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Abstract

Sensor networks have been deployed in various environ-
ments, from battle field surveillance to weather monitoring.
The amount of data generated by the sensors can be large.
One way to analyze such large data set is to capture the
essential statistics of the data. Thus the quantile computa-
tion in the large scale sensor network becomes an impor-
tant but challenging problem. The data may be widely dis-
tributed, e.g., there may be thousands of sensors. In addi-
tion, the memory and bandwidth among sensors could be
quite limited. Most previous quantile computation meth-
ods assume that the data is either stored or streaming in
a centralized site, which could not be directly applied in
the sensor environment. In this paper, we propose a novel
algorithm to compute the quantile for sensor network data,
which dynamically adapts to the memory limitations. More-
over, since sensors may update their values at any time, an
incremental maintenance algorithm is developed to reduce
the number of times that a global recomputation is needed
upon updates. The performance and complexity of our al-
gorithms are analyzed both theoretically and empirically on
various large data sets, which demonstrate the high promise
of our method.

1 Introduction

Sensor networks have become increasingly common in
our everyday life. Wireless sensors are one type of sensors
which gains popularity due to the fact that they can be de-
ployed anywhere. Wireless sensor network usually consists
of a large number of small, battery-powered, wireless sen-
sors. Deployed in an ad-hoc fashion, these sensors collab-
orate to monitor physical environments at fine spatial and
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temporal scales [6], as illustrated below.

• Battlefield surveillance. The wireless sensors may be
attached to soldiers and military vehicles in the battle-
field. These sensors may record and report various sta-
tus and conditions, e.g., the amount of remaining fuel
and ammunition, the surface temperature, the blood
pressure, the heart beat rate, etc. Based on such in-
formation, the field commanders can make timely and
intelligent decisions.

• Weather monitoring. To monitor the changes in at-
mosphere, a large number of sensors are deployed to
record various kinds of data, such as temperature, wind
velocity, precipitation, etc., at different locations.

• Environment monitoring. In a large building or fac-
tory, it is important to keep track of the temperature or
air quality of different parts of the building.

It is important to keep track of the basic statistics of the
values measured by the sensors. For instance, it is extremely
important for a commander to know the average or median
amount of fuel left in his tanks in a battlefield.

A monitoring infrastructure is proposed in [14] for com-
puting aggregates in a sensor network. Sensors are orga-
nized in a tree structure as shown in Figure 1. This organi-
zation also fits the communication model of sensors since
they usually can only contact with their neighbors due to
spatial and power constraints. In this architecture, every
node in the tree is a sensor. To compute the aggregates, ev-
ery internal node computes the aggregates over all the data
from itself and its descendants and reports them to its par-
ent. However, the authors in [14] admit that this method
only works for decomposable functions, but not for non-
decomposable functions. f is a decomposable function if
there exists a function g such that for all k

f(v1, . . . , vn) = g(f(v1, . . . , vk), f(vk+1, . . . , vn)).

Decomposable functions include min, max, average, etc.
Unfortunately, median and other φ-quantiles are not decom-
posable, where the φ-quantile is the element ranking �φN�
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if the N values are sorted in the increasing order. Quantiles
cannot be computed by the method proposed there. How-
ever, quantiles are very useful in understanding the statistics
of the sensor data. For instance, a military commander may
wish to know the amount of remaining fuel for the 10% of
tanks with the least amount of fuel, whereas a safety moni-
tor may wish to know the median inflammable gas concen-
tration in a mine. These are the examples of quantile com-
putation over sensor networks. Besides the undecompos-
able property, quantile computation over sensor networks
has the following issues.

...

...

sensors
data links

Figure 1. A Tree-Structured Sensor Network

• Limited memory: A sensor may only consist of several
KB memory physically.

• Limited bandwidth: A sensor can only emit a limited
volume of data in its life cycle.

• Highly distributed: The number of sensors can be in
the range of hundreds to thousands or even more.

• Dynamically organized: At any given time, some sen-
sors may leave the network due to various reasons,
such as power outage, etc. New sensors may join the
network too.

• Incremental maintenance required: The sensor values
may change significantly over time. It is infeasible
(both in time and energy consumption) to recompute
the quantile value of the whole sensor network upon
each update. Thus, an incremental update algorithm
has to be worked out.

Due to all these constraints, it is infeasible to compute
the exact quantile without incurring a great burden on the
sensor network since it requires all sensors to send their
data to the central server and be processed there. It would
take too much energy and/or memory to relay the data to
the server. A reasonable alternative is to compute an ε-
approximate φ-quantile over N sensors which are orga-
nized in a tree structure like Figure 1, i.e., to compute
an approximate quantile whose rank is within the range
[(φ − ε)N, (φ + ε)N ] in a tree-structured sensor network
(assuming each sensor provides one value).

The most common technique for computing quantile
sketch is to use the traditional histogram. There are two
main types of histograms: equi-width vs. equi-depth. Both
methods cannot guarantee the error bound.

There have been several interesting proposals for on-
line quantile computation [11, 9, 13]. However, most of
them assume a centralized environment. Moreover, they as-
sume either the data cardinality is known (in which case, the
memory can be bound) or the memory is not bounded (i.e.,
it grows with the cardinality of the data set). Unfortunately,
this is not the case in the sensor network where the mem-
ory is physically bounded, e.g., 4KB [10], but the number
of sensors may be unknown due to the dynamic nature of
the sensor network. Obviously, the existing works are not
directly applicable to the scenario studied in this paper.

