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ABSTRACT 

Deformation and breakup of a liquid drop immersed in another immiscible liquid and flowing through a single pore 

has been studied numerically using a conservative phase-field lattice Boltzmann method. Several benchmarks were 

conducted to validate the code, including the recovery of Laplace pressure, the layered flow of two immiscible liquids, 

and the implementation of wetting boundary conditions on a curved surface. Gravity-driven motion of a drop through the 

pore space was qualitatively compared to the available experimental results. Quantitative assessment of the pressure field 

across the interface of the moving and deforming drop was performed. Our results show that high Weber number due to 

low surface tension and low Reynolds number due to low velocity of the continuous liquid promote drop breakage. More 

viscous drops break easier than less viscous drops. We present the phase charts (Weber vs capillary number) and the 

critical conditions (Weber as a function of Reynolds number) of drop breakage. 

Keywords: Pore space; Liquid-liquid dispersion; Drop breakup; Phase-field method 

Highlights:  

● The phase-field method to simulate liquid-liquid systems is verified and validated. 

● The behavior of a single drop moving through a pore space is studied numerically. 

●Low velocity of the continuous liquid promote drop breakage. 

● More viscous drops break easier than less viscous drops. 

● Drop behavior is presented on We vs Ca and We vs Re graphs. 
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Graphical Abstract 

 

1 Introduction  

Multiphase flow in porous media is ubiquitous in nature and engineering (Adler and Brenner, 1988; Jacob, 2018): 

some examples include groundwater flow and flow in geothermal engineering, drainage, and irrigation in agricultural 

engineering, the flow of oil, water and gas in oil reservoirs, flow in reactors in chemical engineering, flow in fuel cells, 

filters and membranes (Telmadarreie et al., 2016; Li et al., 2018; Perazzo et al., 2018; Kim et al., 2020; Lee et al., 2020). 

In such systems, two key phenomena occur at the microscopic or pore-scale that affect the macroscopic behavior of the 

system: 1) motion of deformable interface between the fluids (e.g. gas-liquid dispersion or liquid-liquid emulsion); and 2) 

interaction of this interface with the surrounding solid phase (contact line motion). A thorough understanding of 

pore-scale phenomena is crucial to make well-guided decisions on entire system control and efficient operation. For that 

reason, numerous experimental and numerical studies focus on the investigation of multiphase flow in a simplified 

porous medium and single pore. 

    Single drops motion in idealized pore geometries were studied experimentally and numerically. The pore geometries 

range from wavy-wall capillary tubes to single pores formed by spherical solid particles. The common goal for the 

majority of these studies is to identify the effect of the geometry on drop motion and breakup. Olbricht and Leal (1983) 
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experimentally studied the creeping flow of an immiscible Newtonian drop through a horizontal circular tube with a 

periodically varying diameter in the axial direction (wavy-wall tube). The contribution of the drop to the local pressure 

gradient and the velocity of the drop relative to the average two-phase velocity were measured and then correlated to the 

time-dependent change of the drop shape. Drop breakup was also observed and analyzed primarily qualitatively. 

The buoyancy-driven motion of viscous drops and gas bubbles in a vertical periodically constricted capillary was 

studied experimentally by Hemmat and Borhan (1996) to examine the role of capillary geometry on drop deformation 

and breakup. The authors reported the measurements of the average rise velocity of drops and their shapes for a wide 

range of governing parameters and outlined mechanisms of drop breakup. 

Olgac et al. (2006) performed a numerical study of buoyancy-driven viscous drops though sinusoidally constricted 

capillaries using a finite-volume/front-tracking method. After validation of the method by comparison to the 

experimental results of Hemmat and Borhan (1996), the authors studied the effects of the drop size, the channel 

geometry, and Bond number on the motion and breakup of viscous drops in constricted capillaries. Different breakup 

mechanisms were examined and analyzed quantitatively. 

The behavior of a non-wetting drop flowing through a pore formed by two spherical solid particles was numerically 

studied by Hellou and Vo (2015) using a volume of fluid method. The authors described the deformation process of the 

viscous drop in viscous fluid that was quiescent or moving with uniform velocity in the direction of gravity. A 

comparison to experimental analysis was performed to validate the method. Drop breakup conditions were defined as a 

function of the size of the constriction. 

A review on motion of deformable non-wetting liquid drops flowing through well-defined porous media at zero 

Reynolds number was published by Zinchenko and Davis (2017). The authors considered theoretical solutions and 

rigorous hydrodynamical simulations for both pore and large scale. 
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Ansari et al. (2018, 2019) conducted an experimental study of liquid-liquid flow through a pore to determine the 

pressure field by analysis of the velocity field and shape of the drop obtained by the micro particle shadow velocimetry 

(µ-PSV). 

Patel et al. (2019) numerically studied the dynamics of a bubble rising in a vertical sinusoidal wavy channel using a 

dual grid level set method coupled with a finite volume-based discretization of the Navier-Stokes equations. Bubble 

deformation and breakup was correlated to a Reynolds number, Bond number, and the amplitude of the channel wall. 

The flow of dispersed drops and bubbles also finds numerous applications in microfluidic devices with constrictions 

and contractions. For instance, as discussed by Zheng et al. (2020), microfluidic channels with constrictions provide an 

effective and reliable way to manipulate fluid particles especially in areas such as biology and clinical diagnostics. 

A review of bubbles and drops flowing in different microfluidic geometrical elements was given by Cerdeira et al. 

(2020). Jensen et al. (2004) and Chio et al. (2006) studied the dynamics of gas bubbles moving in liquid-filled 

microchannels with contractions. Flow patterns and frictional pressure drop in a microchannel with alternating 

expansions and constrictions were experimentally investigated by Chai et al. (2015) for gas-liquid systems.  

To the best of our knowledge, there is a limited number of published experimental and numerical studies that report 

on the behavior of liquid drops moving in another immiscible liquid through contracted microchannels or microchannels 

with constrictions. 

A numerical parametric study of drop deformation through a microfluidic contraction was studied by Harvie et al. 

(2005) using a transient volume of fluid finite volume algorithm. The authors covered the parameter ranges 

representative of micro-sized liquid-liquid systems. The effects of the Reynolds number, interfacial tension, and the 

dispersed to continuous phase viscosity ratio on the deformation of the drop passing an axisymmetric contraction were 

reported. The phase charts (capillary number as a function of Weber number at different Ohnesorge numbers) of drop 
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deformation and breakup were presented. Later the study was extended to cover low viscosity Newtonian drops (Harvie 

et al., 2006). 

Mulligan et al. (2011) studied the effect of confinement-induced shear on drop deformation and breakup in 

microfluidic extensional flows. The behavior of de-ionized water drops in oil was considered experimentally. Conditions 

to produce drops after breakage much smaller than the parent drop were outlined. 

