation is done by randomly setting a point or grid within the OB as the 

location of the ROI. An extra step is usually applied to ensure the entire region of the 

ROI falls within the OB. 

3) Randomisation of the size of the ROI. Variation of the ROI size can help users to 

identify whether the aggregated data value over an area exhibits notable behaviour. A 

typical case, for example, is to study the extreme value distribution of a 

hydrometeorological variable – temperature or precipitation, over regions, countries 

and globally. This operation depends on whether the ROI is shape-constrained or not. 

If a predefined shape is used, a ‘buffering’ operation (Chang, 2008) is used to either 

increase or reduce the size whilst maintaining the shape unchanged; whereas for a 

shape-unconstrained case, the desired ROI is randomly produced with a given centroid 

and specified size. 

These three operations can be combined to achieve the various levels of randomisation required 

by users. The implementation of the toolbox involves a series of steps that are described below 

and shown in Figure 2.1 which includes: (a) Grid map generation which sets the overall 
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boundary (OB) spatial coverage constraint and the resolution for the study (sampling) area; (b) 

Sampling setup that determines whether one or more constraints are used and sets the 

corresponding values and/or features, for example, location (fixed or floated), shape-

unconstrained or shape-constrained, size fixed or not etc. and (c) Sampling processing and 

validation which are automatically carried out by the SRS-GDA toolbox based on the OB grid 

map and the constraint setups with extra filters applied to the results depending on extra 

conditions where appropriate.  
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(a) Generating the Grid-based Overall Boundary (OB) Map

(b) Sampling Setup

(c) Sampling Processing and Validation

SRS-GDA inner model (3-step Methodology) Inputs and outputs of SRS-GDA Toolbox

Picture of the map 
(*.jpg;*.bpg;*.tiff;*.png)
Or
Map matrix file (*.txt;*.mat)

Inputs

A grid-based map with predefined 
resolution 

Output

General sketch of study map

Extract the digital information (e.g. OB)

Select resolutions (10km x 10km, 5km x 5km or 1km x 1km)

Re-generate and index the grid of the map (expire invalid 
grids and active valid grids)

Initial setups:
1. number of samples N; 
2. size of samples S; 
3. location of samples L; 
4. Spatial index of the ROI shape sp.

Initial settings

Grid-based map

Shape-unconstrained 
SRS-GDA

Shape-constrained 
SRS-GDA

Initial settings (N,S,L) 
and Grid-based map

Not define shape Define shape (sp)

Random samplingRandom sampling

Illness detection
Holes inside?

Outputs: N samples with size of S located at L

Final outputs of SRS-GDA toolbox (sample matrix 
and visualized figure):
According to the initial settings, random generate 
example samples as:

1. Sampling with randomized location
2. Sampling with randomized size
3. Sampling with randomized shape

shape-unconstrained

shape-constrained

 

Figure 2.1 The three basic steps and the corresponding inputs and outputs of the SRS-GDA toolbox. 
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2.2.1 Generating the grid-based overall boundary (OB) map 

As mentioned previously, the underlying dataset normally comes with a coverage larger than 

that of users’ interest. In other words, a subset based on an OB needs to be produced. This OB 

needs to be specified by the user, e.g., by using either a raster file or a vector-based map such 

as shapefiles that define the boundary. If no OB is specified, the entire coverage of the 

underlying grid dataset will be used to conduct the sampling process. It should be mentioned 

that the sampling process is often carried out inside the OB. However, unlike OB, the 

boundaries specified by the ROI’s are deemed to be restrictive and arbitrary as far as a natural 

process is concerned, such as rainfall and wind speed. The logic behind sampling ROI in OB 

is because many times only the quantity of certain hydro-climatic variables falling in such 

given boundary is of concern, for example, rainfall over the urban area of a city is a key element 

for urban drainage design. 

A grid-based map is then generated by rasterising the OB (if it comes as a vector map) using 

the same projection and grid resolution as the underlying dataset. The grids inside OB are 

regarded as valid grids while those outside OB are invalid grids. Once this is completed, the 

toolbox will automatically exclude those invalid grids and activate the valid grids. For example, 

in the example case given in this paper, the National Grid Reference (NGR, Ordnance Survey, 

1946) is used to refer to the coordinates of the grids of the GEAR dataset. The base map is 

processed to distinguish ocean (so-called invalid grids outside the GB boundary) and land (so-

called valid grids inside the GB boundary). It is also further refined to have several versions 

with different spatial resolutions which are normally multiples (exact divisions) of the grid size 

of the underlying dataset. These refined OB’s will be used for further study on aggregation 

(upscaling) and disaggregation (downscaling). The toolbox provides three resolutions to match 

the underlying grid dataset: 1 km ×  1 km, 5 km ×  5 km and 10 km ×  10 km for user 

application. And the base maps of the UK are produced with these three resolutions 

respectively, as shown in Figure 2.5 where 1 km × 1 km is chosen for demonstrating the 

example case for being consistent with the resolution of the dataset. 



2.2 The design of SRS-GDA toolbox 35 

 

 

In addition to setting the OB, another important task at this step is to spatially index the data 

grids and label those that contain valid data. From now on, all subsequent spatial sampling is 

conducted over (or within, to be more precise) the base map.  

2.2.2 Sampling setup 

There are four initial settings (also seen in Figure 2.1b) that need to be specified before starting 

the sampling process which are: 

1) Total numbers of samples required; 

2) The desired location of the samples, which is only applicable in the case where users 

wish to fix the location while randomising other properties such as shapes and sizes; 

3) Sample size in the unit of km2 which is translated into numbers of grids at the finest 

grid resolution used;  

4) Spatial index of the ROI shape (i.e., samples) which is needed when a shape-

constrained sampling is required. In this case, the ROI shapes are randomly generated 

as convex hulls having the spatial index (𝑠𝑝) value set by the user. In the case of shape-

unconstrained sampling, the shape of the ROI’s will be randomised.  The spatial (𝑠𝑝) 

is defined to indicate dominant spatial extension direction, e.g., north-south or west-

east: 

𝑠𝑝 =
DNS
DWE

 (2.1) 

Where DNS and DWE refer to the north-south dimension (the longest vertical axis) and the east-

west dimension (the longest horizontal axis) of a sample (represented by a matrix).  The reason 

for having 𝑠𝑝 as an attached indicator is that in many climate studies, the direction of an area 

(such as a river catchment) plays a crucial role in determining the amount of quantity, such as 

rainfall (Svensson and Rakhecha, 1998; Viviroli et al., 2003). Obviously, other indexes, such 

as the direction of the major axis, can be easily defined if required. 
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2.2.3 Sampling processing and validation 

This is the final step (Figure 2.1c) where samples are generated according to the initial settings. 

The methods discussed below correspond to the three main functions of the SRS-GDA toolbox. 

• Sampling with randomised locations 

This function randomly selects different locations of centroids of the samples within the OB 

base map. The sampling is relatively straightforward: first x- and y-coordinates are sampled 

from the range of the OB maps in the two directions using a joint uniform distribution 𝑈(𝑋, 𝑌); 

followed by filtering out those samples that are not entirely within the OB. 

• Sampling with randomised sizes 

The second function is to randomly generate samples of different sizes, which is mainly used 

in the cases where the behaviour of aggregated quantity over the area of a sample is desired. 

Since the grid resolution 𝐴grid  (in km2) is known, the size of the sample 𝐴sample  can be 

translated into the number of grids 𝑁grid of sample of the ROI. The equation below shows the 

translation: 

𝑁grids of sample = 𝐴sample 𝐴grid⁄  (2.2) 

The variation of the area of the ROI (the sample) is realised by applying a ‘buffer’ operation 

while keeping the centroid location unchanged, i.e., it only increases or decreases the main axis 

of the sample proportionately. Figure 2.2 shows an example of shape generation. 
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Figure 2.2 The ‘buffering’ operation used to vary the ROI into different sizes (shown here in different border 

colours). 

• Sampling with randomized shape of ROI: unconstrained and constrained 

The third main function is to randomly generate samples in different shapes varying in both 

sizes and locations. Depending on the user’s initial settings, this function can conduct both 

shape-unconstrained and shape-constrained sampling. For the case of shape-unconstrained 

sampling, the location and the size of the sample (ROI) are both obtained from the two previous 

functions; for each combination of the location and the size, the shape is randomised using the 

size as a constraint. Two principles are applied in this process: 

1) all grids should be interconnected, i.e., no isolated grids are allowed; 

2) any growth must not go over the boundary set by the OB map. 

The sampling starts at the given location and follows a random run to the neighbouring grid 

and records it until the number of grids equals the sample size. All the grids covered by the 

path are selected to comprise the sample. An extra validation step is applied to remove samples 

with the hole inside (the so-called ill-set samples) and rerun the process until the required 

number of samples is met, as presented in Figure 2.3. This sampling method can be used for 

generating the samples with free shape, especially for sampling from the area nearby the 

irregulated OB. 
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Input:
Grid-based map and data

Initial settings:
Location(L); Size(S); Number(N)

Generate N samples with the 
size of S initially started at L

Do any samples have 
holes?

Outputs:
N required samples with 
grid-based information

Check the number of ill-
set samples: n

Regenerate n samples with the 
size of S initially started at L

NO

YES

 

Figure 2.3 The process of shape-unconstrained random sampling method with ill-sample detection and removal. 

For the case of shape-constrained random sampling, it focuses on sampling with the shapes of 

convex polygons as seen in many hydrological catchments in environmental or climatic 

research. The working flow is shown in Figure 2.4.  

Input:
Grid-based map 

and data

Initial settings:
Central location(L);Size(S);Number(N); 

Spatial index(sp)

Generate the 1st 
sample with size of 
S at L (according to 
a random polygon)

Generate the Nth 
sample with the size 

of S at L (according to 
a random polygon)

2nd
N-1 
th

...

 

Figure 2.4 Flowchart of shape-constrained sampling method. 
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Unlike the shape-unconstrained method, the shape-constrained random sampling method can 

control the shape of samples and produce more regular samples for mimicking river catchments 

or political areas. The main parameters such as the initial/centre location (L), sample size (S) 

and number (N) are the same as those required by the shape-unconstrained method. In addition, 

the shape-constrained method uses one more major parameter “the spatial index (𝑠𝑝)” as a 

further constraint.  If required, several optional parameters can also be set to further refine the 

control of the polygon generation, i.e., the number of angles (usually is greater than or equal to 

3) and the irregularity that indicates how much variance there is in the angular distance of 

vertices with a range of 0-1; the spikiness which indicates how much variance there is in each 

vertex from the average radius with a range of 0-1. However, as in the setup of the main 

parameters, L, S, N and 𝑠𝑝, specification of these additional parameters is not compulsory. 

Unless otherwise specified explicitly by the user, default values of these additional parameters. 

The toolbox automatically generates default values for them will be applied (e.g., irregularity 

= 0.3 and spikiness = 0.1) to avoid generating extreme weird (irregularity = 1) or sharp 

(spikiness = 1) polygons. Compared with the shape-unconstrained random sampling method, 

it runs substantially faster because there is no need for random walking to grow the grids nor 

having any possibility of producing ill-set areas.  

2.3 An example application of the toolbox   

2.3.1 Example dataset 

One of the motivations of this example is to investigate how areal rainfall extremes in terms of 

their distributions can vary with locations, size and shapes of the ROI. In fact, there has been a 

consensus about the impact of the size of catchment when producing areal rainfall at certain 

return levels. This is normally acknowledged by applying a so-called Areal Reduction Factor 

(ARF; Bell, 1976) to the value obtained at the location of the centroid of the catchment. Whilst 

variation of hydroclimatic variables is commonly recognised to be associated with climatology, 

the impact of the locations as well as the shape of the catchment have not been fully studied in 
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a quantitative way. In this case, the GEAR dataset (see Table 1.1 on Page 20 of Chapter 1) is 

applied for this example. 

2.3.2 Application of the SRS-GDA toolbox 

To be consistent with the precision of the underlying dataset, the OB base map is produced as 

the same grid size of 1 km2. The production of the OB map undergoes two steps: first, a rough 

sketch of the boundary of Great Britain (GB) is used to generate grids with very coarse 

resolution set as 100 km2. This is to ensure that the boundary is properly covered. Secondly, 

the grid map is then refined by subdividing every grid with a number of smaller ones so that 

the grid resolution gradually increases to 5 km × 5km and 10 km × 10 km, which allows for 

the detection and removal of those grids falling outside of the boundary. This process is shown 

in Figure 2.5: (a) includes 638607 valid grids (marked as green) with the size of 1 km2; (b) 

includes 9464 valid grids with the size of 25 km2; (c) includes 2368 valid grids with the size of 

100 km2. 

   

(a) (b) (c) 

Figure 2.5 General map of Great Britain with three resolutions: (a) 1km × 1km (b) 5km × 5km (c) 10km × 

10km. The difference in details and resolutions can be appreciated in the representation of the coastlines. 
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Meanwhile, the initial centroid location of the sample in this example study is chosen to be at 

London with the coordinate of L = (520 km, 1070 km).  Two random sampling methods, e.g., 

shape-unconstrained and shape-constrained, are used to generate 5 different samples (N = 5) at 

this location with the same size of 25 km2. According to Eq. (2.2), the number of grids in each 

sample (S) is calculated as 25 km2/1 km2 = 25. N, L and S are the basic inputs for the SRS-

GDA toolbox.  

2.3.2.1 Shape-unconstrained Random Sampling Method 

Table 2.1 presents the 5 different samples around the initial location L (grey grid) generated by 

the shape-unconstrained random sampling method. It can be observed that all samples have 

grids interconnected with no hole inside. However, the shapes of the sample can be very 

irregular as there is no requirement that they need to be a convex polygon which is used in the 

shape-constrained sampling method. 

Table 2.1 Five example samples generated by shape-unconstrained sampling method. 

 No.1 No.2 No.3 No.4 No.5 

Sample 

     

The shape-unconstrained sampling offers maximum freedom; however, it can inevitably 

introduce shapes with holes inside, which have to be rejected.  

Figure 2.6 shows the steps involved to detect and remove those ill-set sample shapes: First the 

original sample is presented to the validation function (Figure 2.6a) before it is converted into 

a binary image (Figure 2.6b). Secondly, the inner area of the binary image is flooded to remove 

the potential holes which results in a hole-free image as shown in Figure 2.6c. Finally, by 

comparing the areas of the two images, the location and the size of the hole(s) can be detected, 

which in turn triggers the removal process to discard the ill-set sample. In this test, the whole 

process of shape-unconstrained random sampling method takes 7.0 seconds on a low-
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configuration laptop to randomly generate five accepted samples with sizes of 25 km2 

(specified as an initial constraint) while three samples are abandoned. 

 

Figure 2.6 The process of hole detection. 

2.3.2.2 Shape-constrained Random Sampling Method 

Five samples at the same location L (grey grid) generated by using shape-constrained random 

sampling method are shown in Table 2.2 with various shape indexes 𝑠𝑝 defined by the toolbox.  

Comparing with those samples listed in Table 2.1, clearly the shapes are more regular here as 

convex polygons, which can be directly used to simulate hydrological catchments.  The whole 

process is recorded to have finished in 2.0 seconds on the test PC, which is faster than the 

former method. However, the tests show that the larger size and number are, the more efficient 

and time-saving the shape-constrained method is, compared with the shape-unconstrained 

method in Table 2.3. 

Table 2.2 Five example samples generated by shape-constrained sampling method. 

 No.1 No.2 No.3 No.4 No.5 
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Samples 

     

Table 2.3 Comparison of the indicative speed of the two sampling methods: Method 1 the shape-unconstrained 

method and Method 2 the shape-constrained method. Note that the numbers are obtained on the test PC and for 

comparing the relative speed difference. 

Number 

of Grids 

Sampling 

Method 

Number of Samples 

5 10 20 45 60 100 150 

25 
Method 1 7.4s 13.8s 39.1s 2.3min 3.6min 9.3min 20.9min 

Method 2 2.2s 2.8s 3.0s 4.6s 5.6s 7.0s 10.0s 

50 
Method 1 18.1s 33.1s 1.8min 8.1min 29.4min 39.6min 1.4h 

Method 2 2.1s 3.8s 4.7s 7.7s 10.7s 12.0s 20.6s 

100 
Method 1 50.8s 3.5min 28.1min 1.2h 2.4h 9.6h 12.9h 

Method 2 1.7s 3.1s 7.3s 11.4s 13.5s 23.0s 30.5s 

Figure 2.7 summarises the steps taken for shape-constrained sampling starting with an arbitrary 

but convex polygon (with 𝑠𝑝, irregularity and spikiness all set by the toolbox) set at the same 

location index L (grey grid). 

 

Figure 2.7 The process of generating samples by shape-constrained sampling method. 

The effect of the spatial index 𝑠𝑝 in the process of shape-constrained sampling is shown in 

Figure 2.8 with larger values of 𝑠𝑝 having more north-south direction dominated shapes while 
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smaller values indicate west-east direction dominated samples. Apparently, other shape-related 

constraints can be defined and applied subject to the needs of different applications.  

 

Figure 2.8 The seven samples with different spatial index 𝑠𝑝. 

The value of the toolbox can be well appreciated in the analysis results, partly shown in Figure 

2.9, in finding the spatial variation of extreme rainfall over GB. The entire analysis is not 

presented here; however, with the help of the SRS-GDA toolbox, I was able to reveal patterns 

never reported before. For example, a west-east variation of the rainfall distribution at different 

quantiles is clearly seen as “west high, east low” in Figure 2.9a. What is more interesting is the 

symmetric pattern shown in Figure 2.9b (around 𝑠𝑝=1.0) with regards to the sample shape 

which implies that sampled areas with slight elongation in north-south direction are expected 

to have a higher amount of rainfall than those spread more in the east-west direction at given 

frequency/return period. For samples with the same size and location, there is a remarkable 

difference of areal averaged rainfall between more elongated (e.g., 𝑠𝑝 = 0.2 or 5.0) and rounded 

shape (e.g., 𝑠𝑝 = 1.0) which can be attributed to heterogeneity of the grid rainfall distribution 

that cannot compensate to the areal average. The relationship between the sample size and the 

annual maximum daily rainfall (Figure 2.9c) is shown to have largely followed what is 
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expected, e.g., decrease of areal rainfall as catchment size grows. These spatial features and 

underlying discussion are described in detail in Chapter 3. 

  

(a) (b) 

 
(c) 
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Figure 2.9 The dependencies on the locations, the shape index and the size of rainfall distribution over GB: (a) 

the east-west pattern and (b) the symmetric pattern with regards to the sampled shape and (c) the trend pattern 

with regards to the sampled area size as detected by using the toolbox discussed in this chapter. EP is short for 

“Exceedance Probability”. 

2.4 Summary and remarks 

This chapter discusses the development of a new MATLAB toolbox for spatial random 

sampling in grid-based data analysis (SRS-GDA). The main aim of the toolbox is to address 

the very needs of many climate change related studies on spatial-temporal diagnostics of hydro-

climatic datasets. An example application case is given in which the implementation details are 

discussed. The initial applications show that with this toolbox, several important variation 

patterns of extreme rainfall over GB that have yet to be reported are clearly identified. Based 

on the promising results and thanks to the availability of its source code, this toolbox will help 

the related research community in their analyses of grid data sets and gain further insight into 

the underlying science. 

The source code of the SRS-GDA toolbox as well as the example case given in this chapter are 

also available at the GitHub (https://github.com/wanghan924/SRS-GDA_Toolbox.git, 

published in doi: 10.5281/zenodo.4044626). The source code is provided subject to a GPL V3 

licence. Use/fork of the toolbox is subject to proper acknowledgement as stated on the 

Webpage of the toolbox. 

The following research on spatiotemporal variation of extremes (Chapter 3 and Chapter 4) is 

based on the SRS-GDA toolbox which is used to generate a large number of regions of interest 

(ROIs, i.e., so-called “sample” by the concept of toolbox in this chapter). 
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Chapter 3 Modelling Spatial Variation of Rainfall 

Extremes Using an ROI-based Approach 

With the support of the SRS-GDA toolbox depicted in Chapter 2, this chapter 4 presents an 

ROI-based approach of modelling the spatial variation of rainfall extremes, aiming to address 

(part of) Q2 and Q3. The spatial variation of area-orientated annual maximum daily rainfall 

(AMDR) is modelled by well-fitted generalised extreme value (GEV) distributions, over the 

last century in Great Britain (GB) and Australia with respect to three spatial properties: 

geographic locations, sizes and shapes of the more than 11,000 regions of interest (ROI) that 

are generated by SRS-GDA toolbox and 903 real catchments and sub-catchments in the same 

river basin located in England and Wales that are used for comparison. The results show that 

the spatial variation of GEV location and scale parameters is dominated by geographic 

locations and area sizes. In GB, there is an eastward-decreasing banded pattern compared with 

a concentrically increasing pattern from the middle to coasts in Australia. The parameters tend 

to decrease with increased area sizes in both studied regions. Although the impact of the ROI 

shapes is insignificant, the round-shaped regions usually have higher-valued parameters than 

the elongated ones. The findings provide a new perspective to understanding the heterogeneity 

of extreme rainfall distribution over space driven by the complex interactions among climate, 

geographical features, and the practical sampling approaches. 

 

 

4 Part of the contents of Chapter 3 has been published in “Wang, H., & Xuan, Y. (2020). Spatial variation of 

extreme rainfall observed from two century-long datasets. Geophysical Research Letters, 48, e2020GL091933. 

https://doi.org/10.1029/2020GL091933.” And part of the contents has been revised and resubmitted to the journal 

“Atmospheric Research”. 

https://doi.org/10.1029/2020GL091933
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3.1 Introduction 

Intensive rainfall is considered to be one of the primary triggers for flooding alongside other 

factors such as climate change, topography, and soil type of different catchment patterns 

(Rogger et al., 2017; Westra et al., 2014). In this chapter, a modelling framework is proposed 

to gain insights into how area-orientated rainfall extremes vary with space with respect to the 

probability distribution parameters which are of concern of flood risk management and civil 

engineering design. By making use of two century-long, grid-based rainfall datasets (the GEAR 

dataset and the ADAM dataset, see Table 1.1 on Page 20 of Chapter 1) covering Great Britain 

(GB) and Australia (AU), the study attempts to address the research questions (part of) Q2 and 

Q3, where the following sub-questions are specified as: 

1. How areal rainfall extremes change over space (or elevation). 

2. How other factors such as the size, shapes (orientations) of the area in question may 

affect such spatial dependencies. 

3. How the spatial patterns and variations are linked to the large-scale climatology of 

rainfall.  

4. What is the implication of the spatial variation of the parameters to the applications 

(e.g. flood risk management). 

In addition, the SRS-GDA toolbox described in Chapter 2 is employed to assist the required 

spatial sampling and generate 11,011 ROIs with predefined spatial features, i.e., geographic 

location, size and shape. In parallel with these arbitrary ROIs, 903 real catchments in England 

and Wales are also employed to help validate the result of the ROI-based study. The spatial 

features of catchments are identified and extracted by the Spatial Pattern Extraction and 

Recognition (SPER) toolbox described in Chapter 7. The sampled annual maximum daily 

rainfall (AMDR) at each ROI or catchment is fitted with the widely used and tested Generalised 

Extreme Value (GEV) distributions whose spatial variation is then analysed. The associated 

intensive computation demand is met by the high-performance computing (HPC) resources 

provided by Super Computing Wales (https://www.supercomputing.wales).  

https://www.supercomputing.wales/
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The remainder of this chapter is organised as follows: Section 3.2 describes the methodology 

of spatial variation analysis including generation of ROIs, spatial feature extraction of 

catchments, fitting GEV and goodness of fit (GOF) tests. Then GOF test result is presented in 

Section 3.3. And both the qualitative and quantitative results of the spatial variation of the 

distribution parameters in ROIs are discussed in Section 3.4. Meanwhile, the analysis of the 

spatial distribution of parameters in catchments is discussed in Section 3.5. The linkage 

between the spatial distribution of GEV parameters with the large-scale climatology of rainfall 

is explained in Section 3.6. Finally, the summary of the conclusion and recommendations of 

further study are given in Section 3.7. 

3.2 Methodology 

The methodology considers two different subjects when it comes to the area of interest as 

described in Section 3.1: 1) that is defined by the ROIs generated by the SRS-GDA toolbox 

and 2) that is just real catchments. While areas based on variable and arbitrary ROI are used to 

explore the relationship among extreme rainfall and spatial characteristics such as location, size 

and shape which can vary with different study purposes, the study of real catchments is used 

to validate such relationships. Therefore, the first step of the methodology is to generate ROIs 

and identify the spatial features of all ROIs as well as those of the real catchments. In one 

aspect, the geographical areas of the two data domains, i.e., GB and AU, are firstly sampled 

into a series of ROIs using the SRS-GDA toolbox and three different types of predefined spatial 

features (geographical locations, sizes and shapes) are applied in this spatial sampling process 

to reduce the overall computing time while maintaining the representativeness of the samples. 

As a result, these ROIs are evenly distributed across the two study domains. In the other aspect, 

since the boundary of each real catchment in England and Wales has already known, the SPER 

toolbox is employed to extract the spatial features (geographical locations, elevation, size, 

orientation and shape), e.g., no variations of the spatial features as those done with ROIs. Then 

the AMDR extracted from each ROI and catchment is fitted with a probability distribution. In 

this study, the three-parameter GEV distribution is chosen as the candidate distribution. 
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Meanwhile, the goodness of fit (GOF) of the fitted distributions is further tested by two 

different methods: the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests. The 

location and scale parameters (𝜇 and 𝜎) of the fitted distributions are then analysed with regard 

to their spatial distribution with reference to the large-scale climatology of rainfall variations.  

3.2.1 ROI generation, catchment identification and AMDR extraction 

The ROI sampling starts with an initial set of uniformly distributed ROIs whose geographical 

locations are recorded as the coordinates of the geometric centroid of ROIs. The 7 shapes of 

these ROIs are predefined and parameterised by their spatial indexes (see Eq. (2.1) on Page 

35) reciprocally grouped as 0.2/5.0, 0.5/2.0, 0.8/1.25 and 1.0. The size of these ROIs is then 

gradually increased by 10 steps with a 20% increment each, while maintaining the same shape 

and location (of the geometric centroid). In the end, the largest sizes of the ROIs are 1,050 km2 

for GB and 9,900 km2 for AU respectively. 

The SRS-GDA toolbox used to generate the ROIs is set up in a way that only one spatial feature 

is allowed to vary at a time. For instance, to obtain ROI samples of G2 and A2 in Table 3.1, 

the toolbox is configured to keep the centroid location unchanged while generating 10 ROIs 

only by varying their sizes. Table 3.1 also summarises all ROIs and their properties.  

Table 3.1 ROIs for analysing the spatial variations in GB and AU. 

Sampling areas Changing with location 

Changing with size 

(each group includes 10 

ROIs) 

Changing with shape 

(each group includes 7 

ROIs) 

G

B 

Indicator G1 G2 G3 

ROI(s) of 

1x1 km 

grid 

   

Size (km2) 500 
10, 43, 87, 164, 257, 366, 

504, 660, 827, 1025 
500 each ROI 
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Total ROI 

number 
88 81 × 10 = 810 74 × 7 = 518 

Total 

meridional 

group 

number 

10 10 10 

Geographi

cal location 

(marked as 

“×”) 

   

A

U 

Indicator A1 A2 A3 

ROI(s) of 

5x5 km 

grid 

   

Size (km2) 500 

125, 400, 900, 1550, 

2450, 3550, 4875, 6350, 

8025, 9900 

5000 each ROI 

Total ROI 

number 
679 627 × 10 = 6270 378 × 7 = 2646 

Total 

meridional 

group 

number 

40 38 30 
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Geographi

cal location 

(marked as 

“×”) 

   

As for the analysis of rainfall extremes over real catchments, 903 catchments of England and 

Wales are included and their locations are presented in Figure 3.1a.  

 

 

(a) (b) 

Figure 3.1 Location of the catchments over England and Wales (a) and one catchment with its spatial features is 

exemplified (b). 

Different from those of the ROIs, the location, boundary and shape of the real catchments have 

been already given. In order to validate the ROI-based study, the spatial indexes used for 

representing the spatial characteristics of studying regions should be consistent to make two 
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studies comparable. Therefore, the SPER toolbox (see Chapter 7) is employed to identify and 

quantify the spatial features of these catchments such as the location, size, and 

shape/orientation in a similar way. The location of the catchment is represented by the 

coordinates of its geometric centroids under the system reference system (national grid 

reference, NGR) of the GEAR dataset while the size is calculated as the number of grids inside 

the boundary (as the grid size is 1 × 1 km2). The only slight difference is in defining the shape 

and orientation of the catchments. In the ROI-based study, the shape index 𝑠𝑝 is defined as the 

ratio of north-south dimension over east-west dimension because the shape of ROI generated 

in the study (see A3 and G3 in Table 3.1) is either north-south orientated or east-west 

orientated. However, such a definition is not broad enough in describing the case of real 

catchments which have various orientations. Thus in the catchment-based study, the SPER 

toolbox is used to find the main axis of the catchment and the orientation 𝜔 is defined as the 

angle of major axis from the North in clockwise direction (One example catchment can be seen 

in Figure 3.1b).  

Finally, for each catchment there are four indexes used to represent the spatial features that are 

used to compare with ROIs, including 1) the location index (𝑥- and 𝑦- of the geometric 

centroid); 2) the elevation of the catchment; 3) the size index 𝑠  which is the size of the 

catchment; 4) orientation index includes the ratio of major axis and minor axis (which is 

perpendicular to the main axis), 𝑠𝑝, and the angle 𝜔. Besides, the average elevation of all 

catchments is calculated by using the OS Terrain 5 dataset (available in 

https://www.ordnancesurvey.co.uk/business-government/products/terrain-5). This dataset is 

supplied as a whole set of GB divided into 5 km by 5 km tiles. These tiles are identified by 

quoting the National Grid reference of the southwest corner of the area they cover and the 

dataset is published as both grid (with 5-metre post spacing) and contours (with 5-metre 

interval). In this study, a grid type is set such that each tile includes 100 by 100 (10000) grids 

whose size is 50 × 50 m2 . In this study, to make the spatial resolution of two datasets 

consistent, a conversion of  the resolution of the OS Terrain 5 data is done by firstly resampling 

the OS Terrain 5 data in the 50 × 50 m2 grids,  and then taking the average of height to match 

the 1 × 1 km2 grids of the GEAR dataset. 

https://www.ordnancesurvey.co.uk/business-government/products/terrain-5
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For each ROI and catchment, the areal daily rainfall is calculated by taking the arithmetic 

average and the maximum value of each year is selected to generate the annual maxima series, 

i.e., annual maximum daily rainfall, (AMDR). There is a huge amount of data to be processed, 

e.g., around 700 gigabytes of grid-based daily rainfall data (1 × 1 km, 365 days/year, 113 

years) covering the UK in our case, which causes a heavy overhead of typical desktop PC that 

usually features 4 processing cores and a limited memory capacity. To increase the operation 

efficiency, we employed supercomputers from the High-performance Computing (HPC) Wales 

(https://www.supercomputing.wales) to assist the extraction of such huge data. The 

supercomputing hubs of HPC Wales have a total of 13,080 processing cores, connecting to 

high-speed memory and storage, and can deliver 1 petaflop of computing power (Flanagan et 

al., 2020). Supercomputers of HPC Wales are Linux-powered and use the Slurm batch 

scheduler/script to allocate and push the jobs or programme to supercomputers and run (more 

operation details can be checked in https://portal.supercomputing.wales/). In this study, the 

programme for extracting catchment rainfall is coded in Python and multiprocess is used for 

paralleling the jobs to increase the computation speed.  

3.2.2 Fitting the extracted AMDRs using GEV distribution 

Derived from the extreme value theory, the generalised extreme value (GEV) distribution has 

become by far one of the most well-founded distributions for describing annual maximum 

rainfall. It has been applied to not only many gauged rainfall extreme studies (Feng et al., 2007; 

Martins and Stedinger, 2000; Westra et al., 2013) but also those using grid rainfall datasets 

(Overeem et al., 2010). For a given ROI or catchment, areal daily rainfall is calculated by taking 

the arithmetic average before the annual maxima series (Annual maximum daily rainfall, 

AMDR) is generated (denoted here as 𝑥). Then the series 𝑥 can be fitted by using the GEV 

whose cumulative distribution function is defined as:  

𝐹(𝑥; 𝜎, 𝜇, 𝜉) = 𝑒𝑥𝑝 [−(1 + 𝜉(
𝑥 − 𝜇

𝜎
))−1/𝜉] (3.1) 

The cumulative probability function 𝐹  is defined for 1 + 𝜉(𝑥 − 𝜇)/𝜎 >  0, −∞ < 𝜇 <

 ∞, 𝜎 >  0 and −∞ < 𝜉 <  ∞, where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 

https://www.supercomputing.wales/
https://portal.supercomputing.wales/
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𝜉 is the shape parameter. There are three types of distribution in the GEV family which are 

distinguished by their shape parameters. Type I, also known as the Gumbel distribution, refers 

to the case where 𝜉 =  0; while the types II and III are known as the Fréchet distribution and 

the Weibull distribution corresponding to the cases where 𝜉 >  0 and 𝜉 <  0 respectively. A 

maximum likelihood estimator (MLE, Hosting, 1985) is introduced to estimate the three 

parameters of the GEV distribution fitted to those AMDRs extracted from each ROI. 

It is worth revisiting the implication of parameters of the GEV models. The location parameter 

𝜇 indicates the mode of the time series which is consistent with the most frequent AMDR in 

our cases, while the scale parameter 𝜎 indicates its average dispersion for each AMDR from 𝜇 

(equals √6/π multiplying by the standard deviation if 𝜉 = 0) (Izaguirre et al., 2010). In other 

words, the larger 𝜎 , the more spread-out the distribution is. Conversely, the smaller the 

parameter, the more compressed the distribution is (Kantar and Şenoğlu, 2008; Mann, 1967). 

In our study, if 𝜎 is estimated to be increasing, the occurrence probability of extreme AMDR, 

i.e. rainfall ranked in the higher positions is increased.  

3.2.3 Goodness of fit tests 

Although the GEV distribution generally fits well to the point rainfall extremes (e.g. gauge 

observation) as reported in many studies before (Schaefer, 1990; Yoon et al., 2013), very few 

have been done on the suitability of GEV distribution fitting the areal grid-based rainfall 

extremes. Therefore in this study, the goodness of fit by GEV distribution is tested using two 

methods: The Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948) and 

Anderson-Darling (AD) test (Anderson and Darling, 1952, 1954). These two tests have been 

widely used to test whether a given data sample is drawn from a particular type of probability 

distribution (the reference distribution). In this case, the reference distribution is GEV 

distribution and the null hypothesis 𝐻0for both tests is that the AMDR 𝑋 (𝑥1, 𝑥2, … , 𝑥𝑛) is 

drawn from GEV distribution and the alternative hypothesis 𝐻1 states against 𝐻0. Besides, the 

L-moment ratio diagrams are also employed to compare the fitted GEV distribution with the 

statistical characteristics of AMDR itself. 
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• KS test 

The KS test detects the greatest vertical distance, the so-called KS test statistic (𝐷𝑛), between 

empirical cumulative distribution function of the observed AMDR 𝐹𝑛(𝑥) and the cumulative 

distribution function of the reference GEV distribution 𝐹(𝑥). The equation for test statistics is 

given by: 

𝐷𝑛 = 𝑠𝑢𝑝
𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥)| (3.2) 

where sup
𝑥

 is the least upper bound of the set of distances. 𝐹𝑛(𝑥)  can be calculated by 

1

𝑛
∑ 𝐼𝑋𝑖≤𝑥
𝑛
𝑖=1  where 𝐼𝑋𝑖≤𝑥 is an indicator function and equals 1 if 𝑋𝑖 ≤ 𝑥 or 0 if otherwise. If 𝐻0 

holds, 𝐷𝑛 tend to be small. Conversely, large values of 𝐷𝑛 are expected. The criteria are to 

reject the null hypothesis at a 0.05 significance level if 𝐷𝑛 is greater than the critical value 

(0.198). 

• AD test 

Similar to the KS test, the AD statistic (𝐴2) is used in the AD test to detect how well the data 

follow a reference distribution, i.e., GEV distribution in this study. The smaller 𝐴2 indicates a 

better fitness of the data by given distribution. Different from the KS test, the AD test weights 

more heavily in the tails of the distribution for extreme data and 𝐴2 is given as: 

𝐴2 = −𝑛 −
1

𝑛
∑(2𝑖 − 1){𝑙𝑛 𝐹(𝑋𝑖) + ln[1 − 𝐹(𝑋𝑛−𝑖+1)]}

𝑛

𝑖=1

 (3.3) 

If 𝐴2 is greater than the critical value (2.502) at the 0.05 significance level, the null hypothesis 

is rejected. The critical value is approximated depending on the sample size only and not on 

the distribution.  

One of the most significant limitations when using the non-parametric KS test in evaluating 

the fitness is that the reference distribution (i.e., the reference GEV distribution 𝐹(𝑥) in Eq. 

(3.3)) has to be fully specified and data-independent (Fasano and Franceschini, 1987).  In other 

words, the KS test becomes invalid if the three GEV parameters are estimated using the same 



3.2 Methodology 57 

 

 

data whose distribution is going to be tested. Therefore, the challenge is how to determine the 

reference GEV distribution appropriately. One possible approach is to use the bootstrapping 

technique to simulate the reference. I broadly followed Lilliefors (1967) and developed a 

bootstrapping method to establish the reference distribution under the null hypothesis 𝐻0 and 

the general procedure can be found in Eduardo (2020). 

