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Abstract

The invention of distributed protocols is an extremely challenging ac-

tivity. Today however, few design paradigms are available for the cre-

ative task of designing scalable and reliable protocols for the Grid,

peer to peer systems, etc. This paper first presents a design method-

ology to translate sequence equations, that are extensions of the form

xm+1 = f(xm, xm−1, . . . , xm−k), into distributed protocols that

are provably equivalent, i.e., exhibit the same equilibrium points and

trajectories. These novel sequence protocols are decentralized, sim-

ple, scalable, and highly fault-tolerant. We then demonstrate how

phase changes in sequence protocols can be used to detect certain

global predicates in a decentralized manner. Two such new proto-

cols called the Multiplicative protocol and the Logistic protocol

are presented, rigorously analyzed, and experimentally studied. Fi-

nally, we present HoneySort, a novel sequence protocol for adaptive

Grid computing. HoneySort is derived from sequence equations rep-

resenting coordination among honeybees in nature. Through rigorous

analysis and experiments with a real deployment on a 30-node PC

cluster, we show that HoneySort outperforms well-known distributed

sorting algorithms such as Quicksort and Insertion sort.

Keywords: Science of Protocol Design, Distributed Proto-
cols, Sequence Protocols, Scalability, Reliability.

1 Introduction
The invention of distributed protocols that are simple,
scalable and robust, is crucial to the success of large-
scale distributed technologies such as the Grid, dis-
tributed storage, and peer-to-peer systems. Yet, surpris-
ingly few paradigms are available today to assist a proto-
col designer in this creative activity.

In this paper, we present an innovative design method-
ology that translates certain types of sequence equations
into new distributed protocols. The translated proto-
col exhibits equivalent behavior to the original equation.
The canonical single-variable sequence equation is of the

∗This work was partially supported by National Science Founda-
tion Grant ITR-0427089.

form xm+1 = f(xm, xm−1, . . . , xm−k), where k is a
constant integer, f is a well-known function with a fi-
nite number of terms, m takes on integer values ≥ k,
and all xi’s take real values ∈ [0, 1]. We also extend our
methodology to multi-variable sequence equations.

We call the protocols generated from sequence equa-
tions as Sequence Protocols. Sequence protocols are
completely decentralized, simple to express, scalable
since they involve constant per-node communication
overheads and memory, and are highly fault-tolerant due
to their stochastic nature. A sequence protocol operates
in rounds. The round duration is fixed, and is typically
at least several minutes long. We assume that all pro-
cesses can start each round at the same time. While such
coarse granularity synchronization can be provided by
the widely available Network Time Protocol (NTP), in
practice, this round synchrony assumption can be com-
pletely relaxed.

A sequence protocol has the same trajectories and
equilibrium points as the source sequence equation.
Since sequence equations are already used to model nat-
ural phenomena, our methodology allows us to design
distributed protocols that inherit many important prop-
erties such as self-stabilization and phase changes, and
to use these phenomena for building adaptive distributed
systems.

We demonstrate the practicality of this design ap-
proach by studying three new protocols generated by the
methodology. The Multiplicative protocol and the Lo-
gistic protocol use phase change behavior to detect, in a
decentralized manner, violations of certain global pred-
icates. Such a diagnostic capability is vital to building
adaptive distributed systems. The third protocol trans-
lates sequence equations for a model of coordination
among honey-bees into an adaptive Grid computing pro-
tocol. This leads to a new adaptive distributed sorting
protocol called HoneySort. Our experiments show, rather
surprisingly, that HoneySort outperforms distributed ver-
sions of Quicksort and Insertion sort.
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Related Work: Previously in [6], we translated con-
tinuous differential equations into distributed protocols.
Unfortunately, those techniques are inapplicable for
translating sequence equations as these are discrete. Fur-
ther, a sequence equation typically has more pronounced
phase change behavior than its continuous counterpart,
making it much more interesting.

Population protocols [1, 9] also involve large process
groups, but are different from ours. Differences in proto-
col performance for infinite versus finite-but-large group
sizes were studied in [7]. Methodologies in general have
been used to systematize the design process in many
fields, e.g., [2], but in distributed computing, they have
begun to emerge only recently, e.g., [8, 13]. Yet, most of
these methodologies tend to compose existing protocols,
rather than invent new protocol classes. Sequence pro-
tocols are quite different from checkpointing and virtual
synchrony protocols; the latter two may in fact be unscal-
able. Many other protocols also operate in rounds, e.g.,
[10]; to our knowledge, none of these can be generated
from sequence equations.

System Model: For simplicity of analysis, we assume
a closed group of processes, N of which are non-faulty.
They communicate over a reliable network. N is as-
sumed to be very large. Reliable communication can
be provided by TCP channels. In practice, all these as-
sumptions can be relaxed – our experiments show that
sequence protocols are resilient to massive failures and
churn failures, in finite sized groups. All processes are
also assumed to know exactly when each round begins
– as mentioned before, coarse granularity synchroniza-
tion provided by NTP suffices. This assumption can also
be relaxed by having each process start the next round
when either a local timer expires, or it sees a message
from some other process for the new round. Our Hon-
eySort protocols works without using rounds at all, and
is fully asynchronous. Finally, we assume that each pro-
cess also knows about the maximal group membership,
i.e., the other N − 1 processes. For dynamic groups, this
can be relaxed by a membership protocol at each process.

Section 2 describes the translation methodology. The
Multiplicative protocol and Logistic protocol are pre-
sented in Section 3. Section 4 details the HoneySort
paradigm. We conclude in Section 5.

2 A Methodology to Generate Se-
quence Protocols

First, we consider how to translate single-variable se-
quence equations only:

xm+1 = f(xm, xm−1, . . . xm−k) (1)

As described in Section 1, k is a constant and all xi ∈
[0, 1]. Later, we extend our techniques to equations with
multiple variables. Suppose f is written as a sum of a
finite number of elementary terms (positive or negative).

