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1 Introduction

The conjunction of conformal symmetry and supersymmetry proved to be a very powerful
tool to analyse the existence and dynamics of fixed points for field theories in dimension
d+1 (with d = 0, . . . , 5). In this line, Maldacena’s AdS/CFT conjecture [1] played a central
role motivating the construction of AdSD backgrounds in consistent theories of gravity.

For the particular case of half-BPS backgrounds with isometries SO(2, D−1)×SU(2),
great progress was achieved. In fact, infinite classes of backgrounds of the form AdSD ×
S2 × Σ8−D have been constructed for the cases D = 2, . . . , 7. For some values of D,
these backgrounds are described in terms of a potential function. This potential satisfies a
Laplace equation which needs of initial and boundary conditions to be well-defined.

It is in these initial or boundary conditions that the healthy-character of the back-
ground is encoded and where the connection with the dual CFT is made concrete. Indeed,
the presence of a ‘rank’ function (so called as it encodes the ranks of the colour and flavour
groups of the field theory) turns out to be the initial condition of the Laplace equation. For
the cases D = 2, 3, 5, 7 the formalism, backgrounds and dual field theories are respectively
described in the papers [2]–[6] (for AdS2), [7–10]–[15] (for AdS3), [16]–[20, 21] (for AdS5)
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and [22, 23]–[27] (for AdS7). The cases D = 4 and D = 6 corresponding with SCFTs in
dimension three and five have a very elegant formulation in terms of holomorphic func-
tions, but the connection with the dual SCFT is a bit more laborious. See [28]–[34] (for
AdS4) and [36]–[46] (for AdS6) respectively. The case D = 6 was recently written in the
‘electrostatic’ context (Laplace equation and boundary-initial conditions) in [47].

A first goal of this paper is to complete the picture and write the case of AdS4 in this
electrostatic formalism. In fact, we present a holographic dual formulation of N = 4, d=3
superconformal field theories (linear quivers), involving AdS4 × S2 × S2 backgrounds in
type IIB. Our backgrounds are obtained by reformulating the solutions in [28]. The case
we deal with in this paper is that of balanced linear quivers, that is for each gauge node the
number of fields transforming in the (bi)fundamental is twice the rank of the gauge group
(or Nf = 2Nc).

The contents of this work are distributed across the coming sections as follows.
In section 2 we study the background, the defining Laplace PDE, its initial and bound-

ary conditions. Possible singular behaviours in the spacetime are discussed.
In section 3 we study the Page charges. Imposing their quantisation determines the

range of some coordinates and the character of the rank function (the initial condition for
the Laplace equation), that we determine to be a piecewise, continuous, linear function.
We study the associated Hanany-Witten set-up and linking numbers, giving a holographic
expression for them. We algorithmically associate a balanced linear quiver with a given
supergravity solution. We also find a generic expression for the holographic central charge.
This is a purely geometric quantity that counts the number of degrees of freedom of the
dual CFT. Usually, this is also identified as proportional to the Free Energy of the CFT
when formulated on a three-sphere.

In section 4 we discuss generic examples of linear quivers and study all the quantities
defined in section 3: charges, Hanany-Witten set-ups, linking numbers, central charge. We
discuss special limits of our examples and compare them with previously found results.

Section 5 summarises some known field theoretical aspects of the dual 3d N = 4
SCFTs, dwelling in particular with Mirror symmetry. We present a purely geometric version
of Mirror symmetry, mapping balanced quivers into balanced quivers. This geometric
correspondence exchanges between NS5 and D5 branes and the dimensions of the Higgs
and Coulomb branches of the theories, all being nicely realised as a simple operation in
the string description. As a spin-off, we present a (not-mirror) transformation that maps
a balanced linear quiver into a different one (still balanced and linear), both sharing the
same central charge. Some of the content of this section might illuminate future work and
this, together with other possible lines of investigation, are presented in section 6, with a
summary of the main results obtained in the paper and some concluding remarks. Various
extensive and dense appendices complement this paper.

2 Geometry

We start this section by writing explicitly the infinite family of type IIB supergravity
backgrounds we work with.
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We are after solutions dual to 3d N = 4 super-conformal field theories. This im-
plies that the background must have isometries SO(2, 3)× SU(2)C × SU(2)H and preserve
eight Poincaré supercharges to match the global symmetries of the field theory. Hence,
our geometries must contain an AdS4 factor and a couple of two spheres S2

1(θ1, ϕ1) and
S2

2(θ2, ϕ2). There are two extra directions labelled by (σ, η). The presence of SO(2, 3) ×
SU(2)C × SU(2)H isometries allow for warp factors that depend only on (σ, η). The back-
ground must have the form AdS4 × S2

1 × S2
2 × Σ2(σ, η). The Ramond and Neveu-Schwarz

fields must also respect the above mentioned isometries.
The preservation of four Poincaré supersymmetries implies that the generic type IIB

background can be casted in terms of a function V (σ, η). In string frame the solution reads

ds2
10,st = f1(σ, η)

[
ds2(AdS4) + f2(σ, η)ds2(S2

1) + f3(σ, η)ds2(S2
2) + f4(σ, η)(dσ2 + dη2)

]
,

e−2Φ = f5(σ, η), B2 =f6(σ, η)Vol(S2
1), C2 =f7(σ, η)Vol(S2

2), C̃4 =f8(σ, η)Vol(AdS4),

f1 = π

2

√
σ3∂2

ησV

∂σ(σ∂ηV ) , f2 =−∂ηV ∂σ(σ∂ηV )
σΛ , f3 = ∂σ(σ∂ηV )

σ∂2
ησV

, f4 =−∂σ(σ∂ηV )
σ2∂ηV

,

f5 = −16Λ∂ηV
∂2
ησV

, f6 = π

2

(
η−

σ∂ηV ∂
2
ηV

Λ

)
, f7 =−2π

(
∂σ(σV )−

σ∂ηV ∂
2
ηV

∂2
ησV

)
,

f8 = −π2σ2
(

3∂σV +
σ∂ηV ∂

2
ηV

∂σ(σ∂ηV )

)
, Λ=∂ηV ∂

2
ησV +σ

(
(∂2
ησV )2 + (∂2

ηV )2
)
. (2.1)

Where the fluxes are defined from the potentials as follows,

F1 = 0, H3 = dB2 F3 = dC2, F5 = dC̃4 + ∗dC̃4. (2.2)

Using Mathematica, we have checked that the configuration in eq. (2.1) is solution to the
Type IIB equations of motion (see appendix A), if the function V (σ, η) satisfies,

∂σ
(
σ2∂σV

)
+ σ2∂2

ηV = 0. (2.3)

This infinite family of solutions is equivalent to the backgrounds described by D’Hoker,
Estes and Gutperle in [28]. We prove this in appendix B.

For the backgrounds in eq. (2.1) to be well defined, e2Φ and the metric warping func-
tions must be real and positive. For the class of solutions we analyse in the next sections,
we assume the symmetry V (−σ, η) = −V (σ, η). Under the ‘parity’ change σ → −σ, the
quantity Λ(−σ, η) = −Λ(σ, η). The reader can check that the functions f1, . . . , f5 are in-
variant under this ‘parity’ transformation. Hence, the solution for negative σ is well defined
as long as the one with positive σ is. The required positivity condition for the dilaton and
warping functions is

− σ
∂2
ησV

∂ηV
≥ 1 . (2.4)

As a direct result of the above condition we have

σΛ = σ∂ηV ∂
2
ησV +

(
|σ∂2

ησV |2 + (σ∂2
ηV )2) ≥ σ∂ηV ∂2

ησV + |σ∂ηV ∂2
ησV |+ (σ∂2

ηV )2 ≥ 0 ,

σ
∂σ(σ∂ηV )
σ∂2

ησV
= 1 + ∂ηV

σ∂2
ησV

≥ 0 . (2.5)

The positivity of f1, f2, f3, f4, f5 is derived as a consequence of σΛ ≥ 0 and eq. (2.4).
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2.1 Study of the partial differential equation

Let us now study the partial differential equation (2.3). Define V (σ, η) = V̂ (σ,η)
σ and

V̂ (σ, η) = ∂ηŴ (σ, η). Consider the coordinates to range in 0 ≤ η ≤ P , where P is a real
number, and −∞ < σ < ∞. The differential equation (2.3) must be supplemented by
boundary and initial conditions. In terms of Ŵ (σ, η) the problem reads

∂2
σŴ (σ, η) + ∂2

ηŴ (σ, η) = 0, (almost everywhere) (2.6)
Ŵ (σ, η = 0) = 0, Ŵ (σ, η = P ) = 0,

∂σŴ (σ = 0+, η)− ∂σŴ (σ = 0−, η) = −R(η).

As we discuss in the following sections, the function R(η) is the input determined by the
dual quiver field theory. Notice that, since Ŵ is an harmonic function, we have that also
V̂ is harmonic, which in turn implies (2.3).