Chung et al.(2008) performed a numerical study on the effect of viscoelasticity on the drop in a planar 

contraction/expansion microchannel using a finite element front tracking method with the goal to propose the strategy to 

control the drop shape.  

Izbassarov and Muradoglu (2016) computationally studied two-phase viscoelastic systems in a pressure-drive flow 

in an axisymmetric channel with a sudden contraction and expansion using a finite-difference/front-tracking method. 

Drop dynamics were examined in a wide range of governing parameters. 

Zheng et al. (2020) carried out numerical simulations of bubbles and drops flowing in a rectangular channel with 

obstruction focusing on the disruption of the wake downstream of the obstruction by the fluid particle and the trajectory 

of that particle. 

As can be seen from the literature review above, most of the available numerical studies are performed in the 

axisymmetric formulation. Three-dimensional transient simulations of liquid-liquid systems in pore geometry with 

curved boundaries are still missing and should be performed as a necessary validation step towards modeling of 

multiphase flow in realistic porous media. 

In this work, we numerically study the time-dependent motion of Newtonian liquid drops flowing through a single 

pore in a three-dimensional microchannel in the continuous flow of another immiscible Newtonian liquid. Our main goal 

is to outline the conditions of drop breakup when it passes through a pore throat. When the drop breaks, satellite and 

sub-satellite drops with a size significantly smaller than the mother drop size can be generated. For some processes, for 
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instance, when it is eventually necessary to separate the immiscible liquids or when the drop size distribution should be 

monodisperse, the production of small fragments is highly undesirable. A map that indicates the conditions when drop 

breakage occurs is necessary to better control the system of two immiscible liquids flowing through porous media. 

We use a phase-field lattice Boltzmann method to perform the simulations. To verify and validate our numerical 

code, we performed a series of benchmark cases: recovery of the Laplace pressure of a spherical drop, the layered flow of 

two immiscible liquids with different viscosities, recovery of the contact angle at a curved surface, the gravity-driven 

motion of a drop in ambient liquid in a channel, and the gravity-driven drop motion in ambient liquid through a pore 

space. Then the code was applied to investigate the main subject of this study. 

The rest of the paper is organized as follows: Section 2 contains the governing equations, the numerical method to solve 

the equations, and the wetting boundary conditions scheme. The validation of the numerical method is shown in Section 3. 

Results and discussion are given in Section 4. Finally, the conclusions are presented in Section 5. 

2 Mathematical Model 

Governing Equations 

A conservative phase-field model proposed by Mitchell et al. (2018) is used in this study to simulate the flow of two 

immiscible liquids. The phase-field model corresponds to a class of diffuse interface approaches where the sharp 

interface between the liquids is replaced by a smooth region of finite width where fluid properties vary continuously, but 

rapidly. An order parameter, i.e., the phase-field �, describes the phase transition: its values are constant in the bulk 

phases and vary smoothly across the interface region. A phase-field equation that describes the evolution of � in the 

entire computational domain is derived based on thermodynamically consistent theories. The phase-field model does not 

require any explicit procedures to track the changes in the topology of the interface. This reduces programming 

complexity and decreases computational time related to the explicit reconstruction of the interface as in sharp interface 

methods. Any topological changes of the interface are handled naturally due to thermodynamic mechanisms involved. In 
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this study, we use the conservative phase-field model proposed by Chiu and Lin (2011) based on the work of Sun and 

Beckermann (2007). 

A system of coupled equations which are the continuity, Navier-Stokes, and phase-field equation governs the 

dynamics of a two-phase system of incompressible immiscible fluids: 

∇ ∙ � = 0                                             (1) 

� �	�	
 + � ∙ ∇�� = −∇� + ∇ ∙ (��∇� + (∇����� + �                          (2) 

	�	
 + ∇ ∙ (��� = ∇ ∙ �(∇� − ���(������� ��                           (3) 

where u is the macroscopic velocity, ρ is the density, t is the time, p is the pressure; M is the mobility; � is the interface 

thickness, and � = ∇�|∇�|= is the unit vector normal to the interface. The phase-field � takes two extreme values in the 

bulk phases: �! and �", representing the heavy and light phases, respectively. The value of � at the interface is given 

by: 

 �# = (�! + �"�/2                                           (4) 

In this work, we set �! = 1 for the heavy phase and �" = 0 for the light phase, which gives �#=0.5.  

A simple linear interpolation is employed to calculate the local density ρ from the phase field, 

� = �" + �(�! − �"�                                        (5) 

where �" and �! are the densities of the light and heavy phase, respectively. 

The volumetric forcing term in Eq. (2) is defined as F= Fb+ Fs, where �' = �g (g is the gravitational acceleration) 

and Fs are the body and surface tension forces, respectively. The surface tension Fs is defined as 

�( = ��∇�	                                          (6) 

with the chemical potential �� being defined as (Zu and He, 2013): 

�� = 1.5,�-.�(����(��#./�� − �∇.��                                (7) 

where , is the surface tension.  



8 
 

Lattice Boltzmann Formulation 

The governing macroscopic equations (1)-(3) were solved using the lattice Boltzmann method in the formulation 

proposed by Mitchell et al. (2018). Two particle populations are necessary to solve the system: 01(2, 4� is used to solve 

the continuity and the momentum equations, and the second function 51(2, 4� is used to solve the phase-field equation. 

These particle populations represent the density of fictitious particles with discrete velocity 61 at the position x and time t. 

The discrete velocity 61 together with the corresponding weighting coefficients 71 form the velocity set (61 , 71�. For 

the f population, we use a D3Q27 set which indicates that the number of spatial dimensions is D=3 and the velocity set 

involves Q=27 velocity directions (α=0:26). The D3Q15 set is used for the g population. The lattice velocities 61 and 

weights 71 used in this work are given in Appendix A.  