The translation works by converting (i) the equation
variable into a state variable for the protocol, and (ii) each
term in the function f into a set of protocol actions. For
the variable x, a local state variable is defined at each
process - this takes on boolean values, indicating whether
the process is in that state or not. For process p, we call
this as the “state variable x at p”. When the state variable
at process p is 1, we say that “p is in state x”; when the
state variable is 0, we say that “p is out of state x”. Thus,
the value of x in the sequence equations translates to the
fraction of processes in state x.

The core of the methodology lies in translating the
terms from function f into protocol actions. The pro-
tocol actions must ensure that if the fraction of processes
in state x, at the start of a given round, is the value xm,
and the values of these fractions at the starts of the im-
mediately previous k−1 rounds were xm−1, . . . xm−k+1

respectively, then the fraction of processes in state x
at the start of the immediately following round will be
(= xm+1) = f(xm, xm−1, . . . xm−k).

The derived sequence protocols are equivalent to the
sequence equations in the sense that for each variable xi,
the fraction of processes that are in state x varies over
time exactly as they would in the sequence equations.
Example: An example of a sequence equation that satis-
fies the above restrictions is the multiplicative map:

xm+1 = r.xm (2)

where r is a positive constant. The value of k is thus 0,
and f consists of one polynomial term. We will use this
sequence equation as a working example.

2.1 Basic Translation Methodology
The basic generated protocol is completely decentral-
ized. At each process, the boolean state variable x is
updated at the start of each round. In addition, the pro-
cess always remembers the immediately previous values
of x, i.e., at the start of the previous k rounds. Finally, the
process maintains a variable xnext that is a running esti-
mate of its state variable for the start of the next round;
xnext is continuously updated during the current round.

At start of a given round at process p, the value of the
boolean state variable is set to to xnext, and p initializes
xnext := 0. Then, process p executes two types of ac-
tions – Token Generation, followed by Token Relay and
Apply. Token generation creates a number of token mes-
sages, based on the terms in the sequence equations. To-
ken messages are then relayed to other processes through
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random walks. In turn, when p receives tokens, it applies
these tokens to xnext. At the next round start, besides up-
dating the state variable to xnext, process p also updates
its list of previous k remembered state variable values.

This generic sequence protocol is described in Fig-
ure 1. We elaborate on the two main actions below:
1. Token Generation: Each generated token can be ei-
ther positive or negative. Positive (resp. negative) tokens
are generated for each positive (resp. negative) term in f .
The goal of the token generation procedure is to have the
N processes create, in a decentralized manner, per round,
T × N positive (resp. negative) tokens for each positive
(resp. negative) term T .
2. Token Relay and Apply: When a process with
xnext == 0 receives a positive token, it consumes the to-
ken and sets xnext to 1. When a process with xnext == 1
receives a negative token, it consumes the token and sets
xnext to 0. Otherwise, the process forwards the token to a
random non-faulty target process. Thus, each token takes
a random walk until it is consumed.

Although a process has to execute token generation at
the start of the round, the relay and apply operations are
completely asynchronous across processes in the system.
Thus, no synchrony is required within the round.

Lemma 1: Consider a single-variable sequence equa-
tion. Suppose the sequence protocol is such that, per
round: (i) for each term +T (resp. −T ) on the right
hand side of the sequence equation, the number of posi-
tive (resp. negative) tokens generated is T × N , and (ii)
the round duration is long enough for all tokens gener-
ated by the algorithm of Figure 1 to be consumed. Then
Figure 1 is a protocol that has equivalent behavior to the
original single-variable sequence equation.

2.2 Token Generation
We describe below how token generation works for dif-
ferent types of terms, ignoring the positiveness or neg-
ativeness of the terms. Recall that token generation ac-
tions are decentralized and aim to create, for each term
T , T × N tokens per round, in the system.

2.2.1 Polynomial Terms
Constant term of form T = r, where r is a constant:
Each process (regardless of its state at the start of the
round) generates an average of r tokens. This is achieved
by generating �r� tokens, and then generating an extra
token with probability (r − (�r�)). These tokens are all
positive if r > 0, otherwise they are all negative. This
token generation action requires no message exchange.

Polynomial terms of form T = r.xm−j , where j ≤
k: A process checks if it was in state x at the start of j

boolean xlast; // state at start of this round
boolean xlast−1, . . . xlast−k; // states at start of last k rounds
boolean xnext; // next state - running variable

Round m:
int numtokens pos, numtokens neg, numtokens;

//number of tokens: positive, negative, net

for (i = k down to 1)
set xlast−i := xlast−i+1; // remember the last k states

set xlast := xnext;
set xnext := 0;

Use Token Generation Algorithm(f,xlast, . . . xlast−k)
to generate tokens;

let numtokens pos and numtokens neg respectively be the
number of positive and negative tokens generated locally;

set numtokens := numtokens pos − numtokens neg;
if (numtokens > 0)

set xnext := 1
at the start of next round

numtokens := numtokens − 1;

if (numtokens �= 0)
contact |numtokens| distinct non-faulty target processes,
each chosen uniformly at random from the group (retrying if
target is unresponsive);

if (numtokens > 0)
send each target process a message containing one
positive token;

else
send each target process a message containing one
negative token;

//Token Relay and Apply
while (round is not over)

if (receive message with a positive token)
if (xnext==1)

select one distinct non-faulty target process,
chosen uniformly at random from the group
(retry if target unresponsive);

send to the target process a message containing
one positive token;

else
set xnext := 1; // consume token

else// if(receive message with a negative token)
if (xnext==0)

select one distinct non-faulty target process,
chosen uniformly at random from the group

