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A B S T R A C T   

Coastal ecosystems provide vital ecosystem functions and services, but have been rapidly degrading due to 
human impacts. Restoration is increasingly considered key to reversing these losses, but is often unsuccessful. 
Recent work on seagrasses and salt marsh cordgrasses highlights that restoration yields can be greatly enhanced 
by temporarily mimicking key emergent traits. These traits are not expressed by individual seedlings or small 
clones, but emerge in clumped individuals or large clones to locally suppress environmental stress, causing 
establishment thresholds where such density-dependent self-facilitation is important for persistence. It remains 
unclear, however, to what extent the efficacy of restoration via emergent trait-based mimicry depends on the 
intensity of stressors. We test this in a restoration experiment with the temperate seagrass Zostera marina at four 
sites (Finland, Sweden, UK, USA) with contrasting hydrodynamic regimes, where we simulated dense roots mats 
or vegetation canopies with biodegradable structural mimics. Results show that by mimicking sediment- 
stabilizing root mats, seagrass transplant survival, growth and expansion was strongly enhanced in hydrody
namically exposed environments. However, these positive effects decreased and turned negative under benign 
conditions, while mimics insufficiently mitigated physical stress in extremely exposed environments, illustrating 
upper and lower limits of the application. Furthermore, we found that aboveground structures, designed to 
mimic stiff rather than flexible vegetation canopies, underperformed compared to belowground mimics. Our 
findings emphasize the importance of understanding the conditions at the restoration site, species-specific 
growth requirements, and self-facilitating traits that organisms may express when applying emergent trait- 
mimicry as a tool to improve restoration success.   

1. Introduction 

Coastal ecosystems make up less than 4% of the Earth’s surface, but 
are of great social, economic and ecological importance. Combined, 

seagrass meadows, salt marshes, mangroves, coastal dunes, coral and 
bivalve reefs generate a global annual value of over 6 trillion US$ by 
providing vital ecosystem services (Costanza et al., 1997). These include 
flood protection, water purification, nutrient cycling, carbon storage, 
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tourism enhancement, fisheries enhancement, and biodiversity provi
sioning (Costanza et al., 1997; Barbier et al., 2008; Barbier et al., 2011; 
Bayraktarov et al., 2016; Menéndez et al., 2020). Over the last century, 
however, these ecosystems, and their associated services and values, 
have been rapidly degrading. Although hundreds of millions of dollars 
are invested annually to protect threatened coastal ecosystems, their 
global decline continues due to combined anthropogenic impacts (Sil
liman et al., 2015). A major challenge is that local pressures, such as 
eutrophication and infrastructure development, are amplified by 
climate change related stressors such as increased storms, drought, heat 
waves, and ocean acidification (Orth et al., 2006; Gedan et al., 2009; 
Silliman et al., 2015; Bayraktarov et al., 2016). As a result, coastal dunes 
are under pressure as 70% of the world’s sandy beaches are eroding, 
while 42% of salt marshes, 35% of mangroves, 29% of seagrass, 85% of 
oyster reefs, and 19% of coral reefs worldwide are now lost or degraded 
(Feagin et al., 2005; Reid et al., 2005; Wilkinson, 2008; Gedan et al., 
2009; Waycott et al., 2009; Beck et al., 2011). 

Agreements at the national, regional and global level have set goals 
and targets to restore degraded ecosystems. For example, the EU 
Biodiversity Strategy for 2030 aims to strengthen the protection of 
marine ecosystems and to restore them to achieve “good environmental 
status” (Commission, 2011). Furthermore, the UN Decade on Ecosystem 
Restoration 2021–2030 aims to halt the degradation of ecosystems, and 
restore them to achieve global goals (Waltham et al., 2020). Thus, 
restoration is increasingly considered as a vital tool by governments, 
industry, and nature conservation organizations to halt and reverse the 
losses of these ecosystems and their services (Silliman et al., 2015; 
Bayraktarov et al., 2016; Temmink et al., 2020; Valdez et al., 2020). 
However, current efforts to rebuild coastal ecosystems are often small- 
scale, ineffective (<50% success) and over 10 times more expensive 
compared to most terrestrial ecosystems (Zedler, 2000; Wolters et al., 
2005; Orth et al., 2006; de Groot et al., 2013; Bayraktarov et al., 2016; 
van Katwijk et al., 2016). 

