Numerical study of drop behavior in a pore space
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ABSTRACT

Deformation and breakup of a liquid drop immerseadmother immiscible liquid and flowing throughiagle pore
has been studied numerically using a conservathasg-field lattice Boltzmann method. Several berashm were
conducted to validate the code, including the recpwf Laplace pressure, the layered flow of twaniscible liquids,
and the implementation of wetting boundary cond#ion a curved surface. Gravity-driven motion dfap through the
pore space was qualitatively compared to the availexperimental results. Quantitative assessnfeheqressure field
across the interface of the moving and deformirapdras performed. Our results show that high Welenber due to
low surface tension and low Reynolds number dueviovelocity of the continuous liquid promote drbpeakage. More
viscous drops break easier than less viscous dpspresent the phase charts (Weber vs capillamben) and the
critical conditions (Weber as a function of Reyrsoidimber) of drop breakage.

Keywords: Pore space; Liquid-liquid dispersion; Drop breakBpase-field method
Highlights:

e The phase-field method to simulate liquid-liqguigtems is verified and validated.
e The behavior of a single drop moving through aeEpace is studied numerically.
el ow velocity of the continuous liquid promote drbpeakage.

e More viscous drops break easier than less visdmyss.

e Drop behavior is presented Bve vs Ca andWe vs Re graphs.
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1 Introduction

Multiphase flow in porous media is ubiquitous irtura and engineering (Adler and Brenner, 1988; l3a2618):
some examples include groundwater flow and flovg@othermal engineering, drainage, and irrigatiomagnicultural
engineering, the flow of oil, water and gas inreervoirs, flow in reactors in chemical enginegrifiow in fuel cells,
filters and membranes (Telmadarreie et al., 201@t kal., 2018; Perazzo et al., 2018; Kim et 802, Lee et al., 2020).
In such systems, two key phenomena occur at theostopic or pore-scale that affect the macroscbplavior of the
system: 1) motion of deformable interface betwémnfluids (e.g. gas-liquid dispersion or liquiddid emulsion); and 2)
interaction of this interface with the surroundisglid phase (contact line motion). A thorough ustamding of
pore-scale phenomena is crucial to make well-guitkgisions on entire system control and efficiqueration. For that
reason, numerous experimental and numerical stdd@ss on the investigation of multiphase flow insimplified
porous medium and single pore.

Single drops motion in idealized pore geomstviere studied experimentally and numerically. pbee geometries
range from wavy-wall capillary tubes to single porfermed by spherical solid particles. The commoal dor the

majority of these studies is to identify the effe€the geometry on drop motion and breakup. Olitramd Leal (1983)



experimentally studied the creeping flow of an ireaittle Newtonian drop through a horizontal circuialoe with a

periodically varying diameter in the axial directiGwavy-wall tube). The contribution of the droptt® local pressure

gradient and the velocity of the drop relativehe aiverage two-phase velocity were measured andctiveelated to the

time-dependent change of the drop shape. Drop bpeaks also observed and analyzed primarily quiaigty.

The buoyancy-driven motion of viscous drops and lg#sbles in a vertical periodically constricted ilapy was

studied experimentally by Hemmat and Borhan (1986xamine the role of capillary geometry on drafodmation

and breakup. The authors reported the measurerottiie average rise velocity of drops and theimpsisafor a wide

range of governing parameters and outlined mechenig drop breakup.

Olgac et al. (2006) performed a numerical studpwiyancy-driven viscous drops though sinusoidatigstricted

capillaries using a finite-volume/front-tracking thed. After validation of the method by comparistm the

experimental results of Hemmat and Borhan (19989, duthors studied the effects of the drop size, dhannel

geometry, and Bond number on the motion and breakupscous drops in constricted capillaries. Diffiet breakup

mechanisms were examined and analyzed quantitativel

The behavior of a non-wetting drop flowing througypore formed by two spherical solid particles waserically

studied by Hellou and Vo (2015) using a volumeloidf method. The authors described the deformati@tess of the

viscous drop in viscous fluid that was quiescentnoaving with uniform velocity in the direction ofrayity. A

comparison to experimental analysis was perforredhtidate the method. Drop breakup conditions velrned as a

function of the size of the constriction.

A review on motion of deformable non-wetting liquitlops flowing through well-defined porous mediazato

Reynolds number was published by Zinchenko and ©&017). The authors considered theoretical soiatiand

rigorous hydrodynamical simulations for both ponel éarge scale.



Ansari et al. (2018, 2019) conducted an experimesttaly of liquid-liquid flow through a pore to dimine the

pressure field by analysis of the velocity fieldlashape of the drop obtained by the micro parsbledow velocimetry

(U-PSV).

Patel et al. (2019) numerically studied the dynanoita bubble rising in a vertical sinusoidal wahannel using a

dual grid level set method coupled with a finitdwne-based discretization of the Navier-Stokes tgus. Bubble

deformation and breakup was correlated to a Regnuldnber, Bond number, and the amplitude of thambélavall.

The flow of dispersed drops and bubbles also fingleerous applications in microfluidic devices withnstrictions

and contractions. For instance, as discussed bggZbeal. (2020), microfluidic channels with coittons provide an

effective and reliable way to manipulate fluid jpelets especially in areas such as biology andadindiagnostics.

A review of bubbles and drops flowing in differentcrofluidic geometrical elements was given by Gémal et al.

(2020). Jenseret al. (2004) and Chio et al. (2006) studied thaagyics of gas bubbles moving in liquid-filled

microchannels with contractions. Flow patterns dridtional pressure drop in a microchannel witheatgating

expansions and constrictions were experimentallgstigated by Chai et al. (2015) for gas-liquidteyss.

To the best of our knowledge, there is a limitechbar of published experimental and numerical stithat report

on the behavior of liquid drops moving in anothamiiscible liquid through contracted microchannelsnicrochannels

with constrictions.

A numerical parametric study of drop deformatiorotlgh a microfluidic contraction was studied by Haret al.

(2005) using a transient volume of fluid finite wole algorithm. The authors covered the parametages

representative of micro-sized liquid-liquid systeriihe effects of the Reynolds number, interfactlston, and the

dispersed to continuous phase viscosity ratio endigformation of the drop passing an axisymmetittraction were

reported. The phase charts (capillary number ametibn of Weber number at different Ohnesorge rensjbof drop



deformation and breakup were presented. Laterttitty svas extended to cover low viscosity Newtordaops (Harvie

et al., 2006).

