
Cumulative Learning Using Functionally Similar States

M. M. Hassan Mahmud
Department of Computer Science

University of Illinois At Urbana Champaign
Urbana, IL 61801, USA
mmmahmud@uiuc.edu

Sylvian Ray
Department of Computer Science

University of Illinois At Urbana Champaign
Urbana, IL 61801, USA

January 2005

Technical Report
UIUCDCS-R-2005-2511

Abstract

In this paper we propose a Cumulative Learning System for artificial
agents that uses the idea of Functional Similarity between states. The
general idea of Cumulative Learning is to build a cognitive architecture
for an artificial agent that ’lives’ for a long time and solves many related
tasks during its lifetime. Two states (or situations) are said to be func-
tionally similar (FS) with respect to an action if the action induces the
same change on both the states. We define the notion of FS for Markov
Environments, and then use that to develop a Predictive Model (PM) that
given states and actions observed so far, predicts the next state when an
action is taken in some novel state (state never observed before or often) -
i.e. the PM is a novel type of forward model. We also describe a planning
mechanism for goal directed MDPs with multiple goals that uses the PM
to solve tasks quicker using information from solutions to similar tasks
solved previously by the agent. After establishing some necessary theo-
retical properties of both we perform experiments that shows the efficacy
of our method. We also outline how the current system, which can actu-
ally be categorized as a Lifelong Learning system, may be extended to a
complete cumulative learning system.

1 Introduction

A chief reason humans are good at behaving intelligently in the real world is that they
can use knowledge learned in one situation in another similar situation. For example we
can use knowledge acquired from playing squash to learn how to play racquetball. One
reason we can do this is because the two situations are functionally similar - that is they
’behave’ similarly with respect to actions. That is both squash balls and racquetball balls
behave similarly with respect to particular racquet strokes (but not quite the same way as a
racquetball ball bounces quite a lot more than a squash ball). In this paper we investigate
how we may impart this human ability to exploit functional similarity between situations
to artificial agents. We do so in the context of Cumulative Learning.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The basic idea of Cumulative Learning in general is to design a cognitive architecture for
an agent that ’lives’ for a long time in some environment and solves many similar tasks dur-
ing its lifetime. The agent then speeds up learning one particular task by using knowledge
gained when learning related tasks previously. One way to look at Cumulative Learning
is as a way to set bias for a new task using knowledge accumulated from solving previous
tasks. Since the performance (in terms of no. of examples required to learn) of an learning
agent depends to a large extent on the bias given to it in the beginning ([Thrun and Pratt,
1998]), Cumulative Learning helps speed up learning. However, along with this, the dif-
ference between current lifelong learning systems ([Thrun and Pratt, 1998],[Thrun, 1995],
[Caruana, 1997],[Drummond, 2002], [Mitchell and Thrun, 1993]) and Cumulative Learn-
ing is the cognitive architecture aspect of CL. The latter implies a system that incorporates
sophisticated methods to acquire, store and reuse knowledge in a way that is appropriate
for complex domains. We say more on this in this section a little later.

The CL system we present in this paper is in effect a type of forward model (e.g. [Jordan
and Rumelhart, 1992], [Mitchell and Thrun, 1993], [Kawato, 1999], [Karniel, 2002] and
[Flanagan and Wing, 1997]) for Markov Environments , i.e. a model that predicts the
effects of actions in novel states (states not seen before ever or often); the predictions
can then be used to behave more intelligently in novel states. The difference between our
method and previously developed models is that, it uses functional similarity between states
in addition to structural similarity (similarity in terms of features describing the states)
to predict effects of actions in novel states. The use of functional similarity results in a
model in which distinctions between groups of similar states are made at a finer grain than
in previous methods. The model also predicts a distribution over next states (instead of
just a specific next state), is more principled than existing methods and gives a measure
of prediction error. In addition, the classifier employed has to learn the much simpler
mapping of states → {−1, 1}, rather than states → states, which results in more accurate
classification. We discuss the notion of functional similarity and the predictive model in
section 3 and we compare the PM with other forward models in section 3.3.4.

As an application of the predictive model, we present a planning mechanism for goal di-
rected Markov Decision Problems ([Barto et al., 1995], [Moore et al., 1999]) with task
independent cost signals ([Moore et al., 1999]). The planning mechanism uses the predic-
tive model to solve a particular task much faster using information learned from solving
similar tasks. We present the planning mechanism in section 4. A block diagram showing
the relationship between the predictive model and the planning mechanism is given in fig-
ure 1. We present our characterization of the MDPs we consider in this paper in section 2.
We present preliminary empirical results on the effectiveness of our method in section 5,
and discuss the implications of the results, possible future avenues of research and related
work in section 6. We summarize our results in section 7.

Finally, we should note that, although the method we describe in this paper is a perfectly ac-
ceptable learning mechanism for interesting multi-task/lifelong learning problem domains,
it is nonetheless incomplete as a CL system since it does not include the methods needed
for sophisticated long term behavior. We give an outline for what needs to be done to
extend this into a full-fledged Cumulative Learning System in sections 3.1 and 6.1.

A Note on Notation: In the following we sometimes use the same lowercase Greek letter to represent
different positive constants. We rely on the context to distinguish between the different usages.

2 Problem Definition

In this paper we consider an agent in a particular type of discrete Markov Decision Problem,
which has also been considered in [Barto et al., 1995] and [Moore et al., 1999]. Such a
MDP is specified by a set of states S and a set of probabilistic actions A. When an a ∈ A
is applied to a state s, a takes the agent to a state s′ with some probability, denoted by
P (s′|s, a). The distribution over next states in turn is denoted by Pa(s). In addition each
state s ∈ S is described by a finite set of features F = {Fi}, i.e. there is a bijective

2

Predictive Mechanism

Novel State s, Action a

Planning Mechanism

Goal State, Start State

Plan

Effect of Action a on State s

Figure 1: CL System based on Functionally Similar States.

mapping S → F× where F× = F1 × F2 × · · ·Fn is the product space of the features.
Eventually, we will consider continuous features, but for the moment we are considering
domains with discrete features. In addition there is a cost 0 ≤ ds,a,s′ < ∞ associated with
each transition from any state s to another state s ′ caused by an action a. A single task T
of the agent consists of getting to some state s ∈ TG ⊂ S from some state s′ ∈ TS ⊂ S
- where TG and TS are, respectively, the goal states and start states corresponding to T
- while keeping the costs ds,a,s′ incurred during the transfer as low as possible (more on
this in section 4). In the Cumulative Learning setting, the agent will need to solve two
or more such tasks in the same domain. One further requirement we make, that was not
made in prior works mentioned above, is that we require that for each task, the agent be
given a description of the goal states (i.e. the acceptable values of each feature of the goal
states). The reason we are considering this type of MDPs is that we believe the planning
mechanism , combined with the predictive model, we will be able to solve many interesting
problems. We will strive to demonstrate this in future.

At this point we note that the concept of Functional Similarity, and thus the Predictive
Model, to be presented in section 3 is applicable to any domain constructed on top of a
Markov Environment, where a ME is the system described above excluding the cost signals
and the tasks. The planning mechanism described in section 4, on the other hand, is specific
to the type of MDP described above.

Now, in the following we define the effect of actions in our model more explicitly. We
introduce this rather explicit characterization of an action because it is necessary for our
description of Functional Similarity later on. Let F be the set of features {F 1, F2, · · · , Fn}
that describe states and F× their product space. In our model we assume that number of
distinct values of each feature is countable. Note that the set of states S represented in
terms of the features, {F (s)} = {(F1(s), F2(s), · · · , Fn(s))} is the same as F×. Let F
denote the set of feature functions - i.e. the set of functions of the form f : F× → F×.
So when an action a is applied in a state s = F (s), a applies a function ga of the form
g : F× → PF , where PF is the space of distributions over F . Let us denote these set
of action distribution functions by AP = {ga : a ∈ A}. Thus given a state s, the action
selects a distribution over the space of feature functions F using ga(s), and then uses that
distribution to select the f ∈ F to apply to the state. The output of the selected f ∈ F is
the resulting next state. So to summarize, when an action a is applied at state s = F (s),
then

• let P = ga(s), where P is a distribution over F , and ga is the action distribution
function corresponding to a;

3

• let f ∈ F where f is selected according to the distribution P obtained in the
previous step;

• then the effect of the action s′ is given by f(F (s)) = F (s′).

It is important to note that this description results in exactly the same type of actions as in
a ME.

3 Functional Similarity and the Predictive Model

In this section, we define our notion of similar states and describe the Predictive Model that
is based on this notion of similarity; we proceed as follows. First we describe Functional
Similarity, which is the core idea of this paper. We start with a qualitative description of the
idea, and then we give a more formal description. We then describe the predictive model
that learns to identify states that are functionally similar and use that ability to determine
the effect of an action on a novel state.

3.1 Motivation for Functional Similarity

Let us first describe FS qualitatively with two examples. In the first example, consider
two states for an artificial agent, one with a wooden block on a table and the other with a
wooden block on the floor. Both these states are functionally similar with respect to action
PUSH-BLOCK because the change induced in both these states by PUSH-BLOCK is the
same i.e. in both cases the block moves forward a little. Now consider another pair of
states consisting of the agent on a flat grassy field and the agent on the pavement - again
both these states are functionally similar with respect to the action MOVE-FORWARD. So
qualitatively speaking, we say two states are functionally similar with respect to an action
if the action induces similar changes in both the states.

Philosophical Aside: From a philosophical perspective, it seems to us that, functional simi-
larity plays a big part in the mechanism we use to understand the world (derive semantics).
As Minsky pointed out in [Minsky, 1988], when we say we ’understand’ something what
we really mean is we know how it relates to everything else we know. For instance when
we say we understand what pencil is, we mean that we know we can make marks on paper
with it, poke someone we do not like with it and so on. The ’basis’ object we can relate
anything we understand is ourselves. And this is what functional similarity captures - it de-
scribes how everything in the world relates to the agent. Thus a model of the world in terms
of functional similarity leads to, in a non-phenomenal sense, basic semantics. In fact, in
my opinion, functional similarity is more important than physical similarity in some sense
because it is functional similarity that we use to exploit the world.

We may further speculate on the possibilities of the notion of functional similarity. In
human interactions with the real world, situations are usually functionally similar if they
contain the same or similar objects (e.g. the block in the first example above). Thus we
can use functional similarity between situations to identify objects - which will usually
be the commonality between the parts of the environment that changed on application of
the action on the functionally similar situations. Once we have identified objects, we can
then determine the relationship/semantic connection between different objects in terms of
how, on application of an action, change in one object relates to change in another object.
As an example, application of the WRITE action on a pencil results in a paper object
having marks on it. We can then form a semantic connection between the two objects
by describing the effect of the action on the objects. Thus functional similarity can help us
develop a non-phenomenal semantic network that is grounded in the domain. The agent can
then behave intelligently in novel situations that contain objects modeled in the semantic
network by using the relationships among the objects to predict the effect of its actions, and
then formulating plans for the novel situations based on the predictions.

4

3.2 Formal Description

As will be shown below, the notion of ’change induced’ we mentioned above is the algo-
rithmic representation of the function applied by the action to change one state to the next.
The more technical material in this section is dedicated towards showing that such an al-
gorithmic description exists for any function an action may apply if the domain conforms
to the specification given in section 2. This idea is fairly intuitive; since each feature is
countable, and the number of features is finite, any function mapping from finite number
of feature to finite number of features will have at most countable number of pairs. And
therefore it will be possible to give an algorithmic description of the function. This material
then culminates in a description of functional similarity between states, according to which
two states are functionally similar with respect to an action if the most compact algorithmic
description of the function applied by the action to both the states are the same.