(retry if target unresponsive);
send to the target process a message containing
one negative token;

else //if(xnext==1)
set xnext := 0; // consume token

Figure 1: Sequence Protocol: A Generic Framework. This
sequence protocol is derived from a single-variable sequence equa-
tion with constant or polynomial terms. The corresponding Token
Generation Algorithm is described in Section 2.2.1. An ex-
tension of this protocol can be used for translating sequence equations
with non-polynomial terms (Section 2.2.2).
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rounds ago – if yes, it generates an average of r tokens, in
a similar manner as above. This token generation action
requires no message exchange.
Example: The multiplicative map xm+1 = r.xm can be
translated using this token generation rule. Figure 13 in
Appendix A depicts the Multiplicative protocol, an in-
stantiation of Figure 1 using the above token generation
rule. Section 3.1 will detail use of the Multiplicative pro-
tocol for detecting global predicates.

Polynomial terms of form T = r.Πi=m−k
i=m x

(ji)
i (each ji

a non-negative integer, some ji positive): This term
is a product of several variables. Token generation here
requires the process to sample the group through mes-
sages. Let i′ be the highest value of i in the term T such
that ji > 0. In the protocol, at the start of a round, a
process p first checks if it was in state x at the start of
(m − i′) rounds ago. If not, it takes no action. If yes, it
sends out (

∑i=m−k
i=m ji) − 1 sampling messages, each to

a target process chosen uniformly at random. For any
process that is non-responsive, a different random tar-
get is retried. Non-faulty target processes reply imme-
diately with the list of states they were in for the last
k rounds. Process p then checks if for all b = 1 to
(
∑i=m−k

i=m ji) − 1, the bth process that sent a reply was
in the state indicated by the bth variable occurring in the

product T/r.xi′ = x
(ji′−1)
i′ .Πi=m−k

i=i′−1 x
(ji)
i , when the in-

dividual variables of the product are arranged in lexico-
graphically decreasing order1. If this condition is true,
process p generates an average of r tokens for that round.

Ex: If T = 3.2×x2
m.x2

m−3, then i′ = m, r = 3.2, and
T/r.xi′ is written as xm.xm−3.xm−3. Each process p in
state x at the round start sends out 3 sampling messages.
If the first received reply is from a process in state x, and
the remaining two replies are from processes that were in
state x at the start of 3 rounds ago, then an average of 3.2
tokens are generated by p for this round.

Translating Sequence Equations with Multiple Vari-
ables: The above methodology can be easily gener-
alized to translate a system of sequence equations. A
system of sequence equations with l > 1 variables
{x1, x2, . . . , xl} specifies a sequence equation for each
xi(1 ≤ i ≤ l): xim+1 = fi(xjb, 1 ≤ j ≤ l,m − k ≤
b ≤ m). Further, fi is finite, k is a constant integer, and
∀j, b : xjb ∈ [0, 1]. In the derived protocol, for each i
(1 ≤ i ≤ l), each process maintains one state variable
xi (and a memory of the last k values of it). Separate
token generation actions are created from each fi and
executed at each round. The tokens generated from fi

1In fact, any arbitrary ordering of the variables would suffice.

are tagged with i so that they are applied only to state
variables xi. Note that if fi contains terms with xjb (for
some b, j �= i), then the token generation actions related
to state variable xi generalize to also involve or sample
values of state variables xj (j �= i), either locally or sam-
pled remotely.

Lemma 2: For a term T that is either constant or poly-
nomial, the actions of the above methodology generate
T × N tokens at the start of each round.

By applying Lemma 2 to an obvious extension of
Lemma 1, we have:
Theorem 1: Given a system of sequence equations with
a finite number of terms, and where all variable values
∈ [0, 1], and in which all terms T are either constant or
polynomial, the above methodology generates a protocol
that is equivalent in behavior, i.e., in trajectories as well
as equilibria.

2.2.2 Non-Polynomial Terms
First, notice that some non-polynomial terms can be
translated by approximating them with a truncated sum
of polynomials and then translating, e.g., ex 	 1 + x +
x2/2 + x3/6, and 1

1−x 	 1 + x + x2.
Below, we describe exact translation for some non-

polynomial terms. Exact translation of a term requires
each round to be split into a known number of subrounds,
and the use of subtoken messages. Just like for rounds,
each process knows when each subround starts. Subto-
kens do not affect state variables directly, but instead con-
tribute towards generation of tokens. The actions for in-
dividual terms are tied together by using the maximum
subrounds across all terms, as the number of subrounds
in the final protocol. We ignore such tying issues below,
focusing only on individual terms.

Division terms T = r/xm: Split each round into two
subrounds. In the first subround, each process p (regard-
less of its state at the round start) iteratively selects one
target process uniformly at random (which replies with
its state), until the target process is found to be in state x
at this round start. If a total of z targets were responsive,
then p generates an average r.z tokens. In the second
subround, the tokens are relayed and applied as usual. It
is easy to see that the expected number of tokens gener-
ated is N × r.1/xm, as desired.

Fractional Terms: In a sequence equation with l dis-
tinct variables x1, x2, . . . , xl, consider a canonical term

T = r.

∑i=m

i=1
bi.ai.xi∑i=m

i=1
ai.xi

, where ai’s are all positive real num-

bers, and each bi is a boolean with value either 0 or 1.
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To translate this term, two subrounds are required per
round. In the first subround at process p, for each i such
that p is in state xi, p generates an average ai subtokens.
Each subtoken carries the value of i that generated it.
Then, p multicasts these subtokens to all other processes
in the group. Notice that p receives, for each i, N ×ai.xi
subtokens carrying i. In the second subround, p selects
one subtoken at random from those received. Only if the
j value in the subtoken is such that bj is 1 (in term T ),
does process p generate an average of r tokens.