Step 1: Estimate a set of parameters θ̂ of the GEV distribution, from the sample of AMDR 

(𝑥1, 𝑥2, … , 𝑥𝑛) by using the maximum likelihood (ML) method; 

Step 2: Compute the KS statistic 𝐷𝑛 from 𝑿 and the cumulative distribution function (CDF) of 

the GEV distribution with the parameters of θ̂, e.g., 𝐹𝜃̂; 

Step 3: Perform bootstrap resampling for a predefined number of times 𝐽; for each iteration 𝑗 =

1,2, … , 𝐽: 

i. simulate a bootstrapped sample (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑛𝑗) from  𝐹𝜃̂;  

ii. estimate a new set of parameters 𝜃𝑗  from the bootstrapped sample (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑛𝑗) 

using the same ML method;  

iii. compute the statistic 𝐷𝑛𝑗 from (𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑛𝑗) and 𝐹𝜃̂𝑗; 

Step 4: Obtain the p-value approximation: 

𝑝-value ≈
1

𝐽
∑ 1𝐷𝑛𝑗>𝐷𝑛
𝐽
𝑗=1  (3.4) 

In this study, 𝐽 = 5000 is used to run the iterations for each ROI. A significant level 𝛼 = 0.05 

is used and the null hypothesis 𝐻0 is rejected if 𝑝-value < 𝛼. 

• The L-moment ratio diagrams 

The L-moments method proposed by Hosking (1990) has been widely applied to select the 

most appropriate theoretical distribution to fit a given data sample by comparing the linear 

combinations of probability weighted moments, i.e., L-moments. The advantages of applying 

L-moment are that they can characterize a wider range of theoretical distributions and can be 
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less affected by the presence of the outliers in samples and the bias in the estimation. The L-

moment method uses ratios to characterize distributions which are introduced below: 

L-CV = 𝜆2 𝜆1⁄  (3.5a) 

L-skewness = 𝜆3 𝜆2⁄  (3.5b) 

L-kurtosis = 𝜆4 𝜆2⁄  (3.5c) 

where 𝜆𝑟  indicates the 𝑟 -th L-moment. Let 𝑋𝑟−𝑘:𝑟  denote the 𝑘 -th order statistic in an 

independent sample (i.e., AMDR time series) of size 𝑛 if the expectation 𝐸𝑋𝑟−𝑘:𝑟 exists, 𝜆𝑟  

can be calculated as:  

𝜆𝑟 = 𝑟
−1∑(−1)𝑘 (

𝑟 − 1

𝑘
)𝐸𝑋𝑟−𝑘:𝑟

𝑟−1

𝑘=0

 (3.6) 

3.2.4 Analysing the spatial distribution of the location-scale parameters 

The spatial variation of the location and scale parameters of the fitted GEV distributions are 

analysed both qualitatively and quantitatively. Instead of using full spatial coordinates to 

represent the geographical locations, a univariate spatial-location representation is adopted in 

the ROI-based study. The procedure is briefly described below:  

i. The chosen GEV parameter is aggregated meridionally, e.g., over all ROIs that have 

the same x-direction (easting or longitude) coordinate.  

ii. The aggregated GEV parameter values are indexed by their x-direction only coordinate 

which is then used as an input variable to represent the geographical locations. 

iii. The same procedure is also applied zonally, i.e., over the same y-direction coordinate.  

With this arrangement, the meridional or zonal average of the GEV parameter in question is 

taken as the response variable (predictor). In AU, a concentric pattern is found where both the 

meridional average and the zonal average show a similar result while for the case of GB, only 

a strong west-east pattern exists (shown in Figure 3.2). Therefore, for comparing two cases and 

convenience, the meridional average is taken for both cases. 
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(a) 

 
(b) 

Figure 3.2 Zonal and meridional average parameter analysis in Great Britain (GB) and Australia (AU). 

Finally, a generalised linear model (GLM) is fitted to quantify the relationship between the 

GEV parameters and the associated spatial features, i.e., to explicitly model the spatial variation 
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of the GEV parameters with respect to the locations, sizes, and shapes of the underlying ROIs. 

The setups of the structure of GLM are based on qualitative analysis of location and scale 

parameters, which is shown in Section 3.4.4 in detail. A 𝑘-fold-cross-validation (Efron and 

Tibshirani, 1997) and variogram (Cressie and Hawkins, 1980) are introduced to evaluate the 

performance of the GLMs. 

3.3 Results of goodness of fit tests 

The following Figure 3.3 shows the histogram of test statistics of exampled 88 ROIs in GB by 

using a bootstrapping method and the title of each histogram indicates the 𝑝-value and the 

location of ROI in bracket. It can be observed that all histograms are skewed to be less than the 

critical values. 
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It is not possible to show the Australia case here because of the too large number of ROIs 

produced. However, the distribution of the 𝑝-value of all ROIs in GB and AU (Figure 3.4a) 

obtained from using these two test methods, shows that that the GEV distribution fits well the 

grid-based areal AMDR series with a 100% pass of the KS test and more than 97% for the AD 

test. For the AMDR time series extracted from the 903 catchments, the GOF results are 

presented in Figure 3.4b where the GEV distribution can fit well as the p-value in the majority 

is close to 1 with more than 95% passing the KS and AD tests. 

 

 
 

 
 

(a) (b) 

Figure 3.4 Histograms of the p-value of all ROIs (a) in GB and AU and all catchments (b) in England and Wales 

by KS and AD tests. 

Figure 3.5 presents the L-moment ratio diagram of L-kurtosis versus L-skewness calculated 

using the AMDR time series of all ROIs plotted as circles, and the fitted GEV distribution is 

shown as a blue curve for both cases GB (a) and AU (b). The colours and sizes of circles 

indicate the geographic location of ROIs, i.e., the easting x-index and the northing y-index of 

the ROIs respectively. It can be observed that in both cases, the GEV distribution is an 

appropriate candidate distribution because its curves properly model the majority of the data 
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points displayed. The AMDR in almost all ROIs of the two countries has a large-skewed 

empirical distribution (0.1 < L-skewness of GB < 0.35 and 0.05 < L-skewness of AU < 0.4). 

In GB, the majority of the dark-coloured, large-sized circles, indicating the ROIs located in 

north and west regions, have a relatively medium kurtosis value (0.15~0.2) while the major 

ROIs located in south and east regions have both greater kurtosis (> 0.2) and skewness (> 0.25). 

In AU, the majority of light-coloured circles (ROIs in the east regions) are located along the 

GEV curves and have a relatively medium kurtosis. However, ROIs with the same value of L-

skewness (indicated by dark-coloured circles) located in the eastern regions have a higher 

kurtosis than those located in the east. The L-moment ratio diagram helps visualise the 

comparison between GEV fitted distribution and the characteristics of AMDR themselves, 

which shows that GEV can fit the majority well.  

 
(a) (b) 

Figure 3.5 L-moment ratio diagram of L-kurtosis versus L-skewness in GB (a) and AU (b) 
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3.4 Qualitative analysis of the spatial variation of ROI-based 

study 

The qualitative results of spatial variation of GEV location and scale parameters are described 

in the following three subsections in respect of three spatial features.  

3.4.1 GEV parameter variation over geographical locations 

Figure 3.6 present the histograms and spatial variations of the three GEV parameters of all 

ROIs in GB and AU where the following patterns can be clearly identified: 

• Most ROIs are in favour of the Frechét type of distribution ( 𝜉 > 0 ) and 𝜉  shows 

insignificant patterns over space but it may be affected by elevation. 

• Both 𝜎 and 𝜇 present a similar spatial pattern where a higher 𝜇 is usually accompanied by 

a higher 𝜎. 

In GB, the values of 𝜇 and 𝜎 in the western region, especially in the coastal area, are much 

larger than those in the east. Such west-east gradient is also strong in the west indicated by the 

much denser contours. However, there is no remarkable variation from south to north, even 

though the 𝜇 and 𝜎 in Scotland are higher. As such, the meridional average is thought to better 

reveal such an eastward pattern. This meridional spatial pattern can be described as “west high, 

east low” with an apparently nonlinear variation. 

The values of 𝜇 and 𝜎 in AU have a clear increasing trend from the south-middle zone to the 

coastal regions. This spatial pattern can be seen as a series of concentric circles. It is also 

notable that the rapid variations are close to the northeastern coastal regions. For a matter of 

convenience, the meridional average is also taken for studying the west-east variation in AU. 
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(a) 

 

(b) 

Figure 3.6 Histograms and spatial variations of the three GEV parameters in GB (a) and AU (b). 
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3.4.2 Variation of GEV parameters with regards to the area size 

Figure 3.7 show the changes of 𝜇 and 𝜎 of all meridional groups in GB and AU, parameterised 

by the size of the ROI (𝑠, in km2). Generally, regardless of their locations, the parameter values 

are inversely proportional to the sizes of the ROIs. 

The decreases in both 𝜇 and 𝜎 with increased ROI sizes have an important implication: the 

most frequent AMDR (relating to 𝜇) becomes smaller for larger ROI alongside an overall 

decreased extremity (relating both parameters).  Another interesting measure is the rate of such 

reduction (RR) as the size of ROI increases, which has also shown a clear spatial dependency. 

In AU, the RR remains low in the central desert zone (e.g., from Easting 300 to 360 km), and 

it increases near the coastal areas where large parameter values are also found. This feature can 

be explained by the fact that regions having more extreme rainfall (e.g., the outer coastal 

regions in AU) are not only manifested by the higher 𝜇  and 𝜎 ; they also have more 

heterogenous rainfall than those with less extreme rainfall (lower 𝜇 and 𝜎). Therefore, the 

changes of 𝜇 and 𝜎 are more sensitive to geographic locations, as revealed by the RR. GB also 

shows a similar pattern albeit not as remarkable.  

 

(a) 
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(b) 

Figure 3.7 The changes of meridional average location-scale parameters with the ROIs’ size in GB (a) and AU 

(b) shown by colour scale. 

3.4.3 Variation of GEV parameters due to change of ROI shape 

Figure 3.8 presents the changes of 𝜇 and 𝜎 in GB and AU, parameterised by the ROI shape 

(𝑠𝑝). The variation of the shape starts from west-east orientated shapes (𝑠𝑝 = 0.2), gradually 

growing into more rounded shapes (𝑠𝑝 = 1.0) and then to more north-south orientated shapes 

(𝑠𝑝 = 5.0). By the definition of 𝑠𝑝, two shapes with reciprocal 𝑠𝑝 values will have their major 

dimension swapped, i.e., east-west versus south-north and vice versa. 

The result is inspected and summarised as: 

• For the majority of the meridional groups, there is little difference between the location-

scale parameters of ROIs with reciprocal shapes, e.g., two shapes with sp values of 0.2 

and 5.0. This is regarded as a symmetric pattern around 𝑠𝑝 = 1.0; 

• Generally, the values of 𝜇 and 𝜎 of ROIs in an elongated shape are smaller than those 

of the ROIs in more rounded shapes. This indicates that the rounded-shape ROIs have 

a better chance to capture more rainfall extremes than the elongated ones. It also leads 
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to that for the same area size, regions with more regular shapes tend to have more 

extreme areal rainfall. 

• Overall, the effects of ROI shape are not as significant. 

 

(a) 

 

(b) 

Figure 3.8 The changes of meridional average location-scale parameters with the ROIs’ shape in GB (a) and AU 

(b) shown in the colour scale. 
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3.4.4 Quantitative modelling of the spatial variation  

The generalised linear models (GLMs) are based on an extension to the classical linear 

regression model (McCullagh, 1989), and have found many applications in hydrology and 

meteorology (Coe and Stern, 1982; Stern and Coe, 1984). GLMs have been shown to be 

effective in incorporating complex structures (Segond et al., 2006). Chandler and Wheater 

(2002) proposed a GLM-based framework for interpreting historical daily rainfall records and 

revealing the changes in rainfall occurrence and amount in western Ireland. Many more 

applications have since followed, e.g., Rashid et al. (2013); Yan et al. (2002); Yang et al. 

(2005), with good performance reported. 

In this study, the two parameters 𝜇 and 𝜎 which reflect the property of rainfall extremes, show 

a similar right-skewed gamma distribution (see Figure 3.9), therefore I broadly followed 

Chandler and Wheater (2002) and propose a GLM with a log-link to describe their spatial 

variation: 

ln(𝜈) = 𝑿𝜷 (3.7) 

where 𝜈 is the mean of the distribution; 𝜷 is the estimated vector of coefficients of predictors 

which are the three spatial properties of the underlying ROIs, i.e., the size (𝑠), location (x-

index: 𝑥), and shape (𝑠𝑝) according to the qualitative analysis in Section 3.4.3; and 𝑿 is the 

form of combined predictors. 
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Figure 3.9 Histograms of GEV parameters (meridional averaged 𝜇 and 𝜎) of GB and AU cases. 

To get the form of 𝑿, the fitting of the GLM starts with a simplest form and then successively 

adds other predictors or their combinations (Chandler and Wheater, 2002; James, 2002). The 

significance of the newly added predictor or the combination of each attempt is evaluated by 

calculating the value of log-likelihood at 0.05 insignificance level. The best-fitted form of 

GLMs is obtained by considering both the log-likelihood and the discrepancy (e.g., root mean 

squared error, RMSE). All attempts of proposed forms 𝑿 for two parameters of two cases are 

shown in Table 3.2. 

Table 3.2 All attempts of proposed GLM form 𝑿 for two parameters of two cases. 

Model No. Form (𝑿) 
Log 

likelihood 
RMSE Comments 

GB 

(𝜇) 

GM1 1 + 𝑥 -401.021 2.583 𝑥 is significant 

GM2 1 + 𝑥2 + 𝑥 -302.68 1.376 𝑥2 is significant 

GM3 1 + 𝑥3 + 𝑥2 + 𝑥 -289.06 1.203 𝑥3 is significant 

GM4 𝟏 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝒔 -277.20 1.101 𝑠 is significant 

GM5 1 + 𝑥3 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 -276.18 1.091 𝑠2 is insignificant 

GM6 1 + 𝑥3 + 𝑥2 + 𝑥 + 𝑠 + 𝑠𝑝 -276.13 1.090 𝑠𝑝 is insignificant 
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GM7 1 + 𝑥3 + 𝑥2 + 𝑥 + 𝑠 + 𝑥 × 𝑠 -276.80 1.097 
𝑥 × 𝑠 is 

insignificant 

GB 

(𝜎) 

GS1 1 + 𝑥 -227.77 1.068 𝑥 is significant 

GS2 1 + 𝑥2 + 𝑥 -130.17 0.632 𝑥2 is significant 

GS3 1 + 𝑥3 + 𝑥2 + 𝑥 -104.36 0.500 𝑥3 is significant 

GS4 𝟏 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝒔 -89.80 0.466 𝑠 is significant 

GS5 1 + 𝑥3 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 -88.14 0.464 𝑠2 is insignificant 

GS6 1 + 𝑥3 + 𝑥2 + 𝑥 + 𝑠 + 𝑠𝑝 -87.92 0.461 𝑠𝑝 is insignificant 

GS8 1 + 𝑥3 + 𝑥2 + 𝑥 + 𝑠 + 𝑥 × 𝑠 -89.53 0.465 
𝑥 × 𝑠 is 

insignificant 

A

U 

(𝜇) 

 

AM1 1 + 𝑥 -1739.7 4.151 𝑥 is significant 

AM2 1 + 𝑥2 + 𝑥 -1608.2 3.231 𝑥2 is significant 

AM3 1 + 𝑥3 + 𝑥2 + 𝑥 -1607.6 3.217 𝑥3 is insignificant 

AM4 1 + 𝑥2 + 𝑥 + 𝑠 -1567.4 2.959 𝑠 is significant 

AM5 1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 -1554.9 2.882 𝑠2 is significant 

AM6 𝟏 + 𝒙𝟐 + 𝒙 + 𝒔𝟐 + 𝒔 + 𝒔𝒑 -1552.9 2.871 𝑠𝑝 is significant 

AM7 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝2

+ 𝑠𝑝 
-1552.9 2.871 𝑠𝑝2 is insignificant 

AM8 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝

+ 𝑥 × 𝑠 
-1552.6 2.864 

𝑥 × 𝑠 is 

insignificant 

AM9 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝

+ 𝑥 × 𝑠𝑝 
-1552.9 2.871 

𝑥 × 𝑠𝑝 is 

insignificant 

AM10 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝

+ 𝑠𝑝 × 𝑠 
-1552.9 2.871 

𝑠𝑝 × 𝑠 is 

insignificant 

A

U 

(𝜎) 

AS1 1 + 𝑥 -1207.5 1.750 𝑥 is significant 

AS2 1 + 𝑥2 + 𝑥 -1025.0 1.354 𝑥2 is significant 

AS3 1 + 𝑥3 + 𝑥2 + 𝑥 -1024.0 1.349 𝑥3 is insignificant 

AS4 1 + 𝑥2 + 𝑥 + 𝑠 -957.27 1.219 𝑠 is significant 

AS5 1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 -941.26 1.190 𝑠2 is significant 

AS6 1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝 -936.54 1.183 𝑠𝑝 is significant 

AS7 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝2

+ 𝑠𝑝 
-936.31 1.183 𝑠𝑝2 is insignificant 

AS8 
𝟏 + 𝒙𝟐 + 𝒙 + 𝒔𝟐 + 𝒔 + 𝒔𝒑

+ 𝒙 × 𝒔 
-929.80 1.170 𝑥 × 𝑠 is significant 

AS9 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝

+ 𝑥 × 𝑠 + 𝑥 × 𝑠𝑝 
-928.64 1.167 

𝑥 × 𝑠𝑝 is 

insignificant 

AS10 
1 + 𝑥2 + 𝑥 + 𝑠2 + 𝑠 + 𝑠𝑝

+ 𝑥 × 𝑠 + 𝑠𝑝 × 𝑠 
-929.80 1.169 

𝑠𝑝 × 𝑠 is 

insignificant 

To specify the GLMs, the GLM for capturing the meridionally averaged μ and σ for GB case 

is called “GM” and “GS” respectively and for AU case is “AM” and “AS”. There are several 

GLMs attempted with each attempt adding new terms and the optimal form of GLMs is 
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obtained by obtaining the maximum log-likelihood (LL) and the smallest discrepancy (e.g., 

root mean squared error) with all terms being significant (i.e., the p-value is less than critical 

level 0.05). Figure 3.10 shows the process of testing and selection of the best-fitted GLMs, i.e., 

GM4, GS4, AM6 and AS8. 

 

Figure 3.10 The selection process for the optimal structure of GLM for meridionally averaged 𝜇 and 𝜎 in GB 

and AU. 

According to the values of LL and RMSE, the best-fitted GLMs are model GM4 and GS4 for 

GB case and model AM6 and AS8 for AU case with the optimum form of GLM models are 

identified as follows: 

For 𝜇𝐺𝐵: (1 + 𝑥 + 𝑠 + 𝑥2 + 𝑥3)𝜷𝝁𝑮𝑩 (3.8a) 

For 𝜎𝐺𝐵: (1 + 𝑥 + 𝑠 + 𝑥
2 + 𝑥3)𝜷𝝈𝑮𝑩 (3.8b) 
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For 𝜇𝐴𝑈: (1 + 𝑥 + 𝑠 + 𝑠𝑝 + 𝑥2 + 𝑠2)𝜷𝝁𝑨𝑼  (3.9a) 

For 𝜎𝐴𝑈: (1 + 𝑥 + 𝑠 + 𝑠𝑝 + 𝑥2 + 𝑠2 + 𝑥 × 𝑠)𝜷𝝈𝑨𝑼  (3.9b) 

where the subscripts of 𝜷  GB and AU refer to the study area in question. A maximum 

likelihood estimator (McCullagh, 1989) was employed for obtaining 𝜷s which are shown in 

with their 𝑝-values shown in brackets. Except the intercept, the coefficient of the term 𝑥 

(indicating the location of ROIs by the easting index) is the (absolute) maximum polynomial 

factor. 

Table 3.3 Coefficients of four GLMs and their 𝑝-values (shown in brackets). 

GLM 

For 
𝛽0 

𝑥 
(100 km) 

𝑥2 
(100 km) 

𝑥3 
(100 km) 

𝑠 
(100 km2) 

𝑠2 
(100 km2) 

𝑠𝑝 

𝑥 × 𝑠 
(100 km 

×100 

km2) 

𝜇𝐺𝐵 
5.98 

(7.9e-83) 

-1.36 

(1.2e-20) 

0.24 

(3.4e-12) 

-1.46e-2 

(2.4e-08) 

-5.62e-3 

(1.1e-06) 
- - - 

𝜎𝐺𝐵 
5.85 

(5.7e-60) 

-2.28 

(1.5e-26) 

0.44 

(5.6e-19) 

-2.92e-2 

(2.4e-14) 

-8.69e-3 

(9.3e-08) 
- - - 

𝜇𝐴𝑈 
3.23 

(0) 

-0.06 

(1.6e-10) 

1.82e-2 

(1.3e-61) 
- 

-3.34e-3 

(2.8e-12) 

2.20e-5 

(1.3e-05) 

-0.0092 

(0.046) 
- 

𝜎𝐴𝑈 
2.90 

(0) 

-0.15 

(6.4e-75) 

1.83e-2 

(9.8e-91) 
- 

-2.25e-3 

(3.1e-07) 

1.86e-5 

(2.1e-06) 

-0.0109 

(0.002) 

-1.91e-4 

(0.0005) 

The GLMs are further visualised in Figure 3.11 where the previously demonstrated, qualitative 

properties, are readily reproduced. For example, the spatial changes of the two GEV parameters 

are “west high, east low” in GB whereas they are “centre low, outer coastal regions high” in 

AU; the parameters get smaller as the size of ROI increases. However, the RR, which can be 

interpreted as the vertical distance between curves, is more uneven in AU, which means that 

the reduction on most frequent rainfall (𝜇) and occurrence probability of extremes (𝜎) is more 

spatially dependent and area-oriented compared with GB. Moreover, ROI shape is significant 

in the AU case where different 𝜇 or 𝜎 values are observed in the east-west-orientated elongated 

shapes (𝑠𝑝 = 0.2) and the rounded ones (𝑠𝑝 = 1.0) and the difference tends to decrease for 

lager 𝜇 and 𝜎. In comparison, the two GEV parameters in the north-south-orientated ROIs 

(𝑠𝑝 = 5.0) are also smaller than those in the east-west-orientated and rounded ones, which can 
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be explained as that in AU the north-south variation is in general smaller than that of the east-

west direction. 

This fitted GLMs help to reveal the following intriguing features regarding the spatial variation 

of the two parameters: 

1) In GB, both the meridionally-averaged 𝜇  and 𝜎  have a nonlinearly-eastward-

decreasing pattern, and the RR is stronger in the west (∆𝜇𝐺𝐵 = −0.22/km; ∆𝜎𝐺𝐵 =

−7.50/100km ) and gradually reduces to the east ( ∆𝜇𝐺𝐵 = −0.02/km ; ∆𝜎𝐺𝐵 =

−0.30/100km). An almost-linearly-decreasing pattern with the increase of ROI size 

(∆𝜇𝐺𝐵 = −0.02/100km
2 and ∆𝜎𝐺𝐵 = −0.08/100km

2) is shown and such RRs are 

not affected by geographic locations. However, they do not appear to be dependent on 

the ROI shape (𝑠𝑝). 

2) In AU, the spatial changes of the meridionally-averaged 𝜇 and 𝜎 are nonlinear with 

respect to both the ROI location and size. The 𝜇 diminishes slowly from the west coasts 

to the south-middle zone (∆𝜇𝐴𝑈 = −0.05/500km) then increases faster and faster to 

the east coasts (largest ∆𝜇𝐴𝑈 = +6.70/500km); The 𝜎  shows a “centre low, outer 

(coastal regions) high” pattern where the changing rate near the centre ( |∆𝜎𝐴𝑈| =

0.05/500km) is lower than the coastal regions (|∆𝜎𝐴𝑈| = 1.40/500km).  Unlike GB, 

𝑠𝑝  plays a more significant role and diminishes both parameters ( ∆𝜇𝐴𝑈 =

−0.9, ∆𝜎𝐴𝑈 = −0.5) when the ROI shape changes from the west-east-orientated (𝑠𝑝 =

0.2, 0.5 ) to north-south-orientated ( 𝑠𝑝 = 5.0, 2.0 ). It means that the north-south 

variation in AU is in general smaller than that of the east-west direction. Besides, the 

combined term (𝑥 × 𝑠) is significant, which means that the RR of 𝜎 with respect to ROI 

size varies at different geographic locations. It is manifested by the uneven vertical gaps 

between contours in the right panel of Figure 3.11b. 
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Figure 3.11 Visualisation of the GLMs fitted to the meridional average GEV 𝜇 and 𝜎 parameters as a colour-

scale plot for GB (a) and a contour plot for AU (b) whose contours are picked up at the same stops of the values 

and their changes with respect to the geographic location and size. 

The performance of the GLMs is evaluated by comparing the parameter values modelled by 

the GLMs and those from the originally fitted GEVs; as well as by conducting a residual 

analysis (McCullagh, 2018; Pierce and Schafer, 1986; Wang, 1987). 

The GLMs for both cases perform well (see Figure 3.12a). The GB case has slight 

underestimations for some large values that appear in the western coastal region; and for the 

AU case, some overestimation happens for the small values which are located in the middle-

south dry zone. The GLM model probability structure is checked by the normal quantile plot 

(see Figure 3.12b) of the residuals, where a theoretical normal distribution is shown on the 𝑥-

axis compared with the residual quantiles on the 𝑦-axis. If the probability assumption (i.e., 

gamma assumption) is correct, all residuals would have the same distribution which is an 

approximate normal distribution. It can be observed that the distribution of the residuals of the 

four GLMs is symmetric with two flat sides. Generally, the approximation fits well except for 

the upper side which represents only 0.9% of the total data points. In view of the research aims, 

this is considered to be acceptable.  



3.4 Qualitative analysis of the spatial variation of ROI-based study 77 

 

 

 

(a) 

 

(b) 



3.4 Qualitative analysis of the spatial variation of ROI-based study 78 

 

 

Figure 3.12 A scatter plot (a) and a normal quantile plot (b) for revealing the difference between the actual GEV 

parameters and the modelled GEV parameters. 

Meanwhile, the 10-fold cross-validation was used by random partitioning the GEV parameters 

to test the four GLMs. The average Nash–Sutcliffe efficiency (NSE) coefficient across all 

partitions of each GLM was reported as 0.97, 0.89, 0.86 and 0.68 respectively (shown in Figure 

3.13). NSE nearer to 1 means the model with more predictive skill. 

 

Figure 3.13 Nash–Sutcliffe efficiency (NSE) coefficient of 10-fold cross-validation (CV) method for evaluating 

the performance of four GLMs. 
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In order to reveal whether the GEV parameters 𝜇 and 𝜎 in the adjacent ROIs are interdependent 

to a certain distance, i.e., checking the locative continuity, (semi-) variograms are fitted to the 

data using a widely adopted Spherical Model. And the variogram is calculated by: 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑(𝑍𝑙𝑖 − 𝑍𝑙𝑖+ℎ)

2

𝑁(ℎ)

𝑖=1

 (3.10) 

where 𝑁 (ℎ) is the number of pairs of ROI locations at distance ℎ apart and 𝑍𝑙𝑖 indicates the 

value at the location 𝑖. 

The results are presented in Figure 3.14. The meridionally averaged 𝜇 and 𝜎 in GB, which were 

estimated by the GEV and fitted by the GLMs respectively, show very little difference on 

locative continuity (range, sill and nugget). For the distance between the adjacent ROIs less 

than around 200 km, both 𝜇 and 𝜎 are specially related. It indicates that the fitted GLM for the 

GB case is able to reproduce the spatial coherence of the two GEV parameters. For the AU 

case, similar results are found but with a distance threshold around 400 (×5 km). There is a 

difference in the sills when comparing the 𝜎 parameter from the GLM and the GEV.   
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Figure 3.14 The variograms for evaluating spatial continuity of GEV parameters 𝜇 and 𝜎 estimated by GEV and 

GLM models of GB (a) and AU (b) cases fitted by Spherical model. 

These quantitative findings regarding the spatial variation of the GEV parameters have two 

important implications to many downstream applications of the areal rainfall maxima, e.g., 

flood risk management (FRM). For one aspect, the traditional approach in FRM makes use of 

point rainfall maxima to represent the areal one (catchment or a predefined area), where a 

scaling factor is involved. This simplistic treatment ignores the complexity in spatial 

distribution, nor can it account for the interplay of the size, location as well as the shape of the 

area in question, as revealed above. For another, the overall quantification of the spatial 

variation of the GEV parameters (hence, the return values) makes it possible to study the FRM 

at the country level as a single entity instead of looking at individual regions with isolations. It 

also helps to gain insights into how large scale hydroclimatic (rainfall) variation can affect the 

local FRM, which is very important for studying FRM under climate change impact. 

3.5 Qualitative analysis on the spatial variation of catchment-

based study 

3.5.1 Spatial features of catchments and simulation results of GEV model  

The subfigures a, b, c and d of Figure 3.15 present the spatial distribution of catchments with 

respect to their spatial features, i.e., elevation 𝐻, size 𝑆, orientation angle 𝜔 and shape 𝑠𝑝. The 

highest elevation is observed in the Scottish Highland, generally more than 800 metres. Then 

North England and North Wales are also relatively high with an average elevation higher than 

400 metres and the rest of England is the lowest. In addition, it can be observed that the size of 

most catchments (around 99%) in England and Wales are less than 600 km2 while only the 

catchments located near the boundary between England and Scotland have a larger size which 

is greater than 1000 km2. The catchment sizes vary greatly because these catchments are 

actually sub-catchments of the same river basin. The orientation of these catchments is 

indicated by the major angle 𝜔 referring to the North direction. In other words, 𝜔 = 0 indicates 
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the orientation of catchment is north-south direction; the positive 𝜔  (presented by reddish 

colour) indicates a north-east orientation while the negative angle (presented by bluish colour) 

is a north-west orientation; and 𝜔 equaling to ±90o means the orientation of the catchment is 

east-west direction. It can be observed that the catchments near the north coastlines tend to be 

northeast orientated while the ones near east coastlines are northwest orientated. Moreover, the 

catchments located at the boundary of Wales and England tend to be north-south orientated 

indicating a very light red or blue colour (i.e., 𝜔  closed to 0). Referring to the shape of 

catchments shown in Figure 3.15c, the shape of most catchments (61%) is relative rounded or 

elliptical and their 𝑠𝑝 is in the range of 1.0 and 2.0. 𝑠𝑝 to the rest majority is less than 4.0 

indicating an elongated shape. 

The correlation among these spatial features does not necessarily imply a causal relationship; 

one should be, however, more interested in how the parameters co-vary with the catchment 

characteristics. To explore more about catchment characteristics, Figure 3.15e and Figure 3.15f 

are generated where the spread of shape index 𝑠𝑝 of smaller regions is greater than that of 

larger regions; while the elongated shape has a much higher probability of being accompanied 

with a small size while the large size of catchment tends to have a relatively rounded shape in 

both England and Wales. The relationship between the catchment shape and orientation is 

insignificant while the catchments with an elongated shape tend to have a northwest or 

northeast orientation (𝜔 around ±50o). 
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Figure 3.15 Spatial features of study catchments. 

3.5.2 Spatial variation of AMDR with respect to location and elevation 

Figure 3.16 presents the spatial patterns of the AMDR represented by three GEV parameters 

in the catchments over England and Wales (subfigures a, b and c),  and how these parameters 

are related to the catchment elevation (def). Out of all catchments, there are around 80% follow 

the Fréchet distribution (𝜉 > 0, shown as reddish colour in Figure 3.16a), mainly located in 

middle and eastern England of lower elevation; only 16% follow the Weibull distribution (𝜉 <

0, shown as bluish colour), mainly located in the vicinity of Manchester and Liverpool and 

middle-western Wales where the elevation is relatively high (see Figure 3.15a); and the rest 

(4%) following Gumbel distribution (𝜉 = 0). 

Subfigures b and c of Figure 3.16 present the spatial variation of the GEV parameters 𝜎 and 𝜇 

by which the behaviour of AMDR can be parameterised and depicted. It can be observed that 

both 𝜎 and 𝜇 present a similar spatial pattern where a higher 𝜇 is usually accompanied by a 

higher 𝜎 . Meanwhile, along the same Northing coordinate, the parameters of the western 

region, especially western Wales and Lake District of England, are much greater than the 

eastern area such as middle and east England. By contrast, the change of the parameters in the 

catchments located at the same Easting coordinate is not remarkable and the only difference 

that can be observed is that 𝜎 and 𝜇 of the catchments in North England are higher than the 

South areas. Such spatial pattern can be described as “west high, east low” and the difference 
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is not linearly either - there is a significant decrease occurring in the west while the gradient of 

such decrease is much smaller in the east. As 𝜇 can reflect the level of the most frequent AMDR 

in the last century and 𝜎 can somehow tell the occurrence probability of those extreme events, 

the parameterization quantification can be translated as the most frequent AMDR in the west 

is usually higher than the east and those areas with a higher most frequent AMDR are usually 

observed to have a higher probability of the occurrence of extreme AMDR. These findings are 

the same as the result of the ROI-based study (see Section 3.4.1). 

The corresponding Figure 3.16e and Figure 3.16f are presented to show the general relationship 

between the GEV parameters and the catchment elevation 𝐻 which is demonstrated by trend 

lines. In general, both parameters have a positive trend that catchments with a higher elevation 

have a higher level of most frequent AMDR as well as a higher occurrence probability of 

extremes. A plausible explanation is that the local topography can play an important role in 

enhancing extreme rainfall via processes such as the uplifting of moist air. 

 

 

(a) (d) 
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(c) (f) 

Figure 3.16 Spatial variation of AMDR with respect to catchment location represented by GEV parameters 𝜉 

(a), 𝜎 (b) and 𝜇 (c); and the relation between these three parameters and the catchment elevation (𝐻) is 

presented in d,e,f respectively. 

3.5.3 Spatial variation of AMDR with respect to catchment size 

The UK Meteorological Office usually classifies rainfall into four categories according to the 

rate of precipitation (Jebson, 2007): “slight” ( 0~2  mm/hour or roughly 0~5  mm/day), 
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“moderate” ( 2~10  mm/hour or 5~25  mm/day), “heavy” ( 10~50  mm/hour or 25~125 

mm/day), and “violent” (> 50 mm/hour or 125 mm/day). To be more specific, in this study, I 

added several classes and divided the catchment-based AMDR at the most frequent level (w.r.t 

, 𝜇) into 5 groups, i.e., slight (< 10 mm/day, 1.0% of all catchments), moderate (10~25 

mm/day, 25.6%), high (25~50 mm/day, 70.3%), extreme (50~100 mm/day, 3.0%), very 

extreme (> 100 mm/day, 0.1%). The location of catchments belonging to these five groups as 

well as the GEV parameters 𝜎 and 𝜇 changing over catchment size are shown in Figure 3.17, 

respectively. Catchments with moderate AMDR levels are mainly located in east England 

while those at the extreme level are located in the Lake District and North and West Wales near 

the coast. 
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Figure 3.17 Categories of five groups according to the level of AMDR and GEV parameters σ and μ changing 

with catchment size in the catchments with “Moderate”, “High” and “Extreme” levels of AMDR. 

In general, with the increase of catchment size, both parameters show a decreasing trend 

especially in the south and east England (“Moderate” group), middle-west Wales and the Lake 

District (“Extreme” group), which is caused by areal averaging and the same with the ROI-

based study. However, for the “High” group with a middle level of the most frequent AMDR, 

a decreasing trend can be observed when the catchment size is either relatively small (e.g., less 

than 200 km2) or relatively large (e.g., greater than 500 km2). However, there is an increasing 

trend shown in the catchments of medium sizes (400~500 km2). This phenomenon shows that 

the change of parameters over catchment sizes is strongly affected by their geographic 

locations. For example, for the catchments in this group  (those mainly located near the 

boundary of the high and extreme AMDR areas; see the catchments with the size of 400~500 

km2 in Wales and southern England in Figure 3.15b), if increasing the catchment size involves 

more grids with higher AMDR, the corresponding parameters 𝜇  and 𝜎  will also increase 

because the reduction caused by areal averaging cannot be compensated by the involvement of 

more heterogeneous grids of higher rainfall. Such effect can go the other way as well when 

more grids of lower AMDR are included. This can explain the result for the “Extreme” group 

where an increasing trend is observed when the size is in the range of 200~300 km2. For the 

small catchments located in the Lake District and middle-west Wales where the AMDR are 
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extreme, larger catchments tend to include more grids with higher rainfall thereby increasing 

𝜇 and 𝜎. 

3.5.4 Spatial variation of AMDR with respect to catchment orientation and 

shape 

Compared with the location, elevation and size of the catchments,  the effect of catchment 

orientation and shape is not that significant; however, in order to demonstrate such relation 

more clearly, I fit the result using local linear regression (LLR; Baíllo and Grané, 2009; Fan, 

1993) as the background of subfigures in Figure 3.18 to help the analysis. One of the most 

commonly used methods for carrying out LLR is Locally Weighted Scatterplot Smoothing 

(LOWESS; Cleveland, 1979; Moran, 1984) which can generate a smooth curve or surface to 

help figure out the relationship or trend between two GEV parameters and catchment features, 

i.e., orientation and shape in this case.  

For the catchments in “Moderate” group, there is a small difference between the west-

northwest oriented and east-northeast oriented catchments on 𝜎 and 𝜇 which tend to be smaller 

than that of the north orientation. However, both 𝜎 and 𝜇 tend to decrease when the shape 

becomes more and more elongated. For those in “High” group, the majority of the catchments 

show small differences on both parameters between the west-northwest and east-northeast 

orientation while the 𝜇  parameters for the catchments with north-northeast orientation are 

usually higher than those of the catchments with north-northwest orientation. Generally, two 

parameters decrease with an increased 𝑠𝑝 but smaller-sized catchments witness a converse 

trend. For “Extreme” group, the pattern of parameters changing over orientation is distributed 

symmetrically with 𝜔 = 0 (North) where catchments with a west-northwest orientation usually 

have higher parameters than east-northeast orientation. On the whole, several patterns can be 

summarised as: 

1) In middle-west Wales and the Lake District of England where AMDR is high, both 

levels of the most frequent AMDR and occurrence probability of extremes are higher 

in the catchment orientated in a west-northwest direction than others. 
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2) For the rest area of Wales and England, generally, the level of the most frequent AMDR 

and occurrence probability of extremes in the catchments whose orientations are west-

northwest or east-northeast are almost the same and lower than that the north-south 

oriented catchments. 

3) The level of the most frequent AMDR and occurrence probability of extremes in the 

catchments with an elongated shape are usually lower than others with a relatively 

rounded shape.  