Mulligan et al. (2011) studied the effect of comfinent-induced shear on drop deformation and breakup

microfluidic extensional flows. The behavior of i#ized water drops in oil was considered experialgn Conditions

to produce drops after breakage much smaller theuparent drop were outlined.

Chung et al.(2008) performed a numerical study be eéffect of viscoelasticity on the drop in a plana

contraction/expansion microchannel using a finiearent front tracking method with the goal to pre@dhe strategy to

control the drop shape.

Izbassarov and Muradoglu (2016) computationallylistl two-phase viscoelastic systems in a pressive-tlow

in an axisymmetric channel with a sudden contraciad expansion using a finite-difference/frontkiag method.

Drop dynamics were examined in a wide range of gomg parameters.

Zheng et al. (2020) carried out numerical simulai@f bubbles and drops flowing in a rectangulanctel with

obstruction focusing on the disruption of the walkevnstream of the obstruction by the fluid partiated the trajectory

of that particle.

As can be seen from the literature review abovestnod the available numerical studies are perforrimethe

axisymmetric formulation. Three-dimensional transisimulations of liquid-liquid systems in pore gestry with

curved boundaries are still missing and should bdopmed as a necessary validation step towardselimgd of

multiphase flow in realistic porous media.

In this work, we numerically study the time-depemtdmotion of Newtonian liquid drops flowing throughsingle

pore in a three-dimensional microchannel in thetinooous flow of another immiscible Newtonian liquidur main goal

is to outline the conditions of drop breakup whepasses through a pore throat. When the drop bresaitellite and

sub-satellite drops with a size significantly sraathan the mother drop size can be generatedsdtoe processes, for



instance, when it is eventually necessary to sépdin@ immiscible liquids or when the drop sizeribsition should be
monodisperse, the production of small fragmentsighbly undesirable. A map that indicates the coodg when drop
breakage occurs is necessary to better contra@ytstem of two immiscible liquids flowing throughnpas media.

We use a phase-field lattice Boltzmann method tdopm the simulations. To verify and validate oummerical
code, we performed a series of benchmark casemzegcof the Laplace pressure of a spherical dituplayered flow of
two immiscible liquids with different viscositiesgcovery of the contact angle at a curved surftee gravity-driven
motion of a drop in ambient liquid in a channeldahe gravity-driven drop motion in ambient liquittough a pore
space. Then the code was applied to investigatetie subject of this study.

The rest of the paper is organized as follows:i8e@ contains the governing equations, the nuraknethod to solve
the equations, and the wetting boundary conditsmieme. The validation of the numerical methodhéss in Section 3.

Results and discussion are given in Section 4lligjrihe conclusions are presented in Section 5.

2 Mathematical Mod€

Governing Equations

A conservative phase-field model proposed by Milatteal. (2018) is used in this study to simultte flow of two
immiscible liquids. The phase-field model correq®rio a class of diffuse interface approaches wiiseesharp
interface between the liquids is replaced by a smoegion of finite width where fluid propertiesryacontinuously, but
rapidly. An order parameter, i.e., the phase-figlddescribes the phase transition: its values anstaat in the bulk
phases and vary smoothly across the interface medgiqphase-field equation that describes the eiaiudf ¢ in the
entire computational domain is derived based omibdynamically consistent theories. The phase-fietdiel does not
require any explicit procedures to track the change the topology of the interface. This reducesgpamming
complexity and decreases computational time reladetie explicit reconstruction of the interfaceimsharp interface

methods. Any topological changes of the interfaeeh@ndled naturally due to thermodynamic mechamiswolved. In
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this study, we use the conservative phase-fieldainptbposed by Chiu and Lin (2011) based on thekwadrSun and

Beckermann (2007).

A system of coupled equations which are the coitginilNavier-Stokes, and phase-field equation gosettme

dynamics of a two-phase system of incompressibieigtible fluids:

V-u=0 @
P (?TI:+ u- vu) =-Vp+ V- (u[Vu+ (Vw)™) +F @
L4V (pu) = V- M(VP - 00y, v

whereu is the macroscopic velocity,is the densityt is the timep is the pressurédl is the mobility; £ is the interface

thickness, anch = %= is the unit vector normal to the interface. Theage-field¢ takes two extreme values in the

bulk phasesipy and ¢, representing the heavy and light phases, respéctiThe value of¢ at the interface is given
by:
o = (¢u + ¢L)/2 (4)
In this work, we seipy = 1 for the heavy phase anfl, = 0 for the light phase, which give$,=0.5.
A simple linear interpolation is employed to caltel the local densify from the phase field,
p=p.+dpu — pL) (5)
where p;, and py are the densities of the light and heavy phaspedively.
The volumetric forcing term in Eq. (2) is defineslFe= Fp+ F, where Fy, = pg (g is the gravitational acceleration)
andFgare the body and surface tension forces, respéctiviee surface tensioRgis defined as
Fs=pupVe (6)
with the chemical potentigk, being defined as (Zu and He, 2013):
1o = 150 HEZE2 — ryzg) )

3

where o is the surface tension.



Lattice Boltzmann Formulation

The governing macroscopic equations (1)-(3) welgesousing the lattice Boltzmann method in the folation
proposed by Mitchell et al. (2018). Two particlepptations are necessary to solve the systériw, t) is used to solve
the continuity and the momentum equations, andséwend functiong, (x,t) is used to solve the phase-field equation.
These particle populations represent the densifigtitfous particles with discrete velocitg, at the positiorx and timet.
The discrete velocitye, together with the corresponding weighting coeéfits w, form the velocity sef(e,, w,). For
the f population, we use a D3Q27 set which indicates tthe number of spatial dimensions is D=3 and thlecity set
involves Q=27 velocity directions£0:26). The D3Q15 set is used for thgopulation. The lattice velocities, and

weights w, used in this work are given in Appendix A.

