
LOCALIZATION OF SPARSE SENSOR NETWORKS USING LAYOUT INFORMATION

Sameer Sundresh, YoungMin Kwon, Kirill Mechitov, Wooyoung Kim and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin Ave., Urbana, IL 61801, USA

{sundresh|ykwon4|mechitov|wooyoung|agha}@cs.uiuc.edu

ABSTRACT

Localization is the process by which sensor networks associate
spatial position information with individual sensors’ measure-
ments. While manual surveying is sufficient for small-scale pro-
totypes, it is too time-consuming and costly for the large-scale
deployments anticipated in the near future. Our experiments
with medium-scale outdoor sensor network deployments show that
sparsity of ranging measurements is a key factor limiting the ac-
curacy of localization; often, several solutions are equally con-
sistent with the data. Fortunately, layout information can usually
be obtained at little extra cost; for example, if it is used to guide
the deployment process, or by analyzing a photograph of the net-
work. We have developed an algorithm based on subgraph isomor-
phism which uses the known layout information in conjunction
with ranging measurements to find a family of localization solu-
tions for a sensor network deployment. Although subgraph iso-
morphism is in general NP-complete, the more specific cases that
occur in real-world scenarios are usually tractable. Experiments
with a 50-node network show that our algorithm is very efficient
in practice.

1. INTRODUCTION

Localization is the process by which sensor networks associate
spatial position information with individual sensors’ measure-
ments. While manual surveying is sufficient for small-scale pro-
totypes, it is too time-consuming and costly for the large-scale de-
ployments anticipated in the near future. Automated localization
algorithms have been developed in an attempt to solve this prob-
lem; these localization procedures run in two steps, ranging fol-
lowed by solving for node positions. A ranging service is used to
estimate the distances between sensor nodes in the network; our
experiments use the acoustic TDoA ranging technique which we
developed in [1]. Once these measurements have been gathered, a
localization solver must be run to estimate node positions.

Our experiments with medium-scale outdoor sensor network
deployments show that sparsity of ranging measurements is a key
factor limiting the accuracy of localization; often, several solu-
tions are equally consistent with the data. For example, Table 2
summarizes the number of ranging measurements obtained in five
experiments with a 50-node sensor network. Figure 1 graphically
depicts which nodes were able to make reliable ranging measure-
ments to each other. Under these conditions, measurement data
is quite sparse (averaging 2.3 measurement neighbors per sensor

node), and existing localization algorithms such as Least Squares
Scaling fail to converge (Figure 8).

Fortunately, layout information can usually be obtained at lit-
tle extra cost; for example, if it is used to guide the deployment
process, or by analyzing a photograph of the network. We have de-
veloped an algorithm based on subgraph isomorphism which uses
known layout information in conjunction with ranging measure-
ments to find a family of localization solutions for a sensor net-
work deployment. Although subgraph isomorphism is in general
NP-complete (since it subsumes CLIQUE and HAMILTON CIR-
CUIT [2]), more specific cases such as bounded-valence graph iso-
morphism [3] and constant-model subgraph isomorphism [4] can
be solved in polynomial time, and there exist several algorithms
which have generally been observed to operate efficiently in prac-
tice [5, 6, 7].

Once distances have been gathered into a measurement graph,
our algorithm attempts to match sensor nodes to positions in the
known layout graph which are consistent with the measurements.
Figure 1 shows the offset grid layout which we used for our exper-
iments, along with the measurement graph from one experiment.
In this case, the layout graph defines the distances between the
discrete possible positions of nodes in the grid. While random or
irregular known layouts can be easy to match, a regular grid con-
tains many more symmetries and ambiguities, thus better testing
the effectiveness of our algorithm. For example, it is trivial to lo-
calize two nodes relative to each other if there is a unique distance
between them.

Our experiments with the 50-node network show that while
sparse measurement data often have several localization results
consistent with the known layout, our algorithm can find them
very quickly. This contrasts with previous localization techniques
which only attempt to find one solution, either by arbitrarily choos-
ing a “best” result or simply not localizing even slightly undercon-
strained nodes. By enumerating multiple results, our algorithm
reveals the amount of uncertainty about node positions; for exam-
ple, we may discover that a particular node has three candidate
positions. This information can then be used to guide additional
measurements to improve results. Alternatively, a higher level ser-
vice may decide that the results are good enough if the variation
across solutions is within application-specific bounds.

