
Efficient Formalism-Independent Monitoring of Parametric Properties

Feng Chen and Dongyun Jin and Patrick O’Neil Meredith and Grigore Roşu
University of Illinois at Urbana-Champaign

Urbana, Illinois,USA 61801
fengchen, djin3, pmeredit, grosu@illinois.edu

Abstract

Efficient monitoring of parametric properties, in spite of
increasingly growing interest thanks to applications such as
testing and security, imposes a highly non-trivial challenge
on monitoring approaches due to the potentially huge num-
ber of parameter instances. A few solutions have been pro-
posed, but most of them compromise their expressiveness
for performance or vice versa. In this paper, we propose a
generic, in terms of specification formalisms, yet efficient,
solution to monitoring parametric specifications. Our ap-
proach is based on a general semantics for slicing para-
metric traces and makes use of knowledge about the prop-
erty to monitor. The needed knowledge is not specific to
the underlying formalism and can be easily computed when
generating monitoring code from the property. An exten-
sive evaluation shows that the monitoring code generated
by our algorithm is still faster than other state-of-art tech-
niques optimized for particular logics or properties.

1 Introduction

Monitoring executions of a system against expected
properties plays an important role not only in different
stages of software development, e.g., testing and debug-
ging, but also in the deployed system as a mechanism to
increase system reliability. Numerous approaches, such as
[11, 13, 9, 6, 8, 1, 14, 10, 7], have been proposed to build
effective and efficient monitoring solutions for different ap-
plications. More recently, monitoring of parametric specifi-
cations, i.e., specifications with free variables, is receiving
more and more interest due to its effectiveness in handling
system behaviors that involve multiple instances of different
components. Let us discuss the following example about
using classes Map, Collection and Iterator in Java Util library.

Map and Collection implement data structures for map-
pings and collections, respectively. Iterator is an interface
used to enumerate elements in a collection-typed object.
One can also enumerate elements in a Map object using Iter-
ator. But, since a Map object contains key-value pairs, one

needs to first obtain a collection object that represents the
contents of the map, e.g., the set of keys or the set of values
stored in the map, and then create an iterator from the ob-
tained collection. An intricate safety property in this usage,
according to the Java API specification, is that when the it-
erator is being used to enumerate elements in the map, con-
tent of the map should not be changed or unexpected behav-
iors may occur. This property can be naturally specified us-
ing future time linear temporal logic (FTLTL) with param-
eters: given that m, c, i are objects of Map, Collection and
Iterator, respectively: ∀m, c, i.create coll(m, c) → not �
(create iter(c, i) ∧ �(update map(m) ∧ �use iter(i))),
where create coll is creating a collection from a map, cre-
ate iter is creating an iterator from a collection, update map
is updating the map, and use iter is using the iterator; �
means eventually in the future. The specification states that
if Collection c is obtained from a Map m then it implies in
the future, the following should not happen: an iterator i is
created from c and then m is changed and then i is accessed.

It is highly non-trivial to monitor such parametric spec-
ifications efficiently. We may see a tremendous number of
parameter instances during the execution; for example, it is
not uncommon to see hundreds of thousands of iterators in
one execution. Also, some events may contain partial infor-
mation about parameters, making it more difficult in locat-
ing other relevant parameter bindings during the monitor-
ing process; for example, in the above specification, when a
createIter(s, i) is received, we need to find all getSet(m, s)
events with the same binding for s.

Several approaches were introduced to support specify-
ing and monitoring of parametric specifications, including
Eagle [8], Tracematches [1], PQL [14], PTQL [10] and
MOP [7]. But they are all limited in terms of underlying
specification formalisms or supported properties. Eagle,
Tracematches, PQL and PTQL adopt logic-specific solu-
tions, namely, each of them hardwires a specification for-
malism, e.g., regular patterns or context-free patterns, ex-
tends the formalism with parameters and then develops an
algorithm to generate monitoring code for the extended but
still particular formalism. Although this approach provides
a solution to monitoring parametric specifications, we ar-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SafeMapIterator(Map m,Collection c, Iterator i){
event create_coll after(Map m) returning(Collection c) :

(call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create_iter after(Collection c) returning(Iterator i) : call(* Collection.iterator()) && target(c) {}
event use_iter before(Iterator i) : call(* Iterator.next()) && target(i) {}
event update_map after(Map m) : call(* Map.remove*(..))) && target(m) ||

(call(* Map.put*(..)) || call(* Map.putAll*(..)) || call(* Map.clear())) {}
cfg : S -> create_coll create_iter Nexts update_map Updates use_iter,

Nexts -> Nexts use_iter | epsilon,
Updates -> Updates update_map | update_map

@validation{ System.out.println("cfg: Accessed Invalid Iterator!"); }
ere : create_coll update_map* create_iter use_iter* update_map update_map* use_iter

@validation{ System.out.println("ere: Accessed Invalid Iterator!"); }
ptltl: use_iter /\ <*> (create_iter /\ <*> create_coll) -> (not update_map) S create_iter

@violation{ System.out.println("ptltl: Accessed Invalid Iterator!"); }
ftltl: create_coll -> not <> (create_iter /\ <> (update_map /\ <> use_iter))

@violation{ System.out.println("ftltl: Accessed Invalid Iterator!"); }
}

Figure 1: CFG, ERE, PTLTL, and FTLTL SafeMapIterator

gue that it not only has limited expressiveness, but also
causes unnecessary complexity in developing optimal mon-
itor generation algorithms, often leading to inefficient mon-
itoring. In fact, our experiments show that our formalism-
independent solution generates more efficient monitoring
code than the very efficient Tracematches.

MOP, on the other hand, adopts a divide-and-conquer so-
lution. It does not fix the formalism to use in the specifica-
tion, instead, MOP provides an efficient and generic frame-
work for monitoring of parametric specifications, which al-
lows one to use existing non-parametric formalisms in para-
metric specifications. Figure 1 shows a JavaMOP21 specifi-
cation that specifies the above Map-Set-Iterator property us-
ing four2 different formalisms, namely, context-free gram-
mar (CFG), extended regular expressions (ERE), past-time
linear temporal logic (PTLTL) and future-time linear tem-
poral logic (FTLTL). In Figure 1, we first name the specified
property and give the parameters used in the specification.
Then we define the involved events using an AspectJ-like
syntax, for example, create coll is defined as the returning
of functions values and keyset of Map. Every event may
instantiate some parameters at runtime. For example, cre-
ate coll will instantiate parameters m and c using the target
and the return value of the method call.

Non-parametric patterns/formulae are provided in sepa-
rated sections following the event definition using different
formalisms. Every section starts with the used formalism,
e.g., ere for ERE and ftltl for FTLTL, and then consists of
a pattern/formula of defined events together with handlers

1JavaMOP2 is a novel implementation of the MOP paradigm[7] for
Java. The main difference between JavaMOP2 and its predecessor here
called JavaMOP1 is that JavaMOP2 supports the algorithm discussed in
this paper in its full generality. In this paper we, however, focus on the
underlying generic technique and algorithms, not on JavaMOP2.

2Only one of them would suffice; as it is, the MOP spec in Figure 1
reports four messages whenever the property is violated. We show all four
of them for two reasons: (1) to emphasize the formalism-independence of
our approach; and (2) we refer to them later in the paper.

which will be executed when the specified property is val-
idated or violated. In Figure 1, the CFG and ERE patterns
describe behavioral patterns violating the property; so they
are monitored for validations and associated with @valida-
tion handlers that will be executed when the monitored ex-
ecution matches the pattern. Conversely, the PTLTL and
FTLTL formulae state the desired property directly and are
therefore monitored for violations. MOP provides the user
the flexibility to use the most convenient formalism to spec-
ify the property. For example, as shown in Figure 1, FTLTL
describes the desired property more concisely, but ERE may
be easier to understand for a programmer.

However, the original technique used in MOP restricted
the type of properties allowed for monitoring, to ensure the
correctness and efficiency of monitoring. More specifically,
only properties whose creation events, i.e., events triggering
the monitoring, such as the getSet event in the above exam-
ple, define the complete parameter binding for the specifica-
tion were allowed. Hence, MOP could not handle a large set
of properties, including the above Map-Set-Iterator pattern.