Over the last decades, evidence has been mounting that positive 
interactions play an essential role in the functioning and stability of 
coastal ecosystems by reducing physical stress in these harsh environ
ments (Bertness and Callaway, 1994; Bruno and Kennedy, 2000; He 
et al., 2013; Meysick et al., 2019; Bekkby et al., 2020; Gagnon et al., 
2020; Meysick et al., 2020). Such interactions can be interspecific, such 
as mutualistic interactions between ribbed mussels and cordgrass 
(Angelini et al., 2016; Derksen-Hooijberg et al., 2018), and lucinid bi
valves and seagrasses (van der Heide et al., 2012a, 2012b; de Fouw 
et al., 2016; Chin et al., 2020). Interactions can also be intraspecific, 
such as the facilitation of seagrasses by other plants (Gustafsson and 
Boström, 2011), cockles by mussel beds on intertidal mudflats (Donadi 
et al., 2013) and forbs by cordgrasses on cobble beaches (van de Koppel 
et al., 2006). Moreover, intraspecific facilitation often also occurs, and is 
generated via positive (i.e., self-reinforcing) feedbacks, in which habitat 
quality improves with the density and/or patch-size of the habitat- 
modifying species. These mechanisms increase in importance as envi
ronmental conditions become harsher (Bouma et al., 2009; Maxwell 
et al., 2017). Clear examples are reef-forming bivalves such as mussels 
whose aggregations provide stable settlement substrate for conspecific 
recruits, while minimizing losses from waves and predation (van der 
Heide et al., 2014; de Paoli et al., 2015; de Paoli et al., 2017). Similarly, 
clonal seagrass and cordgrass establishment hinges on creating suffi
ciently large and dense patches to stabilize the soil with their root mats 
and attenuate hydrodynamic energy with their canopy (Bouma et al., 
2005; van der Heide et al., 2007; Silliman et al., 2015; Maxwell et al., 
2017; van Belzen et al., 2017). 

Recent work in multiple coastal ecosystems demonstrated that har
nessing intra- and interspecific positive feedbacks can greatly increase 
restoration yields, because strong feedbacks can create critical density 
and patch-size dependent establishment thresholds in harsh systems 
(Maxwell et al., 2017). Under natural conditions, establishment may 
occur during a Window of Opportunity – a sufficiently long period of 

exceptionally calm conditions during which isolated individuals or small 
clones can settle and grow (Balke et al., 2011). However, as such Win
dows are relatively rare, natural reestablishment may often take decades 
or longer (Balke et al., 2011). In such systems, reconstruction of positive 
feedbacks via restoration actions may accelerate ecosystem recovery. 
Indeed, recent work in multiple coastal ecosystems demonstrated that 
harnessing intra- and interspecific positive feedbacks can greatly in
crease restoration yields, particularly in harsh conditions such as wave- 
exposed areas with unstable sediments or sheltered sites with anoxic 
soils. For instance, co-transplantation of ribbed mussels with cordgrass 
transplants was demonstrated to increase restoration yields by 50% 
(Derksen-Hooijberg et al., 2018). Moreover, whereas earlier work 
showed that increasing planting density can increase success (Teas, 
1977; Bos and van Katwijk, 2007), Silliman et al. (2015) demonstrated 
that yields can be doubled simply by planting in clumps rather than 
applying plantation-style dispersed designs, while keeping overall den
sity unchanged. In addition, de Paoli et al. (2017) achieved similar re
sults by transplanting intertidal blue mussels in clumped instead of 
dispersed designs. 

Simple clumping techniques can increase coastal restoration success 
(Shaver and Silliman, 2017; Renzi et al., 2019). Yet, facilitation- 
harnessing approaches could gain further efficacy when facilitation- 
generating organism traits can be engineered (Schotanus et al., 2020) 
or mimicked with mass-produced artificial structures that allow cost 
reductions and limit impacts on often vulnerable donor populations 
(Temmink et al., 2020). Indeed, this recent work highlights that resto
ration yields can be greatly enhanced by mimicking key emergent traits, 
i.e., traits not expressed by individuals or small clones, but that emerge 
in clumped individuals or large clones as they locally suppress physical 
stress (Temmink et al., 2020). Specifically, Temmink et al. (2020) 
demonstrate that simulating dense roots mats with biodegradable 
mimics facilitate seagrass establishment, while mimics of aboveground 
plant structures most facilitate cordgrass establishment in salt marshes, 
emphasizing that self-facilitating emergent traits can be strongly 
species-specific. Moreover, follow-up work focusing on restoration of 
mussel and oyster reefs reveal that mimicry of reef structures and set
tlement cues can similarly enhance bivalve reef restoration by facili
tating natural recruitment by stimulating settlement and reducing 
predation pressure (Fivash et al., 2021a, 2021b; Temmink et al., 2021a). 