2. BACKGROUND

The Global Positioning System (GPS) is by far the most popular
standard for electronic outdoor localization [8]. However, GPS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

D
is

ta
nc

e
(m

)

Distance (m)

actual position
 dm-dr < -1 (m)

-1 < dm-dr < 1 (m)
 dm-dr > 1 (m)

Fig. 1. Node layout and ranging measurements from Experiment
06/14/04-1 (also see Table 2); dr and dm are real and measured
distances, respectively. Sensors were deployed on a field with 15-
23cm tall grass and somewhat uneven ground.

units are typically either too costly or imprecise for wireless sen-
sor nodes (±6.3m error with 95% confidence when selective avail-
ability is turned off [9]). As such, many hybrid methods employ a
two-tiered approach in which a set of anchor nodes is used to lo-
calize non-anchor nodes. Anchor nodes are assumed to know their
own locations, while the remaining sensor nodes estimate their dis-
tances to anchors and perform multilateration to determine their
own locations. These systems primarily differ in how distances to
anchor nodes are measured.

The Ad-hoc Positioning System (APS) is a family of dis-
tributed localization algorithms based on trilateration [10]. The
basic idea is to perform multi-hop propagation of distances to an-
chors throughout the network, so that every node can trilaterate its
position. Four different distance metrics were developed, ranging
from minimum hop count and sum of hop lengths–for isotropic
networks with uniform node density–to local geometric construc-
tions, which require higher anchor density in order to control error
propagation. Another variant of APS relies on sensor nodes able
to measure the angle-of-arrival of a signal from an anchor [11].

A related approach to localization is the robust quadrilaterals
method of [12]. In this technique, sensor nodes are first localized
within certain 4-node complete graphs. These so-called robust
quadrilaterals must satisfy the constraints that all measurements
are (approximately) consistent, and all angles are large enough
that a bounded measurement error could not result in a flip or dis-
continuous flex ambiguity which radically changes the localization
results. Robust quadrilaterals which have 3 nodes in common are
then iteratively merged into a rigid structure to localize the whole
network. Nodes not involved in a robust quadrilateral are simply
not localized in order to avoid the possibility of erroneous local-
ization.

Convex optimization has been proposed as the basis for a con-

straint-based localization scheme [13]. In this algorithm, measured
data such as RF communication range or angular information from
optical devices are used to constrain the feasible node positions.
Semidefinite programming (SDP) is then used to find a solution to
the localization problem.

Multidimensional Scaling (MDS) has been proposed as the ba-
sis for a centralized robust localization algorithm given a set of dis-
tance measurements [14]. One problem with this centralized ap-
proach is that it requires distances between all pairs of nodes. As a
remedy, distributed approaches have been proposed. One approach
is to apply a local MDS-MAP for each node along with its hop
count-limited neighborhood [15]. Neighborhoods are then incre-
mentally merged into a global coordinate system. Instead of using
classical MDS, the local map may be computed by directly mini-
mizing the discrepancies between measurements and distances in
the estimated map [16]. Another alternative technique is LSS [17],
which seeks a configuration of nodes from a possibly incomplete
set of distances between them by minimizing an unweighted er-
ror function. The application of this technique to localization was
studied in [1].

One common limitation of the above schemes is that only one
“best” solution is computed. If positions are underconstrained due
to sparse measurements, this choice may be arbitrary – influenced
by initial conditions, error propagation, and artifacts of the chosen
utility function – or pessimistic, returning no information at all
about such a node’s location. Subgraph isomorphism algorithms,
on the other hand, have been designed to enumerate some or all
solutions.

Ullman’s algorithm is a well-known efficient solution to sub-
graph isomorphism; given two graphs with pα and pβ nodes, re-
spectively, it performs a depth-first search on a pα × pβ bit matrix
with pruning and backtracking to enumerate the isomorphisms be-
tween one graph and the subgraphs of another [5].

Due to physical measurement range restrictions, localization
is a bounded-degree subgraph isomorphism problem. If this were
not the case, measurement sparsity would not be an issue, and
existing localization algorithms such as LSS would be sufficient.
Luks’s paper [3], aptly titled “Isomorphism of graphs of bounded
valence can be tested in polynomial time,” constructs an intricate
group-theoretic algorithm which shows that this related problem is
tractable.