The lattice Boltzmann equations discretized in the velocity space, physical space and time are given as follows: 

01(2 + 6184, 4 + 84� = 01(2, 4� − (9�:;<9�1=�0=(2, 4� − 0=>?(2, 4�� + @1(2, 4�               (8) 

51(2 + A184, 4 + 84� = 51(2, 4� − BC(2,
��BCDE(2,
�FGH�/. + @1�(2, 4�                     (9) 

These equations state that the particle populations move with the velocity 61 to the neighboring sites 2 + 6184 at the 

next time step 4 + 84 (streaming). The collision of particles on a given site is governed by the collision operator (second 

term on the right-hand side of equations (8) and (9)) which redistributes particles among the populations. A weighted 

multiple-relaxation-time (WMRT) collision operator is used for the f population since it improves the isotropy, decreases 

the spurious velocity, and increases the model accuracy (Fakhari et al., 2017a). A single-relaxation-time 

Bhatnagar-Gross-Krook (BGK) (Bhatnagar et al., 1954) collision operator is used for the g population. The physical mesh 

step 8I and the time step 84 denote a space and time resolution in lattice units which is an artificial set of units scaled 

such that 8I = 1	and 84 = 1, and J = 8I/84 is the lattice speed. To convert lattice units to a physical space in SI units 

we will match the governing dimensionless numbers. 
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The rest of the quantities in equations (8) and (9) are defined as follows. The shifted equilibrium population due to forcing 

is 

01>? = 01>? − �. @1                                          (10) 

with the equilibrium population 

01>? = 71��∗ + (6L∙�MN� + (6L∙���.MNO − �∙�.MN���                                 (11) 

where �∗ = �/�JP. is the normalized pressure with JP is the speed of sound in this system, JP = J/√3. 

The equilibrium distribution 51>? is also shifted including the forcing term as 

51>?(2, 4� = 51>? − �. @1�                                     (12) 

where 

51>? = �71(1 + 6L∙�MN� + (6L∙���.MNO − �∙�.MN��                                 (13) 

In Eq. (8), M is the WMRT transformation matrix given in Appendix B; and ;< is the diagonal relaxation matrix which is 

given as 

;< = STU5(1,1,1,1, VW , VW , VW , VW , VW , 1, … ,1�                                 (14) 

where VW = (Y + 0.5��� is the relaxation parameter related to the hydrodynamic relaxation time Y. The relaxation time 

could be calculated by many forms of interpolations (Fakhari et al., 2017b). In this study, Y is calculated by a simple 

linear interpolation 

Y = YZ + �(Y[ − YZ�                                    (15) 

where Y[ and YZ are the bulk relaxation times in the heavy and light fluids, respectively. The dynamic viscosity � is 

represented as  
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� = �\ = �YJP.                                      (16) 

where \ is the kinematic viscosity. 

For the g population, Y� = �/JP. is the relaxation time of the phase-field model. 

The hydrodynamic forcing term @1(2, 4� in Eq. (8) is calculated as 

@1(2, 4� = 71 6L∙�]MN�                                      (17) 

where the total force term is  

� = �^ + �_ + �` + �a                                 (18) 

The pressure force �` is determined by (Fakhari et al., 2017b)  

�` = −�∗JP.(�[ − �Z�∇�                                   (19) 

and the viscous force �a is (Fakhari et al., 2017b) 

�a = \(�[ − �Z��∇� + (∇���� ∙ ∇�                             (20) 

where the derivative of velocity is recovered from the second moment of the hydrodynamic distribution function as 

�a,b = − W(]c�]d�MN� eA1,bA1,fg9�:;<9h	,=(0= − 0=>?�i jf�                     (21) 

where index k and l represent the kth and lth direction for the lattice structure and index i and j represent the index 

Cartesian coordinates directions x, y, z. Einstein summation convention is applied in Eq. (21).  

The forcing term in Eq. (9) is given as 

@1�(2, 4� = 84 ��(����� 716L ∙ o                                (22) 

The particle distribution functions are defined such that the following summations over all directions k, at a single lattice 

point, give the local normalized pressure, local fluid velocity and local phase-field parameter, respectively: 
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�∗ = p 011 																																																																																															(23� 

                                       � = p 011 6L + �2�																																																																																										(24� 

                                         

� = ∑ 511                                              (25) 

where � needs to be updated after the pressure. 

The gradients and Laplacian of the phase-field variable � are determined using all the neighboring nodes by the results 

of the conservative LBE for solving the continuity equation and the phase-field which will be introduced in the next 

section and are given as (Mitchell et al., 2018) 

∇� = MMN�st ∑ 6L71�(2 + 6L84, 4�.u1v#                                 (26) 

∇.� = .M�MN�(st�� ∑ 71��(2 + 6L84, 4� − �(2, 4��.u1v#                            (27) 

Wetting Boundary Conditions 

In this study, a single pore throat is represented by two curved (cylindrical) surfaces. To investigate the drop 

behavior as it passes through the pore and interacts with the wall, we need to define the three-phase contact angle on 

flat and curved boundaries. To obtain a specified contact angle at a solid wall, the boundary condition proposed by 

Jacqmin (2000) is used here: 

�wx ∙ ∇�|ty = Θ�x(1 − �x�                                    (28) 

where n|} is the unit vector outward normal to the wall, �x is the value of the phase-field parameter at the solid wall and 

Θ is a term related to the equilibrium contact angle θ which is given by: 

Θ = −~.�� J�V�                                         (29) 

where coefficients � and κ are related to the interfacial thickness � and the surface tension σ by � = 12,/� and 

� = 3,�/2	 (Fakhari et al., 2017b). 
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(a)                                   (b) 

Fig. 1. Wetting boundary conditions at a curved boundary when the slope’s magnitude of the vector normal to the 

boundary is (a) greater than one (b) less than one (adapted from (Fakhari and Bolster, 2017)). 

  To impose the wetting boundary conditions on a curved wall, we need to apply Eq. (28) and calculate the value of �x 

at the wall. We used unidirectional interpolations to calculate the unknown value of the phase-field parameter at the 

boundary node (�b,f,�), represented by a black point in Fig. 1. If the slope’s magnitude of the vector normal to the 

boundary is greater than one, as shown in Fig. 1(a), then a linear interpolation is conducted in the y-direction; otherwise, 

the interpolation is conducted in the z-direction as shown in Fig. 1(b), to obtain the �� value at point p with green color. 

Finally, the value of �b,f,� is calculated as (Fakhari and Bolster, 2017): 

�b,f,� = PH�.�� g1 + U − �(1 + U�. − 4U��h − P� ��, U = �Θ � 0	(� � 90°�             (30)  

where s = �Ix − Ib,f,�� is the distance between the solid wall and the boundary node. 

 

3 Model Validation 

Laplace pressure 

In this benchmark case, we assess the ability of the method to accurately recover the pressure change across the 

interface of the spherical drop. The pressure change can be described by the Laplace law: 

∆� = .��                                               (31) 
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where ∆� is the pressure difference and � is the radius of the drop. A series of simulations were performed to validate 

the pressure difference over the interface for different drop radii and values of surface tension. The simulations were 

performed in a fully-periodic cubic domain with an edge length of 64 lattice units (lu). The interface thickness � was set 

to 6 lu. Drop and the surrounding liquid had matching density and viscosity. The drop was placed at the center of the 

domain and let to equilibrate. The maximum spurious velocities in these simulations are at the order of 10-6, so we can 

ignore their effects. The pressure drop estimated using Eq. (31) and predicted numerically for drop radii r (10, 16, and 20 

lu) and surface tension σ (0.01, 0.02, and 0.04 lu) are shown in Fig. 2. The maximum deviation between the numerical and 

analytical results is less than 3%. 

