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Abstract

Fast, high-fidelity solution workflows for transient flow phenomena is an important
challenge in the computational fluid dynamics (CFD) community. Current low-order
methodologies suffer from large dissipation and dispersion errors and require large
mesh sizes for unsteady flow simulations. Recently, on the other hand, high-order
methods have gained popularity offering high solution accuracy. But they suffer from
the lack of robust, curvilinear mesh generators.
A novel methodology that combines the advantages of the classical vertex-centred
finite volume (FV) method and high-order hybridisable discontinuous Galerkin (HDG)
method is presented for the simulation of transient inviscid compressible flows. The
resulting method is capable of simulating the transient effects on coarse, unstructured
meshes that are suitable to perform steady simulations with traditional low-order
methods. In the vicinity of the aerodynamic shapes, FVs are used whereas in regions
where the size of the element is too large for finite volumes to provide an accurate
answer, the high-order HDG approach is employed with a non-uniform degree of
approximation. The proposed method circumvents the need to produce tailored meshes
for transient simulations, as required in a low-order context, and also the need to
produce high-order curvilinear meshes, as required by high-order methods.
FV and HDG methods for compressible inviscid flows with an implicit time-stepping
method and capable of handling flow discontinuities is developed. A two-way coupling
of the methods in a monolithic manner was achieved by the consistent application
of the so-called transmission conditions at the FV-HDG interface. Numerical tests
highlight the optimal convergence properties of the coupled HDG-FV scheme. Numeri-
cal examples demonstrate the potential and suitability of the developed methodology
for unsteady 2D and 3D flows in the context of simulating the wind gust effect on
aerodynamic shapes.

Keywords: transient flows, hybridisable discontinuous Galerkin, finite volumes, coarse
meshes, coupling, transmission conditions
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Chapter 1

Introduction

The whole is greater than the sum of its parts.

Aristotle

1.1 Motivation

Physics-based simulation of processes have seen increasing demand over the past
few decades. Computational approaches to problem solving play a decisive role not
only in the design of engineering products, but in their entire life-cycle. Advances in
computational capabilities like hardware acceleration are being made in conjunction
with vast strides in the numerical modelling of physical phenomena. This has allowed
for an ever-increasing capacity to tackle large, complex and dynamical problems.
The computational fluid dynamics (CFD) study of aerodynamic flows has evolved
to embrace increasingly advanced techniques over the past few decades; shown in
Figure 1.1 is the advancement in the uptake of CFD tools for commercial aircraft
development at Boeing. Such progress in simulation capabilities provides new opportu-
nities for improving aerospace vehicle designs, lowers costs in testing and broadens our
understanding of the underlying physical phenomena. In pursuit of accurate numerical
solutions to the Navier-Stokes equations, the recent report on NASA’s CFD vision for
2030 has identified strategic areas requiring high-priority research necessary to advance
the field [141]. Some of the key findings, relevant to the present work, are discussed
below.

• High-fidelity transient simulations: High resolution simulations with im-
proved accuracy and efficiency are essential. Particular emphasis is placed on
the need for CFD in the design phase for predicting unsteady flow features with
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Figure. 1.1 An illustration of the advances in the adoption of CFD tools for commercial
aircraft development at Boeing [78].

turbulence and significant regions of separation. The need for capability-updated
CFD tools, with algorithmic improvements in discretisation methods and solvers,
among other techniques, for an efficient uptake of the advances in computer
hardware is highlighted.

• Meshing: For high-fidelity simulations on high performance computing (HPC)
hardware, advancements in the individual components of the CFD workflow
need to be undertaken. At present, mesh generation and adaptivity form a large
bottleneck in the simulation workflow and they require more research investment.

• Automation: For design efforts where components of similar configurations
are simulated, certain processes benefit from specialised automation workflows.
Geometry preparation and meshing, which often dictate the pace of the CFD
workflow, are automated for steady flow simulations. In the aerospace industry,
an accurate geometrical representation of the aircraft configuration and precise
calculations of the aerodynamic loads are of importance in steady flow conditions.
Such automation is not feasible for the meshing of transient flows, where unsteady
features are not known a-priori [147].

Low-order methods up to second-order accuracy dominate the simulation landscape
in both industry and academia. Despite significant improvements over the past
few decades, aircraft flow simulations have been reliable in only a restricted design
space. This is, in-part, due to the large dispersion and dissipation errors of the
low-order methodologies. Moreover, in viscous boundary layer meshes, elements
with very large changes in length-scales are encountered. In such meshes, accurately
propagating the vortical structures in an unsteady flow up to large distances would
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be extremely expensive with current low-order methods. The problem sizes become
prohibitively large when high speed flows of industrial applications are considered.
Furthermore, with expanding design space requirements such as high-lift, take-off
and landing configurations, edge of flight envelope conditions, turbulence and gust
simulations, fast high-resolution methods and CFD workflows are the need of the
day [92, 85, 151, 152, 91, 130].

1.2 Challenges and opportunities

The path towards fast, high-fidelity solutions to unsteady phenomena is paved with at-
tractive opportunities in the form of improved numerical techniques and methodologies.
But, also challenges, both new and old, need to be overcome.

• Low-order methods: Low-order methods have been the workhorse of industrial
and large-scale simulations over the past few decades. Second-order finite volume
(FV) methods are still the predominant technique for industrial CFD applications
due to their robustness and efficacy [88, 154]. Both vertex-centred and cell-centred
FV methods form the basis of many industrial and research codes and they have
proved to be extremely competitive when simulating steady flows [103, 49, 16].
They provide with an accuracy, at most ϵ ∝ h2, where ϵ is a measure of the
solution error and h is a measure of the mesh size. However, the need for
simulating transient, high Reynolds number flows poses a major challenge for
low-order methods, due to the excessively large number of degrees of freedom
required to accurately capture all the flow features.

• Low-order mesh generation: The meshes used for the simulations of steady-
state phenomena have been automated and are designed to capture the required
aerodynamic forces. However, these meshes lack the ability to resolve the unsteady
features and this results in high dissipation and dispersion errors if utilised with
low-order methods. To address this limitation, additional meshes that are refined
along the path of all unsteady features have to be generated. For an aircraft
configuration, it is estimated that an order of magnitude increase of the mesh
size will be required to ensure an adequate unsteady solution with the traditional
FV methods.

• High-order methods: High-order methods in recent years have garnered atten-
tion for providing with highly accuracy solutions to the Navier-Stokes equations,
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especially in applications such as direct numerical simulation, large-eddy sim-
ulation and aero-acoustics [83, 159, 84]. These methods employ a high-order
approximation in the discrete representation of the partial differential equations
(PDE) for the spatial terms, i.e., ϵ ∝ hk where k > 2. Low dissipation and
dispersion errors are the hallmarks of the high-order methods. When suitable
meshes are available, these methods have been shown to be advantageous when
compared to a low-order solution in terms of the CPU time for smooth flows and
competitive for non-smooth solutions [159].

• High-order mesh generation: When simulating the flow around aerodynamic
shapes, it is of major importance not only to accurately represent the solution, but
also the geometric description of the boundary of the computational domain [35,
14, 81, 134, 43, 99]. In fact, a low fidelity description of the geometry is known
to have a major impact on the solution accuracy [167, 135, 142, 140] and, in
some cases, to degrade or even prevent convergence to the correct solution [14,
136, 46, 36]. In other words, high-fidelity solutions are possible when high-order
accurate representation of the geometry is available. In this context, the use
of curvilinear elements is mandatory to ensure that the full potential of high-
order methods is obtained. This has led to a significant effort by the mesh
generation community to produce fast and robust, arbitrary order curvilinear
mesh generation algorithms [98, 123, 150, 166, 47, 45, 106]. Although some
approaches are nowadays available, the generation of high-quality meshes for
complex aerodynamic shapes, in particular to resolve the highly anisotropic
boundary layer region, is still a major challenge [157, 21, 79].

1.3 Background

A brief background of the high-order methods employed in CFD, along with a detailed
discussion on the discontinuous Galerkin methods relevant to the current work is
presented.

1.3.1 High-order methods in CFD

High-order methods in CFD have witnessed a major increase in interest over the past
few years [83, 84]. Listed below are some of the high-order extensions to prevalent
low-order schemes.
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In the context of finite difference (FD) methods, schemes with high-resolution compact
differences for improved representation of a wide-range of scales have been proposed [87].
Also, high-order difference approximations that satisfy the summation-by-parts rule
are available [149]. In the framework of finite volume (FV) methods, high-order
approximation is obtained with a control volume averaged solution and high-order
reconstruction of the fluxes [114, 18]. Although more widely adopted to structured
or cartesian grids [60, 95], some recent advances are being made for unstructured
grids, see [169] for a review. Also, developments to reduce dissipation and dispersion
errors have been attempted [97]. Galerkin methods, which use piece-wise continuous
approximations, have been extended to a high order context. These include the
classical finite element (FE) method which employs a polynomial basis [170] and the
spectral element method which utilises a trigonometric basis [118]. High-order stabilised
finite element formulations have been shown to be effective [163, 19, 138, 56]. Also
several other techniques have been proposed to obtain high-order accurate numerical
schemes [71, 156, 160].

1.3.2 High-order discontinuous Galerkin methods

A popular family of high-order methods with demonstrated ability to accurately capture
transient effects with minimum dissipation and dispersion are the discontinuous Galerkin
(DG) methods [23].
A DG formulation combines the advantages of the FV and the classical continuous
Galerkin (CG) methods. Both methods allow for geometric flexibility when compared
to FD schemes. But they differ in the way the solution is approximated and how
these approximations satisfy the underlying PDE [63]. In FV methods, the solution
is approximated as piecewise constant for each element and the governing PDE is
conserved locally for each element. The solution can be reconstructed up to an
arbitrary order through appropriate numerical approximation of the inter-element
fluxes. Although it allows for flexibility in the definition of the inter-element fluxes,
extensions to a high-order context on unstructured meshes are non-trivial and a subject
of active research. On the other hand, CG methods offer piecewise definition of the
solution lying in a certain function space for every element. The solution is continuous
over the entire domain and the PDE is satisfied in a global sense. As a result, the nodes
are shared along the element boundaries as illustrated in Figure 1.2(a). Extensions to
higher order approximations are relatively straight-forward, since each element can be
approximated with an arbitrary order. However, for convection-dominated flows where
instabilities arise due to the discretisation, the selection of proper stabilisation is not
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(a) CG (b) DG (c) HDG

Figure. 1.2 An illustration of the solution unknowns for various discretisation methods.
(a) CG elements share unknowns at the element boundaries, (b) DG methods have
duplicating degrees of freedom along the element boundaries. (c) HDG method involves
solving globally for the hybrid variable defined at the element boundaries.

straight-forward. Optimal stabilisation is known only for linear scalar problems in 1D
with linear elements [39]. However, new approaches to stabilise convection-dominated
flows through appropriate use of boundary conditions have recently been developed
[1]. DG methods strive to overcome the disadvantages of both FV and CG methods,
while retaining their benefits. A DG solution is constructed from a piecewise definition
lying in a certain functional basis, like the CG method, but discontinuous across
element boundaries. Here, duplication of the degrees of freedom lying on the element
boundaries becomes necessary, as shown in Figure 1.2(b). The solution satisfies the
equation in a local manner similar to the FV method. If limiters are not required, for
wave-like behaviour of the PDE, stabilisation can be introduced to the inter-element
fluxes without losing the compactness [30, 23].
The DG method was initially developed to solve the neutron transport problem [125].
Later it saw applications in many hyperbolic systems [7, 31, 38, 41]. Extensions to
high-order PDEs were introduced through the so-called mixed formulation, where the
high-order operators are reduced to a system consisting of first-order operators [13].
The major criticism faced by the DG methods has been the high computational cost.
Large number of node duplications at the element boundaries result in a large system of
unknowns to be solved for, especially for solutions in 3D domains. Although the issue is
somewhat alleviated for high-order approximations as the proportion of the number of
repeated degrees of freedom relative to the total is smaller, it is nevertheless significant.
New DG methodologies have been introduced in order to reduce the computational
requirements. Listed below is an overview of some of the advances:
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(a) IPM (b) LDG (c) HDG

Figure. 1.3 An illustration of the stencils for different DG methods. (a) IP method
for the element in red includes contribution from its neighbouring elements in green.
(b) LDG method for the element in red includes the contributions from its immediate
neighbours in green as well as the face unknowns in black for elements in grey. (c)
HDG method has a compact stencil. For the hybrid variable on the face in red, its
stencil includes only the unknowns on green.

• Interior Penalty (IP) method: The idea of introducing penalising terms to
enforce inter-element continuity was proposed in [3]. This was inspired by the
method of imposition of weak Dirichlet boundary conditions by Nitsche [113].
Symmetric and a non-symmetric variants are possible, which show an optimal
convergence of k+1 and k in the L2(Ω) respectively when polynomial of degree k is
utilised. This allowed for second-order PDEs to be handled without decomposing
into two first-order PDEs, but the disadvantage is the requirement to fine-tune
the penalty parameter for different polynomial approximations and element sizes.
The stencil for the IP method is illustrated in Figure 1.3(a). See [128, 48] for a
detailed analysis of the IP method.

• Local DG (LDG) method: The LDG method utilises the mixed formulation
with various choice of numerical fluxes available at the inter-element boundaries,
as detailed in [4]. After introducing the so-called lifting operators, it can be
shown that the LDG method can be written as a combination of the IP method
and a few additional terms. Unlike the IP method, LDG method is less sensitive
to the penalty parameter. As indicated in Figure 1.3(b), the stencil for the LDG
method not only involves the unknowns of its immediate neighbours, but some
from their neighbours as well. This loss in compactness affects the sparsity of
the resulting linear system. The LDG method converges at the optimal rate of
k + 1 in the L2(Ω).
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• Compact DG (CDG) method: As suggested by the name, the CDG method
was introduced as a remedy to address the large stencil in the LDG method [121].
The computational cost in the form of memory and CPU time is reduced when
compared to the LDG method, with only a small overhead in computing the
lifting operators. The CDG method retains the convergence rate of k + 1 in the
L2(Ω), similar to the LDG method.

• Hybridisable DG (HDG) method: Recently, a particular DG method, called
hybridisable DG (HDG) method [25, 26, 28, 29], has become popular due to the
ability to produce accurate solutions with a reduced number of degrees of freedom
when compared to other high-order methods [69, 168]. The method introduces a
hybrid variable defined uniquely on the inter-element boundaries, thus making
the formulation amenable to the static condensation technique. The reduced total
number of unknowns include the fewest repetition; duplication of the degrees of
freedom occurs only at the vertices in 2D and along the edge in 3D, as illustrated
in Figure 1.2(c). The compactness of the method, as illustrated in Figure 1.3(c),
shows the stencil for a given face only includes the unknowns of its constituent
elements. The HDG method converges at the optimal rate of k + 1 in the L2(Ω)
for first-order PDEs. For second order PDEs, a mixed formulation yields a
solution converging optimally for both the primal and dual variable at a rate of
k+ 1 in the L2(Ω). Moreover, a so-called super-convergent solution for the primal
variable can be constructed through a simple post-processing technique which
results in the convergence of the solution at a rate k + 2 in the L2(Ω). A further
improvement to reduce the number of repeated nodes in the HDG method has had
limited success, suffering from a loss of accuracy in mixed formulations [119]. The
application and performance of HDG for CFD applications have been studied by
many authors, see for instance [112, 120, 54, 165, 42, 127]. A detailed description
of the HDG method is provided in Chapter 3.

1.4 Scope of the thesis

With relevant background and motivation highlighted in the previous sections, the
discussion leads to the key proposal introduced in the current work. The rest of the
chapter is dedicated to presenting the proposed methodology and the outline of the
thesis.
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1.4.1 Proposed methodology

The present work proposes a novel scheme that combines the advantages of both
second-order vertex-centred FVs and high-order HDG, to enable the computation of
wind gust effects on two and three dimensional aerodynamic shapes using the same
meshes employed to simulate steady flows within a FV framework. The proposed
approach partitions the mesh in a subdomain where the element size is small enough
for a second-order FV to provide the desired accuracy and a subdomain where the
use of high-order methods is required to ensure an acceptable accuracy capturing the
transient flow features in coarse elements. A high-order HDG method is employed
in the coarser elements, with different degree of approximation in different elements
according to their characteristic element size. The use of vertex-centred FV method in
the vicinity of the aerodynamic shape ensures a minimum number of degrees of freedom
when compared to cell-centred or face-centred FV scheme for unstructured meshes [137]
and avoids the need for generating a high-order curvilinear mesh. Similarly, the use of
HDG guarantees a lower number of degrees of freedom compared to other DG methods.
Also, the approach circumvents the necessity to generate multiple, tailor-made meshes
for transient simulations. Moreover, the proposed methodology would enable cheap
and easy degree adaptivity in the HDG subdomain, which will eliminate the need for
adaptive re-meshing in many applications. It is worth noting that combining low and
high-order FV schemes is also an alternative. This option was not considered here due
to the extra difficulty associated to the design of the large stencils in unstructured
meshes to guarantee high-order convergence.
The coupling between both techniques is performed by introducing a set of transmission
conditions between the FV and HDG subdomains to weakly impose the continuity of
the solution and the normal flux, thus ensuring conservation. The time marching is
performed using classical backward differentiation formulae (BDF) and the resulting
non-linear problem is fully linearised using a Newton-Raphson algorithm, leading to
an unconditionally stable method.
It is worth noting that the coupling of FVs with other high-order methods was also
utilised in [20], where FVs are coupled to high-order finite differences for capturing
trailing vortical structures and in [40], where FVs are coupled to DG methods for
addressing discontinuities. The coupling of HDG with other techniques has also been
proposed. For instance, HDG is coupled with a boundary element method in [32] and
HDG is coupled to standard finite elements in the framework of second-order elliptic
problems in [115, 148].
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1.4.2 Outline

A brief outline of the structure of the thesis is given below:

• Chapter 2: Euler equations in the conservation form for the ideal fluid in
a compressible, inviscid flow is introduced. The hyperbolic properties for the
quasi-linear form of the Euler equations and their relevance to the imposition of
boundary conditions are discussed. A strategy to generate time-harmonic gusts
in the computational domain in the form of a source term to the Euler equations
is presented.

• Chapter 3: In the beginning, a brief discussion on the development of the
HDG method is provided. A succinct framework, with relevant preliminary
details, is presented. This is followed by a two-stage weak formulation for the
Euler equations. Shock-capturing method, weak-form imposition of the boundary
conditions, spatial and temporal discretisations are detailed. A linearisation
method for the non-linear residual, resulting in a set of discrete system of sparse
linear equations, is presented. Key implementation details are provided. The
Ringleb flow problem as a suitable candidate for spatial convergence tests is
described. The chapter concludes with a suite of 2D and 3D test cases for the
spatial and temporal convergence properties of the HDG method.

• Chapter 4: The chapter details the vertex-centred FV method applied to the
Euler equations. Preliminary information regarding the dual-mesh construction
and edge-based data structure is presented. Second-order spatial and temporal
discretisations, along with biharmonic artificial dissipation and harmonic shock
capturing terms are presented. An implicit formulation, leading to a discrete
linearised system of equations, is derived. Treatment of the relevant boundary
conditions is highlighted. Remarks on key implementation details are provided.
Finally, the spatial and temporal convergence properties are presented with a set
of test cases.

• Chapter 5: A novel coupling of the HDG and FV methods, individually detailed
in the previous chapters, is carried out. A set of transmission conditions across
the HDG-FV interface is introduced and incorporated into the preceding weak
formulations of the HDG and FV methods. A resulting monolithic weak form of
the coupled method is derived. Special attention highlighting the issue of the
interface treatment is provided along with the implementation details. Numerical
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tests of the coupled method, demonstrating the shock capturing capabilities and
the optimal spatial and temporal convergence properties, concludes the chapter.

• Chapter 6: Numerical examples are presented to demonstrate the advantages
of the proposed HDG-FV method over the standard second-order FV scheme.
Unsteady gust flow simulations are carried out for a single aerofoil and a two-
aerofoil configurations in 2D domains and for the ONERA M6 wing in a 3D
domain. Selection of mesh designed for steady-state simulation for use in the gust
flow example is highlighted. A methodology for partitioning the computational
domain into HDG and FV subdomains based on element size is detailed. Also,
performance benefits of the coupled scheme are analysed.

• Chapter 7: The thesis ends with some concluding remarks. It recalls the
contribution of the present work and comments on the future outlook for the
coupling strategy presented.





Chapter 2

Governing equations

“The breaking of the wave cannot explain the whole
sea.”

Vladimir Nabokov

The present chapter is devoted to a review of the Euler equations of gas dynamics which
govern compressible and inviscid flows. A brief description of the governing equations
and its non-dimensional form is provided. The wave-like nature of the equations
is discussed and the resulting influence on the imposition of boundary conditions is
explained. Furthermore, a detailed setup for the sinusoidal gust generation, encountered
in the examples in Chapter 6, is introduced.

2.1 Euler equations

The Euler equations of gas dynamics express the conservation of mass, linear momentum
and total energy of a compressible inviscid fluid. The strong form of these conservation
laws can be expressed as,

Mass:
∂ρ

∂t
+ ∂ρv1

∂x1
+ ∂ρv2

∂x2
+ ∂ρv3

∂x3
= 0, (2.1.1a)

Linear momentum:
∂ρv1

∂t
+ ∂ρv2

1
∂x1

+ ∂ρv1v2

∂x2
+ ∂ρv1v3

∂x3
= − ∂p

∂x1
+ ρb1, (2.1.1b)

∂ρv2

∂t
+ ∂ρv2v1

∂x1
+ ∂ρv2

2
∂x2

+ ∂ρv2v3

∂x3
= − ∂p

∂x2
+ ρb2, (2.1.1c)
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∂ρv3

∂t
+ ∂ρv3v1

∂x1
+ ∂ρv3v2

∂x2
+ ∂ρv2

3
∂x3

= − ∂p

∂x3
+ ρb3, (2.1.1d)

Total energy:
∂ρE

∂t
+ ∂ρHv1

∂x1
+ ∂ρHv2

∂x2
+ ∂ρHv3

∂x3
= ρ(v1b1 + v2b2 + v3b3). (2.1.1e)

Here, ρ is the density, v1, v2 and v3 are the components of the velocity vector v, E is
the specific total energy, p is the pressure, H = E + p/ρ is the specific total enthalpy
of the fluid and b1, b2 and b3 are the components of the specific body force vector b

acting on the fluid.
As in classical gas dynamics, the only influences on the momentum equation are its
redistribution and pressure. Similarly, the only influences on the energy equation are
its redistribution, conversion of energy to or from momentum and pressure [86]. The
coordinate invariant form of the above equation can be written as,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1.2a)

∂ρv

∂t
+ ∇ · (ρv ⊗ v + pInsd) = ρb, (2.1.2b)

∂ρE

∂t
+ ∇ · (ρHv) = v · ρb. (2.1.2c)

Using Einstein summation convention, the nabla operator ∇ = ∂

∂xl

el, where {e1, . . . , ensd}
is the standard basis and nsd is the number of spatial dimensions. The vector outer
product v ⊗ v = vivj and Insd is the identity matrix of dimension nsd. Writing the
Euler equations in a compact notation along with initial and boundary conditions, we
get,

U t + ∇ · F (U) = S in Ω × (0, T ], (2.1.3a)
U = U0 in Ω × {0}, (2.1.3b)

B (U ,U∞) = 0 on ∂Ω × (0, T ], (2.1.3c)

where U denotes the vector of conservation variables, the tensor F contains the
hyperbolic flux vector for each spatial dimension xl, (l = 1, . . . , nsd), T is the final
time, U0 denotes the initial condition, B is a generic flux used to define the boundary
conditions over the inflow, outflow and wall boundaries and U∞ denotes the free-stream
state. The source term S in Equation (2.1.6) usually accounts for the external volume
forces. The vectors U and S of size msd = nsd + 2 and tensor F of size msd × nsd are
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given by

U =


ρ

ρv

ρE

 , F =
[
F 1 . . . F nsd

]
=


ρvT

ρv ⊗ v + pInsd

(ρE + p)vT

 , S =


0
ρb

v · ρb

 . (2.1.4)

The system of non-linear hyperbolic equations is closed with an equation of state,
which for a perfect polytropic gas is,

p = (γ − 1)ρ
(
E − 1

2∥v∥2
)
, (2.1.5)

where γ is the specific heat at constant pressure over specific heat at constant volume,
with value γ = 1.4 for air.
A usual quantity for post-process of inviscid flow computations is the Mach number,
defined as

M = ∥v∥
c
,

where c =
√
γp/ρ is the speed of sound. In general, the flow regimes can be classified as

subsonic (0.1 < M < 0.7), transonic (0.7 < M < 1.3) and supersonic (1.3 < M < 3).