A sensor network’s physical layout is often known a priori,
either due to a regular structure or because it is used in the de-
ployment of many sensor networks (or even one network that
must repeatedly be collected and re-deployed for logistical rea-
sons). Thus, the layout and any associated one-time preprocess-
ing may be considered constant. The constant-model subgraph
isomorphism algorithm of [4] uses a decision tree of worst-case
sizeO(lv(1 + l2e)

M) to compute subgraph isomorphisms via de-
cision tree traversal in time O(M2le + Mlv), where M is the
number of vertices in the (fixed) model graph, lv the number of
different vertex labels, and le the number of different edge labels.
More generally, this result shows that subgraph isomorphism deci-
sion procedures with efficient running times can be created given
a known layout.

Our localization algorithm is baseed on VF2, a memory-
efficient subgraph isomorphism algorithm based on depth-first
search with pruning and backtracking; unlike Ullman’s algorithm,
VF2 only maintains a search data structure of size linear in the
number of nodes in the graphs [6]. As a result of careful pruning
criteria and good cache efficiency, VF2 demonstrates exception-

ally good performance in comparison to other subgraph isomor-
phism algorithms [7].

3. DEFINITIONS

We start with the standard definition of a labeled undirected graph
to describe the distances between sensor nodes.

Definition 1 (Labeled Undirected Graph). A labeled undirected
graph LGV L,EL = (V, E, LV , LE) consists of a set V of ver-
tices, a relation E ⊆ {{u, w} : u, w ∈ V }, and a pair of functions
which assign labels to the vertices and edges, respectively:

LV : V → V L

LE : E → EL

A measurement graph consists of the set of sensor nodes, la-
beled by their ids, together with edges representing the measured
distances between sensors.

Definition 2 (Measurement Graph). A ranging measurement
graph MG is a labeled undirected graph LGZ+,R+ subject to the
following constraints:

1. Each node is labeled by a unique positive integer id.

2. Each edge is labeled with the approximate distance between
its endpoints.

In contrast to the measurement graph, the layout information
graph consists of the positions of sensors – generally not labeled
by node ids – together with edges representing the actual distances
between different positions. If anchor nodes are employed, their
positions in the layout graph are labeled by their ids. Since rang-
ing hardware characteristics limit the maximum edge length in the
measurement graph, only positions within some threshold distance
M of each other need be connected by an edge; this is useful in
practice to limit the size of the layout graph data structure. The
layout graph can easily be generated from a set of position coor-
dinates in R

2 or R
3; furthermore, it may be defined procedurally

rather than explicitly, as discussed in Section 4.

Definition 3 (Layout Information Graph). The layout infor-
mation graph for a particular deployment scenario LI is a la-
beled undirected graph LGV L,R+ where the set of vertex labels
V L = Z

+ ∪ {∗}, subject to the constraints:

1. Each node is labeled by a unique positive integer id or the
wildcard, ∗.

2. Each pair of nodes within distance M of each other is con-
nected by an edge.

3. Each edge is labeled with the real distance between its end-
points.

Some sort of hardware-software ranging service is required to
estimate distances between sensor nodes. Since measurements are
not exact, a comparison operator is necessary to determine whether
a particular measurement is likely to represent a particular distance
in the known layout.

Definition 4 (Ranging Service). We assume that a ranging ser-
vice R provides operations for ranging measurement and compar-
ison of measured values against actual distances:

measureR :→ M , i.e. a procedure which coordinates
ranging and creates a measurement graph.

≈R: R
+ × R

+ → {true, false}
In our experiments, we used an error threshold T , e.g. 1m, to
define x ≈R y ⇔ |x− y| < T .

Given the above, we can now define what exactly we mean by
a subgraph isomorphism, and how localization is a special case of
the subgraph isomorphism problem.