 

Fig. 2. The pressure change across the interface of the drop ∆� for different drop radii and values of surface tension  

Layered Flow of Immiscible Fluids 

The layered flow of two immiscible liquids was selected to test the capability of the method to handle high viscosity 

ratios between the liquids (Komrakova et al., 2015). The flow was simulated in a pseudo-2D simulation domain of 3×3×40 

lu, where 40 lu is the distance between two solid walls. Liquid 1 occupies the lower half of the channel, Liquid 2 the upper 

half. The no-slip bounce-back boundary conditions were applied at the top and bottom walls, and periodical boundary 

conditions for the rest of the boundaries. We applied a body force of 10-7 lu in the entire domain to create a pressure 

gradient in the flow direction. The viscosity ratios were � = (��/�.� = 1, 10, 100 and 1000. 



14 
 

The analytical solution for the velocity in the channel as a function of the wall normal coordinate Z was calculated 

from the Navier-Stokes equation (Schulz et al., 2019): 

� = ���� e �.a� �. + �(a��a��.a�(a�Ha�� � − ��a�Ha�i 									− � � � � 0                              (32) 

� = ���� e �.a� �. + �(a��a��.a�(a�Ha�� � − ��a�Ha�i 											0 � � � �                               (33) 

where 
���� is the pressure gradient, 2h is the channel height, y is the direction of the flow and �� and �. are the dynamic 

viscosities of the liquids that have the same density (ρ1=ρ2=1.0 lu). 

The comparison between the analytical and simulated results is shown in Fig. 3. The velocity profiles obtained 

numerically coincide with the analytical solution. The maximum deviation between the numerical and analytical results is 

less than 1%. This demonstrates that the method can be used to simulate the flow of liquids with the viscosity ratio up to 

1000. The L2 convergence analysis at η=100 is shown in Appendix C. 

  

  

Fig. 3. Velocity profiles in two-phase layered flow with different viscosity ratio. 
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Contact angle 

     Since the interaction of the contact line with the solid surface of the pore plays an important role in drop behavior, it 

is necessary to make sure that the wetting boundary conditions at the curved surface are implemented correctly. The 

following benchmark was considered: a drop was placed on a cylinder and let to equilibrate. The simulation domain was a 

40×90×60 box. The no-slip simple halfway bounce-back wall conditions were employed for curved walls and the top and 

bottom faces in the z-direction, and periodic boundary conditions for the rest of the boundaries. The radius of the drop (r) 

was 16 lu and the radius of the cylinder (Rs) was 50 lu. The interface thickness was 6 lu. The initial state of the system in 

the x=20 lu plane is shown in Fig. 4(a). The specified and simulated static contact angles between the drop and the curved 

wall are shown in Fig. 4(b). The simulated angles agree well with the specified angles because maximum deviation is less 

than 2%.  

 

  

(a)                                             (b) 
Fig. 4 (a) Schematic of the contact angle between a drop and a curved wall in the x=20 lu plane (b) Simulated and 

specified contact angles 

Mesh resolution 

  Mesh sensitivity analyses were performed using a benchmark of gravity-driven drop motion in ambient surrounding 

liquid in a channel. For drop diameters D=24, 32, and 40 lu, the terminal velocity was predicted. The simulation domain is 

shown in Fig. 5(a). The density ratio between dispersed and continuous liquids was ρd/ρc=1.5 and the liquids had matching 
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viscosities. The interface thickness (ξ) was 6 lu and the surface tension (σ) was 0.01 lu. Periodic boundary conditions were 

employed for the top and bottom faces and the no-slip bounce-back wall conditions for the rest of the boundaries. In Fig. 

5(b), we present the non-dimensional drop velocity as a function of time for different drop diameters. Time and velocity 

are non-dimensionalized as 4̅ = 4/��/5  and �� = �/�5� , respectively. The gravitational acceleration is set to 

-2.37×10-5, -1.0×10-5, and -5.12×10-6 in lu to achieve the same Reynold number. for D=24, 32, and 40 lu, respectively. As 

we can see from Fig. 5(b), the drop velocity profiles almost overlap when the drop diameter is larger than 32 lu. It 

indicates that representing a drop diameter with 32 lu is sufficient resolution.  

   

(a)                                               (b) 

Fig. 5 (a) Simulation settings for the dense drop in the continuous phase (b) Non-dimensional drop velocity as a function 

of time for three mesh resolutions 

4 Results and discussion 

The results are presented in two parts. First, we consider a drop falling through a pore due to gravity in the ambient 

continuous liquid phase and compare our results to the experimental data of Ansari et al. (2018, 2019). This comparison is 

done for the purpose of qualitatively validating our model. In addition, we verify the prediction of the pressure change 

across the drop interface as it passes through the pore. In the second part, we present the results of drop breakup in the pore 

space when the carrier (surrounding) liquid is in continuous flow. The influence of governing dimensionless numbers (the 
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Weber number, the Reynolds number, and the viscosity ratio) on drop deformation and breakup is investigated. A chart 

outlining the conditions for drop breakup is presented at the end. 

4.1 A drop falling through a single pore space due to gravity 

Ansari et al. (2018, 2019) carried out an experimental study of a Glycerol drop falling in ambient Canola oil 

through a pore using micro particle shadow velocimetry (µ-PSV). The simulation is set up to replicate the experiment in 

a domain of 40×60×180 lu. The droplet diameter D is 32 lu. The simulated system matches experiment by the Eötvös 

number (�� = B∆]��� = 0.267) and Morton number (�� = B∆]W¢O]¢��£ = 254 where vc and ρc are the kinematic viscosity 

and density of continuous phase, respectively). The measured velocity of the drop was of the order of 10-5 m/s and it 

took more than 160 seconds for the drop to pass through the pore space. If we match experimental conditions and 

replicate their results using our explicit scheme, the time step needs to be 1.04×10-5 s. It will require approximately 

15,000,000 time steps which is equivalent to 38,500 hours of calculation time to complete the simulation by 15 cores 

(2.5 GHz). To accelerate the process, we increased the body force that represents the effect of gravity by a factor of six 

and qualitatively compared our results with their findings. The three-phase contact angle at the curved wall is set to 180°, 

and we use the static contact angle which we introduced in Section 2 to handle this problem. The comparison of the drop 

shape at different time instances is shown in Fig. 6. Overall, the results are in good agreement. Minor deviation in drop 

shape can be due to several reasons. The complexity of the analysis of experimental data to recover drop shape (see the 

original works of Ansari et al. (2019)) affects the drop shape. The properties of the liquids (viscosity, density, and 

interfacial tension) were not measured in the experimental study for the considered liquids and were taken from 

reference data. As a result, there might be a slight discrepancy between the experimental settings and our settings that 

were based on the reference values of liquid properties.  
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(a) 

 

(b) 
Fig. 6. (a) Experimental and (b) numerical results of gravity-driven motion of a drop through the pore space. RT and RL 

denote radii of trailing and leading ends of the drop, respectively 

 

To verify our method quantitatively, we performed simulations of a similar problem with the goal to check the 

capability of the method to predict the pressure distribution inside the deforming drop and correlate it with the drop 

shape. The flow configuration is shown in Fig. 7: a drop moves along with the continuous phase through the pore. The 

dimensions of the channel are 40×120×270 lu and the diameter of the cylindrical obstruction on the pore is D1=50 lu. 