2.1.1 The dimensionless form

Typically, the Euler equations are programmed to be solved in a dimensionless form.
The non-dimensional terms (·)∗ are obtained using reference values of the variables
(·)ref. Firstly, a reference length scale xref and reference velocity scale vref are chosen.
Now, either a scaling for the pressure pref or the density ρref is required since they
are related by dim(pref) = dim(ρref v

2
ref). Now, the reference total energy is invoked

by either ρref v
2
ref or pref and the reference time is given by xref/vref. In the presence

of external body forces given by the source S in Equation (2.1.4), an external force
scaling term bref is applied.
The resulting non-dimensional form of Equation 2.1.3 is given as,

U∗
t∗ + ∇∗ · F ∗ (U∗) = Fr−2 S∗ in Ω × (0, T ] (2.1.6a)

U∗ = U∗
0 in Ω × {0} (2.1.6b)

B (U∗,U∞,∗) = 0 on ∂Ω × (0, T ] (2.1.6c)
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where, the Froude’s number, Fr = vref√
xref bref

, is a measure of the relative strengths of
inertial forces to body forces respectively [162]. In the present work, no body forces are
considered and the source term only accounts for the generated gust, see Section 2.2.
Also, for the sake of brevity, henceforth, the superscripts in the non-dimensional
equations are dropped.

2.1.2 The quasi-linear form

Important properties of the Euler equations are revealed in its quasi-linear form. For
a perfect polytropic fluid, the components of the inviscid flux F l, for l = 1, . . . , nsd,
are shown to be homogeneous functions of degree 1 [39]. This allows for the flux
components to be written as,

F l (U) = Al (U) U , (2.1.7)

where the tensor,
Al (U) = ∂F l

∂U , (2.1.8)

for l = 1, . . . , nsd is the jacobian of the inviscid flux. The Equation (2.1.6a) can be
expressed in its quasi-linear form as,

∂U
∂t

+ Al (U) ∂U
∂xl

= S. (2.1.9)

The equation admits wave-like properties when the eigenvalues of the projected jacobian
matrix An (U) = Al (U)nl along any direction n are real and linearly independent
with its corresponding right eigenvectors [66]. Consider the eigenvalue decomposition
of the projected matrix,

An (U) = R (U) Λn (U) L (U) , (2.1.10)

where, Λn := diag(λj), j = 1, · · · , msd, is the diagonal matrix of eigenvalues, R is the
vector of corresponding right eigenvectors of An and L = R−1 is the vector of left
eigenvectors of An. It is important to note that the projection of the jacobian matrix
along an arbitrary direction is diagonalisable but not the jacobian matrix itself. The
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general form of the matrices [129] are given below,

An =


0 n1 n2 n3 0

(γ − 1)Ekn1 − v1vn vn − (γ − 2)v1n1 v1n2 − (γ − 1)v2n1 v1n3 − (γ − 1)v3n1 (γ − 1)n1
(γ − 1)Ekn2 − v2vn v2n1 − (γ − 1)v1n2 vn − (γ − 2)v2n2 v2n3 − (γ − 1)v3n2 (γ − 1)n2
(γ − 1)Ekn3 − v3vn v3n1 − (γ − 1)v1n3 v3n2 − (γ − 1)v2n3 vn − (γ − 2)v3n3 (γ − 1)n3
((γ − 1)Ek − H) vn Hn1 − (γ − 1)v1vn Hn2 − (γ − 1)v2vn Hn3 − (γ − 1)v3vn γvn

,
(2.1.11)

R =
[
R1 R2 R3 R4 R5

]
=


1 1 1 0 0

v1 − cn1 v1 v1 + cn1 n2 −n3

v2 − cn2 v2 v2 + cn2 −n1 0
v3 − cn3 v3 v3 + cn3 0 n1

H − cvn Ek H + cvn v1n2 − v2n1 v3n1 − v1n3

,
(2.1.12)

Λn =



vn − c 0 0 0 0
0 vn 0 0 0
0 0 vn + c 0 0
0 0 0 vn 0
0 0 0 0 vn


, (2.1.13)

L =


LT

1
LT

2
LT

3
LT

4
LT

5

 =



(γ − 1)Ek + cvn

2c2
(1 − γ)v1 − cn1

2c2
(1 − γ)v2 − cn2

2c2
(1 − γ)v3 − cn3

2c2
γ − 1
2c2

c2 − (γ − 1)Ek

c2
(γ − 1)v1

c2
(γ − 1)v2

c2
(γ − 1)v3

c2
1 − γ

c2
(γ − 1)Ek − cvn

2c2
(1 − γ)v1 + cn1

2c2
(1 − γ)v2 + cn2

2c2
(1 − γ)v3 + cn3

2c2
γ − 1
2c2

v2 − vnn2

n1
n2

n2
2 − 1
n1

n2n3
n1

0
vnn3−v3

n1
−n3

−n2n3

n1

1−n2
3

n1
0


.

(2.1.14)
Here, n1, n2 and n3 are the components of the unit vector n along the projected
direction, Ek = ||v||2

2 is the specific kinetic energy and vn = v ·n is the normal velocity.
The jacobian matrices projected along the unit vectors of the coordinate axes can be
deduced as,

A1 =



0 1 0 0 0
(γ − 1)Ek − v2

1 (3 − γ)v1 (1 − γ)v2 (1 − γ)v3 (γ − 1)
−v2v1 v2 v1 0 0
−v3v1 v3 0 v1 0

((γ − 1)Ek −H) v1 H − (γ − 1)v2
1 (1 − γ)v2v1 (1 − γ)v3v1 γv1


,

(2.1.15a)
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A2 =



0 0 1 0 0
−v1v2 v2 v1 0 0

(γ − 1)Ek − v2
2 (1 − γ)v1 (3 − γ)v2 (1 − γ)v3 (γ − 1)

−v3v2 0 v3 v2 0
((γ − 1)Ek −H) v2 (1 − γ)v1v2 H − (γ − 1)v2

2 (1 − γ)v3v2 γv2


,

(2.1.15b)

A3 =



0 0 0 1 0
−v1v3 v3 0 v1 0
−v2v3 0 v3 v2 0

(γ − 1)Ek − v2
3 (1 − γ)v1 (1 − γ)v2 (3 − γ)v3 (γ − 1)

((γ − 1)Ek −H) v3 (1 − γ)v1v3 (1 − γ)v2v3 H − (γ − 1)v2
3 γv3


.

(2.1.15c)

Note that, for 2D flows, the necessary forms of the matrices above can be obtained by
removing appropriate rows and columns and setting n3 = v3 = 0.

2.1.3 Imposition of boundary conditions

A careful application of boundary conditions is critical for obtaining accurate solutions
to Euler equations [124]. The hyperbolic nature of the solution requires the imposition
of boundary conditions to respect the direction of information travel for the different
characteristic waves. An overview of the considerations are provided here and detailed
implementations of the procedure is described in the upcoming chapters for the HDG
and FV methods.
For slip wall conditions, no mass or energy transport occurs across the boundary. Only
linear momentum transport in the tangential direction to the wall is allowed. Hence,
only the momentum equations are modified. This is straight-forward and takes the
form of imposing vn = 0. It is a widely-accepted standard practice to apply a similar
procedure to the symmetry boundary [145]. However, additional constraints may be
applied at the symmetry boundary, see for instance [126].
In two and three dimensional flows, the jacobian in Equation (2.1.8) cannot be di-
agonalised since information can travel in infinite directions and decomposition into
independent scalar waves is not possible. This is only achievable in the one dimensional
case. Consider the one dimensional quasi-linear form of Equation (2.1.9), premultiplied
by L,

L

(
∂U
∂t

+ A1 (U) ∂U
∂x1

)
= L S. (2.1.16)



2.1 Euler equations 19

Defining the so-called characteristic variable or Riemann variable W = LU , one can
verify that the following holds true,

∂W

∂t
+ Λ1 (U) ∂W

∂x1
= L S, (2.1.17)

where,

Λ1 =


v1 0 0
0 v1 + c 0
0 0 v1 − c

 . (2.1.18)

Now, the Euler equations can be decoupled into three scalar convection equations. The
characteristic equations define three distinct speeds and direction of information travel.
They are given by,

C0 : dx1

dt
= v1, (2.1.19a)

C+ : dx1

dt
= v1 + c, (2.1.19b)

C− : dx1

dt
= v1 − c. (2.1.19c)

The expressions for the characteristic variable that is being transported is possible in
the restrictive case of one dimensional flows only and is given by,

W =



s

v1 + 2c
γ − 1

v1 − 2c
γ − 1


. (2.1.20)

At an external boundary, the advection of information along the direction normal to
the boundary is of importance. Thus the diagonalisation can be performed in the
normal direction. Here, the direction of the outward unit normal n, the flow velocity
and the local speed of sound, together dictate the speed of information travel according
to Equation (2.1.13). Three distinct wave speeds are encountered, vn, vn + c and vn − c.
Negative characteristics signify information travelling into the domain and positive
characteristics denote information leaving the domain. The jacobian matrix associated
with the outgoing (+) and incoming (−) characteristics is given by,

A±
n (U) = 1

2 (An (U) ± |An (U) |) , (2.1.21)
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where,
|An (U) | = R (U) |Λn (U) | L (U) . (2.1.22)

Hence, prescribed boundary conditions correspond to negative characteristics only.
The boundary conditions are applied on the characteristic or Riemann variable W and
then transformed to the conservative variable U .
For supersonic flow cases, where local Mach number M > 1, the following considerations
need to be undertaken.

• At inflow boundaries, vn < 0 and |vn| > c. This implies that all characteristic
waves enter the domain and need to be prescribed for the Riemann variables W

on the boundary.

• At outflow boundaries, vn > 0 and |vn| > c and all the characteristics are positive.
Hence, no prescription is necessary since information travels to the boundary
from the interior of the domain.

Subsonic flow conditions M < 1 require that the following conditions are satisfied.

• At inflow boundaries, vn < 0 and |vn| < c. This implies that nsd +1 characteristic
waves enter the domain and need to be prescribed at the boundary. Riemann
variables corresponding to the wave speeds vn and vn − c are obtained from
the external conditions and the one corresponding to the wave speed vn + c is
obtained from the domain interior. Generally, density and velocity are prescribed
here.

• At outflow boundaries, vn > 0 and |vn| < c and all characteristics except one
are positive. Characteristic variable corresponding to the wave speed vn − c is
prescribed by the exterior condition, whereas the other variables corresponding
to the wave speeds vn and vn + c are obtained from the domain interior. Usually
pressure is prescribed at these boundaries.

In practise, unit outward normal to the inflow/outflow boundaries are well-defined.
In the FV implementation, the outward pointing normal is defined for each facet of
the edge connecting two boundary nodes. Similarly, in the HDG implementation, unit
outward normal may be evaluated at each gauss point location on the element face. At
sharp edges such as the aerofoil trailing edges, contributions arising from the FV facets
or HDG faces with well-defined normals are treated naturally. Non-physical, numerical
perturbations were not encountered.
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(a) (b)

Figure. 2.1 A space-time plot of the characteristics, given in Equation (2.1.19), for (a)
supersonic and (b) subsonic 1D flows. The incoming characteristics are denoted in red
and outgoing characteristics are in black. The green region represents the space-time
domain

Figure 2.1 illustrates the characteristics for supersonic and subsonic flows in a 1D
domain, where the inflow and outflow characteristics are highlighted in red and black
lines respectively.

2.2 Gust problem setup

Gust phenomena plays a major role in aircraft design and are crucial in determining
critical load cases. They represent unsteady flow phenomena that have been tradition-
ally modelled through different approaches. One popular method is the generation
of desired vortical gusts through the imposition of time-dependent inflow/outflow
boundary conditions [67, 58]. It is critical that a fluctuating mean flow is maintained
and that the reflection of disturbances at the boundary is minimal. Moreover, the
path from the far-field boundary to the aerodynamic configuration needs to propagate
the gust fluctuations without large dispersion and dissipation errors, necessitating a
large zone of mesh refinement, which increases the possibility of spurious boundary
reflections.
An alternative methodology involves introducing the gust inside the domain as a
source term in the governing equations. It was first proposed in [96] and is the
procedure of choice in the present work. The harmonic perturbation of the velocity
field is incompressible and vortical in nature and thus only affects the momentum
equation [57, 96]. Contrary to the previous approach, this allows for the use of
stretched grids in the far-field to minimise wave reflections. Moreover, unlike forcing a
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perturbation in the conservative variables, introducing the sinusoidal variation as a
source term would not decouple the effect of the fluid flow on the the domain lying in
the region of gust generation [70].
Consider a flow in the x1 − x2 plane. Two-dimensional vortical perturbation of the
velocity field {vg

1 vg
2}T is introduced in the form described below,

vg
1 = δ1 cos(αx1 + βx2 − ωgt), (2.2.1a)
vg

2 = δ2 cos(αx1 + βx2 − ωgt), (2.2.1b)

where the gust amplitudes,

δ1 = − δgβ||v∞||√
α2 + β2 , δ2 = δgα||v∞||√

α2 + β2 . (2.2.2)

Here, δg is the gust intensity relative to the mean flow, α = ωg/||v∞|| and β = α tan θ
represent the wave numbers of the sinusoidal gust in the x1 and x2 direction respectively,
ωg is the imposed gust frequency, ||v∞|| is the freestream velocity and θ is the angle
of propagation of the gust front with respect to the x1 axis. Note that the gust field
satisfies the incompressibility condition, that is, ∇ · {vg

1 vg
2}T = 0

The source term S(x, t) to generate the desired gust is composed of two non-zero
terms among msd components, namely S1 and S2. These terms act on the momentum
equation along the x1 and x2 directions respectively and are given by,

S1(x, t) = βKg(x1)λ(x2) cos (ωgt− βx2 − αxg
1) , (2.2.3a)

S2(x, t) = Kg′(x1)λ(x2) sin (ωgt− βx2 − αxg
1) , (2.2.3b)

where (xg
1, 0) being the centre of the rectangle of dimension a × b where the gust is

generated. The constant K is defined as,

K = δg α (α2 − â2) ||v∞||2

â2
√
α2 + β2 sin

(
ωgπ

â||v∞||

)

where â, is used to define the width of the rectangle where the gust is generated, namely
a = 2π/â. Finally, the functions λ and g are given by,

λ(x2) = 1
2

(
tanh

(
3(x2 + b/2)

)
− tanh

(
3(x2 − b/2)

))
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and

g(x1) =


1
2

(
1 + cos(â(x1 − xg

1))
)

if |x1 − xg
1| ≤ a

2

0 otherwise

and they are used to guarantee a smooth transition of the flow field in the boundary of
the gust region.





Chapter 3

The hybridisable discontinuous
Galerkin method

“Science is a way of thinking, much more than it is a
body of knowledge.”

Carl Sagan

Ciaret [22] defines a hybrid method as “any finite element method based on a formulation
where one unknown is a function, or some of its derivatives, on the set Ω, and the other
unknown is the trace of some of the derivatives of the same function, or the trace of
the function itself, along the boundaries of the set K”. Fix [44] generalises a method to
be hybrid when any kind of duality technique is used to treat troublesome constraints,
the use of Lagrange multipliers for handling boundary conditions being one of them.
The HDG method was born with the works of Cockburn and Gopalakrishnan [25–28],
Cockburn et al. [29], when the idea was applied to relax the continuity requirements
on the inter-elemental boundaries.
The HDG framework begins with expressing the approximating variable inside each
element and the corresponding flux in-terms of the trace of the approximating variable
defined over the element boundaries. Uniqueness of the trace variable is then obtained
by imposing the continuity of the normal component of the flux across the inter-element
boundaries. This results in only globally coupled degrees of freedom for the solution
approximation, which are singularly defined on the element boundaries (faces/edges)
only. Efforts have been undertaken to further reduce the duplication of the degrees of
freedom with limited success [119].
The HDG method, while retaining the advantages of DG methods over CG methods,
offers attractive numerical properties, especially in CFD applications. Compared to
the other DG methods analysed in [5], fewer degrees of freedom are duplicated, thus
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resulting in a significantly smaller discrete system. Both the approximating solution
and the flux exhibit optimal convergence properties of the order of hk+1, where h is the
characteristic mesh size and k is the order of the polynomial of approximation. Addi-
tionally, for second-order PDEs, when approximating the primal and the dual variables
in a mixed formulation setting with a polynomial of order k, optimal convergence at a
rate of k + 1 in the L2 norm is possible. A simple, element-by-element post-processing
can then be used to obtain the so-called super-convergent solution for the primal
variable that converges at the rate of k + 2 in the L2 norm. Moreover, for hyperbolic
equations, numerical stabilisation can be intuitively added with appropriate definitions
of the numerical flux across element faces, wherein, the dependency on only the values
of approximating variables on the faces is often advantageous. Numerical fluxes to
define both the inviscid and the viscous fluxes in a single framework is also possible.
Additionally, a unified treatment of the boundary conditions can be achieved with
appropriate definitions of numerical fluxes on the domain boundaries. High accuracy,
suitability for anisotropic meshes and degree adaptivity are hallmarks of the HDG
method.
The HDG method is a topic of active research with applications for equations of
linear convection-diffusion [110], non-linear convection-diffusion [111], Stokes flow [108],
incompressible Navier-Stokes flow [109, 52], compressible Euler and Navier-Stokes
flow [120], wave propagation [55], linear elasticity [133] and electro-magnetics [93].
See [51] for an overview of the developments in the HDG method and an open-source
implementation.
This chapter applies the HDG method to the Euler equations previously described
in Chapter 2 and is organised as follows. A brief setting for the HDG framework is
provided as preliminaries, wherein, the broken HDG domain, the hybrid variable and
the relevant functional spaces for the approximating variables are defined. A two-stage
HDG weak formulation for the governing equations along with the treatment of the
boundary conditions is presented. Additionally, the shock capturing method employed
is discussed. The exposition then moves on to present the choice of the temporal and
spatial discretisation. The strategy to solve the resulting discrete non-linear system
of equations with the Newton-Raphson linearisation method concludes the discussion
on HDG. A few notes on the implementation details are provided to supplement the
formulations. A short description of the Ringleb flow problem is provided. It is a
popular example with an analytical solution to the Euler equations, which is employed
to demonstrate the spatial accuracy of discretisation methods. The chapter ends with
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(a) (b)

Figure. 3.1 A schematic of the partition of the HDG domain into (a) straight-sided
triangular elements in 2D and (b) planar-faced tetrahedral elements in 3D. Fekette
nodal distribution of the polynomial of order k = 4 for the solution unknowns in the
elements (in black) and for the trace of the solution unknowns on the inter-element
boundaries (in red) are illustrated.

results from the numerical tests designed to check the methodology for consistency and
accuracy.

3.1 Preliminaries

Consider an open bounded domain Ω1 ∈ Rnsd , with boundary ∂Ω1 and nsd the number
of spatial dimensions, to be discretised with the HDG method. As a first step, assume
that Ω1 is partitioned into nel disjoint elements Ω1

e such that,

Ω1 =
nel⋃
e=1

Ω1
e, Ω1

e ∩ Ω1
f = ∅ for e ̸= f. (3.1.1)

The elemental boundaries ∂Ω1
e define the internal interface Γ1 as,

Γ1 :=
[ nel⋃

e=1
∂Ω1

e

]
\ ∂Ω1. (3.1.2)

The partition of the HDG domain is illustrated in Figure 3.1.
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The strong form of the governing equations in Equation (2.1.6) applied to the broken
HDG domain is given as,

U t + ∇ · F (U) = S in Ω1
e × (0, T ], (3.1.3a)

JρnK = 0nsd

Jρv ⊗ nK = 0nsd×nsd

JρEnK = 0nsd

 ⇐⇒ JU ⊗ nK = 0msd×nsd on Γ1 × (0, T ], (3.1.3b)

JF k(U)nkK = 0msd ⇐⇒ JF (U) · nK = 0msd on Γ1 × (0, T ], (3.1.3c)
U = U0 in Ω1

e × {0}, (3.1.3d)
B(U ,U∞) = 0msd on

(
∂Ω1

e ∩ ∂Ω
)

× (0, T ],
(3.1.3e)

for e = 1, . . . , nel, where U = U |Ω1 , Equations (3.1.3b) and (3.1.3c) impose the
continuity of the conservative variable and the normal fluxes respectively, the so-called
transmission conditions, across the internal interface Γ1.
The jump operator J·K at the interface, following the definition introduced in [101],
sums the values from the right and the left of the interface, say Ωi and Ωj as

J⊙K = ⊙|Ω1
i

+ ⊙|Ω1
j
. (3.1.4)

It is to be noted that the corresponding unit outward normal vector n is used on each
side of the interface.
The HDG method describes the solution process for Equation (3.1.3) in two phases.
Firstly an element-by-element local problem is defined to find U for each element
e = 1, . . . , nel with Û , which is the trace of U defined on the mesh skeleton (Γ1 ∪ ∂Ω1),
imposed as Dirichlet condition. Secondly, a global problem is setup to determine the
trace Û . Note that Û , which is referred to as the hybrid variable, is an independent
variable to be solved for. This leads to the final strong form as,

U t + ∇ · F (U) = S in Ω1
e × (0, T ], (3.1.5a)

U = Û on ∂Ω1
e × (0, T ], (3.1.5b)

JF (U) · nK = 0msd on Γ1 × (0, T ], (3.1.5c)
U = U0 in Ω1

e × {0}, (3.1.5d)
B(U , Û ,U∞) = 0msd on

(
∂Ω1

e ∩ ∂Ω
)

× (0, T ], (3.1.5e)
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for e = 1, . . . , nel. It is worth noting that Equation (3.1.3b) is satisfied by the Dirichlet
condition in Equation (3.1.5b) and the unique definition of the hybrid variable on each
face of the mesh skeleton.
What follows in this section are some of the definitions that supplement the upcoming
HDG formulation. The L2 inner product in a generic domain D is defined as,

(u,v)D =
∫

D
u · v dΩ. (3.1.6)

Similarly, the L2 inner product in any domain S ⊂ (Γ1 ∪ ∂Ω1) is given by,

⟨u,v⟩S =
∫

S
u · v dΓ. (3.1.7)

Utilising the notation in [139], the following discontinuous finite element functional
spaces are defined,

Wh,ke(Ω1
e) :=

{
v ∈ L2(Ω1) : v|Ω1

e
∈ Pke(Ω1

e) ∀Ω1
e , e = 1, . . . , nel

}
, (3.1.8a)

Ŵh,kj (Γ1
j) :=

{
v̂ ∈ L2(Γ1 ∪ ∂Ω1) : v̂|Γ1

j
∈ Pkj (Γ1

j) ∀Γ1
j ⊂

(
Γ1 ∪ ∂Ω1

)}
, (3.1.8b)

Wh,ke
t (Ω1

e) :=
{
v : v(·, t) ∈ Wh,ke(Ω1

e), ∀t ∈ (0, T ]
}
, (3.1.8c)

Ŵh,kj

t (Γ1
j) :=

{
v̂ : v̂(·, t) ∈ Ŵh,kj (Γ1

j),∀t ∈ (0, T ]
}
, (3.1.8d)

where Pke(Ω1
e) and Pkj (Γ1

j) are the spaces of polynomial functions of complete degree
at most ke in Ωe and kj on Γj respectively. Note that while Wh,ke and Wh,ke

t are defined
on a per-element basis, Ŵh,kj and Ŵh,kj

t are defined on a per-face (in 3D) or per-edge
(in 2D) basis on the mesh skeleton which includes the mesh internal interface and the
external faces/edges.