The first subround multicasting can be relaxed by hav-
ing processes spread subtokens only to their neighbors in
an overlay. A process that has received no subtokens af-
ter the first subround needs to sample other processes to
fetch subtokens.

Lemma 3: For a term T that is either a division term, or
a fractional term, the actions of the above methodology
generate T × N tokens at the start of each round.

Recursive Translation: Consider a translatable term
T , and substitute a subterm occurring in T with an arbi-
trary function g(xm, . . . , xm−k). If g has a range within
[0, 1], and g is translatable, then the resulting term T′ can
also be translated as follows. Split the round into two
subrounds. Translate g to a first subround action that gen-
erates subtokens for g (totaling N × g(xm, . . . , xm−k)),
then relays the subtokens until each process has either 0
or 1 g subtokens. The second subround uses the trans-
lated action from T , except that the actions relating to
the substituted subterm are replaced with a sampling of
the g subtokens. Ex: Since T = r/xm is translatable, so
is T = r/(x2

m).
Notice that this procedure is recursive. By combining

Lemmas 1,2,3, and Theorem 1, we have the following
theorem (which can be applied recursively):

Theorem 2: Consider a sequence equation system with
a finite number of terms, and all variable values ∈ [0, 1],
and where each term T is either: (i) constant, polyno-
mial, division, or fractional, or (ii) can be rewritten into
one of these forms by a finite set of recursive substitu-
tions, of subterms within T , with dummy variables. Then
the sequence protocol generated by the above methodol-
ogy is equivalent to the equation system, i.e., in trajecto-
ries and equilibria.

3 Using Phase Changes to Detect
Global Predicates

Equilibria and Perturbations: All trajectories of a
sequence protocol with l state variables {x1, x2, . . . , xl}
lie in [0, 1]l . Equilibrium points can be one of three types:

stable, unstable, or saddle. All points in the neighbor-
hood of a stable point (resp. unstable point) converge to-
wards it (resp. diverge from it). For a saddle point, some
points in the vicinity diverge while other points converge.

In practice, however, the behavior of the sequence
protocol is affected by perturbations that naturally arise
from imperfect sampling, imperfect random number gen-
erators, etc. Perturbations are beneficial because they
do not affect the convergence around a stable point, but
cause a system exactly at an unstable or saddle point to
eventually diverge away by moving it into the unstable
neighborhood.

Phase Changes for Global Predicate Detection: As
one varies the constants involved in the original sequence
equations, the location of equilibrium points moves. In
addition, at critical values of the constants called bifur-
cation points, the number and/or types of the equilib-
rium points may change too. Such bifurcations are called
phase changes.

The marked behavioral change at bifurcation points
allows us to use sequence protocols with phase change
behavior for detecting global triggers in a decentralized
fashion. We address two types of global predicate trig-
gers in this section:
1. Threshold Trigger: Detect when a global average
crosses a threshold value.
2. Interval Trigger: Detect when a global average
crosses outside a pre-specified interval range.
Concretely, suppose each process p proposes or main-
tains a value Rp for a parameter of interest R. We as-
sume R takes values only in a finite range. The average
threshold trigger detects the situation whether Ravg =∑

p Rp/N is above or below a pre-specified threshold
value. The average interval trigger detects whether Ravg

is inside or outside a pre-specified constant interval. Ex-
isting solutions for such global predicate triggers require
a continuous aggregate calculation algorithm, e.g., [3],
making them too expensive.

Instead, such a trigger (threshold or interval) can be
implemented more efficiently through any sequence pro-
tocol that exhibits bifurcation (i.e., for a given constant
r, respectively at a single value or at end-points of an
interval). Each process runs the sequence protocol with
a value of rp derived from Rp through a globally con-
sistent function that linearly maps the range of R into the
range of r in such a way that the required threshold (resp.
interval) maps onto the bifurcation point (resp. two bifur-
cation points).

For instance, partitioning of a peer-to-peer overlay can
be detected by triggering an alert if the average mem-
bership list size falls below a threshold. Thus Rp =size
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of membership list size at process p. Suppose the range
of Rp is [0, 10000], and we want to detect when Ravg

crosses below a value of 100. As we show below, the
Multiplicative protocol can be used to achieve this, with
each process using rp = Rp/100.

A phase change has either high sensitivity or low
sensitivity, depending on whether the system behavior
changes dramatically different or not, at the bifurcation
point. For example, a bifurcation where a stable point
becomes unstable is highly sensitive, while one where a
stable point splits into two stable points has low sensi-
tivity. The Multiplicative protocol has high sensitivity,
while the Logistic protocol has low sensitivity.

3.1 The Multiplicative Protocol
The Multiplicative protocol is derived from the multi-
plicative equation xm+1 = r.xm (r > 0), and is shown
in Figure 13 of Appendix A. Below, we first detail how
threshold detection works with this protocol. Then, we
present simulation results from an implementation.

3.1.1 Protocol Analysis and Threshold Detection
Equilibria and Phase Changes: Equilibrium occurs
when x = r.x, or x.(1 − r) = 0. When r �= 1, the only
equilibrium point is x = 0. We ignore r = 1, since all
values of x are equilibria. For stability of equilibria, we
use a well-known result from Lorenz [12]:
Lorenz’s Stability Condition: For a sequence equation
xm+1 = f(xm), an equilibrium point x = x∞ is stable
if and only if |f ′(x)|x=x∞ < 1.

For the multiplicative map, f′(x) = r for all x. If
r < 1, the system converges towards the sole stable point
x = 0. If r > 1, this point turns unstable, and the system
will diverge away from it and cap out at x = 1.
Convergence Times: For r < 1, with all N processes
initially in state x, the expected number after t rounds
is (N.rt). The expected convergence time is log1/r(N)
rounds. Similarly, for r > 1, with a single initial process
in state x, the number after t rounds is rt, which gives an
expected convergence time of logr(N).