Recent studies applying trait-based mimicry highlight that this 
approach has the potential to allow upscaling, and simultaneously 
reduce or eliminate the need for harvesting large amounts of donor 
material. This could particularly be helpful for seagrass restoration 
where restoration is typically required at large spatial scale to be suc
cessful (van Katwijk et al., 2016). Although these emergent trait-based 
mimicry approaches proved effective for seagrasses in hydrodynami
cally exposed environments, it remains unclear how their efficiency 
depends on the intensity of abiotic stressors that should be mitigated by 
feedbacks generated from emergent traits. Yet, it is clearly important to 
understand such potential context dependency as it determines when 
and where this novel approach could be applied. In seagrasses, nine 
distinct positive feedback mechanisms driving self-facilitation were 
identified (Maxwell et al., 2017). However, whether consideration of 
each specific feedback is important or not for conservation or restoration 
purposes depends on the local environmental setting. For instance, 
sediment stabilization by a seagrass root mat is likely more important in 
hydrodynamically exposed environments compared to sheltered ones. 
By contrast, alleviation of sulfide toxicity by radial oxygen losses via the 
seagrass roots or mutualistic interactions with sulfide-consuming lucinid 
bivalves is most useful in organic matter-rich, anoxic sediments (van der 
Heide et al., 2012a, 2012b; Maxwell et al., 2017). 

In this study, we investigate how transplantation success of the 
temperate seagrass Zostera marina using trait-mimicry is affected by 
hydrodynamic intensity in a restoration experiment at four sites 
(Finland, Sweden, UK, USA). Specifically, we transplanted seagrass ra
mets into (1) aboveground biodegradable establishment structures that 
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attenuate hydrodynamic energy as observed in large patches of dense 
vegetation canopies (Bouma et al., 2005; Temmerman et al., 2007; 
Bouma et al., 2009), (2) belowground establishment structures that 
stabilize the soil similar to dense vegetation root mats (Christianen et al., 
2013), and (3) unmanipulated bare control plots. During our experi
ments, we monitored sediment movement as a proxy of hydrodynamic 
exposure, and followed seagrass transplant survival, shoot density, and 
lateral expansion as indicators of restoration success. 

2. Methods 

2.1. Study sites 

The experiment was carried out over 14–15 months in 2017–2018 
(covering 2 growing seasons and a winter season) using perennially 
growing Z. marina at shallow subtidal sites (Fig. 1, Fig. A1 and Table 1). 
To compare the generality of our findings we selected three sites in 
Western Europe (Skagerrak Sea, Sweden; Baltic Sea, Finland; Celtic Sea, 
United Kingdom) and one along the Pacific US coast (Puget Sound, 
Washington). Sites differed from each other in terms of tidal range and 
fetch length, yielding a gradient of relatively mild (Finland) to most 
intense (United Kingdom) hydrodynamic exposure regime. At all four 
sites, seagrass was historically present. Furthermore, seagrass meadows 
are also still present in the direct vicinity of the transplant sites (i.e., 
within the same bay), indicating that water quality was sufficient to 
support seagrass growth. 

2.2. Experimental setup and monitoring 

At each site, we established 12 plots, spaced >2 m apart, in unve
getated, sandy areas where seagrass had previously been mapped but 
had disappeared or is still present close by. We randomly assigned one of 
three treatments to each plot in a randomized block design: above
ground establishment structure, belowground establishment structure, 
or control (n = 4 replicate blocks per site). Aboveground structures were 
placed on top of the sediment with the aim of attenuating hydrodynamic 
energy and accreting sediment. Belowground structures were dug into 
the sediment, so that the top of the structure was flush with the sediment 
surface to increase sediment stabilization without modifying flow 

velocities and shear stress (Fig. 1c). 
Establishment structures consisted of BESE elements (BESE 

Ecosystem Restoration Products, Culemborg, The Netherlands) 
composed of biodegradable potato-waste-derived Solanyl C1104M 
(Rodenburg Biopolymers, Oosterhout, the Netherlands). This Solanyl 
biopolymer blend is officially certified as biodegradable (see Appendix 
A5), and gradually degrades in field conditions over the course of 5 to 
10 years, depending on the local environmental setting (Nitsch et al., 
2021). Single sheets (91 × 45.5 × 2.0 cm; 0.44 kg, surface:volume ratio 
80 m2/m3) can be stacked and connected to form a modular complex 3D- 
structure (Fig. 1b,d). 