Recall that F is the set of feature functions, i.e. functions of the form f : F× → F×.
Before proceeding further, we need to characterize this set as our description depends on
it. Let the set of functions in F that alter only a single feature of its argument, and has a
known algorithmic description, be F1; i.e. if f ∈ F1 and f(a) = b then a and b differ
in the value of only one feature. We call F1 the set of simple feature functions. Now let
F1C be the set of functions such that each f ∈ F1C is a composition of a finite sequence
of members of F1. Consider the set-of-pair representation of each f ∈ F : {(x i, yi)}. We
assert that each pair (xi, yi) ∈ f can be described by a fc ∈ F1C:

Lemma 1. For each (xi, yi) ∈ f where f ∈ F , there is a fc ∈ F1C such that fc(xi) = yi.

Proof. Consider a particular pair (F (s), F (s′)) ∈ f . Now, for each feature Fi, there is a
fi ∈ F such that, ∀s1 ∈ S, fi(F (s1)) = F (s2) such that for all j �= i, Fj(s2) = Fj(s1)
and Fi(s2) = Fi(s′). In other words, fi is the function in F that changes the ith feature of
any input to the value of the ith feature in s′ and keeps all the other features the same. Since
fi changes only one feature, and since it has an algorithmic representation (just described),
fi ∈ F1. The composition of all such fi for each Fi ∈ F gives us the required function fc

and since |F | is finite, the sequence is also finite.

Given a particular problem domain let FU ⊂ F be the set of functions that is actually used
in the domain. This means that for each f ∈ FU , ∃a ∈ A, s ∈ S, such that ga, the action
distribution function corresponding to a, generates a distribution with non-zero probability
for f . Now for each fu ∈ FU consider a set Jfu ⊂ F1C such that 1) the members of Jfu

cover all the pairs of fu and 2) the members of Jfu are mutually disjoint. We can always
find such a disjoint set of functions in F1C :

Lemma 2. For each f ∈ F (and thus for each fu ∈ FU since FU ⊂ F), there is at least
one subset Jf of F1C such that members of Jf covers all the pairs of f and the members
of Jf are mutually disjoint.

Proof. Consider the set of functions fc ∈ F1C described in lemma 1. So each fc covers all
pairs of the form (·, yi) ∈ f for some yi. Let us call the function fc ∈ F1C corresponding
to yi fcyi

. Now redefine fcyi
(x) to be undefined whenever (x, yi) �∈ f . Consider the

set Jf = {fcyi
}, where each member of Jf corresponds to one yi. Now consider any

pair (aj , bj) ∈ f - since the function of the form fcbj
(aj) = bj is in Jf by the above

construction, members of Jf cover all pairs in f . In addition when fcyi
, fcbj

∈ Jf , fcyi

covers pairs of the form (·, yi) and fcbj
covers pairs of the form (·, bj) and are thus disjoint.

This proves the lemma.

Since we have an algorithmic description for each f c ∈ F1C (described above) and since
each fu ∈ FU is covered by some of these fc, we have thus proven the intuitive idea
mentioned above that each fu ∈ FU has an algorithmic description.

5

Let K(λ) denote the Kolmogorov Complexity of an algorithm λ. Now let {Λ j} be a family
of set of algorithms with each Λj = {λi} such that there is a bijective mapping between
F1CU → Λj and the λi corresponding to a fu implements fu. Let

AU = arg min
Λj

⎛
⎝ ∑

λi∈Λj

K(λi)

⎞
⎠ (3.1)

i.e. AU is the set of algorithms from the family {Λj} that has the lowest combined Kol-
mogorov Complexity and also implements the functions fu ∈ FU .

Example 3.1. In the simple domain with S = N, where N is the set of natural
numbers, let FU = {{(1, 1), (2, 4), · · · }}. So the algorithmic description can simply
be f(x) = x2 or a search through the sequence. However, the former is the most
compact description and so corresponds to AU for this domain, i.e. AU = {f(x) =
x2}. Furthermore, consider another domain with the same state space but with FU =
{{(1, 1), (2, 4), (3, 9) · · · }, {(2, 8), (3, 27), · · · }}. Then AU = {f(x) = x2, f(x) = x3 if
x �= 1}. �

Now we assume we are given a function of the form ∆ : F× × F× × A → AU . So given
two states in terms of their features and the action applied, the ∆(F (s), F (s ′)) outputs the
algorithm from AU corresponding to the feature function used to generate s ′ from s. Given
this we define similarity between two states as follows.

Let a(s) be the random variable denoting the possible next states when action a is taken in
state s. Therefore ∆a(s, a(s)) denotes the random variable corresponding to the possible
algorithms that generates the states represented by a(s). Let L1(p(x), q(x)) denote the L1
norm between distributions p(x) and q(x) of the random variable x:

L1(p(x), q(x)) =
∑

x

|p(x) − q(x)|

Let L1[P (∆a(s, a(s))), P (∆a(s′, a(s′))] denote the L1 norm between distribution
P (∆a(s, a(s))) of ∆a(s, a(s)) and distribution P (∆a(s′, a(s′))) of ∆a(s′, a(s′)).

Definition 1. (Functional Similarity) Then we say two states s and s ′ are ε similar with
respect to action a if

L1[P (∆a(s, a(s))), P (∆a(s′, a(s′)))] ≤ ε

where ε is some user defined constant.

Thus, in essence, the “change induced when action a is taken in state s” is the algorithm
applied to s by a to get the next state. So two states are similar w.r.t. an action if the
distribution of change induced is the same in both states. For the purposes of this paper, we
may say the requirement that the algorithms have the lowest Kolmogorov Complexity (i.e.
be a member of AU) was used to get a canonical description of the algorithms, and to help
reinforce the intuition that two are similar if the same ’procedure’ is applied by the action in
both states the states - e.g. PUSH-BLOCK increments/decrements the x or the y coordinate
of the box. However, we will show in future work, when we extend the basic notion
of functional similarity given here to address similar actions and parameterized feature
functions, that this requirement is actually important one. The above two additions gives us
a principled way to handle situations where feature functions we consider equivalent may
not be the same. This is the case in the squash/racquetball example in the introduction -
although the effect of racquet strokes (the feature functions) are similar they are not quite
the same. Now next we need to consider how exactly we obtain the ∆ function. We have
the following options:

6

1. We can assume that we are given the right ∆ function.

2. We can assume that we are given a set of possible algorithms (perhaps parameter-
ized versions of the same algorithm) and based on experience we determine which
algorithm most succinctly describes the changes being induced by the actions.

The second option is more useful, since, as the experimenter selects the state representa-
tions, he/she is likely to be able to define the space of feature functions. While it is an
interesting learning problem, we are not however interested in this at this point. So, for
the moment, we are going develop the rest of our method based on the first assumption.
However, the remainder of the development in this paper will be independent of which op-
tion is used and we will address the second option in future extensions of this work. The
above also raises the question of how do we identify which feature function was applied
during a state transition when the feature functions overlap (i.e. f i ∩ fj �= ∅). The fol-
lowing lemma describes a simple way to deal with this problem and its implications. More
effective solutions will be addressed in future work.

Lemma 3. For a given action a and any s ∈ S, divide up FU into subsets {FU(s)i} such
that for each such set,

⋂
fj∈FU(s)i

fj �= ∅ and P (fj |s, a) > 0 for some fj ∈ FU (s)i

and |FU (s)i| is maximal. Then assign the probability of all elements of a FU (s)i to one
arbitrary element of that set; i.e. for some fi′ ∈ FU(s)i set

P ′(fi′ |s, a) =
∑

fk∈FU(s)

P (fk|s, a)

fk ∈ FU (s)i, k �= i′, P ′(fk|s, a) = 0

The following then holds true for all states sp and st:

∑
fj∈FU

|P (fj |sp, a) − P (fj |st, a)| ≥
∑

fj∈FU

|P ′(fj |k, a) − P ′(fj |st, a)| (3.2)

with equality only when all the functions are non-overlapping. In addition, the reverse of
(3.2) is not necessarily true. The above expressed in terms of L1 norms translates to the
following:

L1[P (fj|sp, a), P (fj|st, a)] ≥ L1[P ′(fj |k, a), P ′(fj |st, a)] (3.3)

Proof. First, the FU (s)i are pairwise disjoint, for if any two FU(s)j and FU(s)k are not
disjoint, we can combine them together to get a larger set, which implies the sets would
have violated the maximal requirement on the size of the sets. So we can write

∑
fj∈FU

|P (fj|sp, a) − P (fj |st, a)| =
∑

FU(s)i

∑
fj∈FU(s)i

|P (fj |sp, a) − P (fj |st, a)|

≥
∑

FU(s)i

∣∣∣∣∣∣
∑

fj∈FU(s)i

(P (fj |sp, a) − P (fj |st, a))

∣∣∣∣∣∣
=

∑
FU(s)i

|P ′(fi′ |sp, a) − P ′(fi′ |st, a)|

=
∑

fj∈FU

|P ′(fj |sp, a) − P ′(fj |st, a)| (3.4)

where the third and last line follows from the fact that in P ′ all the probabilities are assigned
to a fi′ . Also note that we get equality in (3.4) only when each FU(s)i consists of a single

7

function, because then terms on the left and right hand side are identical. The reverse is
evidently false from the above derivation.

Basically, the above lemma is saying if two states are ε similar, then they are also ε similar
if we ignore overlap between feature functions. In addition it is also saying that the reverse
is not true - that is if two states are ε similar after they overlap between feature functions
is ignored, then the actual L1 norm might be much higher. We discuss further implications
of this in section 3.3.1 when we describe the predictive model. We will now illustrate the
ideas presented so far with a concrete example:

Example 3.2. Consider a simple gridworld navigation domain with no obstacles (figure
2). In this domain, the task of the agent is to go from the start state to the goal state. There
are four actions available to the agent - MOVE-NORTH, MOVE-SOUTH, MOVE-EAST
and MOVE-WEST. Each action takes the agent in the appropriate direction with probability
2/3, and any of the other direction with probability 1/9. Of course after the direction is
selected, the agent stays in the same position if the direction selected takes it outside of the
world.

Start

Goal

Figure 2: Example Domain.

Let the states be represented in terms of x, y coordinate of the agent. Thus in this do-
main, the AU is the set of algorithms of the form +(1, 0), +(−1, 0), +(0, 1), +(0,−1) and
+(0, 0) - i.e. algorithms that either increments or decrements either the x or the y coor-
dinate. So consider two states (2, 2) and (7, 20) - these two states are ε = 0 similar with
respect to any of the actions since the distribution of change induced is the same in both
cases (figure 3 shows the case for action MOVE-NORTH). The important thing to note
here is that although the states are completely dissimilar in terms of the distribution of next
states, they are exactly the same in terms of the algorithm applied. In figure 2 the states
that are ε = 0 similar with respect to all the actions are covered by colored rectangles.

�

3.3 Using Functionally Similar States

As mentioned in the introduction, the idea is to use functionally similar states to develop a
predictive model (PM) that will predict the effect of actions on states not visited before or
often (a novel state - see section 3.3.2). Qualitatively the idea is to identify the observed
states that are functionally similar with respect to some particular action. Then the agent
trains a classifier to distinguish between these clusters of similar states. When a novel state
is encountered, the classifier is used to determine which cluster the novel state belongs to.

8

(6,20)

(2,2)

(2,3)2/3 = +(0,1)

(2,1)

(3,2)

(1,2)

= +(0,−1)

= +(1,0)

= +(−1,0)

1/9

1/9

1/9

= +(0,1)

= +(0,−1)

= +(1,0)

= +(−1,0)

2/3

1/9

1/9

1/9

(7,20)

(7,21)

(7,19)

(8,20)

Figure 3: Functional Similarity Example.

Then the distribution of the states in that particular cluster is predicted as the distribution
of the novel state. We describe this more precisely in the next sub-sections. As we stated
earlier, the PM is in fact a type of forward model. We discuss the relationship between
PM and other forward models at the end of this section. Section 4.4 describes how the
predictive model is used in conjunction with the planning mechanism.