3.2 The HDG weak formulation

The HDG method as the choice of spatial discretisation, introduced in the previous
section, is elaborated here. The strong form in Equation (3.1.5) is solved in two phases:
the so-called local and the global problems [29, 24, 110]. Following the application of
the method of lines [39], a semi-discrete weak form is derived.
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3.2.1 The local problem

The weak form of the local problem involves the integration of the Equation (3.1.5a)
in each element Ω1

e. The problem can be stated as: given Û on (Γ1 ∪ ∂Ω1), find
U ∈ [Wh,ke

t (Ω1
e)]msd such that,

(
δU ,U t

)
Ω1

e

+
(
δU ,∇ · F (U )

)
Ω1

e

=
(
δU ,S

)
Ω1

e

, (3.2.1)

for all δU ∈ [Wh,ke(Ω1
e)]msd and e = 1, . . . , nel. As usual with the Galerkin method, the

spaces of test functions are chosen to be the space spanned by the approximations.
Applying the divergence theorem the local problem becomes,

(
δU ,U t

)
Ω1

e

−
(
∇δU ,F (U )

)
Ω1

e

+
〈
δU ,F (U) · n

〉
∂Ω1

e

=
(
δU ,S

)
Ω1

e

. (3.2.2)

Approximating the normal flux on the element boundaries with a numerical normal
flux, we introduce a dependency on the trace of the solution Û as,

F̂ (U , Û) · n := F (Û) · n + τ · (U − Û), (3.2.3)

where, the selection of the stabilisation tensor τ plays an important role in the stability,
accuracy and convergence properties of the resulting HDG method [29, 24, 110, 111,
108, 112]. As noted earlier, the continuity in the conservative variables are introduced
through the definition of a unique value of the hybrid variable. The definition in
Equation (3.2.3) is consistent, that is, when U = Û , F̂ · n = F · n. The condition
imposed penalises the continuity constraint through the stabilisation term. The weak
imposition thus ensures the balance of the fluxes across element boundaries, although
not necessarily in a point-wise manner, but in its L2 projection onto Ŵh,kj (Γ1

j). Hence,
any jumps or sharp gradients in quantities such as density across a shock, which are
allowed by the physics, may be accounted without the loss of stability in the scheme.
The flexibility of defining the stabilisation tensor provides an advantage in tailoring it
based on the physics of the problem being solved, see [110, 111]. Various definitions
have been explored for Euler equations [120, 155], some of which are listed below:

τ ROE
(
Û
)

:= L
(
Û
)

|Λn

(
Û
)

|R
(
Û
)
, (3.2.4a)

τ LLF
(
Û
)

:= (|v̂n| + ĉ) Imsd , (3.2.4b)

τ GLF (U∞) := (||v∞|| + c∞) Imsd . (3.2.4c)
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Equation (3.2.4a) results in a Roe’s scheme for the numerical flux, where, Λn

(
Û
)
, given

in Equation (2.1.13), is the diagonal matrix of eigenvalues of normal convective jacobian
An

(
Û
)

in Equation 2.1.11. L
(
Û
)

and R
(
Û
)

are the corresponding matrices of left
and right eigenvectors given in Equation (2.1.14) and Equation (2.1.12). |Λn

(
Û
)

|
has all the diagonal entries as absolute values of that corresponding to the entries of
Λn

(
Û
)
. Equation (3.2.4b) leads to a Local Lax-Friedrichs scheme, where the local

normal velocity v̂n = v̂ · n and local speed of sound ĉ are computed using the hybrid
variable Û . Equation (3.2.4c) defines a global Lax-Freidrichs method where free-stream
value of the conservative variable U∞ is utilised.
For its ease of computation and suitable accuracy, τ LLF has been used throughout in the
present work. Moreover it has been reported [120] that the choice of the stabilization
matrix becomes less critical for high-order Discontinuous Galerkin methods as numerical
dissipation of the order hk+1 vanishes rapidly with increasing k.
Finally, the semi-discrete weak form of the local problem is: given Û on (Γ1 ∪ ∂Ω1),
find U ∈ [Wh,ke

t (Ω1
e)]msd such that,

(
δU ,U t

)
Ω1

e

−
(
∇δU ,F (U)

)
Ω1

e

+
〈
δU , F̂ (U , Û) · n

〉
∂Ω1

e

=
(
δU ,S

)
Ω1

e

, (3.2.5)

for all δU ∈ [Wh,ke(Ω1
e)]msd and e = 1, . . . , nel.

3.2.2 The global problem

The global problem solves for the hybrid variable globally. Utilising the definition
of the numerical normal flux in Equation (3.1.5c) for the balance of normal fluxes
on the mesh skeleton and Equation (3.1.3e), the global problem is given as: find
Û ∈ [Ŵh,kj

t (Γ1 ∪ ∂Ω1)]msd such that

nel∑
e=1

{〈
δÛ , F̂ (U , Û) · n

〉
∂Ω1

e\∂Ω1
+
〈
δÛ , B̂(U , Û ,U∞)

〉
∂Ω1

e∩∂Ω1

}
= 0, (3.2.6)

for all δÛ ∈ [Ŵh,kj (Γ1 ∪ ∂Ω1)]msd .
The local problem, given by Equation (3.2.5) is used to write the primal solution U

as a function of the hybrid variable Û . Introducing this expression into the global
problem, given by Equation (3.2.6), leads to a problem only for the hybrid variable.
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3.2.3 Boundary conditions

Treatment of the boundary conditions, given in form of the boundary flux in Equa-
tion (3.1.5e), is of a vital concern [15]. For external flow phenomena, generally two
distinct conditions arise, the free-stream/far-field boundary and the inviscid/slip wall
boundary [100]. Special considerations are necessary because of the presence of the
hybrid variable Û . Various approaches in the HDG context are available, see [120, 76].
The following definitions of the boundary fluxes are referenced from [120].
The far-field boundary receives information from the external free-stream conditions
(prescribed) or the domain interior values based on the flow characteristics, which is
taken into account with the boundary flux defined as,

B̂
∞(U , Û ,U∞) = A+

n

(
Û
) (

U − Û
)

− A−
n

(
Û
) (

U∞ − Û
)
. (3.2.7)

Here, the jacobian matrices associated with positive and negative characteristics
A±

n

(
Û
)

is given in Equation (2.1.21).
At the inviscid wall boundary, the flow is assumed to ‘slip’, wherein the momentum
is tangential to the boundary. In other words, the condition imposes zero normal
component to the momentum equations as below,

B̂
W (U , Û) = bW U − Û , (3.2.8)

where, the msd × msd matrix bW is,

bW =


1 0T

nsd
0

0 Insd − n ⊗ n 0
0 0T

nsd
1

 . (3.2.9)

3.3 Shock capturing method

High speed flows governed by the Euler equations admit regions of sharp gradients in
its solution which take the form of shock waves and contact discontinuities. Special
treatment is required for the numerical approximation techniques in the vicinity of
such discontinuities in order to avoid excessive Gibbs oscillations appearing in the
solution and to thus maintain the stability of the discretisation method.
Two classes of methods, namely, slope limiters and artificial dissipation methods
are generally available. The current work adopts the latter for resolving the shocks.
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Slope limiting methods reconstruct the solution in the regions detected as shocks
with a low order approximation [33, 82, 95]. They have not been widely adopted for
practical applications because of the restrictions on the time step size which make
them unsuitable for implicit methods. Artificial dissipation methods on the other hand
rely on applying additional viscous terms to the equations in the region of the shocks
in order to smear the discontinuity across a length scale such that they may then be
resolved by the approximating functions [158, 73, 74]. For high-order DG methods it
is argued that the high accuracy afforded by the high-order approximating functions
allow for sub-cell resolution of shocks that are thinner than the element size [122, 11].
A key ingredient in the shock capturing methods is the so-called shock sensor, which
determines the location and quantifies the magnitude of the shock. Previously, a
sensor based on the rate of decay of the expansion coefficients of the polynomials of
approximation in every element has been used [122]. In the current work, the sensor
is based on a non-dimensional form of the divergence of the velocity field (dilatation)
introduced in [107] and later expanded in [104]. The performance of the dilatation-based
sensor is shown to be robust for complex flows in highly anisotropic meshes
The artificial dissipation method introduces a discrete form of the Laplacian-type term
∇ · (κ∇U) into the governing equations, which gets activated in the region of the
shocks. Here, κ determines the amount of artificial viscosity added and is a function of
the dilatation, mesh size and state of the fluid. The mesh size is given by a reference
length scale equal to (lhh (x)) /k, where the constant lh = 1.5 and h (x) is the piecewise
linear reconstruction of the element size, which is obtained by the averaging of element
sizes surrounding a vertex. The non-dimensional, dilatation-based sensor s is given by,

s = −
(
lhh (x)
k

)
∇ · v

c∗ , (3.3.1)

where, the critical speed of sound c∗ is,

c∗ = c

√
2 + (γ − 1)M2

γ + 1 . (3.3.2)

Finally, κ is given as,

κ = −
(
lhh (x)
k

)√
v · v + c2 f(s). (3.3.3)
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A smoothing f(s) is applied to the ramp function, max (0, s− b), to avoid convergence
issues as,

f (s) =
log

(
1 + ea(s−b)

)
a

, (3.3.4)

where (a) controls the shape of the smoothing and (b) determines the value beyond
which the sensor ramps up. Their values, a = 104 and b = 0.01, are obtained from
[104].
Thus, the semi-discrete weak form of the local problem in Equation (3.2.5) is updated
as: given Û on (Γ1 ∪ ∂Ω1), find U ∈ [Wh,ke

t (Ω1
e)]msd such that,

(
δU ,U t

)
Ω1

e

−
(
∇δU ,F (U)

)
Ω1

e

+
〈
δU , F̂ (U , Û) · n

〉
∂Ω1

e

=
(
δU ,S

)
Ω1

e

−
(
∇δU , κ∇U

)
Ω1

e

,

(3.3.5)
for all δU ∈ [Wh,ke(Ω1

e)]msd and e = 1, . . . , nel.

3.4 Temporal discretisation

The semi-discrete weak forms of the local problem in Equation (3.3.5) and the global
problem in Equation (3.2.6) represents a differential algebraic system of equations
[59, 6]. Implicit Runge-Kutta method, in particular diagonally implicit R-K (DIRK)
methods have been previously used for HDG [77, 76].
Currently, the time integration is performed using backward differentiation formulae
(BDF) [6]. This popular family of implicit multi-step time marching algorithms
approximate the first-order time derivative as

ut ≈
ntg∑
s=0

asu
n+1−s (3.4.1)

where ur(x) := u(x, tr) and, to shorten the notation, the coefficients as include the
dependence upon the selected time step ∆t.
For steady-state computations, this work employs the first-order BDF method (BDF1),
which is equivalent to the backward Euler method, corresponding to ntg = 1, a0 = 1/∆t
and a1 = −1/∆t. For transient computations, a second-order BDF method (BDF2)
is employed, corresponding to ntg = 2, a0 = 3/(2∆t), a1 = −2/∆t and a2 = 1/(2∆t).
Note that only BDF1 and BDF2 are A-stable.
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The semi-discrete weak formulation for HDG with BDF time integration can be written
as,

ntg∑
s=0
as

(
δU ,Un+1−s

)
Ω1

e

−
(
∇δU ,F (Un+1)

)
Ω1

e

+
〈
δU ,F (Ûn+1) · n

〉
∂Ω1

e

+
〈
δU , τ n+1 · Un+1

〉
∂Ω1

e

−
〈
δU , τ n+1 · Û

n+1〉
∂Ω1

e

−
(
δU ,Sn+1

)
Ω1

e

+
(
∇δU , κn∇Un+1

)
Ω1

e

= 0, (3.4.2a)
nel∑
e=1

{〈
δÛ ,F (Ûn+1) · n

〉
∂Ω1

e\∂Ω1
+
〈
δÛ , τ n+1 · Un+1

〉
∂Ω1

e\∂Ω1

−
〈
δÛ , τ n+1 · Û

n+1〉
∂Ω1

e\∂Ω1
+
〈
δÛ , B̂(Un+1, Û

n+1
,U∞)

〉
∂Ω1

e∩∂Ω1

}
= 0. (3.4.2b)

3.5 Spatial discretisation

The definitions of functional spaces in Equations (3.1.8) lead to the following nodal
interpolations of the conservative variable on an element-by-element and face-by-
face basis. Solution U is defined on a reference element, with local coordinates
ξ = (ξ1, . . . , ξnsd) as, for U (ξ, t) ∈ Wh,ke

t (Ω1
e),

U (ξ, t) ≈ Uh (ξ, t) :=
nen∑

J=1
NJ (ξ) UJ (t) , (3.5.1)

for all e = 1, . . . , nel. Here, UJ is the nodal value of U , NJ is the nodal polynomial
shape function of order ke and nen is the number of element nodes.
Analogously, the hybrid variable Û is approximated on a reference face, with local
coordinates ξ̂ = (ξ̂1, . . . , ξ̂nsd−1) as, for Û (ξ̂, t) ∈ Ŵh,kj (Γ1

j),

Û(ξ̂, t) ≈ Ûh(ξ̂, t) :=
nfn∑

J=1
N̂J(ξ̂)ÛJ(t), (3.5.2)

for all Γ1
j ⊂ (Γ1 ∪ ∂Ω1), where ÛJ is the nodal value of U , N̂J is the nodal polynomial

shape function of order kj and nfn is the number of face nodes.
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A standard isoparametric formulation [143] is considered, where local and Cartesian
coordinates are linked via the so-called isoparametric mapping

x(ξ) =
nen∑

J=1
NJ(ξ) xJ , (3.5.3a)

x(ξ̂) =
nfn∑

J=1
N̂J(ξ̂) xJ , (3.5.3b)

where {xJ}J=1,...,nen or nfn are the nodal coordinates of a generic element or face.
Naturally, this leads to an element-by-element definition for U and a global definition
over the mesh skeleton for Û . Consequently, for each element e = 1, . . . , nel, the nodal
values U as described in Equation (3.5.1) are of the size msdnen. And nodal values Û
described in Equation (3.5.2) is of the size,

dim
(
Û
)

=
( nef∑

l=1
nfn|l

)
msd, (3.5.4)

where, nef is the number of element faces/edges on the mesh skeleton and nfn|l is the
number of face nodes on the l-th face, which in-turn depends on the order of polynomial
approximation.

Remark 1 (Polynomial approximation in elements). The order of the polynomial
of approximation for each element is not restricted to be the same; in fact they can
be chosen arbitrarily and independent of each other. The flexibility of uneven degree
afforded by the discontinuous framework facilitates the tailoring of solution accuracy in
the regions of interest. This facility has been previously used to devise degree adaptive
algorithms, see [53, 54, 140, 50].

Remark 2 (Polynomial approximation on the mesh skeleton). One of the consequences
of the variable polynomial degree for elements is the necessity to choose the appropriate
polynomial degree for the mesh skeleton. For each face/edge on the skeleton shared
by elements of degree ke and kf , the largest of the two, max(ke, kf ), is chosen for the
nodal approximation. This choice ensures that, for each element e, all of its faces have
a degree of at least ke, thus preserving the accuracy of approximation in each element.

3.6 Discrete system

Introducing the discrete approximations of U in Equation (3.5.1) and Û in Equa-
tion (3.5.2) into the semi-discrete weak forms given in Equation (3.4.2) result in a
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discrete non-linear system of equations. The non-linear system of equations are given
as,

R(Un+1
h , . . . ,U

n+1−ntg
h , Û

n+1
h ) = 0, (3.6.1)

obtained from the assembly of contributions to the local and global system of equations,
that is,

Re :=

Re(Un+1
h , . . . ,U

n+1−ntg
h , Û

n+1
h )

R̂
e(Un+1

h , . . . ,U
n+1−ntg
h , Û

n+1
h )

 , (3.6.2)

where,

Re
I : =

ntg∑
s=0

as

(
NI ,U

n+1−s
h

)
Ω1

e

−
(
F (Un+1

h ),∇TNI

)
Ω1

e

+
〈
NI ,F (Ûn+1

h ) · n
〉

∂Ω1
e

+
〈
NI , τ

n+1 · Un+1
h

〉
∂Ω1

e

−
〈
NI , τ

n+1 · Û
n+1
h

〉
∂Ω1

e

−
(
NI ,S

n+1
)

Ω1
e

+
(
κn∇Un+1

h ,∇TNI

)
Ω1

e

= 0, (3.6.3a)

R̂
e

I : =
nel∑
e=1

{〈
N̂I ,F (Ûn+1

h ) · n
〉

∂Ω1
e\∂Ω1

+
〈
N̂I , τ

n+1 · Un+1
h

〉
∂Ω1

e\∂Ω1

−
〈
N̂I , τ

n+1 · Û
n+1
h

〉
∂Ω1

e\∂Ω1
+
〈
N̂I , B̂(Un+1

h , Û
n+1
h ,U∞)

〉
∂Ω1

e∩∂Ω1

}
= 0, (3.6.3b)

for e = 1, . . . , nel.

3.7 Linearisation method

The Newton-Raphson method is applied to linearise the non-linear residual of Equa-
tion (3.6.1) and, by truncating the Taylor expansion at first order, the non-symmetric
sparse linear system to be solved at each iteration (q) of the Newton-Raphson is
obtained, namely

Tuu Tuû

Tûu Tûû

n+1,q ∆U
∆Û


n+1,q

=

fu

fû


n+1,q

, (3.7.1)

where ∆⊚n+1,q = ⊚n+1,q+1 − ⊚n+1,q denotes the increment of the vector of degrees
of freedom. The detailed expression of the tangent matrices Tuu, Tuû, Tûu and
Tûû and the right hand side vectors fu and fû result from the linearisation using a
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Newton-Raphson method, that is,

(Tuu)e,n+1,q
IJ := ∂Re

I

∂Un+1,q
J

, (Tuû)e,n+1,q
IJ := ∂Re

I

∂Ûn+1,q
J

, (3.7.2a)

(Tûu)e,n+1,q
IJ := ∂R̂

e

I

∂Un+1,q
J

, (Tûû)e,n+1,q
IJ := ∂R̂

e

I

∂Ûn+1,q
J

, (3.7.2b)

and

(f e
u)n+1,q

I := −Re
I , (f e

û)n+1,q
I := −R̂

e

I . (3.7.3a)

The block diagonal structure of Tuu makes the linear system in Equation (3.7.1)
amenable for static condensation, resulting in a reduced system as follows,

[
T̃ûû

]n+1,q {
∆Û

}n+1,q
=
{
f̃û

}n+1,q
, (3.7.4)

where,

T̃ûû : = Tûû − TûuT−1
uu Tuû, (3.7.5a)

f̃û : = fû − TûuT−1
uu fu. (3.7.5b)

Solving the linear system for ∆Û
n+1,q, the solution in the element interior ∆Un+1,q

can then be recovered element-by-element using,

[Tuu]n+1,q {∆U}n+1,q = {fu}n+1,q − [Tuû]n+1,q ∆
{
Û
}n+1,q

. (3.7.6)

The number of contributions to the tangent matrix given by the Equation (3.7.4) for
any node in the mesh skeleton depends on the dimensionality of the problem msd and
the degree of approximation k. However, for an individual node on the mesh skeleton,
non-zero contributions are only made by those nodes that lie on the mesh skeleton
faces of the neighbouring elements. In a 2D problem with triangular elements, the
tangent matrix for each of the msd = 4 unknown degrees of freedom at a node, for
k = 1 to k = 4 degree of approximations, receive a total of 40, 50, 80 and 100 non-zero
contributions respectively. Similarly, for 3D problems with tetrahedral elements, the
tangent matrix for each of the msd = 5 degrees of freedom at a node, for k = 1 to k = 4
degrees of approximation, receive a total of 105, 210, 350 and 525 non-zero contributions
respectively.
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Remark 3 (Imposition of initial conditions). Time marching requires the computation
of the discrete initial approximations of the solutions U 0

h and Û
0
h. For spatially

continuous fields, the initial condition in Equation (3.1.5d) is imposed strongly in a
straightforward manner. In the case of spatially discontinuous fields, for convergence
and stability of the HDG method both U 0 and Û

0 need to be in equilibrium. In other
words, given Û

0 on (Γ1 ∪ ∂Ω1), find U 0 ∈ [Wh,ke(Ω1
e)]msd such that,

〈
δÛ , τ

(
U 0 − Û

0
)〉

∂Ω1
e\∂Ω

= 0, (3.7.7)

for all δÛ ∈ [Ŵh,kj (Γ1 ∪∂Ω1)]msd and e = 1, . . . , nel. This critical procedure is necessary
whenever solutions are transferred between different ‘k-maps’, such as during a degree
adaptivity procedure.

3.8 HDG vectors and matrices

The current section is dedicated to detailing the expressions related to the matrices and
vectors appearing in the HDG formulation for both the global and the local problems.
Following the spatial discretisation introduced in Section 3.5, consider the compact
form of the interpolating functions,

N =
[
N1Imsd N2Imsd . . . NnenImsd

]T
, (3.8.1a)

N̂ =
[
N̂1Imsd N̂2Imsd . . . N̂nfnImsd

]T
, (3.8.1b)

where N is of size nenmsd×msd and N̂ is of size nfnmsd×msd. Let the vector of dimension nsd

denoting the gradient of the interpolating functionN1 in the physical/spatial coordinates
be ∇sN1 = J−1∇N1, where J is the jacobian of the isoparametric transformation.
The matrix representing each component of the gradient of interpolating functions are
given by,

∇sN|I =
[
∇sN1|IImsd ∇sN2|IImsd . . . ∇sNnen|IImsd

]T
, (3.8.2)

for I = 1. . . . .nsd, where ∇sN|I is of size nenmsd × msd.
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The vectors in Equation (3.7.3) for each element e = 1, . . . , nel and is given by,

(f e
u)n+1,q = −

ntg∑
s=0

as

ne
ip∑

g=1
N(ξe

g)Un+1−s,q(ξe
g)we

g

+
ne

ip∑
g=1

nsd∑
I=1

∇sN(ξe
g)|I

(
F(Un+1,q(ξe

g))|I
)
we

g

−
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)
(
F(Ûn+1,q(ξf

g)) · n(ξf
g)
)
wf

g

−
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)τ n+1(ξf
g)Un+1,q(ξf

g)wf
g

+
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)τ n+1(ξf
g)Ûn+1,q(ξf

g)wf
g

+
ne

ip∑
g=1

N(ξe
g)Sn+1(x(ξe

g))we
g

− κn

ne
ip∑

g=1

nsd∑
I=1

∇sN(ξe
g)|I∇sNT (ξe

g)|I(Ue)n+1,qwe
g, (3.8.3a)

(f e
û)n+1,q = −

∑
∂Ω1

e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)
(
F(Ûn+1,q(ξf

g)) · n(ξf
g)
)
wf

g

−
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)Un+1,q(ξf

g)wf
g

+
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)Ûn+1,q(ξf

g)wf
g

−
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)B̂(ξf
g)wf

g, (3.8.3b)
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and the matrices in Equation (3.7.2) for each element e = 1, . . . , nel and is given by,

(Tuu)e,n+1,q = a0

ne
ip∑

g=1
N(ξe

g)NT (ξe
g)we

g

−
ne

ip∑
g=1

nsd∑
I=1

N(ξe
g)
(
A(Un+1,q(ξe

g))|I
)

∇sNT (ξe
g)|Iwe

g

+
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)τ n+1(ξf
g)NT (ξf

g)wf
g

+
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)
(
∂τ n+1

∂Un+1 |Un+1,q(ξf
g)Un+1,q(ξf

g)
)

NT (ξf
g)wf

g

+ κn

ne
ip∑

g=1

nsd∑
I=1

∇sN(ξe
g)|I∇sNT (ξe

g)|Iwe
g, (3.8.4a)

(Tuû)e,n+1,q =
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)
(
A(Ûn+1,q(ξf

g)) · n(ξf
g)
)

N̂(ξf
g)wf

g

−
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)τ n+1(ξf
g)N̂(ξf

g)wf
g

−
∑
∂Ω1

e

nf
ip∑

g=1
N(ξf

g)
(
∂τ n+1

∂Ûn+1
|Ûn+1,q(ξf

g)Û
n+1,q(ξf

g)
)

N̂(ξf
g)wf

g, (3.8.4b)

(Tûu)e,n+1,q =
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)NT (ξf

g)wf
g

+
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)
(
∂τ n+1

∂Un+1 |Un+1,q(ξf
g)Un+1,q(ξf

g)
)

NT (ξf
g)wf

g

+
∑

∂Ω1
e∩∂Ω1

nf
ip∑

g=1
N̂(ξf

g)
(

∂B̂

∂Un+1 |Un+1,q(ξf
g)

)
NT (ξf

g)wf
g, (3.8.4c)

(Tûû)e,n+1,q =
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)
(
A(Ûn+1,q(ξf

g)) · n(ξf
g)
)

N̂T (ξf
g)wf

g

−
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)N̂T (ξf

g)wf
g

−
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)
(
∂τ n+1

∂Ûn+1
|Ûn+1,q(ξf

g)Û
n+1,q(ξf

g)
)

N̂T (ξf
g)wf

g

+
∑

∂Ω1
e∩∂Ω1

nf
ip∑

g=1
N̂(ξf

g)
(

∂B̂

∂Ûn+1
|Ûn+1,q(ξf

g)

)
N̂T (ξf

g)wf
g, (3.8.4d)
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where, ξe
g and we

g are the ne
ip integration points and weights defined in the reference

element and ξf
g and wf

g are the nf
ip integration points defined on the reference edge/face.