Contributions: We present a general technique to build op-
timized parametric monitors from non-parametric monitors,
following the spirit of MOP but without the limitation. The
technique is based on theoretical results in [16]. As our
experiments show, a straight implementation of the concep-
tual algorithm in [16] causes a prohibitive runtime. Hence,
we introduce an optimization to apply knowledge about the
monitored property to avoid handling redundant parameter
bindings. The needed knowledge, event enable sets, de-
pends only on the property and not on the formalism used
to specify it. We show that the enable set information is
easily achieved as a ”side effect” when generating a non-
parametric monitor from the property by extending existing
monitoring generation algorithms for ERE, PTLTL, FTLTL
and CFG. Our technique has been implemented in the latest
version of JavaMOP. An extensive evaluation on JavaMOP

shows that the proposed technique significantly improves
the efficiency of monitoring. Monitoring code generated by
our approach performs even better than other approaches
optimized for fixed formalisms. For simplicity, in the rest
of this paper, we use JavaMOP2 to refer to the implementa-
tion of the technique presented in this paper and JavaMOP1
for the previous limited implementation.

2 Semantics of Parametric Monitoring

In this section, we briefly introduce the semantics
of parametric monitoring based on parametric trace slic-
ing. More details, including further formal definitions and
proofs, can be found in [16]. We include only the core defi-
nitions here to make this paper self-contained.

2.1 Events, Traces and Properties

Traces are sequences of events. Parametric events can
carry data-values, as instances of parameters. Parametric
traces are traces over parametric events. Properties are
trace classifiers, that is, mappings partitioning the space
of traces into categories (violating traces, validating traces,
don’t know traces, etc.). Parametric properties are para-
metric trace classifiers and provide, for each parameter in-
stance, the category to which the trace slice corresponding
to that parameter instance belongs. Trace slicing is defined
as a reduct operation that forgets all the events that are un-
related to the given parameter instance.

Definition 1 Let E be a set of (non-parametric) events,
called base events or simply events. An E-trace, or sim-
ply a (non-parametric) trace when E is understood, is any
finite sequence of events in E , that is, an element in E ∗. If
event e ∈ E appears in trace w ∈ E ∗ then we write e ∈ w.

For example, {create coll, create iter, use iter, up-
date map} is the set of events from Figure 1, and create coll
create iter use iter update map is a trace.

Definition 2 An E-property P , or simply a (base or non-
parametric) property, is a function P : E ∗ → C partitioning
the set of traces into categories C.

It is common, though not enforced, that C includes vali-
dating, violating, and don’t know (or ?) categories. For ex-
ample, for the regular pattern in Figure 1, create coll cre-
ate iter update map use iter is a validating trace, create coll
create iter is a don’t know trace if the trace is not finished,
and create coll update map is a violating trace. In general,
C, the co-domain of P , can be any set. Note that ftltl and
ptltl formulae, for example, do not have don’t know traces.

Definition 3 (Parametric events and traces). Let X be a
set of parameters and let VX be a set of corresponding pa-
rameter values. If E is a set of base events like in Definition
1, then let E〈X〉 denote the set of corresponding parametric
events e〈θ〉, where e is a base event in E and θ is parame-
ter instance, i.e., a partial map in [X ◦→VX]. A parametric
trace is a trace with events in E〈X〉, i.e., a word in E〈X〉∗.

For example, if x ={m, c, i} is a set of parameters (of
types {Map, Collection, Iterator}, respectively) and VX =
{m1, c1, i1, i2}, then create coll〈m 	→ m1, c 	→ c1〉, cre-
ate iter〈c 	→c1, i 	→i1〉, and use iter〈i 	→i1〉, are parametric
events and create coll〈m	→m1, c	→c1〉 create iter〈c	→c1, i	→
i1〉 use iter〈i 	→ i1〉 is a parametric trace. In practice, a para-
metric event usually instantiates a specific set of parameters,
which are given in its event definition.

Definition 4 Let X be a set of parameters. If E is a set
of base events like in Definition 1, we define a parametric
event definition, or event definition for short, as function
DE : E → Pf(X), where Pf is “finite power set”, that
maps an event to a set of parameter that will be instantiated
by e at runtime. Parametric event e〈θ〉 is an instance of
event definition DE if Dom(θ) = DE(e). Parametric trace
τ follows DE if e〈θ〉 is an instance of DE for any e〈θ〉 ∈ τ .

For example, (create coll 	→ {m, s}, create iter 	→
{s, i}, use iter 	→{i}, update map 	→ {m}) is a parametric
event definition that corresponds to the example in Figure
1. It states that two parameters, namely, m and s, will be in-
stantiated at runtime when a parametric event create coll〈θ〉
is received, and so on. create coll〈m	→m1, s	→s1〉 is there-
fore one of its instances. All the parametric traces used in
the remaining of this paper are assumed to follow certain
given event definitions. Also, from here on we simplify the
representation of parametric instances by hiding their do-
mains when they are understood from the context. For ex-
ample, given the above parametric event definition, we use
create coll〈m1, s1〉 instead of create coll〈m 	→m1, s 	→s1〉,
and 〈m1, s1〉 instead of 〈m	→m1, s	→s1〉.

Definition 5 Parameter instance θ is compatible with pa-
rameter instance θ′ if for any parameter x ∈ Dom(θ) ∩
Dom(θ′), θ(x) = θ′(x). We can combine compatible pa-
rameter instances θ and θ′, written θ � θ′, as follows:

θ � θ′(x) =

⎧⎨
⎩

θ(x) when θ(x) defined
θ′(x) when θ′(x) defined
undefined otherwise

With the notation above, 〈m1, s1〉 and 〈s1, i1〉 are com-
patible and 〈m1, s1〉 � 〈s1, i1〉 = 〈m1, s1, i1〉.

Definition 6 (Trace slicing) Given parametric trace τ ∈
E〈X〉∗ and θ in [X ◦→VX], we let the θ-trace slice τ�θ ∈ E∗
be the non-parametric trace in E ∗ defined as follows:

• ε�θ= ε, where ε is the empty trace/word, and

• (τ e〈θ′〉)�θ=
{

(τ�θ) e when θ′ � θ
τ�θ when θ′
� θ

,

where θ′ � θ iff for any x ∈ X , if θ′(x) is defined then θ(x)
is also defined and θ ′(x) = θ(x).

Consider the parametric trace create coll〈m1, s1〉 cre-
ate iter〈s1, i1〉 use iter〈i1〉 update map〈m1〉, the trace slice
for 〈m1〉 is update map. The trace slice for 〈m1, s1〉 is cre-
ate coll update map, and the trace slice for 〈m1, s1, i1〉 is
create coll create iter use iter update map.

Definition 7 Let X be a set of parameters with their corre-
sponding values VX , like in Definition 3, and let P : E ∗ →
C be a non-parametric property like in Definition 2. Then
we define the parametric property ΛX.P as the property
(over traces E〈X〉∗ and categories [[X ◦→VX]→ C])

ΛX.P : E〈X〉∗ → [[X ◦→VX]→ C]

defined as (ΛX.P)(τ)(θ) = P (τ�θ)
ΛX.P is defined as if many instances of P are observed

at the same time on the parametric trace, one property in-
stance for each parameter instance, each property instance
concerned with its events only, dropping the unrelated ones.

2.2 Parametric Monitors

We first define non-parametric monitors M as potentially
infinite state variants of Moore machines; then we define
parametric monitors ΛX.M as monitors maintaining one
non-parametric monitor state per parameter instance.

Definition 8 A monitor M is a tuple (S, E , C, ı, σ : S ×
E → S, γ : S → C), where S is a set of states,E is a
set of input events, C is a set of output categories,ı ∈ S is
the initial state, σ is the transition function, and γ is the
output function. The transition function is extended to σ :
S × E∗ → S as expected: σ(s, ε) = s and σ(s, we) =
σ(σ(s, w), e) for any s ∈ S, e ∈ E , and w ∈ E ∗.

The above notion of a monitor is rather conceptual. Ac-
tual implementations of monitors need not generate all the
state space apriori, but on a “by need” basis. Allowing mon-
itors with infinitely many states is a necessity in our con-
text. Even though only a finite number of states is reached
during any given (finite) execution trace, there is, in gen-
eral, no bound on how many. For example, monitors for
context-free grammars like the ones in [15] have potentially
unbounded stacks as part of their state. Also, as shown
shortly, parametric monitors have domains of functions as
state spaces, which are infinite as well. What is common to
all monitors , though, is that they can take a trace event-by-
event and, as each event is processed, classify the observed
trace into a category. The following is natural:

Definition 9 M = (S, E , C, ı, σ, γ) is a monitor for prop-
erty P : E∗ → C iff γ(σ(ı, w)) = P (w) for each w ∈ E∗.

We next define parametric monitors: starting with a base
monitor and a set of parameters, the corresponding para-
metric monitor can be thought of as a set of base monitors
running in parallel, one for each parameter instance.