In this paper, a new algorithm is proposed that can mini-
mize the error bound of the quantile. First, an existing algo-
rithm ([13]) is extended to cover the distributed form. To
address the problem of limited memory, a novel adaptive
buffer allocation technique is invented. Previous work [11]
proposes maintaining several buffers in the memory, called
sketch, which is a summarization of the original data. In
these approaches, both the number and the size of buffers
are fixed at run time. In our approach, at lower levels
of the sensor network tree, the memory is partitioned to
a smaller number of buffers and the size of each buffer is
large, which leads to less compression and higher accuracy.
At higher levels, the compression is enhanced so that the
number of buffers becomes larger and the size of each buffer
gets smaller. This novel dynamic buffer allocation scheme
enables us to accommodate all the data in a sketch with lim-
ited memory.

In previous algorithms [11], each buffer is associated
with a weight. The weight indicates the degree of com-
pression. Weight w means that one element in the buffer
represents w elements in the original data set. The weight
for all the elements in a buffer is the same. We use non-
uniform weight mechanism to solve the incremental main-
tenance issue. When a sensor reports a new value, both
the new value and the old one are propagated to the root
- We assume that the root is a server which has signifi-
cant computing power and large memory. The weight as-
sociated with the old value in the buffer decreases by one,
while the new value is recorded in the server. We can also
insert this new value into the buffer using the existing in-
cremental histogram maintenance methods which may in-
troduce additional error. When the error bound reaches a
certain degree, a new global sketch recomputation may be
invoked. Therefore, the dynamic buffer allocation and the
non-uniform weight management for approximate quantile
computation form the two major contributions of this paper.

The remainder of the paper is organized as follows. We
introduce related work in Section 2. Sections 3 and 4
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present the problem formulation and overview of our ap-
proach. Section 5 presents the sketch generation and quan-
tile computation algorithm, and Section 6 describes the in-
cremental maintenance algorithm. The empirical results are
reported and analyzed in Section 7. We discuss further ex-
tensions in Section 8 and conclude the study in Section 9.

2 Related Work

There are two areas of research work related to this
study: (1) computing aggregates of sensor data, and (2)
one-scan quantile computation.

2.1 Aggregates Computation over Sensor Data

Zhao et al. proposes a new method to compute decom-
posable aggregates over sensor networks [14], where a tree
is constructed for a set of sensors. Since the radius that a
sensor can send messages to is limited by its power, it is
likely that a sensor may not be able to send the message di-
rectly to the base station. Thus, it will first send the message
to another sensor, and that sensor may relay the message to
the third one, and so on until the message reaches the base
station. To eliminate duplicate messages and message loss,
the sensors are organized into a tree. Each sensor has a
known parent, and it will send the messages to its parent.
As a result, there will be no duplicate messages. Moreover,
if there is a missing message, it is easy to identify which
sensor needs to resend it.

After constructing the tree, the decomposable aggregates
can be easily computed in a divide-and-conquer fashion.
Each internal node will compute the aggregates based on
the data from its children and report the aggregates to its
parent. Thus, all decomposable aggregates can be calcu-
lated efficiently. However, this method cannot be applied to
compute quantile because it is not decomposable.

2.2 One-Scan Quantile Computation

The problem of computing median or quantiles has been
explored over decades. The theoretic results and methods
are summarized in the survey by Mike Paterson [13]. We
are interested in the space requirement for computing the
exact and approximate quantiles. Munro and Paterson [12]
show that Ω(N1/p) elements are required to calculate the
exact φ-quantile in p scans. Exact quantile computation
over stream data using one scan must require the mem-
ory size equal to the data size. Thus, approximate quantile
computing algorithms raised great interests recently. Sev-
eral studies have made progress at minimizing the memory
consumption. Manku, Rajagopalan and Lindsay [11] re-
formulate the Munro-Paterson algorithm [12] and present

a more efficient one-scan algorithm that constructs an ε-
approxiamte φ-quantile in O(1

ε log2(εN)) space. A prob-
abilistic algorithm is also given in [11]. Greenwald and
Khanna [9] propose an approach which associates rank er-
ror with each element maintained in the sketch. Their al-
gorithm only requires O(1

ε log(εN)) space to calculate ε-
approximate quantile. Other related work includes multiple
passes [3], different error metrics [7], computation efficient
[2, 5, 13], distributed streams [8], and other statistics [4, 1].

3 Problem Formulation

In this paper, we study the problem of computing quan-
tiles over a set of remote sensors. Before formulating the
problem, we summarize the notations that will be used
throughout this paper in Table 1.

Notation Description

N the number of sensors
φ the φ-quantile to be calculated
vφ the value of φ-quantile calculated
v̂φ the real value of φ-quantile
φ̂ φ̂N : the real rank of vφ

ε quantile error : |φ − φ̂|
M the maximum space in each sensor
b the number of buffers
k the size of each buffer
Xi the ith buffer
w(Xi) the weight of Xi

Table 1. Notation Used throughout the Paper

The sensors are organized in a sensor network as in Fig-
ure 1. In this tree, each internal node (except the root) and
leaf node may be a sensor. For simplicity, we assume that
all the original data are submitted from leaf nodes. Non-leaf
nodes are only responsible for processing data or sketches
collected from lower level sensors.

The ε-approximate φ-quantile is the value ranking be-
tween �(φ − ε)N� and �(φ + ε)N�. We want to generate
the sketch in the root node that minimizes ε when we query
the φ-quantile. We call this problem approximate quantile
computation problem over sensor networks.

