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This paper presents results from our measurement and modeling efforts on the large-scale peer-
to-peer (p2p) overlay graphs spanned by the PPLive system, the most popular and largest p2p
IPTV (Internet Protocol Television) system today. Unlike other previous studies on PPLive,
which focused on either network-centric or user-centric measurements of the system, our study is
unique in (a) focusing on PPLive overlay-specific characteristics, and (b) being the first to derive
mathematical models for its distributions of node degree, session length, and peer participation
in simultaneous overlays.

Our studies reveal characteristics of multimedia streaming p2p overlays that are markedly
different from existing file-sharing p2p overlays. Specifically, we find that: (1) PPLive overlays
are similar to random graphs in structure and thus more robust and resilient to the massive failure
of nodes, (2) Average degree of a peer in the overlay is independent of the channel population size,
(3) The availability correlation between PPLive peer pairs is bimodal, i.e., some pairs have highly
correlated availability, while others have no correlation, (4) Unlike p2p file-sharing users, PPLive
peers are impatient, (5) Session lengths (discretized, per channel) are typically geometrically
distributed, (6) Channel population size is time-sensitive, self-repeated, event-dependent, and
varies more than in p2p file-sharing networks, (7) Peering relationships are slightly locality-aware,
(8) Peer participation in simultaneous overlays follows the Zipf distribution. We believe that our
findings can be used to understand current large-scale p2p streaming systems for future planning
of resource usage, and to provide useful and practical hints for future design of large-scale p2p
streaming systems.

Categories and Subject Descriptors: C.2.4 [Computer Systems Organization]: Computer
Communication Networks— Distributed Systems

General Terms: Measurement, Performance

Additional Key Words and Phrases: Peer-to-Peer, IPTV, Streaming, Multimedia, Overlay, PPLive

1. INTRODUCTION

The proliferation of large-scale peer-to-peer (p2p) overlays such as Kazaa, Gnutella,
Skype, PPLive [PPL ], Peercast [Pee |, PPStream [PPS |, TVAnts [TVA ], TVU-
Player [TVU ], Sopcast [Sop |, CoolStream [Coo |, RONs [Andersen et al. 2001],
etc., has created the need to characterize and understand the emergent properties
of these overlays. A large fraction of existing characteristic studies focus on file-
sharing p2p applications, such as Kazaa, Gnutella, and Napster. Some of the more
prominent studies among these are by Ripeanu et. al. [Ripeanu et al. 2002] on
Gnutella, by Saroui et. al. on Naspter and Gnutella [Saroiu et al. 2003], and by
Bhagwan et. al. on Overnet [Bhagwan et al. 2003]. Although these studies have
created a better understanding of the characteristics of p2p overlays, there is a risk
that some system designers may believe that the conclusions drawn from above
studied are shared by many other p2p overlays such as p2p streaming overlays.
This paper shows that many of the well-held beliefs about the characteristics
of p2p file-sharing overlays may be false when one changes the application atop
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the p2p streaming overlays. Specifically, we undertake a crawler-based study of a
deployed application overlay network for IPTV, called PPLive. We believe that re-
sults obtained from our studies can be used to understand large-scale p2p streaming
systems for future planning of resource usage, and to provide useful and practical
hints for future design of large-scale p2p streaming systems.

P2P IPTV applications have seen a dramatic rise in popularity and have received
significant attention from both industry and academia. The number of subscribers
is predicted to increase from 3.7 million in 2005 to 36.9 million by 2009. Revenues
could reach US$10 billion at the end of this period [Mul |. This promising market
has encouraged the rapid development of IPTV technologies including tree-based
multicast [Banerjee et al. 2002; Chu et al. 2000; Tran et al. 2003], receiver-driven
p2p streaming [Hefeeda et al. 2003; Liang and Nahrstedt 2006; Rejaie and Stafford
2004] and chunk-driven p2p streaming [Zhang et al. 2005; Li et al. 2008]. Among
these, the chunk-driven approach has emerged as the most successful technology
with a large number of simultaneous viewers [Hei et al. 2007].

PPLive is a chunk-driven p2p IPTV streaming system, which stands out due to
the heterogeneous channels and increasing popularity. As of May 2006, PPLive had
over 200 distinct online channels, a daily average of 400,000 aggregated users, and
most of its channels had several thousands of users at their peaks [PPL |. During
the Chinese New Year 2006 event, a particular PPLive channel had over 200,000
simultaneous viewers [Hei et al. 2007]. In our experiments from February 2006 to
May 2008, we observed that there were between 400 and 500 daily online channels,
with 400,000 to 500,000 aggregated simultaneous viewers.

There have been several measurement studies done on the PPLive streaming
system [Hei et al. 2007; Ali et al. 2006; Silverston and Fourmaux 2007][Huang
et al. 2008], which tend to predominantly look at either network-centric metrics
(e.g., video traffic, TCP connections, etc.), or at user-centric metrics (e.g., geo-
graphic distribution, user arrival and departure, user-perceived quality, etc.). Our
crawler-based measurement studies therefore are unique in focusing primarily on
overlay-based characteristics of the PPLive streaming system, which lie somewhere
in between the user-centric view and the network centric view. Of course, overlay
characteristics are influenced by an amalgamation of both user behavior and by
the design of the underlying protocol and the network, yet they stand apart them-
selves. Our studies also expose new avenues for improving performance, reliability,
and quality of IPTV systems in the future. Moreover, to the best of our knowledge,
we are the first to provide mathematical models for the overlay characteristics of
p2p IPTV systems.

Results obtained from our extensive experiments (stretching from February 2006
until May 2008) indicate that PPLive overlay characteristics differ from those of
p2p file-sharing. Our major findings are: (1) PPLive overlays are similar to ran-
dom graphs in structure and thus more robust and resilient to the massive failure of
nodes, (2) Average degree of a peer in the overlay is independent of the channel pop-
ulation size, (3) The availability correlation between PPLive peer pairs is bimodal,
i.e., some pairs have highly correlated availability, while others have no correlation,
(4) Unlike p2p file-sharing users, PPLive peers are impatient, (5) Session lengths
(discretized, per channel) are typically geometrically distributed, (6) Channel pop-
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ulation size is time-sensitive, self-repeated, event-dependent, and varies more than
in p2p file-sharing networks, (7) Peering relationships are slightly locality-aware,
(8) Peer participation in simultaneous overlays follows a Zipf distribution. All the
above conclusions, except (2), are markedly different from the well-known charac-
teristics of p2p file-sharing systems.