Definition 10 Given parameters X with corresponding VX

and M = (S, E , C, ı, σ : S×E → S, γ : S → C), we define
the parametric monitor ΛX.M as the monitor

([[X ◦→VX]→S], E〈X〉, [[X ◦→VX]→C], λθ.ı, ΛX.σ, ΛX.γ),

with ΛX.σ : [[X ◦→VX]→S] × E〈X〉 → [[X ◦→VX]→S]
and ΛX.γ : [[X ◦→VX]→S]→ [[X ◦→VX]→C] defined as

(ΛX.σ)(δ, e〈θ′〉)(θ) =
{

σ(δ(θ), e) if θ′ � θ
δ(θ) if θ′
� θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for any δ ∈ [[X ◦→VX]→S] and any θ, θ′ ∈ [X ◦→VX].

Parametric monitor ΛX.M is a monitor for the paramet-
ric property ΛX.P , with P the property monitored by each
non-parametric monitor M [16].

3 Online Parametric Monitoring

In this section we discuss algorithms for efficient online
monitoring of parametric properties, given a non-parametric
monitor M . We start with a base algorithm that extends
algorithm C〈X〉 in [16] to support creation events. Then
we show that it can be significantly improved provided that
certain knowledge about the specified property is available.
Most formal definitions and proofs are omitted due to lim-
ited space and can be found in the companion report [5].

3.1 Utilizing Creation Events

The first challenge to online monitoring of a paramet-
ric property is that the state space of potential parame-
ter instances is infinite. Like in [16], we encode func-
tions [[X ◦→VX] ◦→ Y], which map parameter instances to
some values, as tables with entries indexed by parameter
instances in [X ◦→VX] and with contents values in Y . It can
be proved that such tables will have a finite number of en-
tries provided that each event instantiates finite parameters.

Figure 2 then gives the C+〈X〉 algorithm for online
monitoring of parametric property ΛX.P , given that M is
the monitor for P . The algorithm shows which actions to
perform, e.g., creating a new monitor state and/or updat-
ing the state of related monitors, when an event is received.

Algorithm C
+〈X〉(M = (S, E , C, ı, σ, γ))

Globals: mapping Δ : [[X ◦→VX] ◦→S]
mapping U : [X ◦→VX]→ Pf([X ◦→VX])

Initialization: U(θ)← ∅ for any θ ∈ [X ◦→VX]

function main(e〈θ〉)
1 if Δ(θ) undefined then
2

... foreach θm � θ (in reversed topological order)do
3

...
... if Δ(θm) defined then

4
...

...
... goto 7

5
...

... endif
6

... endfor
7

... if Δ(θm) defined then
8

...
... defineTo(θ, θm)

9
... elseif e is a creation event then

10
...

... defineNew(θ)
11

... endif
12

... foreach θm � θ (in reversed topological order)do
13

...
... foreach θcomp ∈ U(θm) compatible with θdo

14
...

...
... if Δ(θcomp � θ) undefined then

15
...

...
...

... defineTo(θcomp � θ, θcomp)
16

...
...

... endif
17

...
... endfor

18
... endfor

19 endif
20 foreach θ′ ∈ {θ} ∪ U(θ)do
21

... Δ(θ′)← σ(Δ(θ′), e)
22 endfor

function defineNew(θ)
1 Δ(θ)← ı
2 foreach θ′′ � θ do
3

... U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

function defineTo(θ, θ ′)
1 Δ(θ)← Δ(θ′)
2 foreach θ′′ � θ do
3

... U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

Figure 2: Monitoring algorithm C
+〈X〉

It is a slightly different variant of algorithm C〈X〉 in [16].
The difference comes from an observation of monitoring in
practice: one often chooses to starting monitoring at the wit-
ness of a specific set of events instead of monitoring from
the beginning of the program. For example, when we mon-
itor the property in Figure1, we can choose to start monitor-
ing on a pair of m and s objects,(m1, s1), only when a cre-
ate coll event is received, ignoring all the update map〈m 1〉
events before the creation. We call such events that lead to
creation of new monitor states creation events. Algorithm
C+〈X〉 extends C〈X〉 in [16] to support creation events. It
is easy to show that C〈X〉 can be regarded as a special case
of C

+〈X〉, that is, all the events are creation events.

Two mappings are used in this algorithm: Δ and U .
Δ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that are properly more informative than θ. In what follows,
“the monitor state for θ” is used to refer to Δ(θ) to facili-
tate reading in some contexts, and, accordingly, “to create a
parameter instance θ” and “to create a monitor state for pa-
rameter instance θ” have the same meaning: to define Δ(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., Δ(θ), is defined(line
1 in main). If θ is encountered for the first time, new pa-
rameter instances may need to be created. In such case,
we first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor
state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they don’t have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm � θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm � θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before or after all the new monitor
states have been created, algorithm C+〈X〉 invokes all the
monitors that need to process e, namely, those whose corre-
sponding parameter instances are more informative than or
equal to θ (lines 20 to 22 in main). The updates also make
use of the lists stored in U . There are two auxiliary func-
tions: defineNew and defineTo. The former initializes a new
monitor state for the input parameter instance and the latter
creates a monitor state for the first input parameter instance
using the monitor state for the second instance. Both func-
tions then update the lists in table U to maintain its integrity.

Event update map〈m1〉 create coll〈m1, s1〉 create coll〈m2, s2〉 create iter〈s1, i1〉

Δ ∅ 〈m1, s1〉:σ(i, create coll) 〈m1, s1〉:σ(i, create coll)
〈m2, s2〉:σ(i, create coll)

〈m1, s1〉:σ(i, create coll)
〈m2, s2〉:σ(i, create coll)
〈m1, s1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, s1〉
〈m1〉: 〈m1, s1〉
〈s1〉: 〈m1, s1〉

⊥ : 〈m1, s1〉, 〈m2, s2〉
〈m1〉: 〈m1, s1〉
〈s1〉: 〈m1, s1〉
〈m2〉: 〈m2, s2〉
〈s2〉: 〈m2, s2〉

⊥ : 〈m1, s1〉, 〈m2, s2〉, 〈m1, s1, i1〉
〈m1〉: 〈m1, s1〉, 〈m1, s1, i1〉
〈s1〉: 〈m1, s1〉, 〈m1, s1, i1〉
〈m2〉: 〈m2, s2〉
〈s2〉: 〈m2, s2〉
〈i1〉: 〈m2, s2〉, 〈m2, s2, i1〉
〈m1, s1〉: 〈m1, s1, i1〉
〈m1, i1〉: 〈m1, s1, i1〉
〈s1, i1〉: 〈m1, s1, i1〉

Table 1: An example run of C
+〈X〉.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [16] and is omitted here. We next use an exam-
ple run, illustrated in Table 1, to show how C+〈X〉 works.
In Table 1, we show the content of Δ and U after ev-
ery event (given in the first row of the table) is processed.
The observed trace is update map〈m1〉 create coll〈m1, s1〉
create coll〈m2, s2〉 create iter〈s1, i1〉. We assume that
create coll is the only creation event. The first event,
update map〈m1〉, is not a creation event and nothing is
added to Δ and U . The second event, create coll〈m1, s1〉,
is a creation event. So a new monitor state is defined in
Δ for 〈m1, s1〉, which is also added to the lists in U for
⊥, 〈m1〉 and 〈s1〉. Note that ⊥ is the parameter instance
that contains no parameter binding. So it is less informa-
tive than any other parameter instances. The third event
create coll〈m2, s2〉 is another creation event incompatible
with the second event . Hence, only one new monitor state
is added to Δ. U is updated similarly. The last event
create iter〈s1, i1〉 is not a creation event. So no monitor
state is created for 〈s1, i1〉. It is compatible with the existing
parameter instance 〈m1, s1〉 introduced by the second event
but not compatible with 〈m2, s2〉 due to the conflict bind-
ing of s. The compatible instance 〈m1, s1〉 can be found
from the list for 〈s1〉 in U . Therefore, a new monitor state
is defined for the combined parameter instance 〈m1, s1, i1〉
using the state for 〈m1, s1〉 in Δ. U is also updated to add
the combined parameter instance into lists of parameter in-
stances that are less informative.

3.2 Overcoming the Limitations of C+〈X〉

C+〈X〉 does not make any assumption on the given
monitor M . In other words, one may monitor properties
written in any specification formalism, e.g., ERE, CFG,
PTLTL etc., as long as a monitor generation algorithm is
also provided. However, this generality leads to extra mon-

itoring overhead in some cases. Let us continue the run in
Table 1 to process one more event, use iter〈i1〉. The result
is showed in Table 2. use iter〈i1〉 is not a creation event and
no monitor state is created for 〈i1〉. But since 〈i1〉 is com-
patible with 〈m2, s2〉, a new monitor state is defined for
〈m2, s2, i1〉. And the monitor state for 〈m1, s1, i1〉 is up-
dated according to use iter because 〈i1〉 is less informative
than 〈m1, s1, i1〉. U is also updated to include parameter
instances less informative than 〈m2, s2, i1〉.