In this study, we combined 3 sheets to form a 6-cm high, open 3D 
honeycomb-shaped matrix that allows rhizomal expansion of the sea
grasses through the structure (Fig. 1). Next, half a circle with a diameter 
of 10 cm was removed from the middle of a long side of the 3-layer stack 
using a disk grinder. Combining two of these resulting modules yielded a 
6-cm high 91 × 91 cm establishment structure with a 10-cm circle in the 
middle. Each unit was secured with six L-shaped steel rebar pins (90 cm 
long). Control plots were marked on the corners with rebar pins. 

Seagrass transplants were obtained from nearby donor sites. Seagrass 
shoots with intact rhizomal apical meristems, were selected and planted 
by hand in the center circle of each experimental plot with basal leaf/ 
rhizome meristem pointing outwards. Three rhizome fragments (length 
= 6–10 cm), each holding 3–4 shoots were planted per plot, resulting in 
2.9 ± 0.2 (mean ± SEM) shoots per plot for Sweden, 6.5 ± 1 shoots for 
Finland, 1.8 ± 0.1 shoots for United Kingdom and 10.3 ± 0.4 shoots for 
USA at the start of the experiment. Seagrass shoots with rhizome were 
anchored using u-shaped metal pins (20 cm length) and cable ties. The 
experiments started in the early growing season of 2017 (May/June) and 
ran between 13 and 14 months (Table 1). To assess restoration yields, we 
measured survival and shoot number at the end of the experiment. In 
addition, maximum expansion distance was measured using the 
straight-line distance from the mid-point of the plot to the newest shoot 
at the end of the most distant rhizome. 

As a general and relative indication of sediment stability, we carried 
out sediment movement measurements in the growing season over the 
course of one month at all sites, apart from the UK where the experiment 
was quickly destroyed (see Results). Sediment movement was measured 
by placing a sediment-burial pin in the center of each plot in September 

Fig. 1. Map highlighting the locations of the field sites (a), a close-up of the open 3D honeycomb biodegradable structure, and the experimental treatments: control 
(c), belowground (d), and aboveground (e) establishment structures with seagrass transplants in Sweden after setup. (c–e) photos from Temmink et al., 2020. Map 
source: Natural Earth. See Fig. A1 for an indicative overview of each experimental site. 
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2017 in Sweden, and in July 2017 in both Finland and the USA (Tem
mink et al., 2020). Specifically, 50-cm long stainless pins were driven 20 
cm into the ground, after which a flat stainless-steel disc (washer) was 
placed around the pin on top of the sediment surface. Next, we measured 
the distance between the upper tip of the pin and the sediment level. 
Over the course of the following month, the disc moved downward each 
time the sediment became unstable. As a proxy of sediment mobility, we 
therefore measured the distance between the sediment surface level and 
the position of the disc after one month. 

2.3. Statistical analyses 

Transplant survival and shoot number were analyzed using General 
Linear Models (GLM) with binomial and Poisson distributions, respec
tively. Maximum lateral expansion and sediment movement were 
analyzed using Gaussian GLMs. Each of the variables was analyzed for 
treatment effects (i.e., above and belowground establishment structures 
and control) and site effects and potential interactions. Random effects 
(i.e., block effects) were not included in the models, as they proved not 
significant. We performed planned pairwise comparisons to explore 
differences between sites and treatments. Assessments were first carried 
out with Benjamini-Hochberg’s False Discovery Rate (FDR) correction of 
the significance level. As this method did not detect any differences in 
some occasions where the overarching model did, we also ran the more 
liberal Fisher’s Least Significant Difference (LSD; i.e., no correction of 
the significance level) to highlight weaker differences. 

Finally, to obtain a more in-depth understanding of the relation be
tween sediment mobility and restoration yields, we performed nonlinear 
regression analyses (exponential decay function) on sediment move
ment data versus shoot number and lateral expansion, respectively. As 
aboveground structures not only affect sediment mobility, but also flow 
conditions, and because this treatment demonstrated poor overall per
formance, we conducted the regression analyses twice per variable – 
once with all data and once without the aboveground treatment. All 
analyses were performed with R version 3.6.0 (R Core Team, 2019). All 
data are depicted as means ± SEM. 