3.3.1 The Predictive Model

We informally described the predictive model in the introduction to this section. More
formally, in the ideal case when we have all the probability distribution for each state, the
predictive model will consist of for each action a ∈ A a set Sa = {Sa1, Sa2, · · · , Sam}
such that

⋃
i{Sai} = S and for all Sai, Saj ∈ Sa, Sai ∩ Saj = ∅. Each subset Sai

will have the property that the each state sk ∈ Sai is ε similar to all sj ∈ Sai for some
ε. We describe how to determine the value ε which is “optimal” in a certain sense, and
thus the optimal members of each cluster, below. In addition for each action there will be a
classifier (Support Vector Machine, neural network etc.) Ca trained with Sa with each Sa i

corresponding to a particular class, so that given any state it will determine which cluster
in Sa the state belongs to. Therefore during learning and behaving, the idea will be to
estimate Sa and then learn the classifier Ca. Ca will be used to determine which Sa i a
novel state sn belongs to. Then the prediction for distribution P (a(sn)|sn, a) will be the
distribution P (a(s)|s, a) for some s ∈ Sai. The error for this prediction is, given the Ca
classifies correctly, at most the ε parameter used to construct Sa i.

Thus, the predictive model is based on the central assumption that the action distribution
functions AP assigns ε close distributions to states that are in some subset of S that is
learnable by a classifier. That is, the function does not assign distributions arbitrarily - for
ga ∈ AP if L : S × S → [0, 2] is defined by La(s, s) = L1(ga(s), ga(s′)), then La is in a
sense a continuous mapping with respect to the product topology on S×S generated by the
subsets of S learnable by a classifier and the usual topology on [0, 2]. We will explore the
relationship between this continuous function and the PM in future work. We also note here
that when feature functions overlap, and we ignore the overlap using the method described
in lemma 3, then by lemma 3, we will simply consolidate together different classes of
states.

As mentioned above, states in a Sai are ε similar to each other. To determine what the value
of ε should be we need to consider exactly what use the predictive model will be put to. So
let us assume that during a certain point in the agent’s operation we have distributions of
some set of states Ŝ with respect to action a. That is we know the distributions P (a(s)|s, a),
and thus P (∆a(s, a(s))) for each s ∈ Ŝ. Then let Ŝa = {Ŝa1, Ŝa2, · · · , Ŝam} denote the

9

current set of clusters constructed from Ŝ. Also assume that we have constructed our clus-
ters using some method to select ε. Now let us assume that we have observed a novel state
sn and would like to predict the distribution P (a(sn)|sn, a) using the predictive model.
Now let Ŝai be the cluster that the PM, i.e. the classifier Ca, correctly determines as sn

belongs to. Therefore we select some state sk ∈ Ŝai and we wish to use P (∆a(sk, a(sk)))
to approximate P (∆a(sn, a(sn))) and thus P (a(sn)|sn, a). Also let us assume the reason
we wish to perform the approximation is that eventually we wish to compute a function h

of P (a(sn)|sn, a). So we choose εSai for a particular cluster Ŝai so that the

|h(; , P (∆a(sn, a(sn))) − h(; , P (∆a(sk, a(sk)))| < η (3.5)

where η some user defined (application dependent) constant and h(; ,), in this particular
instance, denotes that the other arguments that are independent of (∆ a(sk, a(sk))). In the
rest of these sections we do not show the h(; , part of the notation. Ideally, of course, we
would like to choose εSai that minimizes the left hand side of the above equation. We
address this issue in section 3.3.3. A trivial example of an h function is h(x) = L1(x, y)
where L1 is the L1 norm function, y is some fixed distribution and x is the given distribu-
tion. We discuss a non-trivial h function (and hence the κ function described below, and
the selection of the associated η constant) in section 4.4.

Now since we are choosing sk arbitrarily, P (∆a(sk, a(sk))) might be any distribution with
L1(P (∆a(sn, a(sn))), P (∆a(sk, a(sk)))) < εSai . Therefore we can rewrite the above as

|h(P (∆a(sn, a(sn))) − h(P (∆a(sk, a(sk)))| = κ(εSai) < η (3.6)

Note that here we are assuming that the Ca classifies correctly. Therefore, denoting the
error in classifier Ca for members of Ŝai by P (e|Ca, Ŝai), we need to select εSai satisfy-
ing:

(1 − P (e|Ca, Ŝai))κ(εSai) + P (e|Ca, Ŝai))κ(2) < η (3.7)

where the κ(2) term follows from the fact that L1 norm is bounded by 2. Now when adding
a state s to our predictive model (i.e. to one of the clusters) we add it to any cluster Ŝaj

satisfying (3.7) after the addition of sk to Ŝaj . We summarize the results on constructing
the predictive model that were obtained in this section in the following lemma:

Lemma 4. Let the current estimations of clusters of the PM for an action a be Ŝa =
{Ŝa1, Ŝa2, · · · , Ŝam}. Let h be the function of P (a(s)|s, a) we wish to approximate using
the PM. To ensure that the error in the approximation is < η, the εSai for each Ŝai ∈ Ŝ
should be set so that it satisfies (3.7) where κ is defined in (3.5) and (3.6). Indeed, when
adding a state sk to the PM, the state should be added only to a cluster Ŝaj such that
Ŝaj ∪ {sk} satisfies (3.7). If no such cluster exists, a new cluster should be created with
sk as the only member.

3.3.2 Confidence in Predictive Model

Often it may be necessary to determine what the confidence in a predictive model is at
some point in time. This section describes how one might compute the confidence. To
that end, for each cluster Ŝai, we also maintain a confidence parameter C(Ŝai) which
is a measure of the confidence we have in the distributions of members of s - i.e. it is
product of the confidences of P (a(sj)|sj , a) for each sj ∈ Ŝai. The confidence in each
s is estimated using Theorem 12.1.4 in [Cover and Thomas, 1991]. The theorem uses the
method of types to bound the probability of observing a particular sequence of values of
a random variable given its actual distribution in terms of the KL divergence between the
type of the observation and the type of the actual distribution. We describe the theorem and
its application in our problem below.

10

Let X be a discrete random variable with N possible values, {X1, X2, · · · , XN} and dis-
tribution PX . Let T = {x1, x2 · · ·xn} be a sequence of values of X drawn according to
PX . Then the type or empirical probability distribution of the sequence T is defined as the
proportion of times each symbol X i appears in T . So for example, if X has possible values
{a, b, c}, and T = {a, a, b, a, b, c}, then the type of T is { 3

6 , 2
6 , 1

6}. The set of all sequences
with the same type as T is called its type class. For example, the sequences {a, a, b, a, b, c}
and T = {a, c, a, a, b, b} are in the same type class.

Now let PT denote the distribution corresponding to the proportion of times each X i ap-
pears in T . Then the aforementioned theorem states that if the actual distribution of a r.v.
is PX , then the probability of a sequence of type T under PX , denoted by PX(T), is

PX(T) ≤ 2−nD(PX ||PT) (3.8)

where D(PX ||PT) is the KL divergence between PT and PX and n is the length of the se-
quence T . In other words this says that the probability of a sequence T with KL divergence
between PT and PX greater than, say, α is less than 2−nα. This in turn implies probability
of a sequence T ′ with D(PX ||PT ′)) < α is

PX(T ′) > 1 − 2−nα (3.9)

The most interesting aspect of this equation is that the probability that the observed distribu-
tion differs significantly from the actual distribution exponentially with n. In the following
we use (3.9) to estimate the confidence in the observed distribution of P (a(s)|s, a).

Now note that a particular sequence of outcomes of taking action a in state s corresponds to
a type. Using this type, we will attempt to estimate the probability that the KL divergence
between the true distribution P (a(s)|s, a) and the type P̂ (a(s)|s, a) is less than α where
α is some arbitrarily selected KL divergence that ensures that the distribution is not too far
off. So given a particular sequence of observation, we use the following as confidence in a
distribution:

C(a, s)n = 1 − 2−nα (3.10)

where n is the number of observations with a, s made so far and C(a, s) is the confidence
in the distribution of a, s. Note this simple approximation is dependent only on the number
of observations made. To obtain the confidence in a particular cluster Ŝai is the product

C(Ŝai) =
∏

s∈Ŝai

C(a, s)ns (3.11)

ns is the number of observations with a, s made so far. This also gives us a way to define
a novel state.

Definition 2. (Novel State) We call a state s novel if C(a, s)n < C(Ŝaj) where Ŝaj is the
cluster that the classifier Ca determines s as belonging to.

Now given C(Ŝai), we can incorporate this in condition (3.7) thus:

C(Ŝai)(1−P (e|Ca, Ŝai))κ(εSai)+
(
1 − C(Ŝai)(1 − P (e|Ca, Ŝai))

)
κ(2) < η (3.12)

where the first term on the left hand side deals with the case that PM model is correct, and
the second term when the PM is incorrect.

11

3.3.3 Minimizing h

In this section we discuss the problems encountered when we try to minimize the error in
approximating h function instead of ensuring the error is below some user-defined constant
as in lemma 4. Recall that the problem is to choose εSah

for each cluster Ŝai ∈ Ŝa such
that the error

|h(P (∆a(sn, a(sn))) − h(P (∆a(sk, a(sk)))| (3.13)

in approximating a function h of P (a(s)|s, a) is minimized. Here sk ∈ Ŝai where Ŝai

is the cluster that the classifier Ca correctly identifies as the novel state sn belonging to.
In order to minimize the error we should obviously minimize ε Sai since this minimizes
L1(P (∆a(sn, a(sn))), P (∆a(sk, a(sk)))) the distance between the two real distribution
and the approximating distribution and hence (3.13). However at the same time, reducing
εSai has the potential of decreasing coverage of each cluster - i.e. the proportion of novel
states that the cluster will be able to predict correctly for in the future - because the greater
the εSai , the greater the number of states that will likely belong to Ŝai. This is defined
more precisely below.

From this point we proceed by constructing a formal description of the error in terms of
coverage and classification accuracy. It is obvious how classification error may be de-
scribed formally and quantified, so we focus on coverage. For each Ŝai ∈ Ŝa, we define
the coverage of the Ŝai to be the probability that a state seen by the agent in future will
belong to Ŝai. This is denoted by P (Ŝai) and is given by:

P (Ŝai) =
∑
s�∈Ŝ

P (s, s ∈ Ŝai)

where P (s, s ∈ Ŝai) denotes the probability of seeing the heretofore unobserved state s,
and s belonging to Ŝai. We may define the expected error Err(PM) of the Predictive
Model with respect to h as follows:

Err(PM) =
∑

i

P (Ŝai)βi +

(1 −
∑

i

P (Ŝai))[P (e|Ca)min(maxCost, κ(2)) + (1 − P (e|Ca))κ(2)]

(3.14)

where βi refers to the left hand side of 3.12, and P (e|Ca) the overall error of the classifier.
Equation (3.14) can be understood as follows. To compute the expected error, we need to
consider the errors that may arise when trying to determine which cluster a particular novel
state sn belongs to. The first term on the right corresponds to the case when s n belongs
to some Ŝai and the βi term gives the error in that instance. The second term on the right
corresponds to the case when a novel state does not belong to any of the clusters. The first
part of this term corresponds to the case when the classifier is able to identify the novel
state as not belonging to any of the existing Ŝais, and the error is minimum of maxCost
(the cost incurred when no prediction regarding h is made) and the κ(2). This is because
if the cost of making no prediction is different than making a wrong prediction, then we
choose whichever is the minimum. The second part in the second term of the right hand
side corresponds to the case when the classifier is incorrect the error is κ(2) as in the β i

term.

Although we can derive this expression for expected error, it is not possible for us to esti-
mate P (Ŝai), the coverage, because the states are not drawn according to this distribution;
but rather some distribution which is a function of the current policy of the agent. As before
we summarize the results of this section in the following lemma.

