
QAPL 2005 Preliminary Version

PMaude: Rewrite-based Specification
Language for Probabilistic Object Systems

Gul Agha 1 José Meseguer 2 Koushik Sen 3

Department of Computer Science,
University of Illinois at Urbana Champaign, USA.

Abstract

We introduce a rewrite-based specification language for modelling probabilistic con-
current and distributed systems. The language, based on PMaude, has both a
rigorous formal basis and the characteristics of a high-level functional programming
language. Furthermore, we provide tool support for performing discrete-event simu-
lations of models written in PMaude, and for statistically verifying formal proper-
ties of such models based on the samples that are generated through discrete-event
simulation. Because distributed and concurrent communication protocols can be
modelled using actors (concurrent objects with asynchronous message passing), we
provide an actor PMaude module. The module aids writing specifications in a
probabilistic actor formalism. This allows us to easily write specifications that are
purely probabilistic – and not just non-deterministic. The absence of such (un-
quantified) non-determinism in a probabilistic system is necessary for a form of
statistical model-checking of probabilistic temporal logic properties that we also
discuss.

1 Introduction

In modelling large-scale concurrent systems, it is infeasible to account for the
complex interplay of the different factors that affect events in the system. For
example, in a large scale computer network like the Internet, network delays,
congestion, and failures affect each other in ways that make it infeasible to
model the system deterministically. However, non-deterministic models do
not allow us to reason about the likely behaviors of a system; probabilistic
modelling and analysis is necessary to understand such behavior.

A probabilistic model allows us to quantify a number of sources of indeter-
minacy in concurrent systems. The exact time duration of a behavior often

1 Email: agha@cs.uiuc.edu
2 Email: meseguer@cs.uiuc.edu
3 Email: ksen@cs.uiuc.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

depends on the schedulers, loads, etc. and may be represented by a stochastic
process. Process or network failures may occur with a certain rate. Random-
ness can also come in explicitly: some parts of the system may implement
randomized algorithms.

There has been considerable research on models of probabilistic systems.
Both light-weight formalisms such as extensions of UML and SDL and rigorous
formalisms based on process algebra [12,11], Petri-nets [17], and stochastic
automata [9] has been proposed and successfully used to model and analyze
probabilistic systems. The light-weight formalisms are closer to programming
languages and easy for engineers to learn; however, some may lack a rigorous
semantics. On the other hand, rigorous formalisms can be too cumbersome
for engineers to adopt.

To bridge the gap between light-weight and rigorous formalisms, we pro-
pose a rewrite-based specification language, called PMaude, for specifying
probabilistic concurrent systems. PMaude, which is based on probabilistic
rewrite theories, has both a rigorous formal basis and the characteristics of
a high-level programming language. Furthermore, we provide tool support
for performing discrete-event simulations of models written in PMaude and
to statistically verify formal properties of such models. In addition, because
various distributed and concurrent communication protocols can be modelled
using asynchronous message passing concurrent objects or actors [2,3], we pro-
vide an actor PMaude module to aid writing specifications in a probabilistic-
actor formalism.

Our PMaude language extends standard rewrite theories with support for
probabilities. Rewrite theories [18] have already been shown to be a natural
and useful semantic framework which unifies different kinds of concurrent
systems [18], as well as models of real-time [21]. The Maude system [7,8]
provides an execution environment for rewrite theories. The discrete-event
simulator for PMaude has been implemented as an extension of Maude.

Actor PMaude extends the actor model [2,3] of concurrent computation
by allowing us to explicitly associate probability distribution with time for
message delay and computation. Actors are inherently autonomous com-
putational objects which interact with each other by sending asynchronous
messages. The actor model has been formalized and applied to dependable
computing [27] and software architecture [4].

A motivation for writing a specification in actor PMaude is that it allows
us to easily write specifications that have no un-quantified non-determinism.
In Section 3.1, we outline simple requirements which ensure that a specifica-
tion written in actor PMaude is free of un-quantified non-determinism, i.e.
all non-determinism has been replaced by quantified non-determinism such as
probabilistic choices and stochastic real-time. Absence of (un-quantified) non-
determinism is necessary for the kind of statistical model-checking that we pro-
pose [25,24]. This complements other well-known numerical model-checking
techniques that may also exhibit non-determinism [5,16]. Such formalisms can

2

be expressed as probabilistic rewrite theories [14]. Therefore, when a system
falls within one of the classes covered by numerical model checking technique,
tools such as [5,16] can be used. The point, however, is that our statistical
model-checking techniques, besides scaling up quite well, can cover a consider-
ably wide class of systems that those analyzable by numerical model-checking
techniques.

The statistical verification of probabilistic properties of PMaude specifi-
cations is based on statistical model checking approach proposed in [25,24].
The approach has been implemented in the tool VeStA. We have inte-
grated PMaude and VeStA to provide support for formal statistical ver-
ification. Specifically, we generate traces by the discrete-event simulations of
non-determinism free PMaude models and use them in VeStA for model-
checking.

The rest of the paper is organized as follows. Section 2 introduces PMaude
along with its underlying formalism. In Section 3 we describe actor PMaude
module with examples. The integration of statistical model-checking tool with
PMaude is briefly described in Section 4 followed by a conclusion.