The rest of this paper is organized as follows. We describe PPLive basics and
preliminary definitions in Section 2. Section 3 presents and justifies our measure-
ment methodology. Then, we study the characteristics of the PPLive overlay at
three different levels: that of an individual node, that of node pairs, and that of the
entire overlay. Particularly, we study node level overlay characteristics in Section 4
by presenting and modeling the node degree distribution, overlay randomness, and
node session length. Section 5 studies the overlay characteristics of node pairs. In
this section, we investigate peer availability interdependence and locality-awareness
of PPLive peers in choosing streaming partners. Next, we study the overlay char-
acteristics from system-wide level in Section 6. Specifically, we study sensitivities
of the channel population size at different times and under a special public event,
distributions of the peer participation in simultaneous overlays, and the resilience
of PPLive overlays under the massive failure of nodes. After that, we present the
related work in Section 7. Finally, we conclude and draw lessons for future design
of p2p streaming systems in Section 8.

2. PPLIVE BASICS AND PRELIMINARY DEFINITIONS

Before embarking on our study of PPLive, we briefly summarize its basic architec-
ture as well as the structure of its content channels. In each case, we provide basic
definitions that will be reused later in the paper.

2.1 PPLive Overview

PPLive is a free, closed source p2p IPTV application, which divides video streams
into chunks and distributes them via overlays of cooperative peers. The PPLive
system consists of multiple overlays, in which each content channel is associated
with one overlay. Each channel streams either live content or a repeating prefixed
program, and the feed from the channel may originate from one or multiple sources.
Similar to TV users, a PPLive user can join at most one channel at one time. This
viewing behavior differs from other multimedia systems where a user can view
simultaneous channels in multiple windows. From our experiments, we observe
that if a PPLive user watches a channel, her client machine is not only a consumer
of feeds from that channel, but may also be chosen by the protocol to act as a
relay for feeds from other channels. That is, the per-channel overlay might include
its own subscribers and a few others, which don’t subscribe to that overlay. By
default, each PPLive client has a pair of TCP and UDP ports (per channel) to
communicate with PPLive servers and its neighboring peers. A number of other
TCP ports can be used by the client to exchange video chunks during its sessions.

There are several challenges in studying PPLive overlays. Particularly, it is very
difficult to distinguish between the notion of a “user” and a “client machine”. There
are several reasons for this: (1) PPLive users are free to join, leave, and switch
channels by accessing the PPLive web interface or PPLive Net TV player. (2) Due
to NATs and firewalls, a user’s client machine may change its IP or UDP port
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Fig. 1. PPLive membership and partnership protocols.

number or both. (3) The proprietary PPLive system is widely believed to use the
idea of inter-overlay optimizations in order to recruit non-subscribing nodes [Liao
et al. 2006]; as a result, a client machine may appear as a participant in multiple
overlays, including ones that the user is not subscribed to. Hence, in the rest of
this paper, we refer to a given < I P, port > tuple as a “node” or a “peer” - this is a
combination of both a client machine and a user. The term “client” refers only to
the machine (e.g., workstation) that the PPLive player is running on, while “user”
refers to the human user - these should not be confused with node or peer.

2.2 PPLive Membership and Partnership Protocols

Although the PPLive application is not open-source, some of its internal design
decisions can be inferred from extensive experiments. In the streaming system,
each PPLive peer executes two protocols, for (1) registration and harvesting of
partners, and (2) p2p video distribution. For our studies, we develop a crawler,
which follows the first protocol to crawl peers attending PPLive content channels.
Before discussing the first protocol in details, we define the notion of a partner of
a peer as follows. In a PPLive overlay, a peer py is considered a partner of a peer
p1 if (1) p2 uploads streams to p; or p2 downloads streams from p; or both; in this
case, py is called a real partner of pj, or (2) ps is used to replace some existing
real partner ps of py; in this case, po is called a candidate partner of p;. The
term partner thus is used for both real and candidate partners. Essentially, how py
manages its partners is unknown due to the closed nature of the PPLive system.
In our study, we leverage a PPLive API, which allows that a peer can be queried
for its partner list. The partner list of a peer p; is defined as a list of both real and
candidate partners returned by p; when it gets queried for the partner list.

Figure 1 shows the first protocol (registration and harvesting of partners) exe-
cuted at a client p in the PPLive network: (1) p retrieves a list of channels from
channel management servers via HTTP; (2) for its interested overlay, p retrieves
a set of nodes from the membership servers via UDP; (3) p uses this seed partner
list to harvest (learn about) other candidates in the same channel by periodically
probing existing partners via UDP. During its streaming session, p may also some-
times perform step (2) and step (3) simultaneously to obtain potential candidates
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from membership servers. If a PPLive node is inside a NAT or a firewall, UDP in
the above steps may be replaced by TCP.

2.3 PPLive Overlay

We formally define a PPLive overlay for a content channel as a directed graph
G = (V, E). Recall that each PPLive overlay corresponds to an individual PPLive
channel. Here V is the set of nodes attending the overlay and E is the set of
links between nodes. Each node (or peer) is defined as a given < IP, port > tuple
and belongs to V. Each partner of a node p, appearing in p’s partner list, then
corresponds to an edge (or link) in E.

k response degree. We call the size of a node’s partner list as the node degree.
One difficulty in obtaining the partner list (via the PPLive APT) is that successive
queries to the same node may yield slightly different partner lists. Since PPLive is
closed source, it is difficult to tell if the node returns only the subset of its partner
list or the entire list of partners or some random partners, or if the partner list
is really changing over time. Hence, we need to define a notion of node degree or
partner list that is generic and covers all possibilities.

We define the k response degree of a node as the aggregated set of partners
returned in the first k£ responses from a node that is sent successive queries for its
partner list. In our experiments, obtaining the first 15 responses (k = 15) from a
node typically took up to 15 seconds.

To verify whether the aggregated set of partners returned in k£ = 15 responses is
sufficient, we set up an experiment with 2 machines M; and Ms. M; is a Windows
machine running a PPLive client and M> is a Linux machine, which obtains the
partner list of M; by sending partner queries to M;. On M;’s side, we use netstat
to view all connections to/from M;. On My’s side, we display all IPs returned by
My, responding to partner queries from Ms. We observe that M; always returns
more than 90% of its current partners, who have connections with M;, whenever
it receives one query from Ms. This experiment shows that the aggregated set
of partners returned by k = 15 responses from M; can represent a significance
fraction of M;’s partner list. Therefore, we use a default setting of k = 15 in our
experiments, especially for our partner discovery operation in section 3. However,
we verify the generality of our experimental results for smaller values of k as well
(k =5 and k = 10). Henceforth, in this paper, the terms node degree, k response
degree, and k-degree are used interchangeably.

2.4 Active Peer

The next challenge is to clearly define when a peer is considered an active peer,
which is a part of a given overlay. This is complicated because one PPLive peer can
simultaneously attend multiple overlays, including non-subscribed overlays. Fur-
ther, some clients may be behind NATs or firewalls, and may not respond to a
direct probe message.