4) Catchment orientation and shape are not as much significant as their locations and sizes 

concerning the spatial effect on AMDR. 
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Figure 3.18 GEV parameters 𝜎 and 𝜇 change over orientation 𝜔 (a) and shape 𝑠𝑝 (b) of catchments in the three 

groups where “LLR” is short for “local linear regression” and the directions “North”, “West” and “East” are 

abbreviated as “N”, “W” and “E”. 

3.6 The link between the spatial variations of GEV parameters 

and the large-scale climatology of rainfall variation 

The GEV distribution parameters that can reveal the characteristics of extreme rainfall in terms 

of both its amount and occurrence probability, are shown to have a strong spatial dependency 

as discussed previously. To understand how such spatial variation of the extreme rainfall is 

related to the climatology of rainfall variation, the areal annual rainfall (AAR) time series from 

each ROI was obtained. The mean and standard deviation (SD) of the AAR series were then 

compared with the GEV parameters 𝜇 and 𝜎 of the AMDR series extracted from the same 

ROIs. To visualize the link, the spatial continuity of the corresponding parameters from both 

AAR and AMDR was represented by their variograms (see Figure 3.19) which shows very 

little difference in locative continuity.  

For the GB case, when the distance between the adjacent ROIs is less than around 300 km, 

both 𝜇 and the mean of areal annual rainfall (AAR) are spatially related. However, there is no 

sill observed in 𝜎 and the standard deviation of AAR. For AU, the ranges for spatial related 

ROIs for 𝜇 and 𝜎 of AMDR are around 300 km, which is similar to those for the mean and 

standard deviation of AAR. 
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Figure 3.19 The variograms for comparing spatial continuity of GEV parameters μ and σ with spatial continuity 

of areal annual rainfall (AAR) ‘s mean and their standard deviation (SD) of GB (a) and AU (b) cases fitted by 

Spherical model. 

Figure 3.20 demonstrate a great deal of similarity exiting in space between the daily maxima 

time series (i.e., AMDR) and the cumulative annual rainfall (i.e., AAR). For example, regions 

with higher mean of AAR are not only represented by higher SD (e.g., the circles located in 

west Scotland and west Wales of GB and in north-eastern coastal regions of AU, appearing 

more reddish and larger), they are also associated with higher GEV parameters of AMDR, and 

appear to be more heterogeneous. This feature also exists in the regions with low and more 

even annual rainfall distribution, but works in an opposite way (e.g., circles located in middle 

and eastern England of GB and middle-north zone of AU are all more bluish and smaller). 

These findings are consistent with those published in the series of climate reports of both 

countries.  

In GB, a series of annual state of climate reports (Kendon et al., 2015; Kendon et al., 2018, 

2019) released in the past few decades by Met Office show that: 

1) Rainfall in eastern England has a much more even distribution while rainfall of 

midland at the same latitude is higher than eastern England but the wettest month varies 

more across this region;  

2) Wales varies most widely with the highest average rainfalls; 

3) Scotland has the most remarkable increase in average rainfall and altitude is the 

greatest effect factor of rainfall distribution.  

These phenomena can be explained and also revealed by the spatial distribution of two GEV 

parameters in the analysis of Figure 3.20: 1) the amount of most frequent rainfall (w.r.t. 𝜇) in 

western GB are higher than the east, especially in the Highland of Scotland and Wales; 2) the 

extremes are more likely to be accompanied by a high amount of most frequent rainfall. The 
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extreme rainfall in Wales and west Scotland varies most compared with eastern GB where the 

rainfall is more evenly distributed (w.r.t. 𝜎).  

In AU, the climate also has a strong spatial dependency and is changing in response to a 

warming global climate system with a change of both frequency and severity of extreme 

weathers as shown by annual climate reports produced by CSIRO and the Australian Bureau 

of Meteorology  (CSIRO and Meteorology, 2018) which state that: 

“There has been a significant drying across southern AU and last century with lower-than-

average growing season rainfall which is expected to be more frequent than in the past. An 

increasing proportion of Australia received more rain from heavy rain days during the period 

1950–2012 and large variability in extreme rainfall events from decade to decade is also 

evident, with very wet events often associated with La Niña years.”  

This feature is clearly reflected in the GEV parameters in the southern AU where 𝜇 indicating 

the amount of most frequent rainfall is low (less than 20 mm, dry climate) but 𝜎, although is 

not high when being compared with the coastal regions, varies across this area (from less than 

10 to 15) and the relatively high 𝜎 value shows a relatively high occurrence probability of 

extremes such as extreme events of lower-than-average rainfall. However, the situation is 

different in north-eastern coastal areas of AU with a high 𝜇 and a varying 𝜎. This finding is 

also consistent with the explanation in the cited climate report.  
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(b) 

Figure 3.20 Comparison between the climatic variables (the average annual rainfall and its standard deviation) 

and GEV parameters 𝜇 and 𝜎 in GB (a) and AU (b) cases where the colour denotes the value of averaged annual 

rainfall or the GEV parameter 𝜇, and the size of the circles denotes the value of the standard deviation of the 

annual rainfall or the GEV parameter 𝜎. 

3.7 Summary and remarks 

This chapter presents a quantitative study of the spatial variation of extreme rainfall with 

regards to various spatial characteristics such as location, size and shape/orientation, using two-
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century long datasets covering Great Britain (GB) and Australia (AU). First, an ROI-based 

approach is developed where a large number of regions of interest (ROIs, 11,011 in total) are 

randomised by altering their spatial properties using the SRS-GDA toolbox (presented in 

Chapter 2). The annual maximum daily rainfall (AMDR) series extracted from these ROIs are 

individually fitted with a well-tested GEV distribution whose parameters are then analysed 

over space. The relationship between the rainfall extremes and the various spatial properties of 

the ROIs is validated by a catchment-based analysis where 903 real catchments in England and 

Wales are involved and further quantified by developing four generalised linear models 

(GLMs). As the result from the real catchments shows good consistency with the ROI-based 

study, the accuracy and effectiveness of the proposed ROI-based approach specifically 

designed for large grid-based datasets are well-validated and the latter can be readily applied 

to other hydro-climatic quantification analysis for evaluating the spatial heterogeneity of 

climate change impacts, such as flooding and droughts.  

From the results discussed previously based on the GB and AU application cases, the following 

conclusions can be drawn: 

1) The GEV distributions are shown to be able to model well the grid-based areal AMDR 

for both the GB and AU cases; more than 90% of ROIs and 80% of real catchments are 

better fitted with the Frechét type of distribution among the three GEV types. 

2) Most catchments (around 99%) are less than 600 km2 while only the boundary of 

England and Scotland have a larger size greater than 1000 km2; The catchments near 

the north coastlines tend to be northeast orientated while the ones near the east 

coastlines are northwest orientated and the catchments at the boundary of Wales and 

England tend to be north-south orientated. And the shape of more than half catchments 

(61%) is relative rounded or elliptical. 

3) The deviation of the shape of smaller regions is greater than that of larger regions and 

the elongated shape has a much higher probability to be observed in small-sized 

catchments however the large catchment tends to have a relatively rounded shape in 

England and Wales. 
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4) The GEV location (𝜇) and scale (𝜎) parameters present similar spatial patterns where a 

higher 𝜇 is usually accompanied by a higher 𝜎 indicating those regions that have a 

higher amount of most frequent rainfall often observe a higher occurrence probability 

of extremes. And catchments with higher elevation usually get a higher level of most 

frequent AMDR and occurrence probability of extremes.  

5) Geographic location is the most significant factor affecting the two GEV parameters. 

The spatial pattern in GB is an eastward decreasing banded pattern with no significant 

difference along the north-south direction. In AU, a concentrically increasing pattern 

from the middle-south zone to northeast coasts is found. 

6) Increasing the region size will decrease both parameters which means a decrease of the 

most frequent AMDR amount and the occurrence probability of extremes. However, in 

AU, the rate of such decrease varies with regions as the combined impact of ROI 

location and size is also detected to be significant. In the catchment-based study, 

generally with the increase of catchment size, both parameters show a similar decreased 

trend caused by the areal average especially in the south and east England (where 

AMDR is relatively low), Lake District and middle-west Wales (where AMDR is very 

high). However, for the catchments with the middle level of AMDR, a decreased trend 

can be observed when the catchment size is either very small or very large but in 

between, both parameters increase. This phenomenon shows that the change of 

parameters over catchment sizes is affected by their geographic locations as well when 

increasing size by involving more grids of higher rainfall can overcompensate the 

reduction caused by the areal average. 

7) Compared with other spatial properties, the shape of ROI is detected as insignificant, 

even though, a symmetric pattern is found for regions with reciprocal spatial indexes. 

Also, regions of more elongated shapes tend to have small parameter values in contrast 

with those having regular/rounded shapes. However, in middle-west Wales and Lake 

District of England where AMDR is high, both parameters are higher in the west-

northwest-oriented catchment than in other orientations. And for the rest area, 

parameters in the catchments whose orientations are west-northwest or east-northeast 

are almost the same and lower than the north-south orientation.  
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These findings offer new quantitative insight in understanding the spatial variation of large-

scale climatology of rainfall. Not only are they supported and consistent with many previous 

studies on rainfall distributions, but the quantification of the extreme rainfall and its spatial 

dependencies are also of great practical value in engineering design, e.g., designed 

rainfall/floods for constructions.  



 

 

Chapter 4 Modelling Temporal Variation of 

Rainfall Extremes 

Continuing from the studies presented in the previous two chapters, this chapter focuses on the 

temporal quantification of rainfall extremes in parallel with the spatial variation models 

depicted in Chapter 3, aiming to address (part of) Q2 and Q4. The study discussed in this 

chapter 5 demonstrates the process of modelling the extreme rainfall using both stationary and 

nonstationary Generalised Extreme Value (GEV) models over a large number of ROIs 

distributed over GB and AU for the last century, aiming to gain insights into the spatial 

variation of the GEV distribution in modelling extreme rainfall. Alongside the L-Moments 

(LM) and Maximum Likelihood (ML) estimation methods, the Bayesian Markov-Chain Monte 

Carlo (B-MCMC) method is employed to estimate the parameters in the nonstationary 

condition. The results show that a large proportion of the ROIs in both countries can be best 

modelled by nonstationary GEV models as far as the annual maximum daily rainfall (AMDR) 

is concerned. The most frequent AMDR, represented by the location parameter of the GEV, 

tends to be increasing over time especially in the coastal regions of GB and western Australia. 

Increasing the region area will decrease the baseline values of the GEV location and scale 

parameters and the time-varying terms due to climate change in most situations. However, in 

certain locations, increasing the area can amplify the climate change impact. Region shape is 

the least significant factor compared with the other two spatial features, but a symmetric pattern 

is observed. Furthermore, the comparison between different models shows that the 

conventionally used stationary models can underestimate remarkably the AMDR in regions 

 

5 Part of the contents of Chapter 4 has been submitted to the journal “Weather and Climate Extremes” and under 

review. 
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where the nonstationary model is preferred. The findings suggest that an overhaul of the current 

storm design determination procedure may be needed in view of the impact from not only the 

environmental change but also the spatial variation in natural processes. 

 

4.1 Introduction 

As discussed in the literature review in Section 1.2.1, recently, there has been a growing interest 

in studying natural events from a climate-change perspective, given that key hydro-climatic 

variables, such as precipitation, temperature, streamflow, etc., are indeed changing due to the 

impact of climate change (Zscheischler et al., 2018). For the commonly used nonstationary 

GEV model, this is meant to assume that its scale and location parameters are varying with 

time or other climate indices (Son et al., 2017) and in the last few decades there have been 

several studies applying nonstationary GEV distributions to fit extreme rainfall. However, most 

of them focused on a limited number of specific domains because of data availability issues in 

hydrological observations; therefore, their conclusions are mostly of rationale and lack of 

generalization (Ganguli and Coulibaly, 2017). Meanwhile, it is clear that hydroclimatic 

extremes such as extreme rainfall can be affected by its local features not only the topography 

but also the orientation (shape) and size of the area, which is presented in Chapter 3. However, 

how the area‐orientated rainfall extremes vary with the ROIs’ geographical location, size and 

shape in the perspective of nonstationarity has not been fully studied; yet it is challenging as 

the variability of extremes can be sensitive to the size of the regions studied, e.g., substantial 

trends over smaller regions can arise purely from natural variability (Brown, 2018; de Leeuw 

et al., 2016; Fischer and Knutti, 2014).  

This chapter presents a comparative study of Great Britain (GB) and Australia (AU) using two 

century-long grid-based (daily and 1–5 km) rainfall datasets, i.e., the GEAR dataset and the 

ADAM dataset (see Table 1.1 on Page 20 of Chapter 1), and it aims to gain the much-needed 

insights into the spatial variability of extreme rainfall associated with dramatically different 
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climate and geomorphological features (GB and AU), as represented by the nonstationary 

probability distribution parameters. To achieve this, and not to be limited by the regional 

boundaries, I employed a sampling toolbox (Chapter 2) to generate a large number of ROIs by 

randomizing their locations, sizes and shapes, which is all presented in Table 3.1 on Page 50 

of Chapter 3. For each ROI, the annual maximum daily rainfall (AMDR) time series were 

extracted with the assistance of high-performance computing (HPC) and fed in both stationary 

and nonstationary GEV models to address the impact of climate change on extreme rainfall. 

Finally, the patterns changing with three spatial features and the contrasting differences 

between stationary and nonstationary conditions at different return levels were analysed. 

Specifically, the study attempts to address the research questions (the other part of) Q2 and Q4 

and the main objectives include: 

1. to reveal the extreme daily rainfall pattern that varies with time during the last century 

in two countries; 

2. to assess the applicability of both stationary and nonstationary GEV models; 

3. to test the three mainstream parameter estimation methods with regards to their 

goodness of fit at different levels of the rarity of rainfall extremes; 

4. to evaluate the climate change impact in both countries and how it changes over time 

and space. 

The remainders of this chapter start with the presentation of the main methodology including 

Block Bootstrapping Mann-Kendall (BBS-MK) test and parameter estimation for both 

stationary and nonstationary GEV models in Section 4.2; then it shows the results alongside a 

detailed discussion focusing on the spatial feature of the stationary and nonstationary GEV 

models (Section 4.3.2); spatial changes with ROI sizes (Section 4.3.3) and shapes (Section 

4.3.4). The comparison at different return levels is discussed in Section 4.4. The conclusions 

and recommendations are given in Section 4.5. 
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4.2 Methodology 

The following approach is applied and covers the three related aspects of this study: 

• Generate ROIs with varying location, size and shape and extract the maximum time 

series with the assistance of high-performance computing (HPC). 

• Fit the time series obtained at every ROI with stationary and nonstationary GEV models 

with different parameter estimation methods. 

• Evaluate the performance of all models and analyse the changes of time-varying 

parameters with regards to the geographical locations, sizes, and shapes as well as the 

level of extremity. 

4.2.1 Block bootstrapping Mann-Kendall (BBS-MK) test 

The Mann-Kendall (M-K) test (Kendall, 1948; Mann, 1945) is a nonparametric method to 

detect the monotonic trends in a series of hydrometeorological data, which is recommended by 

the World Meteorological Organization and has been widely applied in the hydroclimatic 

research area (Fathian et al., 2016; Song et al., 2014; Yue et al., 2002). The null hypothesis 𝐻0 

of the test is that the data (i.e., the time series AMDR in this study) come from a population 

that is independent, identically distributed; and the alternative hypothesis 𝐻𝐴 is that the data 

have a monotonic trend. Therefore, for the time series AMDR 𝑋 = (𝑥1, 𝑥2…𝑥𝑛), the M-K test 

statistic S is given by: 

𝑆 = ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 (4.1) 

With 

sgn(𝑥) = {
1
0
−1

if 𝑥 > 0
if 𝑥 = 0
if 𝑥 < 0

 (4.2) 

where 𝑛 is the length of AMDR which equals 113 for GB case and 129 for AU case. The mean 

of 𝑆, E(𝑆) is 0 and the variance Var(𝑆) can be calculated as: 



4.2 Methodology 105 

 

 

Var(𝑆) =
𝑛(𝑛 − 1)(2𝑛 − 5) − ∑ 𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)

𝑝
𝑗=1

18
 (4.3) 

where 𝑝 is the number of the tied groups in the time series and 𝑡𝑗 is the number of data in the 

𝑗th tied group. The standardized normal test statistic 𝑍 is employed for approximating the 

statistic 𝑆 is normally distributed: 

𝑍 =

{
 
 

 
 
𝑆 − 1

√Var(𝑆)
if 𝑆 > 0

         0       if 𝑆 = 0
𝑆 + 1

√Var(𝑆)
if 𝑆 < 0

 (4.4) 

If the statistic 𝑍 is greater than the critical value at 0.05 significant level in this study, the null 

hypothesis will be rejected. The positive or negative 𝑍 indicates an increasing or decreasing 

trend. Besides, the magnitude of the trend can be evaluated by Sen’s slope 𝛽 which is given by 

(Sen, 1968): 

𝛽 = Median (
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
) , 𝑗 > 𝑖 (4.5) 

However, the basic assumption of the MK test is that data are serially independent. For example, 

if testing data have a positive autocorrelation, the occurrence possibility of the Type 1 error of 

rejecting the null hypothesis when it is correct is increased because of inflation of variance of 

M-K test statistic (Von Storch, 1999). Therefore, in the study, I employed the Block 

Bootstrapping Mann-Kendall (BBS-MK) test (Kundzewicz and Robson, 2004; Önöz and 

Bayazit, 2012; Sonali and Kumar, 2013), which is a robust and flexible approach for detecting 

the trend of AMDR. It firstly randomly resamples the AMDR in predetermined blocks without 

any modification of original data structure or autocorrelation and in bootstrapping, I shuffled 

2000 times. Then the test statistic is calculated for each sample and its probability distribution 

is obtained. Finally, the test statistic from the resampled data is then compared with the test 

statistic from the original data to estimate the level of significance. Although there is a trade-

off between the Type I error and the power of the BBS-MK test, the results are not very 

sensitive to the selection of block length (Önöz and Bayazit, 2012). 
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4.2.2 Stationary generalised extreme value model (S-GEV) 

For a given ROI, The AMDR time series extracted at each ROI is then fitted by the GEV 

distribution whose cumulative distribution function (CDF) is defined as:  

𝐹(𝑥; 𝜎, 𝜇, 𝜉) = exp [−(1 + 𝜉(
𝑥 − 𝜇

𝜎
))−1/𝜉] (4.6) 

The cumulative probability function 𝐹 is defined for 1 + 𝜉(𝑥 − 𝜇)/𝜎 > 0, −∞ < 𝜇 < ∞, 𝜎 >

0 and −∞ < 𝜉 < ∞, where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝜉 is the 

shape parameter. There are three types of distribution in the GEV family, which are 

distinguished by their shape parameters. The type I distribution, also known as the Gumbel 

distribution, refers to the case where 𝜉 = 0; while the types II and III are known as the Fréchet 

distribution and the Weibull distribution corresponding to the cases where 𝜉 > 0 and 𝜉 < 0 

respectively. These three parameters are invariable with time or other covariations, hence the 

name ‘stationary’. The parameters of the stationary model (S) are estimated by using the 

Maximum Likelihood (ML) method (Myung, 2003) which is a common and robust choice.  

In the stationary case, for any given year and a threshold 𝑥0, the exceedance probability is 1 −

𝐹(𝑥0). The return period for 𝑥0 (i.e., the number of years it takes for the exceedance event 

returns) can be calculated as 𝜏 =
1

1−𝐹(𝑥0)
.  The link between 𝜏 and the number of expected 

exceedances 𝐾 over 𝑇 years, can then be explained by starting with a duration 𝑑𝑡 with the 

corresponding number of exceedances 𝑑𝐾: 

𝑑𝐾 =
𝑑𝑡

𝜏
= [1 − 𝐹(𝑥0)]𝑑𝑡 (4.7) 

and then integrating over 𝑇 years: 

𝐾 = ∫ 𝑑𝑘 = ∫ [1 − 𝐹(𝑥0)]𝑑𝑡
𝑇

0

𝑇

0

 (4.8) 

It should be noted that for the AMDR over 𝑁 years (113 years in the GB case and 129 years in 

the AU case), since 𝐹(𝑥0) is time-independent, Eq. (4.8) leads to the normal finding: 𝐾(𝑥0) =

[1 − 𝐹(𝑥0)]𝑁, i.e., for 𝐾 exccendances over 𝑁 years, the return period is 𝑁/𝐾. 



4.2 Methodology 107 

 

 

4.2.3 Nonstationary generalized extreme value model (NS-GEV) 

Compared with the stationary model, the nonstationary model makes an important extension 

by assuming that the parameters change over time. In this study, the scale and location 

parameters are considered to vary with time and thus the cumulative probability is: 

𝐹𝑡(𝑥𝑡; 𝜎𝑡 , 𝜇𝑡, 𝜉) = exp [−(1 + 𝜉(
𝑥𝑡 − 𝜇𝑡
𝜎𝑡

))−1/𝜉] (4.9) 

Basically, the CDF 𝐹𝑡 of the NS-GEV follows the same form as the stationary one with an 

additional subscript 𝑡 added to the location and scale parameters which indicates that both 

parameters are time-dependent. 

Table 4.1 Stationary and nonstationary GEV models and the estimation methods. 

Noted that ML* is short for the “Maximum Likelihood” method and B-MCMC* is for the “Bayesian Markov-

Chain Monte-Carlo” method. 

To create a stable quantile estimation consistent with the behaviour of rainfall extremes, four 

different GEV models are developed with different assumptions of parameters, as listed in 

Table 4.1. Both ML and the Bayesian Markov-Chain Monte-Carlo (B-MCMC) methods are 

employed to estimate the parameters of nonstationary models. 

• The ML method 

The ML method (Myung, 2003) is built upon the likelihood function of the occurrence of 

AMDR, which is the product of the probability density function of NS-GEV distribution: 

Description Parameters Estimation Method(s) 

Stationary model: 𝐹(𝑥; 𝜎0, 𝜇0, 𝜉) 𝜎0, 𝜇0, 𝜉 are constant ML* 

Nonstationary model 1: 

𝐹𝑡(𝑥𝑡; 𝜎0, 𝜇𝑡, 𝜉) 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡
𝜎0, 𝜉 are constant

 ML and B-MCMC* 

Nonstationary model 2: 

𝐹𝑡(𝑥𝑡; 𝜎𝑡 , 𝜇𝑡, 𝜉) 

𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡
𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡
𝜉 is constant

 ML and B-MCMC 

Nonstationary model 3: 

𝐹𝑡(𝑥𝑡; 𝜎𝑡 , 𝜇𝑡, 𝜉) 

𝜎𝑡 = exp (𝜎0 + 𝜎1 × 𝑡)
𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡
𝜉 is constant

 ML and B-MCMC 
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𝐿(𝑥𝑡; 𝛉) = ∏ 𝑓(𝑥𝑡; 𝛉)
𝑡0+𝑘
𝑡=𝑡0

= (
1

𝜎𝑡
(1 + 𝜉(

𝑥𝑡−𝜇𝑡

𝜎𝑡
))
−
1

𝜉
−1
 exp (−(1 + 𝜉(

𝑥𝑡−𝜇𝑡

𝜎𝑡
))−1/𝜉))𝑘  (4.10) 

The set of the parameters 𝛉 can then be estimated by maximizing the likelihood function as 

𝜕𝐿(𝑥𝑡;𝛉)

𝜕𝛉
= 0. It usually cannot be solved analytically, thus an iterative algorithm was employed 

to find the minimizer of 
𝜕𝐿(𝑥𝑡;𝛉)

𝜕𝛉
 starting with an initial guess which is based on the value of 

parameters estimated in stationary model S. 

• The B-MCMC method 

Not to get the parameters 𝛉 of NS-GEV directly, the B-MCMC method makes use of Bayesian 

inference to estimate the posterior distribution of parameters 𝛉 based on the informative prior 

knowledge. In this study, in order to ensure a better fit by taking full use of the knowledge, the 

estimated parameters of the stationary model were used to define the initial prior values of the 

NS-GEV model and the prior distribution of parameters is assumed to be a uniform distribution. 

Eq. (4.11) presents the transformation from the prior distribution to the posterior distribution 

by multiplying by its likelihood (Rasmussen and Ghahramani, 2003). 

𝑝(𝛉|𝑥, 𝑡) ∝ 𝑝(𝑥|𝛉, 𝑡) × 𝑝(𝛉|𝑡) =∏𝑝(𝑥𝑡|𝛉𝑡, 𝑡) ×

𝑡0+𝑘

𝑡=t0

𝑝(𝛉|𝑡) (4.11) 

where 𝑝(𝑥|𝛉, 𝑡) ∝ 𝐿(𝑥; 𝛉, 𝑡)  is the likelihood function and 𝑝(𝛉|𝑡)  is the prior probability 

distribution of the parameters 𝛉; 𝑡 indicates the time from 𝑡0 to 𝑡0+𝑘.  

Numerical iterations for exploring the posterior distribution are carried out by using the MCMC 

simulation (Binder et al., 2012; Manly, 2018; Metropolis and Ulam, 1949), which is also aimed 

at analysing the uncertainty of the NS-GEV model. The final simulation results are compared 

with those estimated using the ML method.  

The essence of the MCMC algorithm is to generate a trial moving from the current state of the 

Markov Chain with a prior probability of parameters 𝑝(𝛉|𝑡) to a next proposed state with a 

prior probability of the proposed parameters 𝑝(𝛉′|𝑡). In this study, to make full use of the 

knowledge, the estimated parameters of the stationary model were used to define the initial 

prior values of the nonstationary parameters which are drawn from uniform distributions using 
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Latin Hypercube Sampling (LHS). Numerical iterations for exploring the posterior distribution 

are carried out by using the MCMC simulation with Metropolis within Gibbs sampling. The 

Metropolis ratio is calculated to accept or reject proposal status and the convergence of 

simulation is monitored by Gelman-Rubin diagnostic (Gelman and Rubin, 1992).  

This algorithm firstly starts as a random search over the entire prior distribution (𝑝(𝛉|𝑡) of 𝐷 

parameters using the LHS method then d samples are randomly assigned to 𝑁 Markov chains 

and the sample with the highest likelihood value will be selected as the starting point for each 

chain. To diversity the probability of the jumping direction, I broadly followed Sadegh et al. 

(2017) to use two approaches to update the chain: some chains (N1) follow the Adaptive 

Metropolis (AM) approach which is effective for searching direction at the early stage of 

MCMC and the rest (N-N1) follow the Differential evolution (DE) approach which has a 

stronger potential in converging to the target distribution. The details are shown below (Sadegh 

et al., 2017): 

1) For each chain, randomly select 𝑑 samples from 𝐷 parameter spaces with Gibbs sampling 

(Gilks et al., 1995). 

2) For N1 chains, propose a new state 𝑆𝑡+1 with a proposed set of parameters 𝛉′ by using AM 

approach, i.e., 𝑆𝑡+1(𝛉
′) = 𝑆𝑡(𝛉

′) + (1 − 𝛽)𝑁(0𝛉′ , 𝛾1
2∑𝛉′) + 𝛽𝑁(0𝛉′ , 𝛾2

2𝐼𝛉′); 

For the rest N-N1 chains, the new state is 𝑆𝑡+1(𝛉
′) = 𝑆𝑡(𝛉

′) + 𝛾3(𝑆𝑟2 − 𝑆𝑟1) + 𝑒. 

where ∑𝛉′ is the covariance matrix of 𝛉′ and 𝛽 is a random number in the range of 0~0.1; 𝛾 

indicates the jump factors defined as 𝛾1is a number randomly selected from [1.2, 2.2], 𝛾2 =

2.38/√𝑑, 𝛾3 = 0.1/√𝑑 (Roberts and Rosenthal, 2009) and 𝛾4 = 2.38/√2𝑑 (Ter Braak, 2006); 

and 𝑆𝑟1 and 𝑆𝑟2 are two samplers drawn from parameter space D just for pre-defining the chain 

update direction. 

3) Compute the Metropolis ratio 
𝑝(𝑥|𝛉′, 𝑡)

𝑝(𝑥|𝛉, 𝑡)  ; if min(1,
𝑝(𝑥|𝛉′, 𝑡)

𝑝(𝑥|𝛉, 𝑡)) ≥ 𝑝
∗, then accept 𝑆𝑡+1 and 

update the current chain where 𝑝∗ is the random number drawn from 𝑵(0,1). If not, reject 

and go back to the previous step to re-propose the state. 
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4) Check whether the iteration convergence or not by Gelman-Rubin convergence diagnostic. 

To define the return period for the nonstationary case, the preceding procedure for the 

stationary case can be followed but have to be recognised as the time-varying nature of the 

nonstationary exceedance probabilities, i.e., for a given threshold 𝑥0, the number of expected 

exceedances over 𝑇 years is: 

𝐾𝑡(𝑥0) = ∫ [1 − 𝐹𝑡(𝑥0)]𝑑𝑡
𝑇

0

 (4.12) 

For annual maxima, e.g., the AMDR series over 𝑁 years, this leads to 

𝐾𝑁(𝑥0) =∑[1 − 𝐹𝑖(𝑥0)] × 1

𝑁

𝑖=1

 (4.13) 

where 𝐹𝑖(⋅) is the nonstationary CDF for the 𝑖th year. Correspondingly, the return period for 

the NS case is 𝜏𝑁(𝑥0) = 𝑁/𝐾𝑁(𝑥0). Note that a subscript 𝑁 is used here to indicate that fact 

that both the return level and the expected number of exceedances are dependent on the 

duration (the 𝑁 years). 

4.2.4 Goodness of fit and performance of the S-GEV and NS-GEV models 

The goodness of fit (GOF) of the fitted S-GEV model is further tested by two different methods: 

the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948) and Anderson-

Darling (AD) test (Anderson and Darling, 1952, 1954). The tests are carried out by comparing 

the empirical cumulative probability distribution of the datasets with the reference GEV 

cumulative probability distribution and the reference GEV distribution is selected by 

simulating 5,000 times by a bootstrap method (presented in Section 3.2.3 of Chapter 3).  

For assessing the GOF of the nonstationary assumption, as well as comparing the performance 

between the S-GEV and NS-GEV models, firstly the difference measure (DIFF) is proposed 

and defined as the difference between the modelled AMDR (𝑦′) either by the S-GEV or NS-

GEV model and the actual AMDR (𝑦), as shown below:  

DIFF = 𝑦′ − 𝑦 (4.14) 
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The boxplot is generated based on the DIFF, which indicates the risk of underestimation 

(DIFF<0) or overestimation (DIFF>0) of extremes. Meanwhile, other three criteria are also 

applied to assess GOF of nonstationarity (Kim et al., 2017), i.e., the root mean squared error 

(RMSE), the Akaike Information Criterion (AIC; Akaike et al., 1973) and the Bayesian 

Information Criterion (BIC; Schwarz, 1978). Small values of these three criteria or small 

absolute values of DIFF are used to indicate better performance for model selection.  

𝐴𝐼𝐶 = −
2

𝑁
× 𝐿𝐿 + 2 ×

𝑘

𝑁
 (4.15) 

𝐵𝐼𝐶 = −2 × 𝐿𝐿 + log(𝑁) × 𝑘 (4.16) 

where 𝑁 is the number of data (113 for GB case and 129 for AU case), 𝐿𝐿 is the log-likelihood 

of the model on these data and 𝑘 is the number of parameters (e.g., 3 for stationary model S, 4 

for nonstationary model NS1 and 5 for NS2 and NS3).  

4.3 Results 

4.3.1 Results of BBS-MK test 

To evaluate whether non-stationarity exists and the AMDR is influenced by the impact of 

climate change during the period of over 100 years in GB and AU, the BBS-MK test was 

applied and the test results are illustrated in Figure 4.1 by the indicator Kendall’s tau. 
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(a) 

 
(b) 

Figure 4.1 Trends of AMDR detected in GB (a) and AU (b), represented by Kendall’s tau. 
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The results present the nonstationary behaviour of both cases at the significant level of 5% 

where the reddish colour indicates the magnitude of increasing trend and bluish colour for 

decreasing trend, respectively. Most regions of middle England, Wales and western regions of 

Scotland are dominated by green, yellow, orange colours, indicating an increasing trend of 

AMDR. AMDR in north England and middle Scotland is shown an unchanged or decreasing 

trend. In AU, western regions are dominated by green and yellow colours while the middle and 

east regions are blue. It means that the magnitude of an increasing trend in the west is tested to 

be higher than east and AMDR in some coastal regions, e.g., east coasts, west-south coasts, is 

unchanged or even decreased. This demonstrates that the extreme daily rainfall is influenced 

by the impact of climate change in the study area and the presence of a statistically significant 

trend, therefore, violates the currently used stationary-based assumptions in the risk estimation 

in both two countries. 

4.3.2 Selection of stationary and nonstationary models and spatial 

nonstationary patterns  

The suitability of GEV is assessed using the bootstrapping KS and AD tests against the 

stationary GEV, and the results show that the GEV distribution fits well the AMDR series with 

a 100% pass of the KS test and more than 97% for the AD test presented in Figure 4.2. The 

best-fitted model of each ROI is selected by choosing the model with the smallest values of the 

criteria (RMSE, AIC and BIC). Results show that overall: 1) around 35% of ROIs in GB prefer 

a stationary model while the rest 45% select NS1 (only 𝜇 is allowed to be time-varying) and 

20% select NS2 and NS3 (NS2-3; both 𝜇 and 𝜎 are time-varying); 2) AU has a relative lower 

ratio of ROIs favouring stationary model (around 20%) while 50% prefer NS1 and 30% prefer 

NS2-3. As to the methods used to fit the preferred nonstationary models, the ML method 

performs better for 60% of the GB cases compared with 40% performed by the B-MCMC 

method. In the AU cases, the ML method is significantly more dominating, e.g., with a ratio of 

90% vs 10%. 
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Figure 4.2 p-values of all ROIs for temporary variation analysis in GB and AU. 

The spatial distribution of model preference, i.e., stationary GEV versus nonstationary GEV is 

further demonstrated in subfigures a and e of Figure 4.3 where ROIs with the same size of 500 

km2 and a relatively rounded shape is used. Geographically, those ROIs in GB that prefer 

nonstationary models are located along or near the coastal regions especially in eastern and 

northern GB and the Scotland Highland. In AU, nonstationary models dominate the inland area 

and the majority of south-western coastline while the north coastline of AU and the majority 

inland of Northern Territory favour stationary model.  

As to the chosen types of GEV, subfigures b and f of Figure 4.3 present the spatial variation of 

the GEV types of the best-fitted models of these ROIs where the majority follows the Fréchet 

distribution. Out of all ROIs in GB, there are near 80% following the Fréchet distribution, 

mainly located inland; around 16% following the Weibull distribution located on the western 

coast. In AU, around 90% of ROIs follow the Fréchet distribution and only a very small 

proportion (3%) follows the Gumbel distribution. 
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(a) (b) (c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4.3 Spatial distribution of ROIs with the size of 500 km2 and relatively rounded shape in terms of (1)the 

best-selected model type in GB (a) and AU (e); (2) the best fitted GEV type in GB (b) and AU (f); (3) the 

changes of location (c and g) and scale parameters (d and h) in percentage within the record periods (113 years 
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for GB and 129 years for AU) and please noted that white colour (“w” shown in the colour bar) indicates the 

ROI with no change of the parameters. 

To reveal the time-varying changes of 𝜇 and 𝜎 of the best selected GEV model, the rate of the 

change at the end of the study period (i.e., 2010 for GB and 2018 for AU) is calculated with 

respect to the starting times (i.e., 1898 for GB and 1990 for AU). In GB, the changes of 𝜇 are 

in the range of ±10%  and the ROIs with a decreasing 𝜇  are mainly located in southern 

Scotland and the regions between London and Birmingham while the majority areas show a 

non-decreasing 𝜇 which indicates that the level of most frequent AMDR is non-decreasing. 

However, in AU, the south-middle zone and the eastern coasts are dominated by an increasing 

𝜇 up to the rate of +20% while the north coast of Northern Territory and west-south coast of 

Western Australia are controlled by a decreasing 𝜇 with the rate of −5%. The majority regions 

of GB and AU are observed to have a constant 𝜎 while the rest region shows a decreasing 𝜎 

scattering near the coasts of England, which somehow indicates a decreasing occurrence 

probability of extremes. 

4.3.3 Spatial variation of nonstationary patterns over ROI size 

In GB, the proportion of ROIs preferring stationary model is gradually increased with the 

growth of ROI size (60% for ROI size < 100km2; 65% for ROI size in 100km2~500km2 

and 67% for ROI size > 500km2). However, such proportion in AU is relatively stable and 

keeps around 25% for stationary models and 75% for nonstationary models, regardless of the 

ROI size. 

To help the discussion, the rate of the change of GEV parameters is introduced alongside the 

incremental change of ROI size (i.e., +20% each), denoted as Δ. Δ is the Sen’slop (Sen, 1968) 

of the BBS-MK test applied to detect the changes of parameters over region size at the 

significant level of 0.05 and white colour (Δ = 0) in Figure 4.4 indicates the insignificant 

change. With the increase of ROI size, the reddish colour represents a positive Δ which means 

the parameter increases as well,  while the bluish indicates the negative cases. Four parameters 

analysed are: 1) 𝜇0  and 𝜎0  which indicate the baselines, i.e., the average estimation of the 
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climate referring to the level of most frequent AMDR and the ocurrence probability of 

extremes; and 2) 𝜇1 and 𝜎1 which are the time-varying changes from such baselines due to 

climate change while equal to zero if the best-selected model is stationary. 

 
(a) (b) (c) (d) 

 

  
(e) (f) 

  
(g) (h) 
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Figure 4.4 Spatial distribution of ROI groups whose parameters (𝜇0, 𝜇1, 𝜎0, 𝜎1) change with the increase of ROI 

size in GB (abcd) and AU (efgh).  Please note that the white colour indicates the ROI with the insignificant 

change of the parameters. Noted that “w” shown in the colour bar indicates the colour white which means the 

changes of the parameter is zero. 