2 PMaude and its Underlying Formalism

In this section, we introduce PMaude and its underlying formalism starting
with a brief primer on PMaude and an example. This is followed by a formal
introduction to probabilistic rewrite theories along with background concepts
and notations. The formalism of probabilistic rewrite theories is given to
keep the paper self-contained. Further details about the formalism can be
found in [14,15]. Readers can go to Section 3 skipping the formalisms given
in Section 2.2, 2.3, and 2.4 without loss of continuity.

2.1 A Primer on PMaude

In a standard rewrite theory [7], transitions in a system are described by
labelled conditional rewrite rules (keyword crl) of the form

crl [L]: t(−→x) ⇒ t′(−→x) if C(−→x) (1)

where we assume that the condition C is purely equational. Intuitively, a
conditional rule (with label L) of this form specifies a pattern t(−→x) such that
if some fragment of the system’s state matches that pattern and satisfies the
condition C, then a local transition of that state fragment, changing into the
pattern t′(−→x) can take place. In a probabilistic rewrite rule we add probability
information to such rules. Specifically, our proposed probabilistic rules are of
the form,

crl [L]: t(−→x) ⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := π(−→x) (2)

3

where the set of variables in the left hand side term t(−→x) is −→x , while some
new variables −→y are present in the term t′(−→x ,−→y) on the right hand side. Of
course it is not necessary that all of the variables in −→x occur in t′(−→x ,−→y). The
rule will match a state fragment if there is a substitution θ for the variables −→x
that makes θ(t) equal to that state fragment and the condition θ(C) is true.
Because the right hand side t′(−→x ,−→y) may have new variables −→y , the next
state is not uniquely determined: it depends on the choice of an additional
substitution ρ for the variables −→y . The choice of ρ is made according to the
probability function π(θ), where π is not a fixed probability function, but a
family of functions: one for each matching substitution θ of the variables −→x .

It is important to note that our notion of probabilistic rewrite theory
can express both probabilistic and non-deterministic behavior in the following
sense: in a concurrent system, at any given point many different rules can
fire. In a probabilistic rewrite theory, the choice of which rules will fire is
non-deterministic. Once a match θ of a given probabilistic rule of the general
form (2) at a given position has been chosen, then the subsequent choice of
the substitution ρ for the variables −→y is made probabilistically according to
the probability distribution function π(θ). In Fig. 1, we illustrate the interplay
between non-determinism and probabilities by means of a simple example in
PMaude, modelling a battery-operated clock with a reset-button. Comments
in PMaude are prefixed with ***.

Example 2.1 .

The module in Fig. 1 imports modules POSREAL and PMAUDE defining the
positive real numbers and probability distributions, respectively. A clock in
normal stable state is represented as a term clock(T,C), where T is the time,
and C is a real number representing the amount of charge left in the clock
battery. The key rule is advance, which has a new boolean variable B and
a positive real number variable t in its righthand side. If all goes well (B =

true), the clock increments its time by t and the charge is slightly decreased,
but if B = false, the clock will go into state broken(T,C- C

1000
). Here the

binary variable B (boolean in this case) is distributed according to the Bernoulli
distribution with mean C

1000
. Thus the value of B probabilistically depends on

the amount of charge left in the battery: the lesser the charge left in the
battery, the greater is the chance to break the clock. In this way, PMaude
supports discrete probabilistic choice as in discrete-time Markov chains. The
other extra variable t on the righthand side of the rule advance is distributed
according to the exponential distribution with rate 1.0. Thus, PMaude also
allows us to model stochastic continuous-time as found in continuous-time
Markov chains. The other two rules do not have any extra variables on their
righthand side and are therefore standard rewrite rules. The advance-broken
rule models the passage of time on a broken clock, where the time marked by
the clock does not change, but the battery keeps losing charge over time. The
reset rule resets the clock to time 0.0. Given a clock expression clock(T,C)

4

pmod EXPONENTIAL-CLOCK is

*** the following imports positive real number module

protecting POSREAL .

*** the following imports PMaude module that defines the distributions EXPONENTIAL,

*** BERNOULLI, GAMMA, etc.

protecting PMAUDE .

*** declare a sort Clock

sort Clock .

*** declare a constructor operator for Clock

op clock : PosReal PosReal → Clock .

*** declares a constructor operator for a broken clock

op broken : PosReal PosReal → Clock .

*** T is used to represent time of clock,

*** C represents charge in the clock’s battery,

*** t represents time increment of the clock

vars T C t : PosReal .

var B : Bool .

rl [advance]: clock(T,C) ⇒
if B then

clock(T+t,C- C
1000

)

else

broken(T,C- C
1000

)

fi

with probability B:=BERNOULLI(C
1000

) and t:=EXPONENTIAL(1.0) .

rl [advance-broken]: broken(T,C) ⇒ broken(T,C- C
1000

) .

rl [reset]: clock(T,C) ⇒ clock(0.0,C) .

endpm

Fig. 1. Clock illustrating probabilistic non-deterministic systems

one of the two rules advance, or reset is chosen non-deterministically to
apply on the term clock(T,C). If the rule advance is chosen, then the clock
is advanced probabilistically.

A sample execution for the above module in PMaude can be obtained
by first loading the module in an interactive session of PMaude inter-
preter and then giving a rewrite command with an initial ground term,
say clock(0.0, 1000). The result will be an execution in which the non-
determinism about which rule to apply is resolved by a fair scheduler, but
each application of the advance rule chooses the value of B and t probabilis-
tically.