The second task is to dynamically maintain the sketch
in the root node. The value at a sensor may change at any
time. If the value changes significantly, then the old value
will be replaced with the new one. It is extremely inefficient
to recompute the sketch from the scratch whenever such re-
placement takes place. Assume there is a user-specified ap-
proximation bound ε′. We aim to develop an algorithm that
dynamically changes the sketch in the root node if the re-
sulting error bound (for all quantiles) is less than ε′.
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4 Overview

We first illustrate the general framework of our algo-
rithm. The computation conducted in each sensor can be
divided into three operations: COLLECT, CONDENSE, and
SUBMIT.

i. COLLECT. The sensor collects its descendant sensors’
data (including sketches) into its local sketch.

ii. CONDENSE. The sensor condenses the data in its lo-
cal sketch so that it can reserve the space for incoming
data.

iii. SUBMIT. After all the data from its descendant sen-
sors are collected and processed, the sensor submits
its sketch content (or summarized content) to the up-
per level sensor (its parent).

...

...
2 15 37 46 w : 15

3 11 17 21 w : 8

7 25 43 51 w : 6

4 9 39 103 w : 3

sensors

data links
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3 11 17 21 w : 17
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level 1
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Figure 2. Distributed Quantile Computing

The first two operations are repeatedly conducted in ev-
ery sensor. For the leaf sensor, the only step it has to do is to
submit its value. Figure 2 shows the processing framework
of a three-level sensor network (the sketch structure will be
introduced in Section 5.1). Sensor s11 collects all the data
from its underlying leaf sensors s21, . . . , s2m into its sketch.
Assume the sketch structure has b buffers recording k ele-
ments each. Apparently, m may be larger than bk. Thus, we
have to condense the buffers in order to leave space for new
data. After condensing the buffers, some buffer may not
represent k raw data any more. We assign weight w to each
buffer, which shows how many raw data this buffer summa-
rizes. When s11 collects all the data from leaf nodes, it will
submit the data in its sketch to s01. To conserve the power,
it may not be good to submit all the data to the higher level
sensor. Figure 2 shows an alternative, instead of submit-
ting four buffers in the sketch to s01, it condenses the four
buffers into two buffers before submitting them. We discuss
these alternatives in the following sections.

5 Approximate Quantile Computing

Previous work on computing quantiles focuses on a cen-
tralized environment: All raw data are directly sent to a cen-
tral server for processing. The existing methods, e.g., one-
scan algorithms over stream data, do not support distributed
structures present in a sensor network. In this section, we
first introduce the existing centralized quantile computation
methods, and then present our algorithm which extends the
Munro-Paterson algorithm [12] in the distributed environ-
ment. Further, we introduce the adaptive buffer allocation
mechanism in the distributed environment where only lim-
ited memory is available in each node.

5.1 Centralized Environment

Manku et al. [11] builds a uniform framework for one-
scan approximate quantile computation over stream data in
a centralized system. Figure 3 illustrates a stream data pro-
cessing model: data arrive at the central server one by one
and are processed only once. A compact summarization
structure (sketch) is maintained in the server to answer the
quantile computation queries. In the centralized environ-
ment, there does not exist any distribution structure in the
raw data. All the data go to the central sever once and then
are discarded.

2 15 37 46 w : 15

3 11 17 21 w : 8

7 25 43 51 w : 6

4 9 39 103 w : 3

Sketch

...

Data Stream

d1d2dn

central
server

Figure 3. Centralized Quantile Computing

The framework proposed in [11] is parameterized by two
integers b (the number of buffers) and k (the size of each
buffer). A positive integer w (weight) is associated with
each buffer, denoting how many raw input values are rep-
resented by each element in the buffer. For example, a
[2 15 37 46 | w : 15] buffer actually summarizes 60 (4×15)
raw sensor values using 5 elements: four elements for sen-
sor values, one for the weight. We can view these buffers as
equi-depth histograms. Algorithms under this framework
consist of three basic operations: NEW, COLLAPSE, and
OUTPUT [11].

• NEW. The sensor allocates an empty slot in an unfilled
buffer and records the input data. If the buffer is full
and no space available for a new empty buffer, it will
call the COLLAPSE operation to release some space.
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• COLLAPSE. The sensor merges c full buffers, X1,
X2,. . . , Xc into one buffer Y , where w(Y ) =
Σc

i=1w(Xi). The detail of the collapse operation is de-
scribed in [11]. Briefly, it first makes w(Xi) copies
of each element in Xi, puts all elements together,
and sorts them into a sequence. Then it evenly seg-
ments the sorted sequence by width w(Y ) and selects
the middle element in each segment as its represen-
tative in buffer Y . That is, each element is in posi-
tion jw(Y ) + offset(Y ) for j = 0, . . . , k − 1, where
offset(Y ) = w(Y )+1

2 if w(Y ) is odd, and offset(Y )
= w(Y )

2 or w(Y )+2
2 if w(Y ) is even.

Figure 4 shows a collapse operation on two buffers a
and b. Buffer a and b record the raw data: w = 1
means each element in a and b represents one raw
value. We simply put the contents of these two buffers
into a pool, sort them, evenly choose 4 elements to
form a new buffer c. The result buffer c has weight
2 since each element in c represents two raw values.
COLLAPSE operation discards a and b and retains c.
Thus, the space of one buffer is released, which can be
used for the NEW operation. Conceptually, a buffer is
equivalent to an equi-depth histogram. However, the
COLLAPSE operation does not involve any interpolat-
ing operation which is popularly used in merging two
equi-depth histograms.

2 9 11 15 w : 1 3 5 8 10 w : 1

2 3 5 8 9  10 11 15

2 5 9 11 w : 2

(a) (b)

(c)

pool

Figure 4. COLLAPSE Operation

• OUTPUT. The sensor makes w(Xi) copies of each el-
ement in full buffers and 1 copy of elements in the un-
filled buffer, sorts them into a sequence, and outputs
the element in position �φN� as the φ-quantile.