Average Threshold Detection: Suppose each pro-
cess uses a value of rp for the Token generation actions,
where rp is derived linearly from Rp. It should be ev-
ident from the multiplicative map that replacing r with
ravg =

∑
p(rp)/N retains the same behavior. When

ravg < 1.0, the systems stabilizes with all processes out
of state x; when ravg < 1.0, the system stabilizes with
all processes in state x. This is a sensitive bifurcation.

A small control group consisting of a limited subset
of processes in the system (chosen randomly) is used to
detect the trigger. At the start of each protocol period, the
states of the processes in the control group is queried, and
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Figure 2: Multiplicative Protocol: Basic Phase change. The
value of ravg changes from 0.95 to 1.05 at t=80. N = 1000.
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Figure 3: Multiplicative Protocol: Massive Failure. Same as
Figure 2, except that 50% of the processes fail at t=100. Convergence
occurs at t=206. N = 1000.

this is extrapolated to estimate the fraction of processes
in the system that are in state x. If the fraction of control
group processes that are in state x is close to 1.0 (resp.
close to 0.0), then ravg is above (resp. below) 1.0. If the
fraction is close to neither 0.0 nor 1.0, then the protocol
needs to be run for some more time.

The Multiplicative protocol can be initiated for either
one-shot detection or continuous detection. The one-shot
mode is initiated by setting a small number of processes
(not the control group) in state x. The continuous ver-
sion periodically requires some processes (not the con-
trol group) to be forced into state x, since r < 1 could
cause the fraction in state x to reach 0.0.

3.1.2 Experimental Results

The continuous Multiplicative protocol was implemented
in C, and tested in a simulated environment, with mul-
tiple instances running synchronously (in periods) over
a simulated network, all on a single machine (1.7
Ghz Intel Celeron CPU, 256 MB RAM, WinXP Pro).
The Mersenne Twister pseudorandom generator is used.
There are N = 1000 non-faulty processes. Round length
is limited to 200 periods (each process receives and sends
tokens once per period); plots show the actual round
length.
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Figure 4: Multiplicative Protocol: Churned System. System be-
gins to churn at t=20. The value of ravg changes from 1.05 to 0.95 at
t=80. Convergence occurs at t=147. Total of N = 1000 are churned.
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Figure 5: Multiplicative Protocol: Varying r = ravg . N = 1000.

Figure 2 shows the basic effect of changing ravg . Each
process p sets rp to be in an interval of size 1 around the
chosen ravg . ravg is 0.95 from t=0 to t=80, and is 1.05
from t=80 onwards. The convergence towards x = 0 and
x = 1.0 respectively in these two regions is evident. No-
tice also that when ravg > 1.0, the actual round length
reaches the maximum 200 periods, thus not all tokens
are consumed. However, this does not not affect conver-
gence.

Figures 3 and Figure 4 show the effect of massive fail-
ure and churn respectively. Notice that the number of
nodes in the churned system is about 200. Failure of 50%
of the processes delays convergence time only slightly,
while churn has no perceivable change in the behavior
(actually speeds up convergence due to the smaller sys-
tem size). Finally, Figure 5 shows that the Multiplicative
protocol is very sensitive to ravg crossing the threshold.

3.2 The Logistic Protocol
The Logistic protocol is derived from the logistic se-
quence equation:

xm+1 = r.xm.(1 − xm), With r ≥ 0, 0 ≤ xi ≤ 1 (3)

This equation was first used by the Belgian sociolo-
gist and mathematician Pierre Francois Verhulst (1804-
1849) to model the growth of populations with limited

resources. The Logistic protocol is derived from this
equation by using the translation technique of Section 2
for polynomials terms. Informally, in this protocol, each
process p checks at the beginning of a round whether it is
in state x. If it is, a target process is selected uniformly at
random, and its state queried (this is repeated if the tar-
get does not respond). Only if the target is not in state
x, does process p generate an average r tokens for that
round. These tokens are relayed and applied in the usual
manner.

3.2.1 Protocol Analysis and Interval Detection

To find the equilibrium points of the protocol, set x =
r.x.(1 − x). This gives us either x = 0 or x = 1 − 1/r.
Notice that the origin is an equilibrium for all values of
r, while x = 1 − 1/r is an equilibrium only if r ≥ 1.

To determine the stability of these points, we apply
Lorenz’s condition. Since (r.x.(1 − x))′ = r.(1 − 2x),
we have f ′(0) = r. Thus the origin is stable for r < 1
but is unstable for r > 1. On the other hand, f′(1 −
1/r) = 2− r, making this point stable iff |2− r| < 1, or
1 < r < 3.
Average Interval Detection: As r is increased from
0, the only stable point is x = 0. As r crosses 1.0, the
origin loses its stability; instead, a new stable point is
created at x = (1 − 1/r). This is a sensitive bifurcation,
and can be used to detect when the value of r used in
the system crosses a lower threshold value of 1.0. As r
continues to increase, at a value of r = 3.0, the stable
point (1 − 1/r) ceases to exist, and is instead converted
into a cycle of stable points. In fact, it can be shown that
for all values of r > 3.0, there is a stable cycle with at
least two points [12]. For all r > 3, the two points p, q =
r+1±

√
(r−3)(r+1)

2r are such that f(p) = q and f(q) = p.
This is called a flip bifurcation 2, and it is insensitive.