Thus, given an overlay G and a peer v, v is considered to be an active peer in G
if either v appears in the membership list for G at one of the membership servers,
or v appears in the partner list of some other peer u that is also an active peer.
Notice that the definition is recursive. Formally, we define the predicate:
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ACTIVE(v,G) = {v € Membership Server List for G} OR {3u: ACTIVE(u,G)
AND v € u.PartnerList(G)}

Our above definition also includes “silent” peers that may be behind firewalls or
unresponsive. Even though we have not described our crawler yet (see Section 3),
we need to justify the definition. We quickly present a simple experiment below to
do so.

We measured the fraction of peers that were captured by our crawler (see Snap-
shot Operation in Section 3) using the above definition of active peers (# of total
peers), and that responded to the protocol ping (# of responsive peers). Figure
2(a) shows the fractions for two different PPLive channels over the course of 24
hours. The authors of [Hei et al. 2007] reported that around 50% nodes may be
behind NATSs. Since Figure 2(a) shows that more than 50% of the captured peers
are non-responsive: it is important to consider the characteristics of these peers as
a part of the overlay, and our definition does this.

3. STUDY METHODOLOGY

Our crawler has been in use since February 2006. We shared our crawled traces
and released our crawler code as an open-source software since April 2008 [Cra |.
We describe below the design of our crawler.

We use Ethereal [Eth ] to trace traffic between a PPLive peer and PPLive servers,
and traffic among PPLive peers. Having understood these traffic patterns, we
implement our crawler in the socket level using the UDP transport protocol. Our
crawler runs on a Linux machine (either a machine in our cluster at UIUC, or a
PlanetLab node) and joins a given PPLive channel whose ID is feed as an input
argument to the crawler (each channel has a unique ID). Essentially, our crawler
works the same as the client in Figure 1 but it does not perform step 1 because the
channel ID is input. The crawler consists of two operations: Snapshot Operation
and Partner Discovery.

Snapshot Operation. To obtain all the active peers attending a given channel,
this operation works as follows. First, given the channel ID, the initiator requests
the initial peer list from the PPLive membership servers (step 2 in Figure 1), and
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uses this to initialize a local list denoted as L. Second, the initiator continuously
scans L in a round-robin fashion, by sending a request for the partner list to each
entry (step 3 in Figure 1), and appending to L new peers (i.e., ones that it has not
heard about before) received in the partner list replies. Third, when the initiator
has received fewer than n new peers among the last A peers received, the snapshot
operation terminates. This is because different PPLive channels have different sizes,
and the size of one channel varies very much over a day. If the snapshot operation
stops after a fixed amount of time, it may not obtain the entire population of the
crawled channel. So, the termination when few new peers are found, works well
for the variation of channel size. In our experiments, for most channels, we use
n = 8, A = 1000, for a channel with less than 1000 peers, we use A = 500. With
this setting, the snapshot operation typically takes between 3 and 8 minutes. To
avoid flooding the network with our ping messages, new snapshot operations are
initiated only once every 10 minutes.

We define the channel population size as the number of active peers captured by
one execution of the snapshot operation. We use the channel population size term
interchangeably with channel population, and overlay size terms.

Partner Discovery. This operation obtains the k response degree of a node as
defined in Section 2.3. In our experiment, to obtain k responses from one peer p,
we send (k + 2) requests to p for its partner list (e.g., we repeat step 3 in Figure 1
(k + 2) times for peer p). The first k received responses are aggregated to create
the k response degree. Notice that requests are sent to a node successively.

Essentially, there are two design choices - either to obtain each node’s k response
degree or to quickly crawl the entire overlay. We choose the former because we can
almost instantly achieve the k-degree of nodes, which is critical to understanding
the overlay characteristics of PPLive network. However, this may incur crawling lag
when crawling the entire overlay. Particularly, to achieve the connectivity graph G
(including nodes and links) of a given set of nodes, the partner discovery operation
needs to travel from the first to the last elements of the set, for which it obtains
the k-degree. This process incurs lag and thus G may not be an instant graph
due to the high churn rate in PPLive overlays. In our experiment, we address the
crawling lag by running several parallel instances of our crawler as presented in the
following paragraph. Notice that the partner discovery can run independently or
simultaneously with the snapshot operation.

Our crawler is self-contained and easily parallelized. Each instance of the crawler
can be run independently in a machine. To increase the coverage of our crawler and
reduce the impact of crawling lag, we run it simultaneously on multiple machines.
Figure 2(b) shows the number of captured peers with m machines as a fraction
of the number of captured peers with 20 machines (at four different times in a
day). We observed that 10 machines cover about 98% of peers covered by 20
machines. Hence, we decided to use 10 geographically distributed PlanetLab nodes
to run simultaneous crawlers. We select PlanetLab nodes because of their worldwide
distribution.

Studied Channels. In our previous work [Vu et al. 2007], we focused on three
channels as shown in Table I. For anonymity, we name these channels as A, B, and
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Name | Channel Size (Aggregated for a day) | Channel Type
A 32K-45K Movie
B 10K-15K Cartoon
C 8K-12K Movie

Table I. Three channels A, B, C were studied from February 2006 to December 2006. From 2007
to May 2008, we studied 37 other channels including sports, live TV, movies, fashion channels.

Studied Characteristics Characteristic Type
1 | Node degree distribution Node Level
2 | Randomness of overlay Overlay Characteristics
3 | Node’s session length
4 | Peer availability interdependence Inter-node
5 | Locality-awareness of overlay Overlay Characteristics
6 | Channel population size System-wide
7 | Participation in simul. overlays Overlay Characteristics
8

Resilience of overlay

Table II.  Studied Characteristics of the PPLive IPTV system

C. Out of these, A is the most popular channel, C is the least popular channel,
while B is somewhat in between A and C. Since 2007, we have studied 37 other
channels including sports, entertainment, games, live TV, movies, stock market,
fashion channels. Since a large fraction of PPLive users is in China, we use the
Chinese Time Zone (GMT+38) in our plots.

Overview of Studied Characteristics. Given the snapshot operation and partner
discovery, we study the characteristics of PPLive overlays as shown in Table II.
There are three types of characteristics: node-level, inter-node, and system-wide.
First, the node level overlay characteristics means the overlay characteristics from
the view of one individual node in the overlay. Specifically, we study the node
degree distribution, the randomness of the overlay, and the session length of a peer
in the overlay. Second, the inter-node overlay characteristics means the overlay
characteristics from the relationship of node pairs in the overlay. Specifically, we
study the availability interdependence of peer pairs and the locality of peer part-
nership in the overlay. Finally, the system-wide overlay characteristics means the
overlay characteristics from the view of the entire system. In particular, we study
the channel population size, participation of all peers in simultaneous overlays, and
the resilience of PPLive overlays under node failures.