12

Lemma 5. Let the current estimations of clusters of the PM for an action a be Ŝa =
{Ŝa1, Ŝa2, · · · , Ŝam}. Let h be the function of P (a(s)|s, a) we wish to approximate using
the PM. Then if some prior knowledge is available which helps the agent accurately esti-
mate the probability of coverage P (s ∈ Ŝai) as defined in this section, then (3.14) may be
used to construct clusters that minimize error in approximating h. Indeed, when adding a
state sk to the PM, the state should be added only to a cluster Ŝaj such that Ŝaj ∪ {sk}
minimizes (3.14). If no such cluster exists, a new cluster should be created with sk as the
only member.

3.3.4 PM and Other Forward Models

As we discussed in the section 1, the predictive model is in fact a kind of forward model
(e.g. [Jordan and Rumelhart, 1992], [Mitchell and Thrun, 1993], [Kawato, 1999], [Karniel,
2002] and [Flanagan and Wing, 1997]) - i.e. a model of the world that predicts the effect of
actions in states that have not been seen before. In this section we discuss the differences
between the older models referred to above and our model. In the following we refer to the
older models as FMs and our model as the PM.

The fundamental conceptual difference between our model and the older models is impor-
tant, since the PM is constructed in a way that agrees more with the aim of forward models.
The way the FMs construct a forward model is by training a classifier on the observed state
transitions. i.e. if a state transition s →a→ s′ occurs then the classifier is trained with s
as the input and s′ as the output (sometimes an encoding of the action is included in the
input). The classifier is then used to predict the next states for novel states. Thus, there is an
underlying assumption that, states close to each other in feature space (physically similar)
should have next states that are also close to each other in feature space. The PM does not
make any such assumption, instead it attempts to identify commonality in terms of features
space among states that behaves in a similar way, and then uses that identified commonality
to predict behavior of new states.

So, the main conceptual difference between FMs and the PM is that FMs assumes that
physically similar states are functionally similar, while the PM actually tries to identify
physical similarity between functionally similar states.

Obviously the PM is able to handle cases where the assumption made by FMs holds true
and also cases where it does not i.e. physically disparate states are functionally similar
and physically close states are functionally disparate. Therefore the PM is more accurate.
The behavior of PM is more in line with the purpose of forward models - which is to
find correspondence between state transitions and states. We discuss this in more concrete
terms below.

As mentioned above the FMs learn a mapping from states to next states - so basically, in
the FMs the mapping being learned for predictions for a particular action is some type of
combination of all the feature functions F that the observed state transitions correspond
to (we described and characterized F in sections 2 and 3.2 respectively). Therefore, one
difference between previous models is that instead of learning one monolithic function
(which is a strange combination of f ∈ F) to cover all observed state-state mappings, we
assume that we have some mechanism to derive the individual f ∈ F being used. As we
mentioned in section 3.2 this is a reasonable assumption to make. Now, if we consider
deterministic domains, then each of the clusters Sa in the PM contain states which are
applied the same f ∈ F by a. Therefore, the PM uses the feature functions at a much finer
grain than FMs and hence performs better. Also, as mentioned in the previous paragraph,
in the FMs, the feature function applied to a novel state sn to get the next state s′n is
determined by whichever previously observed state s sn is closest to. The PM on the
other hand determines the feature function to apply to sn by determining which previously
observed states sn is most likely to be functionally similar to. The PM thus, does not make
the assumption made by the FMs but is also able to handle cases when the assumption does
hold true and is more accurate.

13

In addition, it is difficult for the FMs to predict a distribution over next states since these
compute a direct state-state mapping. On the other hand, the PM can predict a distribution
over next states quite easily. The PM can also ensure that the prediction error is below some
threshold - which the FMs cannot do. Finally, the mapping states → {1,−1} learned by
the classifiers Cas is a much simpler mapping than state-state mappings learned by FMs.
The Ca classifiers are thus more accurate. In other words the PM solves a classification
problem which is much simpler than the regression problem that the FMs solve.

4 Planning Mechanism for the CL System

As mentioned in the introduction, the planning mechanism for our CL system operates on
goal directed MDPs, which were described in section 2. However the mechanism itself is
not the typical DP/Reinforcement Learning Mechanism used for this type of MDP (as in
[Barto et al., 1995]). Instead, it uses direct graph search using Dijsktra’s algorithm and we
show that in the limiting case the method produces plans/policies that are same as those in
[Barto et al., 1995]. We also outline how in the non-limiting case, it is actually better in all
but non-pathological cases and not demonstrably worse in pathological cases. We use this
method because this allows straightforward integration with the predictive model described
in the previous section, and we believe it will be useful in many interesting domains. The
method as presented in this section is independent of the PM. We demonstrate in section
4.4 how it may be used more effectively in conjunction with the predictive model described
above for problems with multiple goal states. Since our planning mechanism is somewhat
different than typical RL methods, we refer to our value function by ES (standing for ex-
pected number of steps). We discuss the differences between our method and the typical
RL method for goal directed MDPs in section 4.5.

4.1 Expected Number of Steps and Plans

First, we call a state s′ reachable from state s by action a if P (s ′|s, a) > 0). We define
the discounted expected number of steps required to get from state s to s g when action a is
taken as follows:

ESa(s, sg) =
∑
s′∈S

P (s′|s, a)
(

ds,a,s′ + γ min
a′∈A

ESa′(s′, sg)
)

(4.1)

where ds,a,s′ is the cost associated with the transition s →a→ s′ and 0 ≤ γ < 1 is the
discount factor. Note that (4.1) is very similar in spirit to the familiar Bellman equations
in dynamic programming. It is simply saying that the expected number of steps required to
reach state sg after taking action a from state s is the expected distance from each state s ′
reachable from state s on after performing action a weighted by probability P (s ′|s, a) of
reaching the state s′. Also note that since the ds,a,s′ are bounded and 0 ≤ γ < 1, the ES
values are also bounded - specifically by M/(1 − γ) where M = sups,a,s′ ds,a,s′ < ∞,
since ES becomes a geometric sum with first term M and rate γ in the worst case. The
following theorem (proof in appendix A) shows how we may compute ES in the ideal case.

Theorem 1. Given the correct values of ds,a,s′ and the state transition distributions, the
update rule,

ÊSa(s, sg)n =
∑
s′∈S

P (s′|s, a)
(

ds,a,s′ + γ min
a′∈A

ÊSa′(s′, s)n−1

)
(4.2)

,where ÊS denotes the estimate of ES, and ÊSa(s, s′)n denotes the value of ÊSa(s, s′)
after the nth update converges to the actual ESa(s, sg), ∀a, s, sg as n → ∞ and given
also that ESa(s, s′) for each triple (s, a, s′) is also updated infinitely often.

14

A plan is defined as a sequence of state action pairs, written for the sake of convenience
without the parenthesis demarcating each pair: φ = (s1, a1, s2, a2 . . . sn, an, sg, a∅) where
a∅ denotes an action that does not have any effect on the domain. So when the agent follows
the plan, it performs action ai in state si in the plan and expects to reach si+1 in the plan.
A plan becomes invalid if at any point during executing the plan the observed next state
si+1 does not agree with the next state given in the plan. Let Φ be the set of all plans; then
we define a plan φ∗ = (s1, a1, s2, a2 . . . sn, an, sg, a∅) to be optimal if

φ∗ = argmin
φ∈Φ

ESφ(s1, sg) (4.3)

where

ESφ(s1, sg) =
n∑

i=1

ESai(si, si+1) (4.4)

So this is a simple extension of ideas in classical planning to our probabilistic domain
where we use ES instead of deterministic costs of actions to create our plan. In the next
section (specifically through corollary 1) we show that if amin = arg mina∈A ESa(s1, sg)
then φ∗ = {s1, amin, sg} when we have all the information - i.e. we know ESa(si, sj) for
all state action triples (si, a, sj). This is a very satisfactory result because this shows that
when we have all the information, our notion of an optimal plan reduces to what we would
normally consider to be the optimal action.

4.2 Planning with ES

In this section we describe how we may plan using the concept of ES introduced in the
previous section. In the following first we describe how the agent will plan in case all the
necessary information (i.e. the ES values) are available - i.e. the ideal case. And then we
discuss how the agent may plan when it has to learn all the necessary information, which
is what is required in a practical setting.

4.2.1 Planning in the Ideal Case

For the moment, let us assume we have the ESa(sx, sy) values for all state-action-state
triples. Then the algorithm to compute the optimal plan from state s 1 to state sg is simply
this: apply Dijkstra’s shortest path algorithm to find the shortest path between the nodes
corresponding to s1 and sg on a graph constructed as follows:

Construct Graph

1. Form nodes with the states

2. Form directed edges between each pair of states.

3. For each directed edge (sx, sy) going from node/state sx to sy , assign cost of
mina∈A ESa(sx, sy) (or ∞ if no such action exists).

Algorithm 4.1: Constructing the Graph in the Ideal Case Planning

15

This algorithm finds the shortest path with the ESa used as the cost on the edges. This is
exactly the optimal plan as defined is (4.3) and thus this algorithm finds the optimal plan
as described in (4.3). We now give a theorem (proof in appendix A) the corollary to which
gives us the relationship between the optimal plan and the optimal action:

Theorem 2. The following inequality holds for all states s, smid and sgoal,

min
a1∈A

ESa1(s, sgoal) ≤ min
a2∈A

ESa2(s, smid) + min
a3∈A

ESa3(smid, sgoal) (4.5)

So basically the theorem is saying that the minimum cost of going from state s to another
state sgoal is less than or equal to the minimum cost of going from state s to some other
state smid plus the minimum cost of going from state smid to state sgoal. It is fairly easy
to show this is true for deterministic actions - but a little bit more involved to show this
for probabilistic actions. The following corollary shows that in the case when all the ES
values are known, then for a particular goal state, the planning mechanism outputs the plan
φ = {s, a, sg} where s is the current state, a is the optimal action, and sg the goal state -
i.e. the plan is one that would be output by a typical Reinforcement Learning algorithm.

Corollary 1. The algorithm for computing the optimal plan described in this section (sec-
tion 4.2.1), given the value of ESa(sx, sy) for all state-action-state triple (sx, a, sy), will
output the plan φ = {s, a, sg} where s is the current state, sg is the goal state and a is the
optimal action:

a = arg min
a∈A

ESa(s, sg)

Proof. This is because now the algorithm will know the mina ESa(s, sg) for all states
s ∈ S and for any particular goal state sg . And thus from theorem 2, in the graph con-
structed, the edge corresponding to the action with minimum cost will be the edge output
by Dijsktra’s algorithm.

4.2.2 Planning while Learning using ES

In this section we show how an agent may learn ES values and plan while acting or behav-
ing in the domain (that is online learning and planning). First we present Robins-Monroe
version of equation (4.2) which can be used to learn ES values while experiencing the
world. Assume that the agent observes that the it reaches state sy after taking action a in
state sx. Then the update rules are:

ÊSa(sx, sy)k = ÊSa(sx, sy)k−1 + α(dsx,a,sy − γÊSa(sx, sy)k−1) (4.6)

and ∀sp ∈ S, sp �= sy

ÊSa(sx, sp)k = ÊSa(sx, sp)k−1 +

α(ÊSa(sx, sp)k−1 − dsx,a,sp − γ min
a′∈A

ÊSa′(sy, sp)k−1) (4.7)

with 0 ≤ α < 1 (4.6) handles the case when s′ = sg in the left hand side of (4.2), while
(4.7) handles the case when s′ �= sg in the left hand side of (4.2). The validity of the
equations is based on the validity of (4.2). Now we can give our algorithm for learning
and planning while behaving:

ES Agent

16

1. For each goal state sg , perform Get To State.

Get To State

1. While current state is not sg

(a) If current plan is not valid, perform Compute Plan to get plan φ cur to go
from the current state to the goal state sg .