Figure 3 shows whenever new data arrive, we “squeeze”
the sketch structure to accommodate them. We put data
in the empty slots of an unfilled buffer if it exists. Other-
wise, two or more buffers are collapsed so that new data
can be stored in the newly freed buffer. In this frame-
work, data is only processed in one scan. Algorithms vary
according to different COLLAPSE policies. The Munro-
Paterson algorithm implements one of the simplest poli-
cies: Select two buffers with the same weight and col-
lapse them to one, the newly formed buffer has a doubled

weight. Manku et al. [11] reviewed the Munro-Paterson al-
gorithm [12] and proposed their own in a unified way. Re-
cently, Greenwald-Khanna [9] proposed a different frame-
work which consumes less memory than both of them. Al-
though the Munro-Paterson algorithm is not as efficient as
the Manku and Greenwald-Khanna algorithms, it is much
easier to be applied in distributed environments. The ana-
lytical result about the error bound of the Munro-Paterson
algorithm also holds straightforwardly in sensor networks.
The simplicity comes from the fact that a tree structure as
shown in Figure 1 does not affect the Munro-Paterson al-
gorithm much. Therefore, our work is upon the Munro-
Paterson algorithm. Certainly, it is an interesting problem
to adapt the Manku and Greenwald-Khanna algorithms in
the setting of sensor networks.

5.2 Distributed Environment

For the distributed environment shown in Figure 2, we
apply the Munro-Paterson algorithm first in level-1 nodes
(each level-1 node can be viewed as a local server) when
they collect raw data from level-2 nodes as shown in Fig-
ure 2. After level-1 nodes build the internal sketches in
their buffers, level-1 nodes submit their sketches to level-
0 nodes. This process repeats between level-i nodes and
level-(i− 1) nodes until it reaches the root node. The ques-
tion is how to handle the COLLAPSE operations in the level-
i node (i > 0) since level-i node may receive different
weighted buffers from its children. That is, the problem
setting in the distributed environment has changed from the
original one where the Munro-Paterson algorithm was pro-
posed. In the new context, data do not arrive as one raw
element, but as a sketch. Data may come in a format like
[2 15 37 46] with weight 8, which represents underlying 32
(4 × 8) raw sensor values. The level-(i − 1) (i < h, where
h is the height of the tree) nodes can only see the sketches
instead of raw elements.

Suppose a level i node S collects sketches from its chil-
dren. There are c buffers, X1, . . . , Xc, from the sketches
of its children. We can reuse the operations defined in Sec-
tion 5.1: If S has space, insert Xi into it. If there are two
buffers with the same weight in S, a COLLAPSE operation
is performed. Repeat the new and collapse operations until
all c buffers are put in the sketch of S. For each node, a spe-
cific buffer is prepared to accept the data from the unfilled
buffers in its child nodes. When a buffer is full, it constitutes
a buffer with weight 1 and insert it into the sketch. For sim-
plicity, we will ignore this case in the following discussion.
We call the above algorithm distributed Munro-Paterson al-
gorithm (DMP).
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5.3 Distributed Environment with Limited Mem-
ory and Bandwidth

As stated in the introduction section, sensors usually
only have limited memory and bandwidth available for
quantile computation. In this section, we introduce a new
operation, called FOLD, into DMP to make it fit this partic-
ular setting.

DMP requires that the total number of sensors, N , must
be known in advance so that k and b can be determined be-
fore the algorithm runs. That is, parameters k and b have
to be preset in each sensor. However, this requirement can-
not always be satisfied because low level sensors may not
know the total number of sensors existing in the whole net-
work. Furthermore, the makeup of sensor networks may dy-
namically change due to many factors. For example, some
sensors may complete their life cycle and detach from the
sensor network, while the sensor network may expand with
newly added sensors in the mean time. In either case, N is
an unknown value. We modify DMP in order to handle this
situation. We assume the only parameter we know is M , the
maximum memory that a sensor can contribute to quantile
computing. This parameter is often physically determined
when the sensor is deployed.

Given limited memory and bandwidth in sensors, we
would like to minimize the error bound of quantile compu-
tation in the root node. For simplicity, we assume each sen-
sor has M elements to store sketches, and it can only submit
these M elements to its parent node. In practice, our pro-
posed algorithm can handle any bandwidth constraint which
may has less than M elements.

2 9 11 15 w : 2

2 11 w : 4

(a)

(c)

9 15 w : 4

(b)or

Figure 5. FOLD Operation

For a given k and b, the maximum capacity of DMP (in-
cluding the original Munro-Paterson algorithm) is k2b−1.
The proof is given in Section 5.4. That is, when the to-
tal number of sensors exceeds k2b−1, DMP cannot process
them unless the values of k and b are adjusted. Therefore,
we introduce a new operation FOLD: When N > k2b−1, the
FOLD operation will fold a buffer in half: only retain half
of the elements and free the remaining ones. Suppose there
are k elements e1, e2, . . . , ek in each buffer. If k is even,
we could either choose e1, e3, . . . , ek−1 or e2, e4, . . . , ek.
If k is odd, we could either choose e1, e3, . . . , ek or
e2, e4, . . . , ek−1. That means, the new buffer has a half size

of the original one, but its weight is doubled. Figure 5 shows
that a FOLD operation is applied to buffer a. It sorts the ele-
ments in a and evenly splits them into buffer b and c. Either
of them can be taken as the folding result.

If we apply the FOLD operations on every buffer 1

in the sketch, the maximum capacity of the sketch turns
to k22b−1/2, which is larger than the previous capacity
k2b−1 if b > 1. We call the new algorithm adaptive dis-
tributed Munro-Paterson algorithm (AMP). Its pseudo-
code is shown in Algorithm 1.