In the following sections, we present our findings and discussions about PPLive
overlay characteristics from the view of node level, inter-node level, and system-
wide level overlay characteristics. Where possible, we compare and contrast our
findings with the well-known overlay characteristics of p2p file-sharing [Ripeanu
et al. 2002; Saroiu et al. 2003; Bhagwan et al. 2003].

4. NODE LEVEL OVERLAY CHARACTERISTICS

In this section, we study the overlay characteristics of the PPLive streaming net-
work from the view point of a single node. Concretely, we model the node degree
distribution, characterize the randomness of PPLive overlays, and model the session
lengths of peers attending PPLive overlays.
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Fig. 3. Characterizing and modeling the node degree distribution

4.1 PPLive Overlay Structures are Similar to Random Graphs

It is well-known that the node degree distribution in p2p file-sharing networks is
scale-free and hence likely a small world network [Ripeanu et al. 2002; Saroiu et al.
2003]. This section shows that like p2p file-sharing overlays, the average node
degree in the PPLive overlay is also independent of the channel population size.
However, unlike p2p file-sharing overlays, the structure of PPLive overlay turns out

to be closer to that of random graphs.

4.1.1 Awverage Node Degree is Independent of Channel Population Size. We si-
multaneously ran the snapshot operation to obtain active peers attending the chan-
nel A, and partner discovery to obtain the node degree of 300 randomly selected
peers attending channel A, considering both active and responsive peers. Figure
3(a) shows the variation of the average node degree and channel population size of
channel A during a day (i.e., 24 hour period). We first observe that although the
average node degree varies, it stays within a small range - between 28 to 42 over
the course of the day. More interestingly though, there appears to be no correlation
between the variation of average degree and the channel size. Thus we conclude that
the average degree of a PPLive node does not depend on the channel population
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Set of Peers a b c d

2200 5-degree peers 0.0228 | 1.54- 107 ° | 0.28 | 0.0006
1300 10-degree peers | 0.0213 | 8.14- 10=° | 0.3 | 0.0012
430 5-degree peers 0.0181 | 4.26-10°° | 0.33 | 0.0026

q u v t
24 | 33| 38 | 52
24 |1 33| 34 | 51
24 | 33| 37 | 51

3| oo| w1|T

Table III. Coefficients and parameters in Equation 1 obtained from a piecewise
fitted by Matlab

size. In our experiments, we observe similar behavior for other studied channels.

Node Degree Distribution Model. To understand the distribution of the node
degree, we ran partner discovery on three channels and plot the distribution of the
node degree in Figure 3(b). In this figure we observe that the node degree lies
between 7 and 52. We also observe that in the two ranges from 7 to 25 and from
34 to 52, the node degree distribution exhibits a uniform distribution. In between,
in the range from 25 to 33, the node degree indicates an exponential increase.
Moreover, about 50% of peers has their node degrees between 28 and 33, while a
very small number of peers have their node degrees greater than 34.

Formally, we model the node degree distribution in Figure 3(b) using the following
piecewise function:

0 if z<porxz>t

a if p<x<gq

b-e“” if g<z<u

d ifo<x<tandu<wv

y=f(z) = (1)

In Equation 1, x denotes the node degree (z > 0) and y denotes the probability
that a peer has x neighbors (0 <y < 1). a,b,c,d are positive coefficients. p,q, u,v,t
represent the limit parameters where the node degree distribution changes its be-
havior. Figure 3(c) shows the piecewise fit obtained from Matlab (or function
y in Equation 1) for one channel. Correspondingly, Table III gives the coeffi-
cients fitted by Matlab and parameters for three channels; the maximum sum of
square errors of the fits is 2.:1073. It turns out the values of coefficients a,b, ¢, d
are fairly consistent for these channels. Therefore, we believe the piecewise fit ap-
proximates very well the real node degree distribution. For the PDF, we need
a-(p—q)+ X y_gii b e +d(t —v) = 1.0; we verify this with coefficients and
parameters in Table ITI.

It is clear that the node degree distribution consists of two main distributions:
uniform and exponential. The uniform distribution holds for the ranges of [7,24] and
[34,52]. The exponential distribution is in the range of [25,33]. Since neither of these
two distributions is heavy-tailed, we conclude that the node degree distribution is
not heavy-tailed. In other words, PPLive overlays are not power-law graphs.

4.1.2  Randomness of Overlays May Depend on Channel Population Size. The
distinction between a random and a non-random graph can be quantified by the
metric called Clustering Coefficient (CC) [Watts and Strogatz 1998]. Informally,
the CC metric of a graph is defined as follows: for a random node u and two
neighbors v and w selected randomly from u’s partner list, C'C is the probability
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Fig. 4. Overlay resembles a random graph when channel size is small (around 500
nodes) but becomes more clustered when channel size grows. Different k values
have similar shapes. (December 2006)

that either v is in w’s partner list, or vice versa. Notice that CC' for a random
graph is the average node degree.

For our experiment, we first calculate the average degree of the PPLive over-
lay measured by the partner discovery operation, and calculate the metric D, the
unconditional probability that v links to w:

D = (Average node degree)/(Channel size) (2)

We then compare D to C'C, which is measured as follows. In each snapshot, we
randomly select a set .S of 300 responsive peers of the channel A. For a peer p in the
set .S, we first use partner discovery to obtain its partner list. Second, we randomly
pick two responsive partners p; and ps in P’s partner list and obtain their partner
lists (i.e., k response degree), using partner discovery. Third, we verify whether p;
is in po’s partner list or not, or vice versa. If py is in ps’s partner list (or vice versa),
we increase the variable called Count by 1. Count, initialized to 1, represents the
total number of edges existing in all such partner pairs. Then, CC is computed as
follows:

CC = Count/(2 x ResponsiveNodeNum) (3)

In Equation 3, ResponsiveNodeNwum is the number of active nodes whose two
active partners p; and po are verified (i.e., ResponsiveNodeNum = 300 in this
experiment). Figure 4 plots, for two different values of k = 5 and 15, the 24-hour
variation of D and C'C. This experiment was done at the same time and for the
channel A as shown in Figure 3(a). We observe that generally when the channel
population size is small, the value of C'C is close to the value of D (e.g. 4AM-8AM
period). This indicates that when channel population size is small, the structure of
the PPLive overlay graph approaches a random graph. As the channel population
size increases (10:00 AM onwards in Figure 4), the CC grows to about six times
that of the value of D. This is still indicative of some randomness of the graph,
although it is clear that larger channel population sizes lead to more clustering.
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Fig. 5. Characterizing and Modeling the session length distribution

4.2 PPLive Peers are Impatient

It has been widely reported, e.g., [Saroiu et al. 2003], that users of p2p file-sharing
systems are “patient,” i.e., they do not mind waiting hours, and sometimes even
days, for file downloads to complete. In the PPLive environment, due to the stream-
ing nature of the content, the opposite is true. In other words, PPLive users are
very impatient in terms of staying in a particular channel. They usually switch
channels during their watching time.