3. Results 

Whereas the experiments in Finland, Sweden and the US lasted 
throughout the entire experimental period (14–15 months), storm- 
driven waves combined with the extreme tidal amplitude (Table 1) 
destroyed the UK experiment within the first months, leaving no further 

data to collect. Further transplant survival analyses of the three 
remaining sites revealed that presence of the transplants at the end of 
the experiment significantly depended on both site and treatment 
(Fig. 2A; Table A1). When comparing control treatments between sites, 
LSD-based comparisons found a significant 4 times higher survival at the 
Finnish site (100 ± 0%) compared to the Swedish and USA sites (25 ±
25% for both). However, this was not detected by FDR-based compari
sons (Fig. A2a). Moreover, this survival difference disappeared when 
transplants were protected by either above- or belowground structures. 
According to LSD-based comparisons, belowground structures yielded 
significantly higher survival at the Swedish site (100%) compared to 
controls, while in the USA belowground treatments (100%) out
performed both control and aboveground structures (25 ± 25% for 
both). These differences, however, were not detectable with FDR-based 
corrections of the significance levels. 

Shoot counts and maximum lateral expansion showed highly similar 
responses (Fig. 2b,c), with the facilitating effect of belowground struc
tures being strongly site dependent, while aboveground structures had 
consistent negative effects relative to controls. As a consequence of these 
interactive responses, both main effects (i.e., treatment and site) as well 
as their interaction was significant for both shoot counts and lateral 
expansion (Table S1). Both with LSD and FDR-based planned compari
sons of control treatments between sites demonstrate that shoot count 
was significantly higher at the Finnish site (63.8 ± 19.4), compared to 
the US (11.5 ± 11.5) and Swedish (0.5 ± 0.5) sites. Lateral expansion, 
however, only differed between Finland (66.0 ± 13.9 cm,) and Sweden 
(4.5 ± 4.5 cm) in the LSD comparisons. These differences, however, 
were alleviated when the transplants were planted into either below- or 
aboveground structures. 

The positive effect of belowground structures on both shoot count 
and expansion was highly significant at the Swedish site (30.3 ± 4.5 and 
29.8 ± 7.2 cm, respectively). By contrast, shoot counts in Finland were 
almost 2 times higher in controls compared to belowground structures 
(34.5 ± 9.3 and 42.8 ± 7.6 cm, respectively), while we detected no ef
fects on lateral expansion. Similar to Sweden, belowground structures at 
the USA site significantly outperformed controls by >5 and >7 times for 
shoot count and lateral expansion (59.5 ± 33.6, and 33.5 ± 7.3 cm, 
respectively). However, the latter effect was not detectable when 
applying FDR-based analyses (Fig. A2c). By contrast, aboveground 
treatments performed significantly better than controls, but worse than 
belowground in Sweden and the USA, while this treatment was the worst 
performer in Finland. Of treatments with structures, belowground 
structures performed consistently better than aboveground structures 

Table 1 
Coordinates and general environmental characteristics of our four experimental sites.  

Site (country) Latitude 
(degrees) 

Longitude 
(degrees) 

Experimental 
period (months: 
period) 

Sediment type Average 
depth (m) 

Tidal 
range 
(m) 

Maximum 
fetch length 
direction 

Range 
highest 
fetch (km) 

Wind 
speed 
(m/s)a 

Significant 
wave height 
(m) 

Archipelago Sea 
(Finland)  

59.919726  21.796689 13: June 2017 – 
July 2018 

Fine sand  2.0  0 Northeast to 
Southeast 

1.5–4  15.3b 0.32–0.43f 

Gullmarsfjord 
(Sweden)  

58.335320  11.542482 14: June 2017 – 
September 2018 

Medium sand, 
little clay and 
silt  

1.3  0.2 Northeast to 
Southeast 

2–4  11.3c 0.26–0.36f 

Puget Sound 
(USA)  

47.222461  –122.810239 14: May 2017 – Jul 
2018 

Fine sand, 
very little 
gravel, silt 
and clay  

3.6  4.3 South to 
Southwest 

6–10  9.8d 0.38–0.49f 

Longoar Bay 
(United 
Kingdom)  

51.712468  − 5.114020 NA: destroyed by 
storms between 
16/09–21/10/ 
2017 

Sand with 
pebbles  

6.5  7.8 Southwest to 
West 

6 to >100  18.4e 0.8–3.2f  

a The average of the top 5% strongest winds from the direction of the highest fetch length measured during the experimental period at local weather stations. 
b Station Kristineberg. 
c Station Fagerholm, Parainen. 
d Station Longbranch. 
e Station Waterston (2017 data). 
f Calculated with https://planetcalc.com/. 
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for all sites. Specifically, aboveground structures performed ~4 (Sweden 
and Finland) to almost 80 times (USA) worse than belowground struc
tures for shoot count, and 4, 6, and 19 times worse for lateral expansion 
in Finland, Sweden and in the USA, respectively. 