To solve the problem in eq. (2.6), we separate variables and impose the boundary
conditions to find,

V̂ (σ, η) =
∞∑
k=1

ak cos
(
kπη

P

)
e−

kπ|σ|
P , Ŵ (σ, η) =

∞∑
k=1

ak

(
P

kπ

)
sin
(
kπη

P

)
e−

kπ|σ|
P . (2.7)

We have used that the function R(η) has a Fourier decomposition,

R(η) =
∞∑
k=1

2ak sin
(
kπη

P

)
, ak = 1

P

∫ P

0
R(η) sin

(
kπη

P

)
. (2.8)

2.2 Asymptotic behaviour

Let us briefly study the asymptotic behaviour of our backgrounds. We start with the
region σ → ±∞. We combine the expressions in appendix C together with the solutions
in eq. (2.7). In particular, for |σ| → ∞, we use eqs. (C.7) and write,

ds2
st

∣∣∣
σ→±∞

∼ π|σ|
2 ds2(AdS4) + dη2

2P + P

2a1
sin2

(
πη

P

)
ds2(S2

1) + π|σ|
2 ds2(S2

2) + 1
2P dσ

2,

e−2Φ ∼ e−
2π|σ|
P

|σ|
. (2.9)

Performing a change of coordinates |σ| → − log r, with r small, one can notice that the
metric and the dilaton highlights the presence of a (p, q) five brane [36] with support
on AdS4 × S2

2 .
Let’s now consider the asymptotic behaviour at the physical boundary η ∼ 0, P . We

will explicit deal with the case η → 0 since the discussion for the other boundary is identical.
The expressions for fi(σ, 0) can be read from eq. (C.8); schematically, we have

ds2
st

∣∣∣
(0,0)
∼ ds2(AdS4) + dη2 + η2ds2(S2

1) + dσ2 + ds2(S2
2) , e−2Φ ∼ 1 , (2.10)

where we have omitted functions of σ which are not singular at least for σ 6= 0. Thus near
to η ∼ 0 we have a regular AdS4 × S2 × R4 geometry.
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The behaviour in the corner (σ, η) = (0, 0) requires some more analysis, since in that
case the functions in (C.8) can lead to a singular metric. Notice that, however, the dilaton
is always finite, so if these singularities are present it would be hard to give them an
interpretation in terms of branes. One possibility is to restrict our analysis to the R(η)
which leads to a regular metric. We can do that by choosing R(η) to be linear near to
η = 0, so that we have

∂2
ηR|η∼0 = ∂2

ησV̂ |(σ,η)∼(0,0) = 0 ⇐⇒
∑
k

k3ak = 0 . (2.11)

With this ansatz, the metric has the following asymptotic behavior (see eq. (C.9) for the
full expansion of the warping functions fi)

ds2
st

∣∣∣
(0,0)
∼ ds2(AdS4) + dη2 + η2ds2(S2

1) + dσ2 + σ2ds2(S2
2), e−2Φ ∼ 1, (2.12)

which is a regular AdS4×R6 geometry. It is particularly interesting to notice that requiring
R(η) to be linear in (σ, η) = (0, 0) is not actually a restriction but a necessary condition
for having the Page charges properly quantised, as we are going to see in the next section.

3 Charges and other important quantities

To start, we write the expressions of the Page fluxes F̂p = Fp ∧ e−B2 . For the Ramond and
NS5 fields in our configuration of eq. (2.1), we have

F̂3 = F3, F̂5 = F5 −
(
B2 −

π∆
2 Vol(S2

1)
)
∧ F3. (3.1)

Note that we have performed a large gauge transformation B2 →
(
B2 − π∆

2 Vol(S2
1)
)
, that

will be useful below. The Page charges are defined as

QDp/NS5 = 1
(2π)7−pα′

∫
Σ8−p

F̂8−p. (3.2)

In the following, we will set α′ = 1. Let us study the charges associated with H3, F̂5, F̂3.

NS5 branes charge. First, we analyse the charge of NS5 branes. We choose a three-
cycle to perform the integration of H3,

Σ3 = [η, S2
1(θ1, ϕ1)]σ=±∞. (3.3)

We then find,

QNS5 = 1
4π2

∫
Σ3
H3 = 1

π

∫ P

0
∂ηf6(σ → ±∞, η) = P −

σ∂ηV ∂
2
ηV

2Λ

]σ→±∞,P
σ→±∞,0

= P. (3.4)

In the last two steps we have summed up the contributions at σ = ±∞ and used eq. (C.10).
In conclusion, the total number of NS5 branes is proportional to the length of the η-interval.

– 5 –
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D3 branes charge. To calculate the number of D3 branes we integrate the expression
for the Page flux F̂5 in eq. (3.1). The five manifold on which we integrate F̂5 is defined as

Σ5 = [S2
1 , S

2
2 , σ]η=fixed. (3.5)

We implemented a large gauge transformation as in (3.1), below we determine the param-
eter ∆ to have a quantised number of D3 branes in each interval of the η-coordinate.

Using the potential Ŵ defined above eq. (2.6) we are able to compactly write the
relevant component of F̂5 as,

F̂5
∣∣∣
Σ5

= F5 −
(
B2 −

π

2 ∆Vol(S2
1)
)
∧ F3

∣∣∣
Σ5

= π2∂σ (M1 +M2) Vol(S2
1) ∧Vol(S2

1) ∧ dσ.

M1 =
ησ(∂2

ηV )(∂ηV )− σ(∂ηV )2

∂2
ησV

, M2 = ∂σ
(
Ŵ − (η −∆)∂ηŴ

)
. (3.6)

Then, we compute

ND3 = 1
(2π)4α′

∫
Σ5
F̂5 = π2 × (4π)2

(2π)4

∫
dσ∂σ (M1 +M2) = 2 (M1 +M2)

]σ→∞,η
σ=0+,η

. (3.7)

SinceMi are even, we have considered twice the contribution for σ > 0.
Using the expansions in eqs. (C.11)–(C.13), the reader can check that the contribution

ofM1 is vanishing at σ →∞ and at σ = 0. Inspecting the expression forM2 in eq. (C.13)
shows that it vanishes for σ → ∞. In summary, the charge of D3 branes is given by M2
evaluated at σ = 0, and using the definition of R in eq. (2.8) we get

ND3 = 2∂σ
(
Ŵ − (η −∆)∂ηŴ

) ∣∣∣
σ=0+

= R(η)− (η −∆)R′(η). (3.8)

This expression indicates that the rank function used as input for the partial differential
equation must be piecewise linear. In fact, consider a piecewise linear and continuous
function defined in intervals

R(η) =


N1η 0 ≤ η ≤ 1
Nl + (Nl+1 −Nl)(η − l) l ≤ η ≤ l + 1, l := 1, . . . , P − 2
NP−1(P − η) (P − 1) ≤ η ≤ P.

The expression in eq. (3.8) indicates that, after choosing ∆ = k in the interval [k, k + 1]
there are Nk D3 branes.

D5 brane charge. To calculate the charge of D5 branes, we use

ND5 = 1
4π2

∫
Σ̂3
F3, Σ̂3 = [η, S2

2(θ2, ϕ2)]σ=0+ . (3.9)

We find,

ND5 = − 1
π

∫ ηf

ηi

dη∂ηf7(σ = 0+, η) = − 1
π

(f7(0, ηf )− f7(0, ηi)) .

– 6 –
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t x1 x2 r θ1 ϕ1 θ2 ϕ2 σ η

NS5 − − − · · · − − − ·
D5 − − − − − − · · · ·
D3 − − − · · · · · · −

Table 1. The Hanany-Witten set up, indicating the directions over which each brane extends.

Using eq. (C.14), the reader can check that

ND5 = R′(ηi)−R′(ηf ). (3.10)

This result is expressing the number of D5s between the points ηi and ηf as computed by
the differences in slope of the rank function at those two points. For a piece-wise continuous
and linear rank function as the one obtained in quantising the charge of D3 branes, we find
that the charge of D5 branes is also quantised.

In summary, the rank-function is the input for the PDE problem in eq. (2.6). To have
quantised charges for Neveu-Schwarz five branes, we need the size of the interval P to be an
integer-consistently with the boundary conditions in eq. (2.6). To have quantised numbers
of D3 and D5 branes, the rank function must be a piece-wise linear and continuous function
of the form

R(η) =


N1η 0 ≤ η ≤ 1
Nl + (Nl+1 −Nl)(η − l) l ≤ η ≤ l + 1, l := 1, . . . , P − 2
NP−1(P − η) (P − 1) ≤ η ≤ P.

The number of D3 (colour) branes and D5 (flavour) branes in the interval [k, k + 1] and
the total number of branes are given by,

ND3[k, k + 1] = Nk, ND5[k, k + 1] = 2Nk −Nk+1 −Nk−1, (3.11)

N total
D3 =

∫ P

0
R(η)dη, N total

D5 = R′(0)−R′(P ), N total
NS5 = P.

3.1 Hanany-Witten set-up and linking numbers

The counting of branes described above encodes in the rank function R(η) the ‘kinematic
data’ of the dual conformal field theory. The presence of P NS5 branes along the η-direction
suggest that we should place one NS5 at each integer value of η. In between the kth and
(k+ 1)th NS5-branes, we have Nk D3 branes and NFk = 2Nk −Nk+1−Nk−1 D5 branes as
indicated in eq. (3.11). Analysing the Ramond fields F̂5 and F̂3 suggests that the branes
extend along the directions of space time as indicated in table 1.