Figure 5(a) shows session lengths of 5000 random peers taken from 38675 peers
in channel A, and 5000 random peers taken from 11625 peers in channel B. We
observe that about 50% sessions are shorter than 10 minutes, 60% of A’s sessions
and 70% of B’s sessions are shorter than 20 minutes, and over 90% sessions from
both channels are 100 minutes or shorter. This implies that PPLive nodes are
impatient, i.e., they rarely stick to a channel for too long.

This behavior arises out of both a difference in application characteristics, as well
as from user behavior. Since p2p file-sharing overlays like Kazaa are batch-mode
delivery systems in which the human users can go away from the client machine
while it continues to download content, session lengths tend to be long. In compar-
ison, the PPLive application is a streaming-mode system, where a user can obtain
benefits from the application only if she is actively present near the client machine.
If the user is not at her machine, she has a lower incentive to keep her PPLive client
running compared to p2p file-sharing system, hence the session times are shorter.

There are other reasons contributing to the short session lengths. First, PPLive
users are likely to switch from one channel to another because of a loss of interest
- home television viewing often suffers from the same malady! Second, PPLive
nodes face a longer start-up delay than nodes in p2p file-sharing systems. We
have observed that newly joining nodes need tens of seconds to a minute to join a
channel, with the latency being even higher if the channel is really small (due to
the scarcity of potential neighbors). Furthermore, the long start-up delay increases
the likelihood of the user switching to a different channel.
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Session Length Model. To understand properties of PPLive peers’ sessions, we
use Matlab to model the PDF of session lengths. Since our crawler runs every
10 minutes (Section 3), node’s session lengths were measured only multiples of
10-minute periods. Thus an appropriate model would be a discrete mathematical
series, rather than a continuous distribution. Figure 5(b) shows fitting curve ob-
tained from Matlab for three different channels A, B, and C. While the fitting curve
is an exponential function of time (since Matlab offers only continuous fits of data),
we express the session length distribution as the (equivalent) geometric series.

Concretely, the geometric series can be expressed as follows. Let y be the prob-
ability that a node’s session length is measured as x - 10 minutes (where z > 0).
Our models reveal the relationship between y and x as:

y=a- 610-b-nc (4)

Here, a and b are constants. a is the base of the geometric series, and the multi-
plicand in the geometric series is r = e'9®. Factor 10 in the above equation arises
from our discretized session lengths that are multiples of 10 minutes.

Channel a b

A 0.6378 | -0.05944
B 1.183 | -0.09878
C 1.079 | -0.09594

Table IV. Coefficients of geometric series with y = a - €19 fitted by Matlab.

Table IV shows values of a and b obtained by fitting the session lengths of three
channels A, B, C to continuous exponential curves in Matlab; the corresponding
sums of square errors of the fits vary from 1.5-10~% to 2-10%. We verified that this
indeed leads to the geometric series by verifying, for each channel, that the value of
¥ a7 turned out to sum to 1.0. For instance, channel A’s exponential fit gives
us a = 0.6378 and b = -0.05944 (i.e. 7 = €'¥?), and the above sum turns out to be
approximately 1.

In conclusion, the application characteristics and user behaviors cause very short
session lengths and consequently a higher degree of churn in PPLive than in p2p file-
sharing overlays. Our model of geometrically distributed session lengths of nodes
(per channel) can be used to accurately model node arrival/departure behavior in
simulations of media streaming p2p systems. This can be used to improve the be-
lievability of simulation set-ups for media streaming p2p systems by using realistic
modeled workloads. This also opens up an opportunity of incorporating session-
length-based optimizations at run-time in real deployments. Finally, our model of
geometrically distributed session length times indicates a high degree of homogene-
ity across nodes in the session lengths, and this indicates that homogenous protocol
designs have substantial promise and are a good match for media streaming p2p
overlays - this does not of course preclude benefits from heterogeneous protocol
designs. Future designs for both streaming p2p overlays and generic p2p routing
substrates will have to keep these issues in mind.
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availability correlation. Y-axis is % host pairs. (December 2006)

5. INTER-NODE OVERLAY CHARACTERISTICS

In this section, we study the overlay characteristics of the PPLive network from
the view point of a pair of nodes. In particular, we characterize peer availability
interdependence and the locality-awareness of PPLive overlays.

5.1 Peer Availability Interdependence

P2P file-sharing systems are known to have host uncorrelated availabilities [Bhag-
wan et al. 2003]. In comparison, we show that: (1) unlike in p2p file-sharing
systems, PPLive peer pairs occurring together in a snapshot have highly correlated
availabilities, while (2) like in p2p file-sharing systems, peer pairs that are randomly
selected from different snapshots will have highly uncorrelated availabilities.

We measure the correlation between the availability of two peers X and Y by
using a similar technique as in [Bhagwan et al. 2003]. Specifically, let X =1 (resp.
Y = 1) be the event that the peer X (resp. Y) occurs as an active peer in a given
snapshot. Then, for the peer pair (X,Y), we calculate P(Y = 1|X = 1), i.e., the
conditional probability that given X is present in a given snapshot, Y will be too.
We then compare this conditional probability to the unconditional probability that
peer Y occurs in a given snapshot, i.e., P(Y = 1). The closer the two values, the
more uncorrelated are X’s and Y’s availability patterns.

5.1.1 Nodes in the Same Snapshot Have Correlated Availability. Given traces of
a series of snapshots (for Channel A) taken over a contiguous time period (we use
three settings: 3 hours, 12 hours, and 24 hours), we select a set of 185 peers from
the first snapshot at 12AM (starting of a day). Notice that we have 144 snapshots
for 24 hours. Figure 6 shows the conditional probability P(Y = 1|X = 1), for each
node pair in this set. 50% of node pairs show a high correlation in availability, i.e.,
PY=1X=1)=1

We believe there are two factors contributing to this behavior: first, user pairs
that appear in the same snapshots are likely to have similar interests in terms of
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channel viewing contents and viewing time. Second, and perhaps more importantly,
certain peer pairs that occur together in a snapshot are perhaps “well-matched” as
streaming relays for each other. It is likely that PPLive’s inter-overlay optimizations
[Liao et al. 2006] cause one client’s presence to draw in other well-matched clients
for relaying. We observe the same results with channel B and C.
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Fig. 7. Randomly selected pairs of peers have uncorrelated availabilities. Plot shows PDF of
availability correlation from 500 random peers taken from channels A and B. (December 2006)

5.1.2 Random Node Pairs Have Independent Awvailabilities. We ran a similar
experiment as in Section 5.1.1, except that we selected 500 random peers from
among 39412 peers crawled over 24 hours (144 snapshots) from channel A, as well
as 500 random peers from 11527 peers crawled over 24 hours (144 snapshots) from
channel B. Then, we computed the difference between P(Y = 1|X = 1) and P(Y =
1) for each host pair (among the set of 500) over the 144 snapshots, corresponding
to 24 hours. In contrast to results in Section 5.1.1, Figure 7 shows that random
peer pairs have completely independent availability behavior. In particular, 87%
peer pairs in channel B (92% in channel A) lie between +0.2 and -0.2, indicating
independence in availability among these peers. This is explainable because random
peers are unlikely to have either correlation in user interests (i.e., viewing time,
viewing content) as peers in the same snapshot, or be well-matched in relaying
feeds.