Algorithm 1 Adaptive Distributed Munro-Paterson Algo-
rithm
Input: A series of buffers Bi, which has size ki and weight ui

Output: A series of buffers Oj with size k and weight vj

1: initialize O1 = B1, k = k1, v1 = u1;
2: for each Bi (i � 2) do
3: if k < ki, then

FOLD Bi log(ki/k) times,
set ui = uiki/k and ki = k;

4: if k > ki, then
FOLD all Oj log(k/ki) times,
set vj = vjk/ki and k = ki;

5: if ∃ an empty Oj , then insert Bi;
6: else
7: if ∃ Oj s.t. vj ≡ ui, then merge Bi, double vj ;
8: else FOLD all Oj , k = k/2, double vj , goto line 3;
9: return non empty buffers Oj ;

The maximum capacity we can achieve through FOLD

operations is around 2M (k = 1 and b = M ). Considering
M is usually larger than 32, it is large enough to accommo-
date any existing sensor network in the world.

The previous discussion only considers the memory lim-
itation and assume each node can completely submit its
sketch to the higher level node. If it is not the case, we can
reduce the sketch size by FOLDing the buffers in the sketch.
Thus, AMP can compute quantile in bandwidth-limited dis-
tributed environments too.

5.4 Analysis

In this section, we first briefly describe the error bound
of the Munro-Paterson algorithm (given in [11]) and then
analyze the error bound of DMP and AMP by comparing
them with the Munro-Paterson algorithm.

1Actually we may fold the longest buffers on demand. This may pro-
duce higher accuracy because less compression is made on the buffers.
Due to space limitation, we will not show the detailed proof and analysis
of this variation.
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5.4.1 Munro-Paterson Algorithm

With fixed value of k and b, the Capacity, the maximum
number of elements that the Munro-Paterson algorithm can
process is fixed.

Property 1 The capacity of the Munro-Paterson algorithm
is k2b−1.

Since the Munro-Paterson algorithm always collapses
two equal-weighted buffers, the weights follow the geo-
metric series with some values absent. The sketch reaches
its maximum capacity when all the b buffers are full
and the weights of buffers constitutes a sequence like,
1, 1, 2, , . . . , 2b−2. The first 1 is for the unfilled empty
buffer, the second 1 is the full buffer with weight 1. In
this case, the sketch cannot accept any new input data since
there is no two buffers having the same weight and no COL-
LAPSE operation can be performed.

Next, let us examine the rank error between the approx-
imate quantile and the real quantile. We denote the rank
error by Re, which defines the error bound of calculated
quantile: ε = Re/N .

Property 2 The rank error generated by the algorithms
based on the above framework is at most W−C−1

2 + wmax,
where W denotes the weight sum of all the COLLAPSE op-
erations performed during the whole process, C denotes the
total number of COLLAPSE operations, and wmax is the
maximum weight among the buffers before the OUTPUT op-
eration is invoked [11].

Please refer to [11] for the proof of Property 2.

5.4.2 Distributed Munro-Paterson Algorithm

Let’s examine the rank error generated by DMP. Interest-
ingly, we found it is exactly the same as that of the original
Munro-Paterson algorithm if the number of raw values are
the same. These two algorithms can run in two settings: one
for data stream, and the other for sensor network. Suppose
the former has N raw values and the latter has N leaf nodes,
we show that the error bounds of the quantile outputs are the
same if both of them have the same value of k and b. We de-
pict these two settings in Figure 6. Figure 6(a) is a setting of
data stream: raw data arrive at the root node directly while
Figure 6(b) is a setting for sensor networks: raw data arrive
at low level sensors first and then their sketches are reported
to the higher level sensors. Without loss of generality, we
only show two levels here in Figure 6(b). We call the former
setting stream-setting, and the latter sensor-setting.

We denote the sum of weights of all COLLAPSE opera-
tions in the stream-setting by W and the number of COL-
LAPSE operations by C. Correspondingly, these two values
in the sensor-setting are W ′ and C ′ respectively.

... ... ...

N = N1 + N2 N1 N2

(a) (b)

Figure 6. Munro-Patterson Algorithm and its
Distributed Version

Lemma 1 W = W ′ and C = C ′.

Proof. Suppose the root node in the stream-setting has l
full buffers, X1, . . . , Xl (w(Xi) < w(Xi+1)) and the root
node in the sensor-setting has l′ full buffers, X ′

1, . . . , X
′
l

(w′(Xi) < w′(Xi+1)). We have l = l′ and w(Xi) =
w′(X ′

i) because the decomposition of �N/k� to a sum of
several elements in the geometric series is unique (we can
view this decomposition as the binary representation of
�N/k�). If two buffers share the same weight w, they
must share the exact same history of COLLAPSE opera-
tions though the content of buffers may be different. That
is, each buffer must be collapsed from two buffers with
weight w/2, each of which must be collapsed from an-
other two buffers with weight w/4, and so on. Thus,
W =

∑l
i=1 log(w(Xi))×w(Xi). Similarly, we have W ′ =∑l′

i=1 log(w′(X ′
i))×w′(X ′

i) too. Therefore, W = W ′. For
the total number of COLLAPSE operations, we can draw the
similar result, C = C ′. �
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Figure 7. Collapse Trees: Stream-Setting

We illustrate Lemma 1 using Figure 7 and 8 which are
the tree representations of operations carried by these two
algorithms [11] in the stream-setting and sensor-setting,
respectively. The leaf node represents a buffer with weight
1. The non-leaf node represents a buffer which is collapsed
from two child buffers. The labels indicate their weights.
W (also W ′) is equal to the weight sum of all the nodes. C
is equal to the half number of the edges. The trees in Figure
8 are divided into two parts: one from the sketch construc-
tion in the n1 partition (Figure 6(b)), the other from that in
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the n2 partition (Figure 6(b)). Be careful that the trees in
Figure 7 and 8 have different semantics from that in Figure
6. According to DMP, these trees finally are collapsed to-
gether. As we can see, the trees in Figure 7 and 8 are exactly
the same although they are generated in different orders: in
the stream-setting, the tree is generated from left to right
and bottom to up whereas in the sensor-setting the trees for
n1 and n2 parts are generated first and then collapsed. The
exact same structure of COLLAPSE operations in both set-
tings indicates the sum of weights and the total number of
COLLAPSE operations are equal in both settings.