In both countries (Figure 4.4a&c and Figure 4.4e&g), most regions show decreasing baselines 

(𝜇0, 𝜎0) as the ROI size increases, especially in AU. Such decrease can be attributed to the 

areal averaging when involving more grids in the sampled ROI. However, near the coastal 

regions of GB and boundary of the south-middle dry zone of AU, some ROIs do have increased 

baselines because the increasing size will involve more grids of higher rainfall which may 

overcompensate the reduction caused by the areal average.  

In addition, the time-varying changes of parameters against size (i.e., 𝜇1 and 𝜎1, see Figure 

4.4b&d) are insignificant in most parts of GB while very few with significant change locate 

near the coasts and have a decreasing 𝜇1. In AU (Figure 4.4f), regions with a decreased 𝜇1 are 

mainly located in the middle-south zone while the others with a increased 𝜇1 are more closed 

to the coasts. However the spatial distribution of the changes of 𝜎1 is more random than 𝜇1 and 

most regions present an insignificant trend of 𝜎1 in both countries. 

The time-varying terms 𝜇1 and 𝜎1 can reflect how the most frequent AMDR and the occurrence 

probability of extremes change over time affected by climate change in the last century. 

Interestingly, such impact is not always coincident with the decreased average climate 

estimation (𝜇0 and 𝜎0) caused by a statistical average of larger ROI sizes, but influenced by the 

geographical locations, e.g., for the ROIs near the coasts in both countries, increasing their size 

can lead to an amplification of climate change impact on the most frequent AMDR and a higher 

probability for extremes to occur. However, in general, increasing region size will decrease 

both the average status of climate and climate change impact. 

4.3.4 Spatial variation of nonstationary patterns over ROI shape 

Figure 4.5 presents the changes of baselines (𝜇0, 𝜎0)  and time-varying terms (𝜇1, 𝜎1) of the 

ROIs in GB and AU, parameterised by the ROI shape (𝑠𝑝). The shapes vary from an elongated 
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west-east orientated (𝑠𝑝 = 0.2, 0.5), gradually to more rounded (𝑠𝑝 = 0.8, 1.0, 1.25), then to 

an elongated but north-south orientated (𝑠𝑝 = 5.0, 2.0). A small difference is found between 

the baseline parameters of ROIs with reciprocal shape indexes especially in AU, e.g., two 

shapes with 𝑠𝑝 of 0.5 and 2.0, which is regarded as a symmetric pattern around 𝑠𝑝 = 1.0. 

However, such pattern is insignificant in the time-varying changes.  
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Figure 4.5 Both baseline and time-varying parameters (𝜇0, 𝜇1, 𝜎0, 𝜎1) change over the ROI shape indicated by 

the index of 𝑠𝑝 in GB (ab) and AU (cd).  The horizontal axis indicates the location index of the ROIs and the 

colour bar shows the values of parameters. 

4.4 Implication on return period 

To demonstrate the difference between the nonstationary and stationary models, 6 reference 

return levels of 𝑥0  are selected, i.e., AMDRref2 , AMDRref5 , AMDRref10 , 

AMDRref25, AMDRref50 and AMDRref100 corresponding to the return periods of 2, 5, 10, 25, 

50 and 100 years, and calculated from the stationary model. These stationary return levels are 

then applied to calculate their corresponding return periods under the nonstationary condition 

(see Eqs. (4.12) and (4.13)). The difference is then computed between the nonstationary return 

periods (NS-RP) and the referenced stationary return periods (S-RP) for the same given 

reference return levels.  

Subfigures a and b of Figure 4.6 present the NS-RP estimated by their best selected 

nonstationary model for the three return levels 𝑥0 from low to high (i.e., AMDRref5 , 

AMDRref25 and AMDRref50) in GB and AU. In both countries, the difference between NS-RP 

and S-RP can be ignored at the lower return level (e.g., AMDRref5). However, for a higher 

return level, the difference becomes significant. In GB, higher return levels (e.g., AMDRref25 

and AMDRref50) in North Wales, middle Scottish Highland and eastern and southern England 

(shown by blueish symbols) are underestimated by stationary model while the coastal regions 

of Scotland and Wales witness an overestimation. In AU, the middle region of New South 

Wales and the coastal region of North Territory are shown an underestimation on higher return 

levels by stationary model while the coastal area of Queensland and most regions of western 

Australia show an overestimation.  

Generally, with an increase of the return periods, the difference between the return levels 

calculated by the nonstationary and stationary model grows larger (see boxplot in Figure 4.6c). 

In GB (the upper panel of Figure 4.6c), a left-skewed boxplot is observed at the higher return 

periods, which means that the return levels in most ROIs estimated by a stationary model are 



4.4 Implication on return period 121 

 

 

higher than the corresponding nonstationary model estimate; while in AU (the lower panel of 

Figure 4.6c), the difference is small and randomly distributed around zero and a half for 

overestimation and half for underestimation. 

Combining the results with the best-selected models presented in Section 4.3.2, it can be seen 

that in GB, the AMDR in coastal regions, most part of Scotland and the east-south of England, 

the nonstationary condition is preferred and underestimated by stationary model, e.g., 1-in-50 

year rainfall becomes 1-in-30 year estimated by the best-fitted nonstationary model. In AU the 

same situation happens in the inland areas which are fitted better by the nonstationary model, 

such as the middle region of New South Walse and the boundary area with Queensland, north 

coastal regions of North Territory, but the underestimation is small, e.g., 1-in-50-years becomes 

1-in-45-years.  

 
(a) 

 
(b) 
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(c) 

Figure 4.6 Nonstationary return periods corresponding to the return levels estimated by the stationary model and 

the spatial distribution referring to 1-in-5 years, 1-in-25 years and 1-in-50 years in GB (a) and AU (b). An 

overall comparison between the nonstationary and stationary return levels corresponding to the same return year 

is presented as a boxplot in c where the upper panel shows the GB case and the lower shows the AU case. Noted 

that “w” in the colour bar indicates the colour white which means there is no difference between stationary and 

nonstationary return periods. 

4.5 Summary and remarks 

This chapter moves forward from the results of Chapter 3 to present a study analysing the 

spatial variation of both the stationary and nonstationary GEV modelling of the annual 

maximum daily rainfall (AMDR) extracted from 11,011 regions of interest (ROIs, see Table 

3.1 on Page 50 of Chapter 3) with different spatial properties (location, size and shape) in Great 

Britain (GB) and Australia (AU) using the same grid-based datasets. Three nonstationary 

models with different time-varying GEV parameters (𝜇 and 𝜎) schemes are proposed. They are 

fitted using both the Maximum Likelihood (ML) and the Bayesian Markov-Chain Monte-Carlo 

(B-MCMC) methods, before being compared with the stationary GEV models. Finally, the 

spatial patterns of the AMDR in both countries are analysed and quantified, with respect to the 

ROI’s location, size and shape as well as the time-varying changes due to climate change. The 

following conclusions can be drawn: 

1) In general, the majority of the ROIs in both countries (around 65% in GB and 80% in 

AU) favour the nonstationary GEV (NS-GEV) model and most of them prefer the 

condition that only 𝜇  assumed to be linearly changing with time; most NS-GEV 

(a)

(b)

(c)
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applications shows the ML method performs better than the B-MCMC method (60% 

and 90% in GB and AU). AMDR of over 80% ROIs in both countries follows Fréchet 

distribution. 

2) Geographic location is the most significant factor affecting not only the average status 

of climate (w.r.t. 𝜇0 and 𝜎0) but also the time-varying changes due to climate change 

(w.r.t. 𝜇1  and 𝜎1). During the last century in GB, the changes of the level of most 

frequent AMDR (w.r.t. 𝜇) are in the range of ±10% and the majority areas show a non-

decreasing trend. However, in AU, the south-middle zone and the eastern coasts are 

dominated by an increasing 𝜇 up to the rate of +20% while the north coast of Northern 

Territory and west-south coast of Western Australia are controlled by a decreasing 𝜇 

with the rate of −5%. The majority regions of GB and AU are observed a still 𝜎 while 

some specific regions with a decreasing 𝜎  scattering near the coasts of England 

indicates a decreasing occurrence probability of extremes. 

3) Region size is the second factor and generally, the two countries show a decreased 

average status of climate with an increase of size because of statistical average. 

However, near the coastal regions of GB and the boundary of the south-middle dry zone 

of AU, some ROIs have an increasing status. Although the effect of region size on time-

varying changes is insignificant, the climate change impact is not always decreased 

with the increase of region size, but is influenced by the geographical locations. 

4) Region shape is not as significant affecting either the average climate status or time-

varying changes;  however, a symmetric pattern of average climate status is found for 

regions with reciprocal spatial indexes. 

5) The stationary GEV models underestimate the risk in several specific regions such as 

the coastal regions in both countries where the nonstationary model is preferred. It may 

inspire a reconsideration of the current design storm determination procedure. 

The findings from this chapter are valuable for the civil engineering community in a way that 

not only do they further corroborate other research findings on extreme rainfall, e.g. extremes 

are likely to become more frequent due to climate change impact, they also quantitatively 
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address how such changes over not only the climate but also the geographical location, size 

and shape may affect the prevailing engineering design standard. 

Further work is recommended to investigate closely the underlying datasets with respect to 

potential inconsistency in the resolution of the data observed near the West coast of Scotland 

and the AU coasts as well. In addition, a comparative study with long-term, single gauge 

observations, as well as catchment orientated sampling is likely to make conclusions more 

robust. 



 

 

Chapter 5 Spatiotemporal Variation of Climate 

Projection Extremes Compared with Observations 

 

The studies discussed so far are all based on observation of hydroclimatic extremes; however, 

it is also important to explore the gap between climatic projection and observation, which is 

crucial for diagnosing or correcting the bias thereby improving the climate projection. To 

quantify the link between them in view of the nonstationary extreme nature and answer Q5, a 

methodological framework was proposed considering the distribution of three datasets of 

annual extreme daily precipitation over Great Britain: one is a dataset of observation and the 

other two are simulated using different climate models. In this chapter, the datasets are firstly 

converted to the same resolution and coverage, then the distributions of annual extremes 

extracted to both datasets are fitted by using generalised extreme value (GEV) distribution 

respectively. The Maximum likelihood and Bayesian Markov-Chain Monte-Carlo methods are 

introduced to estimate the parameters of the models under two scenarios in which 1) stationary 

distribution where all three parameters are constant and 2) nonstationary distributions assuming 

the location and scale parameters are changing with time. The goodness of fit and the 

convergence of fittings are tested and the correlation between those two pairs of parameters 

fitted from observations and simulations are analysed and quantified.  
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5.1 Introduction 

According to the latest climate reports released by the Met Office (Kendon et al, 2018), the 

rainfall of 2017 for the United Kingdom overall was 97% of the 1981–2010 average and 102% 

of the 1961–1990 average. The rainfall anomaly pattern showed considerable spatial variation 

with much of highland Scotland and lowland England drier than average. The wettest areas 

relative to average were in west Wales, north-west England and parts of south-west and north-

east Scotland. Following this finding and considering the spatial resolution of the ERA20CM 

climate projection data (Table 1.1 on Page 20 of Chapter 1), three grids with the size of 0.4o × 

3.15o located in the midland of England, Scotland and Wales respectively are used to designate 

the study areas and to extract data. The locations of the three grids, i.e., study areas are shown 

in Figure 5.1.  

 

Figure 5.1 The location of three study areas (i.e., three grids of 0.4o × 3.15o). The green area corresponding to 

the left vertical axis shows the cover of GB and grids in the GEAR dataset while the yellow marks * 

corresponding to the right vertical axis indicate the edge of grids in the ERA20CM dataset. 

 

College of Engineering
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5.2 Methodology 

The study is conducted by the following three steps which are also illustrated in Figure 5.2. 

Step 1: process datasets to ensure consistency between the observed and the simulated 

rainfall data and select the length of years. 

There are three datasets used, i.e., the GEAR dataset (observation) and the ERA20CM and 

UKCIP18 datasets (climate simulation). To match the spatial resolution, the National Grid 

Reference (NGR) used in the GEAR dataset is selected as the standard reference which adopts 

a transverse Mercator projection with an origin (the true origin) at 49° N, 2° W (an offshore 

point in the English Channel which lies between the island of Jersey and the French port of St. 

Malo) and the GEAR dataset generates a 700 km by 1300 km grid starting at the position of 

the false origin which is located 400 km west, 100 km north of true origin. For the ERA20CM 

dataset, I firstly project the longitude/latitude coordinate of the ERA20CM dataset to the 

National Grid Reference by the transverse Mercator projection method and then two datasets 

are merged into the same coordinates, then convert the 3-hour rainfall of the ERA20CM dataset 

to daily rainfall by aggregation. To keep the same spatial and temporal scales, the shorter length 

of the dataset is selected as the time period (i.e., the ERA20CM data of 111 years) and the areal 

annual maximum daily rainfall of two datasets from the year 1900 to 2010 is extracted from 

three selected study areas in England, Scotland and Wales for the study. However, for the 

UKCP18 dataset, as this dataset is recorded as latitude-longitude in rotated pole coordinates, I 

firstly rotate the coordinate back to be the same with the standard reference (i.e., same with the 

GEAR dataset) and do 1 km interpolation on the NGR. As the covered length of both datasets 

is 1981 to 2000, 20 years are selected as the time period and the daily maxima of three selected 

areas are extracted from both datasets. 

Step 2: simulate the areal annual maximum daily rainfall (AMDR) by both stationary 

and nonstationary GEV models and check the goodness of fits. 

The same procedure for building stationary (S) and nonstationary (NS) GEV models is applied 

(see Sections 4.2.2 and 4.2.3 of Chapter 4). The stationary GEV model is estimated by the 
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Maximum Likelihood (ML) method while the nonstationary GEV model is estimated using 

ML and Bayesian Markov-Chain Monte-Carlo (B-MCMC) methods respectively. The 

parameter assumption for the nonstationary GEV model is: 

{
𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡
𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡

 (5.1) 

The goodness of fit of GEV assumption is tested by the KS and AD tests (see Sections 3.2.3 of 

Chapter 3) and RMSE is also involved to evaluate the simulation performance of two models, 

where its expression is given by: 

𝑅𝑀𝑆𝐸 = √(∑ (𝑦𝑖′ − 𝑦𝑖)2
𝑛
𝑖=1 )/𝑛  

 

(5.2) 

where n is the total number of original extreme rainfall 𝑦𝑖  in the dataset and 𝑦𝑖
′  is the 

corresponding simulation series by assumed GEV distribution. A sufficiently small amount of 

RMSE is also the criteria for convergence of MCMC simulation. 

Step 3: analysing and quantifying the link between observed and climate projected 

extremes.  

In this step, two GEV distributions are compared at different probability levels to find the links 

between in-situ observational extremes and climate projection extremes. 



5.3 Results 129 

 

 

 

Figure 5.2 Methodology of the study. 

5.3 Results 

5.3.1 Link to ERA20CM projected extreme rainfall in GB 

• England 

Figure 5.3 present the comparison among stationary and nonstationary return levels for three 

time slices (i.e., the year 1910, 1960 and 2010) estimated by using different methods. Red 

circles indicate the observed AMDR from the GEAR dataset at its empirical return periods 

while grey circles are projected AMDR by 10 ensemble members of the ERA20CM dataset. It 
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can be observed that more and more extreme events (e.g., high AMDR) are included as time 

moves on. For example, in the first 10 years (1900-1910), the number of events whose AMDR 

is higher than 35mm is zero while such number increases to 1 until 1960 and has a dramatic 

increase in the following 50 years, i.e., 8 events until 2010. The stationary GEV cannot capture 

the extremes at the end of 2010 where around 5 red circles locate above the curve of stationary 

return level; however, both nonstationary models perform better than the stationary one on 

capturing the temporal change of AMDR and all red circles are below the return level curves 

by the end of 2010. Especially, the nonstationary model estimated by the ML method tends to 

overestimate the AMDR than the B-MCMC method. 

S-GEAR/ERA20CM 

(ML) 

NS-GEAR/ERA20CM 

(ML) 

NS-GEAR/ERA20CM  

(B-MCMC) 

   

Figure 5.3 Stationary (S) vs. nonstationary (NS) return levels for three time slices (i.e., the year 1910, 1960 and 

2010) estimated by different methods by using both the observed (GERA) and projected (ERA20CM) AMDR in 

the study area of England. 

The green curves in Figure 5.3 are return levels simulated by averaging the 10 ensemble 

members of the climate projection model. Comparing these with the observed ones (e.g., those 
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blue curves), it can be found that the climate projection model can only capture the AMDR at 

much lower levels, e.g., AMDR lower than 2-years return level, but significantly underestimate 

the AMDR at higher return levels regardless of both stationary and nonstationary assumptions. 

To quantify the comparison results, the estimated parameters of both stationary and 

nonstationary models of both observed and projected AMDR in the study area of England are 

presented in Table 5.1. To simulate the observed AMDR time series, all three models perform 

well because of the small difference among RMSE values, however, the nonstationary model 

can capture the temporal changes of AMDR which are shown in Figure 5.3 where both 𝜇 and 

𝜎 increase over time, i.e., 𝜇1 = 0.023 and 𝜎1 = 0.013. It means that the most frequent AMDR 

becomes higher and the occurrence probability of extreme events becomes larger. However, 

the projection data do not show such significant temporal changes of AMDR because the 

change of two parameters are closed to zero (𝜇1 = 0.006 and 𝜎1 = −0.003) according to the 

nonstationary simulation models. Comparing the values of parameters, i.e., 𝜇0(𝜇) and 𝜎0(𝜎), 

there is almost no difference between the 𝜇’s from both the observed and projection datasets 

while 𝜎 of the projected data is much smaller than that of the observed data. As the 𝜇 of GEV 

distribution indicates the value with the highest occurrence probability, i.e., the most frequent 

value while 𝜎 somehow indicates a dispersion of values referring to 𝜇, it can be concluded that 

climate projection in England works better on simulating the most frequent annual maximum 

daily rainfall; however, it greatly underestimates the dispersion of extreme rainfall from the 

average, which underpins the fact that the climate projections need to be improved on 

simulating the differences between extreme and average. 

Table 5.1 Estimated parameters of stationary (S) and nonstationary (NS) GEV models of both observed and 

projected AMDR in the study area of England. 

AMDR 
GEV 

model 
Estimator 𝜎0(𝜎) 𝜎1 𝜇0(𝜇) 𝜇1 𝜉 

RMSE 

(mm) 
AICc 

Observed 

(GEAR) 

S ML (5.32) - (22.49) - 0.053 1.33 734.97 

NS 
ML 4.51 0.014 20.52 0.031 0.040 1.81 738.35 

B-MCMC 4.84 0.013 20.77 0.023 -0.031 1.27 734.28 

Projected 

(ERA20CM) 

S ML (3.89) - (19.46) - -0.027 0.71 655.32 

NS 
ML 3.80 0.001 20.42 -0.017 -0.022 0.87 662.75 

B-MCMC 3.94 0.003 20.07 -0.006 -0.154 0.61 657.70 
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• Scotland 

Similar to Figure 5.3, Figure 5.4 present the comparison among stationary and nonstationary 

return levels for the three time slices in Scotland. Unlike the England case, in the first 10 years 

(1900-1910), the number of events whose AMDR is higher than 50 mm is only 1 then the 

number has a dramatic increase to 8 during the period of 50 years (1910-1960) and 10 in the 

last 50 years (1960-2010). In other words, although the trend of the number of extreme events 

increases, the growth rate is almost stable, and the number is almost the same comparing the 

first and second 50 years. Thus, the stationary GEV model can simulate the unchanging or 

slightly changing AMDR time series very well although there is an underestimation that can 

be observed in 2010 where some red circles stay above the stationary return level curve. Similar 

to the England case, the climate projected AMDR of 10 ensemble members is all smaller than 

the observed AMDR. 

S-GEAR/ERA20CM 

(ML) 

NS-GEAR/ERA20CM 

(ML) 

NS-GEAR/ERA20CM  

(B-MCMC) 
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Figure 5.4 Stationary (S) vs. nonstationary (NS) return levels for three time slices (i.e., the year 1910, 1960 and 

2010) estimated by different methods by using both the observed (GEAR) and projected (ERA20CM) AMDR in 

the study area of Scotland. 

The parameters of both the stationary and nonstationary GEV models are shown in Table 5.2. 

For both cases, the B-MCMC method performs better in simulating the observed AMDR time 

series with small values of RMSE. Compared with the change of 𝜇 (𝜇1 = 0.014), 𝜎 is almost 

unchanged (𝜎1 = 0.007) which means the dispersion of the extreme rainfall is stable referring 

to an increasing most frequent AMDR during the past 111 years. However, the temporal change 

of parameters is very little indicated by the nonstationary model simulating climate projected 

AMDR (𝜇1 = −0.004 and 𝜎1 = 0.004) and the stationary assumption can also fit very well. 

Comparing the values of 𝜇0(𝜇) and 𝜎0(𝜎), climate projection data underestimate both two 

parameters, i.e., the scale parameter 𝜎 is only half the value of 𝜎 of the observed data while the 

location parameter 𝜇 is 10 times smaller than that of the model of the observed data. In other 

words, climate projection also greatly underestimates the most frequent extreme rainfall and 

cannot capture the difference between more extreme events and such most frequent levels in 

Scotland. 

Table 5.2 Estimated parameters of stationary (S) and nonstationary (NS) GEV models of both observed and 

projected AMDR in the study area of Scotland. 

AMDR 
GEV 

model 
Estimator 𝜎0(𝜎) 𝜎1 𝜇0(𝜇) 𝜇1 𝜉 

RMSE 

(mm) 
AICc 

Observed 

(GERA) 

S ML (7.27) - (32.81) - 0.077 2.30 806.96 

NS 
ML 9.46 -0.037 35.76 -0.047 0.018 3.40 817.73 

B-MCMC 7.60 0.007 31.98 0.014 -0.011 1.51 804.88 

Projected 

(ERA20CM) 

S ML (3.32) - (21.82) - -0.069 0.53 614.87 

NS 
ML 3.62 -0.005 21.66 0.003 -0.072 0.65 628.46 

B-MCMC 3.61 0.004 22.34 -0.004 -0.065 0.55 618.60 

• Wales 

Similarities are also seen in the case of Wales. Figure 5.5 present the comparison among 

stationary and nonstationary return levels for the three time slices in the study area of Wales. 

In the first 10 years (1900-1910), the number of events whose AMDR is higher than 50 mm is 



5.3 Results 134 

 

 

only 1 then the number increase to 4 during the period of 50 years (1910-1960) and 10 in the 

last 50 years (1960-2010). It can be seen that an increasing trend of the extreme events, i.e., a 

net increase of 3 in the first 50 years and 6 in the next 50 years. Such increase is nonlinear 

which challenges the linear assumption of the nonstationary GEV models. As Figure 5.5 

shown, both stationary model and nonstationary model estimated by using the B-MCMC 

method can perform well in the first 60 years but worse in the following 50 years where a lot 

of red circles locate beyond the blue curves. However, the nonstationary model estimated by 

using the ML method can capture the temporal change of extreme rainfall although there is a 

bit of overestimation in the year 2010. As to the climate projection dataset, all AMDR of 10 

ensemble members is smaller than the observed ones. 

S-GEAR/ERA20CM 

(ML) 

NS-GEAR/ERA20CM 

(ML) 

NS-GEAR/ERA20CM  

(B-MCMC) 

   

Figure 5.5 Stationary (S) vs. nonstationary (NS) return levels for three time slices (i.e., the year 1910, 1960 and 

2010) estimated by different methods by using both the observed (GEAR) and projected (ERA20CM) AMDR in 

the study area of Wales. 
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Table 5.3 illustrates the estimated values of parameters of both stationary and nonstationary 

GEV models for AMDR in the study area of Wales. Both models fitted using the B-MCMC 

method are shown to underestimate the observed AMDR time series. Although the RMSE is 

slightly higher, the nonstationary model estimated by the ML method can capture the changes 

of extreme rainfall at the end of 2010 with a little overestimation which will increase the cost 

but ensure the reliability of infrastructure. In other words, the stationary assumption may cause 

of failure of the defence structure as the increased number of extremes happened in Wales. 

Both parameters are estimated to increase over time, i.e., 𝜇1 = 0.044 and 𝜎1 = 0.023 which 

are all higher than the study area of England and Scotland. It means the dispersion of the 

extreme rainfall is increasing referring to an increasing most frequent AMDR during the past 

111 years in Wales. However, the temporal change of parameters of climate projected AMDR 

is insignificant indicating by nonstationary model simulation (𝜇1 = 0.009 and 𝜎1 = −0.004) 

and even an inverse change of scale parameter is observed. Comparing the values of 𝜇0(𝜇) and 

𝜎0(𝜎), climate projection model underestimate both two parameters, i.e., the scale parameter 

𝜎 is only around half value of 𝜎 of observed model while the location parameter 𝜇 is around 

15 smaller than observed model. In other words, climate projection over-underestimates the 

most frequent extreme rainfall and cannot capture the difference between more extreme events 

and such most frequent levels in Wales. 

Table 5.3 Estimated parameters of stationary (S) and nonstationary (NS) GEV models of both observed and 

projected AMDR in the study area of Wales. 

AMDR 
GEV 

model 
Estimator 𝜎0(𝜎) 𝜎1 𝜇0(𝜇) 𝜇1 𝜉 

RMSE 

(mm) 
AICc 

Observed 

(GEAR) 

S ML (6.55) - (33.01) - 0.082 2.22 784.23 

NS 
ML 5.18 0.023 30.65 0.044 0.083 2.73 788.29 

B-MCMC 6.34 0.010 31.70 0.017 0.007 1.62 783.86 

Projected 

(ERA20CM) 

S ML (3.39) - (17.34) - 0.073 1.11 638.01 

NS 
ML 3.62 -0.004 17.30 0.001 0.075 1.22 649.14 

B-MCMC 3.91 -0.004 17.09 0.009 -0.111 0.65 641.98 

5.3.2 Link to UKCP18 projected extreme rainfall in GB 

• England 
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Figure 5.6a presents the comparison between the observed and climate projected AMDR fitted 

by stationary GEV model and their PDF and CDF curves. It shows that the AMDR values from 

all ensemble members of the UKCP18 are greater than those from the observation at the same 

years. However, the deviation from their mean values keeps almost unchanged (seen as the 

parallel lines of the GEV modelled AMDR curves). In other words, UKCP18 estimates much 

better on the change of yearly AMDR although there is an overall overestimation on the mean 

AMDR. Therefore, the M4 is selected to represent the climate projection for comparison with 

the observations.  

Figure 5.6b depicts the return levels calculated under both stationary and nonstationary 

assumptions whose corresponding models are estimated by ML and B-MCMC methods, shown 

for two specific years 1990 and 2000. In general, the temporal change of observed AMDR is 

not very significant during the 20 years because in the first 10 years (1981-1990), all events 

are lower than 35 mm while the last 10 years (1991-2000) only witnesses one event whose 

AMDR is higher than 35 mm. By comparing both RMSE and AIC of the proposed GEV 

models, the best-selected model for modelling the AMDR from observation is nonstationary 

GEV estimated by B-MCMC method; for modelling the AMDR from climate projection is 

stationary GEV estimated by ML method, presented in Table 5.4. For the observed time series 

of AMDR in England, the deviation from the mean value is estimated to be increasing with 

time while the mean value (i.e., the most frequent AMDR) has a slight decrease for the 20 

years. However, for the projected AMDR, the change of both parameters is insignificant for 

the 20 years. In conclusion, the UKCP18 projection outperforms the ERA20CM on simulating 

the observed AMDR in the same study area of England although the UKCP18 projection model 

overestimates the most frequent extreme rainfall and the difference between more extreme 

events and such most frequent levels in England. 
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(b) 

Figure 5.6 Comparison between stationary GEV of observed and climate projected AMDR in the study area of 

England (a); and comparison of stationary (S) and nonstationary (NS) return levels of observed (GEAR) and 

climate projected (UKCP18) AMDR at the specific years 1990 and 2000 (b). 
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Table 5.4 Estimated parameters of stationary (S) and nonstationary (NS) GEV models of both observed and 

projected AMDR in the study area of England. 

AMDR 
GEV 

model 
Estimator 𝜎0(𝜎) 𝜎1 𝜇0(𝜇) 𝜇1 𝜉 

RMSE 

(mm) 
AIC 

Observed 

(GEAR) 

S ML (5.83) - (22.34) - -0.040 3.21 140.25 

NS 
ML 3.05 0.245 23.15 -0.083 -0.016 3.79 146.87 

B-MCMC 2.99 0.251 23.21 -0.192 -0.130 1.46 145.06 

Projected 

(UKCP18) 

S ML (7.08) - (35.50) - -0.109 3.57 146.92 

NS 
ML 6.81 -0.068 31.38 0.336 0.092 8.45 154.96 

B-MCMC 6.71 0.058 31.60 0.295 -0.298 3.03 152.12  

• Wales 

Figure 5.7a presents the comparison of the observed and the projected AMDR fitted by 

stationary GEV model and their PDF and CDF curves. It can be observed that all ensemble 

members of the UKCP18 are generally smaller than the corresponding observed AMDR while 

member 5 (M5) is the series closest to the observation, therefore the M5 series is selected to 

represent the climate projection data for comparison with the observation. Unlike that in the 

England case, the deviation of projected members from their mean values does not maintain 

unchanged from the observed time series (i.e., not parallel among the GEV modelled AMDR 

curves). Figure 5.7b depicts the return levels calculated under both stationary and nonstationary 

assumptions whose corresponding models are estimated by ML and B-MCMC methods, shown 

at two specific years 1990 and 2000. In general, the temporal change of the observed AMDR 

(denoted by the red circles) is significant during the 20-year period because in the first 10 years 

(1981-1990), all events are lower than 45 mm while the number of events whose rainfall is 

higher than 45 mm dramatically increased during last 10 years (1991-2000), i.e., 4 events. Not 

only are the events of higher rainfall, but the number of lower rainfall (e.g., AMDR is lower 

than 30 mm) also significantly increased, which caused an increasing deviation between the 

two time series (that can be reflected by the scale parameter 𝜎 to some degree).  
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      (ML) 
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(b) 

Figure 5.7 Comparison between stationary GEV of observed and climate projected AMDR in the study area of 

Wales (a); and comparison of stationary (S) and nonstationary (NS) return levels of observed (GEAR) and 

climate projected (UKCP18) AMDR at the specific years 1990 and 2000 (b). 
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Table 5.5 presents the estimated parameters of both stationary and nonstationary GEV models 

which are used to fit both the observed time series of AMDR and the projected one. The best 

model for the observed AMDR is the nonstationary model estimated by the B-MCMC method 

and the scale parameter is estimated to be increasing with time while the location parameter is 

decreased. These estimation results are consistent with the analysis above in Figure 5.7b, i.e., 

the most frequent rainfall is decreasing while the occurrence probability of extreme events is 

increasing. Like the observation time series, the location parameter of the projected time series 

also decreases but the reduction ratio (i.e., 𝜇1) is greater than the observation one. However, 

the change of 𝜎 of two best selected models is not in the same direction. The nonstationary 

GEV model fitting climate projection data has a decreasing 𝜎  which indicates a gradual 

decrease on the deviation from the mean value.  

Table 5.5 Estimated parameters of stationary (S) and nonstationary (NS) GEV models of both observed and 

projected AMDR in the study area of Wales. 

AMDR 
GEV 

model 
Estimator 𝜎0(𝜎) 𝜎1 𝜇0(𝜇) 𝜇1 𝜉 

RMSE 

(mm) 
AIC 

Observed 

(GEAR) 

S ML (8.16) - (36.99) - -0.181 3.15 150.90 

NS 
ML 5.57 0.246 38.54 -0.139 -0.204 1.98 156.73 

B-MCMC 5.57 0.223 38.58 -0.140 -0.248 1.56 156.30 

Projected 

(UKCP18) 

S ML (5.47) - (29.33) - 0.010 3.89 138.84 

NS 
ML 8.18 -0.228 32.44 -0.242 -0.148 4.36 143.45 

B-MCMC 9.18 -0.201 33.17 -0.284 -0.482 2.68 128.11 

5.4 Summary and remarks 

In this chapter, three study areas with a size of 0.4o × 3.15o located in south-middle England, 

middle Scotland and Wales are selected. An observed and two climate projected annual 

maximum daily rainfall (AMDR) time series are extracted from 1 × 1 km2 grid-based GEAR 

dataset, 0.4o × 3.15o grid-based ERA20CM dataset and 2.1 × 2.1 km2 grid-based UKCP18 

dataset, respectively. Both stationary and nonstationary generalised extreme value (GEV) 

models estimated by maximum likelihood (ML) and Bayesian Markov-Chain Monte-Carlo (B-
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MCMC) methods are applied to simulate the AMDR at different return periods and the 

following conclusion can be drawn from this study: 

1) GEV distribution is an appropriate choice for fitting observational AMDR in GB: 

• nonstationary GEV model estimated by B-MCMC is usually the best choice for 

simulating the AMDR in south-middle England, middle Scotland and Wales over both 

the periods of 1900-2010 and 1981-2010 for capturing the temporal changes of extreme 

rainfall.  

• During 1900 and 2010, the observed changes of AMDR in south-middle England are 

insignificant but the stationary GEV model underestimates the risk of extreme rainfall at 

higher return levels, therefore, the nonstationary GEV model estimated by the B-MCMC 

method is selected as the best one. It shows a small increase in both the most frequent 

AMDR and the occurrence probability of extreme rainfall. During the short period, the 

most frequent AMDR is also observed decreasing while the occurrence probability of 

extreme rainfall is increased.  

• During 1900 and 2010, the observed changes of AMDR in middle Scotland are significant 

and show both increase in the most frequent AMDR and the occurrence probability of 

extreme rainfall.  

• During 1900 and 2010, the observed changes of AMDR in Wales are significant and show 

both increase in the most frequent AMDR and the occurrence probability of extreme 

rainfall; during the short period, the most frequent AMDR is observed decreasing while 

the occurrence probability of extreme rainfall is increased. 

• However, the nonstationary GEV model for simulating the ERA20CM extreme rainfall 

series in three study areas degenerates to the stationary GEV model. 

2) In south-middle England, GEV models fitted to the ERA20CM data are able to capture the 

location parameter 𝜇 but underestimate the scale parameter 𝜎 of the long period AMDR 

series while the UKCP18 based model overestimates both parameters but has a better 

estimation on 𝜎. In other words, the ERA20CM based model outperforms in simulating the 

most frequent AMDR while the UKCP18 based model performs better in capturing the 

time-varying difference between extremes and average.  
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3) In middle Scotland, the ERA20CM based model underestimates both parameters, i.e., the 

scale parameter 𝜎 is the only half value of 𝜎 of the observed model while the location 

parameter 𝜇 is 10 smaller than the observed one over the long period. In other words, 

climate projection greatly underestimates the most frequent extreme rainfall and cannot 

capture the difference between more extreme events and such most frequent levels. 

4) In middle Wales, the ERA20CM based model underestimates both parameters over the 

long period, i.e., the scale parameter 𝜎 is only around half value of 𝜎 of the observed model 

while the location parameter 𝜇 is around 15 smaller than the observed model. The UKCP18 

based model also underestimates both parameters but obtains a consistent decrease trend of 

𝜇 with the observed AMDR. However, in general, the UKCP18 based model performs than 

the ERA20CM based model.  

These findings point out that although the climate projections have been remarkably improved 

with a finer resolution e.g., the UKCP18 data have a higher spatial resolution hence can 

simulate better than the ERA20CM, the improvements are not enough nor effective due to 

many aspects such as technology limitations, knowledge level of nature, etc, especially in terms 

of revealing extreme events. Many climate projections from climate models often suffer from: 

1) being unable to simulate extremes albeit being good at simulating the average; 2) being 

unable to simulate the time-varying change in climate extreme. Therefore, the study in this 

chapter is carried out to quantify how good the climate projections can be in representing the 

occurrences and temporal variation of the extremes by using a nonstationary probability 

framework. The gap in the ability of climate projections to capture the observations is described 

by the time-varying GEV parameters, which offers further insight into the utility of climate 

projection datasets when extreme quantities instead of the averages are at stake in applications. 



 

 

Chapter 6 Nonstationary Multivariate 

Framework: A Case Study of Compound Flooding 

Simulation in Ho-Chi-Minh City, Vietnam 

So far, the previous chapters have focused on the modelling framework for quantifying 

spatiotemporal variation of univariate hydroclimatic extremes, this chapter extends the analysis 

to multivariate and proposes a nonstationary multivariate framework for quantifying the time-

varying joint probability of two meteorological and oceanographic drivers which leads to a 

compound flood. This chapter uses Ho Chi Minh City (HCMC), one of the most vulnerable 

coastal cities in southeast Asia to compound floods, as a case study to illustrate the application 

of the proposed multivariate framework. The proposed nonstationary multivariate analysis 

framework considers four combinations of assumptions of marginals (maximum rainfall and 

skew surge) and copula to be either stationary or nonstationary and analyses the variation of 

the worst compound floods in both wet and dry seasons. 

 

6.1 Introduction 

Flooding is widely regarded as one of the most dangerous natural hazards (Jonkman, 2005). It 

often arises from various sources such as extreme rainfall, storm surge, high sea level, large 

river discharge either individually or in combination, (Bevacqua et al., 2020; Hendry et al., 

2019). However, the concurrence or close succession of these different source mechanisms can 

lead to compound flooding, resulting in greater damage than from separate events caused by 
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the individual mechanism (AghaKouchak et al., 2020; Hendry et al., 2019). This is further 

exemplified by the occurrence of several recent events where inland floods are associated with 

hydrologic drivers (e.g., rainfall, river discharge) combined with oceanographic drivers (e.g., 

tides, storm surges, waves). Examples of this include the compound floods on the North 

Carolina Coast of USA (Gori et al., 2020); in the Shoalhaven estuary, Australia in June 2016 

(Kumbier et al., 2018); the Noorderzijlvest, the Netherlands in 2015 (van den Hurk et al., 2015); 

and in Ravenna, Italy in 2015 (Bevacqua et al., 2017). To understand the characteristics of such 

high-impact compound events, one effective and commonly used approach is the multivariate 

analysis, which can consider the interdependence, interaction and associations among different 

drivers, and thereby better estimate flood occurrence probability. As one of the most popular 

approaches in various multivariate analysis methods, the copula is widely used for modelling 

the dependence structure of two or more random variables since Sklar (1959) proposed the 

concept that is to quantify the link (i.e., the joint probability) between the marginal distributions 

of variables. The advantages of using copula are that it allows the dependence among multiple 

variables to be modelled and also allows the marginals and their correlation separately 

(Embrechts et al., 2001). Nowadays, many parametric copula families are available (e.g., 

Elliptical copulas, Gaussian copulas, Archimedean copulas) and have been widely applied in 

many areas such as quantitative finance (D’Amico and Petroni, 2018; Dias and Embrechts, 

2004), medicine (Emura et al., 2020), signal processing (Jovanovic et al., 2018; Parchami et 

al., 2020) and climate research (Jhong and Tung, 2018; Won et al., 2020). 