In conclusion, unlike p2p file-sharing systems, media streaming p2p systems may
exhibit a higher correlation availability among certain node pairs. Systems designers
will have to account for this, regardless of whether it arises from user interests or
from internal optimized design of the PPLive overlays (in the latter case it is a good
p2p system design principle).

5.2 PPLive Overlay is Slightly Locality-aware

This section evaluates the effect of locality in choosing PPLive streaming partners.
We first study the distance between pairs of neighbors in PPLive overlays. Second,
we render the topology of PPLive overlays with nodes and links. This rendered
graph gives more insights about the overall connectivity of PPLive overlays.
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Fig. 8. When the geographical distance between two peers is less than 2000 (km), they have
a slightly higher probability to be neighbors. For the greater distance, the probability to be
neighbors of any peer pairs is nearly equal. (May 2008)

(a) One overlay of 70 nodes (b) One overlay of 4000 nodes

Fig. 9. Rendering the PPLive topology. Nodes fall into three main regions: China,
Europe, and North America (May 2008)

5.2.1 Geographically Closed Peers are Likely to be Neighbors. In this experi-
ment, we collect two sub-overlays with 1329 and 1827 random peers, respectively.
The former consists of nodes with 10-degree and the later consists of nodes with
5-degree. We perform following steps to obtain the distance between peer pairs in
the two above sub-overlays. First, we use the MaxMind database [Max ] to obtain
the Longitudes and Latitudes of these peers, based on their IPs. Second, we use
the Haversine formula [Hav | to compute the distance in kilometer from these Lon-
gitudes and Latitudes. Figure 8 shows the relationship between probability that a
random peer pair are partners and distance between the peers. This figure indicates
that if the distance between two peers is less than 2000 (km), they have a slightly
higher probability to be neighbors, independent of distance. In contrast, peer pairs
that are between 2000 (km) and 15000 (km) have a nearly the same probability to
be neighbors. Notice that 15000 (km) is the farthest distance between two points
on the Earth.

There are two possibilities for this behavior. First, there is no locality-awareness
in choosing PPLive streaming partners. This is because a very large portion of
PPLive peers is in China (i.e., more than 80%). So, although peers in China choose
streaming partners at random, it is likely that a peer in China will choose peers in
China as its partners. Thus, the distance between peers may be closed although
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this partner selection is random.

Second, PPLive peers take the geographical location into account in choosing
streaming partners. In other words, when selecting neighbors, a PPLive peer
chooses geographically closer peers. In this case, a peer in China may still choose a
partner in China but this selection is locality-aware. However, notice that in Fig-
ure 8 geographical locality provides only about 10% high probability of partnering.
This arises from the randomness of PPLive overlays.

5.2.2 Rendering the PPLive Owverlays. To understand the 2000 km cut-off in
Figure 8, we visualize two overlays obtained from two snapshots of 70 and 4000
nodes by Geoplot [Geo | in Figure 9. Interestingly, peers in this figure fall into
three main clusters in China, Europe, and North America, where peers within one
cluster connect to each other. However, there exists a large number of links across
these clusters, especially links to/from the China cluster. The fraction of links
to/from the China cluster over the total number of links in the overlay is higher
in smaller overlay. More interestingly, the diameter of each above cluster (China,
European, or North America) is roughly about 2000 (km). This might explain the
cut-off in Figure 8. In other words, nodes within a cluster are slightly more likely
to create partnerships for video streaming, but many links exist across the main
clusters.

6. SYSTEM-WIDE OVERLAY CHARACTERISTICS

This section studies the overlay characteristics of the PPLive network from the
system-wide level. Specifically, we focus on the channel population size, peer par-
ticipation in simultaneous overlays, and the resilience of PPLive overlays to the
massive failure of nodes.

6.1 Channel Population Size is Time-sensitive, Self-repeated and Event-dependent

Studies on p2p file-sharing systems [Bhagwan et al. 2003] showed that diurnal
patterns and churn exist, but the size of a p2p overlay stays stable in spite of these
features. The findings in this section show that (1) PPLive overlays have a highly
variable channel population size (as well as high churn and diurnal patterns), (2)
the channel size exhibits self-repeated behavior over days, and (3) the channel size
changes suddenly when the real-world events occur.

We first study the time variation of channel population size of PPLive channels.
Figure 10(a) shows the variation of the channel size for the three PPLive channels
A, B, C over the course of a day. We observe that all channels have peak populations
at noon and evening/night, and are smallest in the early morning. This is possibly
because users usually use PPLive in spare time (at noon and evening/night).

The second study reveals that the PPLive channel size is self-repeated as shown
in Figure 10(b). Particularly, we study a live TV channel for four random and
normal days (the day without any special public events). The channel variation
follows the same pattern for all the four days with peaks at noon and night, and
becomes smallest in the early morning. This confirms that the channel size variation
of PPLive channels is self-repeated and consistent for normal days.

In contrast, the channel size shows a sudden increase during a special event.
While we were conducting our experiments, the Great Sichuan earthquake occurred
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Fig. 10. Channel size is time-sensitive, self-repeated and event-dependent.

in China in May 2008. We happened to measure three live CCTV channels before
and right after the earthquake. Figure 10(c) shows the the channel size variation
during the course of a day, both before and right after the earthquake. Before the
earthquake, the channel size was less than 5000 users and was time-sensitive. How-
ever, right after the earthquake the channel size increased dramatically to about
35000 users, resulting in a flash crowd. More interestingly, although the channel
sizes was smallest in the early morning, the peaks at noon and night disappeared,
and the channel size remained high after 9AM. This flash crows might be because
during the earthquake period, there were many people both inside and outside
China watching PPLive channels for the news of the earthquake and thus the chan-
nel size stayed high. In our experiments, the channel sizes remained high for two
weeks after the earthquake. That means, events can trigger a large population
of viewers to the usage of p2p streaming systems. This is consistent with the in-
crease of viewers during Chinese New Year event [Hei et al. 2007] or World Cup
Soccer Games [Silverston and Fourmaux 2007]. In other words, the channel size is
event-dependent.