Apart from the highly exposed UK site that did not yield any data (see 
Table 1), sediment movement data revealed that Sweden was the site 
with the most unstable sediments. Sweden was followed by the USA and 
Finland, respectively, as indicated by a strong main site effect, and 

significant differences in all planned comparisons between the control 
treatments (Fig. 3; Table A1). Disc burial depth in the Swedish control 
plots (13.5 ± 1.6 cm) was 3 times deeper compared to the USA plots (4.5 
± 1.0 cm), while the discs in Finnish control plots were only barely 
covered (0.3 ± 0.3 cm). Furthermore, we found no significant main 
treatment effect, but did detect a strong Site × Treatment interaction, 
indicating that potential treatment effects depended on site. Indeed, we 
found that at the Swedish site, disc burial depth in belowground treat
ments was reduced by >80% (2.8 ± 0.3 cm) compared to controls, while 
aboveground structures reduced burial depth by just over 40% (7.8 ±
1.0 cm). By contrast, burial depth at the Finnish site was not signifi
cantly affected by the treatments. At the USA site, LSD-based compari
sons revealed a significant 62% burial reduction in belowground 
treatments (1.8 ± 0.8 cm) compared to controls, but this difference was 
not detectable when using FDR-based corrections of the significance 
level (Fig. A3). 

To further explore the relation between sediment mobility and 
restoration success, we performed nonlinear regression on disc burial 
depth versus shoot count and maximum lateral expansion. The first 
analyses, performed on the overall dataset, revealed relatively weak but 
significant correlations between burial depth versus shoot count (R2 =

0.15, p = 0.02) and lateral expansion (R2 = 0.20, p = 0.008), respec
tively (Fig. 4). In the next step, as factors other than sediment mobility 
appear to interact with the results in the aboveground structures, we 
exclude this treatment from our regression analyses. As a consequence, 
correlations strength between burial depth versus shoot count (R2 =

0.30, p = 0.01) and lateral expansion (R2 = 0.40, p = 0.002) doubled, 
suggesting that belowground structures increase transplant yields by 
reducing sediment mobility. 

4. Discussion 

Here, we provide proof of principle and support previous findings 
(Temmink et al., 2020) that mimicry of emergent traits can enhance 
seagrass restoration success by mitigating physical stress from hydro
dynamics and high sediment mobility. However, our results also clearly 
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treatment effects when p > 0.0001. Significant planned contrasts following the 
LSD procedure are indicated by different letters (see Fig. A2 for multiple 
comparisons based on FDR). Black letters indicate comparisons between 
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a treatment (T). Results of the statistical analyses are presented in Supple
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show that the survival and expansion of small transplants within 
biodegradable establishment structures that mimic dense roots mats or 
vegetation canopies is context specific and depends on local hydrody
namic intensity. By mimicking sediment-stabilizing root mats, seagrass 
transplant survival, growth and expansion can be strongly enhanced in 
hydrodynamically exposed environments. However, results also show 
that positive effects of this approach decrease and may even turn 
negative at restoration sites with low wave and current exposure con
ditions (Finland). At such sites, sediment stabilization from naturally 
generated feedback by emergent traits is also of less importance. Con
trastingly, the structures were unable to sufficiently mitigate physical 
stress in extremely exposed environments (UK), conditions where nat
ural feedbacks might also be overwhelmed. In addition, we found that 
aboveground structures, designed to attenuate hydrodynamic energy 
and trap suspended sediments, clearly underperformed in seagrass sys
tems than belowground structures, to the point where they provide no 
clear benefits regardless of exposure conditions. Overall, our results 
suggest that, within upper and lower limits, reduction of sediment 
mobility by the belowground structures increase overall restoration 
yields at exposed sites, while the sediment-stabilizing effect of the 
aboveground structures appears to be negated. 