Event use iter〈i1〉

Δ
〈m1, s1〉:σ(i, create coll)
〈m2, s2〉:σ(i, create coll)
〈m1, s1, i1〉:σ(σ(σ(i, create coll), create iter), use iter)
〈m2, s2, i1〉:σ(σ(i, create coll), use iter)

U ⊥ : 〈m1, s1〉, 〈m2, s2〉, 〈m2, s2, i1〉, 〈m1, s1, i1〉
〈m1〉: 〈m1, s1〉, 〈m1, s1, i1〉
〈s1〉: 〈m1, s1〉, 〈m1, s1, i1〉
〈m2〉: 〈m2, s2〉, 〈m2, s2, i1〉
〈s2〉: 〈m2, s2〉, 〈m2, s2, i1〉
〈i1〉: 〈m2, s2, i1〉, 〈m1, s1, i1〉
〈m2, s �→ s2〉: 〈m2, s2, i1〉
〈m2, Iter �→ i1〉: 〈m2, s2, i1〉
〈s2, Iter �→ i1〉: 〈m2, s2, i1〉
〈m1, s �→ s1〉: 〈m1, s1, i1〉
〈m1, Iter �→ i1〉: 〈m1, s1, i1〉
〈s1, Iter �→ i1〉: 〈m1, s1, i1〉

Table 2: Following run of Table 1.

It is necessary to create the monitor state for 〈m2, s2, i1〉
if no specific knowledge about the property to monitor is
provided. However, this particular monitor creation can be
avoided when we monitor a specific property and are in-
terested in only a certain subset of value categories (C in
Definition 2). For example, suppose that the property to
monitor is the regular expression in Figure 1, which de-
picts a defective interaction among related objects of m, s
and i. To find an error in the program using monitoring is
thus to match the execution with the pattern. It is obvious

that to match the pattern, for a parameter instance of pa-
rameter set {m, s, i}, create coll and create iter should be
observed before use iter is encountered for the first time.
Otherwise, the corresponding trace slice will never match
the pattern, i.e., the monitor state for the parameter instance
will never reach the validation state. Taking this observation
into account, we next show that the creation of the monitor
state for 〈m2, s2, i1〉 in Table 2 is not needed. When event
use iter〈i1〉 is encountered, if the monitor state for a pa-
rameter instance 〈m2, s2〉 exists without the monitor state
for 〈m2, s2, i1〉, like in Table 2, it can be inferred that in
the trace slice for 〈m2, s2, i1〉, only event create coll and
update map occur before use iter (otherwise, the monitor
state for 〈m2, s2, i1〉 would have been created). There-
fore, no match of the specified pattern will be reached for
〈m2, s2, i1〉, making it unnecessary to create the monitor
state for it. This way, the time and space cost of monitoring
can be reduced because the size of Δ and U is decreased,
and fewer parameter instances need to be examined after-
ward when more events are received.

Based on this observation, one may reduce the monitor-
ing overhead by applying some knowledge about the prop-
erty to monitor. We next formalize the needed information
about the property, and argue that it is not specific to the
underlying specification formalism, and that it can be com-
puted easily. Using the information to optimize monitoring
is discussed in Section 3.3.

Definition 11 (Trace enable set). Given trace τ ∈ E ∗ and
e, e′ ∈ τ , we denote the fact that e′ occurs before the first
occurrence of e in τ as e′ �τ e. Then we define the trace
enable set of e ∈ E as a function enableτ : E → Pf (E), as
follows: enableτ (e) = {e′ | e′ �τ e}.

Note that if e
∈ τ then enableτ (e) = ∅. The trace enable
set characterizes a trace and therefore can be used to quickly
check the property category to which the trace may belong.

Definition 12 (Property enable set). Given P : E ∗ →
C and a set of categories G ⊆ C as the goal, the
property enable set of event e ∈ E is defined as a
function enableevent

G : E → Pf(Pf (E)) as follows:
enableevent

G (e) = {enableτ (e)|P (τ) ∈ G}.

For example, given the regular pattern in Figure 1 we have
enableevent

G (create coll) = {∅}, enableevent
G (create iter) =

{{create coll}}, enableevent
G (use iter) = {{create coll, cre-

ate iter}, {create coll, create iter, update map}}, and
enableevent

G (update map) = {{create coll, create iter},
{create coll, create iter, use iter}}. The property enable set
tells whether an incomplete trace slice has the possibility
of reaching the desired categories or not by looking at the
events that have already occurred. However, as shown in
the above example, the monitoring process keeps track of

encountered parameter instances and discards events after
monitors consume them. It is more efficient than storing
every event because the number of events can be enormous.
Therefore, we need to adapt the notion of the property en-
able set to parameter sets.

For a set of parametric event definitions
{e1(X1), ..., en(Xn)}, let ∪X

{e1,...,en} = X1 ∪ ... ∪ Xn.
Then we define the enable set using sets of parameters.

Definition 13 Property parameter enable set. Given a
property P : E∗ → C, a set of categories G ⊆ C as
the goal and a set of parameters X , the property param-
eter enable set of event e ∈ E is defined as a function
enableG : E → Pf (Pf (X)) as follows: enableG(e) =
{∪X

enableτ (e)
|P (τ) ∈ G}.

From now, we use ”enable set” to refer to ”property pa-
rameter enable set” for simplicity. For example, given
the regular pattern in Figure 1 and T = {validation},
we have enableG(create coll) = {∅}, enableG(create iter)
= {{m, s}}, enableG(use iter) = {{m, s, i}}, and
enableG(update map) = {{m, s, i}}. The following result
shows that one can skip certain parameter instances using
the enable set:

Proposition 1 When algorithm C+〈X〉 receives event
e〈θ〉, if we use θ′ to define θ�θ′ and Dom(θ′)
∈ enableG(e),
then Δ(θ � θ′)
∈ G during the whole monitoring process.

The definition of the enable set is general and does not
depend on a specific formalism to write the property. Al-
though computing the enable set from a specified property
requires understanding of the used formalism. It can be
achieved as a ”side-effect” of the monitor generation pro-
cess, in which full knowledge about the property is avail-
able. For example, we develop an algorithm to compute
the enable set for finite state automata based monitors, in-
cluding monitors for ERE, PTLTL and FTLTL, using a sim-
ilar technique proposed in [3] to find dependence among
events. We also implement an algorithm to compute the
enable set for a context-free pattern, which has an infinite
monitor state space, as briefly explained in what follows 3.

Let G = {valid}. For enableevent
G and a given CFP

G = (NT, Σ, P, S) we begin with all productions S → γ
and the set ε0 = ∅ ∈ Pf (E). For each production, we inves-
tigate each s ∈ γ from left to right. If s ∈ Σ we add ε i to
enableevent

G (s), thus if s is the first symbol in γ we add ε0.
We then add s to εi forming εi+1. If s ∈ NT we recursively
invoke the algorithm, but rather than use ε0, we use εi, and
each production investigated will be of the form s→ γ. We
keep track of which s ∈ NT have been processed, to ensure
termination. G = {invalid} is handled in a similar manner,

3We assume a certain familiarity with context free patterns; definitions
can be found in [15], together with explanations on CFG monitoring.

save that when s ∈ Σ, εi is added to all enableevent
G (s′)

such that s′ ∈ Σ− s.

The general definition of the enable set allows us to sep-
arate the concerns of generating efficient monitoring code.
On the framework level, such as the algorithms discussed
in this paper, we can focus on applying the information en-
coded in the enable set to generate an efficient monitoring
process for parametric properties, while on the logic level,
where a monitor is generated for a given non-parametric
property written in a specific formalism, one can focus
on creating the fastest monitor that verifies the input trace
against the property and also on producing the enable set in-
formation. While the computation of the enable set can be
expensive, it represents static information about the given
property and only need be generated once.

Discussions Other possibilities for optimization are exhib-
ited in the example in Table 2. We discuss two of them
here. The first solution is to make use of the semantics of
the program. In this example, we know that an i object is
created from a s object and does not relate to other s objects.
Hence, we can avoid creating combination of 〈m2, s2〉 and
〈i1〉 because i1 is created from s1. However, such seman-
tic information is very difficult to achieve automatically and
may require human input. The enable set, on the contrary,
can be easily computed by statically analyzing the speci-
fication without analyzing any program or human interfer-
ences; indeed, the specified property already indicates some
semantics of the involved parameters. Nevertheless, we be-
lieve that static analysis on the program to monitor can and
should be applied to further reduce the monitoring over-
head, whenever it is available.