Definition 5 (Subgraph Isomorphism). Given a pair of labeled
undirected graphs AV L,EL and BV L,EL, where A is the model
graph and B the proposed subgraph, and a pair of relations≈V and
≈E on vertex and edge labels (see below), respectively, a subgraph
isomorphism is a 1-1 mapping SI : VB → VA subject to the
constraints (note: LV/A means A’s LV , etc.):

1. If c ∈ VB then LV/B(c) ≈V LV/A(SI(c)), i.e. corre-
sponding vertices have equivalent labels.

2. If {c, d} ∈ EB then {SI(c), SI(d)} ∈ EA, i.e. each edge
in B has a corresponding edge in A.

3. If {c, d} ∈ EB then
LE/B({c, d}) ≈E LE/A({SI(c), SI(d)}),
i.e. corresponding edges have equivalent labels.

The subgraph isomorphism problem is: given A and B, find SI;
note that depending on the data, there may be 0, 1 or more possible
solutions.

Definition 6 (Localization as Subgraph Isomorphism). Given a
ranging service R, a layout graph LI , and the measurement graph
MG produced by measureR, the localization problem is a special
instance of the subgraph isomorphism problem where:

A is LI
B is MG

x ≈V y iff (x = ∗) ∨ (y = ∗) ∨ (x =Z+ y)
≈E is ≈R

We will now construct a localization algorithm to satisfy the
above problem statement.

4. LOCALIZATION ALGORITHM

4.1. Fundamental Behavior

Our localization algorithm is based on the VF2 subgraph isomor-
phism algorithm [6]. The data structures used for localization are
described in Figure 2.

First of all, the measurement graph is represented in a particu-
lar traversal order using the grammar described in Figure 3 – ver-
tices are enumerated in some sequence, and the second vertex of
each edge includes the 1-based sequence number of the first such
vertex; for example, see Figure 4. The traversal order employed
is described by the prepare-graph procedure in Figure 5. We per-
form a “most-connected first” traversal: always choose to localize
the node which has the most already-localized neighbors; if there
is a tie, choose such a node with the most unlocalized neighbors.
The reasoning is that the node with the most localized neighbors
will have the fewest number of feasible positions, thus decreasing
the branching factor of the search space; similarly, the tie-breaker
attempts to constrain the largest number of thus far unlocalized
nodes.

Find-next-localization-result in Figure 6 is the main localiza-
tion procedure. In general, it iteratively localizes nodes such that
(1) no two nodes occupy the same position, and (2) all distances

graph[2|V |+ 2|E|]: array of numbers (measured graph)
graph-index: index into graph
localized-so-far[|V |]: array of (x, y, position-number)
next-node-seq: index into localized-so-far
num-nodes: total number of nodes, |V |
num-fixed-nodes: to avoid redundant solutions
occupancy-hash-table[2|V |]: array of sequence numbers

Fig. 2. Data structures used for localization.

〈graph〉 ::= 〈node-info〉...〈node-info〉
〈node-info〉 ::= 〈node-id〉〈nbr-info〉...〈nbr-info〉0
〈nbr-info〉 ::= 〈nbr-seq〉〈nbr-dist〉
〈nbr-seq〉 ::= 1-based sequence number of a

neighbor traversed before this node
〈nbr-dist〉 ::= measured distance to neighbor

Fig. 3. Grammar of the graph data structure.

between localized node positions are consistent with the measured
distances. Occupancy checks are performed using a hash table.
The array localized-so-far is accessed like a stack, and maps node
sequence numbers in the graph traversal to (x, y) coordinates. The
position-number datum stores which possible positions of a node
have already been tried; this is used for backtracking. The possi-
ble positions for a node n are determined by considering all points
in the known layout which are approximately the measured dis-
tance away from n’s first already-localized neighbor. Since we
do not fix a representation for the layout graph, it may be defined
procedurally; for example, this is useful for specifying infinite reg-
ular grids. Graph-index points to the graph description of the next
node to place, while next-node-seq contains that node’s traversal
sequence number, and hence points to its entry in localized-so-far.
If all nodes can be localized without violating the measured dis-
tance and position occupancy constraints, the result is returned to
the caller; whenever the search reaches a dead end or the caller
requests another solution, we backtrack.

Figure 7 describes the procedures which direct the localiza-
tion process. Begin-localization attempts to uniquely localize a
core set of up to 3 nodes in order to eliminate rotational and mirror
symmetries before calling find-next-localization-result. Continue-
localization backtracks one step so that we can try a new position
for the last-traversed node (find-next-localization-result may fur-
ther cascade this backtracking).