Thus, the Logistic protocol can be used to detect a
global interval trigger by mapping the range of the pa-
rameter of interest R into the range of r ∈ [0, 3.5] in a
piecewise linear manner. We do not consider r > 3.5 due
to possible chaotic behavior.
Convergence Times: We analyze the convergence times
only for 0 < r < 3, ignoring r > 3 because of the 2-
cycle nature of that range. For r < 1, with N nodes
initially in state x, the expected number after t rounds is
upper-bounded by N.rt. The expected convergence time
is log1/r(N) rounds.

For r ∈ [1, 3], some values of r have closed form so-
lutions [14, 15]. For example, at r = 2, the solution is

2In fact, the logistic equation displays chaotic behavior at values
of r > 3.5, however we are unable to harness the use of this behavior
for practical purposes at this time.
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Figure 6: Logistic Protocol: Lower Interval boundary of ravg =
1.0. As ravg crosses above a value of 1.0, the system has a non-
zero stable number of nodes in state x, while below 1.0, this number
quickly drops to zero. N = 1000.
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Figure 7: Logistic Protocol: Higher Interval boundary of
ravg = 3.0. As ravg stays below a value of 3.0, the system is com-
paratively more stable than when > 3.0. N = 1000.

xm = 1−e−2n.c

2 , where c is some constant [14], giving a
convergence time of O(log(log(N)). Other r values may
take longer to converge, but this is always upper-bounded
by O(N) since xm is monotonic with m.

The Logistic protocol can also be executed in one-shot
or continuous mode. The latter variant requires periodic
forcing of a few processes into state x, and a few others
out of state x (neither overlapping with control group).

3.2.2 Experimental Results

Th experimental conditions for the continuous Logistic
protocol are the same as in Section 3.1.2. A small con-
trol group of 50 processes is used. Figure 6 and Figure 7
show the respective behavior when ravg is near the lower
and upper boundaries of the interval [1.0, 3.0]. Each pro-
cess p sets rp to be in an interval of size 1 around ravg .

While the behavior at the lower interval is prominent
(sensitive) as the stable number of processes in state x
goes between being zero and being a positive quantity,
the behavior change at the upper interval can be identified
only by the increased perturbation (see Figure 7). This is
due to the low sensitivity of this bifurcation. The protocol
is resistant to failure and churn; we exclude plots due to
space limits.

4 HoneyAdapt: A New Paradigm for
Adaptive Grid Computing

Consider a Grid Computing problem that involves pro-
cessing a large input data set. We assume a master host
that hands out data chunks to other clients (workers),
connected amongst each other through an overlay. All
chunks are assumed to be the same size. Each client gets
one chunk at a time. The clients may use one of several
alternative algorithms 1, 2, . . . , A for each chunk. How-
ever, neither master nor the clients can guess which al-
gorithm is the “best” for any given data set. This is es-
pecially true of data sets with mixed chunks, where indi-
vidual chunks may have a different “best” algorithms.

In this section, we first present a novel adaptive Grid
Computing paradigm called HoneyAdapt. HoneyAdapt
allows clients to adapt among A component algorithms
on the fly, i.e., at run time. HoneyAdapt is derived from
sequence equations that represent the behavior of honey-
bees as they attempt to select, in a decentralized manner,
the “best” nectar source(s) from among multiple avail-
able sources [4, 11].

When applied to the sorting problem (Section 4.3),
HoneySort outperforms both component sorting algo-
rithms - Quicksort and Insertion sort.

4.1 The HoneyAdapt Sequence Protocol
We describe the sequence protocol below (derived us-
ing techniques for fractional, polynomial, and recursive
translation). For clarity, the initial description also refers
to the sequence equation and the honeybee behavior.
Consider a group of clients (honeybees) trying to se-
lect the best from among A multiple algorithms (nec-
tar sources) based on individual running times for the
chunks at the clients (quality of nectar sources). At
any point of time, a given client (honeybee) is said to
be in state i if it is using algorithm i on the current
chunk (if honeybee forages nectar source i), where i ∈
{1, 2, . . . A}. Let the fraction of clients (honeybees) in
state i at start of round t be ai(t). We use a variant of the
equations in [4]:

ai (t) = ai (t − 1) . (1 − pf i) (4)

+

(
sqi.pdj .ai (t − 1)∑A
j=1 sqj.pdjaj (t − 1)

)
.

A∑
j=1

pf j.aj (t − 1)

Here,
∑A

i=1 ai(t) = 1 and all ai(0)’s are non-zero. For
each i, sqi is the quality of algorithm i (nectar source i).
Also, pfi is the following probability, and pdi is dancing
probability - both ∈ (0, 1] and are fixed. When a client
uses algorithm i on a data chunk, it calculates a quality
for i that is inversely related to the running time for that
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chunk. sqi is thus a quantity that is calculated on the fly,
and depends on the nature of the chunk and i.

During each round, each client processes only one
chunk. The algorithm choice is based on advertisements
from previous rounds; the choice is random for the first
round. Suppose client p uses algorithm i(∈ {1, 2, . . . A})
during a round. p calculates the “quality” sqi,p of i, based
on the execution time in that round; a shorter execution
time translates to a higher quality. sqi in equation (4)
is thus the average of sqi,p across all clients p using al-
gorithm i in that round. At the round’s end, p decides
to dance with dancing probability pdi. Dancing means
generation of a number of advertisement messages sup-
porting algorithm i. The number of advertisements gen-
erated is proportional to quality sqi,p in the round. These
messages are then multicasted to all other clients.

Then, with following probability pfi, p decides to fol-
low. This means p samples a random advertisement from
those received; the value of j supported therein will be
used as next round’s algorithm. If p does not to follow
(with prob. 1 − pfi), it continues to use old algorithm i.