In this Hanany-Witten set-up [49], the field theory is realised on the t, x1, x2 directions.
The D3 branes have one compact direction leading to an effective (2 + 1)-dimensional
dynamics, for each stack of Nk branes, that give place to an U(Nk) gauge group. The D5
branes are effectively realising an SU(NFk) global symmetry, hence correspond to flavour
branes. The NS5 branes provide the boundary conditions necessary for the D3 to end on

– 7 –
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(a)

NS51

F2 D5 FP−1 D5F1 D5

NS52 NS53 NS5P−1 NS5P

· · ·

N1 D3 N2 D3 Np−1 D3
N1

F1

N2

F2

· · ·
NP−1

FP−1

(b)

Figure 1. The Hanany-Witten brane set up, showing the Nk (colour) D3 branes, the Fk (flavour)
D5 branes and the NS5 branes. The associated quiver field theory is also shown.

them. We represent the system as in figure 1. One interesting quantity associated with
these Hanany-Witten set-ups are the linking numbers. These are topological quantities
(invariant under Hanany-Witten moves) associated with Neveu-Scharz and Ramond five
branes. For the ith NS5 brane and the jth D5 brane they are defined in terms of the number
of branes to the left and right of a given one,

L̂NS5i =
(
nrightD3 − n

left
D3

)
+ nleftD5 , LD5j =

(
nrightD3 − n

left
D3

)
+ nrightNS5 . (3.12)

For the systems described above, the linking numbers can be seen to have the values,

L̂1 = L̂2 = · · · = L̂P = R′(0), LD5,j = P − j. (3.13)

These satisfy
NNS5∑
i=1

L̂i =
ND5∑
j=1

LD5,j = N̂ . (3.14)

Therefore with each quiver we associate two partitions of the integer N̂ . The partitions
are made out of the linking numbers of NS5 and D5 branes,

ρ̂ = (L̂NS1, L̂NS2, . . . , L̂NSP ), ρ = (LD51, LD52, . . . , LD5). (3.15)

The associated quiver field theories are referred to as T ρ̂ρ
[
SU(N̂)

]
. Gaiotto and Witten [57]

proposed that these field theories flow to an interacting conformal point at low energies if
a relation between partitions ρ̂T ≥ ρ is satisfied. The authors of the work [29] translated
this condition into ND5,k ≥ 2ND3,k − ND3,k+1 − ND3,k−1. The formulation we presented
in terms of a rank functions constrains us to the balanced quiver for which the equality is
satisfied. We leave for future study the unbalanced situation.

3.2 Holographic central charge

Let us discuss now the holographic central charge. This is a quantity, instrumental in
the tests of the duality between the backgrounds in (2.1) and the conformal field theories
described in the previous section. The holographic central charge is defined as a weighted
version of the volume of the internal manifold (the part of the space that is not AdS4). The
definition of this quantity is carefully discussed in [50]–[51], we refer the reader to those

– 8 –
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references for the general definitions. The application to our particular case is discussed
below.

We use coordinates for AdS4 such that

ds2
AdS4 = e2ρdx2

1,2 + dρ2. (3.16)

We quote the relevant quantities that can be read from the metric and dilaton in eq. (2.1)

a = f1(σ, η)e2ρ, b = e−2ρ, d = 2,

ds2
int = f1(σ, η)

[
f2(σ, η)ds2(S2

1) + f3(σ, η)ds2(S2
2) + f4(σ, η)(dσ2 + dη2)

]
,

det[gint] = f6
1 f

2
2 f

2
3 f

2
4 sin2 θ1 sin2 θ2,

Vint =
∫
Mint

√
det ginte−4Φad =

[
16π2

∫
dσdηf4

1 f2f3f4f5

]
e2ρ = N e2ρ,

H = V 2
int = N 2e4ρ, H ′ = 4H,

chol = dd

GN
bd/2

H
2d+1

2

(H ′)d = N
4GN

= N
32π6 . (3.17)

We have used GN = 8π6α′4g2
s = 8π6 (in units where α′ = gs = 1). Using the definitions

for the dilaton and the warp factors given in eq. (2.1), we have

N = −16π6
∫
dσdη(σ2∂ηV )∂σ(σ∂ηV ) = −16π6

∫
dσdη σ(∂ηV̂ )(∂2

σηV̂ ). (3.18)

We use the expressions in appendix C, perform explicitly the integral over η and after that
the σ-integral.1 We find,

N = 4π7
∞∑
k=1

ka2
k, chol = π

8

∞∑
k=1

ka2
k. (3.19)

Let us now evaluate explicitly this formula for a generic balanced quiver, characterised by
a generic rank function.

3.2.1 Generic balanced quiver

In this section we derive an analytic expression for the holographic central charge in
eq. (3.19) in the case of a generic quiver field theory. Consider a generic balanced 3d
N = 4 linear quiver and its associated rank function

N1

F1

N2

F2

· · ·
NP−1

FP−1

; R(η) =



N1η η ∈ [0, 1]
...

Nk + (Nk+1 −Nk)(η − k) η ∈ [k, k + 1]
...

NP−1(P − η) η ∈ [P − 1, P ] .

(3.20)

1Using that
∫ P

0 sin
(
kπη
P

)
sin
(
lπη
P

)
dη = P

2 δk,l.
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From the rank function we can compute the Fourier coefficients as defined in eq. (2.8)

ak = 1
P

P−1∑
j=0

∫ j+1

j
[Nj + (Nj+1 −Nj)(η − j)] sin

(
kπη

P

)
dη , with N0 = NP = 0 ,

ak = 1
π2k2

P−1∑
j=0

kπ

[
Nj cos

(
kπj

P

)
−Nj+1 cos

(
kπ(j + 1)

P

)]
+

P (Nj+1 −Nj)
[
sin
(
kπ(j + 1)

P

)
− sin

(
kπj

P

)]
. (3.21)

The first line of ak sums to zero. The second line, can be rewritten as

ak = P

π2k2

P−1∑
j=0

Fj sin
(
kπj

P

)
, (3.22)

where Fj = 2Nj − Nj+1 − Nj−1 — here we used the balanced character of the quiver.
Plugging this into (3.19) we obtain our general formula for the holographic central charge
to be

chol = P 2

8π3

∞∑
k=1

P−1∑
j,l=0

FjFl
k3 sin

(
kπj

P

)
sin
(
kπl

P

)

= − P 2

32π3

∞∑
k=1

P−1∑
j,l=0

FjFl
k3

(
e
iπk
P

(j+l) + e−
iπk
P

(j+l) − e
iπk
P

(j−l) − e−
iπk
P

(j−l)
)

= − P 2

16π3

P−1∑
j,l=0

FjFlRe
[
Li3

(
e
iπk
P

(j+l)
)
− Li3

(
e
iπk
P

(j−l)
)]

.

(3.23)

This expression should be compared with equation (70) in the work [34], see also [35].
The authors of [34] derived a generic expression for the Free Energy on a three-sphere
of a balanced quiver using localisation and matrix model methods. Just like it occurs in
different dimensions, the holographic central charge is proportional to the Free Energy of
the CFT on a sphere.

Had we considered a situation for which N0, NP are in general nonzero, the expression
in eq. (3.23) needs to be supplemented to include the effects of the two boundaries. We
discuss this interesting situation in appendix D.

In what follows, we will discuss some illustrative examples of balanced quivers. We will
start giving the rank function, compute the Fourier coefficients, the brane charges and the
linking numbers of the brane system. We will precisely calculate the holographic central
charge emphasising the scaling with the various parameters of the CFT.

4 Some examples

The explicit discussion of examples gives the interested reader a better understanding of
the formalism we developed. Also, it allows a more intuitive comprehension of the field
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NS51

NP
P−S D5

NS52 NS53 NS5S−1 NS5S NS5S+1 NS5P−1 NS5P

· · ·

N 2N SN
SN(P−S−1)

P−S

· · ·
SN
P−S

N 2N
· · ·

SN

SN(P−S−1)
P−S

SN(P−S−2)
P−S

· · ·
SN
P−S

NP
P−S

Figure 2. The Hanany-Witten and quiver associated with a generic triangular rank function. As
usual, vertical lines represent NS-five branes. Horizontal lines and circular nodes denote D3 branes
and crosses and square nodes indicate D5 branes.

theory kinematic and dynamical aspects. Below, we compute the various quantities for
which we derived generic expressions in the previous sections. We discuss these quantities
in examples of increasing level of sophistication.

4.1 Generic triangular rank function

Our first example is described by the rank function

R(η) =

Nη 0 ≤ η ≤ S
NS

(P−S)(P − η) S ≤ η ≤ P,

where we require N/(P − S) to be integer, this condition will be needed to have properly
quantised Page charges. The first derivative of the rank function is

R′(η) =

N 0 ≤ η ≤ S
− NS

(P−S) S ≤ η ≤ P,

and R′′ = NP
(P−S)δ(η − S). The quiver and Hanany-Witten set-up associated with the rank

function are given in figure 2.
The charge of D3 and D5 in each interval can be read from the rank function and its

second derivative. The total number of branes follows from eq. (3.11)

Qtotal
D3 =

∫ P

0
R(η)dη =

S∑
j=1

jN +
P−S∑
j=1

NS

(P − S)(P − S − j) = NPS

2 , (4.1)

Qtotal
D5 = R′(0)−R′(P ) = PN

(P − S) , Qtotal
NS5 = P .