In hydroclimatic sciences, notably, many studies have already employed copulas to model the 

dependence structure among hydrological variables for evaluating the compound events, e.g., 

Zhu et al. (2019); Renard and Lang (2007); Zhang and Singh (2006); Favre et al. (2004); 

Salvadori and De Michele (2004). However, global warming has led to significant changes in 

regional climate (Ricke et al., 2010) which can cause variability in climate variables such as 

temperature, precipitation, sea level, snowpack, drought, and heatwave. When considering 

compound events, not only these climate variables themselves can vary with time, but also their 

correlation can be nonstationary, e.g., the interaction becomes more significant or less due to 

climate change (Villalobos-Herrera et al., 2021; Zscheischler et al., 2019). Since many water 
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infrastructures have a typical design life of several decades, their sustainability is challenged 

in a nonstationary climate, and an overhaul of the current storm design determination may be 

needed as climate change continues and compound processes are altered (Moftakhari et al., 

2017). Therefore, involving the perspective of non-stationarity is essential. The last few 

decades have also witnessed a great deal of interest and efforts in univariate nonstationary 

modelling in hydrological risk assessment, e.g., Cancelliere (2017); Tramblay et al. (2013). 

Some recent progress on multivariate nonstationary studies has been reviewed here. Chebana 

et al. (2013) first proposed to assume a time-varying dependence structure between multivariate 

hydrological variables to estimate their joint probability. Kwon and Lall (2016) quantified the 

time-varying joint probabilities of the severity and duration of drought in California by 

modelling the nonstationary marginal distributions of these two variables, which were linked 

by a stationary Gumbel copula. Sarhadi et al. (2018) quantified the temporal changes in the 

joint probability of warm and dry conditions happening in an individual location and 

simultaneously in multiple locations by assuming time-varying parameters of copulas. Feng et 

al. (2020) investigated flood risk under nonstationary conditions arising from climate change 

when floods occur simultaneously in the Huai River and Hong River of China. They assumed 

nonstationary marginal distributions of flood magnitudes of the two rivers and applied dynamic 

copulas to calculate the joint probability. However, these latest studies focused on compound 

situations driven only by the same or similar type of variables such as flood volume and peak 

which are certainly intercorrelated but less meaningful for contributing to compound events 

which can be driven by different variables. However, the quantification of the temporal changes 

on joint probability of different variables leading to compound floods in the view of non-

stationarity, especially at the level of extreme, have yet been fully studied.  

Therefore, in this chapter, based on the nonstationary quantitative framework proposed in Part 

I for modelling univariate changes, I extend this framework to be multivariate that aims to 

develop a more feasible framework to estimate the joint probability of different variables in the 

context of different situations/assumptions, e.g., both the marginal distributions of variables 

and their correlation structure can be either stationary or nonstationary. To demonstrate the 

applicability of the framework, a case study is provided to estimate the impact of compound 
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floods driven by inland rainfall and skew surge in Ho Chi Minh City (HCMC), Vietnam. As 

the characteristics of flood in HCMC have a strong seasonal dependency, monthly maximum 

series of daily rainfall and skew surge are used and two months for representing dry and wet 

seasons are especially analysed where the flood inundation maps are generated by a 

hydrodynamic model (TELEMAC-2D). This nonstationary compound flood modelling system 

based on the proposed framework is expected to be used by the National Centre for Hydro-

Meteorological Forecasting (NCHMF) of Vietnam for prediction at the national level.  

The remainder of this paper is organised as follows: Section 6.2 describes the framework of 

nonstationary copula; Section 6.3 explains the case study, HCMC, the data processing and the 

hydrodynamic modelling. The results from the application of the framework to the case study 

are presented in Section 6.4. Concluding remarks on the framework and the case study are 

given in Section 6.5.  

6.2 A nonstationary framework of multivariate probability 

distribution analysis  

Figure 6.1 presents the framework developed to analyse compound floods driven by both the 

hydrometeorological driver (e.g., monthly maximum rainfall, MMR) and oceanographic driver 

(e.g., monthly maximum skew surge, MMS) in view of non-stationarity, in turn, linked to 

climate change. It can be described by the four main steps which are further elaborated 

respectively in the following subsections.  
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Figure 6.1 Nonstationary framework of multivariate probability distribution analysis. MMR is the monthly 

maximum rainfall; MMS is the monthly maximum skew surge. 

6.2.1 Trend and correlation analysis 

This step aims to detect whether the values of each flood driver, and the correlation structure 

between values of multiple drivers change with other covariates. As the possible temporal 

nonstationary nature of the driver is the main objective of the study, time is chosen as the 

covariate. This will be the basis for the parameterisation of the copula to be proposed. Here, 

Block Bootstrapping Mann-Kendall (BBS-MK) test (Kundzewicz and Robson, 2004; Önöz 

and Bayazit, 2012) is employed for detecting monotonic trends in series of data at the 

significance level of 0.05. The details of the BBS-MK test are described in Section 4.2.1. 
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Parallel to this, to test the correlation between the series of data and its changes over time, I 

employ Kendall’s tau and Spearman correlation analysis associated with a Rolling window 

method, which is both widely used (de Winter et al., 2016; Zar, 2005). The correlation 

coefficients, i.e., 𝜏 and 𝜌, respectively, indicate the possible positive or negative correlation 

between the time series, while the corresponding p-values are compared with the critical values 

at the significance level of 0.05 to decide whether to reject the null hypothesis that no 

correlation exists. The Rolling window method is employed to use a variety of predefined 

widths of the window and move forward to the end of the data (Inoue et al., 2017), which is 

carried out following the three steps: 

i. Select the width of the rolling window 𝑚 which is the number of consecutive series of 

data per window. The selection of width is usually based on the total number 𝑆 and 

periodicity of the data (𝑚 < 𝑆). As the result can be sensitive to the selection of the 

block length, several different lengths are tested (i.e., 10, 20 and 30 years) so that the 

consistency of the results are ensured. 

ii. Set the number of increments between the successive rolling window, i.e., the moving 

step, as 1 year. In other words, I partition the data into 𝑁 = 𝑆 −𝑚 + 1 subsamples and 

the first rolling window covers the data from 1 to 𝑚 and the second covers 2 to 𝑚 + 1 

and so on. 

iii. For each rolling window, the correlation is tested by two tests and calculate the 

correlation coefficients and the p-value at the significance level of 0.05. 

6.2.2 Model marginal distributions of the series of data 

In this step, several widely used types of probability distributions are selected as the marginal 

distribution candidates to fit each series, which includes Generalised Extreme Value (GEV) 

distribution, Generalised Pareto distribution, Gamma distribution, Lognormal distribution and 

Exponential distribution. Following the outcomes from Section 6.2.1 (i.e., Step 1 shown in 

Figure 6.1) Two assumptions can be made for the marginal distribution: of stationarity, which 

means that the parameters of the distribution remain constant and independent and can be 

estimated by the Maximum Likelihood (ML) method; and of non-stationarity, which means 
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that several parameters of the distribution are assumed to be changing over time and parameters 

can be estimated by both the ML and the Bayesian Markov-Chain Monte-Carlo (B-MCMC) 

methods. A stationary and three non-stationary assumptions of these distributions are presented 

in Table 6.1. For the time series whose trend is determined to be insignificant at the significance 

level of 0.05, only stationary distributions are applied, while when the trend is significant, both 

stationary and non-stationary distributions are applied. The best-fitted distribution is finally 

selected by evaluating two criteria: Akaike’s information criterion (AIC) and Bayesian 

information criterion (BIC); and the minimum values indicate the better performance of the 

model. 

Table 6.1 Stationary (S) and nonstationary (NS) candidate distributions for time series. For the explanation on 

symbols please see Section 6.2.2. 

Distribution 
Mo

del 
Description 

Parameters (𝛉) 

 

Generalised 

extreme 

value 

distribution 

S 

𝐹(𝑥; 𝜎, 𝜇, 𝜉)

= {
exp [−(1 + 𝜉(

𝑥 − 𝜇

𝜎
))−1/𝜉], 𝜉 ≠ 0

exp[−exp (
𝑥 − 𝜇

𝜎
)] , 𝜉 = 0

 

where 1 + 𝜉(𝑥 − 𝜇)/𝜎 >  0, −∞ <
𝜇 <  ∞, 𝜎 >  0 and −∞ < 𝜉 <  ∞. 

𝛉 = {𝜎, 𝜇, 𝜉} 
where 

𝜎, 𝜇, 𝜉 are all constant. 

 

NS1 𝐹𝑡(𝑥; 𝜎, 𝜇𝑡, 𝜉) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎, 𝜉 are constant 

NS2 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜇𝑡, 𝜉) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎0, 𝜎1, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡 
𝜉 is constant 

NS3 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜇𝑡, 𝜉) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎0, 𝜎1, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎𝑡 = exp (𝜎0 + 𝜎1 × 𝑡) 

𝜉 is constant 
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Generalised 

Pareto 

distribution 

S 

𝐹(𝑥; 𝜎, 𝜇, 𝜉)

= {
1 − (1 + 𝜉(

𝑥 − 𝜇

𝜎
))−1/𝜉 , 𝜉 ≠ 0

1 − exp (−
𝑥 − 𝜇

𝜎
) , 𝜉 = 0 

 

where 𝑥 ≥ 𝜇 when 𝜉 ≥ 0 and 𝜇 ≤
𝑥 ≤ 𝜇 − 𝜎/𝜉 when 𝜉 < 0. 

𝛉 = {𝜎, 𝜇, 𝜉} 
where 

𝜎, 𝜇, 𝜉 are all constant 

NS1 𝐹𝑡(𝑥; 𝜎, 𝜇𝑡, 𝜉) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎, 𝜉 are constant 

NS2 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜇𝑡, 𝜉) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎0, 𝜎1, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡 
𝜉 is constant 

NS3 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜇𝑡, 𝜉) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎0, 𝜎1, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎𝑡 = exp (𝜎0 + 𝜎1 × 𝑡) 

𝜉 is constant 

Gamma 

distribution 

S 
𝐹(𝑥; 𝜎, 𝜉) =

1

Γ(𝜉)
𝛾(𝑘,

𝑥

𝜎
) 

Where 𝑥 > 0, 𝜎 > 0, 𝜉 > 0. 

𝛉 = {𝜎, 𝜉} 
where 

𝜎, 𝜉 are all constant 

NS1 𝐹𝑡(𝑥; 𝜎, 𝜉𝑡) 

𝛉𝒕 = {𝜉0, 𝜉1, 𝜎} 
where 

𝜉𝑡 = 𝜉0 + 𝜉1 × 𝑡 
𝜎 is constant 

NS2 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜉𝑡) 

𝛉𝒕 = {𝜉0, 𝜉1, 𝜎0, 𝜎1} 
where 

𝜉𝑡 = 𝜉0 + 𝜉1 × 𝑡 
𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡 

Lognormal 

distribution 

S 

𝐹(𝑥; 𝜎, 𝜇) = ∅(
ln 𝑥 − 𝜇

𝜎
) 

Where ∅ is the cumulative 

distribution function of the standard 

normal distribution. 

𝛉 = {𝜎, 𝜇} 
where 

𝜎, 𝜇 are all constant 

NS1 𝐹𝑡(𝑥; 𝜎, 𝜇𝑡) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎 are constant 

NS2 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜇𝑡) 
𝛉𝒕 = {𝜇0, 𝜇1, 𝜎0, 𝜎1} 

where 
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𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡 

NS3 𝐹𝑡(𝑥; 𝜎𝑡 , 𝜇𝑡) 

𝛉𝒕 = {𝜇0, 𝜇1, 𝜎0, 𝜎1, 𝜉} 
where 

𝜇𝑡 = 𝜇0 + 𝜇1 × 𝑡 
𝜎𝑡 = exp (𝜎0 + 𝜎1 × 𝑡) 

Exponential 

distribution 

S 

𝐹(𝑥; 𝜎) = {
1

𝜎
exp (−

𝑥

𝜎
) , 𝑥 > 0

0, 𝑥 < 0 
 

Where the scale parameter 𝜎 = 1/𝜆 

and 𝜆 > 0 is the rate parameter of the 

exponential distribution. 

𝛉 = {𝜎} 
where 

𝜎 is constant 

NS2 𝐹𝑡(𝑥; 𝜎𝑡) 
𝛉𝒕 = {𝜎0, 𝜎1} 

where 

𝜎𝑡 = 𝜎0 + 𝜎1 × 𝑡 

NS3 𝐹𝑡(𝑥; 𝜎𝑡) 
𝛉𝒕 = {𝜎0, 𝜎1} 

where 

𝜎𝑡 = exp (𝜎0 + 𝜎1 × 𝑡) 
Noted that 𝜇, 𝜎 and 𝜉 indicate location, scale and shape parameter of distribution respectively; 𝛉 

and 𝛉𝒕 are symbols to indicate the parameters for each model needing to be estimated and the 

subscript 𝑡 is used for indicating the nonstationary model; S is short for “stationarity” case and 

NS1, NS2 and NS3 indicate three “non-stationarity” cases.  

As previously mentioned, there are several types of candidate distribution. Without losing 

generality, GEV distribution is used in this example to demonstrate the process which is also 

followed for other types of distribution. If the best-fitted distribution model of the time series 

is a GEV distribution, both stationary and nonstationary distributions can be developed 

following the methods described in Sections 4.2.2 and 4.2.3. For the stationary model (S), there 

are three constant parameters 𝜇, 𝜎 and 𝜉 which are estimated by the ML method. 

6.2.3 Build copulas and calculate the joint probability 

Let 𝐽 denote the joint cumulative distribution function of the two series of data, and 𝐶 denote 

the copula function parameterized by 𝜃𝐶 . Then, the basic joint probability can be calculated by: 

𝐽(𝑥𝑆, 𝑥𝑅|𝜃𝐶) = 𝐶(𝐹1(𝑥1|𝛉𝟏), 𝐹2(𝑥2|𝛉𝟐)|𝜃𝐶) = 𝐶(𝑢, 𝑣|𝜃𝐶) (6.1) 

where 𝐹1 and 𝐹2 indicate the marginal cumulative probability function of the two series of data 

𝑥1  (in the case study, MMS) and 𝑥2  (MMR) with their estimated parameters 𝛉𝟏  and 𝛉𝟐 , 
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respectively and 𝜃𝐶  indicates the set of parameters of the copula. 𝑢 and 𝑣 are the marginal 

probabilities of 𝐹1 and 𝐹2 in the unit hypercube with uniform marginal distributions 𝑈(0,1). 

According to the trend analysis of the individual time series and their mutual correlation 

structure, four contexts are relevant in this framework: 

• Both marginal distributions (𝛉) are stationary, and the correlation structure (𝜃𝐶 ) is 

stationary. 

• Both marginal distributions (𝛉) are stationary, while the correlation structure (𝜃𝐶
𝑡 ) is 

nonstationary. 

• At least one of the marginal distributions (𝛉𝒕) is nonstationary, while the correlation 

structure (𝜃𝐶) is stationary. 

• At least one of the marginal distributions (𝛉𝒕) is nonstationary, while the correlation 

structure (𝜃𝐶) is nonstationary. 

In this framework, several widely-used one-parameter copulas are selected as the candidates to 

characterise the dependence structure between two series of data, namely, Gaussian, Clayton, 

Frank, Gumbel, Joe, Plackett and Raftery copulas whose parameter 𝜃𝐶  is estimated by using 

both the local optimization method and MCMC approach and processed by using the MvCAT 

toolbox (Sadegh et al., 2017). However, if there is no significant correlation identified, i.e., the 

two variables are independent, I also involve an independent copula which is simply reduced 

to the form where the joint probability is calculated by the probability function of one variable 

multiplied by the other. 

For the nonstationary copula whose parameter varies over time, I assume that the copula is 

controlled by 𝜃𝐶
𝑡  with two hyper-parameters 𝜃𝐶0 and 𝜃𝐶1 and the joint cumulative distribution 

can be written as: 

𝐽𝑡(𝑥1𝑡, 𝑥2𝑡|𝜃𝐶
𝑡) = 𝐶(𝐹1𝑡(𝑥1𝑡|𝛉𝟏𝒕), 𝐹2𝑡(𝑥2(𝑡)|𝛉𝟐𝒕)|𝜃𝐶

𝑡) = 𝐶(𝑢𝑡, 𝑣𝑡|𝜃𝐶
𝑡) (6.2a) 

𝜃𝐶
𝑡 = 𝜃𝐶0 + 𝜃𝐶1 × 𝑡 (6.2b) 

where 𝛉𝟏𝒕  and 𝛉𝟐𝒕  indicate the time-varying parameters of the two marginal distributions 

shown in Table 6.1 and 𝑢𝑡 , 𝑣𝑡 are the nonstationary marginal probabilities converting in the 
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uniform U [0,1]. These parameters can also be estimated by the B-MCMC method and the 

posterior joint distribution can be calculated as (Ausin and Lopes, 2010): 

𝑝(∅|𝑥1𝑡, 𝑥2𝑡) ∝ 𝑝(∅|𝑡) ×∏𝑝(𝑥1𝑡 , 𝑥2𝑡|∅, 𝑡)

𝑁

𝑡=1

 (6.3) 

where 𝑝(𝑥1𝑡, 𝑥2𝑡|∅, 𝑡) = 𝑐(𝐹1𝑡(𝑥1𝑡|𝛉𝟏𝒕), 𝐹2𝑡(𝑥2(𝑡)|𝛉𝟐𝒕)|𝜃𝐶
𝑡) × 𝑓1𝑡(𝑥1𝑡|𝛉𝟏𝒕) × 𝑓2𝑡(𝑥2𝑡|𝛉𝟐𝒕)  is 

the copula density function, 𝑓1𝑡 and 𝑓2𝑡 are the marginal probability density functions and the 

parameters of the joint posterior are ∅ = (𝜇𝑆0, 𝜇𝑆1, 𝜎𝑆0, 𝜎𝑆1, 𝜉𝑆, 𝜇𝑅0, 𝜇𝑅1, 𝜎𝑅0, 𝜎𝑅1, 𝜉2, 𝜃𝐶0, 𝜃𝐶1). 

𝑝(∅|𝑡) is the prior distribution of the parameters ∅ and according to the prior knowledge for 

which I assume a uniform distribution for all parameters, i.e., the parameters of the marginal 

distributions are assumed to be uniformly distributed around the values estimated by stationary 

assumption and the copula parameters are assumed to be within the maximum and minimum 

limits subject to copula types. To reduce the time for running the MCMC algorithm, the 

nonstationary marginal parameters are firstly estimated by applying the approach in Section 

4.2.3 then transform into 𝑢𝑡 and 𝑣𝑡. The MCMC algorithm in this step is only used to estimate 

the copula parameter by: 

𝑝(𝜃𝐶
𝑡 |𝑢𝑡 , 𝑣𝑡) ∝ 𝑝(𝜃𝐶

𝑡 |𝑡) ×∏𝑐(𝑢𝑡 , 𝑣𝑡|𝜃𝐶
𝑡 , 𝑡)

𝑁

𝑡=1

 (6.4) 

Finally, the best copula is selected by evaluating the goodness of fit measure AIC.   

6.2.4 Generate the quantiles 

The final step of the framework is to calculate the quantiles of the joint exceedance probability 

that has been defined in the last step. According to the different analysis of the marginal 

distributions and correlation structure obtained from the previous steps, the stationary context 

will lead to one quantile with a given probability of 𝑝, while the nonstationary context will 

obtain a series of quantiles changing over covariate (i.e., time in the study) for the same given 

𝑝. The quantiles can be expressed as: 

𝑄(𝑝) = (𝑥1 = 𝐹1𝑡
−1(𝑢|𝛉𝟏

𝒕 ), 𝑥2 = 𝐹2𝑡
−1(𝑣|𝛉𝟐

𝒕 )) (6.5) 
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where 𝑝 = 𝐶𝑡(𝑢, 𝑣|𝜃𝐶
𝑡) and 𝑡 indicates that the parameters or variables are changing over time. 

If the context is stationary and two variables are independent, 𝑄(𝑝) can be simply calculated 

by inverting the marginal distributions, i.e., 𝑥1 = 𝐹1
−1(𝑢|𝛉𝟏) and 𝑥2 = 𝐹2

−1(𝑣|𝛉𝟐). 

There are several approaches to select the cases of combination of marginals (e.g., the variable 

of 𝑥1 and 𝑥2) and the most used approach is to get the most likely combination with the highest 

joint density level (Sadegh et al., 2018; Salvadori et al., 2014). For example, Figure 6.2 

illustrates all quantile curves corresponding to the probability from 𝑝 = 0.01 to 𝑝 = 0.99. The 

horizontal x-axis and vertical y-axis are two marginal variables where all the combinations of 

these two variables along the same curve correspond to the same 𝑝. The most likely scenarios 

method is to peak up the combination where the joint density of this quantile curve is the 

highest. In this example, the z-axis of Figure 6.2 indicates the joint density level uniformed to 

the range of (0,1) and the blue circles indicate the location where the density level is 1 and the 

combination of MMS and MMR is regarded as the most likely one. The other commonly used 

approach is to sample all the combinations on the same quantile curve instead of selecting only 

one combination, however, it means the scenarios selection has stochasticity which requires to 

be further analysed. In this case study, the most likely scenario approach is applied. 
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Figure 6.2 Joint density level of quantile curves corresponding to the probability from 0.01 to 0.99. 

6.3 Case study 

6.3.1 Study domain and data processing 

Ho Chi Minh City (HCMC) is located in the downstream reach of the Saigon and Dong Nai 

rivers (see Figure 6.3). As a major economic centre of Vietnam, it has emerged as one of the 

fastest-growing cities in Southeast Asia. With its nearly 10 million inhabitants, the city 

contributes more than 20% GDP of Vietnam (Hoi, 2020; Kontgis et al., 2014). Yet, due to its 

geographical location and the ageing infrastructure, the city is vulnerable to the frequent floods 

resulting from concurrent heavy rainfall and storm surges, commonly known as compound 

flooding (Binh et al., 2019; Horton et al., 2010; Molenaar et al., 2010; Nguyen et al., 2019). 

Rising sea levels have been driving the threats of compound flooding to an even higher level 

with further complications. More worryingly, as around 65% of the city is below 1.5m above 

the mean sea level (Cao et al., 2021; Scussolini et al., 2017; Vachaud et al., 2019), the 

inhabitants are affected by flooding with their living conditions deteriorating in the context of 

high SLR which has increased by 20 cm over the past 50 years and has been expected to 

Joint density level transferring to the uniform (0,1)

(0.19, 48)

p = 0.01

p = 0.99
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continue increasing (Thuc et al., 2016).  This study selects HCMC as the case where the drivers 

of compound floods are analysed by applying the nonstationary framework I developed, taking 

climate change into account. As discussed in Couasnon et al., (2021), the two main drivers of 

the flooding in HCMC are intense rainfall, often associated with strong surges, which is also 

chosen in this study. 

Rainfall: Daily rainfall data collected from six rain gauges in the vicinity of the study domain 

(see Figure 6.3) were obtained from the Southern Regional Hydrometeorological Centre. The 

data cover a period of 38 years from 01/01/1980 to 31/12/2017. The gauged rainfall was then 

converted to areal rainfall by applying the Thiessen polygon method (Couasnon et al., 2021). 

Skew surge: Hourly Sea water level data of the same period at the estuary of HCMC (Vung 

Tau water level gauge, see Figure 6.3) were also provided by the Southern Regional 

Hydrometeorological Centre. The skew surge was then calculated by subtracting tidal cycles 

from the total sea level (Cid et al., 2017; Wu et al., 2018). To avoid the spurious peaks in the 

residual signal due to minor phase shifts in the tidal predictions, the skew surge rather than 

storm surge is calculated and used in the study, which is the difference between the highest 

observed sea level and high tide within a tidal period and finally, the time series of the daily 

maximum skew surge is generated and more details for processing the data can be checked in 

Couasnon et al. (2021). 

HCMC has a dry season, from December till April, and a wet season, from May to November. 

As demonstrated by the previous research in Couasnon et al. (2021), understanding the 

seasonality of each flood driver is important to prevent the over-or underestimation of flood 

impacts in the area affected by pluvial, fluvial or coastal floods such as HCMC. Therefore, I 

extracted both monthly maxima from the series of daily areal rainfall (henceforth, MMR) and 

of daily skew surge (henceforth, MMS) between 1980 and 2017 and estimated the dependence 

and risk, again, in a seasonal fashion. 
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Figure 6.3 Study area (Ho Chi Minh City) where six rain gauges for collecting the daily rainfall over the city 

centre are denoted by red circles and a water level gauge by a yellow rectangle. 

6.3.2 Hydrodynamic modelling and simulation 

To estimate the flood inundation and risk driven by compound flooding under different 

scenarios,  a well-calibrated TELEMAC-2D model (Hervouet, 2000) is employed, which has 

been already built based on our case (i.e., HCMC) and more details can be checked in Tran and 
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Chau (2015). TELEMAC-2D model 6  is a widely used 2D hydrodynamic model and can 

simulate the free-surface flows in two dimensions of horizontal space by solving the Saint-

Venant equations using the finite-element or finite-volume method with the triangular 

computation meshes (Briere et al., 2007; Teng et al., 2017; Vu et al., 2015).  

The study domain of the TELEMAC-2D model includes the Saigon – Dong Nai river network, 

a digital elevation model (DEM) and a land cover map with different Chézy’s roughness 

coefficients. The upper boundaries of the study domain are limited by the Tri An and Phuoc 

Hoa reservoirs on Dong Nai river, Dau Tieng reservoir on the Saigon River, Go Dau bridge on 

the Vam Co Dong river and Moc Hoa bridge on the Vam Co Tay River. The lower boundary 

extends to about 30 km away from the Soai Rap estuary to the East Sea. The computation of 

the model is in the VN2000 coordinate system (Thi et al., 2019) with 614,846 nodes and 

1,223,200 triangle grids of different sizes according to the locations (the side length of grids is 

50/100 m in the riverbed, 20/500 m in inland and 100/4000 m in East Sea). The initial water 

level is +1.50 m and the calculation time step is 20 s. Three types of inputs are required for 

flood simulation: 

• Upstream discharges (m3/s): since the upstream discharge of HCMC can be controlled 

by the reservoirs, in this case, the values as the upper boundary of the model are 

constant and set following the local government recommendations.  

• Downstream sea water level (m): it can be calculated by adding the designed skew surge 

obtained from the framework to the astronomical tide. 

• Rainfall (mm): the designed rainfall obtained from the compound framework can be 

used directly.  

 

6 TELEMAC-2D model is built and the compound flood simulations in HCMC are run by T. Van Thu Tran*. 

* Center of Water Management and Climate Change (WACC), VNUHCM-IER, Ho Chi Minh City, Vietnam. 

* Email: ttvanthu@gmail.com 

mailto:ttvanthu@gmail.com
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6.4 Results and discussion 

6.4.1 Trend and correlation analysis 

Table 6.2 presents the results of the trend and correlation tests of all monthly maxima of the 

rainfall (MMR) and skew surge (MMS) in HCMC. Except for May, the monthly maxima of 

the skew surge time series were all detected to be increasing during the past 38 years at the 

significance level of 0.05. According to Kendall’s tau, there is not much difference in the 

magnitude of these positive trends between the dry and wet seasons on MMS. For MMR, the 

start and end months of the wet season, i.e., April, October, and November, show a positive 

trend. Regarding the correlation between MMS and MMR, March (the end month of the dry 

season) and April (the start month of the wet season) witness a significant, positive correlation, 

indicated by the p-values smaller than 0.05 from the Kendall or Spearman tests.  

Table 6.2 Test and estimation results of monthly maximum rainfall (MMR) and skew surge (MMS) in HCMC. 

Month 
Time 

series 

BBS-MK test 
Correlation test 

(with all datasets) 

Best-fitted 

marginal 

distribution 

Best-fitted copula 

Kendall's 

tau 

p-

value 
𝜏 

p-

value 
𝜌 

p-

value 
Type 𝛉 Copula 𝜃𝐶 

Jan 
MMS 0.34 0.003 

0.10 0.379 0.13 0.427 
GEV S 

Independence S 
MMR 0.11 0.326 Gamma S 

Feb 
MMS 0.45 0.000 

0.09 0.445 0.14 0.403 
GEV S 

Independence S 
MMR 0.08 0.491 Gamma S 

Mar 
MMS 0.35 0.002 

0.21 0.062 0.34 0.038 
GEV S 

Gaussian NS 
MMR 0.17 0.137 Gamma S 

Apr 
MMS 0.38 0.001 

0.27 0.017 0.36 0.026 
GEV NS1 

Clayton NS 
MMR 0.47 0.000 GEV NS1 

May 
MMS 0.16 0.167 

0.02 0.860 0.04 0.823 
GEV S 

Independence S 
MMR -0.01 0.940 GEV S 

Jun 
MMS 0.41 0.001 

-0.08 0.490 -0.10 0.559 
LogN S 

Plackett S 
MMR -0.08 0.497 GEV S 

Jul 
MMS 0.49 0.000 

-0.08 0.469 -0.10 0.562 
GEV S 

Independence S 
MMR -0.06 0.615 LogN S 

Aug 
MMS 0.49 0.000 

0.09 0.453 0.14 0.392 
GEV S 

Raftery S 
MMR -0.04 0.763 LogN S 
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Sep 
MMS 0.44 0.000 

0.07 0.532 0.10 0.568 
GEV S 

Raftery S 
MMR 0.20 0.083 GEV S 

Oct 
MMS 0.35 0.002 

0.16 0.168 0.24 0.140 
GEV S 

Joe S 
MMR 0.23 0.039 GEV NS1 

Nov 
MMS 0.25 0.031 

0.13 0.257 0.18 0.276 
GEV S 

Joe S 
MMR 0.22 0.050 GEV NS3 

Dec 
MMS 0.38 0.001 

0.21 0.059 0.29 0.075 
GEV S 

Raftery S 
MMR 0.22 0.053 GEV S 

Noted that GEV, Gamma, LogN are short for “Generalised extreme value distribution”, “Gamma distribution” and “Log-

normal distribution” respectively while S indicates stationary assumption and NS indicates the nonstationary assumption. 

To reveal whether the correlation in March and April changes over time, I incorporated the 

Rolling Window method in the correlation test and the results with a window width of 30 years 

are shown in Figure 6.4. The correlation between MMS and MMR in March was firstly 

weakened before getting strengthened during the period around 1983-2012 to 1986-2015 and 

then became weak again in the final periods of 1987-2016 and 1988-2017. In April, the 

correlation in the first periods (1980-2009) were strong and became weak in the periods 

afterwards.   
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Figure 6.4 Trend analysis of correlation structure between MMS and MMR in March (left) and April (right) 

where the correlation coefficients τ of Kendall test and ρ of Spearman test are depicted by blue curves and p-

values are indicated by red bars and the significance level (0.05) is shown in dashed black line. 

To analyse the impact from window width that could affect the correlation results, several 

different setups of the widths of moving window were used to test the consistency of the results 

which are presented in Figure 6.5. The p-value of both correlation tests using three different 

widths of the window in March and April, indicated by different colours. It can be observed 

that there is a small difference between the results tested by two methods (Kendall and 

Spearman). In March, the most correlation period is observed between 1987 to 2001 while in 

April, it is observed in the first several years, i.e., 1980 to 1990. It shows a general good 

consistency of testing results, but choosing a window width too short will lead to an inaccurate 

correlation test due to the limited number of data points while a width too long may cover up 

the possible correlative period.  
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Figure 6.5 p-value of two rolling window correlation tests (Kendall test and Spearman test) between monthly 

maxima of daily rainfall and skew surge in March and April. 

In order to explain such a stronger and varying correlation between MMS and MMR in March 

and April, one possible reason is that both of them are directly affected by the easterly wind 

flow. This flow is perpendicularly toward the coastal area in the South of Vietnam only in these 

two months that strongly stresses the surface layer water into the mainland. This leads to a 

higher skew surge as presented in Figure 6.6. In addition, rainfall in these two months mainly 
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comes from the perturbation and moisture from this easterly wind that facilitates convection. 

However, in other dry months, the wind is easterly to northeasterly and parallel to the coastal 

area while in wet months, this easterly component retreats to the middle to the northeast of 

Vietnam Eastsea while summer monsoon from Bengan Bay dominates the Vietnam area. 

  
(a) (b) 

Figure 6.6 Mean sea level pressure and wind at 850 mb for March (a) and April (b) averaged from 1979 to 2020 

using the ERA5 dataset.
7
 

6.4.2 Stationary and nonstationary joint probability distribution 

Boxplots of the original monthly maxima from both the skew surge and rainfall time series are 

depicted in Figure 6.7 where MMS shows much fewer variations compared with MMR which 

has a strong dry-wet season variation. As to the seasonal variation, the extreme cases in MMR 

(e.g., daily rainfall higher than 90mm) happen frequently in the wet season (e.g., August, 

 

7 The data were checked and the figure were generated by Linh N. Luu*. 

* Royal Netherlands Meteorological Institute, De Bilt, The Netherlands; 

   Vietnam Institute of Meteorology Hydrology and Climate Change, Hanoi, Vietnam. 

* Email: linhln.imhen@gmail.com  

mailto:linhln.imhen@gmail.com
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September, October); in comparison, the extreme cases of skew surge occur mainly in the three 

dry months (February, March, April) and one wet month (July which has the largest deviation 

(around 0.4m) from the 5th to 95th percentiles).  

  
(a) (b) 

Figure 6.7 Distribution of monthly maximum time series of skew surge (a) and rainfall (b) (1980-2017). On 

each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25 th and 

75th percentiles, respectively, and the outliers are indicated by '+'. 

Following the trend analysis results discussed in the previous subsection, monthly maximum 

time series with an insignificant trend were fitted by a stationary model from all distribution 

candidates; those having a significant trend were fitted by both stationary and nonstationary 

models of all distributions. The best-fitted model was then selected using the AIC and BIC. 

The fitting results are presented in Table 6.2 and more details about parameter estimation and 

model selection are given in Appendix A.3. The results are further demonstrated in Figure 6.8 

where four cases represented by four months are discussion follow below. 
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Figure 6.8 Quantiles corresponding to different joint cumulative probability (p = 0.1, 0.5 and 0.9) of the monthly 

maximum skew surge and rainfall under different assumptions in the selected four months where the best-fitted 

distributions of two marginals (MMS and MMR) are shown in the left and lower panels of each figure 

respectively: if the best-fitted distribution is stationary, the comparison between empirical and best-fitted 

distribution are shown while if it is nonstationary, only the best-fitted distribution is plotted and colour of curves 

indicates the changes over time (year). 

• Case 1: both marginals and the copula are stationary 
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July is a wet month with the largest deviation of the skew surge. The best marginal distributions 

of MMS and MMR to characterise the features of July are stationary GEV and Lognormal 

distributions respectively. The correlation between MMS and MMR is insignificant and appear 

to be invariant with time therefore stationary independent copula is applied in this case. 

According to the AIC and BIC values, the correlation can be best described as independent and 

is depicted in Figure 6.8. The quantile curves corresponding to the joint exceedance probability 

are indicated by the colour from the dark (𝑝 = 0.01) to the light (𝑝 = 0.99), which is generated 

by using the two marginal distributions whose empirical and best-fitted distribution are also 

presented. 

• Case 2: Nonstationary marginals but stationary copula 

October is near the end of the wet season with the right-skewed rainfall distribution and the 

left-skewed skew surge distribution. Both MMS and MMR are best fitted by GEV distribution 

and have a significant trend over time. However, only MMR supports the nonstationary 

assumption and the best model for it is GEV-NS1, i.e. the location parameter is assumed to be 

linearly changing over time. The correlation structure between MMR and MMS is insignificant 

and no significant correlation period is observed, therefore, the Joe copula is assumed to be 

stationary. The quantile curves of the joint probability are presented in Figure 6.8 where three 

joint exceedance probabilities are selected to view. The colour from the dark to the light 

indicates the time-varying of the joint probability from 1980 to 2017 and then extrapolating to 

the year 2100 for demonstration. Correspondingly, the marginal distribution of MMR is also 

time-varying. It can be observed that the time-varying marginal distribution can only cause an 

upward or downward movement of the quantile curves at each exceedance probability, but the 

shape of these curves is unchanged. 

• Case 3: Stationary marginals and nonstationary copula 

March is selected from the dry season with an extremely right-skewed rainfall and relatively 

symmetric-distributed skew surge. Unlike the other months, the correlation between MMR and 

MMS is significant but there are many zero values in the time series of rainfall therefore the 

correlation is tested by replacing these zeros with small random noises. The best-fitted marginal 
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distribution is Gamma distribution for MMR and GEV distribution for MMS. As the 

correlation structure is significant and changes over time, a nonstationary Gaussian copula is 

assumed. The results show that the shape of quantile curves can vary and most of the changes 

occur in the middle than the tails. The combination of both higher rainfall and skew surge is 

increased in March with the time. 

• Case 4: Both marginals and the copula are nonstationary 

Although April belongs to the dry season, it has very limited zero value occurrence (only one 

zero value found) in the maximum rainfall series because this month is also the start of the wet 

season with a strong correlation between rainfall and skew surge. This correlation is found to 

be particularly strong over the first several years of the record then becomes weak. Therefore, 

a nonstationary correlation structure is assumed. For the marginal distribution, as the trends of 

MMR and MMS are both significant, I apply the nonstationary models and find only MMR 

prefers the nonstationary GEV-NS1 model with a decreased location parameter. The results 

show that the quantile curves twist over time where the change over time is translational at the 

lower tail of quantile curves (e.g., the combination of the same skew surge with higher rainfall) 

while at the middle, the angle of the curves shrinks (the combination of both lower skew surge 

and rainfall). 