In conclusion, the PPLive channel size distribution is time-sensitive, self-repeated
and event-dependent. Understanding this behavior is important for network plan-
ing. For example, designers can place more proxies to relay streams when the
channel size is small, or when an event occurs, thus reducing the startup latency
and minimizing the churn.
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6.2 Peer Participation in Simultaneous Overlays Follows the Zipf Distribution

The PPLive system is believed to use the idea of inter-overlay optimizations [Liao
et al. 2006]; as a result, a client machine may appear as a participant in multiple
overlays, including ones that the user is not subscribed to. In this section, we
study peers attending multiple channels (overlays) at the same time, which we
call interoverlaying peers. Particularly, we crawl 35 simultaneous channels, chosen
at random, and extract interoverlaying peers. At the same time, we probe these
interoverlaying peers to obtain those which are responsive to PPLive protocol pings
and call them responsive interoverlaying peers. Figure 11 shows the distributions
of interoverlaying peers and responsive interoverlaying peers at four different time
stamps in a day. Notice that this figure is in log-log scale. For example, at 3PM we
collected 34535 peers from 35 channels, among these peers 4230 peers are responsive.
We then count the number of interoverlaying peers from 34535 peers, the number
of responsive interoverlaying peers from 4230 peers, and plot these two counters
in Figure 11. This figure indicates that the distributions of both interoverlaying
peers and responsive interoverlaying peers follow the Zipf distribution. This leads
to following discussions.

First, a node can join multiple PPLive overlays at the same time while a PPLive
client running on a Windows machine can display only one PPLive channel at
one time. Moreover, the existence of a large number of responsive interoverlaying
peers indicates that the interoverlaying peers might not be proxies; instead, they
might be real PPLive client machines. That means, PPLive might have an internal
mechanism to leverage peers so that they can share their available resources to sup-
port peers in non-subscribed overlays, which differ from their subscribed overlays.
Second, we observe that the distributions of interoverlaying peers and responsive
interoverlaying peers both follow the Zipf distribution. In particular, the number
of channels a peer can attend varies from 1 to 6.

Finally, we fit the curves in Figure 11 with the function y = a -  + b in Matlab.
We obtain the coefficients a, the 6 parameter of the Zipf distribution, as shown in
Table V. In this table, the values of # are comparable for all curves, consistent
with the similar slopes of the linear fit y = a -2 + b. This means the distribution of
interoverlaying peers is consistent over different times in a day.
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Data Set 0

6AM:3738 total peers -6.355
6AM:1313 responsive peers | -6.606
9AM:7528 total peers -6.48
9AM:1600 responsive peers | -6.135
3PM:35535 total peers -5.049
3PM:4230 responsive peers | -6.358
6PM:18497 total peers -5.745
6PM:2536 responsive peers | -6.052

Table V. Coefficients of the linear fit with y = a -« + b, fitted by Matlab. 6 is the exponent
parameter of the Zipf distribution (0 = a).

In conclusion, PPLive peers might join multiple overlays at the same time and
the distribution of peer participation in simultaneous overlays follows the Zipf dis-
tribution.

6.3 Resilience of PPLive Overlays

It is well known that the overlay connectivity of p2p file-sharing networks is power-
law distributed and the node degree distribution follows the Zipf distribution [Ri-
peanu et al. 2002]. In p2p file-sharing overlays, a few nodes in the network have
significant higher degree than the others. When these high degree nodes are under
orchestrated attacks and broken, the overlay easily becomes disconnected. In this
section, we are interested in the resilience of PPLive overlays in the face of failures
or attacks. To do so, we set up the following experiment:

—Randomly select a set of nodes currently attending a PPLive channel and denote
this set S.

—Use partner discovery operation to obtain partner lists (i.e., k response degree)
of all nodes in S. The partner list of a peer p in the set S consists of links from
p to other nodes in the overlay.

—Remove all unresponsive nodes in S (i.e. those nodes that return no partners to
our queries.) to obtain a set S;. Notice that S; is a subset of S and each node
in S7 has a partner list.

—For each node p in 51, scan all elements of p’s partner list and obtain the subgraph
G whose vertex set is S7.

—Find the biggest connected component GG; within G. This step is required because
G might not be a connected graph.

After the above steps, we obtain a connected component GG; of responsive nodes.
By studying the connectivity of responsive nodes, we can infer the connectivity
of the entire PPLive overlays. In our experiment, it turned out that the selected
channel has 3218 nodes (the size of S is 3218) and G has 1625 nodes. Figure 12
shows the node degree distribution of all nodes in G1, in which the average node
degree is 5.77. Notice that this average degree is significantly lower than the node
degree in Section 4 because (G; contains only responsive nodes and links between
them. The degree distribution of nodes in G is the Gaussian distribution with the
standard derivation 2.81.

Given this connected component G, we measure its resilience. For this, we
perform two different deletion strategies - these are called highest degree deletion
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Fig. 12. Node degree distribution of a connected component of 1625 responsive peers. (May 2008)

and random deletion. For the first strategy, we recursively delete the node with
the highest degree and all links from this node to other nodes in Gy; this is done
until G1 is disconnected. This deletion strategy is deterministic. We found that
when we delete 13 nodes, G; becomes disconnected. For the second strategy, we
recursively delete a random node and all links from this node to other nodes in
(i1; this is done until GG; is disconnected. To remove the bias of the random node
selection, we perform the second deletion strategy 100 times. Table VI compares
the two deletion strategies. We observe that the mean and median of the number
of deleted nodes obtained from 100 random deletions is not very different from the
number of deleted nodes in the highest degree deletion strategy. Together with
the node degree distribution in Figure 12, this table implies that the connectivity
of the nodes in Gy is close to random and G; is loosely connected (G; becomes
disconnected when fewer than 1% of nodes are removed from it).

Metrics Random | Highest degree
Mean 16.3 13
Median 14 -
Standard Derivation 14.78 -
Min 1 -
Max 68 -
95 Percentile 41 -
5 Percentile 1 -

Table VI. Comparison between Random Deletion and Highest degree Deletion of 1625 nodes.

It is well-known from previous studies that p2p file-sharing overlays are robust in
the face of random massive failures but become vulnerable to orchestrated attacks
due to their power-law natures [Saroiu et al. 2003]. In contrast, PPLive overlays are
fairly random, since the random deletion results in the similar outcome as highest
degree deletion (similar to orchestrated attacks). In other words, for an overlay
with the same number of nodes and a similar node degree distribution, a PPLive
channel overlay is more resilient to the massive failure of nodes than that of p2p
file-sharing. This characteristic is likely related to the fact that maintaining a good
streaming quality requires a more robust overlay structure, especially under a very
high churn environment like the PPLive network.
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7. RELATED WORK

Large-scale p2p file-sharing overlays have been the focus of numerous measurement
studies. It is well-known that the p2p file-sharing overlay is small world in na-
ture [Ripeanu et al. 2002; Saroiu et al. 2003]. However, our study shows that the
structure of PPLive overlay is closer to that of random graphs. Similarly, while p2p
file-sharing systems are believed to have host availabilities uncorrelated, availability
correlation of PPLive peer pairs varies in certain situations. Studies on p2p file-
sharing systems also indicate that although churn exists, the size of a p2p overlay
remains stable [Bhagwan et al. 2003]. In contrast, the PPLive overlay size varies
significantly and peaks both at noon and during night. The channel population
size is also event-dependent and increases dramatically during the event period.
Moreover, users of p2p file-sharing are reported to be patient [Saroiu et al. 2003],
while our study shows that PPLive users are relatively impatient.