The density and viscosity of the drop match the corresponding properties of the continuous phase: ρ= 1.0 lu, µ= 1/3 lu. 

The droplet diameter is 32 lu, the interface thickness is 6 lu and the surface tension is σ=0.12 lu. The periodic boundary 

conditions are set at the top and bottom faces of the domain and the no-slip boundary conditions are set for the rest of 

the boundaries. The three-phase contact angle at the curved wall is set to 180°, meaning the drop is non-wetting.  
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The simulation run was performed as follows. First, the drop of diameter D=32 lu was injected upstream the pore area 

and let to equilibrate during 1200 time steps. There was no body force applied at this stage. The final equilibrium shape of 

the drop was used as an initial condition for the second stage of the simulations when a body force of ρg=-2⋅10-5 lu in 

z-direction was applied to the entire domain. During the run, the radii of the leading and the trailing ends of the drop were 

measured using a curve-fitting procedure. The details of notation are shown in Fig. 8. The droplet surface was identified at 

�=0.5. A Matlab code for curve fitting procedure was written to measure the radii of the leading and trailing faces in the 

x=20 lu and y=60 lu planes. 

 

                         (a)                                               (b) 

Fig. 7. (a) 3D Computational domain 40×120×270 lu. (b) Cross-section of the domain at x=20 plane, dimensions in lu. 

     

Fig. 8. The notation to determine the radii of the leading and the trailing ends of the drop in (y-z) (left) and (x-z) (right) 

plane  



20 
 

Once the body force is turned on, the drop starts moving and deforming downstream the channel (Fig. 9). At 4̅=13.0, 

the drop approaches the upper part of the pore. The leading end of the drop is squeezed. The center of mass of the drop 

reaches the center of the pore at 4̅=17.4. The drop is stretched in the z-direction, and the leading and trailing ends are 

almost symmetrical. The drop leaves the pore area at 4̅= 21.8. Due to the expansion of the flow after the pore, the velocity 

of the leading end is significantly smaller than the velocity of the trailing end. This explains the change in the drop shape: 

the drop is squeezed in the z-direction. Finally, the drop restores the spherical shape and moves down the channel. 

 

Fig. 9. A drop passing through a pore waist in the x=20 lu plane 

The main purpose of this verification case is to assess the correctness of the pressure field obtained numerically in case 

of drop motion within a complex geometry in the presence of the body force. 

The estimated pressure difference between the leading and trailing ends of the drop due to the surface tension is given 

by: 

∆¤>P
�Z¥ = ∆¤>P
�Z − ∆¤>P
�¥ = , � �¦d� + �¦d�� − ,( �¦§� + �¦§��                      (34) 

The pressure difference between the leading end (∆¤Z¨©�Z) and trailing end (−∆¤Z¨©�¥) due to the surface tension can 

also be calculated by the pressure fields in the LBM simulations minus the effects of the velocity fields and Fb as follows: 

∆¤Z¨©�Z = ¤("H	�� − P("�	�� − 2� «−� 	¬­	
 + � 	�¬�	®� + @̄ ®°                      (35a) 
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∆¤Z¨©�¥ = ¤(��	�� − P(�H	�� + 2� «−� 	¬­	
 + � 	�¬�	®� + @̄ ®°                      (35b) 

∆¤Z¨©�Z¥=∆¤Z¨©�Z − ∆¤Z¨©�¥	                               (35c) 

where ¤("H	�� and P("�	�� (See Fig. 8) are the pressure inside and outside the leading end of the drop, respectively; 

¤(��	�� and P(�H	�� (See Fig. 8) are the pressure inside and outside the trailing face, respectively.  

As shown in Fig. 10, the pressure differences between the leading and trailing ends of the drop estimated using Eq. 

(34) and predicted numerically are in good agreement. This means that the variations in the velocity and pressure fields 

reflect on the shape of the drop correctly.  

 

Fig. 10. The pressure difference between the leading and trailing ends of the drop as it passes through the pore (∆¤>P
�Z¥ 

and ∆¤Z¨©�Z¥ refer to Eq.(34) and Eq.(35c), respectively) 

4.2 Drop breakup in the pore space 

We used the same pore geometry as depicted in Fig. 7 to study the conditions of drop breakup. In all cases, the 

continuous phase was moving downward in the z-direction with the average velocity in the z=270 lu plane denoted as 

�±²³. This motion was created by applying a constant body force to the entire domain. For each case, the steady-state 

velocity field of a single-phase flow was obtained first. As an example, a velocity field in cross-section y=60 for Re=0.26 

is shown in Fig. 11(a). The average velocity in straight sections of the channel (away from the pore space) is 0.0029 lu, 
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and the maximum velocity at the pore throat is 0.034 lu. Such velocity fields were used as an initial condition for further 

two-phase flow simulations. 

             
(a)                                 (b) 

Fig. 11. (a) Velocity field of the single-phase flow in x=20 lu plane (b) velocity field at the inlet (z=270 lu plane) 

The rest of the simulation parameters are as follows. The densities of the drop and the continuous phase are the same: 

ρ= 1.0 lu. The contact angle was set to 180°, the thickness of the interface was 6 lu, the mobility M=0.2 (Mitchell et al., 

2018). 