6.4.3 Scenarios generation and compound flood simulation in HCMC 

To simulate the compound flooding response in HCMC under the nonstationary framework 

and mitigate the computational overheads, two months are selected, one from the dry and the 

other from the wet seasons (March and October) for this case study. The most likely scenario 

method is used for selecting the designed quantile pair of rainfall and skew surge with an 

exceedance probability corresponding to a return period of 50 years. Table 6.3 shows the 

scenarios of 2000, 2020, 2050 for March and October in HCMC for simulating compound 

floods, where S is short for skew surge and R is for rainfall. 
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Table 6.3 The scenarios for compound flood simulation. 

Dry Season 

(Mar) 

Return level: 1-in-50 years 

Time series Nonstationary Time series Stationary 

2000 Case 1 
S (m) 0.54 

Case 4 

S 

(m) 
0.52 R (mm) 91.28 

2020 Case 2 
S (m) 0.49 

R (mm) 93.36 
R 

(mm) 
90.87 

2050 Case 3 
S (m) 0.43 

R (mm) 117.58 

Wet Season 

(Oct) 
Time series Nonstationary Time series Stationary 

2000 Case 5 
S (m) 0.37 

Case 8 

S 

(m) 
0.37 R (mm) 115.08 

2020 Case 6 
S (m) 0.37 

R (mm) 114.51 
R 

(mm) 
106.81 

2050 Case 7 
S (m) 0.37 

R (mm) 113.66 

 

After generating the designed pair of rainfall and skew surge, the next step is to transform this 

designed pair to appropriate boundary conditions for the model. Since the skew surge cannot 

be used directly as the input of the TELEMAC-2D model, I broadly followed the method 

presented in Fox (2009) and analysed all astronomical tide and the 24-hours sea water level 

profiles in March and October over the 38 years. The astronomical tides are generated by using 

the MATLAB UTide (Unified Tidal Analysis and Prediction Functions) package (Codiga, 

2011) when processing the skew surge data (more details can be checked in Couasnon et al. 

(2021)). The tide profile of the dates and the tidal period when the monthly maximum skew 

surge happened is explored to find the most frequent tide profile in these two months from 

1980 to 2017. In addition, the exact time when the maximum skew surge happened is also 

recorded. 

Results show that there are two typical profiles in March as shown in Figure 6.9 and three 

typical profiles in October (see Figure 6.10). It can be observed that for 24 hours, Type 1 of 

Figure 6.9 has two positive peaks with an average tide range of 2.5 m while Type 2 has a flat 

positive peak with an average tide range of 2 m. And for October, the highest average tide level 
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is in Type 3 with two positive peaks. Following the advice from Tran (ttvanthu@gmail.com) 

who contributes to the model simulation, the practical tide in HCMC is the profile with two 

highs and two lows. Therefore Type 1 of March and Type 3 of October are selected as the basic 

profiles. 

 

  

  
(a) (b) 

Figure 6.9 Two typical astronomical tide profiles in March. 

  

mailto:ttvanthu@gmail.com
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(a) (b) 

 
(c) 

Figure 6.10 Three typical astronomical tide profiles in October. 

Meanwhile, it is also found that the maximum skew surge in most situations occur near the 

second peak of the tide (around 63% happened at the second peak and in 80% of cases, there 

is no time difference between the water level peak and tide peak). To consider the worst 

situation where the potential flood damage is high, the skew surge estimated by the 

nonstationary multivariate framework is added to the top of the second peak of the typical tide 

(Table 6.3)  and interpolated to the other time points (24 hours). For all different scenarios, sea 

level rise (SLR) is also added to get the final sea water level for the input of the TELEMAC-

2D model to construct the three nonstationary scenarios for each month. And the values of SLR 

are selected from the climate report released by the Ministry of Natural Resources and 

Environment, Vietnam, i.e., 0.12 for the year 2020 and 0.33 for 2050 relative to the period of 

1980-1999 of high CO2 emission (MNRE, 2009). 

To compare with what would have been produced with the conventional approach, i.e., without 

taking into account the non-stationarity, I also generated a stationary case for the two months, 

i.e., re-fitting the marginal distributions and copula whose parameters are all constant. 
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To explore the possible worst situation of compound flooding driven by a design rainfall and 

skew surge event, the TELEMAC-2D model is run multiple times with different time lags (e.g., 

15 min, 30 min, 1 hr, 2hrs) between the peak of the rainfall events and water level peaks 

measured at Phu An station near the city centre. The results show that the worst situation 

usually occurs when the rainfall event is ahead of the surge by 2 hr 15 min.  

The simulation results of the 1-in-50-year compound flood estimated by the proposed 

nonstationary framework compared with the stationary case in March and October are 

presented in Figure 6.11.  

  
(a) Stationary (March) (b) Nonstationary for 2050 (March) 

 
 

(c) Stationary (October) (d) Nonstationary for 2050 (October) 

 

Figure 6.11 Flood inundation maps compared between the stationary and nonstationary cases in March (a and b) 

and October (c and d). 
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It can be observed that the eastern regions of HCMC are more affected by the floods, especially 

in the confluent area of Saigon and Do Nai Rivers which are marked as red colour. Regards to 

the inundation areas, floods simulated in October are more significant than in March, which is 

consistent with the common sense that the wet season receives more water than the dry seasons. 

However, by comparing the flood inundation maps simulated by the stationary case and 

nonstationary case for the year 2050, remarkable underestimates from the stationary case can 

be observed in both months, particular in October. Such underestimation can be attributed to 

different reasons: for March, there is a time-varying correlation between the maximum rainfall 

and skew surge (see Figure 6.8, although the distributions of rainfall remain unchanged), which 

results in increased compound flood risks in the perspective of non-stationarity; In October, 

the correlation between the rainfall and skew surge is not as significant nor does it change over 

time but the rainfall itself is nonstationary, which leads to a faster increase in flood depth than 

March over time.  

In general, the stationary case has a slight underestimation in the current scenario (2020) and a 

remarkable underestimate in the future scenario (2050). These findings underpin the 

importance of incorporating the non-stationarity into the compound flood estimation because 

not only the driver itself may change alongside the climate change, but their correlation can 

also vary due to many implicit factors which need further exploration. 

6.5 Summary and remarks 

This chapter presents the development of a nonstationary multivariate modelling framework 

for quantifying the time-varying joint probability of two meteorological and oceanographic 

drivers of compound flooding in view of their non-stationarity. The framework utilises the 

Bootstrapping Mann-Kendall trend test and the rolling window correlation tests to determine 

whether the marginals and/or their dependence structure should be treated in a stationary or 

non-stationary fashion. The Bayesian Markov-Chain Monte-Carlo (B-MCMC) method is 

applied to estimate the nonstationary parameters and the associated uncertainty. Best marginal 

distribution and copula are selected by evaluating Akaike’s information criterion (AIC) and 
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Bayesian information criterion (BIC). To present the applicability of this framework, I applied 

it to the case of Ho Chi Minh City (HCMC), Vietnam to estimate the compound flooding 

caused by two drivers, i.e., monthly maxima of inland precipitation and skew surge in both dry 

and wet seasons. The flood depths are simulated by a well-calibrated hydrodynamic 

TELEMAC-2D model using two designed driver values at a return level of 50 years. I compare 

the scenarios generated by the nonstationary case with the stationary case produced by the 

framework, as well as the simulation results and find that: 

1) The correlation between the monthly maximum rainfall and skew surge is independent 

except in March and April which are the boundary between the dry season and wet 

season. Such the correlation in March becomes more significant in the last 10 years 

while in April it becomes less significant. 

2) The series of monthly maximum rainfall in October and November have been changing 

over time and their distribution can be best fitted by nonstationary generalised extreme 

value (GEV) model of which only the location parameter (linking to the most frequent 

level of monthly maximum daily rainfall) is time varying. 

3) The simulation results of the HCMC case study show that the traditional stationary 

approach produces remarkable underestimates in simulating the compound flood depth 

in the current (2020) and future (2050) scenarios. The dry month of March is expected 

to get more floods similar to the wet month of October, which may lead to that the wet 

season in HCMC is expected to shift earlier.  

The developed nonstationary framework offers a great deal of flexibility for modelling 

complicated hydroclimatic extreme variables as far as the possible combinations of stationary 

and nonstationary assumptions are concerned. Compared with other approaches, the B-MCMC 

method that is employed in the framework can be more effective to process the complex time-

varying phenomena under climate change such as estimating the correlation structure between 

continuous and discrete variables. This paper presents the first application to evaluate 

compound flooding driven by extreme rainfall and skew surge in the perspective of non-

stationarity in HCMC. Other low-lying coastal cities and countries may also confront a similar 

predicament where a comprehensive regional risk assessment of the compound flooding 
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potential is currently missing.  This modelling framework, with the flexibility it has, will be of 

substantial use in this regard. The study also underpins that climate change can affect not only 

the hydrometeorological or oceanographic extremes themselves but also their interaction which 

tends to become either more correlated or independent. As far as managing compound flood 

risk is concerned, relevant authorities should carefully consider such consequences arising 

from climate change and evaluate their current strategies that may have been historically 

produced from a stationary perspective.   

As with any statistical analysis application, data length and quality can inevitably affect the 

results, so can the uncertainty in physical modelling. It should be recognised that a relatively 

short length (38 years) of data is used in this study. Although this does not affect the concept 

of the modelling framework I develop, direct use of the results from this study for policy-

making purposes should consider the caveat above into the context. As such, further work is 

recommended to investigate compound flood and correlation between rainfall and surge with 

longer-term observations which are likely to make the conclusions more robust. And for the 

multivariate nonstationary framework, more copulas and types of distribution candidates can 

be involved alongside uncertainty quantifications. Apparently, linking climate model 

projections into the framework will be another important and challenging area to explore. 

 



 

 

Part II 

 

Pattern recognition on hydroclimatic extremes





 

 

Chapter 7 Identification and Classification of 

Hydroclimatic Extremes Using Pattern Recognition 

and Convolution Neural Networks 

According to the quantitative results presented in Chapter 3 and Chapter 4, the spatial and 

temporal rainfall distribution can be bounded within several specific patterns. Therefore, 

identifying and classifying such patterns is of great value to help understand the underlying 

mechanism and improve the forecasting capability. Motivated by this, in this chapter, an 

effective pattern recognition technique by incorporating an unsupervised clustering algorithm, 

i.e., Spatial Pattern Extraction and Recognition (SPER) toolbox, is developed to process 

automatic identification and classification of extreme patterns by extracting their spatial and 

physical features and answer the research question Q6. This chapter also demonstrates three 

case studies to show the efficiency and application of the toolbox. Further, the SPER toolbox 

presents great potential in auto-labelling clusters to support deep/machine learning of complex 

environmental spatial-temporal features over large datasets, demonstrated by an example of 

training a convolution neural network (CNN) which can recognise new rainfall patterns and 

classify them to the learned catalogues with high accuracy. 

 

7.1 Introduction 

Rainfall is one of the most essential variables in climate and water resources research, which 

has a complex and nonlinear relationship with other various meteorological and climatological 



7.1 Introduction 178 

 

 

variables and topographic conditions (Kirono et al., 2010). Many approaches and models have 

been developed for simulating and predicting rainfall based on such relationships. For example, 

the generalised linear model (GLM) is a widely-used tool for quantifying the relation between 

rainfall and other hydroclimatic predictors (Urdiales et al., 2018; Yan et al., 2002; Yunus et al., 

2017) such as temperature, potential evaporation, wind speed, El Niño, La Niña, and Southern 

Oscillation indices;  as well as spatial predictors (Beecham et al., 2014; Kenabatho et al., 2017) 

such as altitude, geographic location, size and shape shown in Chapter 3. However, as the 

topography does not frequently change over time and the large-scale structure of atmospheric 

circulation remains relatively stable, the spatial and temporal rainfall distribution can be 

bounded within several specific patterns. For example, the rainfall patterns in the windward 

regions are normally different from those in the leeward region, especially in the mountainous 

area (Lin et al., 2017); desert areas usually receive limited rainfall because of high temperature 

heating the descending air which hinders the formation of clouds that cause rainfall. Therefore, 

identification and classification of such rainfall patterns are of great value to help understand 

the underlying mechanism and improve the forecasting capability, especially for those based 

on deep learning methods which have seen a fast-growing number of applications recently. For 

example, in hydroclimatic science, some researchers applied machine learning methods such 

as artificial neural networks (ANN) to extract features of spatiotemporal climatic variables (Qiu 

et al., 2017); others parameterized those features (Gentine et al., 2018; O'Gorman and Dwyer, 

2018) to realize weather predictions (Liu et al., 2016; Petersik and Dijkstra, 2020). 

Appropriate training is essential and often challenging in the application of these deep learning 

applications, in an effort of achieving accurate and reliable prediction, and expanding the 

applications in climate science. Unlike the data traditionally used to develop neural network 

algorithms such as face images for facial recognition and classification, which have 

commonalities and specific features that can be easily classified, the hydro-climatic data from 

model projections and field observations are often highlighted by their intermittent spatial 

variations, and often chaotic, nonstationary, multi-scale temporal distributions.  

The other main challenge is due to the amount of training data required by deep learning 

techniques. For example, a supervised convolution neural network (CNN) usually demands a 
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large dataset for training, which should be all pre-catalogued into different labels/classes. This 

apparently requires huge time and labour if done manually. To address these issues and 

research question Q6, I designed a toolbox named “Spatial Pattern Extraction and Recognition 

(SPER)” by incorporating an unsupervised clustering technique, the K-means cluster method 

into a spatial feature identification algorithm. The SPER toolbox allows the large-scaled input 

of grid-based hydroclimatic dataset (observed or climate projected) and employs the image 

thresholding segmentation method to help reduce the overhead of sampling data for training. 

The significant pattern whose hydro-climatic variable is over the defined threshold is extracted 

and regarded as the region of interest (ROI) within a geographic boundary which can be 

automatically detected.  For each ROI, both spatial features (i.e., the geographic location, size, 

orientation, shape of ROI) and hydrologic features (i.e., total volume, areal average value and 

spatial distribution of the hydrological variable in the ROI) are identified and calculated and 

the final classification of the extreme patterns is based upon these features. Three example 

cases are included in this chapter to present the applicability of the SPER toolbox, i.e., 1) a 

catchment-based analysis of extreme rainfall in England and Wales where more than 900 

catchments were categorized by the spatial features extracted from the SPER toolbox and the 

variation of extreme rainfall with respect to catchment location, size, orientation and shape was 

quantified; 2) pattern recognition of daily rainfall over the last century in Great Britain where 

the top 3 dominating patterns were recognized; 3) Tracing rainfall area and spatial distribution 

in 24 hours in Guangdong, China where the track of the rainfall centre and how the rainfall 

area changed were presented with the support of the SPER toolbox. Besides, the potential of 

the toolbox for supporting machine learning is discussed with an example given to demonstrate 

how the toolbox can be employed to pre-catalogue the hydroclimatic patterns into different 

labels which are used for training a supervised artificial neural network. The examples given 

in this chapter can be readily expanded to cover many other similar use cases.  

The remainder of this chapter is organised as follows: Section 7.2 describes the design of the 

Spatial Pattern Extraction and Recognition (SPER) toolbox; Section 7.3 illustrates three cases 

for demonstrating the application of the toolbox while its potential to support machine learning 
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is discussed in Section 7.4. Finally, the conclusions and access to the toolbox are given in 

Section 7.5. 

7.2 The design of the SPER toolbox 

The Graphical User Interface (GUI) of Spatial Pattern Extraction and Recognition (SPER) 

toolbox as well as the main functions are presented in Figure 7.1. Users can input the grid-

based hydroclimatic dataset and its resolution (e.g., the grid size of the dataset), and predefine 

a threshold value for extraction. The next step is to extract the hydroclimatic variables over the 

threshold located within a closed boundary which forms a region of interest (ROI). Then the 

SPER toolbox can automatically detect the location of each such ROI and quantify the spatial 

features including the geographic location, size, orientation, and shape of ROI and the 

hydroclimatic features such as areal average value, total volume, and spatial distribution of the 

hydroclimatic variable. The toolbox can also demonstrate the ROI selected by users. An 

example plot is presented in the right panel in GUI shown in Figure 7.1. All the information of 

ROIs extracted from the input datasets can be saved in a text file if needed. 

 

e.g., gridded daily rainfall of 1890-
01-01; threshold 𝑥0= 35 mm/day.

Step 1: Input the data 
and setup the command.

Step 2: Feature extraction
and quantification
e.g., the boundary of each ROI is 
shown as red dash line and saved 
by their geographic coordinates

Step 3: Demonstration

Spatial features include:
• the geographic location; 
• size; 
• orientation; 
• shape;
• areal average rainfall of ROI.

Step 4: Save results

Save the table as a text 
file.

Select the extracted ROI to 
present
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Figure 7.1 SPER: Spatial Pattern Extraction and Recognition Toolbox. 

7.2.1 Thresholding segmentation and boundary detection 

There are two different types of inputs to the toolbox, i.e., as datasets or as images. If the input 

is grid-based dataset, after predefining the threshold value 𝑥0, the first step of segmentation is 

to subdivide the dataset into continuous regions, so-called regions of interest (ROIs). One of 

the most widely used method of extracting an object from the background is to distinguish 

different modes according to the threshold 𝑥0 (Panu et al., 1978; Weszka and Rosenfeld, 1978). 

Motivated by this, the toolbox divides all grids in the dataset into two types: any grid (𝑥, 𝑦) for 

which 𝑓(𝑥, 𝑦) ≥ 𝑥0 is called an object grid otherwise is a background grid. Thus, the new 

dataset 𝑔 can be defined as: 

𝑔(𝑥, 𝑦) = {
𝑓(𝑥, 𝑦), 𝑖𝑓 𝑓(𝑥, 𝑦) ≥ 𝑥0
NaN, 𝑖𝑓 𝑓(𝑥, 𝑦) < 𝑥0

 (7.1) 

where NaN means no data, which indicates the background. 

Then the segmentation is implemented based on the discontinuity and similarity of the grid 

values of the dataset. The discontinuity is usually defined as an abrupt change of grid values 

nearby, which can be used for detecting the boundary of the pattern while the similarity is 

where the grids show similar properties (e.g., object or background). An exemplification sketch 

is presented in Figure 7.2a where to the new dataset 𝑔, an isolated ROI where 𝑓(𝑥, 𝑦) ≥ 35 

(blue grids) is defined as an area with the similar property and its boundary is detected by an 

abrupt discontinuity (highlighted as red grids in the sketch a) where no data are founded.  
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(a) (b) 

Figure 7.2 Two example sketches of ROI where 𝑓(𝑥, 𝑦) ≥ 35 without (a) and with (b) hole. 

If some background grids (𝑓(𝑥, 𝑦) < 35) within the ROI boundary, the area constituting by 

these grids is called a “hole”. Such a hole can also be detected straightforwardly due to the 

discontinuity at the intensity level of the dataset. As the example mask shown in Figure 7.2b, 

the yellow grids are the hole boundary while the blue grids are the ROI which is an inner 

connected region greater than the defined threshold. The information of each boundary (e.g., 

the coordinates of the boundary grid) is recorded separately and stored. 

7.2.2 The algorithm for extracting and quantifying the spatial features of 

ROI 

Each ROI extracted from the last step can be simplified as an irregular polygon and the 

algorithm for quantifying the spatial features is described in the four steps below: 

• Step 1: Decompose the irregular ROI inside the boundary (𝑥𝑗 , 𝑦𝑗) into many (e.g., 𝑖) small 

regular polygons 𝐴𝑖 such as rectangle and triangle then the geometric centroid (𝐶𝑥, 𝐶𝑦) of 

ROI can be calculated as: 

𝐶𝑥 = ∑𝐶𝑖𝑥𝐴𝑖 /∑𝐴𝑖 = 𝐼𝑥/∑𝐴𝑖 =
1

6
∑ (𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)(𝑦𝑗 + 𝑦𝑗+1)
𝑛
𝑗=1 /∑𝐴𝑖  (7.2a) 

𝐶𝑦 = ∑𝐶𝑖𝑦𝐴𝑖 /∑𝐴𝑖 = 𝐼𝑦/∑𝐴𝑖 =
1

6
∑ (𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)(𝑥𝑗 + 𝑥𝑗+1)
𝑛
𝑗=1 /∑𝐴𝑖  (7.2b) 

NaN NaN NaN NaN NaN NaN NaN

NaN NaN 35 35 NaN NaN NaN

NaN 35.3 36.6 36.8 35.8 NaN NaN

NaN 36.2 38.1 38.1 36.5 35.1 NaN

NaN 36.1 36.3 37.7 36.3 NaN NaN

NaN 35.3 NaN 36.2 35.4 NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN 35 35 36 37 35.8 NaN

NaN 35.3 36.6 NaN NaN NaN 35.4 NaN

NaN 36.2 38.1 NaN NaN NaN 36 NaN

NaN 36.1 NaN NaN NaN NaN 37.5 NaN

NaN 35.3 36 36.2 NaN NaN 37.2 NaN

NaN NaN NaN 36.2 35.8 35.9 36 NaN

NaN NaN NaN NaN NaN NaN NaN NaN
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where 𝑛 is the number of vertices of the irregular ROI, i.e., the number of boundary points in 

(𝑥𝑗 , 𝑦𝑗); 𝐶𝑖 indicates the centroid of each divided polygon which can be found easily and the 

subscripts 𝑥 or 𝑦 mean the distance of the centroid from the y-axis (the vertical axis) or the x-

axis (the horizontal axis); 𝐶𝑖𝑥𝐴𝑖 and 𝐶𝑖𝑦𝐴𝑖 are also known as the first moment of the area with 

respect to 𝑦 and 𝑥; ∑𝐴𝑖 is the total area of ROI which is a sum of the area of divided polygons.  

• Step 2: Calculate the second moment of area of ROI which is used for defining the principal 

axes of ROI and the rotation thereby obtaining the orientation of ROI. The second moment 

of the area with respect to the centroid (𝐶𝑥, 𝐶𝑦) is given by (Hally, 1987): 

𝐼𝑥𝑥 =
1

12
∑ (𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)(𝑦𝑗

2 + 𝑦𝑗𝑦𝑗+1 + 𝑦𝑗+1
2)𝑛

𝑗=1 − 𝐼𝑦
2/∑𝐴𝑖  (7.3a) 

𝐼𝑦𝑦 =
1

12
∑ (𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)(𝑥𝑗

2 + 𝑥𝑗𝑥𝑗+1 + 𝑥𝑗+1
2)𝑛

𝑗=1 − 𝐼𝑥
2/∑𝐴𝑖  (7.3b) 

𝐼𝑥𝑦 =
1

24
∑ (𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)(𝑥𝑗𝑥𝑗+1 + 2𝑥𝑗𝑥𝑗 + 2𝑥𝑗+1𝑥𝑗+1 + 𝑥𝑗+1𝑥𝑗) −
𝑛
𝑗=1

𝐼𝑥𝐼𝑦/∑𝐴𝑖  
(7.3c) 

As the principal axes of an arbitrary polygon are those locations where the product of inertia is 

zero, the orientation of the principle axes with respect to the centroid and the horizontal x-axis 

can be calculated as: 

𝜃 =
1

2
𝑡𝑎𝑛−1(2𝐼𝑥𝑦/(𝐼𝑦𝑦 − 𝐼𝑥𝑥))  (7.4) 

where 𝜃 is measured positive anticlockwise from the centroidal x-axis. The other principal axis 

is perpendicular to this one.  

• Step 3: Detect the longer principal axis as the main orientation of ROI and 𝜔 is defined as 

the angle between the main orientation and the North direction.  

To realize it, the length of principal axes within the boundary of ROI is compared and the 

longer one is selected. Then a vector is created pointing to the North and helping calculate the 
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𝜔 . 𝜔  is defined in the range of [−90o, +90o] where a positive 𝜔  indicates a North-East 

direction and negative presents a North-West direction. Figure 7.3 provides an example where 

the orientation of this ROI is indicated by the solid principal axis which is longer and north-

northwest (𝜔 = −10.4o). 

• Step 4: Detect the minimum encompassing rectangle of ROI (see Figure 7.3) which is used 

for defining the shape. 

In this step, a shape index 𝑠𝑝 is introduced to represent how elongated the shape is. It is defined 

as the ratio of the longer side (e.g., height) of the outside rectangle divided by the shorter side 

(e.g., width). The greater 𝑠𝑝 is, the more elongated shape is recognised. 

 

Figure 7.3 An example of ROI. 

Finally, the spatial features extracted from this four-step algorithm are quantified as: 1) ROI 

geographic location which is represented by the coordinates of the geometric centroid (𝐶𝑥, 𝐶𝑦); 

2) ROI size which is the sum of all grids of the object; 3) ROI orientation which is indicated 

by the angle 𝜔 with respect to the north direction and 4) ROI shape which is described by 𝑠𝑝. 

All features are converted automatically consistent with the dataset resolution and can be saved 

in a text file by the toolbox. 

 

width
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7.2.3 The algorithm for quantifying the hydroclimatic features of ROI 

For a given ROI, basic features such as the areal average value and total volume of the 

hydroclimatic variable can be extracted straightforwardly by calculating the values of grids. To 

quantify the spatial distribution of the hydroclimatic variable in this ROI if it exists, the k-

means clustering technique is employed to recognise the centroid of the region(s) with the 

highest values which are called the “core”. For example, if the dataset is grid-based hourly 

rainfall, the “core” with the extreme values inside the ROI can be regarded as the rainfall centre 

of this event whose location and the moving track can be easily monitored using the toolbox.  

The k-means clustering is one of the partitioning-based techniques to divide the variables of a 

dataset into several non-overlapping clusters based on the degree of similarity of the variables 

(Friedman et al., 2001; Pham et al., 2005). To apply it, the first step is to determine the number 

of clusters which is usually based on the prior knowledge of the dataset. As such information 

is often unavailable, in this toolbox, multiple trials were carried out to find the optimal number 

of clusters 𝑘  evaluating by using the Calinski-Harabasz criterion (Caliński and Harabasz, 

1974). Then the k-means clustering starts to partition the data by assigning 𝑘 initial centroids 

that are the farthest from one another in the data space or just by giving them random values 

within the space. The distance from the cluster centroids is calculated before the centroid is 

reassigned and updated using the mean of the centroids of the clusters. This procedure is 

repeated until the change of the centroid ceases. However, as the k-means algorithms are local 

search heuristics which means it is sensitive to the initial centroids (Morissette and Chartier, 

2013), this step is repeated 10 times with different initial points to get a stable result and the 

averaged location is used as the final.  

The distance between the core(s) and the ROI centroid is then calculated, as shown in Figure 

7.4 where the areal average of rainfall is 29 mm/day, and the rainfall centre (i.e., the core) is 

38 mm/day marked by × which sits very closed to the centroid of the ROI. 
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Figure 7.4 An example of ROI with its core. 

7.3 Illustrative Case Studies 

7.3.1 Catchment-based analysis of extreme rainfall in England and Wales 

Atmospheric water, precipitation, evaporation and transpiration, and surface water are four 

fundamental components of the hydrological cycle. To investigate the hydrological process, 

research is usually carried out within a region of interest e.g., country, political boundary, river 

basin and even the global. The catchment is one of the basic units in quantitative hydrological 

analysis. In any given catchment, the runoff happens when the soil is saturated and cannot 

absorb the input water such as precipitation. Therefore, the area-oriented variation of rainfall 

is of the concern of the engineers and flood risk managers. In recent decades, many studies 

have focused on a catchment-based analysis involving the estimation of the volume, area, and 

depth of rainfall. For example, Ochoa-Rodriguez et al. (2015) investigated the impact of 

rainfall input resolution on the outputs of different hydrodynamic models of seven urban 

catchments in North-West Europe and found that increasing the catchment drainage area will 

decrease the impact of rainfall input resolution. Besides, many other researchers analysed 

gauged rainfall extremes corresponding to their hydrological response in the river catchments 

of different sizes (Anquetin et al., 2010; Lobligeois et al., 2014; Sangati et al., 2009).  
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The SPER toolbox can be very useful in this context for supporting the variation analysis within 

a specific boundary due to its ability to detect the spatial characteristics of the catchment or the 

region of interest. Thus, the first case study demonstrates an analysis of the spatial variation of 

extreme rainfall in 903 catchments in England and Wales, where more details of the results are 

presented in Section 3.5 of Chapter 3. 

7.3.2 Pattern recognition of daily rainfall over the last century in Great 

Britain 

Although the distribution of rainfall is affected by many hydrometeorological variables and 

different topographic conditions (Kirono et al., 2010),  the spatial and temporal distribution can 

be usually bounded within the specific patterns due to the relatively stable large-scale structure 

of atmospheric circulation. The SPER toolbox becomes useful to explore the spatial variation 

of these patterns of rainfall distribution. Therefore, to explore whether rainfall has a relatively 

stable pattern, in this case study, an attempt is made to use the GEAR dataset (see Table 1.1 in 

Chapter 1) and employ the SPER toolbox to extract the spatial features of daily rainfall pattern 

from the period of 1898 - 2010 in England, Wales and Scotland respectively. The identified 

rainfall patterns are then categorised into three classes according to their sizes, i.e., C1 (size ≤ 

250 km2), C2 (250 km2 < size ≤ 500 km2) and C3 (size > 500 km2). The patterns with the 

most frequent occurrence are recorded and summarized in Figure 7.5 followed by several 

specific patterns are presented in Table 7.1. 

Table 7.1 Specific dominating patterns of daily rainfall in England, Wales, and Scotland catalogued at three 

sizes. 

Location 
C1 

size ≤ 250 km2 

C2 

250 km2 < size ≤ 500 km2 

C3 

size > 500 km2 

England 

 
𝑠𝑝: 1.0 ~ 1.2 

𝜔: 45o ~75o 

 
𝑠𝑝: 1.0 ~ 1.6  

  Location 
 Location 
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Figure 7.5 shows the number of patterns that occurred in the period of over 100 years, 

represented by their colour with respect to both 𝑠𝑝 and 𝜔. For all three countries in general, a 

clear trend of decrease in the number of the identified patterns associated with large 𝑠𝑝 values 

(indicating narrow, elongated shapes) can be seen as the size of the pattern increases (i.e., from 

C1 to C3). 

𝜔: -45o ~ -15o 𝑠𝑝: 1.6 ~ 2.6 

𝜔: 45o ~75o 

 
𝑠𝑝: 1.0 ~ 1.2 

𝜔: -75o ~ -45o 

 
𝑠𝑝: 1.4 ~ 1.8 

𝜔: -75o ~ -45o 

Wales 

 
𝑠𝑝: 1.0 ~ 1.4 

𝜔: -90 ~ -75o 

 
𝑠𝑝: 1.0 ~ 1.4 

𝜔: 45o ~75o 

 
𝑠𝑝: 1.0 ~ 1.2 

𝜔: 15o ~ 45o 

Scotland 

 
𝑠𝑝: 1.0 ~ 1.6 

𝜔: -75o ~ -45o 

 
𝑠𝑝: 1.0 ~ 1.4 

𝜔: -75 ~ -45o 

 
𝑠𝑝: 1.4 ~ 1.6 

𝜔: -30o ~ -10o 

 Location  Location 

 Location 
 Location  Location 

 Location  Location  Location 
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Figure 7.5 The histograms of the number of daily rainfall patterns in England, Wales and Scotland displayed by 

different colours with respect to 𝑠𝑝 and 𝜔 at three sizes (C1, C2 and C3). 

In England, the most frequent rainfall patterns in C1 are those mainly oriented in the direction 

of the northeast to the east with a more rounded shape (1.0 < 𝑠𝑝 <1.2). However, for patterns 

in larger sizes (C2 and C3), the orientation of the elongation changes from mainly northwest 

(𝜔  is around -45o) to northeast-by-east (𝜔 ≥ 45o). This finding may be explained by the 

dynamics of the rainfall systems in various sizes. Small-sized rainfall distribution is likely to 

be driven by more localized convective storms which tend to have a more regular shape. Large 

rainfall systems may come as a result of frontal systems hence having a narrow band shape. 

Another very interesting feature is that intensive rainfall usually happened over a small region. 

The other two typical patterns of middle size in England are usually located in the Lake District 

and nearby while the ones with sizes larger than 500 km2 usually cover across the whole south 

of England. 

In Wales, the typical pattern of less than 250 km2 category is more rounded with a slight east-

west orientation (𝜔 ≤  -75o) while the patterns of middle size become northeast-by-east-

orientated and less rounded usually with a concave in the north-west direction because of 

topographic effect. These patterns also have a relatively fixed location at the northwest of 

Cardiff near the boundary of Wales and England (location index is easting 350 km, northing 

250 km). The patterns with a size larger than 500 km2 are also shown to have a very common 
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“L” shape which is almost across the north and south of Wales. It should be noted that the 

underlying dataset is in fact 'masked' by the land boundary; and therefore, patterns of large size 

(C3) are artificially limited by the shape of the land. 

In Scotland, the patterns whose size is smaller than 125 km2 are also more rounded and usually 

located north of Lake District and near the boundary of England and Scotland. The middle-

sized patterns whose orientation are nearly identical to those smaller rainfall patterns, have two 

common locations: one is to the north of Lake District while the other is in the north of 

Highland. The patterns with a size over 500 km2 are mainly northwest-orientated and normally 

cover the whole north and west of Highland. 

To investigate the temporal change of rainfall patterns in the last century, the entire duration is 

divided into five groups. Table 7.2 lists the dominating daily rainfall pattern(s) of each group 

at three different sizes in England, Wales and Scotland, where the percentage in bracket 

presents the proportional number of patterns.  

Table 7.2 Temporal change of specific rainfall patterns in three countries in three size categories. 

  1898-1922 1923-1947 1948-1972 1973-1997 1998-2010 

England 

C1 

(89.2%) 

𝑠𝑝: 1 to 1.2 

𝜔: 45o to 75o 

(90.6%) 

𝑠𝑝: 1 to 1.2 

𝜔: -45o to -15o 

(89%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -45o to -15o 

(89%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -45o to -15o 

(88.9%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -45o to -15o 

C2 

(8%) 

𝑠𝑝: 1.6 to 1.8 

𝜔: -75o to -45o 

𝑠𝑝: 1 to 1.2 

𝜔: -45o to -15o 

(7.8%) 

𝑠𝑝: 1.4 to 1.6 

𝜔: -45o to -15o 

(7.9%) 

𝑠𝑝: 1 to 1.4 

𝜔: -75o to -15o 

(8%) 

𝑠𝑝: 1.8 to 2.0 

𝜔: -75o to -45o 

𝑠𝑝: 1.0 to 1.2 

𝜔: -45o to -15o 

(7.9%) 

𝑠𝑝: 1.6 to 1.8 

𝜔: -45o to -15o 

C3 

(2.8%) 

𝑠𝑝: 2.4 to 2.6 

𝜔: 45o to 75o 

(1.6%) 

𝑠𝑝: 1 to 2.8 

𝜔: -15o to 75o 

(3.1%) 

𝑠𝑝: 1.6 to 1.8 

𝜔: 45o to 75o 

(3%) 

𝑠𝑝: 1 to 1.2 

𝜔: 15o to 45o 

(3.2%) 

𝑠𝑝: 1.4 to 1.6 

𝜔: -45o to -15o 

Wales 

C1 

(77.2%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -90 to -75o 

(80%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -90 to -75o 

(79.8%) 

𝑠𝑝: 1.4 to 2.0 

𝜔: -90 to -45o 

(80.3%) 

𝑠𝑝: 1.8 to 2.0 

𝜔: -90 o to -75o 

𝑠𝑝: 1.4 to 1.6 

𝜔: -45o to -15o 

(80.6%) 

𝑠𝑝: 2 to 2.2 

𝜔: -75o to -45o 

C2 

(17.6%) 

𝑠𝑝: 1 to 1.2 

𝜔: 45o to 75o 

(16.2%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: 45o to 75o 

(13.7%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: 15o to 45o 

(13.8%) 

𝑠𝑝: 1.6 to 1.8 

𝜔: 45o to 75o 

(14%) 

𝑠𝑝: 1 to 1.2 

𝜔: 15o to 45o 
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𝑠𝑝: 2.2 to 2.4 

𝜔: -90 to -75o 

C3 

(5.2%) 

𝑠𝑝: 1 to 1.2 

𝜔: 15o to 45o 

(5.8%) 

𝑠𝑝: 1 to 1.2 

𝜔: 15o to 45o 

(6.5%) 

𝑠𝑝: 1 to 1.2 

𝜔: 15o to 45o 

(5.9%) 

𝑠𝑝: 1 to 1.2 

𝜔: 15o to 45o 

(5.4%) 

𝑠𝑝: 1 to 1.2 

𝜔: -75o to -45o 

𝑠𝑝: 1 to 1.2 

𝜔: -15o to 45o 

Scotland 

C1 

(74.2%) 

𝑠𝑝: 1 to 1.2 

𝜔: 75o to 90o 

(76.8%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -75o to -45o 

(83.8%) 

𝑠𝑝: 1.4 to 1.6 

𝜔: -75o to -45o 

(83.8%) 

𝑠𝑝: 1.4 to 1.6 

𝜔: -75o to -45o 

(83.8%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: 45o to 75o 

C2 

(12.6%) 

𝑠𝑝: 1 to 1.2 

𝜔: -75o to -45o 

(11.9%) 

𝑠𝑝: 1 to 1.2 

𝜔: -75o to -45o 

(8.9%) 

𝑠𝑝: 1 to 1.2 

𝜔: -45o to -15o 

(8.8%) 

𝑠𝑝: 1.4 to 1.6 

𝜔: -45o to -15o 

(8.9%) 

𝑠𝑝: 1.4 to 1.6 

𝜔: -45o to -15o 

C3 

(13.2%) 

𝑠𝑝: 1.2 to 1.4 

𝜔: -60o to -30o 

(11.3%) 

𝑠𝑝: 1.5 to 1.8 

𝜔: -30o to 0o 

(7.3%) 

𝑠𝑝: 1.5 to 1.8 

𝜔: -30o to 0o 

(7.4%) 

𝑠𝑝: 1.2 to 1.5 

𝜔: -30o to 0o 

(7.3%) 

𝑠𝑝: 1.2 to 1.8 

𝜔: -30o to 0o 

 

In England, the percentage of the patterns in C2 keeps stable while that for C1 decreases and 

C3 increases after 1947. For the patterns in C1, their shapes change slightly from a more 

rounded shape to an ellipse and the orientation shifts from northeast-by-east to northwest-by-

north after 1922.  For the patterns of the C2 category, both their shapes and orientations are 

stable and in the range of 1 to 1.8 and northwest respectively. For the patterns in C3, their 

shapes are more elongated and the orientation changes from northeast-by-east to northwest 

after 1997. 