2.2 Background and Notation

A membership equational theory [20] is a pair (Σ, E), with Σ a signature con-
sisting of a set K of kinds, for each kind k ∈ K a set Sk of sorts, a set of
operator declarations of the form f : k1 . . . kn → k, with k, k1, . . . , kn ∈ K and
with E a set of conditional Σ-equations and Σ-memberships of the form

(∀−→x) t = t′ ⇐u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

(∀−→x) t : s⇐u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

5

The −→x denote variables in the terms t, t′, ui, vi and wj above. A membership
w : s with w a Σ-term of kind k and s ∈ Sk asserts that w has sort s. Terms
that do not have a sort are considered error terms. This allows membership
equational theories to specify partial functions within a total framework. A
Σ-algebra B consists of a K-indexed family of sets X = {Bk}k∈K , together
with

(i) for each f : k1 . . . kn → k in Σ a function fB : Bk1 × . . . × Bkn → Bk

(ii) for each k ∈ K and each s ∈ Sk a subset Bs ⊆ Bk.

We denote the algebra of terms of a membership equational signature by TΣ.
The models of a membership equational theory (Σ, E) are those Σ-algebras
that satisfy the equations E. The inference rules of membership equational
logic are sound and complete [20]. Any membership equational theory (Σ, E)
has an initial algebra of terms denoted TΣ/E which, using the inference rules
of membership equational logic and assuming Σ unambiguous [20], is defined
as a quotient of the term algebra TΣ by

• t ≡E t′ ⇔ E
 t = t′

• [t]≡E
∈ TΣ/E,s ⇔ E
 t : s

In [6] the usual results about equational simplification, confluence, termina-
tion, and sort-decreasingness are extended in a natural way to membership
equational theories . Under those assumptions a membership equational the-
ory can be executed by equational simplification using the equations from
left to right, perhaps modulo some structural axioms A (e.g. associativ-
ity, commutativity, and identity). The initial algebra with equations E and
structural axioms A is denoted TΣ,E∪A. If E is confluent, terminating, and
sort-decreasing modulo A [6], the isomorphic algebra of fully simplified terms
(canonical forms) modulo A is denoted by CanΣ,E/A. The notation [t]A rep-
resents the A-equivalence class of a term t fully simplified by the equations
E.

In a standard rewrite theory [18], transitions in a system are described by
labelled conditional rewrite rules of the form

crl [L] : t(−→x) ⇒ t′(−→x) if C(−→x)

Intuitively, a rule (with label L) of this form specifies a pattern t(−→x) such that
if some fragment of the system’s state matches that pattern and satisfies the
condition C, then a local transition of that state fragment, changing into the
pattern t′(−→x) can take place. The Maude system [7,8] provides an execution
environment for membership equational theories and for rewrite theories of
the form (Σ, E, R), with (Σ, E) a membership equational theory, and R a
collection of conditional rewrite rules. Several examples of Maude specification
can be found in [19,8].

To succinctly define probabilistic rewrite theories, we use a few basic no-
tions from axiomatic probability theory. A σ-algebra on a set X is a collection

6

F of subsets of X, containing X itself and closed under complementation and
finite or countably infinite unions. For example the power set P(X) of a set
X is a σ-algebra on X. The elements of a σ-algebra are called events. We
denote by BR the smallest σ-algebra on R containing the sets (−∞, x] for all
x ∈ R. We also remind the reader that a probability space is a triple (X,F , π)
with F a σ-algebra on X and π a probability measure function, defined on the
σ-algebra F which evaluates to 1 on X and distributes by addition over finite
or countably infinite union of disjoint events. For a given σ-algebra F on X,
we denote by PFun(X,F) the set

{π | (X,F , π) is a probability space}

2.3 Probabilistic Rewrite Theories

We next define probabilistic rewrite theories after the following definition.

Definition 2.2 [E/A-canonical ground substitution] An E/A-canonical
ground substitution for variables −→x is a function [θ]A : −→x → CanΣ,E/A. We
use the notation [θ]A for such functions to emphasize that an E/A-canonical
substitution is induced by an ordinary substitution θ : −→x → TΣ where, for
each x ∈ −→x , θ(x) is fully simplified by E modulo A. Of course, [θ]A = [ρ]A iff
for each rule x ∈ −→x , [θ(x)]A = [ρ(x)]A. We use CanGSubstE/A(−→x) to denote
the set of all E/A-canonical ground substitutions for the set of variables −→x .

Intuitively an E/A-canonical ground substitution represents a substitution
of ground terms from the term algebra TΣ for variables of the corresponding
sorts, so that all of the terms have already been reduced as much as possible
by the equations E modulo the structural axioms A. For example the sub-
stitution 10.0 × 2.0 for a variable of sort PosReal is not a canonical ground
substitution but a substitution of 20.0 for the same variable is a canonical
ground substitution. We now proceed to define probabilistic rewrite theories.