4.2 Analysis of the HoneyAdapt Protocol
Lemma 4: If all sqi’s are unique and non-zero, all pdi’s
are equal to each other, and all pfi’s are equal to each
other, then HoneyAdapt has exactly A equilibrium points,
each corresponding to a unique i with ai(t) = 1.
Proof: ∀i, let pdi = pd and pfi = pf . Equilibrium
points occur when ∀i : ai (t) = ai (t − 1), i.e., when:

either ai(t − 1) = ai(t) = 0 or pf
sqipd =

∑
j

pfaj(t)∑
j

sqjpdaj(t)

Notice that the right hand side of the second equation
is independent of i. There cannot be any equilibrium
point with stable values ai �= 0, aj �= 0, i �= j, since
this implies sqi = sqj, a contradiction. Hence proved. �

Lemma 5: If all sqi’s are unique and non-zero, all pdi’s

are equal to each other, and all pfi’s are equal to each
other, then HoneyAdapt has only one stable equilibrium
point: here, aimax = 1, where ∀j �= imax : sqimax > sqj .
Proof: For this proof, Appendix B first extends Lorenz’s
condition to a multi-variable sequence equation. An
equilibrium is stable iff all eigenvalues of the Jacobian
matrix have absolute values < 1. Without loss of gener-
ality, let imax = A. Since aA = 1 −∑A−1

i=1 ai, we need
to consider only the (m − 1)× (m − 1) Jacobian matrix
H . This turns out to be:

Hij = 0 (i �= j) ,Hii = 1 − pf + sqi
sqA

.pf

Here, 1 ≤ i, j ≤ m − 1. The eigenvalues of the above
matrix are the diagonal elements themselves. Now, since
pf ∈ (0, 1], we have Hii ≥ sqi

sqA
.pf > 0. Recall that ∀i :

1 ≤ i < A, we have sqi < sqA. Thus, all eigenvalues
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Figure 8: HoneySort on random input. With chunk size approx.
1000 and with 6 client machines.
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Figure 9: HoneySort on pre-sorted input. With chunk size ap-
prox. 1000 and with 6 client machines.

Hii = 1 − pf.(1 − sqi
sqA

) < 1 − pf ≤ 1. Hence, all
eigenvalues (0, 1), and have absolute values < 1. �

Convergence Times: Consider a small non-null pertur-
bation from the equilibrium point aA = 1. From Lemma
5, we have that ∀i �= A:

ai (t) =
(
1 − pf

(
1 − sqi

sqA

))t
ai(0)

The convergence speed time is thus logarithmic. Notice
that the message traffic depends on parameter pd, but pd
does not affect either equilibria or convergence speed.

4.3 The HoneySort Protocol, and Experiments
HoneySort is a variant of HoneyAdapt for the distributed
sorting problem, with component algorithms of Quick-
sort and Insertion sort - other components are possible.
Initially, the master partitions the input array into approx-
imately equal sized chunks by using multiple pivots. At
the end, the master simply concatenates sorted chunks.

HoneySort (Figure 14 in Appendix C) relaxes many
of HoneyAdapt’s assumptions. HoneySort is completely
asynchronous and does not use the concept of rounds at
all. Thus, all synchronization requirements are relaxed.
When a client finishes sorting a chunk, it fetches the next
chunk immediately from the master host. In addition to
the normal following with pf , HoneySort picks a random
algorithm with randomization probability pr; this main-
tains algorithm diversity. When a chunk is done, a single
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Figure 11: Internals of HoneySort adaptivity. Randomization
probability pr = 0.2. Former half of input data is pre-sorted, the
latter half random. With 6 clients. Input array has 1 million entries,
chunk size approx. 3000 elements, and a total of 333 chunks.

advertisement message (with TTL=1) with the chunk’s
sorting quality sqi is sent into overlay (eliminating extra
messages). Advertisement sampling is modified accord-
ingly. The master host has no part in advertisements.

We have deployed HoneySort on a Linux PC cluster. A
TCP-based overlay is used (by default a complete graph).
The SortGen microbenchmark [5] is used to create in-
put arrays with 8 B integer elements. Figures 8 and 9
show running times respectively for completely random
and pre-sorted input arrays. HoneySort is as fast as the
best algorithm - Quicksort and Insertion sort respectively.

The next experiment involves dynamic arrays, which
are partly random and partly sorted. Groups of dynamic
change unit chunks within the input array are alternately
random and sorted. If dynamic change unit=20, the first
20 chunks are sorted, the next 20 randomized, the next
20 sorted, and so on. Figure 10 shows that HoneySort
outperforms both Insertion sort and Quicksort.

Figure 11 shows the internals of HoneySort’s quick
adaptation to data properties. Finally, Figure 12 shows
that reducing the client degree in the overlay (neighbors
chosen randomly) affects running times by under 35%.

Node Degree in Overlay HoneySortRunning Time (ms)

2 945183
8 790736
15 1086741
29 882870

Figure 12: Effect of Client Overlay topology on HoneySort.
With 30 clients. Input array has 1 million entries, chunk size approx.
5000 elements, thus a total of 200 chunks.

This is partly because the degree affects only pd, which
in turn does not affect protocol behavior.
5 Summary
We presented a new design methodology to translate
multi-variable sequence equations into equivalent dis-
tributed protocols with the same trajectories and equilib-
ria. Phase changes in the sequence protocols were used to
efficiently detect global triggers such as average thresh-
old (Multiplicative protocol) and average intervals (Lo-
gistic Protocol). Finally, a model of honeybee coordi-
nation was used to design HoneyAdapt, a new adaptive
Grid computing paradigm. A variant called HoneySort
is found to adapt on the fly to input data, outperforming
distributed versions of both Quicksort and Insertion sort.
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Appendix A: Multiplicative Protocol - Pseudocode

boolean xlast;// state at start of this round
boolean xnext; // next state - running variable

Round m:
int numtokens;

set xlast := xnext;
set xnext := 0;

if (xlast==1) // am in state x at the start of this round
Generate numtokens = �r� tokens;
With probability (r − (�r�)), generate an additional

token and numtokens + +;
if (total number of tokens generated > 1)

set xnext := 1;
numtokens := numtokens − 1;

else
set xnext := 0;

if (numtokens > 0)
select numtokens distinct non-faulty target processes,
each chosen uniformly at random from the group

(retry if targer unresponsive);
send each target process a message containing one
positive token;

//Token Relay and Apply
while (round is not over)

if (receive message with a positive token)
if(xnext==1);

select one distinct non-faulty target process,
chosen uniformly at random from the group

(retry if target unresponsive);
send to the target process a message containing
one positive token;

else
set xnext := 1; // consume token

Figure 13: The Multiplicative Sequence Protocol.