In Wales, a very different temporal variation has been detected. First, the fractions of the 

patterns in different size categories remain almost unchanged. Second, for individual size group, 

the patterns in C1 become more and more elongated while their main orientation remains 

northwest-by-west; the patterns in C2 do not change much in their elongated shape, but their 

orientation shifts from northeast-by-east to northeast-by-north; For the patterns in the C3 

category, they all have a similar shape and orientation as shown in Table 7.1, and do not change 

over time. Again, the boundary impact mentioned previously may be the cause of the behaviour.  

In Scotland, the situation of percentage is just opposite to what has been shown in England. 

The percentage of the patterns in C1 increases while those of C2 and C3 both decrease 
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especially after the year 1947. The shape of the patterns in C1varies from a more rounded one 

to rectangular, which is similar to that of England but the orientation changes from northwest-

by-west to northeast-by east. For the patterns in C2, their shapes appear to be more and more 

elongated and the orientation shifts from northwest-by-west to northwest-by-north after 1947.  

Like in Wales, the shape and orientation of the patterns in C3 are almost unchanged during the 

time. 

7.3.3 Tracing rainfall area and spatial distribution in 24 hours in 

Guangzhou, China 

Rainfall is one of the basic components of the hydrological circle where many studies focused 

on analysing the duration, intensity, and spatiotemporal variation of rainfall to enhance the 

understanding of its interaction with the hydrological process. To monitor a rainfall event, the 

traditional approach makes use of rain gauge measures to calculate the rainfall intensity and 

cumulative amount for characterising the rainfall behaviour (Muthusamy et al., 2017a; Salio et 

al., 2015; Sohn et al., 2010). However, the variability of rainfall is difficult to detect by a limited 

number of rain gauges and the measurement affected by many factors such as wind, manual 

error, etc. can somehow cause uncertainties even errors. In recent decades, with the rapid 

developments in environmental monitoring technology, weather radars with their high spatial 

and temporal resolution have been widely applied to monitor and measure rainfall (Kidd and 

Huffman, 2011). The spatial and temporal patterns collected by weather radars are further used 

to model the rainfall event and the variability detected from the consecutive series of patterns 

can be used for forecasting. Therefore, identifying and tracking the rainfall events is an 

essential task for radar-based hydrometeorological applications and how to process it 

accurately and automatically is still a big challenge (Sokol et al., 2021). Nowadays, there are 

two types of algorithms for identifying and tracking rainfall patterns: 1) the pixel-based 

algorithm which makes use of pixel information and extracts the motion vectors by searching 

the maximum correlation coefficient of rainfall pattern in two consecutive radar images; 2) the 

object-based algorithm which makes use of the properties of the discrete rainfall pattern such 

as centroid, area, etc., in consecutive radar images (He et al., 2019). However, both algorithms 



7.3 Illustrative Case Studies 193 

 

 

have drawbacks, e.g., the pixel-based algorithm is easily affected by the noise and the motion 

estimates solely based on the maximum correlation coefficient may produce inconsistent 

classification results while the object-based algorithm is not good at estimating motions 

especially when the shape of rainfall pattern change rapidly. 

Therefore, a more stable algorithm for quantifying and classifying the rainfall pattern is 

required. As the SPER toolbox provides a stable calculation for quantifying the spatial and 

hydrological features of rainfall patterns, this study employs the SPER toolbox to monitor the 

rainfall area and trace the rainfall centres. The data applied to the study are collected by the 

cutting-edge active phase array radar (APRA) which are one of the latest developments of radar 

rainfall measurements with very high spatial-temporal resolution (e.g., 30 metres and 30 

seconds) and is suitable for small to medium, built-up areas. The advances of APARs lies in 

not only their ability of much-refined precipitation distributions, but their potential to be a real-

time driver for probabilistic flood forecasting and early warning systems. In this case, the data 

of rainfall on 15 April 2019 in Guangzhou, China are accumulated with the resolution of 5 

minutes/60 metres and the SPER toolbox are used to detect the rainfall area which is defined 

within a closed boundary and the rainfall centre for each area.  

The top left panel of Figure 7.6 presents the rainfall at 00:00 which is the start of radar 

measurement and red dots mark the rainfall centres (i.e., the core defined in Figure 7.4). Then 

the outer boundary of these rainfall centres is detected in order to demonstrate how the rainfall 

is centralised over the study area. The rest figures of Figure 7.6 show the changes of the 

scattered area of rainfall centres over space where the scattered area of rainfall in the first three 

hours shrinks and moves southward, then the rainfall decreases in the south however the north 

region starts to rain and the scattered area of rainfall centres is increased in the following three 

hours. From 06:00 to 09:00 the scattered area moves eastward and reduces after an increase 

around 08:00. There is no rainfall in the next several hours and rainfall starts from 13:30 and 

the scattered area is northwest-orientated and located in the East region. Then rainfall moves 

to the southwest and the scattered area shrinks during 15:00 and 18:00. In the following three 

hours, the scattered area keeps relative still after the rainfall centres move north. In the same 
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regions, the scattered area of rainfall in the last three hours is finally centralised in the east (i.e., 

0~1000 and 500~2000). 

 

Figure 7.6 The changes of the scattered area of rainfall centres in 24 hours. 

Figure 7.7 focuses on the largest rainfall area and presents its characteristics such as the areal 

average rainfall, the rainfall at its centre and the orientation, and the moving track. It can be 

observed that the areal rainfall in the early nine hours is generally lower than the last nine hours 

but the highest rainfall in the rainfall centre is in 06:00-07:00 when the areal rainfall is not very 

high. As for the area orientation, the majority shows east-west orientated or northwest-by-west 

or northeast-by-east, i.e., 𝜔 is near ±90o, and the north-south orientation is rare in the 24 hours. 

Besides, Figure 7.7b shows the moving track of the largest rainfall area clearly and colour 

indicates the time, which can be specified as: southeast → northwest → east → southwest → 

east → north. 
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(a) 

 
(b) 

Figure 7.7 Characteristics of the largest rainfall area (a) and its moving track (b) in 24 hours. 
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7.4 The front-end application for training a convolution neural 

network  

The new integrated classification capacity of the SPER toolbox makes it possible to 

automatically produce labelled training sets from tens of thousands of large-scale 

environmental images for deep-learning applications in feature recognition and forecasting. In 

this process, the attributes such as those spatial features (location, size and orientation) can be 

quickly identified to pre-categorise the data or images into different labels/classes. To 

demonstrate this, an Alexnet model (Alom et al., 2018) of convolution neural network (CNN) 

is built to demonstrate the process of auto-identifying the daily rainfall patterns in GB, using 

the training sets auto-labelled by the SPER toolbox. There are four labels used in this test, i.e., 

no rainfall (L0), concentric pattern (L1), elongated pattern (L2) and compound pattern (L3), as 

shown in Figure 7.8a. 

 
(a) 



7.4 The front-end application for training a convolution neural network 197 

 

 

 
(b) 

Figure 7.8 Four labels corresponding to the daily rainfall patterns: no rainfall (L0), concentric pattern (L1) 

where its sp is near 1.0, elongated pattern (L2) and compound pattern (L3) which has both concentric and 

elongated types (a); and the training and validation loss (blue and black lines) and validation accuracy (orange 

lines) of CNN (b). 

To address the issue of the overhead demand for computation (e.g., more than 40 thousand 

daily rainfall images), Alexnet (which is a type of CNNs) was constructed for training because 

it reduces the overfitting and allows for multi-GPU training which reduces the training time 

(Krizhevsky et al., 2012). There are eight layers in the Alexnet model, with the first five being 

convolutional layers having the kernel sizes of 11×11, 5×5 and 3×3 and the last three fully 

connected layers. The structure is designed as: the first convolutional layer (11×11) followed 

by an overlapping max pooling layer is connected to the second convolutional layer (5×5) 

which is also followed by one overlapping max pooling layer; then the rest three convolutional 

layers (3×3) are connected directly and the end links to one overlapping max pooling layer; 

and the final link is to the last three fully connected layers. ReLU (Pedamonti, 2018), a non-

linear activation function, is applied after all the convolution and fully connected layers to get 

activation values corresponding to neurons. To apply the Alexnet model, firstly all images were 

converted to the acceptable size which is 227-by-227-by-3 where the last dimension size 3 

indicates the three colour channels (e.g., R, G, B). Then the last three layers were modified to 

specify 4 classes for classification and set a faster learning rate for these newly modified layers 

and a slower learning rate for the transferred layers in order to obtain an effective and better 

transfer learning. Finally, 1166 daily rainfall images are randomly selected from all images 

while the rest are used for training the Alexnet model.  
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During the training phase, the Alexnet of CNN model learns the training sets and selects 30% 

for self-validation randomly and the model validates the network every 3 iterations. The testing 

sets, i.e., 1166 images, are applied for predicting their classifications. The track of training and 

validation results are shown in Figure 7.8b where the training loss and the validation accuracy 

vary dramatically during the first epoch with 680 iterations then gradually converge to 0.17 

and 92.5%. The toolbox has been shown to reach a test accuracy of 93.4% in classification, 

i.e., with 1089 out of 1166 new rainfall images having been classified correctly. However, the 

inherent complexities of the environmental data cause complicated patterns as well. Further 

work is recommended to make the toolbox more robust to process climate projection data at 

various, often low resolutions. A downscaling or down-sampling method may need to be 

integrated. Certainly, optimising the CNN algorithm should be carried out for recognising more 

complex patterns other than the simple example shown in this chapter.    

7.5 Summary and remarks 

This chapter discusses the development of a spatial pattern extraction and recognition (SPER) 

toolbox for automatic extracting and classifying extreme hydroclimatic patterns by their spatial 

features i.e., location, size, orientation and shape, and hydroclimatic features if the input is grid-

based datasets. The main aims of designing the toolbox are 1) to develop a stable algorithm for 

automatically identifying and classifying the spatial features that are linked to hydroclimatic 

extremes; 2) to be used as a frontend that supports AI-based training in tracking and forecasting 

extremes; and 3) to support short-term nowcasting of extreme rainfall. 

Three example application cases are given in which the implementation details are discussed. 

The first application shows that with this toolbox, spatial characteristics of river catchments 

can be easily quantified and compiled, which can support any similar catchment-based 

analysis; the second application shows that the toolbox can help classify the variation patterns 

of extreme rainfall and top 3 dominating rainfall patterns in England, Wales and Scotland and 

how they change over the last century are detected; the third application presents the track of 

rainfall area and its spatial variation in 24 hours in Guangdong, China. Its potential application 
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and its link to deep/machine learning are also presented where the toolbox was used for pre-

catalogued the hydroclimatic patterns from the dataset into several different labels which are 

used for training a supervised artificial neural network (e.g., convolution neural network is used 

in this study). 

The source code of the SPER toolbox subject to a GPL V3 licence is available at GitHub 

(https://github.com/wanghan924/SPER-toolbox). Use/fork of the toolbox is subject to proper 

acknowledgement as stated on the Webpage of the toolbox.

https://github.com/wanghan924/SPER-toolbox
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Chapter 8 Decision-making under Uncertainty in 

the Context of Flood Forecasting and Early 

Warning 

From the previous chapters which focus on the quantitative modelling of both univariate and 

multivariate hydroclimatic extremes under climate change, it is clear that not only data and 

models, but also the nature of decision-makers can increase the complexity of the process of 

decision making in managing the risks arising from hydroclimatic extremes. To improve the 

understanding of decision-making under uncertainty in the context of flood forecasting and 

early warning and to address the research question Q7, this chapter demonstrates a study on 

modelling the decision making process using the response data from a real-life experiment8 

where 168 professionals specialised in water management were confronted with a series of 

binary decision problems based on probabilistic flood forecasts in different contexts. Two 

existing decision modelling models from unrelated disciplines, namely the Cumulative 

Prospect Theory (CPT) from the field of psychology, and the Decision Trees (DT) from the 

discipline of Machine Learning, are refined and modified to simulate the process of decision 

making. The resultant models are further tested on another decision-making game proposed by 

Ramos et al. (2013). 

 

8 It should be noted that this experiment was carried out and the two decision making models were built in the 

year of 2016-2017 before I started my Ph.D. research. 
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8.1 Introduction 

The process of translating flood hazard warnings into effective decisions usually follows a 

pathway that includes data collection, modelling, data assimilation, and decision-making (Jha 

et al., 2012). Each step has associated uncertainties that not only are difficult to quantify, but 

often comes with interacted effects; therefore, the decision-making process carried out at the 

end is complex (Arabameri et al., 2019; Beven and Alcock, 2012). During the last few decades, 

many efforts have been focused on improving meteorological and hydrologic prediction 

models and methods to quantify the uncertainty, e.g., Her et al. (2019), Qi et al. (2016), Meresa 

and Romanowicz (2017), and how to reduce it (Clark et al., 2016; Haghnegahdar et al., 2017; 

Lehner et al., 2019; Parkes and Demeritt, 2016). However, the risk associated with 

environmental hazards such as floods not only depends on the uncertainties coming from the 

data and the modelling exercise itself, but also the behaviour of decision-makers who make use 

of them, as well as the decision-making conditions and cultures, and the communication 

between modellers and decision-makers who take responsibilities (IRDR, 2013; ISCU, 2008). 

Understanding human-driven decision-making processes in managing risks arising from 

extreme events such as floods are very crucial in the effort of loss reduction and mitigating the 

damage to properties.  

There have been two mainly used approaches when it comes to modelling the decision-making 

process. The first approach aims to integrate human behaviour dynamics into the decision-

making process. For example, Aerts et al. (2018) proposed to integrate the societal behaviour 

and behavioural adaptation dynamics into flood risk quantifications, which leads to a more 

accurate characterization of flood risks. Bodoque et al. (2019) integrated risk communication 

into flood risk management which shows an increase in flood risk perception and awareness. 

Chan and Song (2010) incorporated the feedback and reward mechanisms into the decision-

making process to improve the understanding of the decision support system. The second 

approach aims to understand the human-driven factors that affect the decision-making process. 

One of the most influential works in this field is the Cumulative Prospect Theory (CPT), 

proposed in the seminal paper of Tversky and Kahneman (1992), which provided the 
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foundation to understand decision making under uncertainty when decisions involving 

monetary losses and gains. This paper, referred hereafter as KT92, is a modification to their 

original Prospect Theory (Kahneman and Tversky, 1979), which shows that, in general, people: 

1) have different risk attitudes (generally classified as risk-averse, risk-neutral and risk-

seeking) depending on how the decision-making problems are formulated; 2) care more about 

potential losses than potential gains, and 3) tend to the over-weigh extreme but improbable 

events and under-weigh common events. 

From the perspective of water resources management, Alfonso and Price (2012) applied the 

concept of Value of Information to indirectly incorporate the characteristics of the decision-

makers and analyse its effects for the design of water stage monitoring networks and further 

supporting the use of probabilistic flood maps (Alfonso et al., 2016). Many factors driven by 

human behaviour have also been explored in the context of flood risk management, such as 

risk perception (Buchecker et al., 2013; Quinn et al., 2019), risk presentation e.g. the effect of 

including information about uncertainty (Joslyn and LeClerc, 2012) and the ways to 

communicating uncertain information (Mulder et al., 2020). In particular, Ramos et al. (2013) 

analysed how the addition of flood forecast uncertainty information influenced decision-

making in the context of operational flood forecasting, early warning, and control; they 

designed a decision-making game called “Do probabilistic forecasts lead to better decisions?” 

and concluded that in the absence of uncertainty information, decision-makers are compelled 

towards a more risk-averse attitude. Several instances of this game are used in this chapter. 

Yet there is another approach to explore decision-making, which is through the use of data-

driven techniques such as Machine Learning. For example, Decision Trees (DT; Mitchell, 

1997; Quinlan, 1990) are widely applied in flood early warning (Costache, 2019; Tehrany et 

al., 2013), water quality in rivers (Atkins et al., 2007; Saghebian et al., 2014; Vélez et al., 2014), 

landslides (Hong et al., 2018; Tsangaratos and Ilia, 2016) and hydraulic models (Pappenberger 

et al., 2006). 

Although the aforementioned studies, as well as other related researches (Coughlan de Perez 

et al., 2016; Todini, 2017), have contributed to the understanding of the decision-making under 
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uncertainty, several aspects still need to be understood, particularly in the context of flood 

forecasting early warning (FFEW): 1) to understand for which ranges of the probability of flood 

occurrence, the changes of risk attitudes lead to a change in a decision related to flood 

evacuation; 2) to understand to what extent the a-priori knowledge of the consequences of 

decisions influences final decisions and if the formulation of the decision-making problem has 

some effect; 3) to understand to what extent the decision models can be built to predict 

decisions based on observations such as probabilistic forecasts of flood events, different 

consequences of decisions and different natures of human. 

To address these purposes, in this chapter, two decision models (CPT and DT models) are 

reconstructed and improved using the dataset collected from a survey-based experiment where 

several sets of one-time binary decision-making problems were formulated. The problems were 

designed in a way that they resemble those typically faced by a decision-maker when making 

flood risk management related decisions, e.g., probability of flood forecast and monetary (and 

non-monetary) consequences of the decisions, plus other background information. A group of 

186 participants were involved to solve these decision problems before the CPT model was 

built on the outcome of the experiment, using the CPT concepts established by KT92. In 

addition, another DT model was developed using the same data. Both models were used to 

analyse how the decisions of the majority are affected by the probabilities and costs of the 

occurrences of extreme events (in this case, flood). The two models, though totally different in 

nature, were further used to analyse different risk attitudes (i.e., risk aversion, risk neutrality 

and risk seeking). Compared with the previous CPT and DT models, the new CPT model is 

greatly improved on estimating the parameters and the new DT model works more effective by 

refining the attributes. The usability of both new models was validated by feeding them with 

another dataset which was collected during a period of 6 years and obtained during the 

execution of the decision-making experiment presented in Ramos et al. (2013) where a 

different group of 145 participants were involved. The results of the model on 

predicting/simulating decisions in the context of FFEW were discussed and compared with the 

traditional cost/loss model widely applied in the FFEW system. 
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The remainder of this chapter is organised as follows: first, a brief introduction to decision-

making experiment design and implementation, two old CPT and DT models are provided in 

this section. It should be noted that this work (designing and executing the experiment, building 

CPT and DT models) has been done before my Ph.D. research. Then the method of 

reconstructing CPT and DT models is presented in Section 8.2. Section 8.3 shows the results 

and performance of the two models. Next, the new models are tested and further applied with 

the data collected by the experiment of Ramos et al. (2013) presented in Section 8.4. The last 

Section 8.5 is dedicated to conclusions. 

8.1.1 Experiment design and implement 

The experiment was designed and processed to collect the decisions for building and training 

the decision models and it has been carried out during my MSc study where the data are further 

used in this chapter. This section gives a brief introduction of the setup and process of the 

experiment and more details can be checked in my MSc thesis (Wang, 2017). 

The experimental setup simulates the working principles of a flood forecasting, warning and 

response system (FFWRS). The decision-making problem is framed as a decision-maker who 

is responsible for managing a flood-prone region, populated by a known number of residents, 

with estimated flood-related losses. The region has a flood warning system in place, which 

provides the probability of flood occurrence 𝑝. The decision-maker is then confronted with a 

situation of deciding between issuing a warning to the public or not. Either decision has 

associated consequences, depending on whether the flood actually occurs. If the decision-

maker decides to issue a warning, the decision will a fixed associated cost (𝐶𝑓), irrespective of 

whether the predicted flood occurs or not. If a flood does happen, the potential unavoidable 

flood damage (𝐿𝑢) is added to the consequences of the decision, and therefore the associated 

consequence in this situation is 𝐶11  =  𝐶𝑓 + 𝐿𝑢. However, if the flood does not happen, the 

related intangible cost (𝑓) due to disturbances to the public is added instead, and therefore the 

associated consequences are 𝐶12 = 𝐶𝑓  + 𝑓. The opposite case is: if the decision-maker decides 

not to issue a warning and flood occurs, the consequence of the decision is the total flood 
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damage cost, which is the sum of the avoidable flood damage ( 𝐿𝑎 ) and the potential 

unavoidable flood damage (𝐿𝑢), so 𝐶21 = 𝐿𝑎  + 𝐿𝑢. However, if the flood does not occur, the 

consequences can be assumed as 𝐶22 = 0. Therefore, the basic decision-making problem is 

formulated as follows:  

“Flood is expected in your area with a probability of occurrence 𝑝. You have to decide among 

two prospects: 

𝑃𝑦: If you decide to issue a warning (𝐷𝑦), there are two situations: flood occurs, you 

must pay 𝐶11  =  𝐶𝑓 + 𝐿𝑢  tokens; flood doesn’t occur, you must pay 𝐶12 = 𝐶𝑓  + 𝑓 

tokens. 

𝑃𝑛: If you decide not to issue a warning (𝐷𝑛), there are two situations: flood occurs, you 

have to pay 𝐶21 = 𝐿𝑎  + 𝐿𝑢 tokens; flood doesn’t occur, you pay nothing, 𝐶22 = 0.ˮ 

For the matter of convenience, in the remainder of the study 𝑃𝑦 is written as (𝐶11, 𝑝, 𝐶12, 1 −

𝑝) and 𝑃𝑛 as (𝐶21, 𝑝, 𝐶22, 1 − 𝑝).  

The experiment was carried out two rounds (indicated as “Ex1” and “Ex2”) with different 

values of 𝑝 and 𝐶  are then executed, and the corresponding prospect choices made by the 

participants are recorded. The data collected in Ex1 are used to build decision models, whereas 

the data collected in Ex2 are used to test/validate the accuracy of both model simulations. In 

order to facilitate the quantification analysis, the decision-making problems were designed in 

such a way that the participants tend to perceive the two prospects as equally desirable, using 

the concept of certainty equivalent (CE) proposed in Tversky and Kahneman (1992) and this 

procedure is exemplified as follows: suppose 𝑝 =10% in this decision-making problem. To get 

the 𝐶𝐸 of 𝑃𝑦 , the consequence values 𝐶11 and 𝐶12 related to the decision “issue a warning” 

(𝐷𝑦 ) are fixed, i.e., fixing 𝑃𝑦  as  (−1700, 10%,−900, 90%) . As mentioned above, 𝐶22 

associated with the decision “do not issue a warning” (𝐷𝑛) is zero, so only the values of 𝐶21 

can take any value in the range of ±25% of the expected value of 𝑃𝑦 , i.e., 10% × 1700 +

90% × 900 = 980, which is recommended in KT92. Therefore, for a 10% probability of flood 
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occurrence, the value C21 will make the prospect 𝑃𝑛 equally desirable than the prospect 𝑃𝑦 is 

in the range: 

𝐶21 = (
980 × (1 − 25%)

10%
,
980 × (1 + 25%)

10%
) = (7350,12250)  

Seven equally distanced values of 𝐶21 within this range were selected for setting the decision-

making problems, i.e.,7350, 8050, 8750, 9450, 10500, 11200 and 12250. The same exercise is 

executed to obtain the range of values for 𝐶11 and 𝐶12 by fixing the prospect 𝑃𝑛, while keeping 

the E(𝑃𝑦) within the range of ±25% of 𝐸(𝑃𝑛) for each flood probability considered. This results 

in a range (1507.5, 2032.5) for 𝐶11 and (707.5, 1232.5) for 𝐶12 for the probability of a flood of 

10%.  

Following this, 126 different decision-making problems were then generated for Ex1 and 36 

for Ex2 and solved by 168 professionals specialising in water management. In order to check 

consistency in the answers, every problem was solved by at least 5 different participants.  

8.1.2 Two decision models 

During my MSc study, two decision models were built based on decision theory (cumulative 

prospect theory, CPT) and machine learning technique (decision trees, DT) respectively and 

more details can be checked in Wang (2017). This section gives a brief introduction of the two 

models. 

• CPT model 

CPT model is built based on a widely used cumulative prospect theory proposed by Tversky 

and Kahneman (1992) and contains value functions and weighted probability functions to 

display the characteristics of decision-makers. The value function has the following form: 

𝑣(𝑥) = {
𝑥𝛼               for gains 𝑥 > 0

−𝜆(−𝑥)𝛽  for losses 𝑥 < 0
 

          

(8.1) 
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where 𝑥  is a potential consequence of the choice; 𝛼 , 𝛽  are parameters that display 

characteristics of decision-makers (i.e., risk seeking, risk neutrality or risk aversion). The 

values of these parameters are 𝛼 < 1 and 𝛽 < 1, which means that risk attitudes are different if 

the problem is formulated in terms of gains or losses. These parameters make the 𝑣(𝑥) function 

S-shaped, showing a diminishing sensitivity to the risk (the degree of risk aversion or risk 

seeking decreases as the potential value of losses or gains increases); 𝜆 denotes risk aversion 

to losses, and 𝜆 > 1 if the degree of risk attitude is more sensitive to losses than to gains.  

The weighted probabilities w(p) of gains (positive) and losses (negative) are: 

𝑤+(𝑝) =
𝑝𝛾

(𝑝𝛾 + (1 − 𝑝)𝛾)1 𝛾⁄
 (8.2) 

𝑤−(𝑝) =
𝑝𝛿

(𝑝𝛿 + (1 − 𝑝)𝛿)1 𝛿⁄
 

(8.3) 

where 𝑝 is the probability of either gaining or losing, and 𝛾 and 𝛿 are parameters that define 

the shape of the function curves. If decision-makers show an inclination to underweight large 

probabilities and overweigh lower probabilities, then both 𝛾  (for gains) and 𝛿  (for losses) 

should be less than 1, making the function take a shape of an inverted “S”. The difference 

between the weighted probability 𝑤(𝑝) and the actual probability 𝑝 can be used to define risk 

attitude. The empirical case in CPT shows that: 1) people tend to behave risk-averse when the 

probability of losing is high (𝑤(𝑝) > 𝑝); 2) if 𝑤(𝑝) = 𝑝, people tend to behave risk-neutral; 

3) if the probability of losing is medium or low (𝑤(𝑝) < 𝑝), people tend to behave risk-seeking. 

However, opposite risk attitudes are observed when gains are involved. This is called the 

fourfold pattern of risk attitudes. These parameters in value and weighted probability function 

are estimated by an iteration algorithm described in Wang (2017). 

Another important concept is the Certainty Equivalence (𝐶𝐸), defined as the utility U that a 

decision-maker would have to receive to be different between that U and the expected utility 

E(U) of an uncertain prospect. CE is usually not equal to the utility value obtained using 

expected utility theory (e.g., summations of products between probabilities and consequences) 

and 𝐶𝐸 affects the probabilities by weights that can be obtained experimentally and shown in 

Eq. (8.4) which is the final step of the CPT model. 
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𝐶𝐸 =∑𝑤(𝑝) × 𝑣(𝑥) (8.4) 

𝐶𝐸 simulated by the CPT model is further used to compare among different consequences to 

draw the decision (issue a warning or not) which is the output of the model. 

The CPT is chosen to help understand and interpret decision-making problems in the context 

of flood forecasting and early warning, which highlights the relevance of changing risk 

attitudes and the need of analysing the difference between the gamble decision and the decision 

under uncertain flood situations.  

• DT model 

Decision Tree (DT) is one of the most used applications in machine learning to classify 

discrete-valued functions (Mitchell, 1997). A DT consists of a collection of nodes arranged by 

levels and connected by branches; for a given input that requires to be classified (or instance), 

a conditional statement is evaluated at the node in the first level; then, depending on the 

evaluation outcome, a particular path (branch) to another node in the next level is taken, where 

a new conditional situation is evaluated. This process is repeated until the last level of nodes is 

reached, which are the final targets or outputs. Once a new set of instances enters the tree, the 

conditionals are applied and the predicted output for such set is found. 

The conditionals, as well as the structure of the nodes and branches, are built using datasets of 

inputs with known outputs (targets); for this, a number of algorithms have been proposed, 

including ID3, C4.5 and SLIQ. In this DT model, the ID3 algorithm (Grzymala-Busse, 1993; 

Quinlan, 1986) is used as a basic, top-down, greedy search approach to constructing the 

decision trees, due to its capability of handling non-numeric attributes. A detailed explanation 

can be found in Quinlan (1986). The performance of DT is generally evaluated by Cross-

Validation (CV), and different methods have been developed to optimise this and other types 

of classifiers by minimizing the CV error. This case employed the 𝑘-fold cross-validation 

method where the original dataset is randomly divided into 𝑘 subsets of equal size of which a 

subset is selected randomly to be the validation set, while the remaining 𝑘-1 subsets are used 

as a training set. The training sets are used to build the trees, while the validation set is used to 
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test the tree. The differences between the results of the two sets are used to estimate the error. 

This process is repeated 𝑘 times with each subset being the validation set and the remaining 𝑘-

1 subsets being the training sets. The optimal size of the tree is that with the minimal CV error.  

The DT model built for this case has four attributes (probability of flood occurrence, potential 

damage of flood, the cost of issuing a warning, the ratio of damage over cost) and the target is 

the decision on whether issue a warning or not. 

8.2 Reconstruction and improvement of two decision models 

8.2.1 Improving the Cumulative Prospect Theory (CPT) model 

As the iteration algorithm applied in the CPT model (see Section 8.1.2) is less effective to 

estimate the parameters, the new CPT model has been upgraded by employing a nonlinear least 

squares method and the procedure to re-build the new CPT model based on Tversky and 

Kahneman (1992) (short for “KT92”) is shown in Figure 8.1. 
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Figure 8.1 Procedure to build and apply the new CPT model based on Cumulative Prospect Theory (CPT). 

Step 1. Data pre-processing 

The inputs of step 1 are collected from Ex1, which include the information about each prospect 

𝑃𝑦 and 𝑃𝑛 (i.e., 𝑝 and 𝑥 = 𝐶11, 𝐶12, 𝐶21, 𝐶22), as well as the decision-makers’ decisions 𝐷𝑦 or 
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𝐷𝑛. Then following KT92, the observed certainty equivalent is calculated to train the new CPT 

model shown in step 2. The calculation is further described below: 

To obtain the observed certainty equivalent 𝐶𝐸 of 𝑃𝑦, participants were observed to change the 

decision from 𝐷𝑛 to 𝐷𝑦 when 𝐶21 changed from 𝑣1 to 𝑣2, then the value of 𝐶21 for calculating 

𝐶𝐸 can be estimated as the average of 𝑣1 and 𝑣2, which is  𝑣(𝐶21)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦 = (𝑣1 + 𝑣2)/2. 

As 𝐶22 is zero, the observed certainty equivalent of 𝑃𝑦 can be calculated as the expected value 

of 𝑃𝑛  when participants change decisions, which is 𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦 = −𝑣(𝐶21)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐷𝑦 × 𝑝 +

𝑣(𝐶22)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦 × (1 − 𝑝). 

The following decision problem, which was used in the experiment, is now used to show how 

to calculate the matrix C: the probability of flood occurrence is expected to be 10%. Decision-

makers who issue a warning (𝐷𝑦) are asked to pay 𝐶11 = 1700 if a flood occurs or 𝐶12 = 900 

if a flood does not occur; and those who do not issue a warning (𝐷𝑛) would pay 𝐶21 = 10500 

if it occurs or nothing (𝐶22 = 0) if otherwise.  

Firstly, in order to find 𝑣(𝑥)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦

, seven values of 𝐶21, in the range (7350, 12250), are used 

to construct decision-making problems, which are solved by different participants. It is 

observed that the majority of participants changed their choice from 𝐷𝑛 to 𝐷𝑦 when 𝐶21 went 

up from 7350 to 8050. The average between the lowest accepted value (8050) for choosing 𝐷𝑦 

and the highest rejected value (7350) for not choosing 𝐷𝑦  is then 7700 tokens. Thus, 

𝑣(𝐶21)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦 = 7700, and  𝑣(𝐶22)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐷𝑦 = 0.  

Secondly, once 𝑣(𝑥)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦

 is known, the observed Certainty Equivalent of 𝐷𝑦  can be 

calculated using Eq. (8.4). 

 𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦 = ∑𝑣(𝑥) × 𝑝 = −𝑣(𝐶21)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐷𝑦 × 𝑝 + 𝑣(𝐶22)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦 × (1 − 𝑝) 

= −7700 × 0.1 + 0 × (1 − 0.1) = −770 
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The negative value refers to the problem formulated as losses. The fact that 𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑦

 is lower 

than the corresponding expected value, i.e., 𝐸(𝐷𝑦) = −1700 × 0.1 + (−900) × (1 − 0.1) =

−980, is an indication of a deviation of decision-maker from the rational choice. According to 

KT92, this difference can reveal the decision-makers’ attitude towards risk.  

Similarly, 𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝐷𝑛  is calculated, but by considering 𝐶21  and 𝐶22  fixed to 10500 and 0 

respectively, and considering the range (1507.5, 2032.5) for 𝐶11 and the range (707.5, 1232.5) 

for 𝐶12. 

Step 2. Building CPT model 

The objective of this step is to calculate the modelled values of CE by estimating the three 

parameters 𝜆, 𝛽 and 𝛿. The step employs the nonlinear least squares method incorporated with 

the Levenberg-Marquardt (LM) algorithm by minimizing the sum of the squares of the errors 

(SSE) between the modelled CEs and observed CEs expressed in Eq. (8.5). It starts with an 

initial guess of parameters that are the same as the original parameters reported in Tversky and 

Kahneman (1992). Then LM iteration is applied to get the optimal solutions shown in step 2 of 

Figure 8.1. Both 𝐶𝐸𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 for the two prospects 𝑃𝑦 and 𝑃𝑛 are calculated individually and 

respectively.  

𝑆𝑆𝐸 =∑(𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐶𝐸𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑)
2

𝑁

𝑖=1

 (8.5) 

where 𝑁 is the number of experiment observations. 

Step 3. Output of the CPT model 

The objective of this step is to apply the model to obtain the modelled decision outcome (either 

modelled 𝐷𝑦  or 𝐷𝑛 ) of a given decision problem in the context of flood early warning, 

formulated as prospects 𝑃𝑦  and 𝑃𝑛 . The modelled decision-making outcome is triggered by 

comparing 𝐶𝐸 of both prospects, depicted at the bottom of Figure 8.1. The modelled decision 

outcome is obtained as follows: if 𝐶𝐸𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
𝐷𝑦 > 𝐶𝐸𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

𝐷𝑛 , then the decision outcome is 𝐷𝑦 

(issue alarm); otherwise, it is 𝐷𝑛 (do not issue alarm). 
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8.2.2 Reconstructing the Decision Tree (DT) model 

As the attributes used in the previous DT model (see Section 8.1.2) are four which causes 

complications in illustrating the results, in the new model, I reduced the number of attributes 

to two, i.e., the probability of flood occurrence 𝑝 and cost/loss ratio 𝑟.  

Different from the damage/cost ratio which is one of the attributes used in the previous DT 

model, the cost/loss ratio applied in the new DT model is calculated based on the reference 

given by Murphy (1977) in a more accurate way by considering all the combination of 

consequences: 

𝑟 = 1 −
(𝐿𝑎  + 𝐿𝑢) − (𝐶𝑓  + 𝐿𝑢)

(𝐿𝑎  + 𝐿𝑢) + (𝐶𝑓  + 𝑓) − (𝐶𝑓  + 𝐿𝑢)
=  1 −

𝐿𝑎 − 𝐶𝑓

𝐿𝑎 +  𝑓
=
𝐶𝑓  + 𝑓

𝐿𝑎 + 𝑓
 (8.6) 

The same experimental data are used to build and train the DT model and the ID3 algorithm is 

adopted, with data of prospects 𝑃𝑦 and 𝑃𝑛 as attributes, and the observed decisions. A sample 

of instances, specifying attributes and targets, is shown in Table 8.1 where only 𝑝 and 𝑟 are the 

attributes in the new DT model. 

Table 8.1 Sample of instances for DT model building. 

Instance 

Attributes Target 

C 

p D C11 = Cf + 

Lu 
C12 = Cf + f 

C21 = La + 

Lu 
C22 = 0 

Cost/loss 

Ratio r 

1 1700 900 7350 0 0.14 0.1 Dn 

2 1700 900 8050 0 0.12 0.1 Dy 

3 1700 900 9450 0 0.10 0.1 Dy 

… 

 
… … … … … …  

8.2.3 Evaluation of model performance  

The last step is to evaluate the new CPT and DT models performance by using the same 

approach in Wang (2017) which is followed: the accuracy of simulation results is calculated 

by using the validation sets collected in Ex2. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑀 𝑁⁄ ) × 100% (8.7) 

where 𝑁 is the total number of observations (decisions) obtained in Ex2 and 𝑀 is the number 

of the modelled decisions which coincide with the corresponding observed decisions. The 

higher accuracy indicates a better performance.  

8.3 Results 

8.3.1 The new CPT model generation with data collected in Ex1 

Table 8.2 presents the comparison between the expected value, which can be regarded as the 

corresponding “rational choice”, and the certainty equivalent 𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  and 𝐶𝐸𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑  of 

both prospects at different probabilities, based on the observed decisions in Ex1. It can be noted 

how these values deviate from each other, which provides a mean to explain the underlying 

reason why certain decisions were made. For example, for a flood event estimated to occur 

with a probability of 1%, the actual losses for 𝐷𝑛 is 105 tokens and for 𝐷𝑦 is 908 tokens. The 

rational decision is clearly “do not issue a warning” because of its small expected loss. 