From Figure 2, we see that memory usage is

kV |V |+ kE |E|+ k1 ∈ O(|V |+ |E|) (1)

where the k’s depend the sizes of the atomic data types used:

kV = 〈id〉+ 1 + 〈x〉+ 〈y〉+ 〈position〉+ 2〈node-count〉
kE = 〈node-count〉+ 〈measurement〉
k1 = 〈graph-index〉+ 2〈node-count〉+ 1

4.2. Mitigating Errors

Due to low-cost hardware and environmental interference, rang-
ing measurements in sensor networks are prone to inaccuracy.
Our TDoA acoustic ranging service, described in [1], exhibits two

17 25

38

9m

10m 10m

is represented by: 17 0 38 1 10 0 25 1 9 2 10 0

Fig. 4. A simple graph and its grammatical representation. Vertex
labels indicate sensor ids, not traversal order.

proc prepare-graph:
seq← 1, i← 0
while some nodes in V are not marked,

u← the unmarked node with the most marked
neighbors; tie-breaker: # unmarked neighbors

graph[i]← u’s id; i++
foreach {u, w} ∈ E, if w is marked,

graph[i]← w.seq
graph[i+1]← distance between u and w
i← i + 2

mark(u)
u.seq← seq; seq++

end-while

Fig. 5. Procedure to prepare the measurement graph in “most-
connected first” traversal order.

proc find-next-localization-result:
while num-fixed-nodes < next-node-seq ≤ |V |,

if there are more possible positions for next-node-seq
(x, y)← next possible position
localized-so-far[next-node-seq].position-number++
if (x, y) is occupied, skip
foreach localized neighbor n of node-seq,

if distance((x, y),(xn, yn)) ≈ measurement, skip
localized-so-far[next-node-seq].(x, y)← (x, y)
graph-index← scan forward to next node

else backtrack:
localized-so-far[next-node-seq].position-number← 0
next-node-seq −−
graph-index← scan back to previous node

(skip to here)
end-while
return |V |+ 1 = next-node-seq

Fig. 6. Find-next-localization-result is the main localization pro-
cedure. Returns true if a solution is found, false if not.

proc begin-localization:
determine whether the first k ∈ {0..3} nodes

can be uniquely localized
place the first k nodes in localized-so-far[0..k]
next-node-seq← k
graph-index← scan past the first k nodes
num-fixed-nodes← k
return find-next-localization-result()

proc continue-localization:
next-node-seq −−
graph-index← scan back to last node
return find-next-localization-result()

Fig. 7. Procedures which direct the enumeration of localization
results. Continue-localization can be called repeatedly until no
more solutions are found.

Length # Consistent # Total % Consistent
2 4 16 25.0
3 24 64 37.5
4 116 256 45.3
5 490 1024 47.9
6 2010 4096 49.1
7 8120 16384 49.6
8 32632 65536 49.8

Table 1. Number of cycles consistent with offset grid layout, as-
suming all edges are restricted to 9m, 10.06m, 16.22m or 18m.

kinds of errors: zero-mean Gaussian and outliers. The first case is
addressed by tolerating a certain amount of error when comparing
measurements to inter-node distances occurring in the layout. For
example, if we allow an error of ±1m, a measurement graph edge
labeled 9.3m may be matched with a layout graph edge labeled 9m
or 10.06m, but not one labeled 16.22m.

Outliers can be subclassified as bidirectional measurement in-
consistency, measurements which are not consistent with any dis-
tance occurring in the layout, and measurements which are con-
sistent with an incorrect distance in the layout. Measurements of
the first two types can easily be discarded. The strategy can be
extended to also catch outliers of the third variety by checking that
bounded-size subgraphs containing an edge are consistent with the
layout. For example, if the layout information mandates that a
node may have at most 4 neighbors at a distance of 16.22m, but
the measurements claim a node has 5 such neighbors, we know
that at least one of those edges is erroneous. Another example is
checking that cycles in the measurement graph are consistent with
the known layout. The number of consistent and total possible cy-
cles for the offset grid layout are depicted in Table 1. Short cycles
are particularly useful for finding inconsistencies, and asymptoti-
cally it appears that a cycle of k random measurements which are
individually consistent with the grid spacing has a 50% chance of
being totally consistent with the grid.