(b) Perform action according to plan φcur.
(c) Perform Update Model.
(d) Check validity of current plan by checking whether next state matches next

state given in φcur.

Compute Plan

1. Create graph using Construct Graph (section 4.2.1).

2. Apply Dijsktra’s algorithm to get plan.

Update Model

1. Assume state-action-state triple observed was (s, a, s′).
2. Update ES values according to (4.6) and (4.7).

Algorithm 4.2: Algorithms for Planning in the Practical Setting

We end this section with some final comments on what happens while this algorithm plans
using imperfect information as in this section. First some definitions to make the presenta-
tion clearer. As mentioned above, we define a state s ′ to be reachable from state s, if there
is an action a ∈ A such that P (s′|s, a) > 0. The set of reachable states from s via a is
denoted by R(s, a). We use the term pairwise cost of a state s to refer the set of the costs
ESa(s, s′) such that s′ ∈ R(s, a).

Therefore, during the initial stages of the planning algorithm when the ES values have not
been propagated back, the agent plans using only pairwise costs. Now obviously, if the
actions are not probabilistic, then using only pairwise costs results in a plan that is optimal,
as in the ideal case - i.e. arg mina∈A ESa(s1, sg) = a1, where a1 is the very first action
in the plan, s1 is the start state and sg is the goal state (this is just classical planning). And
intuitively, the error increases the “more probabilistic“ the domain becomes. Or in other
words given two states si, sj ∈ R(s, a) for some s, a, the error increases the more s i and
sj differ in terms of distance to other states and each other - the domain becomes more
“messy”. We will quantify and state this intuition precisely in our future work.

4.3 Random Valued Action Cost

As mentioned in section 2, we have so far dealt only with constant valued action cost signals
ds,a,s′ . In this section we describe how we may handle a randomly varying cost signal. As
a first step we define ES as follows:

ESa(s, sg) =
∑
s′∈S

P (s′|s, a)
(

E(ds,a,s′) + γ min
a′∈A

ESa′(s′, sg)
)

(4.8)

17

where E(ds,a,s′) is the expected value of ds,a,s′ . Thus all our discussion and theorems so
far remain unchanged. The only thing we need to derive is the Robins Monro version of
the above, which is given below:

ÊSa(sx, sy)k = ÊSa(sx, sy)k−1 + α(dk
sx,a,sy

− γÊSa(sx, sy)k−1) (4.9)

where dk
sx,a,sy

is the observed cost at the kth step, and ∀sp ∈ S, sp �= sy

ÊSa(sx, sp)k = ÊSa(sx, sp)k−1 +

α[ÊSa(sx, sp)k−1 − dk
sx,a,sp

− γ min
a′∈A

ÊSa′(sy, sp)k−1](4.10)

The reasons for the derivation are same as those given in section 4.2.2.

4.4 Planning with ES using the Predictive Model

In this section we show how the planning mechanism may be used in conjunction with
the Predictive Model described in section 3.3.1. The basic idea is that the agent learns
the predictive model that predicts what the distribution over next state is going to be when
some particular action is applied at a state. This information can then be used to predict
ES values for these novel states. The ES method can then use these predicted ES values to
form plans that contain the novel states. Thus the agent is able to behave more intelligently
in the novel states , and in some cases able to plan to get to states it has never seen before.
However, in order to do so, the system also needs to be able to compute what the cost
signal ds,a,s′ for novel states are . In the following, first we assume that all the ds,a,s′ = 1.
Later we demonstrate possible ways we may compute the actual values and use them in
constructing the h function for the predictive model.

Therefore, this combination of PM and ES is useful in multiple goal problems when solu-
tion paths to the different goal states contain similar states. So let us consider a problem
where the solution paths to some goal state sg1 contain states similar to states in solution
paths to goal state sg2. If the agent has already solved the task sg1, and then when it tries
to solve task sg2, it will be able to plan or behave intelligently in states in solution paths
to sg2 that are similar to states in solution paths to sg1. This is illustrated more clearly in
section 5. Hence, the similarity between tasks, and the benefit of using the PM, increases
monotonically with the number of similar states shared by the solutions to the different
tasks. This measure of similarity between tasks will be explored more fully in the future.

4.4.1 Planning with ds,a,s′ = 1

Let us assume that after having observed states Ŝ, we have constructed a predictive model
consisting of the clusters Ŝa = {Ŝa1, Ŝa2, · · · , Ŝam} and the corresponding classifier Ca
for each action a. The basic idea is that we would like to use (4.1)

ESa(sn, sg) =
∑
s′∈S

P (s′|sn, a)
(

dsn,a,s′ + γ min
a′∈A

ESa′(s′, sg)
)

(4.11)

to compute the estimate ÊSa(sn, sg) of ESa(sn, sg) for some state sg , but use
P (∆a(sj , a(sj))) instead of P (∆a(sn, a(sn))) for some sj ∈ Ŝai where Ŝai is the
cluster that Ca determines sj as belonging to. Using P (∆a(sj , a(sj))) in place of
P (∆a(sn, a(sn))) results in using an estimated P̂ (a(sn)|sn, a):

ÊSa(sn, sg) =
∑
s′∈S

P̂ (s′|sj , a)
(

dsn,a,s′ + γ min
a′∈A

ESa′(s′, sg)
)

18

We can rewrite the above in terms of ∆ as follows:

ÊSa(sn, sg) =
∑
s′∈S

P̂ (∆a(s, s′))
(

dsn,a,s′ + γ min
a′∈A

ESa′(s′, sg)
)

(4.12)

Therefore, the error in doing this approximation is :

|ÊSa(sn, sg) − ESa(sn, sg)| ≤ γ
∑
s′∈S

|P̂ (s′|sn, a) − P (s′|sn, a)| min
a′∈A

ESa′(s′, sg)

= γ
∑
s′∈S

|P (∆a(sj , s
′) − P (∆a(sn, s′))| min

a′∈A
ESa′(s′, sg)

≤ γ max
s′∈R(s,a)

min
a′∈A

ESa′(s′, sg)
∑
s′∈S

|P (∆a(sj , s
′) − P (∆a(sn, s′))|

≤ γεSaj max
s′∈R(s,a)

min
a′∈A

ESa′(s′, sg) (4.13)

where R(s, a) refers to states reachable from state s after performing action a and ε Saj is
the maximum L1 norm amongst the distributions P (a(s j)|sj , a) for sj ∈ Ŝaj . The final
step follows from the assumption that sn ∈ Ŝaj . Therefore we can write,

|ESa(sn, sg) − ÊSa(sn, sg)| ≤ γεSaj max
s,s′∈S

min
a∈A

ESa(s, s′)

= εSaj k (4.14)

where the second line is simply a rewrite of the first. At this point we note that ÊSa(s, s′)
is a function of P (a(s)|s, a) i.e. a h function and εSaj k is in fact a upper bound on the
corresponding κ function from section 3.3.1. We can thus set the η parameter from (3.12)
to mins,a,s′ ds,a,s′ (when all the ds,a,s′ �= 1) ensuring the expected error is less than the
minimum cost of a particular transition. Any other value may also be chosen depending
on the application. Furthermore, the reader may notice that, when computing the error, we
assumed that the correct values for the mina∈A ESa(s, s′) terms in the right hand side of (
4.13) were known, or that the current estimates are acceptable (whether obtained from the
OM or the PM). If we wish to take into account error from estimating the ES values using
the PM, we need to recompute the error in (4.14). This computation is given in appendix
A.

We can now give our algorithm for planning using the predictive model that 1) learns
the predictive model and 2) uses the predictive model to plan while behaving or solving
tasks. The basic outline of the algorithm follows the algorithm given in section 4.2.2.
The difference is that, at each step when updating the observed model in Update Model,
the predictive model is also updated (this addresses point 1 above). And, in addition, in
Compute Plan, when constructing the graph, the predictive model is used to add edges to
the graph for nodes corresponding to novel states (and this addresses point 2 above). In the
following we describe each of the two necessary modifications.

Update Model

1. Assume state-action-state triple observed was (s, a, s′).
2. Update ES values according to (4.6) and (4.7).

19

3. Update Predictive Model

Update Predictive Model

1. Update confidence of (s, a) according to (3.10).

2. Determine a cluster in Ŝai ∈ Ŝa that satisfies (3.12), using (4.14) as the κ
function.

3. If no such cluster exists, create a new cluster with s as the only member.

4. Else add s to the Ŝai found.

5. Update confidence of the cluster s was added to by multiplying C(s, a) to C(Ŝai)
or just setting C(Ŝak = {s}) = C(s, a) as appropriate.

6. If s was already in any one of the other clusters Ŝaold, remove s from that cluster;
update confidence of Ŝaold by dividing C(Ŝaold) by previous value of C(s, a).

7. Retrain Ca.

Algorithm 4.3: Updating the Models when using the PM

In step 2 in Update Predictive Model, in the beginning we may not know the max min
term in k in (4.14). So to fix this we will need to start off with an estimate of the term, and
then update it based on observation. As the estimate changes, we may need to rebuild our
predictive model periodically. During this, the old clusters are removed from the PM and
new clusters are created by adding observed states to the cluster using the usual method
using the currently known state transition distributions. In addition, the maxmin term
might become extremely high, resulting in situations where the only viable choice for ε Saj

may be 0, which is an unattractive option. However, if the domain is such that we can
form effective plans by only considering pairwise costs (see end of section 4.2.2), then the
maxmin term will be small. We may also replace the max operator in k with the average
operator over the values observed so far. In future work we will need to investigate how
we may modify the k term in (4.14) for different domains and how we may modify the
predictive model without rebuilding it from scratch.

Now consider the new graph construction procedure, which is a modification of the proce-
dure given in section 4.2.1. In that procedure, we construct nodes for each state and then
add an edge between each pair of nodes corresponding to states s i and sj with cost equal
to mina∈A ESa(si, sj). During planning without using the PM, this cost is obtained from
the observed model. When planning with the PM and computing the min, we use values
from either the OM or the PM depending on which one has the greater confidence for the
particular action and si.

New Construct Graph

1. Form nodes with the states

2. Form directed edges between each pair of states.

3. For each directed edge (sx, sy) going from node/state sx to sy ,

20

(a) If mina′∈A ÊSa′(sx, sy) already computed, go to next edge

(b) Else compute mina′∈A ÊSa′(sx, sy) using Compute mina′∈A ÊSa′(sx, sy)
with γ

(c) To the edge assign the computed cost mina′∈A ÊSa′(sx, sy)

Compute mina′∈A ÊSa′(sx, sy) with γ′

1. For each a ∈ A

(a) Determine cluster Ŝai that sx belongs to using classifier Ca.

(b) If C(Ŝai) ≤ C(sx, a) use the OM to obtain estimate ÊSa(sx, sy) of
ESa(sx, sy).

(c) Else use the PM to compute estimate ÊSa(sx, sy) of ESa(sx, sy) us-
ing (4.12); use P (∆a(sj , a(sj))) as an estimate P̂ (∆(sx, (sx))) of
P (∆a(sx, a(sx))). Note that during this step we may need to recursively
call Compute mina∈AÊSa(s, s′) with γ · γ′ for the ESs inside the sum in
(4.12).

2. Compute mina′∈A ÊSa′(sx, sy) using the values obtained from previous step.

Algorithm 4.4: Planning when using the Predictive Model

Note that in step 1c we may end up performing too many recursions , so we need some
way to make sure we do not recurse too much. We may have to rely on setting the γ
parameter judiciously, or we may stop recursing once the γ ′ parameter reaches below some
threshold and return only the ds,a,s′ value as the ES value in (4.12). We may also avoid
recursing completely by using some statistic of known ES values if appropriate for the
domain (because of prior knowledge). We will focus more on this in future work.