1

2

4

8

1

2

4

8

16

1

2

4

1

2

n2

n1

Figure 8. Collapse Tree: Sensor-Setting

Lemma 2 The rank error generated by the distributed
Munro-Paterson algorithms is also at most W−C−1

2 +
wmax.

Proof. by Property 2 and Lemma 1. �
Thus, the error bound given by the original Munro-

Paterson algorithm can be also applied in the distributed
Munro-Paterson algorithm. We have W = (b − 2)2b−1,
C = 2b−1 − 2, and wmax = 2b−2. As long as k2b−1 � N
and kb � M are satisfied, we can derive the error bound:
ε = ((b − 2)2b−2 + 1/2)/N [11]. For the typical values of
M , such as 256, 512, 1024, Table 2 lists several common
combinations of k, b, the maximum capacity (N ), and the
theoretical error bound of quantile output (ε). Our experi-
ments show that in practice the real error is less than this
bound.

5.4.3 Adaptive Distributed Munro-Paterson Algo-
rithm

In this subsection, we finalize the error bound of AMP. Sup-
pose M = 2u, for the lowest level non-leaf nodes in the
sensor network, we set k = 2u. The rank error of quan-
tile output using AMP can be derived from a similar proof
(similar to Property 2) described in [11].

M k b N ε

256 2 512 0.0010
512 128 4 1024 0.0008

64 8 8192 0.0469
512 2 1024 0.0005

1024 256 4 2048 0.0042
128 8 16384 0.0234
1024 4 8192 0.0010

4096 512 8 65536 0.0059
256 16 8388608 0.0273

Table 2. Total Memory (M), Number of Sensors
(N), and Error ( ε)

Property 3 The rank error generated by the adaptive
distributed Munro-Paterson algorithm is also at most
Wc+Wf−C−1

2 + wmax, Wc is the weight sum of all COL-
LAPSE operations, Wf is the weight sum of all FOLD op-
erations, C is the number of COLLAPSE operations, and
wmax is the maximum weight among the buffers before the
OUTPUT operation is invoked.

Let’s compare the error bound of AMP with DMP. In
AMP, when the sketches are delivered up one level and the
capacity has to be changed through the FOLD operation, k
is shrunk to a half. Suppose the value of k in the root node
is 2v if we use AMP in a sensor network. We can also run
DMP in the same sensor network and set k to 2v and b to
2u−v . In this way, we need not adjust the values k and
b during the execution of DMP since the combination of
k = 2v and b = 2u−v guarantees that the capacity is enough
for this sensor network. Intuitively, the error bound of AMP
is less than that of DMP. Let the sum of weights be W
(DMP) and W ′ = W ′

c + W ′
f (AMP) respectively.

Lemma 3 W � W ′.

Proof. Suppose the root node in the DMP has l full buffers,
X1, . . . , Xl (w(Xi) < w(Xi+1)) and the root node in AMP
has l′ full buffers, X ′

1, . . . , X
′
l (w′(Xi) < w′(Xi+1)). We

have l = l′ and w(Xi) = w′(X ′
i) because the decompo-

sition of �N/k� to the sum of several elements in the geo-
metric series is unique (we can view this decomposition as
the binary representation of �N/k�, where k is the same for
both root nodes of DMP and AMP in our setting).

In DMP, W =
∑l

i=1 f(Xi), each f(Xi) can be calcu-
lated by the following recursive function:

f(1) = 1,

f(w) = w + 2f(w/2).
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In AMP, W ′ =
∑l

i=1 f ′(Xi), each f ′(Xi) can be calcu-
lated by the following recursive function:

f ′(1) = 1,

f ′(w) =
{

w + 2f(w/2)(COLLAPSE),
w + f(w/2)(FOLD).

By induction, we can prove that f ′(w′) � f(w) if w′ = w.
Overall, we have W ′ � W . �

We can construct an operation tree similar to Figures 7
and 8, a COLLAPSE operation introduces two edges which
merge two buffers having the same weight. A FOLD op-
eration introduces one edge which fold one buffer into a
half with weight doubled. The labels in the tree hold the
weights of buffers. We illustrate the COLLAPSE and FOLD

operations in Figure 9. As we can see, the weight sum of all
nodes in Figure 9 is much less than that in Figure 8.
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Figure 9. Collapse and Fold Tree

Based on a more sophisticated checking, we also can
draw W − C � W ′ − C ′, which finally shows that the
rank error bound of DMP is the upper bound of the rank
error which may be caused by AMP:

ε = ((b − 2)2b−2 + 1/2)/N (1)

6 Incremental Maintenance

We already presented AMP which can construct a fresh
sketch from the scratch. For applications which do not re-
quire real time quantile computation, we can run AMP peri-
odically, e.g., in a daily basis. However, some applications
may need up-to-date quantile information. It is more desir-
able to maintain the sketch in an incremental way if only a
small number of sensors change their values.