The lattice Boltzmann equations discretized invlecity space, physical space and time are gigdolbbws:

folx + €aBt,t + 6) = fo(x,£) = (MT1SM) o [f3(x,8) = Fy (0, 0)] + Fo(x,0) (8)
xt)-g° (x
Jo(x + e,0t,t + 6t) = go(x,t) —%+Fa¢(x, t) 9

These equations state that the particle populatiomege with the velocitye, to the neighboring sites + e, 6t at the
next time stept + 6t (streaming). The collision of particles on a giv@te is governed by the collision operator (second
term on the right-hand side of equations (8) andl \{hich redistributes particles among the popatai A weighted
multiple-relaxation-time (WMRT) collision operat@ used for thé population since it improves the isotropy, deoesas
the spurious velocity, and increases the model racgu (Fakhari et al., 2017a). A single-relaxationet
Bhatnagar-Gross-Krook (BGK) (Bhatnagar et al., J3®flision operator is used for tlggoopulation. The physical mesh
step 6x and the time ste@t denote a space and time resolution in latticesumftich is an artificial set of units scaled
such thatsx = 1 and 6t = 1, and ¢ = 6x /4t is the lattice speed. To convert lattice units fohysical space in Sl units

we will match the governing dimensionless numbers.



The rest of the quantities in equations (8) anda(@)defined as follows. The shifted equilibriunpplation due to forcing

fo =f-1F, (10)

with the equilibrium population

e

. u)? .
[T = walp’ + O+~ 1)) (11)

c 2cd

where p* = p/pc? is the normalized pressure with is the speed of sound in this systemp,= c//3.
The equilibrium distributionyiq is also shifted including the forcing term as
90 (x0) = gi' =R} (12)
where
eq | (equ)?

>+

a
c2 2cg

9" = pwg (L + ) (13)

In Eq. (8),M is the WMRT transformation matrix given in Appexdl; and S is the diagonal relaxation matrix which is

given as
S = diag(1,1,1,1,5,, Sy, Sy, Sp» Sp» 1, ..., 1) (14)

where s, = (t + 0.5)7! is the relaxation parameter related to the hydnadyic relaxation timer. The relaxation time
could be calculated by many forms of interpolati¢Rakhari et al., 2017b). In this study,is calculated by a simple

linear interpolation

T=7,+ ¢ty — 1) (15)

where ty; and t; are the bulk relaxation times in the heavy anttliiuids, respectively. The dynamic viscosity is

represented as



u=pv = prci (16)

where v is the kinematic viscosity.

For theg population, 7y = M/c? is the relaxation time of the phase-field model.

The hydrodynamic forcing ternfi, (x, t) in Eq. (8) is calculated as

Fo(x,0) = w27 (17)
where the total force term is
F=F,+F,+F,+F, (18)
The pressure forc#, is determined by (Fakhari et al., 2017b)
Fy=—pci(py — p )V (19)
and the viscous forc#, is (Fakhari et al., 2017b)
F, =v(py — p)[Vu+ (Vu)'] - Vg (20)

where the derivative of velocity is recovered friva second moment of the hydrodynamic distributiorction as
(pH—PL) “1@8
Fui = =" e 00, (M7SM), (s — f5)] 0,9 (21)

where indexa and 8 represent therth and Sth direction for the lattice structure and indeand]j represent the index

Cartesian coordinates directiang, z. Einstein summation convention is applied in 24.)(
The forcing term in Eq. (9) is given as

FP(x,t) = &@waea ‘n (22)

The particle distribution functions are definedtsticat the following summations over all directiosmsat a single lattice
point, give the local normalized pressure, loaagitifivelocity and local phase-field parameter, retpely:
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p*= Z fa (23)

F
u=2faea+5 (24)

¢ = Za P (25)
where u needs to be updated after the pressure.
The gradients and Laplacian of the phase-fieldadei¢p are determined using all the neighboring nodethéyesults

of the conservative LBE for solving the continugguation and the phase-field which will be introglidn the next

section and are given as (Mitchell et al., 2018)

Vo = CSZZ ~ Y520 €aa (X + €40t 1) (26)
2
Vi = 5 Lado wal (X + eqt,£) = $(x, )] (27)

Wetting Boundary Conditions

In this study, a single pore throat is represetgdwo curved (cylindrical) surfaces. To investgahe drop
behavior as it passes through the pore and ingevéttt the wall, we need to define the three-plwaseact angle on
flat and curved boundaries. To obtain a specifisotact angle at a solid wall, the boundary condifiwoposed by

Jacgmin (2000) is used here:

n,  Voly, = 0, (1 - ¢y) (28)
where i, is the unit vector outward normal to the wapl,, is the value of the phase-field parameter at tltid w/all and
0 is a term related to the equilibrium contact arléhich is given by:

0= —\/2;6 cos6 (29)
where coefficientss and « are related to the interfacial thickneSsand the surface tensian by ¢ = 120/¢ and

Kk = 30¢&/2 (Fakhari et al., 2017b).
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Fig. 1. Wetting boundary conditions at a curvedratary when the slope’s magnitude of the vector abtmthe
boundary is (a) greater than o less than one (adapted from (Fakhari and BoIRGL7)).
To impose the wetting boundary conditions on ved wall, we need to apply Eg. (28) and calculagevalue ofg,,
at the wall. We used unidirectional interpolatidnscalculate the unknown value of the phase-fidddameter at the
boundary noded; ;x), represented by a black point in Fig. 1. If thepe’s magnitude of the vector normal to the
boundary is greater than one, as shown in Fig, iifah a linear interpolation is conducted in ykdirection; otherwise,
the interpolation is conducted in teelirection as shown in Fig. 1(b), to obtain thg value at poinp with green color.

Finally, the value of¢; ;, is calculated as (Fakhari and Bolster, 2017):

s+h

bijk =5 (1+a— /(A +a)? - 4ap,) —%¢p, a=ho+0(6+90) (30)

where s = |xW - xi,j_k| is the distance between the solid wall and thexbaty node.