Another solution is based on heuristics. One reasonable
heuristic which can be applied here is that we may only
combine parameter instances that are connected to one an-
other through some events which have been observed (we
cannot rely on future events in online monitoring). For ex-
ample, 〈i1〉 and 〈m1, s1〉 need to be combined to build a
new parameter instance because s1 and i1 are connected in
the second event, create coll〈m1, s1〉, in Table 2, but 〈i1〉
and 〈m2, s2〉 should not combined due to the heuristic. The
intuition is that if two parameter instances do not interact in
any event, it may imply that they are not relevant to each
other even if they are compatible. However, because of the
limitation of online monitoring, i.e., no information about
future events available, such a heuristic can break, for exam-
ple, an event connecting the two parameter instances comes
afterward. We believe that the enable set provides a sound
solution and performs as well as, if not better than, such
heuristics in most cases.

3.3 Enable Set Based Monitoring

Given a set of desired value categories G, Proposition 1
guarantees that we can omit creating monitor states for cer-
tain parameter instances when an event is received using the
enable set without missing any trace belonging to G. How-
ever, skipping the creation of monitor states may result in
false alarms, i.e., a trace that is not in G can be reported to
belong to G. Let us consider the following example. We
monitor to find matching of a regular pattern e 1e3 and the
event definition is (e1	→{P1}, e2	→{P2}, e3	→{P1, P2}) the
observed trace is e1〈p1〉e2〈p2〉e3〈p1, p2〉. Also, suppose e1

is the only creation event. Obviously, the trace does not
match the pattern. Table 3 shows the run using the opti-
mization based on the enable set. Only the content of Δ is
given for simplicity. At e1, a monitor state is created for
〈p1〉 since it is the creation event. At e2, no action is taken
since enableG(e2) = {∅}. At e3, a monitor state will be
created for 〈p1, p2〉 using the monitor state for 〈P1 	→ p1〉
since enableGe3 = {P1}. This way, e2 is forgotten and a
match of the pattern is reported even though it is not correct
to do so.

Event e1〈p1〉 e2〈p2〉 e3〈p1, p2〉

Δ
〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1)

〈p1, p2〉:σ(σ(i, e1), e3)

Table 3: An unsound example of the enable set.

To avoid unsoundness, we introduce the notion of disable
stamps of events. disable : [X ◦→VX]→ integer maps a pa-
rameter instance to a timestamp, represented as an integer.
For parameter instance θ, disable(θ) gives the time when
last event with θ was received. We maintain timestamps
for monitors using a mapping T : [[X ◦→VX] ◦→ integer].
T maps a parameter instance for which a monitor state is
defined to the time when the original monitor state is cre-
ated from a creation event. Specifically, if a monitor state
for θ is created using the initial state when a creation event
is received (i.e., using the defineNew function in algorithm
C+〈X〉), T (θ) is set to the time of creation; if a monitor
state for θ is created from the monitor state for θ ′, T (θ′) is
passed to T (θ). Table 4 shows the evolution of disable and
T when processing the trace in Table 3

disable and T can be used together to track ”skipped
events”: when a monitor state for θ is created using the
monitor state for θ′, if there exists some θ′′ � θ s.t. θ′′
� θ′

and disable(θ′′) > T (θ′) then the trace slice for θ does
not belong to the desired value categories G. Intuitively,
disable(θ′′) > T (θ′) implies that an event e〈θ′′〉 has been
encountered after the monitor state for θ ′ was created. But
θ′′ was not taken into account (θ ′′
� θ′). The only possibil-
ity is that e is omitted due to the enable set and thus the trace

slice for θ does not belong to G according to the definition of
the enable set. Therefore, in Table 4, no monitor instance is
created for 〈p1, p2〉 at e3 because disable(〈p2〉) > T (〈p1〉).

Event e1〈p1〉 e2〈p2〉 e3〈p1, p2〉

Δ
〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1)

T 〈p1〉: 1 〈p1〉: 1 〈〉: 1

disable 〈p1〉: 1 〈p1〉: 1
〈p2〉: 2

〈p1〉: 1
〈p2〉: 2
〈p1, p2〉: 3

Table 4: Sound monitoring using timestamps.

The above discussion applies when the skipped event oc-
curs after the initial creation of the monitor state. The other
case, i.e., an event is omitted before the initial monitor state
is created, can also be handled using timestamps. First, if
the skipped event is not a creation event, it does not affect
the soundness of the algorithm to omit the event because
of the definition of creation events. In the above example,
if the observed trace is e2〈p2〉e1〈p1〉e3〈p1, p2〉, we will ig-
nore e2 and report the matching at e3 since e1 is the only
creation event. The situation becomes more sophisticated
when the skipped event is a creation event. For example,
we assume that both e1 and e2 are creation events in the
above example. Table 5 then shows the monitoring process
for the parametric trace e2〈p2〉e1〈p1〉e3〈p1, p2〉.

At e2, although its enable set is not met, Δ(〈P2 	→ p2〉)
is defined because it is a creation event. At e1, Δ(〈p1〉) is
defined but no monitor state is created for 〈p1, p2〉 because
{P2}
∈ enableG(e1). At e3, we cannot use Δ(〈p2〉) to
define Δ(〈p1, p2〉) since disable(〈p1〉) > T (〈p2〉). More-
over, we cannot use Δ(〈p1〉) to define Δ(〈p1, p2〉), either,
because Δ(〈p2〉) was defined before Δ(〈p1〉) but was not
used to create Δ(〈p1, p2〉) at e1 due to the use of the en-
able set, indicating that the trace slice for 〈p1, p2〉 does not
belong to G and it should be ignored during monitoring.
This intuition can be captured as the following condition:
T (〈p2〉) < T (〈p1〉) and 〈p2〉
� 〈p1〉. In general, if Δ(θ′)
is used to define Δ(θ) and there exists some θ ′′ � θ s.t.
θ′′
� θ′ and T (θ′′) < T (θ′), then the trace slice for θ
does not belong to the desired category set G. Intuitively,
such situation happens at the following conditions: 1) a cre-
ation event, e〈θ′′〉, is encountered before Δ(θ ′) is defined at
event e′; 2) e is omitted when Δ(θ′) is defined (otherwise
Δ(θ′′ � θ′) should have been defined and should be used to
define θ instead of θ′). The second condition implies that
Dom(θ′′)
∈ enableG(e′). Therefore, when we combine θ ′′

and θ′ in θ, the trace slice for θ cannot belong to G accord-
ing to the definition of the enable set.

Based on the above discussion, we develop a new
parametric monitoring algorithm that optimizes algorithm
C+〈X〉 using the enable set and timestamps, as shown in

Algorithm D〈X〉(M = (S, E , C, ı, σ, γ))
Input: mapping enableG : [E ◦→Pf(Pf (X))]
Globals: mapping Δ : [[X ◦→VX] ◦→S]

mapping T : [[X ◦→VX] ◦→ integer]
mapping U : [X ◦→VX]→ Pf ([X ◦→VX])
mapping disable : [[X ◦→VX] ◦→ integer]
integer timestamp

Initialization: U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if Δ(θ) undefined then
2

... createNewMonitorState(e〈θ〉)
3

... if Δ(θ) undefined and e is a creation event then
4

...
... defineNew(θ)

5
... endif

6
... disable(θ)← timestamp

7
... timestamp← timestamp + 1

8 endif
9 foreach θ′ ∈ {θ} ∪ U(θ) s.t. Δ(θ′) defined do

10
... Δ(θ′)← σ(Δ(θ′), e)

11 endfor
function createNewMonitorStates(e〈θ〉)
1 foreach Xe∈enableG(e) (in reversed topological order) do
2

... if Dom(θ)
⊆ Xethen
3

...
... θm ← θ′ s.t. θ′ � θ and Dom(θ′) = Dom(θ) ∩Xe

4
...

... foreach θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do
5

...
...

... if Δ(θ′′) defined and Δ(θ′′ � θ) undefined then
6

...
...

...
... defineTo(θ′′ � θ, θ′′)

7
...

...
... endif

8
...