Definition 2.3 [Probabilistic rewrite theory] A probabilistic rewrite theory is
a 4-tuple R = (Σ, E ∪ A, R, π), with (Σ, E ∪ A, R) a rewrite theory with the
rules r ∈ R of the form

L : t(−→x) −→ t′(−→x ,−→y) if C(−→x)

where

• −→x is the set of variables in t,

• −→y is the set of variables in t′ that are not in t; thus, t′ might have variables
coming from the set −→x ∪ −→y ; however, it is not necessary that all variables
in −→x occur in t′,

• C is a condition of the form (
∧

j uj = vj) ∧ (
∧

k wk : sk), i.e., C is a con-
junction of equations and memberships, and all the variables in uj, vj and

7

wk are in −→x ,

and π is a function assigning to each rewrite rule r ∈ R a function

πr : [[C]] → PFun(CanGSubstE/A(−→y),Fr)

where [[C]] = {[µ]A ∈ CanGSubstE/A(−→x) | E ∪ A
 µ(C)} is the set of
E/A-canonical substitutions for −→x satisfying the condition C, and Fr is a σ-
algebra on CanGSubstE/A(−→y). We denote a rule r together with its associated
function πr, by the notation

crl [L]:t(−→x) ⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

If the set CanGSubstE/A(−→y) is empty because −→y is empty then πr(
−→x) is

said to define a trivial distribution; this corresponds to an ordinary rewrite
rule with no probability. If −→y is nonempty but CanGSubstE/A(−→y) is empty
because there is no canonical substitution for some y ∈ −→y because the corre-
sponding sort or kind is empty, then the rule is considered erroneous and will
be disregarded in the semantics.

We denote the class of probabilistic rewrite theories as PRwTh. For the
specification in Example 2.1, the rule advance has two variables B and t on
the righthand side. The possible substitutions for B are true and false with
true chosen with probability C

1000
.

2.4 Semantics of Probabilistic Rewrite Theories

Let R = (Σ, E ∪ A, R, π) be a probabilistic rewrite theory such that:

(i) E is confluent, terminating and sort-decreasing modulo A [6].

(ii) the rules R are coherent with E modulo A [7].

Definition 2.4 [Context]A context C is a Σ-term with a single occurrence of
a single variable, , called the hole. Two contexts C and C

′ are A-equivalent
if and only if A
 (∀) C = C

′.

Notice that the relation of A-equivalence for contexts defined above is an
equivalence relation on the set of contexts. We use [C]A for the equivalence
class containing context C.

Definition 2.5 [R/A-matches] Given [u]A ∈ CanΣ,E/A, its R/A-matches are
triples ([C]A, r, [θ]A), where if r ∈ R is a rule

rl [L]:t(−→x) −→ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

then [θ]A ∈ [[C]], that is [θ]A satisfies condition C, and [u]A = [C(← θ(t))]A,
so [u]A is the result of applying θ to the term t(−→x) and placing it in the
context.

8

For example, the R/A-matches for the term clock(75.0, 800.0) in Example
2.1 are as follows:

• ([]A, advance, [T ← 75.0, C ← 800.0])

• ([]A, reset, [T ← 75.0, C ← 800.0])

Definition 2.6 [E/A-canonical one-step R-rewrite] An E/A-canonical one-
step R-rewrite is a labelled transition of the form,

[u]A
([C]A,r,[θ]A,[ρ]A)−−−−−−−−−→ [v]A

where

(i) [u]A, [v]A ∈ CanΣ,E/A

(ii) ([C]A, r, [θ]A) is an R/A-match of [u]A

(iii) [ρ]A ∈ CanGSubstE/A(−→y)

(iv) [v]A = [C(← t′(θ(−→x), ρ(−→y)))]A

The above definition describes the steps involved in a one-step computation of
a PRwTh. First, a R/A-match ([C]A, r, [θ]A) is chosen non-deterministically
for the lefthand side of r, and then a substitution [ρ]A is chosen for the new
variables −→y in the r’s righthand side according to the probability function
πr([θ]A). These two substitutions are then applied to the term t′(−→x ,−→y) to
produce the final term v whose equivalence class [v]A is the result of the step
of computation. The non-determinism associated with the choice of the R/A-
match must be removed in order to associate a probability space over the
space of computations (which are infinite sequences of canonical one-step R-
rewrites). The non-determinism is removed by what is called an adversary
of the system, which defines a probability distribution over the set of R/A-
matches. In [14], we describe the association of a probability space over the set
of computation paths. We have also shown in [14] that probabilistic rewrite
theories have great expressive power. They can express various known models
of probabilistic systems like continuous-time Markov chains [26], probabilistic
non-deterministic systems [22,23], and generalized semi-Markov processes [10].

3 Actor PMaude

An actor [2,3] is a concurrent object encapsulating a state and having a unique
name. Actors communicate asynchronously by sending messages to each other.
On receiving a message, an actor changes its state and sends messages to other
actors. Actors provide a natural formalism to model and reason about dis-
tributed and concurrent systems. We provide the module, actor PMaude, to
aid high level modelling of various concurrent and distributed object systems.

Another motivation for writing a specification in actor PMaude is that
it allows us to easily write specifications that have no non-determinism. To
ensure absence of non-determinism in an actor PMaude specification, we

9

outline simple requirements in Section 3.1. Absence of non-determinism is
necessary for statistical verification as described briefly in Section. 4.