3 Model Validation
Laplace pressure

In this benchmark case, we assess the ability @fmkthod to accurately recover the pressure chaogss the
interface of the spherical drop. The pressure chaag be described by the Laplace law:

12



where Ap is the pressure difference amndis the radius of the drop. A series of simulatiorese performed to validate
the pressure difference over the interface foreddiit drop radii and values of surface tension. 3ihaulations were
performed in a fully-periodic cubic domain with adge length of 64 lattice units (lu). The interfdlsieknessé was set

to 6 lu. Drop and the surrounding liquid had matghdensity and viscosity. The drop was placed atcénter of the
domain and let to equilibrate. The maximum spurivelecities in these simulations are at the ordetGF, so we can
ignore their effects. The pressure drop estimagatguEq. (31) and predicted numerically for drogiira (10, 16, and 20
lu) and surface tensian(0.01, 0.02, and 0.04 lu) are shown in Fig. 2. itaimum deviation between the numerical and

analytical results is less than 3%.

x10°

X Simulations

8 Analytical solution, o = 0.01 lu >
Analytical solution, # =0.02 lu

7F Analytical solution, o =0.04 lu

6F

5 X

AP (lu)

0 0.01 0.02 0.03 004 005 0.06 007 0.08 009 01
1/r (lu)

Fig. 2. The pressure change across the interfatteeafrop Ap for different drop radii and values of surfacesien
Layered Flow of Immiscible Fluids
The layered flow of two immiscible liquids was set to test the capability of the method to hamitd viscosity
ratios between the liquids (Komrakova et al., 20T5 flow was simulated in a pseudo-2D simulatiomain of 3x3x40
lu, where 40 lu is the distance between two soldlavLiquid 1 occupies the lower half of the chahthiquid 2 the upper
half. The no-slip bounce-back boundary conditioresenvapplied at the top and bottom walls, and p&@doundary
conditions for the rest of the boundaries. We appk body force of 10lu in the entire domain to create a pressure

gradient in the flow direction. The viscosity ratiweren = (u,/u,) =1, 10, 100 and 1000.
13



The analytical solution for the velocity in the anal as a function of the wall nhormal coordinZtevas calculated

from the Navier-Stokes equation (Schulz et al. 2201

— 2
_dp [LZZ hpa—p1) h ] —h<z<0 (32)
dy Lzpq 2pq (Hy+u2) u1tuz
— 2
_ 9 [LZZ h(pa—p) h ] 0<z<h (33)
dy L2p, 2 (Hy+H2) u1tuz

where di is the pressure gradient) & the channel heighy,is the direction of the flow angi; and u, are the dynamic

dy
viscosities of the liquids that have the same dgKsi=p,=1.0 lu).

The comparison between the analytical and simulagedlts is shown in Fig. 3. The velocity profilebtained
numerically coincide with the analytical solutidrhe maximum deviation between the numerical andiyioal results is

less than 1%. This demonstrates that the methodbearsed to simulate the flow of liquids with thiscesity ratio up to

1000. The L2 convergence analysig=at00 is shown in Appendix C.
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Fig. 3. Velocity profiles in two-phase layered flavith different viscosity ratio.
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Contact angle

Since the interaction of the contact line with solid surface of the pore plays an importal in drop behavior, it
is necessary to make sure that the wetting boundamgitions at the curved surface are implementadectly. The
following benchmark was considered: a drop wasqulamn a cylinder and let to equilibrate. The sirtiofadomain was a
40x90%60 box. The no-slip simple halfway bouncekbaall conditions were employed for curved wallsldahe top and
bottom faces in the-direction, and periodic boundary conditions fog tiest of the boundaries. The radius of the drpp (
was 16 lu and the radius of the cylindBs)(was 50 lu. The interface thickness was 6 lu. ifiit@al state of the system in
thex=20 lu plane is shown in Fig. 4(a). The specifiad aimulated static contact angles between the andpthe curved

wall are shown in Fig. 4(b). The simulated angigiea well with the specified angles because maxirdawation is less

than 2%.

- Specified angles
160 X Simulated results

Specified #

0 20 40 60 80 100 120 140 160 180
Simulated ¢

(a) (b)
Fig. 4 (a) Schematic of the contact angle betwediop and a curved wall in the20 lu plane (b) Simulated and
specified contact angles

Mesh resolution
Mesh sensitivity analyses were performed usibgrachmark of gravity-driven drop motion in ambisatrounding
liquid in a channel. For drop diamet&s24, 32, and 40 lu, the terminal velocity was peegti. The simulation domain is

shown in Fig. 5(a). The density ratio between dispe and continuous liquids wagp.=1.5 and the liquids had matching

15



viscosities. The interface thickneg} {as 6 lu and the surface tensiefi Was 0.01 lu. Periodic boundary conditions were
employed for the top and bottom faces and the ipobslunce-back wall conditions for the rest of Hmndaries. In Fig.
5(b), we present the non-dimensional drop veloa#ya function of time for different drop diametersne and velocity
are non-dimensionalized as= t/\/D—/g and u = u/\/g_D, respectively. The gravitational acceleration & %0
-2.37x10°, -1.0x10™and -5.12x18 in lu to achieve the same Reynold numberfeR4, 32, and 40 lu, respectively. As
we can see from Fig. 5(b), the drop velocity pesfilalmost overlap when the drop diameter is latigen 32 lu. It

indicates that representing a drop diameter withu32 sufficient resolution.

0.025 T 7
t
D
0.020 - i
0.015 B
I3
3.75D
0.010 - B
——D=241u
D=321u
0.005 - ——D=40Iu b
/25D 0 . . |
0 0.25 0.50 0.75 1.00
1.875D —_
(a) (b)

Fig. 5 (a) Simulation settings for the dense drothe continuous phase (b) Non-dimensional dropcigi as a function
of time for three mesh resolutions

4 Results and discussion

The results are presented in two parts. First, evsider a drop falling through a pore due to gyawitthe ambient
continuous liquid phase and compare our resultise@xperimental data of Ansari et al. (2018, 20T8)s comparison is
done for the purpose of qualitatively validating moodel. In addition, we verify the prediction dfet pressure change
across the drop interface as it passes throughattee In the second part, we present the resutisopf breakup in the pore

space when the carrier (surrounding) liquid isantmuous flow. The influence of governing dimemé&ss numbers (the

16



Weber number, the Reynolds number, and the viscoaiio) on drop deformation and breakup is ingzdtd. A chart
outlining the conditions for drop breakup is prasdrat the end.
4.1 A drop falling through a single pore space wugravity