For this family of quivers we calculate the Fourier coefficient of the rank function using
eqs. (2.8), (3.21). We find,

ak = NP 2

(P − S)π2k2 sin
(
kπS

P

)
. (4.2)
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The linking numbers can be computed using the definitions in eq. (3.12), the Hanany-
Witten set-up of figure 2, and the holographic expressions in eq. (3.13),

L̂NS51 = L̂NS52 = · · · = L̂NS5P = R′(0) = N, (4.3)
LD51 = LD52 = · · · = LD5PN/(P−S) = P − i = P − S.

These values satisfy the relation in eq. (3.14), ∑NS5 L̂i = ∑
D5 Lj = NP . These numbers

define two partitions of N̂ = NP ,

ρ̂ = (N,N,N,N . . . , N ) = ([N ]P ), ρ = (P − S, P − S, . . . , P − S) =
(

[P − S]
PN

(P−S)

)
,

(4.4)

and the quiver in figure 2 represents the theory T ρ̂ρ [SU(NP )].
We can compute the holographic central charge using eq. (3.19) and the Fourier coef-

ficient in eq. (4.2),

chol = N2P 4

32π3(P − S)2

[
2ζ(3)− 2Re Li3

(
e

2πiS
P

)]
. (4.5)

This family of quivers have some interesting special cases. Indeed, consider the case S =
(P−1), the expressions derived in eqs. (4.1)–(4.5) are valid. Interestingly, in the holographic
limit (P being very large), we find

lim
P→∞

chol = N2P 2

8π logP. (4.6)

Another interesting case is the ‘symmetric quiver’ for which 2S = P . In this case we find,

lim
P→∞

chol = 7N2P 2

16π3 ζ(3). (4.7)

It is also interesting the case in which S is some fixed integer, not scaling with P . The
holographic limit for this situation gives,

lim
P→∞

chol = N2S2

8π log (P ) . (4.8)

The expression of the holographic central charge and its limiting cases clearly display the
non-perturbative character of the result. Let us analyse a more elaborated example.

4.2 Generic trapezoidal rank function

The rank function corresponding to this more sophisticated example is,

R(η) =


Nη 0 ≤ η ≤M
NM M ≤ η ≤M + S
MN
Q (M + S +Q− η) M + S ≤ η ≤M + S +Q.
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1

N D5
MN
Q

D5

2 3 M − 1 M M + 1 M + S − 1 M + S M + S + 1

M + S +Q− 1

M + S +Q

· · ·

N 2N MN MN

· · ·

MN
MN(Q−1)

Q

· · ·
MN
Q

N 2N
· · ·

MN MN
· · ·

MN

MN(Q−1)
Q

MN(Q−2)
Q

· · ·
MN
Q

N
MN
Q

S nodes

Figure 3. The Hanany-Witten set-up and the associated quiver for the trapezoidal rank function.
The conventions are those described previously.

In this case P = M + S + Q and we also require that MN is a even multiple of Q. The
second derivative of the rank function is

R′′ = Nδ(η −M) + MN

Q
δ(η − S −M). (4.9)

The quiver and Hanany-Witten set-up associated with the rank function are given in fig-
ure 3. The reader can check that for both examples the balanced-quiver condition is
satisfied. Let us perform the same calculations we did in the previous example.

The charges of D3 and D5 in each interval can be read from the rank function and its
second derivative. The total number of branes follow from eq. (3.11)

Qtotal
D3 =

∫ P

0
R(η)dη =

M∑
j=1

jN +NMS +
Q−1∑
j=1

NM

Q
(Q− j) = NM

2 (P + S)

Qtotal
D5 = R′(0)−R′(P ) = N + MN

Q
, Qtotal

NS55 = P = M + S +Q. (4.10)

We calculate the Fourier coefficient of the rank function using eq. (3.21). We find,

ak = NP

Qπ2k2

[
Q sin

(
kπM

P

)
+M sin

(
kπ(M + S)

P

)]
. (4.11)

The linking numbers can be computed using the definitions in eq. (3.12), the Hanany-
Witten set-up of figure 3, and the holographic expressions in eq. (3.13),

L̂NS51 = L̂NS52 = · · · = L̂NS5P = R′(0) = N, (4.12)
LD51 = LD52 = . . . LD5N = P − i = (S +Q),
LD51′ = LD52′ = · · · = LD5′

MN/Q
= P − i = Q.

We have two stacks of D5 branes (distinguished by a ′-symbol). These are located at
i = M and i′ = M + S. These values for the linking numbers satisfy the relation in
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eq. (3.14), ∑NS5 L̂i = ∑
D5 Lj = N(M + S + Q) = PN . These numbers define two

partitions of N̂ = NP ,

ρ̂ = (N,N,N,N . . . , N ) =
(
[N ]P

)
,

ρ = (S +Q,S +Q, . . . , S +Q;Q,Q, . . . Q) =
(

[S +Q]N ; [Q]
MN
Q

)
,

and the quiver in figure 3 represents the theory T ρ̂ρ [SU(N(M + S +Q))].
We can compute the holographic central charge using eq. (3.19) and the Fourier coef-

ficient in eq. (4.11),

chol = N2(M +Q+ S)2

16π3Q2 Re
[
(M2 +Q2)ζ(3)−Q2 Li3

(
e

2πiM
P

)
−M2 Li3

(
e

2iπ(M+S)
P

)
−2MQ Li3

(
e
iπ(2M+S)

P

)
+ 2MQLi3

(
e
iπS
P

)]
. (4.13)

The holographic limit (P = M+Q+S being very large) is more subtle than in the previous
example as we can take M very large, keeping fixed Q,S and the other two combinations.
We find

lim
M→∞

chol = N2M2

8π log (M) , Q,S are fixed.

lim
S→∞

chol = N2M2

8π log
(
S2
)
, Q,M are fixed.

lim
Q→∞

chol = N2M2

8π log (Q) , M,S are fixed.

Another interesting situation is the ‘symmetric quiver’ for which Q = M and P = 2Q+S.
In this case we find,

chol = N2(2Q+ S)2

32π3 Re
[
7ζ(3)− 2Li3

(
e

2πiQ
P

)
− 2Li3

(
e

2iπ(Q+S)
P

)
+ 4Li3

(
e
iπS
P

) ]
.

lim
Q→∞

chol = 7
4π3Q

2N2ζ(3), S is fixed.

lim
S→∞

chol = N2Q2

4π log (S) , Q is fixed. (4.14)

As a consistency check, notice that the second result in eq. (4.14) is the same as that in
eq. (4.7) for Q = P

2 and S = 0.

5 Mirror symmetry

Many 3d N = 4 gauge theories enjoy a duality known as mirror symmetry [54, 55]. Our
goal in this section is to provide a holographic perspective on mirror symmetry through
some of the machinery introduced in the previous sections. In order to keep the discussion
self-contained, we will proceed by recalling relevant aspects of 3d N = 4 supersymmetry
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and introduce the notion of mirror symmetry. We will then go over how mirror symme-
try is derived from the Hanany-Witten setup by studying a specific example and provide
consistency checks from holography, by matching the holographic central charges of the
mirror pair.

The 3d N = 4 supersymmetry algebra admits two short representations known as
vector multiplets and hypermultiplets respectively. The bosonic components of a vector
multiplet include a gauge field and 3 real scalars, while the bosonic fields in a hypermul-
tiplet are comprised of two complex (or four real) scalars. Under the SU(2)C×SU(2)H
R-symmetry, the scalars in the vector multiplet form a (3,1), while the hypermultiplet
scalars form a (1,2). A 3d N = 4 gauge theory is specified by a choice of gauge group
G, to which one associates a vector multiplet in the adjoint representation of G, as well as
choice of matter content, specified by hypermultiplets transforming in representation ρ of
G. Since Maxwell’s theory in 3d is dual to a periodic scalar, one can trade out the gauge
field component of a free vector multiplet with another scalar field. Upon doing so, the field
content of a vector multiplet and hypermultiplet now become almost indistinguishable.2
The only way one can tell them apart is by their transformation under the R-symmetry
group, and the dualised vector multiplet is referred to as a twisted hypermultiplet. This
may be viewed as a precursor, or hint of mirror symmetry; mirror symmetry is a non-trivial
generalisation of this curious observation about free vector multiplets and hypermultiplets,
but now applied to interacting quantum field theories. The moduli space of vacua of a 3d
N = 4 theory is generically comprised of a Coulomb branchMC , a Higgs branchMH and
a mixed branch Mmix. The Higgs branch, parameterised by VEVs of scalars in the hy-
permultiplet, is protected by a holomorphic non-renormalisation theorem [58], and as such
is classically exact. The Coulomb branch is classically parameterised by VEVs of scalars
in the twisted hypermultiplet, which are the coordinates of the Coulomb branch at large
VEVs. However in the quantum theory one has to replace the complex scalar built out of
one of the 3 scalars and the dual photon by a BPS monopole operator. Denoting by nh
and nv the number of hypermultiplets and vector multiplets respectively, the quaternionic
dimension of the Higgs and Coulomb branches for a generic linear quiver (3.20) are given by

dim (MC) = nv =
P−1∑
i=1

N2
i ;

dim (MH) = nh − nv =
P−1∑
i=1

NiFi +
P−2∑
i=1

NiNi+1 −
P−1∑
i=1

N2
i ,

(5.1)

where in the second line, the first sum is the contribution of fundamental hypers attached
to each node, whereas the second sum counts bi-fundamental hypers between neighbouring
gauge nodes. Gauge theories in 3d enjoy a topological or magnetic symmetry associated
with the current