4.4.2 Computing and Using Values for ds,a,s′

As mentioned earlier, we need some way to compute the values for d s,a,s′ for the states we
are predicting the ES values for. To compute these values we can do one of the following.
We can either assume that these values are known to the user. Or we can use the current
average/max/min (or any statistic as appropriate for the domain) of all the d s,a,s′ observed
as the standard value. Or we can assume that the cost signals depend on the ∆ s,a,s′ - i.e.
there is a mapping from AU to {ds,a,s′}, where, as described in section 3.2, AU is the
range of ∆ and denotes the set of most compact algorithms that cover all possible ’change
induced’ by all the actions. Since the novel states share the same ∆ with non-novel states
(see figure 3), we can then learn this mapping and thus compute the d s,a,s′ values for the
novel states. We believe the last assumption is actually reasonable for many interesting
domains - e.g. in a robot navigation domain the damage incurred to the robot on reaching
the first floor depends on whether it leaped off top floor or used the elevator - i.e. the
damage depends on what change was induced. We will investigate the implications of each
of these options in detail in future work.

In all of these cases, we need to incorporate the computed values of d s,a,s′ in our cluster
construction process in the predictive model. We need to modify the error function (4.13)
to take into account the ds,a,s′ :

21

|ÊSa(sn, sg) − ESa(sn, sg)| ≤ γεSaj max
s′∈R(s,a)

min
a′∈A

ESa′(s′, sg)
∑
s′∈S

|P (∆a(sj , s
′))dsn,a,s′ − P (∆a(sn, s′))dsj ,a,s′ |

≤ εSajk max
a,s′ |dsn,a,s′ − dsj ,a,s′ |

∑
s′∈S

|P (∆a(sj , s
′))dsn,a,s′ − P (∆a(sn, s′))dsj ,a,s′ |

≤ εSajk(εSaj |max
s,a,s′

ds,a,s′ − min
s,a,s′

ds,a,s′ |)
= (εSaj

2)k′ (4.15)

where the first line and the k term in the second line follows from (4.14) and the last line
is a rewrite of the third. As before, this is an upper bound on the κ function from section
3.3.1. We can thus set the η parameter from (3.7) to min s,a,s′ ds,a,s′ ensuring the expected
error is less than the minimum cost of particular transition. Any other value may also be
chosen depending on the application.

Finally, to compute the ds,a,s′ , in addition to the methods described earlier, we can think of
constructing a predictive model for predicting the d s,a,s′ . The PM for ds,a,s′ has the same
components as in the PM from section 3.3.1. Thus, in this PM, each cluster Sa d

i ∈ Sad

contains states which are functionally similar in terms of ds,a,s′ with respect to action a.
So if sk, sj ∈ Sad

i , then

∑
s′∈S

|P (s′|sk, a)dsk,a,s′ − P (s′|sj , a)dsj ,a,s′ | ≤ εSad
i

(4.16)

for some constant εSad
i
. Again as in section 3.3.1, εSad

i
is selected so that it satisfies:

C(ˆSad)(1 − P (e|Cad, ˆSad
i))κd(εSad

i
) +

(1 − C(ˆSad))P (e|Cad, ˆSad
i))κd(2) < ηd (4.17)

where Cad, as before, is the classifier for Sad, and ηd ≥ 0 and C is the confidence term
from section 3.3.2. Thus, if we do use a predictive model, we can use η d in place of (4.15)
in place of the ds,a,s′ to get

estErrSai

′ = γεSai max
s′∈R(s,a)

min
a′∈A

ESa′(s′, sg)ηd (4.18)

Thus from the appropriate value for η d should be determined by the value for η. Note
that this final method can be used in reinforcement learning problems with non task-
independent cost signals.

4.5 ES and Reinforcement Learning

In this section we contrast the ES method and two other Reinforcement Learning meth-
ods that also operate on goal directed MDPs. The first method we consider is Real Time
Dynamic Programming ([Barto et al., 1995]). The basic idea of RTDP is to use typical
reinforcement learning methods to find the minimum cost path to the goal state. During
behaving (i.e. trying to reach the goal state) RTDP uses equations 4.6 to back up costs
(i.e. update the ES value) for one or more states (the states to back up perhaps being
determined by some method like prioritized sweeping - see [Sutton and Barto, 1998])).
Then the agent simply selects the best action at each state s - i.e. the action corresponding

22

to arg mina∈A ESa(s, sg) where sg is the goal state. The obvious advantage of the ES
method over this is that the ES method, due to the graph search aspect of it, can look ahead
and form a feasible plan even before the cost to the goal state s g has been backed up to the
current state s. This also implies that, when there are multiple goal states, RTDP has to be
able to back up the cost to go for the new goal state before it can form a plan while the ES
is able to form a plan to the new goal state immediately - provided, of course, that the agent
has seen the goal state at least once. At the same time, recalling the comments at the end of
section 4.2.2, the ES method may not do well if there are many states with reachable next
states that have wildly varying cost signals to other states. On the other hand, RTDP will be
forced to take random actions so it will not demonstrably perform better, and will probably
perform worse because we are assuming that there are many ways to select a bad state in
the pathological case . When used in conjunction with the PM, the ES method may be able
to form plans even before visiting the goal state (for an example of this, see experiments in
section 5) and is able to behave in novel states more intelligently (i.e. can do better than
taking random actions).

The second RL method for solving goal directed MDPS that we contrast ES with is Multi-
Value Functions ([Moore et al., 1999]). This algorithm addresses the problem that RTDP
faces in a goal directed MDP with multiple goal states. It efficiently (both in terms of
time and space) computes a ‘good’ policy to get to all goal state from any particular state.
This is accomplished by constructing a hierarchy of states where states in one level knows
how to get to states in other levels. The algorithm expects as input some knowledge of
the distributions P (s′|s, a) and the cost signals to start building the hierarchy. The ES
method can be viewed as an online version of MVF, in the sense that it uses knowledge
of which states are reachable from each state online to find a path from the current state
to the goal state. So the ES method (and ES augmented with the predictive model - see
section 4.4) may be used with MVF in a complementary fashion, with ES being used to
plan when sufficient information about the domain is not available to build the hierarchy,
and then using the MVF to efficiently store the policies when sufficient information is
available. When combined with the PM, ES is able to behave even more effectively in
domains with multiple goal states whose solution plans contain similar states. We can also
think of improving the time required to plan in ES using techniques from sophisticated
extensions to classical planning such as [Veloso et al., 1995]

Of course, as we mentioned in the section 1, a main reason for developing ES was that it
allows easy integration with the predictive model for solving cumulative learning problems
and therefore serves as an interesting application of the PM.

5 Experiments

In this section we present the results of applying our methods in a simple domain which
serves to demonstrate in a very stark manner the advantage of our method. First we describe
the experiment setup, and then we describe the results and discuss their implications. We
are deliberately using a simple domain to demonstrate basic efficacy of our method. Our
future work will focus on more interesting and complex problems.

5.1 Experiment Setup

The simple 25 × 25 gridworld domain for our task is given in figure 4. Each cell in the
grid corresponds to a state, and at each state the agent is given the (x, y) grid location and
the type of the cell (BLOCKED or FREE) to the north, south, east and west of the state. In
this domain we consider two tasks, where the first task consists of getting to state G1 and
the second task consists of getting to state G2 - the start state is for both the tasks is S (see
figure 4). First the agent learns the task G1 and then it learns the task G2. To solve the tasks
the agent has four action at its disposal - MOVE-<DIRECTION> where <DIRECTION>
can be North, South, East or West. Each action takes the agent by one cell in the expected
direction with probability 2/3 and randomly takes the agent in any of the other directions
by one cell with probability 1/9. If the cell that the action selects for the agent is blocked,

23

then the agent remains in its current cell.

Figure 4: Experiment Domain.

We compared the performance of an agent using only the ES method (referred to as the No-
PM agent subsequently), an agent using a Predictive Model with the ES model (referred
to as the PM agent) and a reinforcement learning agent. We allowed all three to learn the
task G1 for at least 100 episodes, where an episode consists of the agent reaching the goal
state for a particular task from the start state, and then let the agent learn the G2 task. The
reward table for the RL agent was reinitialized at the start of the G2 task because otherwise
it would pose an unnecessary burden on the agent of having to unlearn the reward table for
task G1. We closed the two doorways in the domain while learning the G1 task. This was
done so that the first task G1 is learned quickly by not allowing the agent to wonder off
accidentally into the larger room. After learning the G1 task, the agent was then allowed to
learn the G2 task by opening the doorways. The agent learned the G2 task for 200 episodes.
The aim of the experiments is to investigate transfer of knowledge gathered in task G1 to
task G2.

We used a neural network using Backpropagation as our classifier for the PM agent. The
various parameters were set as follows. We set the γ parameter for (4.1) and the γ ′ parame-
ter from the algorithms in section 4.4 to 0.98 initially and decremented them by 0.099 every
trial. We set an exploration parameter ε to 0.2 initially and multiplied it by 0.98 every trial.
This parameter, as usual, determines how often the agent should perform a random action
for the sake of exploration. Finally, the η parameter was set to 1 which represents the cost of
going from one state to the next - this is as per the discussion in section 4.4. The max min
term in k in (4.14) was set to 10 and periodically estimated during the experiment. The
predictive model was rebuilt when the estimate changed appreciably. Finally, the possible
values for ∆ for this problem are of the form: (δx, δy, δN, δS, δE, δW), where

• δx represents the change in x value,

• δy represents the change in y value,

• δN represents how the cell to the North of the current cell changes (and similarly
for δS, δE and δW).

Thus the possible values for δx and δy are +1 and −1 and the possible values for δN
etc. are FREE → BLOCKED, BLOCKED → FREE, FREE → FREE, BLOCKED →
BLOCKED.

24

5.2 Expected Results

In both the tasks, we expect the vanilla reinforcement learning agent to not do as well as the
PM or non-PM agents. This is because the RL agent needs to propagate rewards back to the
start state before it can start acting optimally while the PM and the non-PM agent can start
acting intelligently right from the start using the ES values and the Predictive Model in the
case of the PM agent. We, however, expect more advanced methods like Dyna ([Sutton and
Barto, 1998]) to perform similarly to the non-PM agent (but not the PM agent for reasons
given below) because it can reduce number of episodes required to learn a task by off-line
training (also see section 6.2.2).

In addition, for the first task (G1), we do not expect there to be much difference between
the PM agent and the non-PM agent. This is because due to the simplicity/small size of
the task, the non-PM agent learns the task quickly and the advantage of using a Predictive
Model by the PM agent is not seen.

For the second task, goal state G2, we expect the PM agent to dominate the non-PM agent
in a very striking manner. This is because in the G2 task all the states required to get from
the start state to the to state G2 are similar to states encountered during learning task G1.
More specifically, all the states in the smaller room (i.e. task G1) that do not have walls
in any direction (north south east or west) are ε = 0 similar to all such states in the larger
room (i.e. states encountered task G2). The same is true for all states that have wall(s) only
to the north, to the south etc. As a result, the PM agent can use the predictive model to
predict what happens when the different actions are taken in the larger room - i.e. the agent
can act as if it has already experienced the states in the larger room and thus form a plan
to reach the goal state using the graph search procedure right from the very beginning. On
the other hand the non-PM agent will actually need to experience the new states outside of
the small room sufficiently often before being able to reach the goal state with any degree
of consistency. It is in this task we hope to show the power of our method.

It should be noted that, we expect the PM agent to learn the G2 task quickly only because
of the presence of similar states across the tasks, and not because both the G1 and G2 states
are located on the north-east corner. In fact G2 could have been located anywhere in the
bigger room and our expected results would still be the same.

5.3 Results

The results were obtained by averaging over 5 separate trials and are given in figures 5 - 8.
The results agree with our expectations quite well. We now discuss each of the experiments
in the following.