3.9 Implementation details

A brief description of the important details regarding the implementation of the HDG
method is presented. Alongside, the default values of parameters concerning these
details, wherever relevant, are provided.
The work utilises meshes with straight-sided triangles in 2D and planar-faced tetrahedral
elements in 3D. These are chosen for their suitability for the Euler problem, ease of
mesh generation, efficiency of storage (only vertex coordinates and connectivities are
required) and ease of transformation of element quantities between the reference and
the physical element using the jacobian of its transformation. To avoid ill-conditioning
of elemental matrices, Fekette nodal distributions in the reference elements are adopted
[62], as illustrated in Figure 3.1. High-order numerical integration is performed using
the recently proposed symmetric quadrature rules in [164]. The number of gauss points
for each element with a known polynomial approximation is chosen such that the
consistent mass matrix is integrated exactly.
The convergence of the Newton-Raphson linearisation method is monitored through
the values of the residual and the solution increments in each iteration. In particular,
the following L2 norms of the residual and the solution error, both in the domain
interior and the mesh skeleton, are defined as,

||ϵRe||L2(Ω1) :=

√√√√ nel∑
e=1

∫
Ω1

e

Re · Re ∂Ω, (3.9.1a)

||ϵ∆U ||L2(Ω1) :=

√∫
Ω1 ∆Un+1,q · ∆Un+1,q ∂Ω√∫
Ω1 Un+1,q+1 · Un+1,q+1 ∂Ω

, (3.9.1b)

||ϵ
R̂e||L2(Γ1) :=

√√√√ nel∑
e=1

∫
Γ1

R̂
e

· R̂
e
∂Ω, (3.9.1c)

||ϵ∆Û
||L2(Γ1) :=

√∫
Γ1 ∆Û

n+1,q
· ∆Û

n+1,q
∂Ω√∫

Γ1 Û
n+1,q+1

· Û
n+1,q+1

∂Ω
, (3.9.1d)

and whose quadratic convergence of the quantities are expected. In particular cases,
normalisation of the quantities in Equation (3.9.1) with respect to time step size may
be carried out. The monitoring of the residual ensures correctness of the converged
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Figure. 3.2 Quadratic convergence of Newton-Raphson method demonstrating consis-
tent linearisation of the non-linear system of equations for HDG method.

solution. The linearisation method is said to have converged when the quantities fall
below a pre-determined tolerance. In all the cases, the value of the tolerance for the
Newton-Raphson method is set to 1.0 × 10−10, unless specified otherwise. Figure 3.2
shows the typical quadratic convergence behaviour, where the maximum of the msd

components of the errors in Equation (3.9.1) are plotted against the iteration number,
which confirms a consistent linearisation of the non-linear terms.
The work utilises both direct and iterative sparse linear system solvers. Direct methods
are favourable for their robustness of operation and handling of ill-conditioning but
they incur high memory and numerical costs. On the other hand, iterative solvers are
more scalable and may require less memory and solution time but have its convergence
depending on the conditioning of the matrix. In the present work, direct methods are
favoured for linear system less than a million degrees of freedom. Multi-frontal method
for sparse unsymmetrical systems of the HSL library [68, 94] and multi-threaded
PARDISO library [37, 153, 80] have been used in the examples. For larger linear
systems, the multi-core PETSc implementation [8–10] of the Generalised Minimal
Residual (GMRES) iterative method with incomplete LU pre-conditioner has been
used. The tolerance for convergence of the linear system residual is set to 1.0 × 10−15

by default.
A pseudo-code laying out the solution procedure of the HDG method is provided in
Algorithm 1.
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Initial solution: Un=0 and Û
n=0

Time stepping
for tn+1, n = 0 to end − 1 do

Data: Un and Û
n

Initial guess: Un+1,q=0 = Un, Û
n+1,q=0 = Û

n

Compute residuals: Rn+1,0 from Equation (3.6.1)
Newton-Raphson linearisation
repeat

Global problem
Data: Un+1,q, . . . ,Un+1−ntg , Û

n+1,q

for e = 1 to nel do
Compute matrices:
(Tuu)e,n+1,q

IJ , (Tuû)e,n+1,q
IJ , (Tûu)e,n+1,q

IJ and (Tûû)e,n+1,q
IJ in

Equation (3.7.2)
Compute vectors: (f e

u)n+1,q
I and (f e

û)n+1,q
I in Equation (3.7.3)

Assemble: [T̃ûû]e,n+1,q and {f̃û}e,n+1,q to Equation (3.7.4)
end

Solve linear system, obtain {∆Û}n+1,q in Equation (3.7.4)
Update: Û

n+1,q+1 = Û
n+1,q + {∆Û}n+1,q

Local problem
Obtain {∆U}n+1,q in Equation (3.7.6)
Update: Un+1,q+1 = Un+1,q + {∆U}n+1,q

Update residuals: Rn+1,q+1 from Equation (3.6.1)
Update: q = q + 1
Compute errors in Equation (3.9.1)

until ||ϵRe||L2(Ω1), ||ϵ∆U ||L2(Ω1), ||ϵR̂e ||L2(Γ1) and ||ϵ∆Û
||L2(Γ1) ≤ tolerance;

Update solution: Û
n+1 = Û

n+1,q+1 and Un+1 = Un+1,q+1

end
Algorithm 1: HDG solution procedure
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3.10 Ringleb flow problem

The Ringleb flow is a widely adopted test case to test the spatial accuracy of high-order
methods for 2D Euler equations. It provides an exact, smooth and steady solution in
the transonic regime via the hodograph technique. Here, the solution is obtained by
the separation of variables when the coordinate system is transformed to the so-called
hodograph plane, see [61].
An exact solution as a function of the spatial coordinates x is given by solving the
following non-linear equation for the speed of sound c,

(
x+ J

2

)2
+ y2 = 1

4ρ2v4 , (3.10.1)

where the quantity J , velocity magnitude v and density ρ are functions of c as,

J = 1
c

+ 1
3c3 + 1

5c5 − 1
2 ln

(1 + c

1 − c

)
, (3.10.2)

v =

√√√√2(1 − c2)
γ − 1 , (3.10.3)

ρ = c
2

γ−1 . (3.10.4)

With the known value of c, flow variables such as pressure and velocity can be calculated
using the relations,

p = 1
γ
c

2γ
γ−1 , v =

±v sin θ
v cos θ

 , (3.10.5)

where,

θ = sin−1(vψ), ψ =
√

1
2v2 − p

(
x+ J

2

)
. (3.10.6)

Traditionally, the Ringleb flow is setup with a domain bounded by a pair of streamlines
and inflow-outflow boundaries [159]. This however is not necessary, since an arbi-
trary domain bounded by consistently enforced inflow-outflow conditions is sufficient
[119]. Hence in all the cases presented in this work, the boundaries are treated as
inflow/outflow conditions given by the analytical solution.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure. 3.3 Triangular meshes of the domain Ω = [0, 1]2 used to test the optimal
convergence properties of the HDG method.

3.11 Numerical tests

Convergence properties of the error in the HDG solution, both in space and time,
are presented in this section. While Ringleb flow problem described in Section 3.10
presents a suitable test case for the spatial convergence test in 2D domains, the method
of manufactured solutions is the preferred choice for the spatial convergence test in
3D domains and temporal convergence tests in both 2D and 3D domains. In the
manufactured solution test, a suitable analytical solution Ua is designed for the Euler
equations by providing an appropriate source term such that the equations are satisfied.
These are then solved numerically, whose solution can then be compared with the
designed analytical solution. The following definition of the solution error ϵ in the
L2(Ω1) given by,

||ϵ||L2(Ω1) :=

√∫
Ω1 (U − Ua)2 dΩ√∫

Ω1 U2
a dΩ

, (3.11.1)

is utilised to quantify the discretisation error. These tests confirm the solution accuracy,
predictability of error behaviour and demonstrate a bug-free implementation of the
method.

3.11.1 Spatial convergence tests

For spatial convergence tests in 2D, four uniform meshes of the domain Ω1 = [0 1]2 are
considered, with 256, 1024, 4096 and 16 384 triangular elements respectively, as shown
in Figure 3.3.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure. 3.4 Tetrahedral meshes of the domain Ω = [0, 1]3 used to test the optimal
convergence properties of the HDG method.

For spatial convergence tests in 3D, the analytical solution is constructed with the
following variation in the density, velocity and specific energy,

ρ := 2 + sin(π(x1 + x2 + x3)/3), (3.11.2a)

v :=


3 +

√
3 cos(πx2)/4

3 + 3 sin(πx3)/4
3 + cos(πx1)/2

 , (3.11.2b)

E := 25 + sin(π(x1 + x2 + x3)/5). (3.11.2c)

Four uniform meshes of the domain Ω1 = [0 1]3 are considered, with 24, 192, 1536 and
12 288 tetrahedral elements respectively, as shown in Figure 3.4.
For both 2D and 3D test cases, values of the polynomial order k up to 4 is considered.
A nodally exact initial solution is constructed and time marched until a steady solution
is obtained. The solution error in Equation (3.11.1) is expected to be proportional to
hk+1. This can be clearly seen in the nearly optimal convergence rates with asymptotic
slope of k + 1 for various mesh sizes and polynomial orders for 2D in Figure 3.5 and
3D in Figure 3.6 respectively.
It is interesting to observe, in Figure 3.5, the mesh size required to reach a certain value
of the solution accuracy. For instance, for the solution error equal to 1.0 × 10−6, the
HDG method with k = 2 requires 4096 elements, with k = 3 requires 1024 elements and
with k = 4 requires 256 elements. Figure 3.7 shows the Ma number plot for the these
meshes. These correspond to linear system sizes of 74 496, 25 088 and 8000 respectively.
Normalised with respect to the CPU time for the largest problem size (corresponding
to k = 2), the CPU time for high-order approximations with k = 3 and k = 4 are
0.57 and 0.47 respectively. This highlights the advantage of high-order methods over
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure. 3.5 The optimal rates of convergence in the plots of the L2(Ω1) of the error in all
the conservative variables versus the mesh size h, for different orders of approximation
k of the HDG method. The example demonstrated here is the 2D Ringleb flow.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure. 3.6 The optimal rates of convergence in the plots of the L2(Ω1) of the error in all
the conservative variables versus the mesh size h, for different orders of approximation k
of the HDG method. The example demonstrated here is the 3D manufactured solution
for spatial convergence given in Equation (3.11.2).

(a) 256 k = 1 elements (b) 1024 k = 2 elements (c) 4096 k = 3 elements

Figure. 3.7 Mach number plots using various meshes and different k’s for the HDG
solution of the Ringleb flow problem corresponding to the solution error less than
1.0 × 10−6
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low-order methods in providing high-fidelity solution for a lower number of degrees of
freedom and CPU time. The Mach number plot of the solutions on these meshes are
shown in Figure 3.7. This trend is observed for the 3D test case in Figure 3.6 as well.

3.11.2 Temporal convergence tests

As mentioned in Section 3.4, BDF1 and BDF2 time marching methods have been
implemented.
For temporal convergence tests in 2D, the analytical solution is constructed with the
following variation in the density, velocity and specific energy,

ρ := 2 + 0.1 cos(πt), (3.11.3a)

v :=
4 + 0.1 sin(2πt)

4 + 0.1 cos(3πt)

 , (3.11.3b)

E := 50 + 0.1 sin(4πt). (3.11.3c)

For temporal convergence tests in 3D, the analytical solution is constructed with the
following variation in the density, velocity and specific energy,

ρ := 2 + 0.1 cos(πt), (3.11.4a)

v :=


4 + 0.1 sin(2πt)
4 + 0.1 cos(3πt)
4 + 0.1 sin(4πt)

 , (3.11.4b)

E := 50 + 0.1 cos(5πt). (3.11.4c)

For both 2D and 3D test cases, a fine mesh or a high-order approximation is chosen
in order to minimize the influence of the spatial discretisation error. The initial
solution, chosen to be the nodally exact analytical solution, is time marched until the
same physical time is reached, with decreasing time step sizes. Figures 3.8 and 3.9
demonstrate that the error in Equation (3.11.1) decreases at a rate given by the order
of the BDF method for both 2D and 3D cases respectively.
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(a) BDF1 (b) BDF2

Figure. 3.8 The optimal rates of convergence for HDG method in the plots of the L2(Ω1)
of the error in all the conservative variables versus the time step size ∆t, for different
orders of the BDF method. The example demonstrated here is the 2D manufactured
solution for temporal convergence given in Equation (3.11.3).

(a) BDF1 (b) BSF2

Figure. 3.9 The optimal rates of convergence for HDG method in the plots of the L2(Ω1)
of the error in all the conservative variables versus the time step size ∆t, for different
orders of the BDF method. The example demonstrated here is the 3D manufactured
solution for temporal convergence given in Equation (3.11.4).





Chapter 4

The vertex-centred finite volume
method

“Before researchers become researchers, they should
become philosophers. They should consider what the
human goal is, what it is that humanity should create.”

Masanobu Fukuoka
The one-straw revolution

The finite volume method for conservation equations can be broken down into two
steps. Firstly, the PDEs for the conservative variables are transformed into integration
of balance equations in discrete elements called control volumes. Volume and surface
integrals are numerically solved through quadrature rules of suitable accuracy over
the control volume and its boundaries respectively. Second step involves obtaining
discrete algebraic equations by choosing suitable interpolation profiles for approximating
the values on the control volume surfaces based on discrete control volume values
of conservative variables. Finite volume methods are popular, in part due to the
automatic satisfaction of conservative variables over each control volume and the whole
domain independent of the number of control volumes, not just in a limiting sense
when the number of control volumes become large. Its appeal is enhanced by the
ability to carry out discretisation in the physical space without having to transform
into the reference space.
Vertex-centred finite volume framework has been robustly applied to the Euler and
Navier-Stokes equations as an efficient discretisation method on unstructured meshes
[103, 72, 34, 146, 161, 145, 144]. The simplicity afforded by the central-difference
type discretisation with its compact stencil is unrivalled. Moreover a vertex-centred
approach can be shown to be equivalent to linear finite elements[12]. For 2D grids, the
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number of calculations in an element-based approach, typically in cell-centred methods
and an edge-based method, in vertex-centred methods do not vary significantly. In
tetrahedral meshes, the ratio of the number of faces to the number of edges is 6.5/11.
Hence, edge-based approaches are more favourable computationally and in storage
requirements [102, 170].
The chapter begins with some preliminaries regarding the domain discretisation and
notation for the edge-based data structure. The vertex-centred finite volume method
is presented as the solution methodology for the set of integral equations on discrete
control volumes. Suitable treatment for the volume and surface integrals to achieve
a second-order scheme in space is laid out. An accompanying stabilisation method
through artificial dissipation along with the shock capturing method is described.
Implicit time integration and the solution procedure for the resulting discrete non-
linear system of equations is explained. Key details regarding the implementation are
described. This is followed by a concluding section on numerical tests for optimal
convergence properties of the FV method.

4.1 Preliminaries

Consider an open bounded domain Ω2 ∈ Rnsd , with boundary ∂Ω2 and nsd the number
of spatial dimensions, to be discretised with the FV method. As a first step, assume
that Ω2 is partitioned into nel disjoint elements Ω2

e such that,

Ω2 =
nel⋃
e=1

Ω2
e, Ω2

e ∩ Ω2
f = ∅ for e ̸= f. (4.1.1)

Once the domain is discretised into elements, control volumes can be defined, generally
with two approaches: element-based and node-based [105]. The element-based approach
has the unknown degrees of freedom located inside the element, typically at the element
centroid with the control volume corresponding to the discrete element. This is the
classical cell-centred approach. On the other hand, node-based schemes have unknown
degrees of freedom at the element vertices with many possible choices of the control
volume surrounding it. In the so-called vertex-centred approach, a dual mesh is
constructed. The median dual principle is applied, where the control volumes are
generated by connecting edge centres, face and the volume centroids of the elements,
see Figure 4.1. In 3D cases, for hybrid meshes generated by merging tetrahedral
elements, modifications need to be made to the median dual principle in order to
obtain a good mesh, see for instance [144]. Vertex-centred approaches perform better
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(a) (b)

Figure. 4.1 A schematic of the partition of the FV domain into (a) straight-sided
triangular elements (top) and control volumes (bottom) in 2D and (b) planar-faced
tetrahedral elements (top left) and a representation of various control volumes corre-
sponding to nodes in the interior and on the boundaries of the domain in 3D.

than their cell-centred counterparts for high anisotropy or distortion in the mesh. Also,
it does not suffer from non-orthogonality in the discretisation of second-order terms.
Moreover, with the nodes lying on the boundaries, vertex-centred approach makes the
imposition of boundary conditions straight-forward. Unique definition of unit outward
normal vector on each boundary facet implies a natural imposition of the inflow/outflow
boundary conditions. Additionally, for tetrahedral meshes the number of elements is
usually 5.5 times the number of nodes. And with dual mesh construction, the scheme
is efficient in memory usage since coefficients/weights need to be computed and stored
only once per edge.
Following the construction of the dual mesh, a few nomenclatures related to the edge-
based formulation are introduced. Let Ω2

i be the control volume of an arbitrary node i
among the ncv mesh nodes of the FV domain. The ncv disjoint control volumes are
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then a partition of Ω2,

Ω2 =
ncv⋃
i=1

Ω2
i , Ω2

i ∩ Ω2
j = ∅ for i ̸= j. (4.1.2)

As illustrated in Figure 4.1, a set of facets {Υi} of size nvf, made up of straight edges
in 2D and planar triangular faces in 3D, define the control volume boundary ∂Ω2

i such
that

∂Ω2
i =

nvf⋃
k=1

Υi|k. (4.1.3)

In 2D, each straight edge facet is obtained by connecting the edge centre and the
element centroid. In 3D, each triangular facet is obtained by connecting the edge
centre, face centroid and the element centroid. Note that each facet in the dual mesh
can be associated with a particular edge connecting two nodes.
Let Λi be the set of all nodes connected to node i through an edge. For a boundary
node, a subset Λ∂

i denotes the set of nodes connected to i through an edge lying on the
boundary ∂Ω2. A set of facets {Υi,j} and {Υ∂

i,j} can be identified as those associated
with the edge connecting nodes i and j and lying in the interior and the boundary of
the FV domain respectively. Figure 4.2 illustrates interior facets (in cyan and magenta)
and boundary facets (in green) for an interior edge (in dotted blue) and a boundary
edge (in dotted red) respectively. In particular,

Υi,j =
{
Υ, Υ ∈ {Υi}, Υ ∈ {Υj},Υ ∩ ∂Ω2 = ∅

}
, (4.1.4a)

Υ∂
i,j =

{
Υ, Υ ∈ {Υi,Υj},Υ ∈ ∂Ω2

}
. (4.1.4b)

4.2 The vertex-centred finite volume method

The strong form in Equation (2.1.6) of the Euler equations in the FV domain is written
as,

V t + ∇ · F (V ) = S in Ω2 × (0, T ], (4.2.1a)
V = U0 in Ω2 × {0}, (4.2.1b)

B(V ,U∞) = 0 on
(
∂Ω2 ∩ ∂Ω

)
× (0, T ], (4.2.1c)

where, V = U |Ω2 . Using the definitions of the functional spaces defined in Equa-
tion (3.1.8), the weak form of the FV problem in Equation (4.2.1) after applying the
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(a) (b)

Figure. 4.2 An illustration of interior facets {Υi,j} (in cyan and magenta) and boundary
facets {Υi,j,∂} (in green) for an interior edge (in dotted blue) and a boundary edge (in
dotted red) for (a) 2D and (b) 3D FV domains respectively.

divergence theorem is: find V ∈ [Wh,0
t (Ω2

i )]msd that satisfies
(
δV ,V t

)
Ω2

i

+
〈
δV ,F (V ) · n

〉
∂Ω2

i \∂Ω
=
(
δV ,S

)
Ω2

i

, (4.2.2)

for all δV ∈ [Wh,0(Ω2
i )]msd and for i = 1, . . . , ncv. Now the test functions are chosen to

be of unit value inside each control volume and zero elsewhere in the domain, which
is equivalent to performing the integration of the Euler equations in each of the ncv

control volumes. Thus conservation of variables are expressed in finite control volumes,
just as the strong form in Equation (4.2.1) is the expression for conservation in an
infinitesimal volume in Ω2. Also, the boundary conditions in Equation (4.2.1c) are
enforced strongly, see Section 4.7.
The vertex-centred finite volume method employs a constant approximation of the
solution in each control volume as,

V (x, t) ≈ V h(x, t) :=

Vi(t) if x ∈ Ω2
i

0 otherwise
, (4.2.3)
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thus transforming the weak form in Equation (4.2.2) to, find V ∈ [Wh,0
t (Ω2

i )]msd that
satisfies (

1,V t

)
Ω2

i

+
〈
1,F (V ) · n

〉
∂Ω2

i \∂Ω
=
(
1,S

)
Ω2

i

, (4.2.4)

for i = 1, . . . , ncv. The vector of unknowns V which is composed of nodal unknowns
Vi is of the size ncv × msd.
The treatment of volume integrals is now straight-forward:

(
1,V t

)
Ω2

i

= |Ω2
i | (Vt)i (4.2.5a)(

1,S
)

Ω2
i

= |Ω2
i | Si (4.2.5b)

4.2.1 Treatment of the inviscid fluxes

The boundary integral for each control volume i is performed over its facets {Υi}. Since
an edge-based formulation is undertaken in the present study, the surface integrals of
the invisid fluxes are computed by looping over the edges of the mesh. For each edge,
the contributions are expressed as a sum of the integration over internal facets Υi,j

and boundary facets Υ∂
i,j. The inviscid flux in the weak form in Equation (4.2.2) is,

〈
1,F l(V ) nl

〉
∂Ω2

i \∂Ω
≈
∑
j∈Λi

(
Ci,j

l F̃i,j
l

)
+
∑

j∈Λ∂
i

(
Ci,j,∂

l F̃i,j,∂
l

)
, (4.2.6)

for i = 1, . . . , ncv. Here the flux coefficients Ci,j
l and Ci,j,∂

l are given by,

Ci,j
l =

∑
Υi∈Υi,j

|Υi| nΥi
l , (4.2.7a)

Ci,j,∂
l =

∑
Υi∈Υ∂

i,j

|Υi| nΥi
l , (4.2.7b)

where nΥi is the unit outward normal to Υi. The flux coefficients are purely geometrical
constants and thus only need to be recomputed after re-meshing or mesh movement.
The discrete interior flux F̃i,j

l and boundary flux F̃i,j,∂
l need to be expressed in terms of

discrete conservation variables V. Various definitions are available in the literature,
popular ones being Lax-Friedrich, Lax-Wendroff, upwind methods, whose choice directly
decides the stability and accuracy of the method. To obtain a second-order central
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difference type scheme, we use trapezoidal rule across the edge as,

F̃i,j
l = F l (Vi) + F l (Vj)

2 , (4.2.8a)

F̃i,j,∂
l = 3F l (Vi) + F l (Vj)

4 . (4.2.8b)

When computing the integral of the normal fluxes over the boundary of the control
volume, a linear reconstruction is considered, as classically done in a FV framework, to
ensure second-order convergence of the method.