Jtop = ?TrF , (5.2)
2One might be worried about the fact that the dual scalar is a compact scalar. Indeed the dual photon

is an S1-valued scalar, where the radius of the S1 is proportional to the gauge coupling g2. However, in the
infra-red limit g2 →∞ this scalar decompactifies and one has 4 real-valued scalars in the vectormultiplet.
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whose conservation follows from the Bianchi identity. For quiver theories of the type we
are interested in (3.20), there is one such conserved current for each gauge group factor
and so the magnetic symmetry is classically Gcl

C =U(1)P−1, while the flavour symmetry is
given by GH = S

[∏P−1
i=1 U (Fi)

]
, together with the R-symmetry the full classical 0-form

global symmetry of quiver theories of the type (3.20) is

U(1)P−1 × S
[
P−1∏
i=1

U (Fi)
]
× SU(2)C × SU(2)H . (5.3)

In the quantum theory, the magnetic symmetry can be enhanced to a non-abelian symme-
try. In [57] Gaiotto and Witten conjectured the pattern of enhancement of the magnetic
symmetry by analysing the monopole spectrum. Their conjecture states that for a quiver
of the type in eq. (3.20), whenever a chain of ni adjacent nodes are balanced, there is an
enhancement of the form U(1)nI ⊂ SU(nI + 1). Hence the full quantum 0-form symmetry
of such quivers takes the form

U(1)P−1−
∑

I∈B nI ×
∏
I∈B

SU(nI + 1)× S
[
P−1∏
i=1

U (Fi)
]
× SU(2)C × SU(2)H , (5.4)

where the index I takes values in the set B of chains of balanced nodes. Mirror symmetry
then relates pairs of 3d N = 4 theories where the flavour symmetry on one side is manifest
as the magnetic or topological symmetry on the magnetic side. Moreover the two R-
symmetry factors as well as the Coulomb and Higgs branches are also exchanged under
mirror symmetry.

From the type IIB perspective, mirror symmetry is a consequence of S-duality [49]. The
flavour symmetry of the low energy 3d theory is given by the gauge symmetry on the D5s,
while its topological symmetry in the string embedding corresponds to the gauge symmetry
on the NS5 worldvolume. Indeed, this is consistent with the field theory expectation since
S-duality exchanges D5s and NS5s, while leaving D3 branes invariant. Note that in the type
IIB embedding the R-symmetry is realised as the SO(3)C×SO(3)H rotational symmetry of
the three coordinates along the NS5 (respectively D5) worldvolume which are transverse
to the worldvolume directions of the D3 brane. Holographically this corresponds to the
isometry of the two S2 factors in the background. Hence we see that in order to realise
mirror symmetry, one needs to accompany S-duality with a spacetime rotation.
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Let us see how one can derive the mirror of the balanced quiver with a generic triangular
rank function from its Hanany-Witten configuration in figure 2. In order to read off the
mirror, we first perform a series of Hanany-Witten transitions on the brane system in
figure 2. In particular, we first move all D5 branes to the right of all the NS5 branes,
keeping in mind that whenever a D5 crosses an NS5, a D3 brane suspended between them
is created

NS51 NS52 NS53 NS5P−1 NS5P

· · ·

N 2N (P − 1)N PN P (N − 1) +S 2(P −S) (P −S)
· · ·

.

(5.5)
Next, we perform S-duality, together with a spacetime rotation which exchanges D5s and
NS5s from the above configuration to arrive at

NS51NS52NS53NS5 NP
P−S−1NS5 NP

P−S

· · ·
N 2N (P − 1)N PN P (N − 1) +S 2(P −S) (P −S)

· · ·
.

(5.6)
In order to read off a gauge theory from this mirror Hanany-Witten setup, we recall the
s-rule, which states that there can be at most 1 D3 brane suspended between a D5 and
an NS5 brane, or else supersymmetry is broken. Since each of the D5 branes in the above
configurations has N D3 branes ending on it, the only way to satisfy the s-rule would be
to have one of the N D3s ending on NS5 NP

P−S
, one D3 ending on NS5 NP

P−S−1 and so on,
such that the last D3 brane ends on NS5 NP

P−S−N+1. We can move all P D5 branes to the
segment in between NS5 NP

P−S−N+1 and NS5 NP
P−S−N

, keeping in mind that in doing so, one
annihilates all D3 branes suspended between the D5 branes and the NS5 branes. The
resulting configuration is

· · · · · ·

NS51

NS52

NS53

NS5 NP
P−S−N

NS5 NP
P−S−N+1

NS5 NP
P−S−2

NS5 NP
P−S−1

NS5 NP
P−S

S 2S NS 2(P − S) (P − S)

P

. (5.7)

From here one can immediately read off the mirror quiver

S 2S
· · ·

NS
· · ·

2(P − S)

(P − S)

P

. (5.8)

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
5

Note that this quiver has an SU(P ) flavour symmetry, while its magnetic symmetry is
SU
(
NP
P−S

)
, due to the fact that there are NP

P−S−1 balanced gauge nodes. On the other hand,
the quiver in figure 2 has an SU

(
NP
P−S

)
flavour symmetry, while its magnetic symmetry is

SU(P ) since there are P − 1 balanced gauge nodes. We see that the flavour and magnetic
symmetries are exchanged under the mirror map, as expected.

It would be natural to explore mirror symmetry for more involved quivers, for instance
those with more than a single flavour node. However with a little thought, one immediately
comes across the following observation.

Observation 1. The mirror of a quiver with more than one flavour node is necessarily
unbalanced.

This is an immediate corollary of Gaiotto and Witten’s global symmetry conjecture
reviewed above. Recall that, under the mirror map, flavour symmetry is mapped to the
magnetic symmetry of the dual theory. Thus the flavour symmetry of the electric theory,
which is a product due to the fact that there are multiple flavour nodes, must be realised
as the magnetic symmetry of the magnetic theory. The magnetic symmetry can only take
a product form if there are distinct sets of balanced chains of gauge nodes. Under the
assumption that the mirror theory is not a product of decoupled quivers,3 the only way to
have such a situation is if there is at least one unbalanced node in between any two distinct
chains of balanced nodes.

5.1 Geometry and mirror symmetry

In other formulations of holographic duals to N = 4 three dimensional SCFTs, mirror
symmetry manifests itself as S-duality. This is the case for the formulation of [28, 29],
based on two holomorphic functions A1, A2. We choose A2 ∼ z, as in eq. (B.7) and in
this choice that the connection between S-duality and mirror symmetry fades away in our
formulation, indeed one can check that by choosing A1 ∼ z one obtains the background S-
dual to A2 ∼ z. The goal of this section is to discuss how mirror symmetry is geometrically
realised in the formulation presented in section 2.

As in the rest of this work, we restrict to balanced quivers. Indeed, we discuss only
the situation in which both the electric and the dual magnetic quivers are balanced. As we
saw, this is possible only if there is only one flavour group, equivalently, only one stack of
D5 branes, that have all the same linking numbers. These conditions imply that the rank
function of the electric and mirror magnetic quivers are ‘triangular’.

3That this can be a possibility is motivated by [56], where several families of quiver gauge theories were
studied and found to have a factorised structure on their moduli space.
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Consider then, the (electric) quiver field theory described by a generic rank function
studied in section 4.1. We summarise it in eq. (5.9) to ease the reading.

η

Re(η)

SN

S P

; Re(η) =

 Nη η ∈ [0, S]
SN
P−S (P − η) η ∈ [S, P ] .

(5.9)

Let us summarise some numbers (number of branes, vectors, hypers and dimension of the
Higgs branch) characterising the electric description of this quiver (see also figure 2).

N
(e)
NS5 = P, N

(e)
D5 = R′e(0)−R′(P ) = PN

P −S
, N

(e)
D3 =

∫ P

0
Redη = NPS

2 . (5.10)

n(e)
v =

S∑
k=1

(Nk)2 +
P−S−1∑
k=1

(
SN

P −S
(P −S− k)

)2
= N2PS

6P − 6S (1 + 2SP − 2S2),

n
(e)
h =

S−1∑
k=1

N2k(k+ 1) +
P−S−1∑
k=0

(
SN

P −S

)2
(P −S− k)(P −S− k− 1) + SPN2

(P −S) =

N2PS

3P − 3S (2 +SP − 2S2),

dimM(e)
H = n

(e)
h −n

(e)
v = N2PS

2P − 2S .

Following the usual rules to construct the mirror dual, we exchange the linking numbers
calculated in eq. (4.3). The mirror system has,

L̂NS51 = L̂NS52 = · · · = L̂NS5 PN
P−S

= P − S, ρ̂ =
[
(P − S)

PN
P−S

]
.

LD51 = LD52 = · · · = LD5P = N, ρ = ([N ]P ).

The mirror system is encoded in the rank function and quiver in eq. (5.11).