In actor PMaude, we introduce soft real-time (i.e. stochastic) to cap-
ture the dynamics of various elements of a system. Specifically, we assume
that both message passing and computation by an actor on receiving a mes-
sage may take some positive real-valued time. This time can be distributed
according to some continuous probability distribution function. In a actor
PMaude specification, in addition to the functional description of the actors
and their computations, we explicitly describe the probability distributions
associated with message passing time and computation time. We also allow
time associated with message passing or computation to be zero, to indicate
synchronous communication and instant computation, respectively. We next
describe the actor PMaude module along with the semantics for one-step
computation which is required for discrete event simulation.

The definition of the various sorts and operators for the actor PMaude
module is given in Fig. 2. A term of sort Actor represents an actor. An actor
has a unique name (a term of sort ActorName) and a list of named attributes
(a term of the sort AttributeList). The attribute list of an actor, which is a
list of terms of the sort Attribute, represents the state of an actor. An actor
is constructed by the mixfix operator 4 〈name: | 〉 that maps an actor name
and a list of attributes to an actor.

A message is represented by a term of sort Msg. A message contains an
address or the name of the actor to which it is targeted and a content (a term
of the sort Content). A message is constructed by the operator ← that
maps an actor name and a content to a message. An actor on receiving a
message can change it state, i.e. its attributes, and can send out messages to
other actors.

An actor or a message can be generically represented by a term of sort
Object, whose subsorts are Actor and Msg. To model soft real-time associ-
ated with message passing delay or actor computation, we make a message or
an actor, respectively, inactive up to a given global time by enclosing them
between square brackets []. A term of the sort ScheduledObject represents
an object which is not yet active or available to the system. We call such ob-
jects as scheduled objects. A scheduled object is constructed by the operator
[,] that maps a time (a term of the sort PosReal) and an object (i.e. an
actor or a message) to a scheduled object. The time indicates the global time
at which the object will become available to the system.

A term of sort Config represents a multiset of objects, scheduled objects,
and a global time combined with an empty syntax (juxtaposition) multiset
union operator that is declared associative and commutative. The global state
of a system is represented by a term of the sort Config containing

(i) a multiset of objects,

4 The underscores () in a mixfix operator represent the placeholders for its arguments.

10

(ii) a multiset of scheduled objects, and

(iii) a global time (a term of the sort PosReal) 5 .

The ground terms empty, nil, and null represents constants of the sorts
Content, AttributeList, and Config, respectively.

The module also defines a special tick rule which is omitted from Fig. 2
for brevity. The description of the tick rule is given below where we define
an one-step computation of a model written in actor PMaude.

One-Step Computation:

An one-step computation of a model written in actor PMaude is a tran-
sition of the form

[u]A
¬tick−−−→∗[v]A

tick−−→ [w]A

where

(i) [u]A is a canonical term of sort Config, representing the global state of
a system,

(ii) [v]A is term obtained after a sequence (zero or more) of one-step rewrites
such that
• in any of rewrites the tick rule is not applied, and
• [v]A cannot be further rewritten by applying any rule except the tick

rule.

(iii) [w]A is obtained after a one-step rewrite of [v]A by applying the tick

rule, which does the following
• finds and removes the scheduled object, if one exists, with the smallest

global time, say [T’,Obj], from the term [v]A to a term, say [v′]A,
• adds the term Obj to [v′]A through multiset union to get the term [v′′]A,

and
• replaces the global time of the term [v′′]A with T’ to get the final term

[w]A.

Such an one-step computation represents a single step in a discrete-event sim-
ulation of a model written in actor PMaude.

Example 3.1 As an example, let us consider the model in Fig. 3. In the
example, a client c continuously sends messages to a server s. The time
interval between the messages is distributed exponentially with rate 2.0. The
message sending of the client is triggered when it receives a self-sent message
of the form (C← empty). The delay associated with the message from the
client to the server is distributed exponentially with rate 10.0 (see rule labelled
send). The message contains a natural number which is incremented by 1 by
the client, each time it sends a message. The server, when not busy, can
receive a message and increment its attribute total by the number received
in the message (see rule labelled compute). If the server is busy processing

5 Note that PosReal is a subset of Configuration.

11

mod ACTORS is

protecting PosReal .

sorts ActorName Attribute AttributeList Content .

sorts Actor Msg Object Config ScheduledObject .

subsort Attribute < AttributeList .

subsort Actor < Object .

subsort Msg < Object .

subsort Object < Config .

subsort PosReal < Config .

subsort ScheduledObject < Config .

op empty : → Content .

op _← _ : ActorName Content → Msg .

op 〈name:_|_〉 : ActorName AttributeList → Actor .

op nil : → AttributeList .

op null : → Config .

op __ : Config Config → Config [assoc comm id: null] .

op _,_ : AttributeList AttributeList → AttributeList [assoc id: nil] .

op [_,_] : PosReal Object → ScheduledObject .

*** tick rule is omitted for brevity

endm

Fig. 2. Actor PMaude module

a message (computation time is exponentially distributed with rate 1.0), it
drops any message it receives (see rule labelled busy-drop). Note that we can
modify the rule busy-drop to allow the server actor to enqueue any message
it receives when its is busy.