... endfor
9

... endif
10 endfor
function defineNew(θ)
1 foreach θ′′ � θ do
2

... if Δ(θ′′) defined then return endif
3 endfor
4 Δ(θ)← ı
5 T (θ)← timestamp
6 timestamp← timestamp + 1
7 foreach θ′′ � θ do
8

... U(θ′′)← U(θ′′) ∪ {θ}
9 endfor
function defineTo(θ, θ ′)
1 foreach θ′′ � θ s.t. θ′′
� θ′ do
2

... if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then
3

...
... return

4
... endif

5 endfor
6 Δ(θ)← Δ(θ′)
7 T (θ)← T (θ′)
8 foreach θ′′ � θ do
9

... U(θ′′)← U(θ′′) ∪ {θ}
10 endfor

Figure 3: Optimized monitoring algorithm D〈X〉

Event e2〈p2〉 e1〈p1〉 e3〈p1, P2 �→ p2〉

Δ
〈p2〉:σ(i, e2) 〈p2〉:σ(i, e2)

〈p1〉:σ(i, e1)
〈p2〉:σ(i, e2)
〈p1〉:σ(i, e1)

T 〈p2〉: 1 〈p2〉: 1
〈p1〉: 2

〈p2〉: 1
〈p1〉: 2

disable 〈p2〉: 1 〈p2〉: 1
〈p1〉: 2

〈〉: 1
〈〉: 2
〈p1, p2〉: 3

Table 5: Another monitoring using timestamps.

Figure 3. This algorithm makes use of the data structures
discussed above, namely, enableG , Δ, U , disable and T ,
and maintains an integer variable to track the timestamp.
Similar to algorithm C+〈X〉, when event e〈θ〉 is received,
algorithm D〈X〉 first checks whether Δ(θ) is defined or not
(line 1 in main). If not, monitor states may be generated for
new encountered parameter instances, which is achieved by
function createNewMonitorStates in algorithm D〈X〉. Un-
like in algorithm C+〈X〉, where all the parameter instances
less informative than θ are searched to find all the compat-
ible parameter instances using U , createNewMonitorStates
enumerates parameter sets in enableG(e) and looks for pa-
rameter instances whose domains are in enableG(e) and
which are compatible with θ, also using U . The inclu-
sion check at line 2 in createNewMonitorStates is to omit
unnecessary search since if Dom(θ) ⊆ Xe then no new
parameter instance will be created from θ. This way,
createNewMonitorStates creates all the parameter instances
that combine θ with compatible parameter instances that
also satisfy the enable set of e using less lists in U .

If e is a creation event then a monitor state for θ is initial-
ized (lines 3 to 5 in main). Note that Δ(θ) can be defined in
function createNewMonitorStates if Δ(θ ′) has been defined
for some θ′ � θ. disable(θ) is set to the current timestamp
after all the creations and the timestamp is increased. The
rest of function main in D〈X〉 is the same as in C+〈X〉: all
the relevant monitor states are updated according to e.

Function defineNew in D〈X〉 is similar to the one in
C

+〈X〉. The only difference is that T (θ) is set to the cur-
rent timestamp and the timestamp is increased. Function
defineTo in D〈X〉 checks disable and T as discussed above
to decide whether Δ(θ) can be defined using Δ(θ ′). If Δ(θ)
is defined using Δ(θ′), T (θ) is set to T (θ′).

3.3.1 Proofs of Correctness

We fix a trace τ = e1e2...en, a Monitor M =
(S, E , C, ı, σ, γ) and a desired value set G in what follows.
We use ΔC and ΔD to refer to the Δ in algorithms C+〈X〉
and D〈X〉, respectively. For the convenience of discus-
sion, we also let timestamp : [integer

◦→ integer] be the
function defined as follows: timestamp(k) is the value of

timestamp in D〈X〉 at the event ek for 0 < k ≤ n; other-
wise timestamp(k) is undefined. timestamp and T in D〈X〉
have the following properties:

Proposition 2 The follow holds for timestamp and T used
in algorithm D〈X〉.

1. For 0 < k, k′ ≤ n, k ≥ k′ iff timestamp(k) ≥
timestamp(k′).

2. ΔD(θ) is defined iff T (θ) is defined.

Proof. For 1., it is obviously since timestamp is monotone
along the observed trace. 2. holds because ΔD(θ) and T (θ)
are always defined together (lines 1 and 2 in defineNew and
lines 6 and 7 in defineTo). �

We next define two functions that describe when and how
a monitor state is created for a parameter instance.

Definition 14 Function set : [[X ◦→VX] ◦→ integer] is de-
fined as follows: set(θ) = k if Δ(θ) is initialized at ek.
Function MT : [[X ◦→VX] ◦→ [X ◦→VX]∗] is defined as fol-
lows: MT(θ) = θ1...θm where θm = θ, θ1 is initialized with
i, and Δ(θi) is initialized using Δ(θi−1) at some event e for
any 1 < i ≤ m.

Obviously, for both C+〈X〉 and D〈X〉, set(θ) is defined
if and only if MT(θ) is defined. Let setC and setD be the
set in algorithm C+〈X〉 and D〈X〉, respectively, and let
MTC and MTD be the MT in algorithm C+〈X〉 and D〈X〉,
respectively.

Proposition 3 For algorithms C+〈X〉 and D〈X〉, the fol-
lowing hold for set and MT:

1. For θi and θj in MT(θ), θi � θj if i < j.

2. If MTD(θ) = θ1...θm then T(θ) =
timestamp(setD(θ1)).

3. If setD(θ) is defined then setC(θ) is defined and
setC(θ) ≤ setD(θ).

4. If setC(θ) = setD(θ) and ΔC(θ) = ΔD(θ) when they
are initialized, then ΔC(θ) = ΔD(θ) during the whole
monitoring process.

5. If setC(θ) = setD(θ) and MTC(θ) = MTD(θ) then
ΔC(θ) = ΔD(θ) during the whole monitoring process.

Proof.
1. It follows by Definition 14 and line 6 in createNewMoni-
torStates in D〈X〉.
2. Prove by induction on the length of MTD(θ). If
MTD(θ) = θ, suppose that ΔD(θ) is defined at event ek,
i.e., setD(θ) = k. Obviously, ΔD(θ) is defined using de-
fineNew in D〈X〉. Hence, T(θ) = timestamp(k) according

to line 2 in defineNew. Now suppose that for 0 < j and
any θ′′ s.t. MTD(θ′′) = θ1...θm and m < j, T(θ′′) =
timestamp(setD(θ1)). If MTD(θ) = θ1...θj then θ = θj

and ΔD(θ) is defined using ΔD(θj−1) by Definition 14.
T(θj) = T(θj−1) according to line 7 in defineTo in D〈X〉.
By induction, T(θ) = T(θj−1) = timestamp(setD(θ1)).

3. Prove by induction on the length of MTD(θ). We only
need to show that if ΔD(θ) is defined at event ek and ΔC(θ)
is undefined before ek then ΔC(θ) is defined at ek. If
MTD(θ) = θ, suppose setD(θ) = k and ek〈θ′〉. Since θ
is not initialized with another parameter instance, it should
be defined using defineNew function in D〈X〉, which only
occurs via line 4 in main. Hence, θ ′ = θ and ek is a creation
event. If ΔC(θ) is undefined before ek, it will be defined at
ek because line 10 in the main function in C+〈X〉 will be
executed if ΔC(θ) is undefined before line 9.

Now suppose that for any parameter instance θ ′′ s.t.
setD(θ′′) is defined and the length of MTD(θ′′) is less than j,
setC(θ′′) ≤ setD(θ′′). If setD(θ) is defined and MTD(θ) =
θ1...θj where θj = θ, let setD(θ) = k and ek〈θ′〉. By
Definition 14, ΔD(θ) is defined using ΔD(θj−1). Hence,
setD(θj−1) < k and θ′ � θj−1 = θ according to line 6
in the createNewMonitorStates function in D〈X〉. By in-
duction, setC(θj−1) ≤ setD(θj−1) < k, that is, ΔC(θj−1)
is defined before ek. Therefore, if ΔC(θ) is undefined be-
fore ek, ΔC(θj) will be defined in C+〈X〉 at ek because:
if θ′ = θ then ΔC(θ) will be defined at line 8 in main in
C

+〈X〉 (θj−1 � θ by 1.); otherwise, it will be defined at
line 15 in main (θ′ � θj−1 = θ).

4. In both C+〈X〉 and D〈X〉, after Δ(θ) is defined at ek,
it will be updated using any event ej〈θ′〉 with θ′ � θ and
k < j. If setC(θ) = setD(θ) and MTC(θ) = MTD(θ) then
MTC(θ) and MTD(θ) will be updated using the same events
afterwards and therefore equivalent during the whole moni-
toring.

5. It can be easily proved by induction on the length of
MTD(θ) and 4.

�
The following lemma shows that C+〈X〉 and D〈X〉 per-

form equivalently on monitors that are created from the ini-
tial state.