Our work is in agreement with a growing body of literature that 
identifies sediment dynamics as a key parameter hampering establish
ment of species in physical environments (Balke et al., 2013; Bouma 
et al., 2016; Maxwell et al., 2017; Cao et al., 2018). Moreover, our re
sults support recent findings that the placement of aboveground estab
lishment structures hardly provides any benefit to seagrass transplants 
(Temmink et al., 2020). In contrast, salt marsh-forming cordgrass 
transplants benefitted more from aboveground structures, emphasizing 
the importance of mimicking species-specific emergent traits that miti
gate the relevant stressors. In the case of cordgrass, mimicry of dense 
and stiff aboveground stems that attenuate hydrodynamic energy 
proved more important for cordgrasses than mimicking their sediment- 
stabilizing root system. In contrast to cordgrass stems, however, seagrass 
stems are flexible and avoid drag by bending (Bouma et al., 2005; Per
alta et al., 2008; Bouma et al., 2010). Temmink et al. (2020) demon
strated that, whereas the rigid aboveground structures served as support 
for the stiff cordgrass stems, they in fact obstructed seagrass shoot 
movement, thereby preventing them to bend down towards the sedi
ment surface and avoid drag. In addition, our field observations suggest 
that the rigid aboveground structures can also serve as a stable and thus 
suitable attachment substrate for macroalgae that, once settled, compete 
with the seagrasses for space and light (Fig. A4). More generally, such 
unintended facilitation of undesired organisms is not only relevant for 
seagrasses, but is a risk that can also occur in other ecosystem types 

when applying trait mimicry. For instance, Teminnk et al. (2021a) and 
Fivash et al. (2021b) found that reef mimics meant to facilitate mussel 
settlement in the Netherlands, could also serve as a potential settlement 
substrate for invasive Pacific oysters. Combined, our findings emphasize 
the importance of identifying the correct species-specific emergent traits 
and stressors they mitigate, and target those for simulation in restoration 
actions. 

In addition to correctly mimicking species-specific emergent traits, 
our work demonstrates that understanding how the importance of these 
traits varies in relation to local conditions, is vital for applying them in a 
restoration context. Combined with the earlier results from Temmink 
et al. (2020), our findings highlight that trait-based mimicry with the 
aim of reducing physical stress from hydrodynamic energy, is most 
useful in relatively exposed conditions. In such conditions, it may be a 
viable alternative to e.g., clumped planting (Silliman et al., 2015) or sod 
transplantation (van Katwijk et al., 2016). Indeed, results from the 
Finnish site illustrate that belowground sediment-stabilizing structures 
may even hamper seagrass growth in environments with low wave and 
current exposure, conditions where sediment stabilization from emer
gent traits are likely also unimportant. Here, the structures provide no 
clear benefit as losses due to currents and waves are limited, while they 
may physically obstruct the expanding transplants. In such conditions, 
seeding or dispersed planting are likely sufficient from a hydrodynamics 
perspective, provided that other environmental conditions (e.g., 
nutrient loading, water transparency) are also suitable. In addition, the 
approach is also unsuitable in highly exposed situations such as the UK 
site, where conditions are simply too harsh to be mitigated by the 
temporary establishment structures or by feedbacks from emergent 
traits of an established population. In such cases, permanent protection 
measures, such hard defense structures, may provide a more feasible 
option to allow long-term vegetation development. 

Although our current establishment structure focus on mimicking 
sediment stabilization by root mats, or attenuation of hydrodynamics 
energy by the canopy, clonally growing coastal plants have been found 
to generate many more density-dependent positive interactions. For 
instance, both cordgrass and seagrass release oxygen via their roots, 
thereby oxygenating the sediment – a process that gains in strength with 
increasing root density (Lamers et al., 2013; Maxwell et al., 2017). 
Seagrasses also limit development of competing algae by absorbing 
nutrients from the water layer and providing shelter to algae grazers – 
effects that both increase with increasing patch and shoot density 
(Maxwell et al., 2017). Moreover, by aggregating into dense clusters, 
seagrass and cordgrass patches stimulate settlement of mutualistic 
lucinid bivalves and ribbed mussels, respectively, that in turn again 
facilitate the plants (van der Heide et al., 2012a, 2012b; Derksen- 