The rule for sending a message by a client C to a server S is labelled by
send. The left hand side of the rule matches a fragment of the global state
consisting of a client actor of the form 〈name: C | counter: N, server:

S〉, a message of the form (C← empty), and a global time of the form T.
The rule states that the client C, on receiving an empty message, produces
two messages: an empty message to itself and a message to a server, whose
name is contained in its attribute server. Both the messages were produced
as scheduled objects to represent that they are inactive till the delay time
associated with the messages has elapsed. The delay times t1 and t2 are
substituted probabilistically.

Note that the model has no non-determinism. All non-determinism has
been replaced by probabilistic choices. A model with no non-determinism is
a key requirement for our statistical verification technique briefly described in
Section. 4. We next give a sufficient condition to ensure that a specification
written in actor PMaude has no non-determinism.

3.1 Sufficient condition for absence of un-quantified non-determinism in an
actor PMaude specification:

(i) The initial global state of the system or the initial configuration can have
at most one non scheduled message.

(ii) The computation performed by any actor after receiving a message must

12

apmod SIMPLE-CLIENT-SERVER is

protecting PMAUDE .

including ACTORS .

protecting NAT .

vars t t1 t2 T : PosReal .

vars C S : ActorName .

vars N M : Nat .

op counter:_ : Nat → Attribute .

op server:_ : ActorName → Attribute .

op total:_ : Nat → Attribute .

op ctnt : Nat → Content .

rl [send]: 〈name: C | counter: N, server: S〉 (C← empty) T ⇒
〈name: C | counter: N+1, server: S〉 [T+t1,(C← empty)] [T+t2,(S← ctnt(N))] T

with probability t1:=EXPONENTIAL(2.0) and t2:=EXPONENTIAL(10.0) .

rl [compute]: 〈name: S | total: M〉 (S← ctnt(N)) T ⇒ [T+t,〈name: S | total: M+N〉] T

with probability t:=EXPONENTIAL(1.0) .

rl [busy-drop]: [t,〈name: S | total: M〉] (S← ctnt(N)) ⇒ [t,〈name: S | total: M〉] .

op init : → Config .

op c : → ActorName .

op s : → ActorName .

eq init = 〈name: c | counter: 0, server: s〉 〈name: s | total: 0〉 (c← empty) 0.0 .

endapm

Fig. 3. A simple Client-Server model with exponential distribution on message
sending delay and computation time by the server

have no un-quantified non-determinism; however, there may be proba-
bilistic choices.

(iii) The messages produced by an actor in a particular computation (i.e. on
receiving a message) can have at most one non scheduled message.

(iv) No two scheduled objects become active at the same global time. This is
ensured by associating continuous probability distributions with message
delays and computation time.

We next provide the specification of a practical system to show the expres-
siveness of actor PMaude.

Example 3.2 The model of a symmetric polling server [13] with 5-stations
is given in Fig. 4. Each station has a single-message buffer and they are
cyclically attended to by a single server. The server polls a station i. If there
is a message in the buffer of station i, then the server serves the station. Once
the station is served, or once the station is polled in case the station has an
empty buffer, the server moves on to poll the station (i+1) modulo N , where
N is the number of stations. The polling time, the service time, and the time
for arrival of a message at each station is exponentially distributed. Note that
this model can be represented by a continuous-time Markov chain.

In Fig. 4, we modelled each station and the server as actors. Messages that
arrive at each station-actor are modelled as self-sending scheduled messages
having exponentially distributed delays (see rule labelled produce). The start

13

of polling of a station by the server is modelled as an instantaneous poll

message (i.e. with no delay) sent by the server to the station (see rule labelled
next). On receiving a poll message, a station sends itself a scheduled serve

message (see rule labelled poll), i.e. a message having delay equal to the
polling time. On receiving a serve message, if the station finds that its buffer
is empty, it sends an instantaneous next message (i.e. with no message delay)
to the server indicating that the server needs to poll the next station (see rule
labelled serve). Otherwise, if the buffer has a message (indicated by non-zero
value of the attribute buf), it sends itself a scheduled done message (i.e. a
message having delay equal to the serving time). On receiving a done message,
the station sends an instantaneous next message (i.e. with no message delay)
to the server indicating that the server needs to poll the next station (see rule
labelled served).

Note that the model has no un-quantified non-determinism, since it meets
the conditions given in Section 3.1.

4 Statistical Model-checking Support

We have integrated PMaude with the VeStA tool [25,24] for performing sta-
tistical model-checking of probabilistic properties against a PMaude speci-
fication with no un-quantified non-determinism. In this section we briefly
describe 1) the interface between and PMaude and VeStA, 2) the logic
used for describing probabilistic properties, and 3) what VeStA does.

We assume that VeStA is provided with a set of sample execution paths
generated through the discrete-event simulation of a PMaude specification
with no non-determinism. We assume that an execution path that appears in
our sample is a sequence

π = s0
t0→ s1

t1→ s2
t2→ · · ·

where s0 is the unique initial state of the system or the term of sort Config
representing the initial global state, si is the state of the system after the ith

computation step and ti is the difference of global time between the states si+1

and si. If the kth state of this sequence cannot be rewritten any further (i.e.
is absorbing), then si = sk and ti = ∞ for all i ≥ k.

We also assume that there is a labelling function L that assigns to each
state a set of atomic propositions (from among those appearing in the property
of interest) that hold in that state; thus L : S → 2AP , where AP is a set of
relevant atomic propositions and S is the set of states of the system. In actor
PMaude, this labelling function is defined as an operator that maps a term
of sort Config to a set of atomic propositions.