Three forces define the behavior of the drop motion: surface tension, inertial, and viscous forces. The following set of 

dimensionless numbers can be used to describe the relative effect of these forces: the Reynolds number Re (inertial vs 

viscous force), Weber number We (inertial vs surface tension force), the capillary number Ca (viscous to surface tension 

force), and the viscosity ratio η: 

´A = �M�±²³´��M 				µA = �M�±²³. ´�, 				¶U = �·�±²³, 					� = �¸�· 			 
where ρc is the density of continuous phase, uavg is the average velocity of the single-phase flow of continuous liquid, Rh is 

the hydraulic radius of the channel defined as 
�#¹�.#�#H�.#=30 lu, σ is the interfacial tension between the liquids, µc is the 

dynamic viscosity of the continuous phase and µd is the dynamic viscosity of the drop. For each case, we also estimated the 

Ohnesorge number 

º� = √µA´A = �M��M,´� 
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We conducted a series of simulations to investigate the influence of the surface tension (the Weber number), the average 

velocity of the continuous flow (the Reynolds number), and the viscosity ratio (η) on drop deformation and breakup. The 

flow parameters for each case are shown in Table 1. The simulation cases were chosen as follows. Case 2 represents a 

baseline case: matching densities of liquids with ρ=1, the viscosity of continuous phase µc=1/3 and viscosity ratio η=1 such 

that the corresponding relaxation time τf=1.0 everywhere in the domain, and the surface tension σ=0.005. Cases 1, 3, and 4 

retain parameters of Case 2 except for surface tension, therefore Cases 1-4 show the effect of surface tension (fixed Re and 

varying We). Cases 5 and 6 have baseline parameters except for the viscosity of liquids, i.e. Cases 2, 5, and 6 provide data 

to explore the effect of Re at fixed We. Cases 7 and 8 retain the parameters of Case 2 except for the viscosity ratio. Mesh 

sensitivity analysis of Case 1 is shown in Appendix D. 

 

Table 1. Simulation cases and drop breakup output  

Case Re We Ca Oh η µc σ Drop breakup 

1 0.26  0.03  0.10  0.61  1.00  1/3 0.01 no 

2 0.26  0.05  0.19  0.86  1.00  1/3 0.005 yes 

3 0.26  0.10  0.39  1.22  1.00  1/3 0.0025 yes 

4 0.26  0.25  0.97  1.92  1.00  1/3 0.001 yes 

5 0.52  0.05  0.10  0.43  1.00  1/6 0.005 no 

6 2.61  0.05  0.02  0.09  1.00  1/30 0.005 no 

7 0.26  0.050  0.19  0.86  0.10  1/3 0.005 yes 

8 0.26  0.050  0.19  0.86  0.01  1/3 0.005 yes 

 

4.2.1 The effect of the surface tension 

Surface tension plays a significant role in the multi-phase flow through porous media. In this series of simulations, the 

Reynolds number is fixed to Re=0.26, the viscosity ratio η is equal to 1.0 and we change the value of the surface tension 

that results in a change of the Weber number (Cases 1-4). As shown in Figure 12, the mesh with D=32 lu has reached 

mesh independence because the results have good agreement with D=48 lu. The drop diameter is D=32 lu. The shapes of 



24 
 

the drops at different time instances are shown in Fig. 12 for four cases. The time was non-dimensionalized as 4̅ =
4/��/5. 

An equilibrated drop is injected at 4̅=0 into the steady-state flow of continuous liquid. In the case with We=0.03 

(highest surface tension) the drop does not break (Fig. 12 (a)). When the surface tension is decreased (We=0.05), the drop 

breaks producing two satellites (Fig. 12(b)). The higher velocity values of the continuous phase at the centerline in the 

y=60 plane (pore throat) compared to the channel flow create a dent in the trailing end of the drop at 4̅=8.75 (see Fig. 12 

(b)). The trailing end of the drop forms two long threads at 4̅=11.50. Then a neck forms. The neck thins gradually, and 

the drop breaks at 4̅=13.00 because of end pinching. 

With the decrease of the surface tension (an increase of the Weber number), the threads formed behind the trailing 

end of the drop split into more satellite and sub-satellite fragments. In Case 3 (see Fig. 12 (c)), the two sub-satellite 

coalesce with two satellite drops at 4̅=15.50. The satellite drops decelerate due to the expansion of the flow so that the 

subsatellites can catch up and coalesce. Finally, the drops generate four satellites when it passes through the cylinder pore 

space, as shown in Fig. 12 (c). 

  In summary, higher surface tension (lower Weber number) prevents drop breakup. For the fixed Re=0.26, there is no 

breakup at We=0.03, and the drops break up into 3, 5, 5 fragments when they leave the pore space with higher Weber 

number. We conclude that drops with lower values of surface tension (high We) break more easily producing multiple 

fragments. The coalescence of fragments is also observed during this process due to the special structure of the (flow 

through the) cylinder pore. 
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(a) 

 

(b) 

 
(c) 
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(d) 

Fig. 12 Effect of Weber number on drop deformation and breakup. The process of drop motion through a pore with at 

Re=0.29 and (a) We=0.03 in the x=20 lu plane (b) We=0.05, (c) We=0.10 and (c) We=0.25 in the x=20 lu and y=60 lu 

plane. 

4.2.2 The effect of Re 

In this set of simulations, the Weber number is fixed to We=0.05 and the Reynolds number is varied by changing the 

viscosity of the continuous liquid (Cases 2, 5, and 6 representing Re=0.26, 0.52 and 2.61, respectively). The viscosity ratio 

is set to unity. The drop shape at different time instances for Cases 5 and 6 are shown in Fig. 13 (Case 2 is presented in Fig. 

12 (b)). The drop does not break in any of the considered cases. 

To quantify the deformation of the drops as they move through the pore in these three cases, two deformation 

parameters D* and L* following the work by Olgac et al. (2006) are introduced. D* is defined as the ratio of the perimeter 

of the deformed drop profile to that of the equivalent spherical drop in the x=20 plane, and L* as the axial length of drop 

profile scaled by the height of the pore (see D1 in Fig. 4(b)). The deformation of the drops in these three cases represented 

by D* and L* are shown in Fig. 14 where z* is the nondimensional position of the drop center scaled by the height of the 

pore D1 calculated by z*= (z-85)/D1, that is z*=0 for the drop at the bottom of the pore and z*=1 for the drop at the top of 

the pore. The D* and L* have the maximum value when the drop is at the pore center (z*=0.5). The deformation is very 

small for case 6 (Re=2.61), and the largest deformation occurs in Case 2 at Re=0.26. The deformation decreases as the 
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Reynolds number increases indicating that drop breakup probability decreases with the increase of the Re at fixed Weber 

number. 

 
(a) 

 
(b) 

Fig. 13 The process of a drop motion through a pore at We=0.05 and (a) Re=0.52 (b) Re=2.61 in the x=20 lu and y=60 

lu plane 
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Fig. 14 The deformation parameters of the drops through a pore at We=0.05 and Re=0.26, 0.52 and 2.61. 