P −S

2(P −S)
· · ·
S(N + 1)−P

SN

S(N − 1)
· · ·

S

P

; Rm(η) =

 (P −S)η η ∈
[
0, SN

P−S

]
S
(
NP
P−S − η

)
η ∈

[
SN
P−S ,

NP
P−S

]
.

(5.11)
These electric and magnetic rank functions are generic under the restriction that both
quivers are balanced. Let us now calculate the same numbers, using the magnetic quiver
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in eq. (5.11)

N
(m)
NS5 = PN

P − S
, N

(m)
D5 = P, N

(m)
D3 =

∫ PN
P−S

0
Rm(η)dη = N2PS

2(P − S) . (5.12)

n(m)
v =

SN
P−S∑
k=1

(P − S)2k2 +
N−1∑
k=1

(S(N − k))2 = NPS

6P − 6S (P − S + 2SN2),

n
(m)
h =

SN
P−S−1∑
k=1

(P − S)2k(k + 1) +
N−2∑
k=0

S2(N − k)(N − k − 1) +NSP =

NPS

3P − 3S (2P − 2S + 3N2),

dimM(m)
H = n

(m)
h − n(m)

v = NPS

2 .

As expected, the number of D5 and NS-five branes is exchanged. Interestingly, the dimen-
sion of the Higgs branch of the electric theory is calculated by the number of D3 branes in
the magnetic theory, and viceversa.

We calculate the Fourier coefficient of the magnetic rank functions and compare this
with the same quantity for the electric rank function in eq. (4.2). We find,

a
(m)
k = (P − S)

NP

∫ NP
P−S

0
Rm(η) sin

(
kπ(P − S)η

NP

)
dη = NP 2

(P − S)π2k2 sin
(
kπS

P

)
. (5.13)

In other words,
a

(e)
k = a

(m)
k .

This should not surprise, as the holographic central charge (or the Free Energy) should
coincide in both descriptions, namely

c
(e)
hol = π

8

∞∑
k=1

k
(
a

(e)
k

)2
= π

8

∞∑
k=1

k
(
a

(m)
k

)2
= c

(m)
hol .

Notice that also implies the equality of Ŵe(σ, η) and of V̂e(σ, η) with their magnetic coun-
terparts. We summarise these findings in eq. (5.14).

NNS5 ←→ Nm
D5

N e
D5 ←→ NNS5

N e
D3 ←→ dimMm

H

dimMe
H ←→ Nm

D3
aek ; cehol ←→ amk ; cmhol .

(5.14)

5.2 A purely geometric formulation of mirror symmetry

With the restriction of having balanced quivers, both in the electric and the magnetic
descriptions, we can formulate mirror symmetry purely in geometrical terms by observing
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an interesting scaling on the electric rank function. In fact, we scale the coordinate η and
the intervals [a, b] according to,

η ↔ NNS5
ND5

η̂, [a, b]↔
[
ND5
NNS5

a,
ND5
NNS5

b

]
. (5.15)

Analysing this scaling for the electric rank function written in eq. (5.9), we find the magnetic
rank function in eq. (5.11). Similarly, we can check that a(e)

k ↔ a
(m)
k .

In other words, we could ‘ignore’ the existence of mirror symmetry, consider the electric
rank function and perform the scaling in eq. (5.15). We recover the rank function and quiver
for the second field theory. The D5 and NS5 branes get exchanged and the dimension of
the Higgs branch is calculated by the number of D3 branes of the transformed theory. As a
bonus, it is easy to see that both quiver field theories have the same V (σ, η) and holographic
central charge. The scaling in eq. (5.15) is simple and could be applied to other systems
with similar description.

5.3 The scaling for generic rank functions

Let us study an interesting by-product of our picture of mirror symmetry.
Consider a generic rank function and apply the scaling in eq. (5.15). This will gener-

ically not produce the mirror dual. In fact, generically the mirror of a quiver is an un-
balanced quiver, which is not described with the formalism we developed in this work. In
other words, for generic balanced quivers with ‘polygonal’ (rather than triangular) rank
function, the scaling in eq. (5.15) generates another balanced quiver. This corresponds to
a new CFT in which the role of NS5 and D5 branes is exchanged. The dimension of the
Higgs branch of one theory is not calculated by the number of D3 branes in the trans-
formed theory. Interestingly, both CFTs will share the same holographic central charge.
Of course, this result might be a peculiarity of the holographic description and fail when
1/N corrections are taken into account. Let us consider an example to illustrate this point.

Consider a particular case of the second example of quivers discussed in section 4.2.
Choose M = Q = 1, S = P − 2. We have the quiver and rank function in eq. (5.16).

N N
· · ·

N

N N

P − 1 nodes

; R(η) =


Nη η ∈ [0, 1]
N η ∈ [1, P − 1]

N(P − η) η ∈ [P − 1, P ] .
(5.16)

This implies the numbers,

QNS5 = P, QD5 = 2N, QD3 = N(P − 1). (5.17)

nv = N2(P − 1), nh = N2P, dimMH = nh − nv = N2.

ak = NP

k2π2

[
sin
(
kπ

P

)
+ sin

(
kπ(P − 1)

P

)]
,

chol = N2P 2

32π2 Re
(
7ζ(3)− 4Li3

(
e

2πi
P

)
+ 4Li3

(
−e

2πi
P

))
.
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We perform the rescaling,

η → P

2N η̂, [a, b]→
[2N
P
a,

2N
P
b

]
.

This generates a rank function and quiver depicted in eq. (5.18).

P
2

P
· · ·

N − P
2

N N
· · ·

N N − P
2

· · ·
P
2

P
2

P
2

P − 1 nodes

;

R̂ (η̂) =


P
2 η̂ η̂ ∈

[
0, 2N

P

]
N η̂ ∈

[
2N
P , 2N

P (P − 1)
]

P
2 (2N − η̂) η̂ ∈

[
2N
P (P − 1), 2N

]
.

(5.18)

In this theory we calculate,

Q̂NS5 = 2N, Q̂D5 = P, N̂D3 = 2N2

P
(P − 1),

n̂v = 2
2N/P−1∑
k=1

(
N − kP

2

)2
+N2

(
1 + 2N

(
1− 2

P

))
= N

6P (P 2 + 4N2(3P − 4)),

n̂h = 2
2N/P−2∑
k=0

(
N − kP

2

)(
N − (k + 1)P2

)
+NP = 2N

3P (P 2 + 2N2),

dim M̂H = N3
( 4
P
− 2

)
+ NP

2 ,

âk = NP

k2π2

[
sin
(
kπ

P

)
+ sin

(
kπ(P − 1)

P

)]
,

ĉhol = N2P 2

32π2 Re
(
7ζ(3)− 4Li3

(
e

2πi
P

)
+ 4Li3

(
−e

2πi
P

))
.

Hence, we have two different theories, with the same central charge. In the case P = 2
both theories discussed above are mirror pair.

We close this analysis here, below we present a summary and the conclusions of this
paper.

6 Conclusions

Let us start with a brief summary of the contents of this paper.
In section 2, we present a holographic formulation of N = 4 d = 3 SCFTs describing

the IR fixed point of balanced linear quivers of gauge group ΠP−1
i=1 U(Ni) and flavour group
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ΠP−1
j=1 SU(Nf,j). The type IIB configuration in eq. (2.1) include the presence of NS, D3

and D5 branes. Importantly, it is written in terms of a Potential function V (σ, η) or
equivalently Ŵ (σ, η). This function solves a Laplace partial differential equation. This
PDE should be supplemented with boundary and initial conditions, hence defining an
electrostatic problem.

It is in these initial conditions that the ‘kinematical’ data of the dual CFT is encoded.
In the case we focused here, the quivers are balanced and the initial condition can be easily
given in terms of a ‘rank function’ R(η). By quantising Page charges, we learn in section 3
that the rank function must be a piecewise continuous and linear function. The values of
R(η) at integer values of the coordinate must also be integer, as it is associated with the
number of branes in the corresponding Hanany-Witten set-up.

Given a balanced linear quiver, we present a clear procedure to automatically write
the dual Type IIB configuration. In this way, this work moves forward the project of
giving an electrostatic description of all half-BPS AdSD × S2 spaces in dimensions D =
2, 3, 4, 5, 6, 7. In some dimensions D = 4 (the case of interest in this work) and in D = 6,
there is a pre-existent formulation in the bibliography, based on a coupled of holomorphic
functions [28, 36]. We have clarified the map between our formulation and that of [28].

Also in section 3, we defined a quantity that counts the number of degrees of freedom
of the QFT. This quantity is proportional to the Free Energy of the field theory on S3.
We refer to it as holographic central charge. In section 4, we worked out a set of examples
and analysed the behaviour of the holographic central charge of these examples and spe-
cial limits thereof. We make clear the non-perturbative character of the result, typically
involving Polylogarithmic functions of order three in the parameters of the field theory.

In section 5, we pedagogically presented various aspects of the QFTs with emphasis on
Mirror symmetry. The way in which our holographic backgrounds display Mirror symmetry
is discussed. We presented the mirror mapping between two holographic field theories and
display the exchange of NS5 and D5 branes, the exchange of the dimensions of the Higgs and
Coulomb branches (represented by the number of D3 branes in the system), the equality
of the central charge and background for both descriptions, etc. As a byproduct of this
analysis we discuss an operation that given a balanced quiver produces a different balanced
one with the same holographic central charge as the original one.