Let us first check an example to see the potential issues
in incremental updating. If the leaf sensor S21 (Figure 2)
changes its value significantly, should we report the change
to S11 and propagate this change to higher level nodes? The
answer is if only S21 changes its value but other sensors do

not change their values, it is unnecessary to propagate this
change to upper level nodes since it only introduces addi-
tional error 1

N . However, S21 does not know whether a large
number of sensors in other branches already changed their
values or not. Thus, we have to report any value change of
S21. We can either directly deliver the change to the root
node through relay or change the sketch in S11 and prop-
agate the sketch change to upper level nodes. The second
approach is difficult to do since S01 does not keep track of
the original sketch from S11. We prefer the first approach,
i.e., forwarding the pair 〈vold, vnew〉 from the leaf sensor
to the root node and let the root node, usually a server, to
update its sketch.

We propose a non-uniform weight maintenance mech-
anism. By running AMP, the root node receives lots of
sketch buffers from its child sensors. Elements in the same
buffer share a uniform weight. For a buffer {e1, e2, . . . , ek}
with weight w, we construct k pairs 〈ei, w〉 (1 � i � k)
and put them into a histogram. We sort all pairs in this his-
togram by their first value ei. We can query this histogram
for quantiles with error bound given in Equation 1. When
an updating pair 〈vold, vnew〉 comes, we propose two oper-
ations:

• DELETE. Locate a pair 〈v, w〉 such that v is the closest
one to vold in H . Modify 〈v, w〉 to 〈v, w − 1〉.

• INSERT. Insert a pair 〈vnew, 1〉 to H .

Through these two operations, the original elements in
the same buffer may have non-uniform weights. Let the
quantile error bound be ε and the histogram be H before the
updating. After the updating, we query the new histogram,
H ′, for φ-quantile. Suppose its real rank is within the inter-
val [(φ− ε′)N, (φ + ε′′)N ]. Say the φ-quantile is located in
a bucket 〈vφ, w〉 of H ′. We analyze the new error bound
based on several cases.

Case 1: both vold and vnew are less than or greater than
vφ. The above delete and insert operations will not affect
the query result, i.e., the error bound of φ-quantile is still
around ε.

Case 2: vold � vφ and vnew � vφ. Let the closest value
to vold be v̄old in the old histogram H . We have v̄old � vφ,
φ − ε′ � φ + 1

N − ε and φ + ε′′ � φ − 1
N + ε. Thus,

ε′ � ε− 1
N and ε′′ � ε− 1

N . Overall, the new φ-quantile is
still within the interval [φ − ε, φ + ε].

Case 3: vnew � vφ and vold � vφ. Similar to Case 2,
the new φ-quantile is also within the interval [φ − ε, φ + ε].

In summary, the new error bound of φ-quantile computed
from the new histogram is equal to or less than the old one.
Thus, we can freely repeat the DELETE and INSERT opera-
tions. However, INSERT operation is costly because the root
node has to maintain every sensor’s new value in its his-
togram, and it grows larger and larger as time goes on. To
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construct a compact histogram, one solution is to replace the
INSERT operation with the following one: Locate a bucket
〈vi, w〉 such that vi is the closest one to vnew in H and then
modify 〈vi, w〉 to 〈vi, w+1〉. This method will increase the
error of φ-quantile by 1

N if the φ-quantile is retrieved from
the bucket 〈vi, w+1〉. Assume the newly introduced error is
εi. The overall error bound is ε + εi. Thus we need to mon-
itor all such buckets which have increased their weights. If
one of these buckets gets over the error bound that users
desire, a new global recomputation is needed.

7 Experiments

We perform several experiments to compare the perfor-
mance of three algorithms: equi-width, equi-depth, and
AMP. Assume the maximum memory in each sensor is M ,
the sensor value range is [a, b].

In the equi-width algorithm (EquiWidth), we maintain a
histogram with M buckets. We record the number of sensor
values within the interval [a+ i−1

M (b−a), a+ i
M (b−a)] in

the ith bucket (1 � i � M ). We need to sum the counts in
the corresponding buckets when we merge two equi-width
histograms.

In the equi-depth algorithm (EquiDepth), we divide the
memory evenly into two halves: one is used for an equi-
depth histogram, the another is for a data buffer. When the
buffer is full, we merge the equi-depth histogram with the
buffer. The equi-depth histogram has M ′ = M/6 buck-
ets (the histogram occupies M/2 space, each bucket needs
three elements). We store three values: ui, vi, and ci in each
bucket Bi, where ui is the lower bound of this bucket, vi is
the upper bound, and ci is the total number of sensor val-
ues within the interval [ui, vi]. We also require ui � vi and
vi < ui+1. When we merge two equi-depth histograms, we
redistribute the frequency in the old histogram to the new
one by assuming uniform distribution in each bucket.

Dataset. We tested these three algorithms on a series
of synthetic datasets. The datasets have several adjustable
parameters as shown in Table 3: N is the total number of
leaf sensors in the sensor network as shown in Figure 1;
d and D define the minimum and maximum in-degrees of
non-leaf sensors; Z is a parameter of Zipf distribution [15]
which controls the data partitions. If Z → 0, the tree (net-
work partitions) shown in Figure 1 is balanced. If Z → ∞,
it is extremely unbalanced. The data generator works as fol-
lows: First, it sets N the number of leaf sensors covered by
the root. It splits the root into m branches, where m is ran-
domly selected within the range [d,D]. It divides N into
m partitions that follow the Zipf distribution. This proce-
dure repeats until it reaches a node which only covers 1 leaf
sensor.

We choose Gaussian distribution as the sensors’ data
distribution and limit their minimum and maximum value.

abbr. meaning

N the total number of leaf sensors
d the minimum in-degree of non-leaf sensors
D the maximum in-degree of non-leaf sesnors
Z Zipf parameter
σ standard deviation of Gaussian distribution

Table 3. Parameters for Synthetic Datasets

Gaussian distribution supports the data model popular in
natural environments where many sensor networks are de-
ployed. In all the following experiments, we set the standard
deviation σ = 1. Each dataset is mixed by two Gaussian
distributions with different means.