Ansari et al. (2018, 2019) carried out an experiaestudy of a Glycerol drop falling in ambient @éan oil
through a pore using micro particle shadow velotiyngu-PSV). The simulation is set up to replictite experiment in
a domain of 40x60x180 lu. The droplet diamddeis 32 lu. The simulated system matches experitgrthe E6tvos
number Eo = % = 0.267) and Morton numberMo = “"A’;# = 254 wherev, andp. are the kinematic viscosity
and density of continuous phase, respectively). fikasured velocity of the drop was of the ordet®f m/s and it
took more than 160 seconds for the drop to passghr the pore space. If we match experimental tiondi and
replicate their results using our explicit schertie, time step needs to be 1.04%1€ It will require approximately
15,000,000 time steps which is equivalent to 38,B00rs of calculation time to complete the simualatby 15 cores
(2.5 GHz). To accelerate the process, we incretmedody force that represents the effect of gyawta factor of six
and qualitatively compared our results with theidings. The three-phase contact angle at the dumadl is set to 180°,
and we use the static contact angle which we infred in Section 2 to handle this problérhe comparison of the drop
shape at different time instances is shown in Eigverall, the results are in good agreement. Mimviation in drop
shape can be due to several reasons. The compiéxtig analysis of experimental data to recovepdihape (see the
original works of Ansari et al. (2019)) affects teop shape. The properties of the liquids (vidgpsiensity, and
interfacial tension) were not measured in the d@rpamtal study for the considered liquids and wexkeh from
reference data. As a result, there might be atstiiftrepancy between the experimental settingsoandettings that

were based on the reference values of liquid ptigser
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Ry = 0.8 mm Ry=0.79 mm Rp=0.63 mm Rp=0.38 mm

S

DR BT

R;= 0.8 mm R;= 0.48 mm R;=0.55 mm R;=0.76 mm

(b)

Fig. 6. (a) Experimental and (b) numerical resoftgravity-driven motion of a drop through the pepaceR; andR_
denote radii of trailing and leading ends of thepdirespectively

To verify our method quantitatively, we performdthslations of a similar problem with the goal toeck the

capability of the method to predict the pressusdrithiution inside the deforming drop and correliateith the drop

shape. The flow configuration is shown in Fig. ®drap moves along with the continuous phase thrdhgtpore. The

dimensions of the channel are 40x120x270 lu andligm@eter of the cylindrical obstruction on the @ D;=50 lu.

The density and viscosity of the drop match theesponding properties of the continuous phaset.O lu,u= 1/3 lu.

The droplet diameter is 32 lu, the interface thedaiis 6 lu and the surface tensioa=6.12 lu. The periodic boundary

conditions are set at the top and bottom faceb@fibmain and the no-slip boundary conditions atdas the rest of

the boundaries. The three-phase contact angle autived wall is set to 180°, meaning the dropis-wetting.
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The simulation run was performed as follows. Fitts, drop of diametdd=32 lu was injected upstream the pore area
and let to equilibrate during 1200 time steps. €heas no body force applied at this stage. The &qailibrium shape of
the drop was used as an initial condition for theosd stage of the simulations when a body forcegef210°lu in
z-direction was applied to the entire domain. Dutimg run, the radii of the leading and the trailemgls of the drop were
measured using a curve-fitting procedure. The Bethinotation are shown in Fig. 8. The droplefate was identified at
¢=0.5. A Matlab code for curve fitting procedure warstten to measure the radii of the leading amdlitg faces in the

x=20 lu andy=60 lu planes.

inlet
drop
g 4
curved wall
o 8 /-
™
o
o =
N O i
Q
120
zZ
A
J
X~ 7 outlet
(a) (b)

Fig. 7. (a) 3D Computational domain 40x120x27().Cross-section of the domainxa20 plane, dimensions in lu.

Fig. 8. The notation to determine the radii of ldreding and the trailing ends of the drop in (\ejt) and (x-z) (right)

plane
19



Once the body force is turned on, the drop stacgéimy and deforming downstream the channel (FigA®)t=13.0,

the drop approaches the upper part of the pore.léiduing end of the drop is squeezed. The centarast of the drop

reaches the center of the poretafl7.4. The drop is stretched in the z-directiord #re leading and trailing ends are

almost symmetrical. The drop leaves the pore d@réa 21.8. Due to the expansion of the flow afterpbee, the velocity

of the leading end is significantly smaller thaa tlelocity of the trailing end. This explains tHenge in the drop shape:

the drop is squeezed in thelirection. Finally, the drop restores the sphéistape and moves down the channel.

1.1e-02
0.01

0.008
0.006
0.004
0.002

velocity Magnitude

0.0e+00

Fig. 9. A drop passing through a pore waist inh20 lu plane
The main purpose of this verification case is &eas the correctness of the pressure field obtaimexerically in case

of drop motion within a complex geometry in thegenece of the body force.

The estimated pressure difference between thenlgaatid trailing ends of the drop due to the surfaosion is given

by:

1 1 1 1
APesi 17 = APpgy_| —APpgy_r =0 (_ + _) —0(—+-—) (34)

Rp1 Rp2 Rr1 Rtz
The pressure difference between the leading 2Rg;(,_,) and trailing end-€AP,z),_r) due to the surface tension can

also be calculated by the pressure fields in thislldBnulations minus the effects of the velocitydeandF, as follows:

ouy 0°uy

2
APppy— = Psg) —Pu-p — 2§ {—P? tu——+ sz} (35a)
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duy d%u,
APppy-r = Per-g) = Py o + 2 {—pg tu——+ sz} (35b)
AI:)LBIVI—LT:AIDLBIVI—L - APLBIVI—T (350)

where P, sy and P _; (See Fig. 8) are the pressure inside and outbieldeding end of the drop, respectively;
Pr-¢ and Py 5 (See Fig. 8) are the pressure inside and outiseltrdiling face, respectively.

As shown in Fig. 10, the pressure differences betvibe leading and trailing ends of the drop edtchasing Eq.
(34) and predicted numerically are in good agreémirs means that the variations in the velocitg pressure fields

reflect on the shape of the droprrectly.