There have been measurement studies of p2p IPTV systems such as PPLive,
PPStream, Sopcast, TVAnts, CoolStreaming, UUSee [Li et al. 2008; Hei et al.
2007; Silverston and Fourmaux 2007; Liu et al. 2007; Wu et al. 2007; Li et al.
2007; Wu et al. 2008; Silverston et al. 2007; Xie et al. 2007]. These works measure
the network-centric or user-centric characteristics of the p2p IPTV systems such
as churn rate, session length [Li et al. 2007], video buffering [Hei et al. 2007],
throughput distributions [Wu et al. 2007]. However, there has been no study about
the overlay characteristics of p2p IPTV systems so far.

PPLive is one of the largest deployed p2p IPTV systems in the world currently
and thus it draws significant attention from research community. There have been
several measurement studies about PPLive networks [Hei et al. 2007; Ali et al.
2006; Silverston and Fourmaux 2007; Huang et al. 2008], which focus on network-
centric metrics such as peer churn rate, video traffic properties [Hei et al. 2007,
throughput, video download policies [Silverston and Fourmaux 2007], rate of flow,
duration of flow [Ali et al. 2006], or user-centric metrics such as user geographic
distribution, session length [Hei et al. 2007], user behavior, user satisfaction [Huang
et al. 2008]. In this paper, we have applied a crawler-based study to measure and
model the overlay characteristics of the PPLive network. Our crawler differs from
the crawler of [Hei et al. 2007] in two ways — their crawler runs once each minute
and for about 15 seconds; thus to crawl a large part of the network, it imposes a
high load on the PPLive network. Second, their crawler stops after a fix amount of
time, regardless of the channel size while our crawler stops depending on the overlay
size. Our study is unique in focusing on measuring the overlay characteristics of
p2p IPTV systems in general, and the PPLive network in particular. Moreover, to
the best of our knowledge, we are the first to provide mathematical models for the
overlay characteristics of p2p IPTV systems.

8. DISCUSSION AND CONCLUSION

Results obtained from our extensive experiments indicate that PPLive overlay char-
acteristics differ from those of p2p file-sharing. From our findings, we conclude that:
(1) PPLive overlays are similar to random graphs in structure and thus more ro-
bust and resilient to the massive failure of nodes, (2) Average degree of a peer
in the overlay is independent of the channel population size, (3) The availabil-
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ity correlation between PPLive peer pairs is bimodal, i.e., some pairs have highly
correlated availability, while others have no correlation, (4) Unlike p2p file-sharing
users, PPLive peers are impatient, (5) Session lengths (discretized, per channel) are
typically geometrically distributed, (6) Channel population size is time-sensitive,
self-repeated, event-dependent, and varies more than in p2p file-sharing networks,
(7) Peering relationships are slightly locality-aware, (8) Peer participation in simul-
taneous overlays follows a Zipf distribution. Based on these conclusions, we can
draw several lessons:

Lesson 1. PPLive peers slightly prefer to have topologically nearby partners and
peers can attend simultaneous overlays, including their non-subscribed overlays.
This improves the streaming quality of the entire system. Moreover, peers in the
PPLive network fall in three main clusters in China, Europe, and North America
with a large number of connections from/to the China. Therefore, it is reasonable
to strategically place stream relaying servers to support overlays, given that the
overlay sizes are time-sensitive, self-repeated and event-dependent.

Lesson 2. Geometrically distributed session lengths of nodes can be used to accu-
rately model node arrival/departure in simulations of media streaming p2p systems.
Further, since the geometric distribution is indicative of memoryless session lengths
(per node), this means that nodes are homogeneous w.r.t. their availability. Thus,
homogeneous protocol designs for p2p overlays in this application space are reason-
able. In other words, protocols that treat participating nodes equally are simpler
and work effectively. This does not of course preclude benefits of heterogeneous
protocol designs based on metrics such as bandwidth, CPU speed, etc.

Lesson 3. Our conclusion (1) indicates that small PPLive overlays work well by
creating random overlay structures - thus, simple and homogeneous solutions work
well at medium-scale (and not too large) channel sizes. Further, even when overlays
are large, our conclusion (2) above indicates that homogeneous designs work well
too. Notice that this does not preclude the use of heterogeneous protocol design.

Lesson 4. Since the availability correlations among node pairs is bimodal, this
can be used to fingerprint, at run-time, which pairs of nodes are correlated and
which are not. The bimodality of the behavior means that a few (random) sample
points will suffice in categorizing each node pair as either “correlated” or “not
correlated”. This availability information can then be used to create overlays (or
sub-overlays) that are either present all at once, or to route media streams (for
a given channel) to a recipient node via other correlated nodes that are likely to
also be up at the same time. This finding means simulations of media streaming
p2p systems need to account for this bimodal availability correlation in the injected
churn models.

Lesson 5. The structure of PPLive overlay is close to random. This randomness
is to maintain the connectivity of the overlay and preserve the streaming quality
under the high churn environment. Moreover, the random structure obtains the ro-
bustness and resilience to the massive failure of nodes. However, locality also needs
to be taken into account in designing p2p streaming overlay so that the closed peers
can have more chance to exchange stream and thus improve the streaming qual-
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ity. Of course, extreme locality may create clustered overlays, which are vulnerable
to the massive failure of nodes and churn. Therefore, designing a locality-aware
p2p streaming system which is resilient to churn and node failures requires more
attention and effort from research community.

Lesson 6. While measuring overlay characteristics of the PPLive network, we
have faced numerous challenges and spent a significant amount of time to access
the overlay due to its closeness. For future p2p multimedia streaming systems and
online networks in general, there should be more accessible APIs so that the systems
can be measured more easily and deeply. This helps researchers characterize the
systems and thus can provide better suggestions to improve its performance.

In conclusion, the differences between PPLive overlays and p2p file-sharing over-
lays drawn from our studies show that p2p systems designers may need to account
for application nature. This study is also indicative of the challenge in designing
“generic” p2p substrates catering to a wide variety of applications. Since custom-
built substrates are wasteful, it may be important for systems designers to address
classes of p2p applications with common characteristics. Finally, a deeper study of
user behavior (e.g., via HCI research) may yield novel p2p overlay design principles.
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