However, in the mind of the majority of participants this difference is not so pronounced, as 

𝐷𝑛 brings a loss of 159 (slightly higher than 105), whereas 𝐷𝑦 brings a loss of 250 (way lower 

than 908), although still triggering the “do not to issue a warning” decision. Participants slightly 

overestimated the consequences of selecting 𝐷𝑛 and largely underestimate the consequences 

of selecting 𝐷𝑦. Comparing the observed and modelled 𝐶𝐸, it is found that generally the new 

CPT model can capture the observed CE expect when estimating the 𝐶𝐸 of 𝑃𝑦 at extreme low 

and high probabilities (𝑝 = 1%, 5%, 95%, 99%). It can be explained as people perceive a 

lower cost for issuing alarms in unlikely flood events but a higher cost in high probability 

events. Although such large deviation will not affect the final decision driven by the 

comparison between 𝐶𝐸 of 𝑃𝑦 and 𝐶𝐸 of 𝑃𝑛, it may inspire a re-consideration on improving the 

CPT for simulating extreme decisions.  
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Table 8.2 Expected values of each prospect compared with their observed certainty equivalents. 

 Do not issue a warning Dn (-10500, 0) Issue a warning Dy (-1700, -900) 

p E(Dn) 𝐶𝐸observed 𝐶𝐸modelled E(Dy) 𝐶𝐸observed 𝐶𝐸modelled 
1% -105 -159 -104 -908 -255 -949 

5% -525 -595 -528 -940 -595 -981 

10% -1050 -1130 -1065 -980 -770 -1012 

25% -2625 -2425 -2693 -1100 -1012.5 -1086 

50% -5250 -5200 -5430 -1300 -1110 -1200 

75% -7875 -8175 -8167 -1500 -1387.5 -1337 

90% -9450 -10820 -9796 -1620 -1480 -1460 

95% -9975 -11210 -10332 -1660 -1995 -1522 

99% -10325 -11392 -10757 -1692 -2079 -1597 

Note: two outcomes of each prospect are given in two columns with expected values at left and observed certainty equivalents 

at right; the probability is given in the first column. For example, the value of -159 in the second column upper right corner is 

the certainty equivalent of the prospect (-10500, .01; 0, .99). 

The risk attitudes of the majority of participants can be analysed by comparing the flood 

forecast probabilities p and the weighted (perceived) probabilities w(p) which is calculated by 

Eq. (8.3) with 𝛿 = 1.01 for 𝐷𝑛 and 𝛿 = 0.73 for 𝐷𝑦 estimated by the nonlinear least square 

method:  

𝑤−(𝑝)𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
𝐷𝑛 =

𝑝1.01

(𝑝1.01 + (1 − 𝑝)1.01)1 1.01⁄
 

𝑤−(𝑝)𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
𝐷𝑦 =

𝑝0.73

(𝑝0.73 + (1 − 𝑝)0.73)1 0.73⁄

 

From Figure 8.2, several findings on the risk attitudes can be reported:  

First, the observed weighting function of the prospect 𝑃𝑛 (−10500, 𝑝, 0, 1 − 𝑝)  linearly 

coincides with the reference line, exhibiting a risk neutral attitude.  

Second, for prospect 𝑃𝑦 (−1700, 𝑝, −900, 1 − 𝑝), a tendency for risk aversion is observed 

when p < 25%. Then, a clear risk attitude shift is observed in the range 25% < p < 50%, from 

risk aversion to risk seeking. In addition, for p > 50%, people tend to over-weigh the losses 

caused by the potential flood damage but under-weigh the cost of issuing a warning (even false 

alarming included).  
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Third, for 𝑝 < 25%, people show risk aversion to both decisions, but the attitude of more risk 

aversion leads to the choice of not to issue a warning because of more overestimation on the 

cost of issuing a warning.  

 

Figure 8.2 Flood forecast probability versus the modelled and observed weighted probabilities for prospects Py 

and Pn. 

Table 8.3 presents the estimated values of the parameters 𝛿 , 𝛽  and 𝜆 of the two prospects 

comparing with the parameters recommended in KT92. It can be seen that the value of 𝛿 for 

𝑃𝑛  is slightly higher than 1.0, which breaks KT92’s rule of diminished sensitivity with the 

increase of probability (𝛿 should less than 1.0). This means that although generally, people are 

risk neutral but tend to be more risk-averse with the increase of flood forecast probability. 

Besides, the higher the probability of flood occurrence, the larger the flood damage perception 

(see Table 8.2). However, regarding 𝑃𝑦, people show a diminishing risk sensitivity (𝛿 < 1) as 

the probability of flood occurrence increases. It should be noted that although the CPT model 

cannot perfectly capture w(p)observed of 𝑃𝑛, it correctly reflects the relationship between 𝐷𝑛 and 

𝐷𝑦, i.e., the relative location of observations in Figure 8.2 at different probabilities. This gives 

important insights for applying the model in future research. It also shows the limitation of the 

new CPT model when estimating risk attitudes because the original parameters defining the 
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shape of function curves obtained by KT92 are based on analysing the numerous simpler 

monetary gamble problems, not involving a serious societal concern which may potentially 

affect the decision-makers’ attitudes to risk.  

Table 8.3 Parameters of new CPT models for losses (where KT92 refers to the original parameters reported in 

Tversky and Kahneman (1992)). 

Parameter 𝛿 𝛽 𝜆 

KT92 0.69 0.88 2.25 

Do not issue a warning 

(Dn) 
1.01 0.91 2.38 

Issue a warning (Dy) 0.73 0.88 2.35 

8.3.2 The new DT model generation with data collected in Ex1 

The DT model is generated using the data of Ex1 arranged as shown in Table 8.1. Several trees 

were generated, optimised, applied and analysed, which are presented here due to the space 

limitations. However, an optimal tree of particular interest is shown (see Figure 8.3), which 

allows for analysing the relation between the potential losses and probabilities of a flood. This 

tree was built using two attributes, namely the probability of flood occurrence p, and the 

cost/loss ratio estimated with Eq. (8.7). 

The results of the new DT model reveal three main findings: 1) when the probability of flood 

is less than 7.5%, almost all people decide not to issue a warning (𝐷𝑛); 2) when the probability 

of flood is between 7.5% and 17.5%, the majority of people changed their decision and took 

“issue a warning” (𝐷𝑦); 3) for flood probabilities higher than 17.5%, the decision seems to 

depend on the value of 𝑟: if 𝑟 <  0.81, people tend to decide to issue a warning (𝐷𝑦), and 

decide not to do it (𝐷𝑛) otherwise. 
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Figure 8.3 Optimal decision tree, where Probability refers to the probability of flood occurrence p, and r refers 

to the cost/loss ratio. 

The new DT model exhibits a more complex relationship between the cost/loss ratio and the 

probability of flood occurrence than the cost/loss ratio models that Thompson (1952) and 

Murphy (1976) suggested. A heavy preference for 𝐷𝑦 when r < 0.81 and, simultaneously, when 

the p > 17.5% is observed. These values are boundaries in which decisions change. The 

existence of these limits could be explained from the risk attitudes, which generally change 

with the change of probability; also, people making decisions may not base them on monetary 

values only, but rather consider other aspects such as the disadvantages of generating false 

alarms, like the effect of disturbing the daily activities of residents living in the flood-prone 

area. 

8.3.3 Performance of the new CPT and DT models tested by data collected 

in Ex2 

Ex 2 was executed to test the two models. The following numeric example is given to show 

how the new CPT model is applied to simulate the decision made by a participant: 

The decision-making problem is presented as follows: “Flood is expected with 35% 

probability. If you issue a warning you must pay 3400 tokens if a flood occurs, or 2500 tokens 

Dy Dy Dn

Dn Dy

Probability < 0.175   

r < 0.095   r < 0.81   

Probability < 0.075   

  Probability >= 0.175

  r >= 0.095   r >= 0.81

  Probability >= 0.075
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if it doesn’t occur; if you don’t issue a warning you must pay 10500 tokens if a flood occurs, 

otherwise pay nothing if it doesn’t occur”.  

The first step is to calculate the weighted probability of each choice. Using 𝑝 = 35% in both 

weighting functions of 𝐷𝑦 (𝛿 =  0.73) and 𝐷𝑛 (𝛿 =  1.01), it yields: 

for 𝐷𝑦: 
𝑤1−(35%) =

35%0.73

(35%0.73+(1−35%)0.73)1 0.73⁄ = 0.364

𝑤1−(65%) =
65%0.73

(65%0.73+(1−65%)0.73)1 0.73⁄ = 0.636
 

 

for 𝐷𝑛: 
𝑤2−(35%) =

35%1.01

(35%1.01+(1−35%)1.01)1 1.01⁄ = 0.349

𝑤2−(65%) =
65%1.01

(65%1.01+(1−65%)1.01)1 1.01⁄ = 0.651
 

The second step is to obtain the value of each term for both choices using the value functions 

(Eq. (8.1)). For 𝐷𝑦:   

𝑣(𝐶11) = −𝜆(−𝑥)
𝛽 = −2.35 × 34000.88 = −3011.4, if a flood occurs. 

𝑣(𝐶12) = −𝜆(−𝑥)
𝛽 = −2.35 × 25000.88 = −2297.5, if a flood does not occur. 

And for 𝐷𝑛:     

𝑣(𝐶21) = −𝜆(−𝑥)
𝛽 = −2.38 × 105000.91 = −10860.7, if a flood occurs. 

𝑣(𝐶22) = 0 if a flood does not occur. 

Finally, the Certainty Equivalent of each choice is calculated using Eq. (8.4). 

𝐶𝐸(𝐷𝑦) = ∑(𝑤 × 𝑣) = 0.364 × −3011.4 + 0.636 × −2297.5 = −2557.4 

𝐶𝐸(𝐷𝑛) = ∑(𝑤 × 𝑣) = 0.364 × −10860.7 + 0.651 × 0 = −3953.3 

As 𝐶𝐸(𝐷𝑦)  >  𝐶𝐸(𝐷𝑛), issuing a warning (𝐷𝑦) is the CPT modelled decision. 

All decision-making problems are simulated by the new CPT model using the method 

described above. Simulations and observations (the participants' decisions in Ex2) are 

compared using Eq. (8.7) to evaluate the model performance. Figure 8.4 categorised the 



8.4 Application of new CPT and DT models 223 

 

 

decision-making problems of Ex2 into 45 groups according to their forecast probabilities and 

consequences which are translated into cost/loss ratio r. The figure presents the number of 

choosing 𝐷𝑦 of each category and the percentage is calculated by the number of choosing 𝐷𝑦 

divided by the total number of decisions, indicated by a colour scale, comparing the observed 

results with modelled results by the new CPT and DT models respectively. Results show that 

the accuracy of the new CPT model is 76%, while the new DT model is 81%. Therefore, a 

preliminary conclusion is that the DT model performs better in simulating individual decisions 

than the new CPT model, for this particular case. In addition, the benchmark cost/loss model 

gives an accuracy of 72%, which is lower than both new CPT and DT models developed in this 

study. 

 

Figure 8.4 The number of majority decisions observed and simulated by the new CPT and DT models. 

8.4 Application of new CPT and DT models 

The proposed new models can be applied to predict majority decisions in various decision-

making problems in the context of early warning flood forecasting for problems formulated in 

terms of prospects 𝑃𝑦 and 𝑃𝑛. In order to show its applicability, I used the case presented by 

Ramos et al. (2013), who analysed how the addition of probabilistic flood forecast information 

can influence decision making on flood control measures. The game consisted of managing a 
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gate, which is the inlet of a retention basin designed to protect a fictitious town. The decision 

they had to make was whether to open the gate or not. The game 9 was played in six rounds 

with different forecasted probabilities of flood and played by 145 participants. A description 

of the consequences of each decision is presented below: 

• If the participant opens the gate, the retention basin is flooded and the affected farmers 

demand compensation for flooding their land: the cost of opening the gate is 2000 

tokens; 

• If the participant decides not to open the gate and a flood occurs, the town is flooded 

and they have to pay a fine of 7000 tokens. 

This decision game can be formulated in terms of prospects 𝑃𝑦  and 𝑃𝑛 , as 

follows : 𝑃𝑦: (−2000, 𝑝, 0, 1 − 𝑝) , and 𝑃𝑛: (−7000, 𝑝, 0,1 − 𝑝),  with the following 

considerations: 1) the six probabilities of flood occurrence; 2) the cost of opening the gate is 

considered related to that of issuing a warning; 3) the penalty for not opening the gate when a 

flood occurs is considered related to the flood damage; 4) the cost/loss ratio can be regarded as 

the cost of opening the gate (2000 tokens) over the penalty for not opening the gate (7000 

tokens) it and equals approximately to 𝑟 =  0.286. Therefore, the decision simulated by the 

cost/loss model is to open the gate if 𝑝 >  0.286 and not to open it otherwise.  

Although all individual choices were recorded, the analysis is made to observe only the 

majority of individual choices, as in the previous exercise. The CPT and DT model outputs, as 

well as the decisions computed following the cost/loss model, are summarized in Table 8.4.  

Table 8.4 Decisions taken by participants and simulated results by three models. 

Decision 

Making 

Game 
Probability 

of Flood 

Answers collected (145 participants) 

 

Simulated decision 

 

Rounds Open gate 
Do not open 

gate 

Majority 

decision 

The new 

CPT Model 

The new 

DT Model 

Cost/loss 

Model 

 

9 This game was played, and data were collected by Assco. Prof. Dr Leonardo Alfonso* in the past six years. 

* Email: l.alfonso@un-ihe.org  

* Department of Hydroinformatics and Socio-Technical Innovation, IHE Delft Institute for Water Education. 

mailto:l.alfonso@un-ihe.org
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Round 1 9.74% 40 105 No No Yes No 

Round 2 48.27% 125 20 Yes Yes Yes Yes 

Round 3 12.53% 25 120 No No Yes Yes 

Round 4 23.59% 57 87 No No No No 

Round 5 20.10% 30 115 No No No No 

Round 6 53.17% 141 4 Yes Yes Yes Yes 

As Table 8.4 shows, all three models generally perform well in simulating the decision of the 

majorities. It can be seen that people’s decisions do not always follow the cost/loss model. 

However, the new CPT model successfully predicted participants’ decisions in the six rounds, 

while the new DT model failed two times (rounds 1 and 3).  

Although Ramos’ game has a different background and description of flood risk from the 

experiments used to build the models, the new CPT model shows stronger applicability to 

predict decisions, which can be attributed to the fact that models based on decision theory/rules 

can simulate the average characteristics of individual decision-making. In contrast, the 

applicability of the data-driven DT model usually differs from case to case, depending on the 

decision-making context. It is worth noting that the new DT model trained using the data of 

the experiments only shows the majority decisions at different probability and consequences 

and it is less effective in predicting decision-making in new situations. It is also noted that yet 

more experiments are needed to establish a definitive conclusion. 

8.5 Summary and remarks 

The study carried out in this chapter is based on a prior analysis of decision making under 

uncertainty done in Wang (2017), however, it advances further to reconstruct two decision 

models: CPT (cumulative prospect theory) and DT (decision tree) models using the dataset 

collected from a survey-based experiment where several sets of one-time binary decision-

making problems were formulated. The new CPT model is shown to have greatly improved in 

estimating the parameters while the new DT model works more effectively by refining the 

attributes. The two new models, though totally different in nature, are further used to analyse 

different risk attitudes (i.e., risk aversion, risk neutrality and risk seeking) and majority 

decisions according to different consequences of decisions. The usability of both new models 
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was validated by feeding them with another new dataset which was collected in a continuous 

experiment over  6 years by executing the decision-making experiment presented in Ramos et 

al. (2013) and compared with the traditional cost/loss model widely applied in flood forecast 

early warning (FFEW) system.  

The following conclusions can be drawn: 

1) Risk attitude is a main underlying factor to drive decisions and it varies mainly depending 

on the probability of flood events. People’s attitude to potential flood damage is found to be 

risk-neutral (with a slight risk-averse) when the flood occurrence probability is low (less than 

5%); an increase in probability reflects a progressive increase of risk aversion. However, 

people’s attitude to taking precautionary actions change from risk aversion to risk seeking with 

an increase of flood probability. The majority of individuals tend to change their minds when 

the probability of a flood is between 25% and 50%. Such different and changed attitudes lead 

to their decisions: for low probabilities of a flood event, people prefer not to take precautionary 

action; for high probabilities of a flood event, people choose to take action because they become 

risk averse to potential damage.  

2) Although the cost/loss ratio was not used by the participants as a method to make a decision, 

the a-posteriori evaluation of this value appears to be an important driver to decisions. In the 

context of flood forecasting and early warning, a heavy preference for not taking precautionary 

actions is found when the ratio is higher than 0.81 and, simultaneously, when the probability 

of flood occurrence is less than 17.5%. 

3) Although both proposed decision-making models perform good on predicting decisions 

collected for the testing sets (76% accuracy for the CPT model and 81% for the DT model), 

the application shows that the CPT model performs better on predicting similar decision 

problems than the DT. A possible reason is that the CPT model can simulate the average 

characteristics of people (risk attitudes and their changing triggers) and shows a tendency of 

choices while the data-driven DT model is specific to the case for which the training data is 

provided. 
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4) Compared with the traditional cost/loss model, the two new developed models can take the 

information of probability into account and show a better performance in Ramos’s game.





 

 

Chapter 9 Conclusion 

The thesis is devoted to proposing a comprehensive framework for quantitative modelling of 

hydroclimatic extremes in the perspective of climate change and the proposed 7 research 

questions have been addressed. There are three main parts in the thesis: 1) hydroclimatic 

extreme quantification which includes a novel toolbox developed for spatial random sampling 

in grid-based data analysis,  spatiotemporal variation of observed hydroclimatic extremes under 

the assumption of non-stationarity, and the quantification of the nonstationary link between 

observed and climate projected hydroclimatic extremes, and a further extension to analyse the 

multivariate hydroclimatic extremes; 2) the pattern recognition on hydroclimatic extremes 

which includes a novel toolbox for identifying and classifying the pattern of hydroclimatic 

extremes and further incorporated into AI-based analysis such as a convolution neural network 

(CNN); 3) decision-making under uncertainty on hydroclimatic extremes in the context of 

flood forecasting and early warning that is discussed and simulated by both theory-driven and 

data-driven models to enhance the understanding of the decision-making process thereby the 

communication between decision-makers and modellers. 

 

9.1 Innovations and contributions 

The innovations and main contributions are demonstrated following the normal research path 

that considers sampling and data analysis, modelling, further applications, and decision-

making, which is presented below: 

• Sampling and data analysis 
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To process large-sized grid-based hydroclimatic datasets which need to be diagnosed and 

further used in the study, a novel, open-source SRS-GDA toolbox (short for “spatial random 

sampling toolbox for grid-based data analysis”, presented in Chapter 2) was developed, aiming 

to address the research question Q1 by providing random spatial sampling of grid-based 

quantities with various constraints: shape, size, location, dominant orientation and resolution. 

Four functions are involved and highlighted as:  

1) Boundary recognition.  

2) Data extraction and resolution conversion. 

3) Randomization of samples’ location, shape and size. 

4) Self-validation for diagnosing samples.  

This toolbox is a fundamental tool to support the spatiotemporal quantification on 

hydroclimatic extremes in this study. And the wide applicability of the toolbox should be 

highlighted that it can address the very needs of many climate change related studies on spatial-

temporal diagnostics of any grid-based hydroclimatic datasets. 

• Quantitative modelling 

Both univariate and multivariate quantitative modelling frameworks have been proposed and 

developed in the thesis. 

The univariate quantitative modelling framework is proposed in Chapter 3 and Chapter 4 to 

address research questions Q2, Q3 and Q4 by providing a new perspective to understanding 

the heterogeneity of hydroclimatic extreme (i.e., rainfall extreme in the study) distribution over 

space and time driven by the complex interactions among climate, geographical features, and 

the practical sampling approaches. The main contributions are:  

1) Quantified the spatial variation of area-orientated extremes by developing generalised 

linear regression models with respect to the sizes, shapes and locations of a large number 

of study regions. 

2) Proposed a nonstationary probability distribution model by assuming a time-varying set of 

parameters where the index of climate change is significant and incorporated the Markov-
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Chain Monte-Carlo method to estimate the nonstationary parameters and assess model 

uncertainty. 

3) Linked the spatial and temporal patterns to the large-scale climatology and discussed the 

implication of the modelling parameters to flood risk management. 

This quantitative framework has been further applied in two commonly used climate projection 

(UKCP18 and ERA20CM) datasets in Chapter 5 and the nonstationary link between observed 

and climate projected extremes has been quantified to answer the research question Q5. Such 

quantification links offer insight into the utility of climate projection datasets when extreme 

quantities instead of the averages are at stake in applications, which should be highlighted. 

The multivariate quantitative modelling framework has also been developed and further 

applied in a case study in Chapter 6 with the following innovations and contributions:  

1) Nonstationary multivariate frequency analysis for compound floods driven by 

meteorological and oceanographic drivers. 

2) This framework is comprehensive by incorporating many techniques such as the Block 

Bootstrapping Man-Kendal test, the rolling window method associated with traditional 

correlation analysis methods, Bayesian Markov-Chain Monte-Carlo method. 

• Pattern identification and recognition 

I further linked the SRS-GDA toolbox to the machine learning technique to realise an effective 

and accurate pattern recognition method for hydroclimatic extreme patterns extraction. In this 

application, a novel toolbox entitled “the Spatial Pattern Extraction and Recognition” (SPER, 

presented in Chapter 7) was developed to address the research question Q6 and to facilitate 

automatic identification and classification of extreme patterns (i.e., rainfall extreme as an 

example in the study) of any arbitrary hydroclimatic grid-based datasets. Four functions of the 

toolbox can be highlighted as: 

1) Boundary detection of the hydroclimatic extreme patterns. 

2) Clustering analysis of the hydroclimatic extreme patterns. 
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3) Attribute extraction includes automatic calculating and detecting the spatial features and 

hydroclimatic features of patterns.  

4) Pattern classification by the quantitative attributes. 

The main contributions with the support of the toolbox are: 

1) To execute the ROI/catchment-based analysis which requires spatial features correlation 

analysis such as location, size, shape and orientation; and pattern identification where a 

study of exploring the top 3 dominating daily rainfall patterns in GB is demonstrated in this 

thesis; and the monitoring of the track of rainfall centre which can be used for forecasts.   

2) The toolbox presents great potential in auto-labelling clusters to support deep learning of 

complex environmental spatial-temporal features over large datasets, demonstrated by an 

example of convolution neural network (CNN) which is able to pick up the labelled rainfall 

patterns with high accuracy. 

• Decision-making under uncertainty 

As the work presented above is to achieve a better quantification of univariate or multivariate 

hydroclimatic extremes in the perspective of climate change spatially and temporally and to 

make more effective use of forecasting data by constructing the link between extremes or 

training machine to recognise the patterns, the final step is how to make the decisions by using 

the quantitative information (Chapter 8) and how much it can affect the risk attitude to the 

public (e.g., the research question Q7). Based on a previous study, two decision models (theory-

driven and data-driven) have been rebuilt and improved and tested by data collected via several 

rounds of laboratory-style experiments, where 168 individuals with the water-related 

background are confronted with binary decision problems based on probabilistic flood 

forecasts in different contexts. The main contributions are: 

1) Risk attitudes (risk aversion, risk neutral, risk seeking) of decision-makers and how they 

change with different flood forecasting information were revealed and quantified by a 

theory-driven model.  

2) The majority of decisions were simulated by both theory-driven and data-driven models 

however the data-driven model outperforms the theory-driven model. 
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3) Two models were also tested on an earlier-performed decision-making game by Ramos et 

al. (2013) executed by 145 participants in the past 6 years. In this case, the theory-driven 

model outperforms the data-driven model, which confirms the strong risk-averse tendency 

of decision-makers in the context of flood forecasting and early warning. 

9.2 Future work 

Climate change is one of the hottest research topics since the terms such as global warming 

and climate change were defined and popularised since the 1980s (Burroughs, 2007). It has 

already affected and kept affecting every region of the world in multiple ways which are not 

just about increasing temperature but bringing some potentially irreversible changes to the 

environment (wetness and dryness), to winds, snow and ice, coastal areas and oceans (Shukla 

et al., 2019). Nowadays, reducing or halting climate change is regarded as an urgent matter 

especially when our world is experiencing a more extensive crisis due to the global COVID-

19 pandemic outbroken in 2019 which has lasted until now. Especially in this year (2021), 

extreme weather and events which are unprecedented in thousands of years occurred more 

frequently and globally. For example, just by the time I nearly complete this thesis, from 18 to 

27 July, Zhengzhou, Henan Province of China encountered a flash flood during torrential 

rainfall (see Figure 9.1) with the highest record of 720 mm which "smashed historical records" 

(Zhongming et al., 2021). The city of London in the UK was also hit by a flash flood caused 

by heavy downpours and thunderstorms on 25th July. In the meantime, severe floods were 

recorded to happen in Germany and Belgium on 17-18 July, which also caused huge casualties 

and losses. Therefore, how to get an accurate and prompt forecast on these unpredictable 

extreme events and how to mitigate and combat climate change are still a huge challenge for 

the future. Future work is given below associated with the contribution of the thesis. 
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Figure 9.1 Accumulative rainfall (mm) in Zhengzhou from 18 to 27 July 2021 and this figure is produced by 

ECHO/European Commission (source: https://erccportal.jrc.ec.europa.eu/ECHO-Products/Maps#/maps/3780 

Accessed: 2021-11-02) 

This thesis endeavours to contribute to quantifying climate impacts on hydroclimatic extremes 

by developing a well-tested framework to analyse spatial and temporal changes of 

hydroclimatic variables such as extreme rainfall, temperature, sea water level and their 

combination. It also provides a test on climate projections by a nonstationary framework and 

finds that although they have been improved with rapid development on environmental 

monitoring techniques, some questions need to be addressed, including 1) they are unable to 

simulate extremes albeit being good at simulating the average; 2) they may not be able to 

simulate the time-varying change in climate extreme. Though the bias between observed and 

climate projected extremes have been diagnosed and quantified in the thesis, further work can 

be carried out to improve climate models for getting a better simulation by such as correcting 

the bias, refining the resolution, optimising model structure by using an appropriate level of 

https://erccportal.jrc.ec.europa.eu/ECHO-Products/Maps#/maps/3780
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details (a more complex model is not always a better model), involving non-stationarity for 

tracking/predicting the temporal changes of climate extremes. 

This thesis also provides an evidence that artificial intelligence (AI) techniques can indeed help 

improve and expedite the forecasting and prediction of climate systems by processing 

enormous amounts of chaos, multi-dimensional data, automatically labelling these large 

climate modelling data, monitoring and tracking the rainfall cell from the experience where I 

tried to design a pattern recognition toolbox to be used as a front end that supports AI-based 

training in tracking and forecasting extremes. How AI techniques can tackle climate change is 

yet another promising research topic in the future. Further work can be recommended to 

involve AI technique to climate model for getting a better simulation and forecast on climate 

extremes. 

Last but not least, there is still a challenge on how to convince decision-makers with these 

complex results produced by climate models and techniques. Although the thesis contributes 

to understanding decision makers’ behaviour and risk attitudes when making decisions relating 

to risk from flood hazards under uncertainty, understanding flood warning decision-making in 

practice is still remarkably complex, as it involves a chain of many small decisions, some of 

which are reversible. A welcoming further study is, therefore, to improve the decision support 

system by constructing a more user-friendly platform including effective transformation 

between meteorological forecasts and hydrological response, better data visualisation and 

explanation for helping decision-makers issue their flood response.
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Appendix Data Processing and Toolbox Access 

A.1 Data extraction and HPC access 

To extract each grid data in the ROI defined by the SRS-GDA toolbox, high-performance 

computing resources provided by HPC-Wales is employed for processing such huge data 

parallelly. The program running at the assigned computation nodes is written in Python. 

For extraction from the GEAR dataset: 

from multiprocessing import Process 

from netCDF4 import Dataset 

import scipy.io as sio 

import os 

 

m = 113 #year 

Ex = 'Rainfall_' 

domain = os.path.abspath('/scratch/s.966992/Rainfall_UK') 

domain1 = os.path.abspath('/lustrehome/home/s.966992/Catchment') 

info1 = os.listdir('/lustrehome/home/s.966992/Catchment') 

N = 88 # =88 for location group; =74 for shape group; =81 for size group. 

def extract_p(mat_fid,matName): 

    P_Data1 = [None]*len(mat_fid['XY'][:])  

    for k in range(len(P_Data1)):   
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        P_Data1[k] = [0.0]*m 

         

    for i in range(0,len(mat_fid['XY'][:])): 

        XY = mat_fid['XY'][i] 

        count = 0 

        for info in os.listdir('/scratch/s.966992/Rainfall_UK'): # extract rainfall(nc file) 

            info = os.path.join(domain,info) 

            nc_fid = Dataset(info,'r') 

            P_Data1[i][count] = nc_fid.variables['rainfall_amount'][:365,XY[1],XY[0]] 

            count +=1 

            nc_fid.close() 

    adict = {} 

    adict['P_Data'] = P_Data1 

    sio.savemat(Ex+matName, adict) 

 

def proccounter(counter): 

    info11 = os.path.join(domain1,info1[counter]) 

    matName = os.path.basename(info11) 

    mat_fid = sio.loadmat(info11) 

    extract_p(mat_fid,matName) 

    return counter 

 

if __name__ == '__main__': 

    for counter in range(N): 

        Process(target=proccounter, args=(counter,)).start() 

    #pool = Pool() 
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    #for counter in pool.map(proccounter, range(N)): 

    #   pool.start() 

#pool.join() 

For extraction from ADAM dataset: 

m = 129 #year 

Ex = 'Rainfall_' 

domain = os.path.abspath('/lustrehome/home/s.966992/Rainfall_AU') 

domain1 = os.path.abspath('/lustrehome/home/s.966992/Size') 

info1 = os.listdir('/lustrehome/home/s.966992/Size') 

P_Data = [None]*n # n=1 for location group; =7 for shape group; =10 for size group. 

N=691 # =691 for location group; =378 for shape group; =627 for size group. 

 

def extract_p(mat_fid,matName): 

    for j in range(0,10): 

        P_Data1 = [None]*len(mat_fid['XY_Size'][0][j][:])  

        for k in range(len(P_Data1)):   

            P_Data1[k] = [0.0]*m 

        for i in range(0,len(mat_fid['XY_Size'][0][j][:])): 

            XY = mat_fid['XY_Size'][0][j][i] 

            count = 0; 

            for info in os.listdir('/lustrehome/home/s.966992/Rainfall_AU'): # extract rainfall(nc 

file) 

                info = os.path.join(domain,info) 

                nc_fid = Dataset(info,'r') 

                P_Data1[i][count] = nc_fid.variables['daily_rain'][:365,682-XY[1],XY[0]] 

                count +=1 
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                nc_fid.close() 

        P_Data[j] = P_Data1 

    adict = {} 

    adict['P_Data'] = P_Data 

    sio.savemat(Ex+matName, adict) 

 

def proccounter(counter): 

    info11 = os.path.join(domain1,info1[counter]) 

    matName = os.path.basename(info11) 

    mat_fid = sio.loadmat(info11) 

    extract_p(mat_fid,matName) 

    return counter 

 

if __name__ == '__main__': 

    for counter in range(N): 

        Process(target=proccounter, args=(counter,)).start() 

    #pool = Pool() 

    #for counter in pool.map(proccounter, range(N)): 

    #   pool.start() 

    #pool.join()     

A.2 Toolbox access 

There are two toolboxes developed in the thesis: 1) the open-source toolbox of spatial random 

sampling for grid-based data analysis (SRS-GDA toolbox, doi: 10.5281/zenodo.4044626) 

whose source code as well as the example case are available at the GitHub 

(https://github.com/wanghan924/SRS-GDA_Toolbox.git); 2) the open-source toolbox of 

https://github.com/wanghan924/SRS-GDA_Toolbox.git
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spatial pattern extraction and recognition (SPER) whose source code and GUI software are 

available at the GitHub (https://github.com/wanghan924/SPER-toolbox). Both source codes 

are provided subject to a GPL V3 licence. Use/fork of the toolbox is subject to proper 

acknowledgement as stated on the Webpage of the toolbox. 

A.3 Model selection and parameter estimation 

Table A1 presents the details of parameter values of two marginal distributions (monthly 

maximum skew surge, MMS and monthly maximum rainfall, MMR) estimated by both 

stationary and nonstationary models and the best model is selected by comparing the criteria 

(AIC and BIC). It should be noted that only time series with a significant trend evaluated by 

Bootstrapping Mann-Kendall test is further checked with the nonstationary models. And Table 

A2 presents the selection of copula from the candidates according to the AIC.  

 

Table A1 The parameters of the marginal distribution of MMS and MMR under both stationary and 

nonstationary conditions.  

M 

 

Time 

series 
Best 

Stationary model Best nonstationary model 

Parameter 

AIC & 

BIC 

NS 

type 

Parameter 

AIC & 

BIC Location Scale 

Skew 

or 

shape 

Location Scale Skew 

or 

shape 
Base 

Time-

varying 
Base 

Time-

varying 

Jan 

MMS GEV 0.16 0.08 -0.207 
-274.38 

-269.46 
NS1 0.13 0.002 0.03 - 0.602 

-161.03 

-154.47 

MMR Gam - 0.37 18.18 
-213.03 

-209.75 
- - - - - - - 

Feb 

MMS GEV 0.16 0.09 -0.186 
-271.62 

-266.71 
NS1 0.26 -0.008 0.09 - 0.967 

-127.45 

-120.90 

MMR Gam - 30.18 0.176 
-205.10 

-201.82 
- - - - - - - 

Mar 

MMS GEV 0.19 0.08 -0.216 
-253.27 

-248.43 
NS1 0.18 0.000 0.09 - -0.438 

-240.36 

-233.92 

MMR Gam - 53.07 0.206 
-190.09 

-186.81 
- - - - - - - 

Apr 

MMS GEV 0.15 0.09 -0.260 
-267.95 

-263.03 
NS1 0.06 0.005 0.08 - -0.346 

-123.16 

-116.61 

MMR GEV 11.12 10.95 0.477 
-273.74 

-268.83 
NS1 11.22 -0.026 11.39 - 0.459 

-277.41 

-270.86 

May MMS GEV 0.14 0.09 -0.395 
-243.32 

-238.58 
- - - - - - - 

https://github.com/wanghan924/SPER-toolbox
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MMR GEV 32.14 15.26 0.016 
-210.94 

-206.02 
- - - - - - - 

Jun 

MMS LogN -2.03 0.56 - 
-227.39 

-230.56 
NS1 -2.06 0.002 0.44 - - 

-218.28 

-213.53 

MMR GEV 34.71 13.37 0.131 
-249.82 

-244.91 
- - - - - - - 

Jul 

MMS GEV 0.16 0.08 -0.253 
-262.94 

-258.03 
NS1 0.16 0.000 0.06 - -0.044 

-224.73 

-218.18 

MMR LogN 3.70 0.31 - 
-243.07 

-239.79 
- - - - - - - 

Aug 

MMS GEV 0.17 0.08 -0.534 
-215.36 

-210.44 
NS1 0.11 0.001 0.12 - -0.697 

-154.18 

-147.63 

MMR LogN 3.84 0.39 - 
-262.00 

-258.72 
- - - - - - - 

Sep 

MMS GEV 0.154 0.080 -0.309 
-245.23 

-240.31 
NS1 0.09 0.003 0.10 - -0.442 

-148.46 

-141.91 

MMR GEV 40.62 17.74 0.161 
-254.44 

-249.53 
- - - - - - - 

Oct 

MMS GEV 0.18 0.09 -0.405 
-231.68 

-226.76 
NS1 0.28 -0.008 0.15 - 0.510 

-134.52 

-127.97 

MMR GEV 42.29 14.44 0.010 
-253.10 

-248.18 
NS1 42.82 -0.084 16.40 - 0.045 

-264.93 

-258.38 

Nov 

MMS GEV 0.16 0.08 -0.341 
-229.52 

-224.69 
NS1 0.15 0.000 0.09 - -0.785 

-216.51 

-210.06 

MMR GEV 25.63 14.17 0.061 
-238.17 

-229.98 
NS3 27.64 -0.139 2.47 0.012 0.012 

-263.65 

-258.73 

Dec 

MMS GEV 0.14 0.09 -0.453 
-237.48 

-232.57 
NS1 0.05 0.004 0.07 - -0.196 

-127.81 

-121.26 

MMR GEV 9.21 7.79 0.132 
-243.04 

-238.13 
- - - - - - - 

Please note that “Gam” is short for Gamma distribution, “LogN” is short for Lognormal distribution, and 

“GEV” is short for Generalised extreme value distribution. 

 

 

Table A2 The comparison among copula candidates. 

Time 

series 

AIC 
Selection 

Gaussian Clayton Frank Gumbel Indepen Joe Plackett Raftery 

Jan -242.0 -241.7 -242.2 -241.7 -243.7 -241.7 -242.2 -241.7 Indepen 

Feb -177.3 -177.5 -177.3 -177.1 -177.7 -176.8 -177.2 -177.5 Indepen 

Mar -178.6 -178.4 -177.8 -177.0 -178.4 -176.6 -177.7 -178.4 Gaussian 

Apr -269.1 -290.8 -267.5 -257.9 -232.9 -248.8 -267.3 -289.5 Clayton 

May -234.6 -234.9 -234.5 -234.4 -236.4 -234.4 -234.5 -234.8 Indepen 

Jun -231.9 -223.1 -232.0 -223.1 -225.2 -223.1 -232.0 -223.1 Plackett 

Jul -252.9 -246.3 -253.6 -246.3 -253.7 -246.3 -248.3 -246.3 Indepen 

Aug -230.9 -236.4 -229.9 -227.6 -227.3 -226.0 -229.7 -237.1 Raftery 

Sep -243.321 -244.7 -242.8 -243.2 -242.6 -242.9 -242.8 -245.1 Raftery 

Oct -247.6 -239.9 -246.5 -251.1 -229.3 -254.3 -246.5 -239.2 Joe 

Nov -241.3 -237.8 -238.7 -242.7 -239.2 -244.4 -241.5 -238.9 Joe 



A.3 Model selection and parameter estimation 267 

 

 

Dec -244.4 -249.4 -241.8 -241.5 -228.1 -238.1 -242.1 -250.2 Raftery 

Please note that “Indepen” is short for “Independence”. 

 