Remark 4 (Consistency and conservation). It is clear from the definitions of the flux
coefficients in Equation (4.2.7) that Ci,j

l = −Cj,i
l and Ci,j,∂

l = Cj,i,∂
l . These important

properties highlight the advantage of edge-based formulation where memory requirement
for storage is minimal and the integration of surface fluxes over large number of facets
for a pair of nodes can be performed efficiently. Moreover, the scheme is consistent,
i.e., for constant flux, the surface integral is

∑
j∈Λi

Ci,j
l +

∑
j∈Λ∂

i

Ci,j,∂
l = 0, (4.2.9)

and that conservation of inviscid fluxes is maintained, i.e.,

ncv∑
i=1

∑
j∈Λi

(
Ci,j

l F̃i,j
l

)
+
∑

j∈Λ∂
i

(
Ci,j,∂

l F̃i,j,∂
l

) =
ncv∑
i=1

∑
j∈Λ∂

i

(
Ci,j,∂

l F̃i,j,∂
l

)
. (4.2.10)

Remark 5 (Alternative method of boundary flux integration). An alternative to the
boundary flux definition for edge i, j in Equation (4.2.8b), where the flux is assumed
to be constant per (Υi ∩ Υi,j,∂), is to simplify by assuming the flux to be constant per
(Υi ∩ ∂Ω2

i ), resulting in the expression,

F̃i,j,∂
l = F l (Vi) . (4.2.11)

Remark 6 (Edge-based flux interpolation). The edge-based formulation leads to the
flux being interpolated using only the values at the edge nodes. In other words, as
indicated in Figure 4.3, across the length/over the surface of all the internal facets
(shown in blue and magenta), the flux is assumed to be constant and equal to the
edge-wise interpolated flux at the edge centre (blue and magenta □). Similarly for
boundary facets (shown in green), the flux is also assumed to be constant and equal
to the edge-wise interpolated flux at the midpoint (green □) connecting the node and
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(a) (b)

Figure. 4.3 An illustration of the edge-based flux interpolation (located at □) for
interior facets (in cyan and magenta) and boundary facets (in green) for an interior
edge (in dotted blue) and a boundary edge (in dotted red) for (a) 2D and (b) 3D FV
domains respectively.

the edge centre. Thus, the flux coefficients need to be stored only once per edge, thus
enabling the edge-based formulation.

Second-order central difference schemes are computationally cheaper and more accurate
compared to upwind methods but allow for odd-even decoupling of solution (two
independent discrete solutions) and oscillations for sharp gradients [66, 117]. It is thus
unstable for hyperbolic problems and stabilisation is necessary while retaining the
second-order accuracy. This is achieved by the addition of artificial dissipation. New
developments for stabilising hyperbolic equations using boundary conditions have been
reported [1].

4.3 Artificial dissipation and shock capturing method

Solving hyperbolic Euler equations with second-order central difference schemes gen-
erates severe oscillations in the regions of sharp gradients such as shocks and discon-
tinuities. Central difference stencil is unable to resolve changes in wave propagation
direction that occur at such discontinuities. Remedy to this stems from the understand-
ing that by locally reducing the order of approximation, one can smooth out high-order
frequencies of oscillation. But one needs to be mindful of excessively smoothing the
solution resulting in the loss of flow features. Lax Friedrich scheme of first order is an
example of such a situation where large smoothing in the whole domain is observed since
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the procedure resembles the addition of second-order viscous term which is introduced
as a consequence of the discretisation. Artificial dissipation involves the addition of a
new term that mimics the effect of viscosity to smooth the solution. But the term is of
such order that it becomes negligible in regions away from discontinuities. This can
be ensured by taking the order to be higher than that of the scheme (> 2 for central
differences). Upwind and TVD schemes have been shown to be equivalent in form to
central difference schemes with artificial dissipation [64, 65].
Artificial dissipation of the Jameson-Schmidt-Turkel (JST) kind is applied [75]. A
discrete third-order bi-harmonic operator term resulting in fourth-order differences as
shown below is introduced,

Pi (V) =
∑
j∈Λi

Mi,j (Ej (V) − Ei (V)) , (4.3.1)

where, the difference in discrete nodal conservative variables E (V) is ,

Ei (V) = 1
|Λi|

∑
k∈Λi

(Vk − Vi) , (4.3.2)

and the coefficient Mi,j is given by,

Mi,j = mi,jαi,j, (4.3.3)

where,

mi,j = max (η4 − η2si,j, 0) Imsd , (4.3.4)

αi,j = 1
|Λi| + |Λj|

min
(

Ω2
i

∆τ i
,

Ω2
j

∆τ j

)
. (4.3.5)

The user-defined scalar constants η2, η4 are second order (harmonic) and fourth order
(biharmonic) dissipation factors and taken to be 0.2 throughout this work. The values
for the scalar coefficients are industry-standard and widely-utilised. They are obtained
from validation studies for external compressible flow simulations [146, 144]. ∆τi is
the local time step size for the node i and the pressure sensor si,j is given by,

si,j = max (|∆pi|, |∆pj|) , (4.3.6)

∆pi = 12
∑

k∈Λi
(pk − pi)∑

k∈Λi
(pk + pi)

, (4.3.7)
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where pi is the pressure at node i. Note that mi,j = mj,i. In smooth convective
flows, only the fourth-order differences are active, providing stability to the central
difference scheme. For strong shocks and discontinuities, dissipation introduced by
Equation (4.3.1) is not sufficient to stabilise the method. Hence a shock capturing
method is made available. This gets activated by the pressure sensor in Equation (4.3.6)
close to sharp gradients. Note that the fourth-order difference term is suppressed, since
they cause perturbations if active near shocks.
Oscillations near shocks, where si,j is large, can be mitigated with a local first-order
harmonic shock capturing term. This results in a second-order differences term,

Qi (V) =
∑
j∈Λi

η2αi,jsi,j (Vj − Vi) . (4.3.8)

Close to shocks, the scheme locally reduces to being first-order accurate, thus suppress-
ing high-order oscillation inducing terms.

4.4 Time integration method

The discrete system in the present work is time marched in an implicit manner. In
the FV community, for unsteady flows, dual time stepping is a popular choice for
temporal integration[72]. It involves a physical time step, marched usually with a BDF
or Runge-Kutta method, within which a fictitious time stepping is undertaken using
acceleration methods designed for steady state solutions such as the local time stepping
method. In the present study, BDF method of the first and second orders, described
previously in Section 3.4, is chosen for its simplicity, accuracy and stability, as well
the ease for combining with the HDG method later on. Following the expression for
BDF approximation in Equation (3.4.1), the temporal derivative in Equation (4.2.5a)
becomes, (

1,V t

)
Ω2

i

≈ |Ω2
i |

ntg∑
s=0

asVn+1−s
i . (4.4.1)

4.5 Discrete system

The fully discrete system of non-linear equations for Equation (4.2.4) with volume
integrals in Equation (4.2.5) and surface integrals in Equation (4.2.6) along with
artificial dissipation in Equation (4.3.1) and shock capturing term in Equation (4.3.8)
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is expressed as a non-linear residual,

R(Vn+1, . . . ,Vn+1−ntg) = 0, (4.5.1)

which is obtained by the assembly of nodal contributions Ri given by,

Ri := |Ω2
i |

ntg∑
s=0

asVn+1−s
i +

∑
j∈Λi

Ci,j
l

F l

(
Vn+1

i

)
+ F l

(
Vn+1

j

)
2


+
∑

j∈Λ∂
i

Ci,j,∂
l

3F l

(
Vn+1

i

)
+ F l

(
Vn+1

j

)
4


+
∑
j∈Λi

Mn
i,j

(
Ej

(
Vn+1

)
− Ei

(
Vn+1

))
−
∑
j∈Λi

η2α
n
i,js

n
i,j

(
Vn+1

j − Vn+1
i

)
− |Ω2

i | Sn+1
i , (4.5.2a)

for i = 1, . . . , ncv. Note that certain terms in the artificial dissipation and discontinuity
capturing expressions are evaluated at the known time step n. This reduces the
complexity of the linearisation terms and was observed not to adversely affect the
stability and solution accuracy, even with large time step sizes for the examples
demonstrated in the present work.

4.6 Linearisation method

As previously explained in Section (3.7) for the HDG method, linearisation of the non-
linear system of equations in Equation (4.5.1) is carried out using the Newton-Raphson
method. Due to the compact support of FV stencil, a sparse linear system of equations
to be solved at each Newton iteration (q) arise, given by,

[
Tvv

]n+1,q {
∆V

}n+1,q
=
{
fv

}n+1,q
, (4.6.1)

where, as usual, ∆⊚n+1,q = ⊚n+1,q+1 − ⊚n+1,q denotes the increment of the vector of
degrees of freedom. The right hand side vector is given by,

(
f i
v

)n+1,q
:= −Ri. (4.6.2)
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The tangent matrix is given by the expression,

(Tvv)i,n+1,q
J := ∂Ri

∂Vn+1,q
J

= |Ω2
i |

ntg∑
s=0

as
∂Vn+1−s

i

∂Vn+1,q
J

+
∑
j∈Λi

Ci,j
l


Al

(
Vn+1

i

) ∂Vn+1
i

∂Vn+1,q
J

+ Al

(
Vn+1

j

) ∂Vn+1
j

∂Vn+1,q
J

2




+
∑

j∈Λ∂
i

Ci,j,∂
l


3Al

(
Vn+1

i

) ∂Vn+1
i

∂Vn+1,q
J

+ Al

(
Vn+1

j

) ∂Vn+1
j

∂Vn+1,q
J

4




+
∑
j∈Λi

Mn
i,j

(
∂Ej (Vn+1)
∂Vn+1,q

J

− ∂Ei (Vn+1)
∂Vn+1,q

J

)

−
∑
j∈Λi

η2α
n
i,js

n
i,j

(
∂Vn+1

j

∂Vn+1,q
J

− ∂Vn+1
i

∂Vn+1,q
J

)
− |Ω2

i |
∂Sn+1

i

∂Vn+1,q
J

, (4.6.3a)

where, Al for l = 1, . . . , nsd is the jacobian of the inviscid flux, as given in Equa-
tion (2.1.15). And ∂Vi

∂VJ

= δiJImsd , where δiJ is the Kronecker delta.
The number of contributions to the tangent matrix given by the Equation (4.6.3) for
any node depends on the dimensionality of the problem msd. However, for an individual
node, immediate neighbouring nodes along with their neighbours provide non-zero
contributions. In a 2D problem with triangular elements, the tangent matrix for each
of the msd = 4 unknown degrees of freedom at a node receives a total of 76 non-zero
contributions. Similarly, for 3D problems with tetrahedral elements, the tangent matrix
for each of the msd = 5 degrees of freedom at a node receives a total of 705 non-zero
contributions.

4.7 Boundary conditions

Boundary conditions in the FV method are imposed strongly on the updated solution
field Vn+1. As explained earlier in Section 3.2.3, two distinct types of boundaries,
namely, far-field and slip wall boundaries, need to be treated.
On a far-field boundary, the local Mach number M and the flow direction normal to
the boundary influence the manner of imposition of the boundary condition, which is
based on the characteristics entering or leaving the domain [89]. For supersonic flows
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(M > 1), at the inflow boundary (vn ≤ 0),

Vn+1
i = U∞(xi, t

n+1) (4.7.1)

and at an outflow boundary (vn > 0), no conditions are necessary since the solution
depends only on the interior nodes. For subsonic flows (M ≤ 1), at the inflow
boundaries,

ρ = ρ∞,

v = v∞,

E = p
ρ∞(γ−1) + v∞·v∞

2 ,

 (4.7.2)

and at outflow boundaries,
E = p∞

ρ(γ − 1) + v · v

2 . (4.7.3)

Slip wall condition dictates that the flow remain tangential to the wall and is imposed
by modifying the equations for the updated solution as,

V =


ρ

ρ(v − vnn)
ρE

 . (4.7.4)

4.8 Implementation details

The convergence of the Newton-Raphson linearisation is monitored through the L2

norms of the residual and the solution increment as follows,

||ϵRi||L2(Ω2) :=
√√√√ ncv∑

i=1

∫
Ω2

i

Ri · Ri ∂Ω, (4.8.1a)

||ϵ∆V ||L2(Ω2) :=

√∫
Ω2 ∆V n+1,q · ∆V n+1,q ∂Ω√∫
Ω2 V n+1,q+1 · V n+1,q+1 ∂Ω

. (4.8.1b)

The typical quadratic convergence of the iterations errors is illustrated in Figure 4.4
where the maximum of the msd components of the error norms in Equation (4.8.1) is
plotted against the iteration number. This demonstrates consistent linearisation of the
non-linear terms for the FV method. In all the examples, the tolerance for convergence
is set to 1.0 × 10−10, unless specified otherwise.
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Figure. 4.4 Quadratic convergence of Newton-Raphson method demonstrating consis-
tent linearisation of the non-linear system of equations for FV method.

The choice of the solution procedure for the sparse linear system of equations follows the
discussion previously described in Section 3.9. A pseudo-code laying out the solution
procedure of the FV method is provided in Algorithm 2.

4.9 Numerical tests

Testing for the convergence of the discretisation error is the standard methodology to
assess the solution accuracy of the discretisation scheme, both in spatial and temporal
domains. Manufactured solutions is a popular method for such tests. As applied to
the HDG problem in Section 3.11, both manufactured solution test and the Ringleb
flow problem are used to test the FV discretisation. The solution error ϵ in the L2(Ω2)
is computed using the relation,

||ϵ||L2(Ω2) :=

√∫
Ω2 (V − Ua)2 dΩ√∫

Ω2 U2
a dΩ

, (4.9.1)

where Ua is a suitably designed analytical solution.

4.9.1 Spatial convergence tests

The spatial convergence test in 2D involves solving the Ringleb problem in four
uniform meshes of the domain Ω2 = [0 1]2 with 256, 1024, 4096 and 16 384 triangular
elements respectively, as shown in Figure 3.3. For the spatial convergence test in
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Initial solution: V n=0

Time stepping
for tn+1, n = 0 to end − 1 do

Data: V n

Initial guess: V n+1,q=0 = V n

Newton-Raphson linearisation
repeat

Data: V n+1,q, . . . ,V n+1−ntg

Edge-based approach
for e = 1 to nme do

for i = 1 to 2 do
Compute matrix: (Tvv)i,n+1,q

J in Equation (4.6.3)
Compute vector: (f i

v)n+1,q in Equation (4.6.2)
Assemble to Equation (4.6.1)

end
end

Solve linear system, obtain {∆V }n+1,q in Equation (4.6.1)
Update: V n+1,q+1 = V n+1,q + {∆V }n+1,q

Compute residuals: Rn+1,q+1 from Equation (4.5.1)
Update: q = q + 1
Compute errors in Equation (4.8.1)

until ||ϵRi ||L2(Ω2) and ||ϵ∆V ||L2(Ω2),≤ tolerance;

Update solution: V n+1 = V n+1,q+1.
end

Algorithm 2: FV solution procedure
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(a) (b)

Figure. 4.5 The optimal rates of convergence for the FV method as shown in the plots
of the L2(Ω2) of the error in all the conservative variables versus the mesh size h, for
the (a) Ringleb flow in 2D and (b) manufactured solution in Equation (3.11.2).

3D, a manufactured solution is constructed as indicated in Equation (3.11.2). Five
uniform meshes of the domain Ω2 = [0 1]3 are considered, with 24, 192, 1536, 12 288
and 98 304 tetrahedral elements respectively, as shown in Figure 3.4 for the first four
meshes. As usual, nodally exact initial solution is constructed and time marched until
the steady state is reached. The solution error in Equation (3.11.1) clearly observed to
be decreasing in the nearly optimal convergence rate for second-order central difference
scheme with an asymptotic slope of 2 for decreasing mesh sizes in both 2D and 3D, see
Figure 4.5.

4.9.2 Temporal convergence tests

Convergence properties of the FV method for the BDF method of time integrations is
presented. As the total discretisation error includes the contributions of both spatial
and temporal discretisations, a finer mesh is employed to minimise the influence of the
spatial terms.
For the temporal convergence tests, the analytical solution in Equation (3.11.3) and
Equation (3.11.4), for 2D and 3D cases respectively, were constructed. Initial solution
in the form of nodally exact analytical solution was time marched up-to the same
physical time with decreasing sizes of the time step size ∆t. Figure 4.6 for 2D and
Figure 4.7 demonstrate the convergence in the solution error at an optimal rate given
by the order of the BDF method in all conservative variables, thus confirming an error-
free implementation of the time marching method. Moreover, an order of magnitude
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(a) (b)

Figure. 4.6 The optimal rates of convergence for the FV method as shown in the plots
of the L2(Ω2) of the error in all the conservative variables versus the time step size
∆t, for different orders of the BDF method, (a) BDF1 and (b) BDF2. The example
demonstrated here is the 2D manufactured solution for temporal convergence given in
Equation (3.11.3).

increase in the solution accuracy is obtained for BDF2 as compared to BDF1, thus
highlighting the benefits gained from increasing the order of the temporal integration
schemes.
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(a) (b)

Figure. 4.7 The optimal rates of convergence for the FV method as shown in the plots
of the L2(Ω2) of the error in all the conservative variables versus the time step size
∆t, for different orders of the BDF method, (a) BDF1 and (b) BDF2. The example
demonstrated here is the 3D manufactured solution for temporal convergence given in
Equation (3.11.4).



Chapter 5

The coupled HDG-FV method

In the hard cases, the best algorithms are all about
doing what makes the most sense in the least amount of
time . . . These aren’t the concessions we make when we
can’t be rational. They’re what being rational means.

Brian Christian & Tom Griffiths
Algorithms to live by

A coupling of the HDG method described in Chapter 3 and the vertex-centred FV
method in Chapter 4 is presented. A partition of the computational domain Ω is
carried out to define the HDG and FV subdomains. Euler equations are solved in both
subdomains in a monolithic fashion. Continuity of the conservative variables and their
fluxes across the interface between the subdomains, the transmission conditions in
other words, define the coupling between the constitutive methods. The conditions
are imposed, one per subdomain, thus creating a two-way coupling. Imposition of the
transmission conditions is made easy by the use of matching meshes at the interface.
The chapter begins with a preliminary description of the partitioning of the computa-
tional domain. The strong form of the Euler equation applied to the HDG and FV
subdomains along with the transmission conditions is presented. In the next stage,
a monolithic weak formulation is obtained. HDG and FV spatial discretisations and
BDF time integration are introduced, resulting in the final non-linear residuals. A
linearisation procedure which results in a linear system of equations, comprised of
the assembly of various tangent matrices and right hand side vectors, is presented.
Important details of the implementation, specifically regarding the handling of interface
terms, are explained. Towards the end, the behaviour of coupled HDG-FV method in
several numerical tests are discussed.
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Ω1 Ω2
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∂Ω1

∂Ω2
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Û Ue
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Ω2
i

(b)

Figure. 5.1 A schematic of (a) the partition of the domain into the HDG and FV
subdomains and (b) partition of the HDG subdomain in elements and the FV subdomain
in medial dual control volumes.

5.1 Preliminaries

Consider an open bounded domain Ω ∈ Rnsd , with boundary ∂Ω and nsd the number
of spatial dimensions, partitioned in two disjoint subdomains Ω1 and Ω2 such that
Ω = Ω1 ∪ Ω2 with common interface ΓI = Ω1 ∩ Ω2 as shown in Figure 5.1(a).
This work considers an HDG discretisation in Ω1 and a vertex-centred finite volume
discretisation in Ω2. To this end, the subdomain Ω1 is partitioned in nel disjoint elements
Ω1

e, as given in Equation (3.1.1), with boundaries ∂Ω1
e, which define an internal interface

Γ1 in Equation (3.1.2). The subdomain Ω2 is partitioned in ncv disjoint control volumes
Ω2

i , as given in Equation (4.1.2), with the median dual approach. The partition of each
subdomain into elements and control volumes respectively is shown in Figure 5.1(b)
near the interface between the HDG and FV subdomains.
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5.2 Coupled HDG-FV formulation

The strong form of the Euler equations in the partitioned domain is written as,

U t + ∇ · F (U) = S in Ω1
e × (0, T ], (5.2.1a)

JU ⊗ nK = 0 on Γ1 × (0, T ], (5.2.1b)
JF (U) · nK = 0 on Γ1 × (0, T ], (5.2.1c)

V t + ∇ · F (V ) = S in Ω2 × (0, T ], (5.2.1d)
JU ⊗ nK = 0 on ΓI × (0, T ], (5.2.1e)

JF (U) · nK = 0 on ΓI × (0, T ], (5.2.1f)
U = U0 in Ω1

e × {0}, (5.2.1g)
V = U0 in Ω2 × {0}, (5.2.1h)

B(U ,U∞) = 0 on
(
∂Ω1

e ∩ ∂Ω
)

× (0, T ], (5.2.1i)

B(V ,U∞) = 0 on
(
∂Ω2 ∩ ∂Ω

)
× (0, T ], (5.2.1j)

for e = 1, . . . , nel, where U = U |Ω1 , V = U |Ω2 , Equations (5.2.1e) and (5.2.1f) are the
so-called transmission conditions across the subdomain interfaces, which impose the
continuity of the solution and the normal fluxes between the two subdomains Ω1 and
Ω2, respectively.
Introducing the hybrid HDG variable Û to the final strong form,

U t + ∇ · F (U) = S in Ω1
e × (0, T ], (5.2.2a)

U = Û on ∂Ω1
e × (0, T ], (5.2.2b)

JF (U) · nK = 0 on Γ1 × (0, T ], (5.2.2c)
V t + ∇ · F (V ) = S in Ω2 × (0, T ], (5.2.2d)

[JU ⊗ nK] = 0 on ΓI × (0, T ], (5.2.2e)
JF (U) · nK = 0 on ΓI × (0, T ], (5.2.2f)

U = U0 in Ω1
e × {0}, (5.2.2g)

V = U0 in Ω2 × {0}, (5.2.2h)
B̂(U , Û ,U∞) = 0 on

(
∂Ω1

e ∩ ∂Ω
)

× (0, T ], (5.2.2i)

B(V ,U∞) = 0 on
(
∂Ω2 ∩ ∂Ω

)
× (0, T ], (5.2.2j)

for e = 1, . . . , nel, where [J⊚K] = ⊚̂ + ⊚|Ω2 .
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Remark 7 (HDG-FV interface devoid of hybrid variables). The strong form of Equa-
tion (5.2.2) assumes that the hybrid variable Û is defined on the interface between
the HDG and FV subdomains, ΓI . This approach weakly enforces the continuity of
the solution at ΓI using the hybrid variable, that is replacing Equation (5.2.1e) by
Equation (5.2.2e). It is also possible to produce a slightly different formulation where
the hybrid variable is not defined on ΓI and the continuity of the solution is weakly
imposed directly using the primal variable on the interface (i.e. Equation (5.2.1e)).
The approach considered here minimises the changes required in an existing HDG
solver at the expense of introducing the hybrid variable as an extra unknown on the
interface ΓI . Also, note that for the preferred use of LLF stabilisation matrix given in
Equation (3.2.4), the presence of the hybrid variables on each face in Γ1 is necessary. It
is worth emphasising that this represents a minimum overhead due to the small number
of degrees of freedom corresponding to the hybrid variable in the interface compared to
the global number of degrees of freedom in the HDG and FV subdomains.