5. EXPERIMENTAL RESULTS

Our experiments consist of two phases: first, we deployed a 50-
node sensor network in a 3000m2 grassy field and collected acous-

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

D
is

ta
nc

e
(m

)

Distance (m)

average error: 16.609 (m)
real position

estimated position

Fig. 8. Least Squares Scaling localization results for Experiment
06/14/04-1. The gradient descent algorithm failed to converge on
a reasonable solution after 10 hours of execution on a 1.7GHz Pen-
tium 4.

tic ranging measurements; second, we ran our localization algo-
rithm on the measurement graph given the known deployment lay-
out. The layout is illustrated by the node positions in Figure 1: we
used a 7× 7 offset grid, with 9m inter-node spacing and 4.5m row
offsets. While random or irregular known layouts can be easy to
match, a regular grid contains many more symmetries and ambi-
guities, thus better testing the effectiveness of our algorithm. The
acoustic ranging service is based on the Time Difference of Ar-
rival (TDoA) method: a sensor node sends a radio packet followed
by an acoustic chirp; other nodes measure the time between re-
ception of the two signals and use the speed of sound to estimate
distance [1].

From Table 2, it is evident that the ranging measurements are
quite sparse, with an average of 2.3 measurement edges per sensor
node. Before exploring the results with subgraph isomorphism,
let us consider how this measurement sparsity affects localization
when layout information is not used. The Least Squares Scaling
(LSS) localization technique minimizes the following error metric
via the gradient descent minimization method,

E =
∑

{i,j}∈EMG

(√
(xi − xj)2 + (yi − yj)2 − LE/MG({i, j})

)2

where (xi, yi) is the estimated position of node i. Note that rang-
ing measurement sparsity creates many deep local minima, such
that the gradient descent algorithm is unable to find a reasonable
solution. Figure 8 shows the results of LSS localization on ranging
dataset 06/14/04-1 after running the gradient descent minimization
procedure for 10 hours on a 1.7GHz Pentium 4 PC.

Table 2 summarizes our ranging data sets and the behavior
of our localization algorithm. Measured edges is the number of
different pairs of nodes between which a reliable ranging measure-
ment was recorded (note that our acoustic ranging service includes

-50

-40

-30

-20

-10

 0

 10

 20

 30

-10 0 10 20 30 40 50 60

D
is

ta
nc

e
(m

)

Distance (m)

actual position
estimated position

Fig. 9. Localization solution #4/10 for Experiment 06/14/04-1.

lower-level signal processing and statistical filtering techniques to
eliminate a large number of bad measurements [1]). Consistent
edges is the number which remained after filtering based on the
criteria described in Section 4.2. The localization algorithm was
implemented in C, compiled with GCC version 2.95.3 without any
optimization flags, and run on a Pentium 4 2.53GHz PC with Linux
2.4.23. The time command built into bash 2.05a was used to mea-
sure the running time of a C program which executes the local-
ization algorithm 1000 times on the input data set; this time was
then divided by 1000 to compute the average execution times listed
in Table 2. The fact that the number of consistent solutions is
sometimes much greater than one indicates that some nodes’ loca-
tions were not adequately constrained based on the measurements;
previous algorithms which do not make use of layout information
would have either not localized these nodes at all, or chosen some
arbitrary location which does not truly reflect the information in
the data set. Despite this uncertainty, our algorithm was able to
find a consistent location in each solution for every node which
was involved in at least one ranging measurement. Note that in the
case of Experiment 06/13/04-5, the ranging measurement graph
actually consisted of two unconnected components, which could
not be localized relative to each other. This experiment used a
higher threshold than the others in an attempt to reduce errors,
however, this also reduced the number of measurements in an area
of uneven ground and slightly taller grass.

Figures 9 and 10 show two representative incorrect localiza-
tion solutions which our algorithm found were consistent with the
ranging measurements in Experiment 06/14/04-1 and the known
grid constraint (it also found the correct solution, which was, inci-
dentally, #7/10). As is evident from the figures, most of the uncer-
tainty is in the upper-right area of the sensor field. This is because
nodes near the edge of the sensor field have fewer neighbors, and
hence tend to have fewer measurements to constrain their posi-
tions. In Figure 9, we see that one node is flipped across the edge
of the sensor field, while another pair of nodes are swapped; if we

-50

-40

-30

-20

-10

 0

 10

 20

 30

-10 0 10 20 30 40 50 60

D
is

ta
nc

e
(m

)