4.2.3 The effect of viscosity ratio 

The viscosity ratio η is an important parameter to determine the drop breakup conditions (Zhao, 2007; Komrakova et 

al., 2014). Three viscosity ratios (η=1, 0.1, and 0.01) were chosen to study the effects on the breakup conditions (Cases 2, 

7, and 8). Other parameters are kept the same in these three cases (Re=0.29, We=0.05). The process of a drop motion 

through a pore with viscosity ratios equal to 0.1 and 0.01 is shown in Fig. 15. The case with η=1 (Case 2) has been 

discussed in Fig. 12(b).  

The process of the drop through the pore with η=0.1 is shown in Fig. 15(a). A neck deforms and thins gradually, and 

then the drop breaks at 4̅=11.00. There is a formation of two small satellite drops above the main body when the drop 

leaves the cylinder pore space at 4̅=13.75. The breakup of the case with η=0.01 occurs at 4̅=10.75 and the two generated 

satellite drops are the smallest when compared to those generated by η=1 and 0.1. 

To summarize, the higher values of drop viscosity promote drop breakup in the pore space. This observation is at 

odds with the research studies concerning drop deformation and breakup in a simple shear flow where viscous drops are 

more difficult to break (Zhao, 2007; Komrakova et al., 2014). We observe that drop breakage occurs at the two long 

threads, which are eroded and shaped by the high velocity of the continuous phase. Higher viscosity drops have a lower 

relative velocity with the continuous phase and long residence time when they go through the middle part of the pore. 

Long residence time give enough time to the continuous phase to erode the long threads. That is the reason why viscous 

drops can be broken more easily. 
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(a) 

 
(b) 

Fig. 15 (a) The process of a drop through a pore in the x=20 lu and y=60 lu plane at Re=0.26 and We=0.050 with (a) 

η= 0.1 and (b) η= 0.01. 

4.2.4 Summary 

In previous sections, the influence of governing dimensionless numbers (the Weber number, the Reynolds number, 

and the viscosity ratio) on drop deformation and breakup were discussed. An additional 28 simulation cases were 

conducted to acquire more information to outline the drop breakup conditions. The definition of these cases is shown in 

Table 2. 

Fig. 16(a) shows the series of simulation results for η=1, along with the locations of these simulated results on a Ca 

versus We phase chart. The green constant Re lines show that inertial forces dominate viscous forces in the bottom right 
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corner of the chart while the viscous forces dominate inertial forces in the top left corner of the phase chart. From the 

phase chart, we can see that flow conditions from the bottom left (strong surface tensions) and bottom right (inertial 

forces dominate viscous forces) prevent drop breakup. In this force balance system, the lower surface tension and larger 

viscous forces that dominate inertial forces, are the key factors for the breakup. To find the critical breakup conditions, a 

We versus Re map for η=1 is shown in Fig. 16(b). There is a clear dividing line between the breakup and no-breakup 

conditions, and the values of We on this line increase with Re. We use the breakup cases near the critical conditions to fit 

a dividing line in the dual-logarithm map. The relationship between Re and We on this line is We=0.193Re1.096. As shown 

in Fig. 17, the Ca versus We phase chart and We versus Re map for η=0.01 almost have the same trend as for η=1. 

However, a lower surface tension is necessary to break the drop at η=0.01, the value of Weber number on the dividing 

line is We=0.216Re1.104 in Fig. 17(b). Although these two dividing lines are very close, critical We is smaller for more 

viscous droplet (η=1) to break up at constant Re. 
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Table 2. All other cases for the summary section 

Case Re We Ca Oh η µc σ Drop breakup 

9 0.26  0.046  0.18  0.82  1.00  1/3 0.0055 yes 

10 0.26  0.042  0.16  0.79  1.00  1/3 0.006 no 

11 0.26 0.034 0.13 0.70 1.00 1/3 0.0075 no 

12 0.52 0.101 0.19 0.61 1.00 1/6 0.0025 yes 

13 0.52  0.090  0.17  0.58  1.00  1/6 0.0028 yes 

14 0.52  0.084  0.16  0.56  1.00  1/6 0.003 no 

15 2.61 0.505 0.19 0.27 1.00 1/30 0.0005 no 

16 2.61 0.561 0.21 0.29 1.00 1/30 0.00045 yes 

17 2.61 0.025 0.01 0.06 1.00 1/30 0.01 no 

18 2.61 0.034 0.01 0.07 1.00 1/30 0.0075 no 

19 2.61 0.101 0.04 0.12 1.00 1/30 0.0025 no 

20 2.61 0.252 0.10 0.19 1.00 1/30 0.001 no 

21 0.26 0.025 0.10 0.61 0.01 1/3 0.01 no 

22 0.26 0.034 0.13 0.70 0.01 1/3 0.0075 no 

23 0.26  0.046  0.18  0.82  0.01  1/3 0.0055 no 

24 0.26 0.101 0.39 1.22 0.01 1/3 0.0025 yes 

25 0.26 0.252 0.97 1.92 0.01 1/3 0.001 yes 

26 0.52  0.101  0.19  0.61  0.01  1/6 0.0025 yes 

27 0.52  0.084  0.16  0.56  0.01  1/6 0.0027 no 

28 0.52  0.093  0.18  0.59  0.01  1/6 0.0030 no 

29 2.61 0.025 0.01 0.06 0.01 1/30 0.01 no 

30 2.61 0.034 0.01 0.07 0.01 1/30 0.0075 no 

31 2.61 0.050 0.02 0.09 0.01 1/30 0.005 no 

32 2.61 0.101 0.04 0.12 0.01 1/30 0.0025 no 

33 2.61 0.252 0.10 0.19 0.01 1/30 0.001 no 

34 2.61 0.505 0.19 0.27 0.01 1/30 0.0005 no 

35 2.61 0.561 0.21 0.29 0.01 1/30 0.00045 no 

36 2.61 0.631 0.24 0.29 0.01 1/30 0.0004 yes 
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                             (a)                                             (b) 

Fig. 16 (a) Phase chart at a viscosity ratio of 1.00 (b) The drop breakup conditions at a viscosity ratio of 1.00. ‘Yes’ 

indicates drop breakup. ‘No’ means drop did not break 

 

 
                              (a)                                            (b) 

Fig. 17 (a) Phase chart at a viscosity ratio of 0.01 (b) The drop breakup conditions at a viscosity ratio of 0.01. ‘Yes’ 

indicates drop breakup. ‘No’ means drop did not break 
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5 Conclusions 

   In this paper, numerical simulations of the motion of Newtonian liquid drops flowing through a single pore in a 

microchannel as a result of the continuous flow of another immiscible liquid have been presented. We used the 

conservative phase-field lattice Boltzmann method to perform transient three-dimensional simulations. 