Lemma 1 The following hold for MT:

1. If MTC(θ) = θ then MTD(θ) = θ and setC(θ) =
setD(θ).

2. If MTD(θ) = θ then MTC(θ) = θ and setC(θ) =
setD(θ).

Proof.
1. If MTC(θ) = θ, suppose setC(θ) = k. Obviously, ΔC(θ)
is defined by the defineNew function in C+〈X〉, which only

occurs when ek is a creation event and comes with the pa-
rameter instance θ. Also, for all θ ′ � θ, ΔC(θ′) is unde-
fined before ek; otherwise, ΔC(θ) should be defined using
ΔC(θ′) at line 8 in main in C+〈X〉. By Proposition 3 3.,
ΔD(θ) and ΔD(θ′), for all θ′ � θ, are undefined before
ek. So ΔD(θ) cannot be defined in the createNewMoni-
torStates function in D〈X〉 using some θ ′ � θ when ek

is encountered. Hence, the condition at line 3 in main in
D〈X〉 is satisfied and line 4 will be executed to initialize
ΔD(θ) using defineNew in D〈X〉. Therefore, MTD(θ) = θ
and setD(θ) = k = setC(θ).

2. By Proposition 3 3., if MTD(θ) = θ and setD(θ) = k then
MTC(θ) is defined before or at ek. Assume that MTC(θ) =
θ1..θm and m > 1. Then we have 1) θ1 � θ by Proposition
3 1.; 2) MTD(θ1) = MTC(θ1) = θ1 and setC(θ1) = setD(θ1)
1.; 3) setC(θ1) < setC(θ) ≤ setD(θ) by Proposition 3 3..
Let ek〈θ′〉. Since MTD(θ) = θ, ΔD(θ) is defined using de-
fineNew via line 4 in main in D〈X〉when ek is encountered.
Hence, θ = θ′. However, since ΔD(θ1) is defined before ek,
the condition at line 2 in defineNew is satisfied and ΔD(θ)
cannot be defined at ek. Contradiction reached. Therefore,
MTC(θ) = θ. By 1., setC(θ) = setD(θ). �

Proposition 4 For algorithms C+〈X〉 and D〈X〉, the fol-
lowing hold:

1. If MTC(θ) = MTD(θ) then for any θ′ ∈ MTC(θ),
setC(θ′) = setD(θ′).

2. If MTC(θ) = MTD(θ) then ΔC(θ) = ΔD(θ) during the
whole monitoring.

Proof.
1. Suppose MTC(θ) = θ1, .., θm. Prove by induction on
MTC(θ). For θ1, since MTC(θ1) = θ1, setC(θ1) = setD(θ1)
by Lemma 1.1. Now suppose that for some 1 < jleqm,
setC(θi) = setD(θi) for any 0 < i < j. Assume that
setC(θj)
= setD(θj). We have setC(θj) < setD(θj) by
Proposition 3.3. Let setC(θj) = k and ek〈θ′′〉. Since
θ′′ � θj−1 = θj , we have θ′′
� θj−1. Also, disable(θ′′) >
timestamp(k) > T (θj−1) after ek. Let setD(θ) = g. We
have that ΔD(θj) cannot be defined at eg using ΔD(θj−1)
because g > k and θ′′ will satisfy the condition at line
2 in defineTo in D〈X〉. Contradiction found. Therefore,
setC(θj) = setD(θj).

2. Follow by 1. and Proposition 3.5. �
Let Δτ

C
be the Δ after C+〈X〉 processes τ and Δτ

D
be the

Δ after D〈X〉 processes τ .

Proposition 5 The following holds:

1. If γ(Δτ
C
(θ)) ∈ G and for any θi ∈MTC(θ), i > 1, let

setC(θi) = k, we have Dom(θi−1) ∈ enableG(ek).

2. If γ(Δτ
C
(θ)) ∈ G then MTC(θ) = MTD(θ).

Proof.
1. Suppose that the sliced trace for θ is τθ =
e′1〈θ′1〉...e′h〈θ′h〉. Then σ(τθ) = Δτ

C(θ) according to The-
orem 3 in [16]. Since γ(Δτ

C
(θ)) ∈ G, P (τθ) ∈ G. Also,

since ΔC(θi) is defined at ek, ek ∈ τθ and it is the first oc-
currence of ek in τθ . Suppose that e′n is the first occurrence
of ek in τθ . Then enableτ (ek) = {e′1, ..., e′n−1} by Defini-
tion 11. For any 0 < j < n, let e′j〈θ′′〉, then θ′′ � θi−1;
otherwise, e′j should not be contained in the slice for θ i−1

and thus not in the slice for θi (since ΔC(θi) is initialized
using ΔC(θi−1).) Hence, ∪X

{e′
1,...,e′

n−1}
= Dom(θi−1), that

is, Dom(θi−1) ∈ enableG(ek) by Definition 13.

2. Suppose that MTC(θ) = θ1, ..., θm. Prove by induction
on MTC(θ). For θ1, MTC(θ1) = θ1. Hence, MTD(θ1) =
θ1 by Lemma 1.1. Now suppose that for some 1 < j ≤
m, we have MTD(θj−1) = MTC(θj−1) = θ1, ..., θj−1. Let
setC(θj) = k and ek〈θ′〉. By Proposition 3 3., ΔD(θj) is
undefined before ek. Also, θ′ � θj−1 = θj according to line
15 in main in C+〈X〉.

By 1., Dom(θj−1) ∈ enableG(ek). Hence, ΔD(θj) will
be defined at ek because of the loop from line 4 to 8 in cre-
ateNewMonitorStates in D〈X〉. We only need to show that
ΔD(θj) is defined using ΔD(θj−1). Assume that ΔD(θj)
is defined using ΔD(θ′′) and θ′′
= θj−1. Then we have
θ′′ � θ′ = θj . θ′′
� θj−1 because the loop from line 1 to
line 10 in createNewMonitorStates in D〈X〉 is carried out
in a reverse topological order. Also, θj−1
� θ′′ because
the loops from line 2 to line 6 and from line 12 to line 18
in main in C+〈X〉 are carried out in a reverse topological
order. Such situation, i.e., θj does not have a maximum
sub-instance, is impossible according to the proof for al-
gorithm A〈X〉 in [16]. Contradiction found. Therefore,
ΔD(θj) is defined using ΔD(θj−1) at ek. We then have
MTD(θj) = MTD(θj−1)θj = MTC(θj−1)θj = MTC(θj).
By induction, MTC(θm) = MTD(θm).

�

Proposition 6 If Δτ
D
(θ) is defined then MTC(θ) = MTD(θ).

Proof. Suppose that MTD(θ) = θ1, ..., θm. Prove by induc-
tion on MTD(θ). For θ1, MTD(θ1) = θ1. Hence, MTC(θ1) =
θ1 by Lemma 1.2. Now suppose that for some 1 < j ≤ m,
we have MTD(θj−1) = MTC(θj−1) = θ1, ..., θj−1. Let
setD(θj) = k and ek〈θ′〉.

Suppose that MTC(θj) = θj
1...θ

j
h where θj

h = θj . We first
show that θ1 = θj

1 by contradiction. Assume θ1
= θj
1. Let

setC(θj
1) = pj and setD(θ1) = p. Since MTC(θj

1) = θj
1 and

MTD(θ1) = θ1, we have that epj 〈θj
1〉, ep〈θ1〉 and they are

both creation events. We also have TD(θ1) = timestamp(p).
By Proposition 3.2, ΔD(θj

1) is not defined before pj . Hence,
ΔD(θj

1) is defined at pj and TD(θj
1) = timestamp(pj). Also,

disable(θj
1) > TD(θj

1) since line 6 in main in D〈X〉 is ex-
ecuted after TD(θj

1) is defined at line 4. Since θ1
= θj
1,

pj
= p; in other words, either pj < p or pj > p. Therefore,
either TD(θj

1) < TD(θ1) or TD(θ1) < TD(θj
1) < disable(θj

1)
by Proposition 2.1. Let θn be the first parameter instance
in MTD(θj) s.t. θj

1 � θn and θj
1
� θn−1, n > 1, and let

setD(θn) = pn. Then ΔD(θn) is defined in the defineTo
function in D〈X〉 at epn using ΔD(θn−1). However, it is
impossible since θj

1 satisfies the condition at line 2 in de-
fineTo and prevents defining ΔD(θn) at epn . Contradiction
found and θ1 = θj