Figure 5 shows the performance for the three agents for the G1 task. As can be seen
from the figure, there is little appreciable difference between PM and non-PM agents -
both converging to the minimum no. of steps (around 30) by 5 episodes. Vanilla RL on
the other-hand requires many more episodes to converge (about 150 episodes - not shown
here) to the optimal value of around 30 steps. On the other hand, PM and non-PM agents
took somewhat longer computational time to complete the 100 episodes task (around 3
seconds for RL, opposed to 10 seconds for PM and non-PM). This result agrees with our
expectations.

Figure 6 shows the performance of the three different agents for the G2 task. The RL agent
converges to the optimal of around 65 steps around episode 250, whereas both the PM and
non-PM converges to the same value earlier (around episodes 3 and 60 respectively, we
compare these two in more detail below). As before RL takes much less computational
time to converge (4 seconds as opposed to 2 minutes or so).

Figure 7 shows the performance of the PM and the non-PM agents, “magnified” in the
sense that the first episode is excluded in which non-PM takes about 3700 steps. The most
striking aspect of this figure is that the PM agents gets almost to the optimal from the
very first episode (75 steps) and then rapidly gets to the optimal in about 2 more episodes.

25

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

N
o.

 o
f S

te
ps

 to
 G

oa
l S

ta
te

Episode No.

PM vs. No PM for Goal State G1 - (11,11)

PM
No PM

RL

Figure 5: Results for Goal G1.

During the same time the non-PM agent expends around 3700 steps in its first episode, and
then an average of over 100 steps for the next 15 episodes. So the PM agent saves a lot of
steps during the very first episodes. This is illustrated in figure 8, which shows the number
of steps taken by each agent in the first 3 episodes, with each episode ending in reaching
the goal state. Finally, the PM agent always finds a straight line path to the goal state while
the non-PM agent sometime takes small unnecessary detours as a result the interpolating
line of the non-PM agent curve is slightly (couple of steps) above that of the PM agent.

6 Discussion and Related Work

In this section first we discuss the advantages and problems with our method. We also
discuss the avenues of possible research that the above implies. Then we discuss prior
work that is related to our method.

6.1 Discussion and Future Work

The results illustrate that there are certain domains where the predictive model will be very
useful - namely domains where there are many states that are ε similar to each other for
sufficiently small values of ε, and where training or obtaining training examples is far more
expensive than computational cost. This is actually the situation in many real life applica-
tions, and certainly in the ’tasks’ that human beings perform everyday. So this is definitely
an advantage of our method as it reduces number of examples required significantly when
there are many tasks that involve similar states. Thus future work will focus on quantifying
similarity between tasks and describing more precisely the relationship between similarity
across tasks and decrease in number of examples required.

A big problem of our system is that it is quite computationally intensive - the chief compu-
tational cost coming from maintaining and using the classifiers for the predictive model and
replanning on every failure. We need to address these two issues. But we also note that so-
phisticated extensions to classical planning (e.g. [Veloso et al., 1995]) and the multi-value
function approach ([Moore et al., 1999]) mentioned in section 3.3.4 can help reduce cost
due to planning and replanning respectively. In addition the current system can deal only
with finite number of countable-valued features. Although in principle this is sufficient
for any problem that can be solved using a computer, for domains with continuous valued
features (or even features with large number of values), our system will probably have prob-

26

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140 160 180 200

N
o.

 o
f S

te
ps

 to
 G

oa
l S

ta
te

Episode No.

PM vs. No PM and RL for Goal State G2 - (23,23)

PM
No PM

RL

Figure 6: Results for Goal G2.

lems scaling, so we need to address this problem too. We also need to determine a way to
deal with continuous/parameterized and temporally extended actions. We believe ideas in
[Sutton et al., 1999] and [Bertsekas and Tsitsiklis,] will be useful for the above two prob-
lems. We will also need to address the various extensions we identified for the system in
the previous sections, namely, learning the ∆ function from experience, dealing more effec-
tively with overlapping feature functions, relationship between L a functions (section 3.3.1)
and the predictive model, behavior of the ES method during early stages of solving a task,
efficiently rebuilding the PM when using it with the PM, obtaining tighter bounds on (4.14)
and (4.15) for different domains, ensuring the algorithm Compute min a′∈A ÊSa′(sx, sy)
with γ′ does not recurse too much, and investigating the various options for learning d s,a,s′

values. We also wish to introduce a component to our model which would allow the agent
to behave intelligently in the presence of other active entities in the world. We will, of
course, also need to apply our method to problem domains far more interesting than the
one described here.

Furthermore, as mentioned in the philosophical aside in section 3.1, we speculate that we
can in fact develop a useful non-phenomenal semantic network based on the idea of func-
tional similarity. Of course for this to work in complex and interesting domains, we would
need to be able to deal with multi-modal and continuous inputs/states and actions. Such a
semantic network can then form the central component to acquire, store and reuse knowl-
edge in a Cumulative Learning System (as mentioned in the introduction). This avenue of
research definitely needs to be explored.

6.2 Related Work

In section 3.3.4 we compared the Predictive Model to other Forward Models and in section
4.5 we compared ES+PM to two related methods. In this section, we talk about three areas
very closely related to our method. These are Lifelong Learning, Model Based Reinforce-
ment Learning and Hierarchical Reinforcement Learning.

6.2.1 Lifelong Learning

The general research area that our method is most closely related to is, as mentioned in
the Introduction, Lifelong Learning ([Thrun and Pratt, 1998],[Thrun, 1995], [Caruana,
1997],[Drummond, 2002], [Mitchell and Thrun, 1993]). In these methods, the aim is to

27

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100 120 140 160 180 200

N
o.

 o
f S

te
ps

 to
 G

oa
l S

ta
te

Episode No.

PM vs. No PM for Goal State G2 - (23,23)

PM
No PM

Figure 7: Magnified result for Goal G2.

have an agent that lives for a long time and gradually accumulates knowledge. It then uses
this knowledge to make itself better. The difference between these methods and ours is the
use of functional similarity to acquire knowledge and a focus on a cognitive architecture.
The method presented in this paper is most closely related to [Mitchell and Thrun, 1993].
In that paper, the authors learned a neural network to predict what the next reward/state
(somewhat of a kludge, since it combines these two disparate things) is going to be after
taking some action in the current state. Our method may be viewed as a finer grained and
more principled extension of that work.

6.2.2 Model Based Reinforcement Learning

The group of methods closely related to the ES method is model based reinforcement learn-
ing. Most of the leading methods in this area are nicely summarized in [Kaelbling et al.,
1996]. Other paper which deals with similar topics are [Moore et al., 1999] and [Koenig,
2001]. The basic principle of these methods is to augment basic Reinforcement Learning
methods by learning the model of the world (i.e. state transition probabilities and the re-
ward model) in addition to the value functions and Q-functions. Then at each update, the
model is used to update other states/state-action pairs in addition to the state or state-action
pairs observed during the current transition - thus the algorithm converges much faster. The
difference between the various algorithms lie in how exactly the other states to be updated
are selected. These model based methods are computationally slower than the Q-learning
method. It is fairly obvious that using something like our Predictive Model will greatly
benefit these methods. For goal directed tasks, we expect our combination of ES and the
PM will outperform these methods.

6.2.3 Hierarchical Reinforcement Learning

Another interesting research area is Hierarchical Reinforcement learning [Barto and Ma-
hadevan, 2003]. The basic philosophy of these methods is to have a hierarchical system
where the higher level systems learns and plans with higher level representations while
the lower levels deal with lower level actions. This way the system is able exploit high
level commonalities across different tasks. It would be interesting to introduce hierarchical
elements into our system, thus allowing the agent to exploit “abstract” high level common-
alities across tasks.

28

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

N
o.

 o
f S

te
ps

 in
 F

irs
t 3

 E
pi

so
de

s

PM vs. No PM and RL for Goal State G2 - (23,23)

PM
No-PM

Figure 8: Comparison of No. of Steps Expended in First 3 Episodes Goal G2.

7 Conclusion

The most important notion that we introduced in this paper is that of functional similarity
between states, wherein two states are similar with respect to an action if they behave in
the same way when that action is applied to the states. We described a predictive model
that learns which states are similar with respect to different actions and uses that to predict
how novel states will behave when those actions are applied. We also presented a planning
mechanism that applies the philosophy of basic motion planning/classical planning to solve
goal directed MDPs. Then we described a way to combine the PM with the ES method and
performed experiments to show the efficacy of the method.

We talked about possible future research directions, which primarily address the
computation-intensiveness of our method, problems dealing with continuous domains, var-
ious extensions to the current method and possibly developing our method into a full cog-
nitive architecture. Finally, we also discussed several related fields of research.

29

Appendix A: Proofs

Definition 1. We define the discounted expected number of steps required to get from state
s to sg when action a is taken as follows:

ESa(s, sg) =
∑
s′∈S

P (s′|s, a)
(

ds,a,s′ + γ min
a∈A

ESa(s′, s)
)

where ds,a,s′ is the damage cost associated with action the transition.

Theorem 1. Given the correct values of ds,a,s′ , and the state transition distributions, the
update rule,

ÊSa(s, sg)n =
∑
s′∈S

P (s′|s, a)
(

ds,a,s′ + γ min
a′∈A

ÊSa′(s′, s)n−1

)
(A.1)

,where ÊS denotes the estimate of ES, and ÊSa(s, s′)n denotes the value of ÊSa(s, s′)
after the nth update converges to the actual ESa(s, sg), ∀a, s, sg as n → ∞ and given
also that ESa(s, s′) for each triple (s, a, s′) is also updated infinitely often.

Proof. Consider the error in step n for any ES(s, a, sg):

|ÊSa(s, sg)n − ESa(s, sg)| = |
∑
s′∈S

P (s′|s, a)
(

ds,a,s′ + γ min
a∈A

ÊSa(s′, sg)n−1

)

−
∑
s′∈S

P (s′|s, a)
(

ds,a,s′ + γ min
a∈A

ESa(s′, sg)
)
|

≤ γ
∑
s′∈S

P (s′|s, a)
∣∣∣∣min
a∈A

ÊSa(s′, sg)n−1 − min
a∈A

ESa(s′, sg)
∣∣∣∣

= γ
∑
s′∈S

P (s′|s, a)
∣∣∣∣max

a∈A
(−ÊSa(s′, sg)n−1) − max

a∈A
(−ESa(s′, sg))

∣∣∣∣
≤ γ

∑
s′∈S

P (s′|s, a)max
a∈A

∣∣∣(−ÊSa(s′, sg)n−1) − (−ESa(s′, sg))
∣∣∣

= γ
∑
s′∈S

P (s′|s, a)max
a∈A

∣∣∣ESa(s′, sg) − ÊSa(s′, sg)n−1

∣∣∣
≤ γ

∑
s′∈S

P (s′|s, a) max
a∈A,st,sg∈S

∣∣∣ESa(st, sg) − ÊSa(st, sg)n−1

∣∣∣
= γ max

a∈A,st,sg∈S

∣∣∣ESa(st, sg) − ÊSa(st, sg)n−1

∣∣∣ (A.2)

where the second inequality follows from the property of functions that

|max
x

f(x) − max
x

g(x)| ≤ max
x

|f(x) − g(x)|

Since the last line is the maximum error in step n−1, the ES values converge to the actual
values as n → ∞ and we can ensure that each triple is updated infinitely often.