%107

0 1‘0 2:0 3‘O 40
t
Fig. 10. The pressure difference between the Igaai trailing ends of the drop as it passes thralg pore 4P.¢; .+
and AP,z .+ referto Eq.(34) and Eq.(35c), respectively)
4.2 Drop breakup in the pore space
We used the same pore geometry as depicted in7Rig.study the conditions of drop breakup. In abes, the
continuous phase was moving downward in the z-tlineavith the average velocity in the270 Ilu plane denoted as
Uavg- This motion was created by applying a constamlybforce to the entire domain. For each case, tidedg-state
velocity field of a single-phase flow was obtairfedt. As an example, a velocity field in crossts@ty=60 for Re=0.26

is shown in Fig. 11(a). The average velocity imigint sections of the channel (away from the ppaes) is 0.0029 lu,
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and the maximum velocity at the pore throat is #.08 Such velocity fields were used as an initiahdition for further

two-phase flow simulations.

Mm \“\ l
|’ "‘ |

3.50-02 6.0e-03
003 el
2 2
c 0004 €
002 % 2
= s
001 B - 0.002 %
o) o)
¢ °
0.0e+00 0.0e+00~

H&j

“Wm

(b)
Fig. 11. (a) Velocity field of the single-phasevilin x=20 lu plane (b) velocity field at the inlet==70 lu plane)

The rest of the simulation parameters are as felldve densities of the drop and the continuousehee the same:
p=1.0 lu. The contact angle was set to 180°, tiekitless of the interface was 6 lu, the mobiMy0.2 (Mitchell et al.,
2018).

Three forces define the behavior of the drop motiomface tension, inertial, and viscous forces fidlowing set of
dimensionless numbers can be used to describecliwive effect of these forces: the Reynolds nuniee(inertial vs
viscous force), Weber numb®¥e (inertial vs surface tension force), the capillagmberCa (viscous to surface tension
force), and the viscosity ratip

PclUavgRn pcugngh UcUayg Hd

Re=——— We=——"— Ca=—— 1=
He o o He

wherep, is the density of continuous phasgyis the average velocity of the single-phase flowadtinuous liquidR, is
the hydraulic radius of the channel defmedig%lz—0 30 lu, ¢ is the interfacial tension between the liquids|s the

dynamic viscosity of the continuous phase agid the dynamic viscosity of the drop. For each cagealso estimated the

Ohnesorge number




We conducted a series of simulations to investitfageinfluence of the surface tension (the Webenlmer), the average
velocity of the continuous flow (the Reynolds numband the viscosity ratioj] on drop deformation and breakup. The
flow parameters for each case are shown in TablEhé.simulation cases were chosen as follows. Caspresents a
baseline case: matching densities of liquids with, the viscosity of continuous phage1/3 and viscosity ratig=1 such
that the corresponding relaxation tingel.0 everywhere in the domain, and the surfaceders0.005. Cases 1, 3, and 4
retain parameters of Case 2 except for surfacéoterherefore Cases 1-4 show the effect of surfaksion (fixedRe and
varyingWe). Cases 5 and 6 have baseline parameters excdhefuiscosity of liquids, i.e. Cases 2, 5, arut@vide data
to explore the effect dRe at fixedWe. Cases 7 and 8 retain the parameters of Caseeptelke the viscosity ratidviesh

sensitivity analysis of Case 1 is shown in Apperalix

Table 1. Simulation cases and drop breakup output

Case Re We Ca Oh n e o Drop breakup
1 0.26 0.03 0.10 0.61 1.00 1/3 0.01 no
2 0.26 0.05 0.19 0.86 1.00 1/3 0.005 yes
3 0.26 0.10 0.39 1.22 1.00 1/3 0.0025 yes
4 0.26 0.25 0.97 1.92 1.00 1/3 0.001 yes
5 0.52 0.05 0.10 0.43 1.00 1/6 0.005 no
6 2.61 0.05 0.02 0.09 1.00 1/30 0.004 no
7 0.26 0.050 0.19 0.86 0.10 1/3 0.005 yes
8 0.26 0.050 0.19 0.86 0.01 1/3 0.005 yes

4.2.1 The effect of the surface tension

Surface tension plays a significant role in thetimhase flow through porous media. In this seoesimulations, the
Reynolds number is fixed t18e=0.26, the viscosity ratig is equal to 1.0 and we change the value of theseitension
that results in a change of the Weber number (CagBs As shown in Figure 12, the mesh with D=32h&s reached

mesh independence because the results have gahagt with D=48 lu. The drop diameteDis32 lu. The shapes of

23



the drops at different time instances are showwign 12 for four cases. The time was non-dimensioec ast =
t/\/D/g.

An equilibrated drop is injected &0 into the steady-state flow of continuous liquid.the case withVe=0.03
(highest surface tension) the drop does not break 12 (a)). When the surface tension is decre@sed0.05), the drop
breaks producing two satellites (Fig. 12(b)). Tlhghbr velocity values of the continuous phase atdbnterline in the
y=60 plane (pore throat) compared to the channel deate a dent in the trailing end of the drog=8.75 (see Fig. 12
(b)). The trailing end of the drop forms two lorgdads att=11.50. Then a neck forms. The neck thins graduathg
the drop breaks at=13.00 because of end pinching.

With the decrease of the surface tension (an isered the Weber number), the threads formed bethiadrailing
end of the drop split into more satellite and satelite fragments. In Case 3 (see Fig. 12 (c)k, ttho sub-satellite
coalesce with two satellite drops &t15.50. The satellite drops decelerate due to xparesion of the flow so that the
subsatellites can catch up and coalesce. Finhlydtops generate four satellites when it passesagh the cylinder pore
space, as shown in Fig. 12 (c).

In summary, higher surface tension (lower Weheniper) prevents drop breakup. For the fifed0.26, there is no
breakup aMe=0.03, and the drops break up into 3, 5, 5 fragmeriten they leave the pore space with higher Weber
number. We conclude that drops with lower valueswface tension (higkve) break more easily producing multiple
fragments. The coalescence of fragments is alseredd during this process due to the special strecdf the (flow

through the) cylinder pore.
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Fig. 12 Effect of Weber number on drop deformatod breakup. The process of drop motion througbra with at

Re=0.29 and (ayVe=0.03 in thex=20 lu plane (bWe=0.05, (c)We=0.10 and (cWe=0.25 in thex=20 lu andy=60 lu

plane.