Appendix B: Lorenz’s Condition extended to Multi-Variable Sequence Equations

Lemma A.1(Extension of Lorenz’s stability condition to multi-variable sequence equations)
In sequence equation with multiple variables �x (t) = �H (�x (t − 1)), the stability condition at an equilibrium point

�x (∞) is that all eigenvalues of the Jacobian

⎛
⎜⎜⎝

∂H1
∂x1

∂H1
∂x2

. . .
∂H2
∂x1

∂H2
∂x2

. . .
...

...
. . .

⎞
⎟⎟⎠ at the equilibrium point should have absolute

values strictly less than 1.
Proof: The stability condition at an equilibrium point �x (∞) requires that if we introduce a small perturbation from

the equilibrium point at time t, �x (t) = �x (∞) + �δ, its next point �x (t + 1) = �H
(
�x (∞) + �δ

)
, is closer to the

equilibrium point than �x (t) is to the equilibrium point. That is, |�x (t + 1) − �x (∞) | < |�x (t) − �x (∞) | = |�δ| for an
arbitrary small �δ.

⎛
⎜⎜⎜⎜⎝

x1 (t + 1)
x2 (t + 1)

...
xm (t + 1)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

H1

(
�x (∞) + �δ

)
H2

(
�x (∞) + �δ

)
...

Hn

(
�x (∞) + �δ

)

⎞
⎟⎟⎟⎟⎟⎟⎠

	

⎛
⎜⎜⎝

H1 (�x (∞)) + ∂H1
∂x1

δ1 + . . . + ∂H1
∂xm

δn

...
Hn (�x (∞)) + ∂Hn

∂x1
δ1 + . . . + ∂Hn

∂xm
δn

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

∂H1
∂x1

∂H1
∂x2

. . .
∂H2
∂x1

∂H2
∂x2

. . .
...

...
. . .

⎞
⎟⎟⎠
⎛
⎜⎝

δ1
...

δn

⎞
⎟⎠+

⎛
⎜⎝

x1 (∞)
...

xm (∞)

⎞
⎟⎠

⇔ �x (t + 1) − �x (∞) =

⎛
⎜⎜⎝

∂H1
∂x1

∂H1
∂x2

. . .
∂H2
∂x1

∂H2
∂x2

. . .
...

...
. . .

⎞
⎟⎟⎠
⎛
⎜⎝

δ1
...

δn

⎞
⎟⎠ (5)

By the stability requirement, ∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

∂H1
∂x1

∂H1
∂x2

. . .
∂H2
∂x1

∂H2
∂x2

. . .
...

...
. . .

⎞
⎟⎟⎠
⎛
⎜⎝

δ1
...

δn

⎞
⎟⎠
∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣
⎛
⎜⎝

δ1
...

δn

⎞
⎟⎠
∣∣∣∣∣∣∣

Suppose the Jacobian has eigenvalues λ1, λ2, . . . , λm and corresponding eigenvectors V1, V2, . . . , Vm. Suppose
�δ = c1.V1 + c2.V2 + . . . + cm.Vm, where all ci’s are constants. The above inequality can then be shown to reduce
to :

m∑
i=1

c2
i (1 − λ2

i ) > 0

Now, notice that if ∀i, |λi| < 1, then the above inequality is true. For the contrapositive, if there is some j : |λj | ≥
1, then choosing �δ such that cj > 0 and ∀i �= j : ci = 0, violates the above inequality. Hence proved. �



Appendix C: HoneySort Protocol - Pseudocode

// The process in the master machine
Master() :

sortingkey data[], ∗(chunks[]);

Establish a data transfer overlay to all clients

//To ensure no further processing is needed
// after each chunk is sorted by clients,
// partition the data into chunks of nearly equal size,
// where data is left unordered within a chunk, but ordered across chunks,
// using Sample sort technique.
chunks[] := pivot sample(data);

// Receive sorted data and send new data on-demand
while (not all chunks[] are done)

if (receive sorted chunk from client i)
send next chunk to client i;

// The process in a client machine
Client() :

sortingkey chunk[];
int sorting algorithm;
double pd, pf , pr;
message advertisement;

Connect to master for data transfer and instruction
Join client overlay

// Initialize values according to the master’s instruction
set sorting algorithm := the initial sorting algorithm;
set pd := probability to dance/advertise algorithm;
set pf := probability to follow/choose other algorithm;
set pr := probability to randomly select algorithm;

while (chunk[] = receive data())
sort chunk[] with sorting algorithm;
send back chunk[] to master;
if (with probability pd)

set advertisement := {sorting algorithm, its speed};
send advertisement to client overlay neighbors;

if (with probability pr)
set sorting algorithm := randomly picked algorithm;

else
if (with probability pf )

gather all advertisement from peers;
for each sorting algorithm, evaluate its score as sum of all its speed;
set sorting algorithm :=

pick algorithm with probability proportional to its score;
else

; // use the same sorting algorithm for the next round

Figure 14: The HoneySort Protocol.