Distance (m)

actual position
estimated position

Fig. 10. Localization solution #10/10 for Experiment 06/14/04-1.

had described our layout exactly, rather than as an infinite grid, this
first error would have been caught automatically. Figure 10 is par-
ticularly interesting, because we see a domino effect in the errors.
Due to measurement edges and the occupancy constraint, the node
positioned above the top essentially pulls the other erroneously-
positioned nodes with it, so again, a few extra constraints could
possibly have eliminated most of the location errors. Across all
experiments, 195 out of 216 node occurences were uniquely local-
ized. Furthermore, all except for 5 node occurences (on average
one per experiment) were constrained to at most 5 possible posi-
tions, as seen in Figure 11.

Figures 12 and 13 depict the number of localization solutions
found by our algorithm over the course of time, in terms of itera-
tions of the while loop in find-next-localization-result (Figure 6).
Although different loop iterations will of course have different run-
ning times depending on the control flow, this still gives a macro-
scale picture of the search behavior. In general, we see a stair-step
pattern, with two different regimes: flat, where we are not finding
any solutions, and steep, where many solutions are being encoun-
tered quickly. The flat regions encompass iteratively localizing the
earlier nodes in the graph traversal and backtracking as we find
conflicts. The step regions, on the other hand, indicate that the al-
gorithm is only performing a small amount of backtracking, and
mostly finding new solutions by repositioning the nodes near the
end of the traversal. In the case of 06/13/04-4, we see a distinct 3-
step pattern; in this case, it is evident that nodes occurring earlier
in the traversal were underconstrained and in fact had three differ-
ent possible consistent arrangements. Note that the runs end with
flat regions, which can sometimes be quite long, because the algo-
rithm is checking to make sure that there are no more consistent
solutions. Thus, if a complete enumeration of solutions is not im-
portant, criteria such as running time, number of solutions found,
or average rate of solution discovery could be used to shorten lo-
calization time while still considering a large number of possible
solutions.

Experiment Measured Consistent CPU time Iterations Solutions Nodes Uniquely
Edges Edges Localized Localized

06/13/04-3 90 81 1.540 ms 561 17 34 32
06/13/04-4 127 118 13.490 ms 1853 187 47 42
06/13/04-5 88 71 + 13 15.650 + 0.910 ms 949 + 145 152 × 16 35 + 9 31 + 6
06/14/04-1 101 97 10.930 ms 2441 10 45 40
06/14/04-2 97 97 1.190 ms 737 4 46 44

Table 2. Number of different localization consistent with the ranging measurements, as found by our algorithm. The measurement graph
of 06/13/04-5 contained two unconnected components which were localized separately.

 1

 10

 100

 0 5 10 15 20 25 30

N
um

be
r

of
 N

od
es

 (
lo

g
sc

al
e)

Number of Different Possible Positions

Fig. 11. Histogram describing the variation in node positions
across multiple consistent solutions. 195 out of 216 node oc-
curences across all experiments are uniquely localized.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 S

ol
ut

io
ns

 F
ou

nd

Iteration Number

06/13/04−3
06/13/04−5 (smaller part)

06/14/04−2

Fig. 12. Number of solutions found vs. iteration number for data
sets with short running times.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500

N
um

be
r

of
 S

ol
ut

io
ns

 F
ou

nd

Iteration Number

06/13/04−4
06/13/04−5 (larger part)

06/14/04−1

Fig. 13. Number of solutions found vs. iteration number for data
sets with long running times.

We can calculate memory requirements from Equation (1) and
Table 2. Using single bytes for all data types except graph-index,
which requires two bytes, we need only 570 bytes of data for ex-
periment 06/13/04-4, which involved the most measurements and
nodes. This modest data memory usage along with the simplicity
of our algorithm allow all memory accesses to remain in L1 cache,
thus contributing to the good performance observed in practice.