5.3 HDG-FV weak formulation

The current section begins with a recapitulation of the weak forms of the FV method
presented in Section 4.2 and the HDG local and global problems described in Section 3.2.
For each element in the HDG domain, Ω1

e, e = 1, . . . , nel, the weak formulation of
the HDG local problem presented in Equations (5.2.2a)-(5.2.2b), along with the shock
capturing term in Equation (3.3.5) is: given Û on (Γ1 ∪ ∂Ω1), find U ∈ [Wh,ke

t (Ω1
e)]msd

that satisfies
(
δU ,U t

)
Ω1

e

−
(
∇δU ,F (U)

)
Ω1

e

+
〈
δU , F̂ (U , Û) · n

〉
∂Ω1

e

=
(
δU ,S

)
Ω1

e

−
(
∇δU , κ∇U

)
Ω1

e

,

(5.3.1)
for all δU ∈ [Wh,ke(Ω1

e)]msd . Similarly, the weak formulation of the HDG global problem
presented in Equations (5.2.2c) and (5.2.2i) is: find Û ∈ [Ŵh,kj

t (Γ1 ∪ ∂Ω1)]msd such
that,

nel∑
e=1

{〈
δÛ , F̂ (U , Û) · n

〉
∂Ω1

e\∂Ω
+
〈
δÛ , B̂(U , Û ,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (5.3.2)

for all δÛ ∈ [Ŵh,kj (Γ1 ∪ ∂Ω1)]msd .
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The weak formulation of the FV problem in Equations (5.2.2d) and (5.2.2j) is: find
V ∈ [Wh,0

t (Ω2
i )]msd that satisfies

(
δV ,V t

)
Ω2

i

+
〈
δV ,F (V ) · n

〉
∂Ω2

i \∂Ω
+
〈
δV ,B(V ,U∞)

〉
∂Ω2

i ∩∂Ω
=
(
δV ,S

)
Ω2

i

, (5.3.3)

for all δV ∈ [Wh,0(Ω2
i )]msd and for i = 1, . . . , ncv.

To account for the transmission conditions at the interface between the HDG and
FV subdomains, the continuity of the solution is weakly imposed in the HDG global
problem given by Equation (5.3.2) and the continuity of the fluxes is imposed in the FV
weak formulation given by Equation (5.3.3). The weak form of the coupled problem is:
find (U , Û ,V ) ∈ [Wh,ke

t (Ω1
e)]msd × [Ŵh,kj

t (Γ1 ∪ ∂Ω1)]msd × [Wh,0(Ω2
i )]msd such that

(
δU ,U t

)
Ω1

e

−
(
∇δU ,F (U)

)
Ω1

e

+
〈
δU ,F (Û) · n

〉
∂Ω1

e

+
〈
δU , τ · U

〉
∂Ω1

e

−
〈
δU , τ · Û

〉
∂Ω1

e

=
(
δU ,S

)
Ω1

e

−
(
∇δU , κ∇U

)
Ω1

e

, (5.3.4a)
nel∑
e=1

{〈
δÛ ,F (Û) · n

〉
∂Ω1

e\∂Ω
+
〈
δÛ , τ · U

〉
∂Ω1

e\∂Ω
−
〈
δÛ , τ · Û

〉
∂Ω1

e\∂Ω1

−
〈
δÛ , τ · V

〉
∂Ω1

e∩ΓI
+
〈
δÛ , B̂(U , Û ,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (5.3.4b)(

δV ,V t

)
Ω2

i

+
〈
δV ,F (V ) · n

〉
∂Ω2

i \ΓI
+
〈
δV ,F (Û) · n

〉
∂Ω2

i ∩ΓI

−
〈
δV , τ · U

〉
∂Ω2

i ∩ΓI
+
〈
δV , τ · Û

〉
∂Ω2

i ∩ΓI

+
〈
δV ,B(V ,U∞)

〉
∂Ω2

i ∩∂Ω
=
(
δV ,S

)
Ω2

i

, (5.3.4c)

for all δU ∈ [Wh,ke(Ω1
e)]msd , δÛ ∈ [Ŵh,kj (Γ1 ∪ ∂Ω1)]msd , δV ∈ [Wh,0(Ω2

i )]msd and for
e = 1, . . . , nel and i = 1, . . . , ncv.
The semi-discrete weak formulation for the proposed HDG-FV, with BDF time integra-
tion given in Equation (3.4.1), can be written as: find (U , Û ,V ) ∈ [Wh,ke

t (Ω1
e)]msd ×
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[Ŵh,kj

t (Γ1 ∪ ∂Ω1)]msd × [Wh,ke
t [0](Ω2

i )]msd such that

ntg∑
s=0
as

(
δU ,Un+1−s

)
Ω1

e

−
(
∇δU ,F (Un+1)

)
Ω1

e

+
〈
δU ,F (Ûn+1) · n

〉
∂Ω1

e

+
〈
δU , τ n+1 · Un+1

〉
∂Ω1

e

−
〈
δU , τ n+1 · Û

n+1〉
∂Ω1

e

−
(
δU ,Sn+1

)
Ω1

e

+
(
∇δU , κn∇Un+1

)
Ω1

e

= 0, (5.3.5a)
nel∑
e=1

{〈
δÛ ,F (Ûn+1) · n

〉
∂Ω1

e\∂Ω
+
〈
δÛ , τ n+1 · Un+1

〉
∂Ω1

e\∂Ω

−
〈
δÛ , τ n+1 · Û

n+1〉
∂Ω1

e\∂Ω1
−
〈
δÛ , τ n+1 · V n+1

〉
∂Ω1

e∩ΓI

+
〈
δÛ , B̂(Un+1, Û

n+1
,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (5.3.5b)

ntg∑
s=0
as

(
δV ,V n+1−s

)
Ω2

i

+
〈
δV ,F (V n+1) · n

〉
∂Ω2

i \ΓI
+
〈
δV ,F (Ûn+1) · n

〉
∂Ω2

i ∩ΓI

−
〈
δV , τ n+1 · Un+1

〉
∂Ω2

i ∩ΓI
+
〈
δV , τ n+1 · Û

n+1〉
∂Ω2

i ∩ΓI

+
〈
δV ,B(V n+1,U∞)

〉
∂Ω2

i ∩∂Ω
−
(
δV ,Sn+1

)
Ω2

i

= 0, (5.3.5c)

for all δU ∈ [Wh,ke
t (Ω1

e)]msd , δÛ ∈ [Ŵh,kj

t (Γ1 ∪ ∂Ω1)]msd , δV ∈ [Wh,ke
t [0](Ω2

i )]msd and for
e = 1, . . . , nel and i = 1, . . . , ncv.

5.4 Discrete system

The approximations for the solution in the HDG and FV subdomains, given by
Equations (3.5.1) and (4.2.3) respectively, and the approximation of the HDG hybrid
variable given by Equation (3.5.2) are introduced in the semi-discrete system of
Equation (5.3.5). Selecting the spaces of weighting functions as the space spanned by
the shape functions for HDG, leads to the non-linear system of equations

R(Un+1
h , . . . ,U

n+1−ntg
h , Û

n+1
,V n+1

h , . . . ,V
n+1−ntg
h ) = 0, (5.4.1)

where the global residual of the coupled HDG-FV problem is obtained by assembling
the contributions from the HDG global and local problems and the FV problem, namely

Re,i :=


Re(Un+1

h , . . . ,U
n+1−ntg
h , Û

n+1
h )

R̂
e(Un+1

h , . . . ,U
n+1−ntg
h , Û

n+1
h ,V n+1

h , . . . ,V
n+1−ntg
h )

Ri(Un+1
h , . . . ,U

n+1−ntg
h , Û

n+1
h ,V n+1

h , . . . ,V
n+1−ntg
h )

 (5.4.2)
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with

Re
I : =

ntg∑
s=0

as

(
NI ,U

n+1−s
h

)
Ω1

e

−
(
F (Un+1

h ),∇TNI

)
Ω1

e

+
〈
NI ,F (Ûn+1

h ) · n
〉

∂Ω1
e

+
〈
NI , τ

n+1 · Un+1
h

〉
∂Ω1

e

−
〈
NI , τ

n+1 · Û
n+1
h

〉
∂Ω1

e

−
(
NI ,S

n+1
)

Ω1
e

+
(
κn∇Un+1

h ,∇TNI

)
Ω1

e

= 0, (5.4.3a)

R̂
e

I : =
nel∑
e=1

{〈
N̂I ,F (Ûn+1

h ) · n
〉

∂Ω1
e\∂Ω

+
〈
N̂I , τ

n+1 · Un+1
h

〉
∂Ω1

e\∂Ω

−
〈
N̂I , τ

n+1 · Û
n+1
h

〉
∂Ω1

e\∂Ω1
−
〈
N̂I , τ

n+1 · V n+1
h

〉
∂Ω1

e∩ΓI

+
〈
N̂I , B̂(Un+1

h , Û
n+1
h ,U∞)

〉
∂Ω1

e∩∂Ω

}
= 0, (5.4.3b)

Ri : =
ntg∑
s=0

as

(
1,V n+1−s

h

)
Ω2

i

+
〈
1,F (V n+1

h ) · n
〉

∂Ω2
i \ΓI

+
〈
1,F (Ûn+1

h ) · n
〉

∂Ω2
i ∩ΓI

−
〈
1, τ n+1 · Un+1

h

〉
∂Ω2

i ∩ΓI
+
〈
1, τ n+1 · Û

n+1
h

〉
∂Ω2

i ∩ΓI

+
〈
1,B(V n+1

h ,U∞)
〉

∂Ω2
i ∩∂Ω

−
(
1,Sn+1

)
Ω2

i

= 0, (5.4.3c)

for e = 1, . . . , nel and i = 1, . . . , ncv.

5.5 Linearisation method

As previously discussed for HDG and FV methods, the Newton-Raphson method is
applied to linearise the non-linear residual of Equation (5.4.1). The algebraic system
to be solved at each iteration (q) of the Newton-Raphson is


Tuu Tuû 0
Tûu Tûû Tûv

Tvu Tvû Tvv


n+1,q 

∆U
∆Û
∆V


n+1,q

=


fu

fû

fv


n+1,q

, (5.5.1)

where ∆⊚n+1,q = ⊚n+1,q+1 − ⊚n+1,q denote the increment of the solution vector. The
tangent matrices Tuu, Tuû, Tûu, Tûû, Tûv, Tvu, Tvû and Tvv and the right hand side
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vectors fu, fû and fv resulting from the linearisation are expressed as,

(Tuu)e,n+1,q
IJ := ∂Re

I

∂Un+1,q
J

, (Tuû)e,n+1,q
IJ := ∂Re

I

∂Ûn+1,q
J

, (5.5.2a)

(Tûu)e,n+1,q
IJ := ∂R̂

e

I

∂Un+1,q
J

, (Tûû)e,n+1,q
IJ := ∂R̂

e

I

∂Ûn+1,q
J

, (5.5.2b)

(Tûv)e,n+1,q
IJ := ∂R̂

e

I

∂Vn+1,q
J

, (Tvu)i,n+1,q
J := ∂Ri

∂Un+1,q
J

, (5.5.2c)

(Tvû)i,n+1,q
J := ∂Ri

∂Ûn+1,q
J

, (Tvv)i,n+1,q
J := ∂Ri

∂Vn+1,q
J

, (5.5.2d)

and

(f e
u)n+1,q

I := −Re
I , (f e

û)n+1,q
I := −R̂

e

I ,
(
f i
v

)n+1,q
:= −Ri. (5.5.3a)

It is worth noting that the tangent matrix Tuu has an element by element block
diagonal structure that can be used to obtain a reduced system of equations through
static condensation, i.e.,

T̃ûû Tûv

T̃vû Tvv

n+1,q ∆Û
∆V


n+1,q

=

f̃û

f̃v


n+1,q

, (5.5.4)

where,

T̃ûû : = Tûû − TûuT−1
uu Tuû, T̃vû : = Tvû − TvuT−1

uu Tuû (5.5.5a)
f̃û : = fû − TûuT−1

uu fu, f̃v : = fv − TvuT−1
uu fu. (5.5.5b)

Solving the linear system, the solution in the HDG domain is recovered by solving a
set of independent local problems in each element, namely,

Tn+1,q
uu ∆Un+1,q = fn+1,q

u − Tn+1,q
uû ∆Ûn+1,q. (5.5.6)

As compared to the HDG residuals in Equation (3.6.3) and the FV residual in Equa-
tion (4.5.1), the coupled residual in Equation (5.4.3) has additional terms related to the
transmission conditions. The RHS vector for the global problem in Equation (3.8.3b)
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is modified as,

(f e
û)n+1,q = −

∑
∂Ω1

e\∂Ω

nf
ip∑

g=1
N̂(ξf

g)
(
F(Ûn+1,q(ξf

g)) · n(ξf
g)
)
wf

g

−
∑

∂Ω1
e\∂Ω

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)Un+1,q(ξf

g)wf
g

+
∑

∂Ω1
e\∂Ω1

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)Ûn+1,q(ξf

g)wf
g

−
∑

∂Ω1
e∩ΓI

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)Vn+1,q(ξf

g)wf
g

−
∑

∂Ω1
e\∂Ω

nf
ip∑

g=1
N̂(ξf

g)B̂(ξf
g)wf

g. (5.5.7a)

Similarly, the RHS vector for the FV problem in Equation (4.6.2) is updated as,

(
f i
v

)n+1,q
:= −|Ω2

i |
ntg∑
s=0

asVn+1−s
i +

∑
j∈Λi

Ci,j
l

F l

(
Vn+1

i

)
+ F l

(
Vn+1

j

)
2


−
∑

j∈Λ∂
i

Ci,j,∂
l

3F l

(
Vn+1

i

)
+ F l

(
Vn+1

j

)
4



−
∑

Υi∈ΓI

nΥi
ip∑

g=1

(
F
(
Ûn+1,q(ξΥi

g )
)

· n(ξΥi
g )
)
wΥi

g

+
∑

Υi∈ΓI

nΥi
ip∑

g=1
τ n+1Un+1,q(ξΥi

g )wΥi
g −

∑
Υi∈ΓI

nΥi
ip∑

g=1
τ n+1Ûn+1,q(ξΥi

g )wΥi
g

−
∑
j∈Λi

Mn
i,j

(
Ej

(
Vn+1

)
− Ei

(
Vn+1

))
+
∑
j∈Λi

η2α
n
i,js

n
i,j

(
Vn+1

j − Vn+1
i

)
+ |Ω2

i | Sn+1
i , (5.5.8a)

where, ξΥi
g and wΥi

g are the nΥi
ip integrations points and weights defined in the reference

facet, which is a triangular element in 3D or a straight edge in 2D. The number of
integration points for an interface facet (Υi ∈ ΓI) is based on the order of the adjacent
HDG element to ensure accurate integration of the HDG variables.
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Consequently, together with the tangent matrices for the HDG global problem in
Equation (3.8.4d), the following tangent matrices are computed,

(Tûu)e,n+1,q =
∑

∂Ω1
e\∂Ω

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)NT (ξf

g)wf
g

+
∑

∂Ω1
e\∂Ω

nf
ip∑

g=1
N̂(ξf

g)
(
∂τ n+1

∂Un+1 |Un+1,q(ξf
g)Un+1,q(ξf

g)
)

NT (ξf
g)wf

g

+
∑

∂Ω1
e∩∂Ω

nf
ip∑

g=1
N̂(ξf

g)
(

∂B̂

∂Un+1 |Un+1,q(ξf
g)

)
NT (ξf

g)wf
g, (5.5.9a)

(Tûv)e,n+1,q =
∑

∂Ω1
e∩ΓI

nf
ip∑

g=1
N̂(ξf

g)τ n+1(ξf
g)ÑT (ξf

g)wf
g, (5.5.9b)

where, following the definitions in Equation (3.8.1) for HDG, Ñ is constructed for a
FV face with nfn nodes such that,

Ñ =
[
Ñ1Imsd Ñ2Imsd . . . ÑnfnImsd

]T
. (5.5.10)

Similarly, in addition to the tangent matrices of the FV residual in Equation (4.6.3),
the new tangent matrices are introduced as,

(Tvu)i,n+1,q
J =

∑
Υi∈ΓI

nΥi
ip∑

g=1
τ n+1NT (ξΥi

g )wΥi
g

+
∑

Υi∈ΓI

nΥi
ip∑

g=1

(
∂τ n+1

∂Un+1 |Un+1,q(ξΥi
g )U

n+1,q(ξΥi
g )
)

NT (ξΥi
g )wΥi

g , (5.5.11a)

(Tvû)i,n+1,q
J = −

∑
Υi∈ΓI

nΥi
ip∑

g=1

(
A
(
Ûn+1,q(ξΥi

g )
)

· n(ξΥi
g )
)

N̂T (ξΥi
g )wΥi

g

−
∑

Υi∈ΓI

nΥi
ip∑

g=1
τ n+1N̂T (ξΥi

g )wΥi
g

−
∑

Υi∈ΓI

nΥi
ip∑

g=1

(
∂τ n+1

∂Ûn+1
|Ûn+1,q(ξΥi

g )Û
n+1,q(ξΥi

g )
)

N̂T (ξΥi
g )wΥi

g . (5.5.11b)

Remark 8 (Algebraic system for HDG-FV interface devoid of hybrid variables). As
mentioned in Remark 7, the continuity of the solution in the interface ΓI has been
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imposed on the global problem, through the hybrid variable Û . If the hybrid variable is
not defined on the interface, the alternative formulation would lead to a tangent matrix
of the form 

Tuu Tuû Tuv

Tûu Tûû 0
Tvu Tvû Tvv

 . (5.5.12)

This alternative formulation leads to a reduced system
T̃ûû T̃ûv

T̃vû T̃vv

n+1,q ∆Û
∆V


n+1,q

=

f̃û

f̃v


n+1,q

, (5.5.13)

where
T̃ûv := −TûuT−1

uu Tuv, T̃vv := Tvv − TvuT−1
uu Tuv (5.5.14)

When compared to the system of Equation (5.5.4), the system of the alternative for-
mulation given by Equation (5.5.13) is slightly smaller but the hybridisation process
requires the extra operations detailed in Equation (5.5.14) for each time step and each
non-linear iteration. Reiterating, the LLF stabilisation cannot be realised in the absence
of skeleton nodes on the HDG-FV interface.

5.6 Implementation details

Off-diagonal tangent matrices corresponding to the interface terms need special consid-
erations. It is of value to preserve the element-based assembly of matrices in HDG and
the edge-based assembly in FV, when possible, for the interface contributions.
In the HDG domain, the interface terms in the residual and the tangent matrices appear
in Equation (5.5.7a) and Equation (5.5.9b) respectively. Therefore, in the assembly
over each HDG face lying on the interface, the connectivities of corresponding FV
nodes on the interface are required. It is worth noting that the number of integration
points is decided by the order of the HDG element. This ensures accurate numerical
integration. Illustrated in Figure 5.2, the HDG face on the interface being integrated
is highlighted. The FV nodes in blue denote the face connectivity required for the
numerical integration.
On the other hand, the interface terms appear in the FV residuals and tangent matrices
given in Equation (5.5.8) and Equation (5.5.11) respectively. They are assembled in
an edge-based manner. The integration is performed on a per-facet basis for every
interface edge. Here, the contributions are assembled to the respective edge nodes.
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(a) (b)

Figure. 5.2 A schematic for the interface integration of the HDG residual and its
tangent matrices in (a) 2D and (b) 3D respectively. HDG face being integrated is
highlighted. FV nodes in blue denote the corresponding face connectivity required for
integration.

This is illustrated in Figure 5.3 for an interface edge connected by nodes (in magenta
and blue). Here, the integration over highlighted triangular interface facets in 3D or
linear interface facets in 2D are performed. Again, since high-order HDG variables U

and Û are involved in the interface terms, to ensure accuracy of the integration, the
number of integration points is decided by the order of the HDG element. However,
note that, the integration terms involve the HDG variables related to the skeleton and
the element associated with the facet. The FV unknowns are not required.

Remark 9 (Consistent surface integration for interface FV control volumes). Balancing
of the surface fluxes in control volumes is achieved with consistently defined edge weights
as described in the Remark 4. However, the flux integration in FV control volumes
with interface facets is now performed with HDG variables (as a result of the flux
transmission condition) in Equation (5.5.8) and Equation (5.5.11). As noted before,
this integration is performed up to high-order accuracy on a per-facet basis. Recalling
Remark 6, the assumption of flux taken to be constant over facets associated with an
edge and interpolated using only edge values is no longer consistent for the interface
control volumes. To regain the consistency, the trapezoidal rule for flux interpolation
needs to be performed on a per-facet basis as well, see illustration in Figure 5.4. This
implies that the surface weights involve the unknowns at not just the edge nodes, but
the entire FV element in which the facet lies. It is worth noting that, only a very small
number of control volumes associated with the interface deviates from the edge-based
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(a) (b)

Figure. 5.3 A schematic for the interface integration of the FV residual and its tangent
matrices in (a) 2D and (b) 3D respectively. Interface facets associated with a typical
interface edge (connecting the blue and magenta nodes), where integration is performed
on a per-facet basis are highlighted.

formulation and thus require modification. The rest of the FV domain remains adhered
to the edge-based formulation. The correction implies that the flux coefficients in
Equation (4.2.7) are modified to compute on a per-facet basis as,

Ci,j
l |Υi

= |Υi| nΥi
l , ∀Υi ∈ Υi,j, (5.6.1a)

Ci,j,∂
l |Υi

= |Υi| nΥi
l , ∀Υi ∈ Υ∂

i,j. (5.6.1b)

The scheme remains consistent, i.e., for constant flux, the surface integral is provided

∑
j∈Λi

∑
Υi∈Υi,j

Ci,j
l |Υi

+
∑

j∈Λ∂
i

∑
Υi∈Υ∂

i,j

Ci,j,∂
l |Υi

= 0. (5.6.2)

It is to be noted that, in the absence of the consistency correction, spurious solution
jumps arise at the interface. A demonstration of the behaviour of the correction in
reproducing the passage of shocks and discontinuities across the HDG-FV interface in
provided in the upcoming Section 5.7.1.

Remark 10 (Considerations for artificial dissipation terms close to the HDG-FV
interface). The artificial dissipation term in Equation (4.3.1) for a node involves not
just its adjacent nodes, but the neighbours of its adjacent nodes as well. In one
dimensional domain, this results in a 5-point stencil around the node. For the FV
nodes close to and lying on the interface, the stencil extends into the HDG domain.
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(a) (b)

Figure. 5.4 An illustration of consistent flux interpolation for interface elements (located
at □) for interior facets (in cyan and magenta) and boundary facets (in green) for an
interior edge (in dotted blue) and a boundary edge (in dotted red) for (a) 2D and (b)
3D FV domains respectively.