The numerical code is verified and validated by a series of benchmark cases. The recovery of Laplace pressure is 

tested, and the deviation between numerical and theoretical predictions is within 3%. Four cases of the layered flow of two 

immiscible liquids are performed to confirm our method can simulate the flow with viscosity ratio up to 1000. Cases of 

recovery of the contact angle at the curved surface are conducted and obtained consistent results. The effect of the mesh 

resolution is investigated using the gravity-driven motion of a drop in ambient liquid in a channel, and it indicates that 

under the present circumstances 32 lu is enough for the drop diameters.  

Numerical simulation of a drop falling through a pore due to gravity in an ambient continuous liquid phase is 

conducted and the results are in qualitatively good agreement compared to the experimental data of Ansari et al. (2018, 

2019). In addition, quantitative verifications confirmed that the pressure distribution inside the deforming drop is 

consistent with the drop shape as it passes through the pore. 

The influence of the surface tension, the average velocity of the continuous flow, and the viscosity ratio on the drop 

breakup were discussed in this paper. Smaller surface tension (high Weber number) promotes drop breakup when it passes 

through the pore throat. Lower Reynold number increases the probability of drop breakup. Drops of higher viscosity than 

the continuous phase break easier because of lower relative velocity in conjunction with interaction with the solid pore 

walls. Also, the coalescence of satellite drops is observed during this process. Finally, we show a Ca versus We phase chart 

to discuss the relative importance of the forces in this system leading to drop deformation and possibly breakup. We find 

that the lower surface tensions and larger viscous forces that dominate inertial forces are the key factors for the breakup. At 
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the same time, a clear virtual dividing line is found in the We versus Re map that distinguishes breakup from non-breakup. 

At constant Re, the critical We is smaller for the more viscous drop to break. 

In the future work, we will focus on the drop breakup and coalescence in realistic porous media. We will also conduct 

experiments in porous media to visualize the multiphase flow to validate simulations quantitatively. 
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Appendix A 

The discrete velocity set for D3Q27 used for f population is defined as follows: 

»AtA�A®¼ = ½000		100		−100 		010	 0	−10 		001		 00−1		111		−111 		 1−11 		−1−11 		 11−1		−11−1		 1−1−1		−1−1−1		110		−110 		 1−10 		−1−10 		101		−101 		 10−1		−10−1		011		 0−11 		 01−1		 0−1−1¾ 
And the corresponding weights are: 

71 = 1216 ¿64,			k = 0,16,			k = 1 − 6,1,					k = 7 − 14,			4,					k = 15 − 26.  
 The discrete velocity set for D3Q15 used for g population is defined as follows: 

 

»AtA�A®¼ = ½000		100		−100 		010	 0	−10 		001		 00−1		111		−111 		 1−11 		−1−11 		 11−1		−11−1		 1−1−1		−1−1−1	¾ 
And the corresponding weights are: 

71 = 172 À16,			k = 0,8,					k = 1 − 6,1,					k = 7 − 14, 
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Appendix B 
 

The WMRT transformation matrix for D3Q27 is given as: 

 

Â =

ÃÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÅ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 0 0 0 00 0 0 1 −1 0 0 1 1 −1−1 1 1 −1−1 1 1 −1−1 0 0 0 0 1 −1 1 −10 0 0 0 0 1 −1 1 1 1 1 −1−1−1−1 0 0 0 0 1 1 −1−1 1 1 −1−10 0 0 0 0 0 0 1 −1−1 1 1 −1−1 1 1 −1−1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 1 −1−1−1−1 1 1 0 0 0 0 0 0 0 0 1 −1−1 10 0 0 0 0 0 0 1 −1 1 −1−1 1 −1 1 0 0 0 0 1 −1−1 1 0 0 0 00 2 2 −1−1−1−1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 −2−2−2−20 0 0 1 1 −1−1 0 0 0 0 0 0 0 0 1 1 1 1 −1−1−1−1 0 0 0 0−1 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 10 −2 2 0 0 0 0 4 −4 4 −4 4 −4 4 −4 1 −1 1 −1 1 −1 1 −1 0 0 0 00 0 0 −2 2 0 0 4 4 −4−4 4 4 −4−4 1 1 −1−1 0 0 0 0 1 −1 1 −10 0 0 0 0 −2 2 4 4 4 4 −4−4−4−4 0 0 0 0 1 1 −1−1 1 1 −1−10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1−1 1 −1 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1−1 1 1 0 0 0 0 1 −1 1 −10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1−1−1−1 1 10 0 0 0 0 0 0 1 −1−1 1 −1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 01 −1−1−1−1−1−1 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 00 −2−2 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 −4−4−4−40 0 0 −1−1 1 1 0 0 0 0 0 0 0 0 2 2 2 2 −2−2−2−2 0 0 0 00 0 0 0 0 0 0 2 −2−2 2 2 −2−2 2 −1 1 1 −1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 2 2 −2−2−2−2 2 2 0 0 0 0 0 0 0 0 −1 1 1 −10 0 0 0 0 0 0 2 −2 2 −2−2 2 −2 2 0 0 0 0 −1 1 1 −1 0 0 0 00 1 −1 0 0 0 0 4 −4 4 −4 4 −4 4 −4−2 2 −2 2 −2 2 −2 2 0 0 0 00 0 0 1 −1 0 0 4 4 −4−4 4 4 −4−4−2−2 2 2 0 0 0 0 −2 2 −2 20 0 0 0 0 1 −1 4 4 4 4 −4−4−4−4 0 0 0 0 −2−2 2 2 −2−2 2 2−1 2 2 2 2 2 2 −8 8 8 8 8 8 8 8 −4−4−4−4−4−4−4−4−4−4−4−4ÆÇ

ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÈ

 

 

Appendix C 
The L2 convergence analysis of the layered flow of two immiscible liquids at η=100 is shown in Fig.18. For the four 

cases, the channel heights were equal to 20, 30, 40 and 80 lu, respectively. The L2 error as a function of the mesh size is 

shown at a log-log plot in Fig.18. Second-order convergence is observed 

 

Fig.18 L2 Error vs Mesh size at η=100 
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Appendix D 
Mesh sensitivity analysis concerning flow resolution was performed for Case 1. The velocity profiles at 4̅=9.33 along 

the line y=Y/2 in the x=X/2 plane obtained using different mesh are shown in Fig. 19. The gravitational acceleration is set 

to -3.38×10-5, -1.0×10-5, and -2.96×10-6 lu to achieve the same Reynold number for droplet diameters D=21, 32, and 48 lu, 

respectively (the dimensions of the domain are 27×81×180,40×120×270 and 60×180×405 lu). Velocity is 

non-dimensionalized as �� = �/�5�. The mesh with D=32 lu has reached mesh independence because the results have 

good agreement with D=48 lu. 

 
Fig. 19 The velocity profiles along the line y=Y/2 in the x=X/2 plane obtained on different mesh 
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