6. CONCLUSION

In this report, we have recognized the practical problem of ranging
measurement sparsity as well as the availability of network lay-
out information to assist in localizing sensor networks with sparse
measurements. We have then cast localization as a special case of
subgraph isomorphism, and shown how to adapt an existing high-
performance subgraph isomorphism algorithm to solve the local-
ization problem. Experimental results show that our approach is
very efficient on real measurement data, and indeed supersedes ex-
isting localization algorithms by exposing uncertainty in the form
of multiple consistent solutions, rather than hiding it by arbitrarily
choosing one solution or totally failing to localize a large number
of nodes. Since our implementation operates quickly and uses a
very small amount of memory (570 bytes to localize a 47-node net-
work), in the future we will study the possibility of hosting local-
ization computations entirely on sensor nodes themselves, effec-
tively using the sensor network as an autonomous, scalable parallel
computing platform. Furthermore, we will study other general ap-
proaches of introducing known layout constraints into localization
computations, and how they compare with the technique discussed
above.

7. REFERENCES

[1] YoungMin Kwon, Kirill Mechitov, Sameer Sundresh, WooY-
oung Kim, and Gul Agha, “Resilient localization for sensor
networks in outdoor environments,” Tech. Rep. UIUCDCS-
R-2004-2449, Department of Computer Science, University
of Illinois at Urbana Champaign, 2004.

[2] Christos H. Papadimitriou and Kenneth Steiglitz, Combi-
natorial Optimization: Algorithms and Complexity, Dover,
1998.

[3] E. M. Luks, “Isomorphism of graphs of bounded valence can
be tested in polynomial time,” in Journal of Computer and
System Sciences 25, 1982, pp. 42–65.

[4] B. T. Messmer and H. Bunke, “Subgraph isomorphism in
polynomial time,” Tech. Rep. IAM 95-003, Institute of Com-
puter Science and Applied Mathematics, University of Bern,
1995.

[5] J. R. Ullman, “An algorithm for subgraph isomorphism,”
Journal of the Association for Computing Machinery, vol.
23, no. 1, pp. 31–42, January 1976.

[6] P. Foggia, C. Sansone, and M. Vento, “An improved algo-
rithm for matching large graphs,” in The 3rd IAPR-TC15
Workshop on Graph-based Representations, Ischia, 2001.

[7] P. Foggia, C. Sansone, and M. Vento, “A performance com-
parison of five algorithms for graph isomorphism,” in Pro-
ceedings of the 3rd IAPR TC-15 Workshop on Graph-based
Representations in Pattern Recognition, Ischia, 2001.

[8] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and
James Collins, Global Positioning System: Theory and Prac-
tice, Springer-Verlag, 4th edition, 1997.

[9] Interagency GPS Executive Board,
“http://www.igeb.gov/sa/,” .

[10] Dragos Niculescu and Badri Nath, “Ad hoc positioning sys-
tem (APS),” in GLOBECOM, November 2001.

[11] Dragos Niculescu and Badri Nath, “Ad-hoc positioning sys-
tem using AoA,” in Proceedings of the IEEE/INFOCOM
2003, San Francisco, CA, April 2003.

[12] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust
distributed network localization with noisy range measure-
ments,” in Proceedings of the Second International Confer-
ence on Embedded Networked Sensor Systems (SenSys’04),
November 2004.

[13] Lance Doherty, Kristofer S. J. Pister, and Laurent El Ghaoui,
“Convex position estimation in wireless sensor networks,” in
Proceedings of the 20th Conference of the IEEE Communi-
cations Society (IEEE INFOCOM), 2001, pp. 1655–1663.

[14] Yi Shang and Wheeler Ruml, “Improved MDS-based local-
ization,” in IEEE INFOCOM, 2004.

[15] Yi Shang, Wheeler Ruml, Ying Zhang, and Markus P.J.
Fromherz, “Localization from mere connectivity,” in
Proceedings of the 4th ACM International Symposium
on Mobile Ad Hoc Networking & Computing, Annapo-
lis, Maryland, USA, 2003, pp. 201–212, ACM Press,
http://doi.acm.org/10.1145/778415.778439.

[16] Xiang Ji and Hongyuan Zha, “Sensor positioning in wireless
ad-hoc sensor networks with multidimensional scaling,” in
Proceedings of the 23rd Conference of the IEEE Communi-
cations Society (IEEE INFOCOM), 2004, (to apear).

[17] Peter M. Lee, “Multivariate Analysis: Lec-
ture Notes. Chapter 8: Multidimensional Scaling,”
http://www.york.ac.uk/depts/maths/teaching/pml/mva/tex/8.ps.