We denote the ith state in an execution π by π[i] = si and the time spent
in the ith state by δ(π, i). The time at which the execution enters state π[i+1]
is given by τ(π, i + 1) =

∑j=i
j=0 δ(π, j). The state of the execution at time t

(if the sum of sojourn times in all states in the path exceeds t), denoted by

14

apmod SYMMETRIC-POLLING is

protecting PMAUDE . including ACTORS . protecting NAT . protecting POSREAL .

*** Variable declarations.

vars t T : PosReal . vars C S : ActorName . vars N M : Nat .

*** Operator declarations.

op buf:_ : Nat → Attribute .

op server:_ : ActorName → Attribute .

op client:_ : Nat → Attribute .

op station:_ : Nat → ActorName .

ops poll serve done next : → Content .

op increment : Nat → Nat .

*** Each station produces messages at the rate of 0.2. For this each station sends a message

*** to itself with message delay exponentially distributed with rate 0.2.

rl [produce]: 〈name: C | buf: M, server: S〉 (C← empty) T

⇒〈name: C | buf: 1, server: S〉 [T+t,(C← empty)] T

with probability t:=EXPONENTIAL(0.2) .

*** On receiving a poll message from the server, the station sends a scheduled serve message

*** to itself to imitate the time associated with polling.

rl [poll]: 〈name: C | buf: M, server: S〉 (C← poll) T

⇒ 〈name: C | buf: M, server: S〉 [T+t,(C← serve)] T

with probability t:=EXPONENTIAL(200.0) .

*** On receiving a serve message, if the buffer is empty then the station sends a next message

*** to the server; otherwise, it send a scheduled done message to itself.

rl [serve]: 〈name: C | buf: M, server: S〉 (C← serve) T ⇒
if M > 0 then

〈name: C | buf: M, server: S〉 [T+t,(C← done)] T

else

〈name: C | buf: M, server: S〉 (S← next) T

fi with probability t:=EXPONENTIAL(1.0) .

*** On receiving a done message, the station sends a next message to the server.

rl [served]: 〈name: C | buf: M, server: S〉 (C← done)

⇒〈name: C | buf: 0, server: S〉 (S← next) .

*** On receiving a next message, the server sends a poll message to the next station.

rl [next]: 〈name: S | client: N〉 (S← next) T

⇒ 〈name: S | client: increment(N)〉 (station(N)← poll) T .

*** Define increment as increment(N) = (N+1) modulo 5, which is the number of stations

eq increment(N) = if N >= 5 then 1 else N+1 fi .

*** Create the initial configuration with 5 stations and 1 server and a next message.

op init : → Config .

op s : → ActorName .

eq init = 〈name: s | client: 1〉 (s← next) 0.0 〈name: station(1) | buf: 1, server: s〉
〈name: station(2) | buf: 1, server: s〉 〈name: station(3) | buf: 1, server: s〉
〈name: station(4) | buf: 1, server: s〉 〈name: station(5) | buf: 1, server: s〉 .

endapm

Fig. 4. Symmetric Polling System with 5-stations

π(t), is the smallest i such that t ≤ τ(π, i + 1). We let Path(s) be the set
of execution paths starting at state s. Note that, because the samples are
generated through discrete-events simulation of a PMaude model with no
non-determinism, Path(s) is a measurable set and has an associated proba-
bility measure. This is essential to guarantee that a set of paths satisfying an
until formula in the logic described next is measurable.

15

4.1 Continuous Stochastic Logic

Continuous stochastic logic (CSL) is introduced in [1] as a logic to express
probabilistic properties. In VeStA, we assume that the properties are ex-
pressed in a sublogic of CSL (excluding unbounded untils and stationary state
operators). The syntax and the semantics of the logic follows.

CSL Syntax

φ ::= true | a ∈ AP | ¬φ | φ ∧ φ | P��p(ψ)

ψ ::= φ U≤tφ | Xφ

where AP is the set of atomic propositions, �� ∈ {<,≤, >,≥}, p ∈ [0, 1], and
t ∈ R≥0. Here φ represents a state formula and ψ represents a path formula.
A model satisfies a state formula if the initial state of the model satisfies the
formula. The notion that a state s (or a path π) satisfies a formula φ is
denoted by s |= φ (or π |= φ), and is defined inductively as follows:

CSL Semantics

s |= true s |= a iff a ∈ AP(s)

s |= ¬φ iff s �|= φ s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P��p(ψ) iff Prob{π ∈ Path(s) | π |= ψ} �� p

π |= Xφ iff τ(π, 1) < ∞ and π[1] |= φ

π |= φ1 U≤tφ2 iff ∃x ∈ [0, t]. (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

A formula P��p(ψ) is satisfied by a state s if Prob[path starting at s satisfies
ψ] �� p. The path formula Xφ holds over a path if φ holds at the second state
on the path. The formula φ1 U≤tφ2 is true over a path π if φ2 holds in some
state along π at a time x ∈ [0, t], and φ holds along all prior states along π.

For example, a property of interest for the symmetric polling server model
is “once a message arrives at the first station, it will be polled within T
time units with probability at least 0.5.” Given that the initial state con-
tains a message at the initial state, in CSL the property can be written as
P≥0.5(true U≤Tq), where the atomic proposition q is true if the global state
contains a scheduled message (station(1)← serve).