This work opens new and interesting avenues for research, here a non-exhaustive list:

• it seems natural to attempt to understand how our formalism can be extended/
adapted to non-balanced quivers.

• Exploring other observables, for example Wilson loops in different representations
and their behaviour under Mirror symmetry.

• It would be interesting to present a holographic description of the QFT with special-
unitary (rather than unitary) gauge groups. This may follow the ideas of [59], prob-
ably using recent developments in higher form symmetries.

• Developing an analog description for circular quivers, following the work of [32].
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• This work furthers the project of finding electrostatic description for holographic
duals to linear quivers that flow to SCFTsd, with d = 1, 2, 3, 4, 5, 6. It seems natural
to study the relations among moduli spaces of these different SCFTsd along the lines
of [56, 60, 61].

• The program of relating half-BPS AdS-solutions and SCFTs needs more work, par-
ticularly in the cases of AdS3 and AdS2. The methods developed here suggest new
AdS2 backgrounds that would be nice to study.

We hope to come back to these problems soon.

Acknowledgments

We wish to thank various colleagues for conversations and their opinions on these topics.
Among these colleagues we mention: Federico Carta, Lorenzo Coccia, S. Prem Kumar,
Yolanda Lozano, Paul Merrikin, Leonardo Santilli, Lucas Schepers, Ricardo Stuardo.

We are supported by STFC grant ST/T000813/1. Carlos Ireneo Nunez would like to
remember Diego A. Maradona.

A The Type IIB equations of motion

In this appendix we write explicitly the equations of motion that our backgrounds in
eq. (2.1) satisfy. The action is

SIIB,st =
∫
M10

√
g

[
e−2Φ

(
R+ 4(∂Φ)2 − 1

12H
2
3

)
− 1

2

(
F 2

1 + 1
6F

2
3 + 1

240F
2
5

)]
−

1
2C4 ∧H3 ∧ dC2. (A.1)

where the field in the democratic formalism are in general defined as

H3 = dB2, F1 = dC0, F̃3 = dC2 − C0H3, F5 = dC4 −H3 ∧ C2, (A.2)
F1 = ∗F9, F7 = − ∗ F3.

In the specific case considered here we have F1 = 0. The equations of motion are,

R+ 4∇2Φ− 4(∂Φ)2− H2
3

12 = 0, (A.3)

4Rµν + 8∂µΦ∂νΦ−HµσρHν
σρ + 2FµFν +FµσρFν

σρ + 1
24Fµσ1...σ4Fν

σ1...σ4 − gµν
(
F 2

1 + F 2
3

6

)
= 0.

d
(
e−2Φ ∗H3

)
= −F5 ∧F3−F1 ∧F7,

dH3 = 0, dF1 = 0, dF3−H3 ∧F1 = 0, dF5−H3 ∧F3 = 0,

d ∗F1 +H3 ∧∗F3 = 0, d ∗F3 +H3 ∧F5 = 0.
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B Map to DEG

The DEG solutions [28], are defined in terms of complex functions respect to the variable z:

ds2
10,st = f1(z, z̄)

[
ds2(AdS4) + f2(z, z̄)ds2(S2

1) + f3(z, z̄)ds2(S2
2) + f4(z, z̄)dzdz̄

]
,

e−2Φ = f5(z, z̄), B2 = f6(z, z̄)Vol(S2
1), C2 = f7(z, z̄)Vol(S2

2), (B.1)

where

f1 = 2
√
−N2
W
, f2 = −h

2
1W

N1
, f3 = −h

2
2W

N2
, f4 = −2 W

h1h2
, f5 = N1

N2

f6 = 4h
2
1h2Im(∂zh2∂z̄h1)

N1
+ 2hD2 , f7 = 4h1h

2
2Im(∂zh2∂z̄h1)

N2
− 2hD1 . (B.2)

The five-form field is given by

F5 = Vol(AdS4) ∧ df8 + ∗(Vol(AdS4) ∧ df8) (B.3)

where
f8 = 4

(
6Re(C)− 3D − 2h1h2

W
Im(∂zh1∂zh2)

)
. (B.4)

All these functions are defined in terms of two holomorphic functions A1,2(z), in particular
h1,2 and hD1,2 are the dual real harmonic functions

h1 = 2Im(A1) , hD1 = 2Re(A1) , h2 = 2Re(A2) , hD2 = −2Im(A2). (B.5)

Also, we have the following definitions

W = ∂z∂z̄(h1h2) , Ni = 2h1hi|∂zhi|2−h2
iW , D = 2Re(A1Ā2) , ∂zC = A1∂zA2−A2∂zA1.

(B.6)
One can check that the background is invariant under conformal transformations z → f(z),
and in particular we are free to choose one of the holomorphic functions as a coordinate.
The second holomorphic function can be defined in terms of an auxiliary harmonic function
V̂ (z, z̄) as follows

A1 = π∂zV̂ , A2 = π

8 z . (B.7)

In order to match these backgrounds with those in eq. (2.1) we set

z = σ − iη , V̂ = σV . (B.8)

With these identifications we have

h1 = πσ∂ηV , hD1 = π∂σ(σV ) , h2 = π

4σ , hD2 = π

4 η , (B.9)

W = π2

8 ∂σ(σ∂ηV ) , N1 = π4

8 σ
3∂ηV Λ , N2 = − π4

128σ
3∂2
ησV . (B.10)

These expressions are enough to match (B.2) with eq. (2.1).
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C Useful expressions

Let us write here some expressions useful for the calculations in the main body of this paper.
We start with the translation between expressions containing V (σ, η) in terms of V̂ (σ, η).

V (σ, η) = V̂ (σ, η)
σ

, ∂σV = ∂σV̂

σ
− V̂

σ2 , (C.1)

∂2
σV = 2V̂ − 2σ∂σV̂ + σ2∂2

σV̂

σ3 , ∂ηV = ∂ηV̂

σ
,

∂2
ηV =

∂2
η V̂

σ
, ∂2

σηV =
σ∂2

σηV̂ − ∂ηV̂
σ2 , ∂σ (σ∂ηV ) = ∂2

σηV̂ ,

Λ =
σ(∂2

η V̂ )2 − ∂ηV̂ ∂2
σηV̂ + σ(∂2

σηV̂ )2

σ2 .

The various derivatives of V̂ read,

V̂ (σ, η) =
∞∑
k=1

ak cos
(
kπη

P

)
e−

kπ|σ|
P , (C.2)

∂ηV̂ = −
∞∑
k=1

ak

(
kπ

P

)
sin
(
kπη

P

)
e−

kπ|σ|
P ,

∂2
η V̂ = −

∞∑
k=1

ak

(
k2π2

P 2

)
cos

(
kπη

P

)
e−

kπ|σ|
P ,

∂σV̂ = −
∞∑
k=1

ak

(
kπ

P

)
cos

(
kπη

P

)
e−

kπ|σ|
P sign(σ),

∂2
σV̂ =

∞∑
k=1

ak cos
(
kπη

P

)
e−

kπ|σ|
P

(
k2π2

P 2 −
kπ

P
δ(σ)

)
,

∂2
σηV̂ =

∞∑
k=1

ak

(
k2π2

P 2

)
sin
(
kπη

P

)
e−

kπ|σ|
P sign(σ) .

Using eqs. (C.1)–(C.2), we find the following expressions,

4
π2 f

2
1 = σ

∂2
σηV̂

(
σ∂2

σηV̂ − ∂ηV̂
)

= |σ|
∑∞
k=1 ak

(
kπ
P

) (
1 + kπ|σ|

P

)
sin
(
kπη
P

)
e−

kπ|σ|
P∑∞

l=1 al
(
l2π2

P 2

)
sin
(
lπη
P

)
e−

lπ|σ|
P

. (C.3)

For the combination σ2Λ we find,

σ2Λ = σ

( ∞∑
k=1

ak
k2π2

P 2 cos
(
kπη

P

)
e−

kπ|σ|
P

)2

+ σ

( ∞∑
k=1

ak
k2π2

P 2 sin
(
kπη

P

)
e−

kπ|σ|
P

)2

+

∞∑
k,l=1

akal
k2π2

P 2
lπ

P
sin
(
kπη

P

)
sin
(
lπη

P

)
e−

(k+l)π|σ|
P sign(σ). (C.4)
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Using this, we find for f2(σ, η)

f2 = −
(∂ηV̂ )(∂2

σηV̂ )
σ2Λ = 1

σ2Λ

 ∞∑
k,l=1

akal
l2kπ3

P 3 sin
(
kπη

P

)
sin
(
lπη

P

)
e−

(k+l)π|σ|
P sign(σ)

 .
For the combinations f3(σ, η) and f4(σ, η) we find,

f3 = 1 + ∂ηV̂

σ∂2
σηV̂ − ∂ηV̂

=
|σ|
∑∞
n=1 an

(
n2π2

P 2

)
sin
(nπη
P

)
e−

nπ|σ|
P∑∞

k=1 ak
(
kπ
P

) (
1 + kπ|σ|

P

)
sin
(
kπη
P

)
e−

kπ|σ|
P

.