However, multiple nodes define the solution at any given element corner. To overcome
this difficulty, a weighted average based on the element volume is considered in order
to obtain a singular value for the purposes of dissipation calculation. Note that this
increases the bandwidth in the linear system for such FV nodes.

The convergence behaviour of the Newton-Raphson method is monitored with the
L2(Ω) of the residual and solution errors in both HDG and FV domains, which are
defined as below,

||ϵRe,i ||L2(Ω) :=
√√√√ nel∑

e=1

∫
Ω1

e

Re · Re ∂Ω +
ncv∑
i=1

∫
Ω2

i

Ri · Ri ∂Ω, (5.6.3a)

||ϵ∆U,∆V ||L2(Ω) :=

√∫
Ω1 ∆Un+1,q · ∆Un+1,q ∂Ω +

∫
Ω2 ∆V n+1,q · ∆V n+1,q ∂Ω√∫

Ω1 Un+1,q+1 · Un+1,q+1 ∂Ω +
∫

Ω2 V n+1,q+1 · V n+1,q+1 ∂Ω
.

(5.6.3b)

Additionally, L2 norms for the hybrid variable given in Equation (3.9.1c) and Equa-
tion (3.9.1d) are computed. As previously defined for HDG and FV methods, the
linearisation iterations are considered to have converged when the value of the norms fall
below a predefined tolerance, whose default value is set to 1.0 × 10−10. Figure 5.5 shows
the typical quadratic convergence of the L2 norms, thus demonstrating a consistent
linearisation.
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Figure. 5.5 Quadratic convergence of Newton-Raphson method demonstrating consis-
tent linearisation of the non-linear system of equations for FV method.

Solution of the sparse linear system of equations follows the discussion previously
described in Section 3.9. A pseudo-code laying out the solution procedure of the
coupled HDG-FV method is provided in Algorithm 3.

5.7 Numerical tests

Several numerical tests are conducted on the coupled HDG-FV method. Sod’s classical
shock tube problem is solved to highlight the handling of shocks across and aligned
with the interface. Later, tests for the convergence of spatial and temporal errors
for the coupled scheme is presented. As previously demonstrated for HDG and FV
methods separately, results from the Ringleb flow problem for 2D spatial tests and
manufactured solutions for 3D spatial and 2D and 3D temporal tests are presented.
For the manufactured solutions problem, the solution error ϵ in the L2(Ω) is computed
using the relation,

||ϵ||L2(Ω) :=

√∫
Ω1 (U − Ua)2 dΩ +

∫
Ω2 (V − Ua)2 dΩ√∫

Ω U2
a dΩ

, (5.7.1)

where Ua is a suitably designed analytical solution.
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Initial solution: Un=0, Û
n=0 and V n=0

Time stepping
for tn+1, n = 0 to end − 1 do

Data: Un,Ûn and V n

Initial guess: Un+1,q=0 = Un, Û
n+1,q=0 = Û

n and V n+1,q=0 = V n

Compute residuals: Rn+1,0 from Equation (5.4.1)
Newton-Raphson linearisation
repeat

Data: Un+1,q, . . . ,Un+1−ntg , Û
n+1,q

,V n+1,q, . . . ,V n+1−ntg

for e = 1 to nel do
Compute (Tuu)e,n+1,q

IJ , (Tuû)e,n+1,q
IJ , (Tûu)e,n+1,q

IJ , (Tûû)e,n+1,q
IJ , and

(Tûv)e,n+1,q
IJ in Equation (5.5.2) (f e

u)n+1,q
I and (f e

û)n+1,q
I in

Equation (5.5.3) and assemble to Equation (5.5.4)
end
for e = 1 to nme do

for i = 1 to 2 do
Compute (Tvu)i,n+1,q

J , (Tvû)i,n+1,q
J , (Tvv)i,n+1,q

J in Equation (5.5.2)
(f i

v)n+1,q in Equation (5.5.3) and assemble to Equation (5.5.4)
end

end

Solve linear system, obtain {∆Û}n+1,q, {∆V }n+1,q in Equation (5.5.4)
Update:
Û

n+1,q+1 = Û
n+1,q + {∆Û}n+1,q,V n+1,q+1 = V n+1,q + {∆V }n+1,q

Local problem
Obtain {∆U}n+1,q in Equation (5.5.6)
Update: Un+1,q+1 = Un+1,q + {∆U}n+1,q

Update residuals: Rn+1,q+1 from Equation (5.4.1)

Update: q = q + 1
Compute errors in Equation (5.6.3)

until ||ϵRe,i ||L2(Ω), ||ϵ∆U,∆V ||L2(Ω), ||ϵR̂e||L2(Γ1) and ||ϵ∆Û
||L2(Γ1) ≤ tolerance;

Update solution: Û
n+1 = Û

n+1,q+1
,Un+1 = Un+1,q+1 and V n+1 = V n+1,q+1

end
Algorithm 3: Coupled HDG-FV solution procedure
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(a) t = 0.0225 (b) t = 0.0685

(c) t = 0.1145

Figure. 5.6 Density at three different instants computed with the proposed HDG-FV
scheme showing the ability to handle the shock at different stages.

5.7.1 Shock tube problem

The classical shock tube problem is considered here to show the ability of the proposed
coupling strategy to handle shocks that cross and that are aligned with the HDG-FV
interface.
The computational domain is Ω = [0, 1] × [0, 0.1] and the initial condition is defined
as [90]

U0 =

{3, 0, 0, 3/(γ − 1)}T if x ≤ 0.5
{1, 0, 0, 1/(γ − 1)}T if x > 0.5.

The FV subdomain is Ω2 = [0.375, 0.625] × [0.025, 0.075] and discretised into 15 584
triangular elements. The HDG subdomain is Ω1 = Ω \ Ω2 and discretised into 80 640
triangular elements. This choice ensures that from t = 0 to t < 0.0685, the a shock is
crossing the HDG-FV interface and at time t = 0.0685, the shock is aligned with the
HDG-FV interface.
The density, computed with the proposed HDG-FV scheme with k = 1, at three
different instants, is displayed in Figure 5.6. The thick line denotes the interface
between the HDG and FV subdomains. At t = 0.0225, the shock is crossing the top
and bottom part of the HDG-FV interface and it can be seen that the position of the
shock is captured correctly by both schemes, with no artefacts on the interface. At
t = 0.0685, the shock is perfectly aligned with the interface and again, the solution is
captured correctly with no artefacts. Finally, at time t = 0.1145 the shock is in the
HDG subdomain. No artefacts are present due to the transition between subdomains
and all the flow features are well represented. A comparison of density variation at
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(a) t = 0.0225 (b) t = 0.1145

Figure. 5.7 Variation of density as a function of x coordinate.

different sections are presented along with the analytical solution in Figure 5.7. The
numerical and analytical solutions show good agreement.
It is worth mentioning that the focus here is on the ability to handle shocks across the
interface between the HDG and FV subdomains and shocks that are perfectly aligned
with the interface. In addition, this example shows the ability to also handle contact
discontinuities and rarefactions waves across the two subdomains.

5.7.2 Spatial convergence tests

First, the convergence of the coupled HDG-FV method under mesh refinement is studied.
In 2D, four uniform meshes of the domain Ω = [0, 1]2 are considered for the Ringleb
flow problem, with 256, 1024, 4096 and 16 384 triangular elements, respectively. The
meshes are partitioned as Ω2 = [0.375, 0.625]2 and Ω1 = Ω \ Ω2 as shown in Figure 5.8.
In 3D, three uniform meshes of the domain Ω = [0, 1]3 with 6000, 48 000 and 384 000
tetrahedral elements, are considered for the manufactured solution problem given by
Equation 3.11.2. The subdomains are created as Ω2 = [0.3, 0.7]3 and Ω1 = Ω \ Ω2 as
illustrated in Figure 5.9.
Coupling of second-order finite volume and HDG with linear elements is considered. As
previously for HDG and FV methods, a nodally exact initial solution is constructed and
time marched until steady state solution. Figure 5.10 shows the nearly second-order
convergence of the L2(Ω) of the errors versus mesh size h for 2D and 3D problems
respectively. In addition, the results for both HDG with linear approximation and FV
have been added to Figure 5.11 to enable a visual comparison of the gain in accuracy
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure. 5.8 Triangular meshes of the domain Ω = [0, 1]2 used to test the optimal
convergence properties of the coupled HDG-FV method.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure. 5.9 Tetrahedral meshes of the domain Ω = [0, 1]3 used to test the optimal
convergence properties of the coupled HDG-FV method.

(a) (b)

Figure. 5.10 The optimal rates of convergence for the coupled method as shown in the
plots of the L2(Ω) of the error in all the conservative variables versus the mesh size h,
for the (a) Ringleb flow in 2D and (b) manufactured solution in Equation (3.11.2).
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(a) (b)

Figure. 5.11 Convergence properties of FV, HDG and the coupled scheme for the (a)
Ringleb flow problem in 2D and (b) manufactured solution problem in Equation (3.11.2)
respectively.

induced by the HDG formulation with linear approximation when compared to the
standard second-order FV method. In the Ringleb flow example, the accuracy of the
combined scheme, as depicted in Figure 5.11(a), is almost identical to the accuracy
of the standard HDG solver. Also, the solution accuracy improves when high-order
approximations are employed in the HDG subdomain, but, the rate of convergence is
dictated by the solution error in the second-order accurate FV subdomain. For the 3D
manufactured solution problem, the solution accuracy of the coupled scheme, as shown
in Figure 5.11(b), lies between those of its constituent methods.

5.7.3 Temporal convergence tests

Finally, for the temporal convergence properties of the coupled method with BDF
method of time integration, the same partition of domain Ω as described in the previous
section is carried out. Also a finer mesh is employed to minimise the influence of
the spatial error terms. The analytical solution are based on Equation (3.11.3) and
Equation (3.11.4), for 2D and 3D cases respectively. Initial solution in the form of
nodally exact analytical solution was time marched up-to the same physical time
with decreasing sizes of the time step size ∆t. Figure 5.12 for 2D and Figure 5.13
demonstrate the convergence in the solution error at an optimal rate given by the order
of the BDF method in all conservative variables.
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(a) (b)

Figure. 5.12 The optimal rates of convergence for the coupled method as shown in
the plots of the L2(Ω) of the error in all the conservative variables versus the time
step size ∆t, for different orders of the BDF method, (a) BDF1 and (b) BDF2. The
example demonstrated here is the 2D manufactured solution for temporal convergence
given in Equation (3.11.3).

(a) (b)

Figure. 5.13 The optimal rates of convergence for the FV method as shown in the
plots of the L2(Ω) of the error in all the conservative variables versus the time step size
∆t, for different orders of the BDF method, (a) BDF1 and (b) BDF2. The example
demonstrated here is the 3D manufactured solution for temporal convergence given in
Equation (3.11.4).





Chapter 6

Numerical examples

“Nothing ever comes to one, that is worth having,
except as a result of hard work.”

Booker T. Washington

The present chapter demonstrates the application of the coupled HDG-FV method
for transient problems. Examples of inviscid gust flow over various aerodynamic
configurations in both 2D and 3D domains are considered. Attention is drawn towards
comparing and contrasting the coupled scheme with the low-order FV method. Special
emphasis is placed on highlighting the suitability of the proposed scheme for transient
simulations.
In both 2D and 3D examples, the discussion begins with a succinct description of the
problem setup. A mesh convergence study is carried out to select a suitable mesh
refinement for a steady-state problem. This mesh is then used to perform transient gust
simulations using the coupled method. The details for the partitioning into HDG and
FV subdomains in the coupled scheme are provided. Finally, the results are compared
with standard FV method applied to meshes specifically designed for the gust problem.

6.1 Gust flow in 2D: NACA aerofoil

6.1.1 Problem setup

The simulation of a sinusoidal gust impinging on a NACA0012 aerofoil immersed in
an inviscid subsonic flow is considered. The free-stream Mach number is M∞ = 0.5
and the angle of attack is 2 degrees. The problem setup is illustrated in Figure 6.1,
showing the aerofoil of chord length c = 1 and the rectangular box of dimension a× b
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Figure. 6.1 An illustration of the problem setup for the simulation of wind gust
impinging on a NACA0012 aerofoil. A sinusoidal gust is generated in the region
enclosed by the box of width a and height b, which is located at a distance d upstream
to the aerofoil of chord length c.

at a distance d from the aerofoil where the gust is introduced as a source term. The
far-field boundary is situated at 10 chord lengths from the aerofoil.

6.1.2 Mesh convergence study

Four unstructured triangular meshes are used to select the level of mesh refinement
required to accurately compute the quantities of interest, namely lift and drag, for the
steady state solution of the Euler equations. A detailed view of the first three meshes
near the aerofoil is depicted in Figure 6.2. The meshes are generated such that the
geometry is discretised to be represented accurately and that the domain near the
aerofoil is discretised to obtain a high-fidelity representation of the flow features, such as
the large gradients near the leading and trailing edges. The generated meshes contain
2295, 7701, 35 425 and 133 459 elements, respectively, and the aerofoil is discretised
with 101, 179, 375 and 725 points in each case. The minimum mesh spacing at the
leading edge is 0.008, 0.004, 0.002 and 0.001 and the spacing at the trailing edge is
0.012, 0.006, 0.003 and 0.0015 respectively.
Figure 6.3 shows the computed non-dimensional lift coefficient CL, as a function of the
number of elements, where

CL = 2FL

ρ||v||2S
, (6.1.1)
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure. 6.2 Meshes used in the selection of the level of mesh refinement required to
accurately capture the steady state solution.

Figure. 6.3 Convergence plot of the lift coefficient CL as a function of the number of
elements. The shaded area represents the region with an error within five lift counts
compared to the reference solution.

lift force, FL, is the component of the total force acting on the aerofoil orthogonal to
the flow direction. The total force is obtained by integrating the pressure over the
aerofoil surface. Here, S is the reference area, taken to be unity. From this study,
it can be concluded that the second mesh provides the required accuracy as the lift
coefficient is within five lift counts of the reference value. A detailed view of the Mach
number and pressure distributions near the aerofoil is displayed in Figure 6.4.

6.1.3 Gust problem specification

The simulation of the sinusoidal gust impinging on the NACA aerofoil is considered.
To speed up the convergence to the time harmonic steady state, the computed steady
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(a) Mach number (b) Pressure

Figure. 6.4 Steady state solution computed on the mesh displayed in Figure 6.2 (b).

state solution is used as the initial condition for the transient gust simulation. The non-
dimensional parameters of the source term in Equation (2.2.3) required to introduce
the gust are the angular frequency, ωg = 4, the angle of propagation of the gust front,
θ = 45◦, the gust intensity, δg = 0.1, the dimensions of the box where the gust is
generated, a = 1 and b = 4, and the distance to the aerofoil, d = 2.
Five meshes are considered to show the benefits of the proposed HDG-FV approach for
capturing the transient gust effect. First, the mesh used to compute the steady state
solution, shown in Figure 6.5 (a), is considered to perform a standard FV simulation.
Second, a mesh where the whole region of interest, namely Ω̃ = [−4, 4] × [−2, 2], is
refined by using a desired element size equal to h⋆ = 0.08. This corresponds to having
18 points per wavelength of the impinging gust. The resulting mesh, displayed in
Figure 6.5 (b), has 24 851 elements. The third mesh corresponds to a mesh where
the region of interest is refined using a desired element size equal to h⋆ = 0.04 and
the resulting mesh has 36 points per wavelength. The mesh, displayed in Figure 6.5
(c), has 83 229 elements. The fourth mesh corresponds to a mesh where the region of
interest is refined using a desired element size equal to h⋆ = 0.02, which corresponds
to the largest edge on the aerofoil used in the steady state simulation. The resulting
mesh, displayed in Figure 6.5 (d), has 265 237 elements.

6.1.3.1 Domain partitioning for HDG-FV method

Finally, the same mesh considered in the steady state simulation is partitioned into two
regions as follows. Elements from the discretised domain Ω are included into the FV
domain Ω2 layer-by-layer, beginning from the elements surrounding the aerofoil. In this
manner, the FV domain continues to grow until elements larger than a pre-determined
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

(e) Mesh 5

Figure. 6.5 Unstructured triangular meshes employed to simulate the wind gust
impinging on a NACA0012 aerofoil. (e) A detailed view of the partitioned mesh close
to the aerofoil is presented on the right, highlighting the HDG and FV subdomains.
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size are encountered. Thus, all elements with a size less than or equal to the desired
element size and close to the aerodynamic configuration lie in the FV domain. See
Algorithm 4 for an overview of the implementation of the partitioning procedure.
Figure 6.6 depicts the growth of the FV domain where elements are added over the

Mark all nodes lying on the aerofoil
repeat

Initialise: number of new FV elements = 0
for all elements previously not identified as lying in FV domain and having
atleast one marked node do

for element size <= desired element size do
Identify element as lying in FV domain
Mark all the element nodes
Increment by 1 the number of new FV elements

end
end
for all elements previously not identified as lying in FV domain do

if all element nodes are marked then
Identify element as lying in FV domain
Increment by 1 the number of new FV elements

end
end

until until no new FV elements are identified;
Algorithm 4: Partitioning of Ω for the coupled HDG-FV method

span of several iterations. For 2D cases, elements of sizes upto 3h⋆/2 are contained in
the FV domain Ω2, whereas the rest of the mesh defines the HDG region Ω1.
In the HDG elements lying in the region of interest, the degree of functional approxima-
tion is adapted based on the wavelength of the impinging gust, λ = π/2 ≈ 80h⋆. For
elements with size less than or equal to λ/5, a quadratic approximation is employed,
whereas in the remaining elements a cubic approximation is used. For elements outside
the region of interest a linear approximation is used. The mesh is depicted in Figure 6.5
(e), including the degree of approximation used in the different elements.
The time step size ∆t is decided based on the time period of the gust T . A comparative
study is performed with 16, 32 and 64 time steps per cycle of the gust. Figure 6.7 shows
the variation in the lift coefficient observed for different time step sizes. The ∆t = T/32
was selected since it provides a solution to within 5 lift counts when compared to
∆t = T/64. This corresponds to a CFL number of approximately 442 in the coarsest
mesh and 478 in the finest mesh. The fully-implicit time-stepping procedure allows for
arbitrarily large time step sizes that are permissible with respect to the time scale of the
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(a) After 6 iterations (b) After 12 iterations

(c) After 18 iterations

Figure. 6.6 An illustration of the workflow of the partitioning algorithm depicting the
growth of the FV domain around the aerodynamic configuration over several iterations.

Figure. 6.7 Variation of the lift coefficient with respect to the steady state solution as
a function of the non-dimensional time for the simulations computed with various time
step sizes.
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Figure. 6.8 Variation of the lift coefficient with respect to the steady state solution as
a function of the non-dimensional time for the simulations computed with different
number of linearisation iterations performed in each time step calculation.

fluid phenomena. In all cases, the second order BDF2 time integrator is employed. The
tolerance for the Newton-Raphson linearisation was set to 1.0 × 10−2. This resulted in
the linearisation procedure performed once per time step. A comparative study was
carried out to assess the influence of the number of linearisation iterations. Figure 6.8
depicts the variation of the lift coefficient as a function of non-dimensional time for
different iteration counts. Clearly, one iteration per time step is found to provide
accurate solutions.

6.1.4 Results and discussion

Figure 6.9 shows the Mach number distribution after the time harmonic steady state
has been reached for the three computations using three of the meshes of Figure 6.5.
The solution obtained with the FV method on the mesh of Figure 6.5 (a) shows, as
expected, the large dissipation introduced by the traditional FV scheme on coarse
meshes. This experiment confirms that meshes designed for steady state simulations
are not suitable for transient simulations in a low-order framework. Figure 6.9 (b)
shows the FV solution computed on the fine mesh of Figure 6.5 (d). The solution
computed with the proposed HDG-FV scheme on the coarse mesh used for the steady
state simulation and with a variable degree of approximation in the HDG region is
depicted in Figure 6.5 (e), showing a good agreement with the reference solution
computed with FV in the finest mesh.
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(a) FV Mesh 1

(b) FV Mesh 4

(c) HDG-FV Mesh 5

Figure. 6.9 Mach number distribution for the simulation of the wind gust impinging in
a NACA0012 aerofoil after the time harmonic steady state is reached.
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Figure. 6.10 Variation of the lift coefficient with respect to the steady state solution
as a function of the non-dimensional time for the simulations computed on the five
meshes shown in Figure 6.5.

6.1.4.1 Solution accuracy

To better illustrate the accuracy of the proposed scheme, Figure 6.10 shows the evolution
of the lift coefficient in time for the solutions computed on the five meshes shown in
Figure 6.5. The computation using FV in the finest mesh is taken as the reference
solution and the accuracy of the computations, using FV in the first three meshes
and the computation using HDG-FV in the coarse mesh with non-uniform degree of
approximation, is measured by means of the dissipation and dispersion errors.
The dissipation error is estimated by comparing the amplitude of the oscillations in
the lift coefficient against the reference results. For the FV simulations, the estimated
dissipation error is 85.8%, 5.7% and 0.8% in the first three meshes respectively, whereas
the computation with the proposed HDG-FV scheme produces a dissipation error
of 0.3%. Similarly, the dispersion error is estimated by comparing the phase of the
oscillations in the lift coefficient against the reference value. In this case, the FV
computations produce a dispersion error of 57.5◦, 13◦ and 2.5◦ respectively, whereas
the combined HDG-FV approach produces an error below 0.3◦.
To further illustrate the benefits of the proposed approach, Figure 6.11 shows a one
dimensional section, at y = c/2, of the vertical velocity field v for the five simulations
computed on the five meshes shown in Figure 6.5. The results clearly show an excellent
agreement between the solution computed using the proposed scheme and the reference
solution. Using the coarsest mesh with a FV scheme the flow features are not captured
due to an excessive dissipation. The dissipation and dispersion errors when the FV
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Figure. 6.11 One dimensional section, at y = c/2, of the vertical velocity field v for the
five simulations computed on the five meshes shown in Figure 6.5.

scheme is used in the second mesh are clearly visible, whereas the simulation using FV
in the third mesh provides a much better agreement.

6.1.4.2 Computational efficiency

From a computational point of view, the simulation using the proposed HDG-FV
scheme requires the solution of a linear system of equations with 96 652 degrees of
freedom within each Newton-Raphson iteration whereas the solution computed on
the reference mesh requires the solution of a linear system of equations with 530 832
degrees of freedom within each Newton-Raphson iteration. It is worth noting that the
substantial decrease in number of degrees of freedom also corresponds to a save in
computational time. The time required to compute the solution using the proposed
HDG-FV approach is almost one order of magnitude lower than using the standard
FV method on the fine mesh. Using the FV scheme in the third mesh leads to a
linear system of equations with 166 816 degrees of freedom to be solved within each
Newton-Raphson iteration. This simulations takes twice the time required by the
proposed HDG-FV scheme and, as detailed earlier, produces less accurate results.
It is also worth emphasising that the benefit of the proposed approach, in addition to
the save in computational cost, is that it avoids the generation of meshes tailored to
specific transient simulations.
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Figure. 6.12 Illustration of the problem setup for the simulation of wind gust impinging
on the transverse section of wing and tail configuration. A sinusoidal gust is generated
in the region enclosed by the box of width a and height b, which is located at a distance
d upstream to the wing.

6.2 Gust flow in 2D: A two-aerofoil configuration

The simulation of the wind gust effect on two-aerofoil configurations is of major
importance as it corresponds to a two dimensional representation of a canard-wing or
wing-tail configuration [116]. In this scenario, it is not only important to accurately
capture the gust impinging on the first aerofoil but it is also relevant to accurately
represent the flow disturbances produced by the first aerofoil that impinge on the
second aerofoil.