We can ensure that each triple is updated infinitely often as n → ∞ by using the familiar
technique of traversing a 2D square grid, with natural number coordinates, starting from
coordinate (1, 1), in a diagonal fashion (figure 9). Here each point in each axis corresponds

30

y

1

1

2

3

4

2 4

1

2

3 4

5

6

7

8

9

10

3

x

Figure 9: Method for Updating ES.

to a state for some enumeration of the states - so a particular cell corresponds to a pair
of states. At the nth update, we update the ES value corresponding to the triple sx, ai, sy

where x and y are, respectively the x and y coordinate of the cell m, where m = n mod |A|
and ai is the ith action with i = n−m|A|. The x and y coordinates can be calculated from
m as follows. Set k = (−1 +

√
(1 + 8m))/2�, then

x = k − (1 + (−1)k)
2

(
k(k + 1)

2
− m

)
− (1 − (−1)k)

2

(
m − k(k − 1)

2
− 1

)
(A.3)

y = k − (1 + (−1)k)
2

(
m − k(k − 1)

2
− 1

)
− (1 − (−1)k)

2

(
k(k + 1)

2
− m

)
(A.4)

Theorem 2. The following inequality holds for all states s, smid and sgoal,

min
ag∈A

ESag(s, sgoal) ≤ min
am∈A

ESam(s, smid) + min
amg∈A

ESamg (smid, sgoal) (A.5)

Proof. We prove this by, for any particular goal state sgoal, first constructing a new domain
WN from our W given domain and show that the inequality in (A.5) holds. Then we
convert WN back to W state by state and show that the inequality holds in each step and
thus holds in W .

Given a domain W consisting of a set of states S and actions A and the associated state
transition probabilities, we perform the following operation to get the new domain. We
introduce a new special state ssp which has special 0 cost actions to all states in the domain.
Then we sort the states in ascending order in terms of mina∈A ESa(s, sgoal), breaking ties
arbitrarily. We index the states in terms of their position in the sorted list so that s goal is
denoted by s0, the state closest to sgoal is state s1 and so on. For each state si, action a, and
and all states sj , such that i < j, and P (sj |si, a) > 0 (i.e. all states that are reachable from
state si using action a) we set P (ssp|si, a) =

∑
{sj} P (sj |si, a) and set P (sj |si, a) = 0 -

i.e. switch all the “connections”/single-action-paths to the higher-indexed state to the new
state ssp. Its an easy induction on the index of the state to show that (A.5) holds in W N .

Basis n = 0 : Since n = 0, this implies s = sgoal in equation (A.5). So the equation
evidently.

Inductive Step n ≤ i : We assume that (A.5) holds for all state sn, n ≤ i. We now show
by contradiction that (A.5) holds for s i+1. i.e. assume for any state smid,

min
ag∈A

ESag (si+1, sgoal) > min
aam∈A

ESaam(s, smid) − min
amg∈A

ESamg (smid, sgoal)

31

where smid is any state. Note that since there is no path from si+1 to sk, k > i + 1, we
do not need to consider the case when smid = sk, k > i + 1 since (A.5) holds in this case.
Now, letting

anm = arg min
anm∈A

ESanm(si+1, smid)

because of the min on the left hand side above, we can most certainly write,

ESanm(si+1, sgoal) > ESanm(si+1, smid) + min
amg∈A

ESamg (smid, sgoal) (A.6)

ESanm(si+1, sgoal) − ESanm(si+1, smid) − min
amg∈A

ESamg (smid, sgoal) > 0 (A.7)

Then expanding out the above using the definition of ES and canceling out the d si+1,a,s′

terms in the definition, we can write

γ
∑

s′∈SWN

P (s′|si+1, anm)(min
a∈A

ESa(s′, sgoal) − min
a∈A

ESa′(s′, smid))

− min
amg∈A

ESamg (smid, sgoal) > 0 (A.8)

Using the fact that
∑

s′∈SWN
P (s′|s, a) = 1

γ
∑

s′∈SWN

P (s′|si+1, anm)(min
a∈A

ESa(s′, sgoal) − min
a′∈A

ESa′(s′, smid)

− 1
γ

min
amg∈A

ESamg (smid, sgoal)) > 0 (A.9)

In the sum above, each term is < 0, since each s ′ is either ssp or a state sk, k < i + 1 (A.5)
holds for all s′. Therefore the whole sum is also < 0 and this concludes the inductive case.

Now we change back to our original domain W by restoring each P (s j |si, a), i < j, and
for all si ∈ S, a ∈ A to its original value. Then we update the ES values using the
rule from theorem 1 and show that after each update (A.5) holds and thus this ensures
that the equation holds in W . Before we do so, we need to set ESa(si, sj), i < j for
all si ∈ S, a ∈ A to some value (since the probabilities have been restored), and we set
these to 0. As far as (A.5) goes, this only affects cases when s i = s and sj = smid, as
all other ES values remain the same. (A.5) holds in this instance because, as by definition
ESa(si, sg) ≤ ESa(sj , sg), it implies ESa(s, smid) ≤ ESa(smid, sgoal). So the ES
values in the initial form in the reconstituted W satisfy (A.5). Now let us update the ES
values using the rule from theorem 1. Specifically, let the the update at step 1 be for some
state si selected according theorem 1, and this is given by

ESa(si, s)1 =
∑

s′∈SW

P (s′|si, a)
(

dsi,a,s′ + γ min
a∈A

ESa(s′, s)0

)
(A.10)

Now we show that as this update is propagated using theorem 1, (A.5) holds for all s, s mid

by induction on the n, the number of updates.

Basis n = 1 : Since n = 1, this refers to the very first update given in (A.10). After
the very first update the only value that could have changed is ES a(si, s). We need to
consider the case when s = smid in (A.5) and show that the following equation holds after
the update:

32

ESa(si, sgoal) − ESa(si, smid) − min
amg∈A

ESamg (smid, sgoal) ≤ 0

⇒ γ
∑

s′∈SW

P (s′|si, a)(min
a∈A

ESa(s′, sgoal) − min
a′∈A

ESa′(s′, smid)

− 1
γ

min
amg∈A

ESamg(smid, sgoal)) ≤ 0 (A.11)

where the second line derives from the steps used to derive (A.9). We need to show this
because if the above holds true for the action a, it certainly holds true for a m where

am = argmin
a∈A

ESa(si, smid) (A.12)

and as shown previously this is the action we need to consider when proving (A.5) holds.
Now (A.11) holds (i.e. left hand side is ≤ 0) because (A.5) holds for all s ′ by the comments
preceding the basis case.

Inductive Case n > n′ : We assume that (A.5) holds for all s, smid after n′th update. Let
us assume that in the n′ + 1th update we update the entry ESa(sk, s) as before using:

ESa(sk, s)n′+1 =
∑

s′∈SW

P (s′|sk, a)
(

dsk,a,s′ + γ min
a∈A

ESa(s′, s)n′

)

As in the base case, when s = smid we have to show that the following equation holds
after the update:

ESa(sk, sgoal) − ESa(sk, smid) − min
amg∈A

ESamg (smid, sgoal) ≤ 0

⇒ γ
∑

s′∈SW

P (s′|sk, a)(min
a∈A

ESa(s′, sgoal) − min
a′∈A

ESa′(s′, smid)

− 1
γ

min
amg∈A

ESamg (smid, sgoal)) ≤ 0 (A.13)

and again, (A.5) holds for all s ′ either because the relevant ES values did not change, or
by the inductive hypothesis. In the case when s = sgoal, the exact same argument applies.
This concludes our proof.

Recomputation of error in (4.14)

We want to have the error as follows:

|min
a∈A

ESa(s, s′) − min
a∈A

ÊSa(s, s′)| ≤ η

The new error when we take into account the error in estimating the correct values for the
mina∈A ESa(s, s′) terms in the right hand side of (4.13) is:

|ESa(sn, sg) − ÊSa(sn, sg)| ≤ γεSaj max
s,s′∈S

min
a∈A

ÊSa(s, s′) + γη

33

where the new γη term comes from the error in estimating the mina∈A ESa(s, s′) terms.
However, the η term in γη, also has a hidden γη term, just like the error in the above
equation. So now we get,

|ESa(sn, sg) − ÊSa(sn, sg)| ≤ εSaj k +
∞∑

i=1

γiη

where k = γ maxs,s′∈S mina∈A ÊSa(s, s′). The new term is a geomteric series with rate
= γ and therefore the new version of (4.14) is

|ESa(sn, sg) − ÊSa(sn, sg)| ≤ εSaj k +
η

1 − γ
(A.14)

Therefore, to get an error of less than η ′ from our PM when using it with ES, we set the η
parameter so that even with the new η

1−γ term, the error is less than η ′ in (3.12). Letting

ν = C(Ŝai)(1 − P (e|Ca, Ŝai)), from equality in (3.12) we have

ν(εSaj k) + (1 − ν)2k = η

εSaj =
η − (1 − ν)2k

kν

now to have the error less than η ′ we need to set η so that,

ν(εSaj k +
η

1 − γ
) + (1 − ν)(2k +

η

1 − γ
) ≤ η′

, plugging in the value for εSaj in (A.15) the relationship between η and η ′ is given by,

η ≤ (η′ − (1 − ν)2k)(1 − γ)k
(k + 1 − γ) − (1 − γ)(1 − ν)2k

(A.15)

Of course we would need to adjust the ν parameter to ensure that the above produces a
large enough and positive value for η.

34

References

[Barto and Mahadevan, 2003] A. Barto and S. Mahadevan. Recent advances in hierarchi-
cal reinforcement learning. Discrete Event Systems Journal, 13:41–77, 2003.

[Barto et al., 1995] A.G. Barto, S.J. Bradtke, and S. P. Singh. Learning to act using real-
time dynamic programming. Artificial Intelligence, 72(1):81–138, 1995.

[Bertsekas and Tsitsiklis,] D. P. Bertsekas and J.N. Tsitsiklis. Learning to act using real-
time dynamic programming. Athena Scientfic, Belmont, MA.

[Caruana, 1997] R. Caruana. Multitask learning. Machine Learning, 28 (1):41–75, 1997.

[Cover and Thomas, 1991] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. Wiley-Interscience, 1991.

[Drummond, 2002] C. Drummond. Accelerating reinforcement learning by composing
solutions of automatically identified subtasks. Journal of Artificial Intelligence, 16:59–
104, 2002.

[Flanagan and Wing, 1997] J. R. Flanagan and A. M. Wing. The role of internal models in
motion planning and control: Evidence from grip force adjustments during movements
of hand-held loads. Journal of Neuroscience, 17:1519–1528, 1997.

[Jordan and Rumelhart, 1992] M. I. Jordan and D. E. Rumelhart. Forward models: Super-
vised learning with a distal teacher. Cognitive Science, 16:307–354, 1992.

[Kaelbling et al., 1996] L. Kaelbling, M. L. Littman M.L., and A. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[Karniel, 2002] A. Karniel. Three creatures named ’forward model’. Neural Network,
15:305–307, 2002.

[Kawato, 1999] M. Kawato. Internal models for motor control and trajectory planning.
Current Opinion in Neurobiology, 9:718–727, 1999.

[Koenig, 2001] S. Koenig. Minimax real-time heuristic search. Artificial Intelligence,
129:165–197, 2001.

[Minsky, 1988] Marvin L. Minsky. The Society of Mind. First Touchstone Edition, 1988.

[Mitchell and Thrun, 1993] T. M. Mitchell and S. B. Thrun. Explanation-based neural
network learning for robot control. In Adavances in Neural Information Processing
Systems, pages 287–294, San Mateo, CA, 1993. Morgan Kaufmann Press.

[Moore et al., 1999] A. W. Moore, L. C. Baird, and L. Kaelbling. Multi-value-functions:
Efficient automatic action hierarchies for multiple goal MDPs. In Proceedings of the
International Joint Conference on Artificial Intelligence, Stockholm, 1999.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Reinforcement Learning: An In-
troduction. MIT Press, Cambridge, MA, 1998.

[Sutton et al., 1999] R. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
1999.

[Thrun and Pratt, 1998] S. Thrun and L. Y. Pratt, editors. Learning To Learn. Kluwer
Academic Publishers, Boston, MA, 1998.

[Thrun, 1995] S. Thrun. Lifelong learning: A case study. Technical Report CMU-CS-95-
208, Computer Science Department, Carnegie Mellon University, 1995.

[Veloso et al., 1995] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, and E. Fink. Inte-
grating planning and learning: The prodigy architecture. Journal of Experimental and
Theoretical Artificial Intelligence, 7(1), 1995.

35