Fig. 4. Correlative analyses of how disc burial depth affects shoot number (a) and maximum lateral expansion (b). The analyses were carried out twice – once with 
all data (n = 36), and once with aboveground structures excluded (n = 24) as other treatment-related factors than sediment mobility seem to affect seagrass 
transplant performance in our experiment. 
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Hooijberg et al., 2018). These examples illustrate that both cordgrasses 
and seagrasses can generate multiple species-specific emergent traits 
that, depending on the prevailing conditions may facilitate vegetation 
establishment and resilience. Clearly, our current mimicry approach is 
still relatively crude, focusing on a limited set of emergent traits. This 
highlights not only a potential for optimization of mimicking emergent 
traits, but also for the development of entirely new establishment aids 
with the ability to mimic other traits that are useful under a different set 
of conditions. Depending on the properties required, multiple solutions 
may be envisioned to emulate certain emergent traits. This is particu
larly the case when the aim is to combine multiple traits, such as 
combining attachment substrate with chemical settlement cues and/or 
predation reducing complexity for bivalve or coral reef development. In 
engineering design, morphological analysis – a method that allows 
exploration of all possible solutions for the combinations of functions 
one aims to achieve – is an often-used approach (Ritchey, 1998). We 
argue that, once the required functions and goals are clear, this meth
odology may also be very suitable for (emergent) trait-based restoration 
approaches, particularly in combination with flexible construction 
platforms such as 3D-printers (Pérez-Pagán and Mercado-Molina, 2018). 

Overall, we conclude that mimicking key emergent traits may allow 
upscaling of restoration by constraining biological material re
quirements and implementation costs in many ecosystems that depend 
on size or density-dependent self-facilitation for persistence. These 
systems occur across a wide range of conditions, and include iconic but 
declining ecosystems such as seagrasses, mangroves, salt and freshwater 
marshes, coral and shellfish reefs, peatlands, and (semi-)arid ecosystems 
(van der Heide et al., 2021; Temmink et al., 2021b). However, our 
findings emphasize the importance of understanding the conditions at 
the restoration site as well as the growth requirements and self- 
facilitating traits that target organisms may employ. Specifically, for 
our emergent trait-mimicry approach to be useful, the stressor that is 
temporarily mitigated should be strong enough to cause an establish
ment threshold for small transplants, while a sufficiently large estab
lished population should be able to mitigate this stressor by itself. In 
addition, other critical environmental conditions that are not mitigated 
or improved by the target organism itself (e.g., salinity, temperature) 
should of course be suitable as well. Moreover, it is likely that the 
strength of self-facilitation also depends on such stressors as they affect 
the general health and vigor of the organisms, and thus also their 
habitat-modifying capacity (van der Heide et al., 2007; de Fouw et al., 
2016; Maxwell et al., 2017; de Fouw et al., 2018). Finally, large-scale 
application should also be carefully considered from an environmental 
risk perspective, particularly regarding the intermediate-term fate of 
any chemically or biologically degradable material. We therefore argue 
that further experimental testing focusing on large-scale designs and 
restoration success over multiyear timescales in contrasting environ
mental settings is required prior to wide range application of estab
lishment structures that mimic emergent traits. 
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Weerman, E.J., Piersma, T., Olff, H., Eriksson, B.K., 2013. Cross-habitat interactions 
among bivalve species control community structure on intertidal flats. Ecology 94, 
489–498. 

Feagin, R.A., Sherman, D.J., Grant, W.E., 2005. Coastal erosion, global sea-level rise, and 
the loss of sand dune plant habitats. Front. Ecol. Environ. 3, 359–364. 

Fivash, G.S., Temmink, R.J.M., D’Angelo, M., van Dalen, J., Lengkeek, W., Didderen, K., 
Ballio, F., van der Heide, T., Bouma, T.J., 2021a. Restoration of biogeomorphic 
systems by creating windows of opportunity to support natural establishment 
processes. Ecol. Appl. e2333. 

Fivash, G.S., Stüben, D., Bachmann, M., Walles, B., van Belzen, J., Didderen, K., 
Temmink, R.J.M., Lengkeek, W., van der Heide, T., Bouma, T.J., 2021b. Can we 
enhance ecosystem-based coastal defense by connecting oysters to marsh edges? 
Analyzing the limits of oyster reef establishment. Ecol. Eng. 165, 106221. 

Gagnon, K., Rinde, E., Bengil, E.G.T., Carugati, L., Christianen, M.J.A., Danovaro, R., 
Gambi, C., Govers, L.L., Kipson, S., Meysick, L., Pajusalu, L., Tüney Kızılkaya, İ., van 
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