4.2.2 The effect oRe

In this set of simulations, the Weber number iedixoWe=0.05 and the Reynolds number is varied by chantlieg

viscosity of the continuous liquid (Cases 2, 5, rdpresentingRe=0.26, 0.52 and 2.61, respectively). The viscasitio

is set to unity. The drop shape at different timgtdnces for Cases 5 and 6 are shown in Fig. 1$&(Z# presented in Fig.

12 (b)). The drop does not break in any of the iclemed cases.

To quantify the deformation of the drops as thewenthrough the pore in these three cases, two miefton

parameter®* and L* following the work by Olgac et al. (2006) arermluced D* is defined as the ratio of the perimeter

of the deformed drop profile to that of the equardlspherical drop in the=20 plane, and* as the axial length of drop

profile scaled by the height of the pore (8gen Fig. 4(b)). The deformation of the drops indbdhree cases represented

by D* and L* are shown in Fig. 14 where z* is the nondimenalgyosition of the drop center scaled by the heifhihe

poreD; calculated by z*= (z-89,, that is z*=0 for the drop at the bottom of thegpand z*=1 for the drop at the top of

the pore. Thd* and L* have the maximum value when the drop is at thee penter £=0.5). The deformation is very

small for case 6Re=2.61), and the largest deformation occurs in Cas¢Re=0.26. The deformation decreases as the
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Reynolds number increases indicating that dropKogarobability decreases with the increase ofRbat fixed Weber

number.
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Fig. 13 The process of a drop motion through a ptvée=0.05 and (aRe=0.52 (b)Re=2.61 in thex=20 lu andy=60

lu plane
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Fig. 14 The deformation parameters of the dropmudin a pore atve=0.05 andRe=0.26, 0.52 and 2.61.
4.2.3 The effect of viscosity ratio

The viscosity ratig; is an important parameter to determine the dreplup conditions (Zhao, 2007; Komrakova et
al., 2014). Three viscosity ratiog=1, 0.1, and 0.01) were chosen to study the effatthe breakup conditions (Cases 2,
7, and 8). Other parameters are kept the sameese tthree caseRd=0.29 We=0.05). The process of a drop motion
through a pore with viscosity ratios equal to Ontl #.01 is shown in Fig. 15. The case wjttll (Case 2) has been
discussed in Fig. 12(b).

The process of the drop through the pore witB.1 is shown in Fig. 15(a). A neck deforms andgtgradually, and
then the drop breaks at11.00. There is a formation of two small sateltiteps above the main body when the drop
leaves the cylinder pore spacetatl3.75. The breakup of the case wjtf0.01 occurs at=10.75 and the two generated
satellite drops are the smallest when compareldogetgenerated by=1 and 0.1.

To summarize, the higher values of drop viscositymote drop breakup in the pore space. This obServis at
odds with the research studies concerning droprahefiion and breakup in a simple shear flow wheseatis drops are
more difficult to break (Zhao, 2007; Komrakova ét 2014). We observe that drop breakage occutheatwo long
threads, which are eroded and shaped by the higlityeof the continuous phase. Higher viscositgml have a lower
relative velocity with the continuous phase andgleesidence time when they go through the middht giathe pore.
Long residence time give enough time to the cootiisuphase to erode the long threads. That is #snewhy viscous

drops can be broken more easily.

28



3.5e-02

003
O
2
c
002 2
p
£
001 8
[0
>
0.0e+00

(b)
Fig. 15 (a) The process of a drop through a potkdér=20 lu andy=60 lu plane aRe=0.26 andMe=0.050 with (a)

n=0.1 and (by= 0.01.
4.2.4 Summary
In previous sections, the influence of governingesionless numbers (the Weber number, the Reynaiaber,
and the viscosity ratio) on drop deformation andakup were discussed. An additional 28 simulatiases were
conducted to acquire more information to outline tlop breakup conditions. The definition of theases is shown in
Table 2.
Fig. 16(a) shows the series of simulation resalts;£1, along with the locations of these simulatediitsson aCa

versusWe phase chart. The green constBatlines show that inertial forces dominate viscougds in the bottom right
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corner of the chart while the viscous forces doneiriaertial forces in the top left corner of theaph chart. From the
phase chart, we can see that flow conditions frbenliottom left (strong surface tensions) and bottmyht (inertial
forces dominate viscous forces) prevent drop brgakuthis force balance system, the lower surfaosion and larger
viscous forces that dominate inertial forces, heekey factors for the breakup. To find the critiseeakup conditions, a
We versusRe map fory=1 is shown in Fig. 16(b). There is a clear diviglime between the breakup and no-breakup
conditions, and the values \8fe on this line increase witRe. We use the breakup cases near the critical dondito fit

a dividing line in the dual-logarithm map. The t&aship betweeiRe andWe on this line isWe=0.19FRe*%%° As shown

in Fig. 17, theCa versusWe phase chart ante versusRe map fors=0.01 almost have the same trend asifet.
However, a lower surface tension is necessary ¢akbthe drop a4=0.01, the value of Weber number on the dividing
line is We=0.216Re"'**in Fig. 17(b). Although these two dividing lineseavery close, criticalVe is smaller for more

viscous dropleti=1) to break up at constaRé.
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Table 2. All other cases for the summary section