f4 = −
∂2
σηV̂

σ∂ηV̂
=
∑∞
n=1 an

(
n2π2

P 2

)
sin
(nπη
P

)
e−

nπ|σ|
P∑∞

k=1 ak
(
kπ
P

)
sin
(
kπη
P

)
e−

kπ|σ|
P |σ|

. (C.5)

Finally, for the dilaton e−2Φ = f5(σ, η) we find,

f5 = − 16σΛ∂ηV̂
σ2∂2

σηV̂ − σ∂ηV̂
= 16σΛ

 ∑∞
n=1 an

(
nπ
P

)
sin
(nπη
P

)
e−

nπ|σ|
P∑∞

k=1 ak
(
kπ
P

) (
1 + kπ|σ|

P

)
sin
(
kπη
P

)
e−

kπ|σ|
P

 . (C.6)

The asymptotic analysis of the backgrounds requieres the expressions

f1(σ → ±∞, η) ∼ π|σ|
2 , σ2Λ ∼ |σ|a

2
1π

4

P 4 e−
2π|σ|
P , (C.7)

f2(σ → ±∞, η) ∼ P

π|σ|
sin2

(
πη

P

)
, f3(σ → ±∞, η) ∼ 1,

f4(σ → ±∞, η) ∼ π

P |σ|
, f5(σ → ±∞, η) ∼ e−

2π|σ|
P

|σ|
.

For the analysis close to η ∼ 0, we use the expressions

4
π2 f

2
1 (σ, 0) ∼ |σ|

∑∞
k=1 ak

(
kπ
P

)2 (1 + kπ|σ|
P

)
e−

kπ|σ|
P∑∞

n=1 an
(
nπ
P

)3
e−

nπ|σ|
P

(C.8)

σ2Λ ∼ σ

( ∞∑
k=1

ak

(
kπ

P

)2
e−

kπ|σ|
P

)2

, f2(σ, 0) ∼ η2

|σ|


∑∞
n,l=1 anal

(
n2l3π5

P 5

)
e−

(n+l)π|σ|
P(∑∞

k=1 ak
(
kπ
P

)2
e−

kπ|σ|
P

)2

 ,

f3(σ, 0) ∼
|σ|
∑∞
k=1 ak

(
kπ
P

)3
e−

kπ|σ|
P∑∞

n=1 an
(
nπ
P

)2 (1 + nπsign(σ)
P

)
e−

nπ|σ|
P

f4(σ, 0) ∼
∑∞
k=1 ak

(
kπ
P

)3
e−

kπ|σ|
P

|σ|
∑∞
n=1 an

(
nπ
P

)2
e−

nπ|σ|
P

, f5(σ, 0) ∼ 16

(∑∞
k=1 ak

(
kπ
P

)2
e−

kπ|σ|
P

)2

∑∞
n=1 an

(
nπ
P

)2 (1 + nπ|σ|
P

)
e−

nπ|σ|
P

.

Notice that, if we impose (2.11), we have the following expressions in the σ → 0 limit:

f2
1 = P 2

4

∑
k k

2ak∑
k k

4ak
, f2 =

(
πη

2f1

)2
, f3 =

(
πσ

2f1

)2
, f4 =

(
π

2f1

)2
. (C.9)
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For the computation of Page charges, it is useful to calculate,

σ∂ηV ∂
2
ηV

Λ =
σ∂ηV̂ ∂

2
η V̂

σ2Λ ∼|σ|→∞
P

π
sin
(
πη

P

)
cos

(
πη

P

)
. (C.10)

The quantityM1 is,

M1 =
ησ(∂2

ηV )(∂ηV )−σ(∂ηV )2

∂2
σηV

=
σ
(
η(∂2

η V̂ )(∂ηV̂ )− (∂ηV̂ )2
)

σ∂2
σηV̂ − ∂ηV̂

, (C.11)

M1 = σ∑∞
k=1 ak sin

(
kπη
P

)
e−

kπ|σ|
P

(
k2π2|σ|
P 2 + kπ

P

) ×
 ∞∑
n,l=1

analη

(
ln2π3

P 3

)
sin
(
lπη

P

)
cos
(nπη
P

)
e−

(n+l)π|σ|
P −

( ∞∑
r=1

ar

(
r2π2

P 2

)
cos
(rπη
P

)
e−

rπ|σ|
P

)2
 .

For the calculation of D3 Page charge we use the expression above to find

M1(σ → +∞, η) =M1(σ = 0+, η) = 0. (C.12)

For the quantityM2 we have

M2 = ∂σ
(
Ŵ − (η −∆)∂ηŴ

)
= (C.13)

−
∞∑
k=1

ake
− kπ|σ|

P sign(σ)
[
sin
(
kπη

P

)
− (η −∆)

(
kπ

P

)
cos

(
kπη

P

)]
.

M2(σ → +∞, η) = 0, 2M2(σ = 0+, η) = −R(η) + (η −∆)R′(η).

In the last step we have used eq. (2.8).
For the calculation of the charge of D5 branes, we need the expression for

f7(σ, η)
2π = −∂σV̂ +

σ(∂ηV̂ )(∂2
η V̂ )

σ∂2
σηV̂ − ∂ηV̂

= (C.14)

∞∑
k=1

ak cos
(
kπη

P

)
e−

kπ|σ|
P

(
kπ

P

)
+
σ
∑∞
n,l=1 analη

(
l2nπ3

P 3

)
sin
(nπη
P

)
cos

(
lπη
P

)
e−

(n+l)π|σ|
P∑∞

k=1 ak sin
(
kπη
P

)
e−

kπ|σ|
P

(
k2π2|σ|
P 2 + kπ

P

) .

f7(0+, η)
2π =

∞∑
k=1

ak

(
kπ

P

)
cos

(
kπη

P

)
= 1

2R
′(η).

D The holographic central charge for a rank function with off-sets

We discuss an interesting generalisation to the result of section 3.2.1. In particular, we
discuss the situation for which N0 and NP are nonzero. All the formal steps are very
similar, but in this case, the Fourier coefficient in eq. (3.21) reads,

ak =

(
N0 + (−1)k+1NP

)
kπ

[
1− P

kπ
sin
(
kπ

P

)]
+ P 2

k2π2

P−1∑
j=0

Fj sin
(
kπj

P

)
. (D.1)

– 28 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
5

Using now the expression for the holographic central charge (3.19) we find three terms,

chol = π

8

∞∑
k=1

ka2
k = T1 + T2 + T3, (D.2)

T1 = P 2

8π3

∞∑
k=1

P−1∑
j,l=0

FjFl
k3 sin

(
kπj

P

)
sin
(
kπl

P

)
,

T2 = P

4π2

P−1∑
j=1

Fj

∞∑
k=1

(
N0 + (−1)k+1NP

) (
1− P

kπ sin
(
kπ
P

))
sin
(
kπj
P

)
k2 ,

T3 = 1
8π

∞∑
k=1

(
N0 + (−1)k+1NP

)2 (
1− P

kπ sin
(
kπ
P

))2

k
.

The first term is the one we encountered in eq. (3.23). The term T2 can be summed and
we quote its final result

T2 = P

4π2

P−1∑
j=1

Fj

[
NP Im

(
Li2
(
−e−i

πj
P

))
+N0Im

(
Li2
(
e−i

πj
P

))

+NPP

2π Re
(
Li3
(
−ei

π(j−1)
P

)
−Li3

(
−ei

π(j+1)
P

))
+ N0P

2π Re
(
Li3
(
ei
π(j+1)
P

)
−Li3

(
ei
π(j−1)
P

))]
.

The term T3 is curious, as it contains the divergent harmonic sum (∑∞n=1
1
n). Notice that

this divergent term appears in previous gravity and CFT computations [29, 34, 62], so we
need to regulate it. More explicitly, T3 reads

T3 = P 2

32π3 (2N2
0 + 2N2

P + 3N0NP )ζ(3) + PN0NP
32π3

[
16πIm

[
Li2
(
−e−i πP

)]
− 2PRe

[
Li3
(
−e 2πi

P

)]]
−P (N2

0 +N2
P )

32π3

[
8πIm

[
Li2
(
ei
π
P

)]
+ 2PRe

[
Li3
(
e

2πi
P

)]]
+(N2

0 +N2
P )

8π

∞∑
k=1

1
k
− N0NP

4π

∞∑
k=1

(−1)k
k

. (D.3)

The divergent sums in the last line can be regulated using the Ramanujan sum. This is a
consistent fashion of extracting a finite part out of a divergent sequence. Roughly the idea
is to regulate

∞∑
k=1

1
k
↔ lim

N→∞

[
N∑
k=1

1
k
−
∫ N

1

dx

x

]
= γE, (D.4)

−
∞∑
k=1

(−1)k
k

= −
∞∑
n=1

1
2n +

∞∑
n=0

1
2n+ 1 ↔ −γE

2 + lim
N→∞

[
N∑
n=0

1
n
−
∫ N

0

dx

2x+ 1

]
= log 2

2 .

Where γE is the Euler-Mascheroni constant. In this way we regulate T3 and find a result
for chol in the case with offsets. Notice that in the holographic limit, when P is very large
the regulated terms in T3 are subleading.
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