6.2.1 Problem setup and gust specification

The simulation of a sinusoidal gust impinging on a wing-tail configuration immersed in
an inviscid transonic flow at free stream Mach number M∞ = 0.8 and with angle of
attack equal to 4.4844 degrees with respect to the wing is considered. The problem
setup is illustrated in Figure 6.12, showing the aerofoil of chord length c and the
rectangular box of dimension a× b at a distance d from the aerofoil, where the gust
is introduced as a source term. As in the previous example, the far field boundary is
situated at 10 chord lengths from the aerofoil and the same intensity. The frequency
and intensity of the gust and the angle of propagation of the gust front are taken as
in the previous example. The dimensions of the box where the gust is generated are
a = 1 and b = 4 and the distance to the aerofoil is d = 3.04.
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Figure. 6.13 Unstructured triangular mesh employed to simulate the wind gust
impinging in a wing-tail configuration. The two detailed views around the wing and
tail show the partition in HDG and FV regions.

An unstructured triangular mesh with 12 504 elements was generated, with localised
mesh refinement around the wing and tail. This mesh, suitable for a steady state
simulation is then partitioned in two regions as done in the previous example. In the
region where the elements are small enough to capture the gust perturbation a standard
FV scheme is employed whereas in the rest of the domain an HDG approach is used.
In the HDG region, the degree of the approximation is adapted following the same
strategy as in the previous example. The resulting spatial discretisation, including
the degree of approximation used in each element of the HDG region is displayed in
Figure 6.13. Two detailed views of the mesh around the wing and tail are are displayed
in order to show the regions where the standard FV scheme is used.
As in the previous example, 32 time steps per cycle of the gust are considered. This
corresponds to a CFL number of approximately 56. Also similar to the previous
example, one linearisation iteration is performed per time step.

6.2.2 Results and discussion

The solution after the time harmonic steady state is achieved for both the standard
FV scheme and the proposed HDG-FV method are shown in Figure 6.14. The results
illustrate the substantial dissipation introduced by the FV scheme when the coarse
mesh, suitable for a steady state simulation, is used. Instead, the solution with the
proposed HDG-FV scheme is able to capture the perturbation of the velocity induced by
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(a) FV (b) HDG-FV

Figure. 6.14 Mach number distribution for the simulation of the wind gust impinging
in a wing-tail configuration after the time harmonic steady state is reached.

(a) Wing (b) Tail

Figure. 6.15 Variation of the lift coefficient with respect to the steady state solution as
a function of the non-dimensional time for the simulations displayed in Figure 6.14 for
the wing and the tail.

the gust not only impinging in the aerofoil but also arriving to the tail and interacting
with the strong shocks on both the aerofoil and the tail.
To further illustrate the benefits of the proposed approach, Figure 6.15 shows the
evolution of the lift coefficient computed on the aerofoil and tail separately. The results
clearly show the dissipation introduced by the FV scheme in coarse meshes and how
the proposed scheme is able to capture the amplitude of the oscillations of the lift
coefficient on both the aerofoil and the tail without the need to produce a tailored
mesh for this application, just re-using the mesh that is generated to perform a steady
state simulation.
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Figure. 6.16 An illustration of the problem setup for the wind gust simulation of
ONERA M6 wing. The gust is generated in the region enclosed by the rectangular box
depicted in red. Also indicated are the region of interest for the gust flow problem,
enclosed by the rectangular box in black and the locations of monitor points in *

6.3 Gust flow in 3D: ONERA M6 wing

6.3.1 Problem setup

A popular model designed to be used for three dimensional flows from low to transonic
speeds is the ONERA M6 wing[132]. The geometry set-up for the gust flow testing
of this symmetrical, swept-back wing is shown in Figure 6.16. The wing is immersed
in an inviscid transonic flow with free-stream Mach number M∞ = 0.84 and angle of
attack 3.06 degrees. The free-stream flow is taken to be parallel to the x−z plane, thus
enabling the use of a symmetry plane as indicated. The rectangular box of dimensions
a × e × b at a distance d from the leading edge of the wing of chord length c = 10
denotes the region of gust generation. The far-field boundary is located at 12.5 chord
lengths from the wing.
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6.3.2 Mesh convergence study

The first step is to obtain a mesh size suitable for steady-state simulations. Four
unstructured tetrahedral meshes are considered. Successive refinements close to the
wing is performed to in order to obtain an accurate representation of the geometry
and quantities of interest i.e., lift and drag. The surface triangulation of the first three
meshes are presented in Figure 6.17. The generated meshes contain 236 682, 720 667,
3 562 293, and 5 044 644 elements and the wing is represented by 11 592, 15 214, 54 372,
and 105 326 faces respectively. The minimum mesh spacing at the leading edge is 0.095,
0.052, 0.023 and 0.018 and the spacing at the trailing edge is 0.099, 0.071, 0.037 and
0.024 respectively. The second and the third meshes involve a stretching along the
span of the wing by a factor of 5.
The non-dimensional lift coefficient as a function of the number of elements is plotted
in Figure 6.18. Here, CL is computed using Equation (6.1.1), with reference area of
239.12. The convergence of the lift coefficient shows that the second mesh in Figure 6.17
provides an accurate value to within 2.5 lift counts from the reference value and chosen
to perform the gust simulations with the coupled HDG-FV method. The value of 2.5
lift counts represents the same allowable limit to the CL variation in the 2D example
in-terms of the percentage change in CL. The steady state Mach number distribution
on the wing, shown in Figure 6.19(a), indicates the present of strong shocks. Further,
Figures 6.19(b-d) show the variation of the non-dimensional quantity, the pressure
coefficient Cp, which is a measure of the relative pressure at a location, given by,

Cp = 2(p− p∞)
ρ∞||v∞||2

, (6.3.1)

for different cross-sections of the wing along with experimental measurements reported
in [132]. The location of the shocks are captured well but they appear smeared. In
practice, when necessary, sharp resolution of the shocks is obtained by designing refined
mesh elements at the location of the shock. The solutions are obtained using the FV
method, which provides efficient computations for steady simulations as compared to
the coupled HDG-FV method. It is to be noted that the solutions obtained by both
methods quantitatively match each other.

6.3.3 Gust problem specification

Transient gust flow simulations are considered next. The dimensions of the rectangular
box where the gust is generated is chosen to be a = 5, e = 20 and b = 20 and is at a
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(a) Mesh 1

(b) Mesh 2

(c) Mesh 3

Figure. 6.17 Surface triangulation of the first three meshes for the mesh convergence
study of the ONERA M6 wing.



110 Numerical examples

Figure. 6.18 Convergence plot of lift coefficient CL as a function of the number of
elements. The shaded region depicts the region within 2.5 lift counts of the reference
value.

(a) (b)

(c) (d)

Figure. 6.19 Steady state (a) Mach number distribution on the top of the wing and
(b-d) the variation of pressure coefficient Cp at different cross-sections along the wing
span on the lower (L) and the upper (U) surfaces.
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distance d = 5 upstream of the leading edge. The parameters of the gust specification in
Equation (2.2.3) are, angular frequency, ωg = 0.4, inclination of the wave front, θ = 45◦,
wavelength, λ = 5π, and the gust intensity, δg = 0.1. Note that the wavelength is scaled
with respect to the chord length of the wing to be similar to that of the 2D gust flow
over NACA0012 in the previous section. The steady state solution is used as the initial
condition to accelerate to a time-harmonic solution for the gust problem. The region
of interest for the gust flow problem is taken to be Ω̃ = [−10, 25] × [0, 20] × [−10, 10].
The solution is monitored at various locations downstream of the wing. These monitor
points, as shown in Figure 6.16, are located at the corners, edge centres and centroid
of the rectangular region 25 × [5, 15] × [−5, 5].
The coupled HDG-FV method performs the simulation using the same mesh determined
to be suitable for steady simulations in the previous step. On the other hand, three
additional meshes are designed for the FV method. The first mesh, as shown in
Figure 6.20(a), considers the same mesh employed for the steady-state solution. The
second mesh, as displayed in Figure 6.20(b), considers the entire region of interest Ω̃
to be refined with a desired element size of h⋆ = 1.0. The third mesh considers Ω̃ to
be refined with elements of size h⋆ = 0.5 as depicted in Figure 6.20(c). The fourth
mesh considers a further refinement with element size h⋆ = 0.25 in Ω̃ and is as shown
in Figure 6.20(d). The refinements applied to the latter three meshes lead to 874 045,
2 599 755 and 17 961 056 elements and correspond to having 16, 32 and 64 points per
wavelength of the sinusoidal gust, respectively.
The partitioning of the mesh into FV and HDG subdomains follows the procedure
outlined in Algorithm 4. The desired max element size in the FV domain is chosen
to be 1.1h⋆, where h⋆ is the largest element on the wing. With consideration for the
presence of stretched elements, the element size is measured by the radius of inscribed
spheres, in contrast to using the largest edge length as a measure of element size in
2D elements. Figure 6.20(e) depicts the resulting interface between the subdomains
consisting of triangular faces of arbitrary orientation. The interface is handled as
described previously in Chapter 5. Furthermore, the HDG elements in the region of
interest are assigned the degree of approximation k based on the wavelength of the
impinging gust. For elements of sizes less than λ/5, a quadratic approximation is used.
The remaining elements of up to size λ/3 are assigned a cubic approximation. Rest
of the elements are given a quartic approximation. This results in 189 320 quadratic,
841 cubic and 58 quartic elements as depicted in Figure 6.21. As with 2D cases, linear
approximation is employed in the HDG domain outside the region of interest, resulting
in 26 994 linear elements.
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

(e) Mesh 5

Figure. 6.20 Surface triangulation of the unstructured tetrahedral volume meshes
employed for the wind gust simulations for the ONERA M6 wing. (e) A detailed view
of the HDG-FV interface.
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(a) HDG k = 2 elements (b) HDG k = 3 elements

(c) HDG k = 4 elements

Figure. 6.21 Distribution of HDG elements of various orders in the domain of interest
for the gust simulation for the ONERA M6 wing.
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In all the gust simulations, the time step size ∆t corresponds to performing 32 time
steps per cycle of the gust. For the coupled HDG-FV method, BDF2 was employed and
the ∆t corresponds to a CFL number of 185. Three iterations of the Newton-Raphson
linearisation performed at each time step calculation was found to result in sufficiently
accurate solution, which corresponded to a tolerance of 1 × 10−4. The coupled HDG-FV
method on Mesh 5 results in a sparse linear system of size 12 958 555. This was solved
at each Newton iteration using the GMRES solver with ILU pre-conditioner [131].
The tolerance for convergence of the residual of the linear solver was set to 1 × 10−9.
In order to handle the large problem sizes encountered for the FV simulation on the
meshes designed for the gust problem, a fast in-house code, the ‘FLITE system’, was
utilised. The code performs a fully-parallel, second-order FV discretisation with multi-
grid acceleration and dual time-stepping procedure [146, 144]. Hence, a comparison of
computational costs between the FV and the proposed method was not feasible.

6.3.4 Results and discussion

Figure 6.22 illustrates the variation in the z-momentum, ρw, induced by the sinusoidal
gust after a time-harmonic steady-state has been reached for three chosen meshes
depicted in Figure 6.20. In practice, for the gust phenomena on airframes, the sinusoidal
perturbations are generated ahead of the nose of the aircraft, several chord lengths
upstream from the lift generating structures, as demonstrated in the 2D cases. This
ensures that the effect of the fuselage on the gust is taken into account before impinging
on the wing. Here, the gust is generated closer to the wing leading to a smaller region
of interest in-order to reduce the problem size.
In-part due to the proximity of the region of gust generation to the wing and availability
of finer elements in the region of interest, as compared to 2D examples in the previous
sections, the dissipation is not drastic but noticeable. Figure 6.22(a) is obtained for
the FV method on the mesh designed for the steady-state simulations. Qualitative
loss of accuracy can be observed, particularly along the section at y = 18 as compared
to the FV solution on the finest mesh shown in Figure 6.22(b), which is taken to be
the reference solution. Hence. the low-order FV solution to unsteady flows on a mesh
designed for steady simulations is not satisfactory, even in the presence of a reduced
number of coarse elements. On the other hand, the solution in Figure 6.22(c) for the
coupled schemes closely matches with that of the reference solution. Thus the coupling
of HDG and FV methods to re-use the meshes generated for steady state solutions in
a transient simulation is feasible and advantageous.
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(a) Mesh 1 (b) Mesh 4

(c) Mesh 5

Figure. 6.22 Plots of z-component of momentum, ρw, obtained for different meshes of
the gust flow problem for the ONERA M6 wing immersed in a transonic inviscid flow.
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Figure. 6.23 Variation of the lift coefficient with respect to the steady state solution
as a function of the non-dimensional time for the ONERA M6 wing immersed in a
sinusoidal gust flow.

6.3.4.1 Solution accuracy

To better illustrate the solution accuracy of the proposed method, Figure 6.23 shows
the evolution of the lift coefficient for the FV solution on different meshes, along
with the reference solution and the coupled HDG-FV scheme with non-uniform degree
approximations. Dissipation and dispersion errors are computed to quantify the
solution accuracy by comparing the amplitude and phase of the lift coefficient variation
against the reference solution. For the FV simulations on the first three meshes,
the dissipation was found to be 4.5%, 1.0% and 0.3%. The dissipation error for the
combined scheme was 0.4%. FV solution on the second and the third mesh along with
the combined scheme solution lie within one lift count of the reference method, whereas
the FV solution on the first mesh shows a larger variation and thus demonstrates
the unsuitability of FV method on meshes designed for steady-state solution. Also,
dispersion error computed for the FV simulations are 10.7◦, 4.7◦ and 1.5◦, whereas it
is 9.5◦ for the combined scheme. The superior properties of the coupled method to
repurpose meshes routinely designed for steady simulations to transient processes are
demonstrated. As commented earlier, the dispersion and dissipation errors as measured
by the lift coefficient is not large as compared to the 2D examples in the previous
examples since the gust is generated very close to the wing where the relatively smaller
elements are capable of resolving the solution to a large extent.
The high-fidelity solution produced by the coupled scheme can be better demonstrated
when the gust has traversed distances several times its wavelength. As shown for
the two-aerofoil configuration in Section 6.2, it is critical to preserve the transient
features upto large distances in practical examples. Monitor points at the downstream
of the wing track the different components of the solution field over time. Figures 6.24-
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6.28 show variation induced by the gust on normalised differences in the primitive
variables, ρ,v = {u v w}T and p, plotted in the logarithmic scale as a function of
the non-dimensional time. Here, the differences are calculated with the reference
value taken to be the solution on the finest mesh for FV in Figure 6.20. In the plot the
for density variations given by Figure 6.24, the FV solution on first mesh shows large
dispersion errors. The errors in the coupled HDG-FV solution and the FV solutions on
the refined meshes are similar. The gust source term produces sinusoidal perturbations
in the momentum field in the x − z plane. In Figure 6.25 for the variations in the
x-component of the velocity, u, FV solution on the coarse mesh produces consistently
large dispersion and dissipation errors. The effect of mesh refinement in reducing
the solution error is clearly visible for the second and the third meshes. The coupled
HDG-FV solution consistently produces the least error across all the monitor points.
Figure 6.26 depicts the variations induced in the y-component of the velocity field, v by
the wing, since the gust does not produce variations in y-component of the momentum.
Monitor points 4,5 and 6, situated downstream of the wing, register large errors in the
FV solutions, even on the refined meshes as compared to that of the coupled method.
At other monitor points, the FV solution on the coarse mesh registers the largest error,
as previously observed for other variables. For the z-component of the velocity, w, in
Figure 6.27, the coupled method offers the smallest solution error and the FV solution
on the coarse mesh produces the largest errors. Again, the benefit of mesh refinement
in improving the solution accuracy is observed for the FV solution on the second and
third meshes. The vortical gust does not induce large variations in the pressure field,
see Figure 6.28. Here, the scale of the errors in pressure variation in much smaller than
the other primitive variables and no clear superior solution candidate may be inferred.
In conclusion, unsteady FV solutions on meshes designed for steady-state problems are
not feasible. The low order method requires tailored mesh refinements which in-turn
leads to large problem sizes. On the other hand, the coupled FV-HDG method offers
significantly accurate solutions with low computational costs to unsteady problems on
the very same mesh generated routinely for steady-state calculations.
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Figure. 6.24 Variation in the logarithmic scale of the normalised density at various
monitor points located downstream as depicted in Figure 6.16 of an ONERA M6 wing
immersed in a sinusoidal gust flow.
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Figure. 6.25 Variation in the logarithmic scale of the normalised x-component of the
velocity at various monitor points located downstream as depicted in Figure 6.16 of an
ONERA M6 wing immersed in a sinusoidal gust flow.
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Figure. 6.26 Variation in the logarithmic scale of the normalised y-component of the
velocity at various monitor points located downstream as depicted in Figure 6.16 of an
ONERA M6 wing immersed in a sinusoidal gust flow.
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Figure. 6.27 Variation in the logarithmic scale of the normalised z-component of the
velocity at various monitor points located downstream as depicted in Figure 6.16 of an
ONERA M6 wing immersed in a sinusoidal gust flow.
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Figure. 6.28 Variation in the logarithmic scale of the normalised pressure at various
monitor points located downstream as depicted in Figure 6.16 of an ONERA M6 wing
immersed in a sinusoidal gust flow.



Chapter 7

Concluding remarks

“End? No, the journey doesn’t end here.”
Gandalf to Pippin

The present chapter concludes the thesis with a succinct recollection of the key ideas
proposed and the outcomes achieved during the course of the current work. Also, a
brief outlook along various research lines is presented for the progression and further
development of the ideas proposed in this work.

7.1 Summary

The current work aims to address one of the vital needs of the CFD landscape, which
is the development of fast, efficient and high-fidelity numerical solution workflow for
unsteady flow problems.
The current techniques rely on low-order FV methods, which show large dissipation
and dispersion errors on coarse meshes. They require a highly refined discretisation
of the domain, resulting in very high computational costs due to the problem sizes.
On the other hand, high-order methods provide with high-resolution solutions at
computationally competitive costs in comparison to low-order methods.
In unsteady flows, the mitigation strategy to the large errors induced by the standard
FV method is h-refinement. The computational domain needs to be discretised with
suitably fine elements in order to capture the transient features in an adaptive manner.
Apart from leading to large problem sizes, the generation of tailored meshes for transient
flows is a non-trivial, problem-dependent and time-consuming process. Contrastingly,
high-fidelity solutions are possible with high-order methods. These methods offer
non-uniform order of approximations and degree-adaptivity, which greatly reduces
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the computational requirements and reduces the need for the modification of the
mesh topology. However, close to the boundaries of the domain, high-order curvilinear
meshes are necessary in-order to represent the geometry accurately. High-order meshing
technologies have not yet reached maturity for adoption in the industrial workflows,
specially for complex geometries in viscous simulations.
The present work is a proof-of-concept of the coupling of high-order and low-order
methods for their favourable properties to improve the computational efficiency for
transient phenomena. A novel coupling of second-order, industry standard FV and a new
class of high-resolution schemes, the HDG method is set forth, wherein meshes routinely
generated for steady-state simulations are repurposed for unsteady phenomena. It
allows for efficient FV solution procedure on elements capable of accurately representing
the solution with the low-order method and a high-fidelity HDG solution elsewhere.
Also, the need to generate tailor-made fine grid or curvilinear meshes is circumvent.
The following highlights the important achievements realised during the course of the
present work.

• Chapter 3: A numerical formulation is developed for the time-dependent Euler
equations with HDG spatial discretisation and BDF time integration. The
HDG method with variable order of approximation on unstructured triangular
and tetrahedral meshes is implemented. A shock capturing method to handle
discontinuities in the flow is introduced. The resulting non-linear terms in the
discrete equation for the residual are fully linearised using the Newton-Raphson
method. The solution procedure for the linear system of equations is detailed.
The numerical solution shows expected convergence behaviour for both 2D and
3D test cases using different polynomial orders of approximation.

• Chapter 4: A vertex-centred FV approach to the solution of transient Eu-
ler equations is implemented on 2D and 3D unstructured grids. An efficient
edge-based formulation is developed. Second-order accurate, central difference
type scheme with stabilisation through JST artificial dissipation is introduced.
Implementations of additional shock-capturing, harmonic term activated by a
pressure-based shock sensor is carried out. BDF implicit time-stepping up-to
second order is performed on the discrete non-linear residual. Newton-Raphson
linearisation is performed to obtain a linear system of equations. Numerical tests
are performed and optimal convergence behaviour of the numerical solution is
observed.
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• Chapter 5: A novel combination of variable-order HDG and second-order FV
methods is proposed. A set of transmission conditions across the HDG-FV
interface, which imposes the continuity of the solution and the normal fluxes, is
implemented. The resulting coupled scheme is solved in a monolithic manner
with implicit BDF time stepping. Fast and parallel computations for the solution
of the linear system of equations for both direct and iterative methods are realized
through the use of external libraries. OpenMP and MPI programming models, for
shared-memory and distributed-memory architectures respectively, are utilised
in this context. Detailed information regarding the handling of the interface
conditions is presented. Test cases are carried out depicting accurate resolution
of discontinuities across the interface and optimal convergence behaviour of the
coupled scheme.

• Chapter 6: Sinusoidal gust flow phenomena as the case study for simulating
transient flow features is applied to various aerodynamic configurations. The
advantages in terms of computational efficiency, both memory and the total CPU
time required, is demonstrated for the coupled scheme on meshes designed for
steady-state simulations as compared with the standard FV method on meshes
customised for the unsteady phenomena. Significant savings are achieved when
meshes for steady-state simulations are repurposed for transient processes. The
partitioning of such meshes into HDG and FV subdomains based on element size is
demonstrated. Also, assignment of the polynomial order of approximation based
on element size and wavelength of the impinging gust is effective in obtaining
an accurate solution. The procedure is shown to perform satisfactorily for 3D
unstructured meshes as well.

7.2 Outlook

Further development of the proof-of-concept presented in the current work can be
expanded along multiple aspects as highlighted below.

• Extensions of the methodology The next step would be to consider viscous
effects for realistic flow simulations. The advantages demonstrated for the inviscid
case will be carried over multiple-fold for the compressible Navier-Stokes equation
with boundary layer meshes. Challenging flows such as simulating turbulence
and unsteady flows with separation would become tenable with the proposed
methodology. Additionally, the coupling can be applied to incompressible flow
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regimes. Applying Arbitrary Lagrangian-Eulerian (ALE) technique enables
simulations with mesh motions to be performed. Furthermore, with multi-physics
couplings, new areas of applications such as aero-acoustics and fluid-structure
interaction studies become feasible.

• Formulation improvements: The coupled method would benefit from a degree-
adaptive strategy for unsteady flows [54, 140]. Explorations into various time-
integration strategies such as high-order and adaptive methodologies would be
highly beneficial. An efficient edge-based strategy for the currently element-based
HDG discretisation would lead to a performant formulation. The high-order
requirement imposes severe restrictions in such a development since one requires
information from the degrees of freedom in the element interiors. Advances in
high-order serendipity elements would make an edge-based formulation tenable.

• Algorithmic improvements: Partitioning of HDG and FV subdomains can
be performed including the influence of other metrics such as distance from
aerodynamic configuration and CPU load balancing. A fast solution would
result from effective parallel strategies utilising techniques such as multi-grid
methods [17] and domain decomposition methodologies [2]. Solution to the sparse
linear system of equations traditionally take up a majority of the CPU time in
CFD simulations. In this regard, efforts for designing effective pre-conditioners
for the iterative solution methods would be beneficial [131]. Improvements in
solution process of several orders of magnitude can be realised with efficient
register and cache management, pre-fetching, pipe-lining and instruction-level
parallelism. With evolving computing hardware and architectures, considerations
for effective use of heterogeneous computing accelerators is key to scalability in
current and upcoming generations of HPC systems.
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