Case Re We Ca Oh n e o Drop breakup
9 0.26 0.046 0.18 0.82 1.00 1/3 0.0055 yes
10 0.26 0.042 0.16 0.79 1.00 1/3 0.006 no
11 0.26 0.034 0.13 0.70 1.00 1/3 0.0075 no
12 0.52 0.101 0.19 0.61 1.00 1/6 0.0025 yes
13 0.52 0.090 0.17 0.58 1.00 1/6 0.0028 yes
14 0.52 0.084 0.16 0.56 1.00 1/6 0.003 no
15 2.61 0.505 0.19 0.27 1.00 1/30  0.00D5 no
16 2.61 0.561 0.21 0.29 1.00 1/30 0.00045 yes
17 2.61 0.025 0.01 0.06 1.00 1/30 0.01 no
18 2.61 0.034 0.01 0.07 1.00 1/30  0.00f75 no
19 2.61 0.101 0.04 0.12 1.00 1/30  0.00p5 no
20 2.61 0.252 0.10 0.19 1.00 1/30 0.001 no
21 0.26  0.025 0.10 0.61 0.01 1/3 0.01 no
22 0.26 0.034 0.13 0.70 0.01 1/3 0.0075 no
23 0.26 0.046 0.18 0.82 0.01 1/3 0.0055 no
24 0.26 0.101 0.39 1.22 0.01 1/3 0.0025 yes
25 0.26 0.252 0.97 1.92 0.01 1/3 0.001 yes
26 0.52 0.101 0.19 0.61 0.01 1/6 0.0025 yes
27 0.52 0.084 0.16 0.56 0.01 1/6 0.002y7 no
28 0.52 0.093 0.18 0.59 0.01 1/6 0.0030 no
29 2.61 0.025 0.01 0.06 0.01 1/30 0.01 no
30 2.61 0.034 0.01 0.07 0.01 1/30  0.00f5 no
31 2.61 0.050 0.02 0.09 0.01 1/30 0.005 no
32 2.61 0.101 0.04 0.12 0.01 1/30  0.00p5 no
33 2.61 0.252 0.10 0.19 0.01 1/30 0.001 no
34 2.61 0.505 0.19 0.27 0.01 1/30  0.00D5 no
35 2.61 0.561 0.21 0.29 0.01 1/30 0.00045 no
36 2.61 0.631 0.24 0.29 0.01 1/30  0.00p4 yes
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Fig. 16 (a) Phase chart at a viscosity ratio od 1k) The drop breakup conditions at a viscositipraf 1.00. ‘Yes’
indicates drop breakup. ‘No’ means drop did noakre
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Fig. 17 (a) Phase chart at a viscosity ratio o1 @) The drop breakup conditions at a viscositipraf 0.01. ‘Yes’
indicates drop breakup. ‘No’ means drop did noakre
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5 Conclusions

In this paper, numerical simulations of the motafnNewtonian liquid drops flowing through a singlere in a

microchannel as a result of the continuous flowaobther immiscible liquid have been presented. \Weduthe

conservative phase-field lattice Boltzmann metlwogerform transient three-dimensional simulations.

The numerical code is verified and validated byeaes of benchmark cases. The recovery of Laplaesspre is

tested, and the deviation between numerical araréktieal predictions is within 3%. Four cases & ldyered flow of two

immiscible liquids are performed to confirm our tmed can simulate the flow with viscosity ratio up1t000. Cases of

recovery of the contact angle at the curved suréaeeconducted and obtained consistent resultseffaet of the mesh

resolution is investigated using the gravity-drivntion of a drop in ambient liquid in a channeidat indicates that

under the present circumstances 32 lu is enougihdodrop diameters.

Numerical simulation of a drop falling through ar@alue to gravity in an ambient continuous liquithge is

conducted and the results are in qualitatively gagaeement compared to the experimental data carbes al. (2018,

2019). In addition, quantitative verifications confed that the pressure distribution inside theodwing drop is

consistent with the drop shape as it passes thrthggpore.

The influence of the surface tension, the averagecity of the continuous flow, and the viscosii§io on the drop

breakup were discussed in this paper. Smaller sttnsion (high Weber number) promotes drop breaken it passes

through the pore throat. Lower Reynold number iases the probability of drop breakup. Drops of &ighiscosity than

the continuous phase break easier because of i@laive velocity in conjunction with interactionittv the solid pore

walls. Also, the coalescence of satellite dropshiserved during this process. Finally, we shd@aarersusWe phase chart

to discuss the relative importance of the forcethis system leading to drop deformation and pbs&iteakup. We find

that the lower surface tensions and larger visémegs that dominate inertial forces are the keyofia for the breakup. At
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the same time, a clear virtual dividing line isridun theWe versusRe map that distinguishes breakup from non-breakup.
At constanRe, the criticalWe is smaller for the more viscous drop to break
In the future work, we will focus on the drop brapkand coalescence in realistic porous media. Welso conduct

experiments in porous media to visualize the midtge flow to validate simulations quantitatively.

Acknowledgements

The authors appreciatively acknowledge the findrmigoport from the National Key Research and Dewelent
Program of China (N0.2016YFB0302801) and the CHololarship Council. This research has been endlylebe use

of computing resources provided by Compute Canada.

Appendix A
The discrete velocity set for D3Q27 usedffpopulation is defined as follows:

€x ot-1200001-171-11-11-11-11-11-11-100 0 0
éy|=f00o0o1-10011 -1-17171-1-111-1-100 0 01-11 -1
€z o0o0o001-1171 1 1 -1-1-1-100 0 011 -1-111 -1-1

And the corresponding weights are:

64, a =0,
o =L )16, a=1-6,
*7216)1, a=7-14,
4, a=15-26.

The discrete velocity set for D3Q15 useddqopulation is defined as follows:

€x 01-100 001-11-11-11 -1
éy|]=f00 01-10011 -1-11 1 -1-1
€z oooo001-111 1 1 -1-1-1-1

And the corresponding weights are:

{16, a=0,
Wy =218, a=1-6,
721, a=17-14,
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Appendix B

The WMRT transformation matrix for D3Q27 is gives1 a
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Appendix C

100 is shown in Fig.18. For the four

The L2 convergence analysis of the layered flowaf immiscible liquids ay
cases, the channel heights were equal to 20, 3and®0 lu, respectively. The L2 error as a fumctbthe mesh size is

shown at a log-log plot in Fig.18. Second-ordenewgence is observed
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—e—Numerical results

0.01

1

—e—Second-order

convergence
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Fig.18 L2 Error vs Mesh size gt£100
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Appendix D

Mesh sensitivity analysis concerning flow resolotisas performed for Case 1. The velocity profile$=0.33 along
the line y=Y/2 in the xX/2 plane obtained using different mesh are showfign19. The gravitational acceleration is set
to -3.38x1@F, -1.0x10°, and -2.96x18 lu to achieve the same Reynold number for dragileneters D=21, 32, and 48 u,
respectively (the dimensions of the domain are 2%%80,40x120x270 and 60x180x405 Ilu). Velocity is

non-dimensionalized ag = u/,/gD. The mesh with D=32 lu has reached mesh indeperdeecause the results have
good agreement with D=48 lu.

0
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Fig. 19 The velocity profiles along the line¥2 in the x=X/2 plane obtained on different mesh
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