4.2 Verification Statement

We next describe what the statistical model-checking algorithm for the
sublogic of CSL does. For model-checking, we assume that the length of a
finite execution path in the set of samples is large enough, so that all the
bounded until formulas can be evaluated on that path. Given a set of sam-
ples (say S) generated through discrete-event simulation of a specification in

16

PMaude, an initial state s0, and a formula φ in CSL, the model-checking al-
gorithm A of VeStA can give three possible answers (denoted by A(S, s0, φ)):
(true,α), (false,α), and undecided with the following meaning.

(i) If A(S, s0, φ) = (true, α) then Prob[A(S, s0, φ) = (true, α) | s0 �|= φ] ≤ α.

(ii) If A(S, s0, φ) = (false, α) then Prob[A(S, s0, φ) = (false, α) | s0 |= φ] ≤
α.

(iii) The samples are insufficient for a decision.

Thus if the answer of the algorithm is (true, α) and α is sufficiently small then,
with high confidence, we can say that s0 |= φ. Similarly, if the answer of the
algorithm is (false, α) and α is sufficiently small then, with high confidence,
we can say that s0 �|= φ.

The model-checking is performed by invoking a series of inter-dependent
statistical hypothesis testing. The details of the algorithm can be found in [25].

5 Conclusion

We have introduced a rewrite-based formal modelling language for probabilis-
tic concurrent systems with support for discrete-event simulation and sta-
tistical model-checking. The language supports concurrent object-oriented
programming through actors. We plan to use the tool to model and analyze
various network protocols.

Acknowledgement

The authors would specially like to acknowledge Nirman Kumar for his con-
tribution to the development of PMaude. The work is supported in part by
the ONR Grant N00014-02-1-0715.

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time
Markov chains. In Proceedings of the 8th International Conference on Computer
Aided Verification (CAV’96), volume 1102, pages 269–276. Springer, 1996.

[2] G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.

[3] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7:1–72, 1997.

[4] M. Astley and G. A. Agha. Customization and composition of distributed
objects: middleware abstractions for policy management. In SIGSOFT
’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 1–9, 1998.

17

[5] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In Proceedings of 15th Conference on the
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’95), volume 1026 of LNCS.

[6] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236(1–2):35–132,
2000.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285:187–243, 2002.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude 2.0 Manual, Version 1.0, june 2003.
http://maude.cs.uiuc.edu/maude2-manual/.

[9] P. D’Argenio. Algebras and automata for timed and stochastic systems. PhD
thesis, University of Twente, Enschede, The Netherlands, 1999.

[10] P. W. Glynn. On the role of generalized semi-markov processes in simulation
output analysis. In WSC ’83: Proceedings of the 15th IEEE conference on
Winter simulation, pages 39–44, 1983.

[11] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance
evaluation. Theoretical Compututer Science, 274(1-2):43–87, 2002.

[12] J. Hillston. A Compositional Approach to Performance Modelling.
Distinguished Dissertations Series. Cambridge University Press, 1996.

[13] O. C. Ibe and K. S. Trivedi. Stochastic petri net models of polling systems.
IEEE Journal on Selected Areas in Communications, 8(9):1649–1657, Dec. 1990.

[14] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories:
Unifying models, logics and tools. Technical Report UIUCDCS-R-2003-2347,
University of Illinois at Urbana-Champaign, May 2003.

[15] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model
for probabilistic distributed object systems. In Proceedings of 6th IFIP
International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS’03), volume 2884 of Lecture Notes in Computer Science,
pages 32–46. Springer, 2003.

[16] M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic
model checker, 2002.

[17] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. John Wiley and Sons, 1995.

[18] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

18

http://maude.cs.uiuc.edu/maude2-manual/

[19] J. Meseguer. A logical theory of concurrent objects and its realization in
the Maude language. In Research Directions in Concurrent Object-Oriented
Programming, pages 314–390. MIT Press, 1993.

[20] J. Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61.
Springer LNCS 1376, 1998.

[21] P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems
in rewriting logic. Theoretical Computer Science, 285:359–405, 2002.

[22] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, 1994.

[23] R. Segala. Modelling and Verification of Randomized Distributed Real Time
Systems. PhD thesis, Massachusetts Institute of Technology, 1995.

[24] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of
stochastic systems. Technical Report UIUCDCS-R-2004-2503, University of
Illinois at Urbana Champaign, December 2004.

[25] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-
box probabilistic systems. In 16th conference on Computer Aided Verification
(CAV’04), volume 3114 of Lecture Notes in Computer Science, pages 202–215.
Springer, July 2004.

[26] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton, 1994.

[27] D. C. Sturman and G. Agha. A protocol description language for customizing
semantics. In Symposium on Reliable Distributed Systems, pages 148–157, 1994.

19

	Introduction
	PMaude and its Underlying Formalism
	A Primer on PMaude
	Background and Notation
	Probabilistic Rewrite Theories
	Semantics of Probabilistic Rewrite Theories

	Actor PMaude
	Sufficient condition for absence of un-quantified non-determinism in an actor PMaude specification:

	Statistical Model-checking Support
	Continuous Stochastic Logic
	Verification Statement

	Conclusion
	References