Error Measurement. We are interested in the maximum
real error of quantiles outputted by these three algorithms:

ε = max
φ∈[0,1]

{|φ − φ̂|} (2)

, where φ̂N is the real rank of vφ.
We first conduct experiments on two large scale sen-

sor networks each consisting of 100k sensors: one is con-
structed in a balanced tree, the other is in an unbalanced
tree. The Zipf parameter is set to 0 and 0.5 for the balanced
and unbalanced partition respectively. Each non-leaf node
has 2-10 in-degrees. We change the maximum memory (M )
to check the maximum error defined in Equation 2. Figure
10 and 11 show the result. The error is reduced with the in-
creased memory size. A steep error increase appears when
the memory size is reduced from 256 to 64. It gives a clue to
find the best trade-off between the maximum memory and
the error rate. As depicted in the figure, AMP achieves bet-
ter accuracy than EquiWidth and EquiDepth approaches in
both balanced and unbalanced sensor networks except one
case.
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Figure 10. N100kM?d2D10Z0.0: Balanced

We also conduct experiments on small scale sensor net-
works each consisting of 1,000 sensors. These small scale
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Figure 11. N100kM?d2D10Z0.5: Unbalanced

sensor networks are popularly used in many real applica-
tions. They may be deployed in a large geographic area.
We also check two situations: a balanced network and an
unbalanced network. We only allow 2-4 in-degrees in non-
leaf nodes. Figure 12 and 13 show the result. In both
cases, AMP has a competitive accuracy compared with
EquiDepth. Both of them are better than EquiWidth.
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Figure 12. N1kM?d2D4Z0.0: Balanced
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Figure 13. N1kM?d2D4Z0.5: Unbalanced

Next we change the network size to illustrate the scal-
ability of each algorithm. The experimental results are
shown in Figure 14. The parameters of the datasets in Fig-
ure 14 are N?M1024d2D10Z0.0. Figure 14 shows when
the number of sensors increases, the accuracy of AMP de-

teriorates a little bit. However it still achieves the best ac-
curacy among these three algorithms. When N = 400k,
the maximum error of AMP is around 0.6% which is af-
fordable in many applications. The error of EquiWidth and
EquiDepth in the figure are just accidently similar in this
dataset.
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Figure 14. Accuracy vs. Network Size

It is well known that the equi-width histogram does not
work well in very skewed data distributions. Due to the
space limitation, we do not demonstrate those cases where
the equi-width histogram definitely fails.

The experiments demonstrate that AMP performs better
than EquiWidth and EquiDepth practically. Furthermore,
AMP has an analytical error bound which can guide the set-
ting of maximum memory based on the real requirement.
This is one of the major advantages to use AMP instead of
EquiWidth and EquiDepth.

8 Discussions on Further Extensions

In this paper, our proposed model is used when each sen-
sor only submits a single number. However, in sensor net-
works, the value reported by a sensor may not be a single
number, but rather an interval. As explained before, a sen-
sor cannot afford to send the server a message whenever the
value changes. A sensor may choose to report the new value
only if it is significantly different from the original one. In
this model, let vi be the last reported value by sensor i. If
the difference between the current value v′i and vi is greater
than some threshold Ui, i.e., |vi − v′

i| ≥ Ui, then the sensor
will notify the server the new value. Otherwise, the sen-
sor will not do so. Under this scheme, we have an interval
(li, ui) for each senor value where li and ui are the lower
and upper bound of the interval for the value. Instead of
finding a single quantile value, we are finding the minimum
and maximum bound of the quantile intervals. For instance,
75% quantile is an interval (l, u) where l is the 75% quantile
for all li and u is the 75% quantile for all ui.

When the interval range is the same for all sensors, (i.e.,
∀i, j ui − li ≡ U , we can adapt our algorithm easily. We
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first build a quantile sketch on the center of all intervals. To
find the φ-quantile of the lower bound of the interval, we
use the following method. Let vφ be the quantile computed
based on the sketch. Since there is an error bound ε of the
quantile, we will look for φ − ε quantile. We know for sure
that vφ−ε is less than or equal to the real φ-quantile of the
center value. Then vφ−ε − U will be the lower bound of φ-
quantile. For the same reason, vφ+ε + U will be the upper
bound.

9 Conclusion

We have studied the problem of computing quantiles
over sensor networks. Unlike centralized systems, the sen-
sor network is usually highly distributed, with limited mem-
ory, and being update frequently. We devise an efficient
algorithm to generate the sketch for quantile computing.
Since the memory is limited and the network size may
grow or shrink dynamically, we develop the technique of
dynamic buffer allocation to adapt to the various sizes of
network and memory space. Since it is energy inefficient
to re-compute the entire sketch once a few sensors change
their values, an incremental update algorithm is developed,
using a non-uniform weight technique, to reflect the small
amount of changes in the sensor network without incurring
the global sketch recomputation. Our comprehensive exper-
iments demonstrate the advantages of our quantile comput-
ing algorithm. Further, our approach provides an analytical
error bound which can guide the setting of maximum mem-
ory based on the users’ requirement.

There are many interesting research problems that
should be pursued further. The Munro-Paterson algorithm
is not the most efficient algorithm in quantile computation
over stream data. Both Manku and Greenwald-Khanna al-
gorithms [11, 9] perform better. it is a challenging task to
adapt these two algorithms in the setting of sensor networks.
Besides, the study in this paper only considers memory and
bandwidth consumption, rather than the computation cost,
which is also critical to the sensors’ durability.
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