1.
Assume that MTC(θj)
= MTD(θj). We can find l > 1

s.t. θj
l
= θl and θj

i = θi for any 0 < i < l. Let
setC(θj

l) = k and setC(θl) = g. Suppose enl
〈θ′′〉. We

have θj
l−1 � θ′′ = θj

l ; so θ′′
� θj
l−1. Also, disable(θ′′) >

T (θj
l) = T (θj

1) = T (θ1) after ek. k < g is impossible;
otherwise, ΔD(θl) cannot be defined at eg using ΔD(θl−1)
because θ′′ will satisfy the condition at line 2 in defineTo
in D〈X〉. Hence, k > g ≥ setC(θl) by Proposition 3.3.
In other words, ΔC(θl) is defined before ek. Therefore,
θl
∈ MTC(θj) but θl ⊆ θj . Then we can find θj

p ∈ MTC(θj)
s.t. θl � θj

p and θl
� θi for any 0 < i < p. How-
ever, suppose setC(θj

p) = n, then at event en, we have

θl � θj
p and θl
� θj

p−1. According to the proof for al-

gorithm A〈X〉 in [16], we should have θ j
p−1 � θl, which

means that ΔC(θj
p) should be defined using ΔC(θl). Con-

tradiction found. Therefore, MTC(θj) = MTD(θj).
�

Theorem 1 The following holds:

1. if γ(Δτ
C
(θ)) ∈ G then γ(Δτ

D
(θ)) = γ(Δτ

C
(θ));

2. if γ(Δτ
D
(θ)) ∈ G then γ(Δτ

C
(θ)) = γ(Δτ

D
(θ));

3. γ(Δτ
C
(θ)) ∈ G iff γ(Δτ

D
(θ)) = γ(Δτ

C
(θ)) iff

γ(Δτ
D
(θ)) ∈ G.

Proof.
1. By Proposition 5 and Proposition 4.2, Δτ

D
(θ) = Δτ

C
(θ).

Hence, γ(Δτ
D
(θ)) = γ(Δτ

C
(θ)).

2. Similarly, it follows by Proposition 6 and Proposition
4.2.

3. Follow by 1 and 2. �
Theorem 1 states that a trace slice for θ is reported by

C+〈X〉 to be in G if and only if it is also reported by D〈X〉
to be in G. In other words,C+〈X〉 and D〈X〉 are equivalent
for those parameter instances whose trace slices are in G.
Thus D〈X〉 is complete and sound.

4 Implementation and Evaluation

We implemented code generation for Algorithm D〈X〉 in
JavaMOP2, which generates AspectJ code from JavaMOP

SafeMapIterator SafeSyncCollection SafeSyncMap SafeIterator SafeFile SafeFileWriter
TM MOP MOP-O TM MOP MOP-O TM MOP MOP-O TM MOP MOP-O MOP MOP-O MOP MOP-O

antlr -2 5 2 -2 2 1 -3 2 1 0 0 0 11 9 2 5
bloat >10000 OOM 935 1448 735 712 2267 858 660 11258 769 749 3 1 5 0
chart -1 4 0 0 1 1 1 3 0 11 5 3 -1 0 -1 0

eclipse 8 2 1 0 0 0 0 1 1 2 0 1 2 2 1 2
fop 11 -2 -3 -4 -3 0 16 -5 -3 5 4 1 -3 -3 -3 -5

hsqldb 29 0 0 24 0 0 22 -1 0 17 -1 0 2 0 0 -1
jython 57 11 7 6 -4 -4 8 -4 -5 16 -2 0 -4 -4 -3 -5
luindex 7 12 5 0 1 1 3 1 4 9 3 5 22 21 -1 -1
lusearch 9 1 -1 9 1 1 8 2 -1 34 4 2 0 -1 -1 0

pmd >10000 OOM 196 33 18 15 50 21 12 196 19 14 -2 0 -2 -2
xalan 10 4 4 7 -1 1 6 0 0 10 9 8 0 -1 2 1

Table 6: Average percent runtime overhead for Tracematches(TM), JavaMOP 2.0 (MOP), and JavaMOP 2.0 with Enable Set
Optimization(MOP-O) (convergence within 3%, OOM = Out of Memory).

specifications. The indexing technique proposed in [7] is
used to implement all the mappings in the algorithm. Some
optimizations were applied to achieve more efficient moni-
toring code. First, a function is generated for each event and
in the function, enableG(e) is statically determined. So the
main loop in createNewMonitorStates is unrolled at code
generation time. In every iteration of the unrolled loop, X e

is statically determined. Hence, the condition at line 2 and
θm at line 3 in createNewMonitorStates can be statically
computed for each iteration and the resulting values are
used as constants in code generation to remove unnecessary
runtime computation. The invocation of function defineTo
at line 6 in createNewMonitorStates is statically expanded
using the function body of defineTo in every unrolled iter-
ation of the main loop. This way, the context information
of call sites can be used to optimize every copy of the de-
fineTo function. For example, the domains of θ and θ ′ are
fixed in each iteration of the unrolled loop in createNew-
MonitorStates, so we can also unroll the loop from line 1 to
line 5 in defineTo and compute the comparison between θ ′

and θ′′ at code generation time.
Another observation for optimization is that the inner

loop (lines 4 to 8) in createNewMonitorStates checks ev-
ery parameter instance in U(θ) but U(θ) may contain many
other instances whose domains are not Xe. To reduce run-
time overhead, the code generation makes a mapping for
each e and Xe ∈ enableG(e). Specifically, given an event
definition DE , for any event e and every Xe ∈ enableG(e),
a mapping U e

Xe
is generated to map the parameter instance

θm with Dom(θm) = DE(θ) ∩ Xe to a list of parameter
instances more informative than θm whose domain is Xe.
In every iteration of the unrolled loop in createNewMoni-
torStates, the corresponding U e

Xe
is used for the inner loop.

This way, fewer parameter instances are enumerated at run-
time and no runtime checking is needed.

We evaluated JavaMOP2 on the DaCapo benchmark
suite[2]. Tracematches and another version of JavaMOP2
which disables the enable set optimization are also eval-
uated for comparison. We omitted other runtime systems

because they have been evaluated and compared with ei-
ther Tracematches or JavaMOP in other papers [1, 7]. The
centralized monitoring mode of JavaMOP was used in the
evaluation. Also, we noticed that Soot [17], the underlying
bytecode engine for Tracematches, cannot handle the Da-
capo benchmark properly, resulting in less instrumentation
points in the pmd program. Accordingly, we modify our
specification to have the same scope of instrumentation for
a fair comparison. All results can be found at [12].

Experimental Settings. Our experiments were per-
formed on a machine with 1.5GB RAM and a Pentium
4 2.66GHz processor. The machine’s operating system is
UBuntu Linux 7.10, and we used version 2006-10 of the
DaCapo benchmark suite. It contains eleven open source
programs [2]: antlr, bloat, chart, eclipse, fop, hsqldb,
jython, luindex, lusearch, pmd, and xalan. The default in-
put for DaCapo was used, and we use the -converge option
to ensure the validity of our test by running each test mul-
tiple times, until the runtime converges. After this conver-
gence, the runtime is stabilized within 3%, thus numbers
in Table 6 should be interpreted as ”±3%”. Furthermore,
additional code introduced by the AspectJ weaving process
changes the program structure in DaCapo, and sometimes
this causes the benchmark to run a little bit faster due to
better concurrency interleaving and/or cache layout.

Properties. We used the following properties in our ex-
periments. They were borrowed from [3, 4, 15].

• SafeMapIterator: Do not update a Map when using the
Iterator interface to iterate its values or its keys;
• SafeSyncCollection: If a Collection is synchronized,

then its iterator also should be accessed in a synchro-
nized manner;
• SafeSyncMap: If a Collection is synchronized, then its

iterators on values and keys also should be accessed in
a synchronized manner;

• SafeIterator: Do not update a Collection when using
the Iterator interface to iterate its elements;
• SafeFile: All file opens should be closed strictly in the

function where it is opened;
• SafeFileWriter: No write to a FileWriter after closing.

SafeMapIterator, SafeSyncCollection, SafeMap and
SafeFile could not be monitored in JavaMOP1, as they con-
tain creation events that do not instantiate all the parame-
ters. SafeFile and SafeFileWriter cannot be expressed in
Tracematches because they are context-free properties. We
use them to demonstrate the effectiveness of the enable set
optimization on CFG properties. SafeIterator was chosen
because it has generated some of the largest overheads.

Results and Discussions. Table 6 summaries the results
of our experiments. It shows the percent overheads of Java-
MOP2 with the enable set optimization, JavaMOP2 without
the enable set optimization and Tracematches. All the prop-
erties were heavily monitored in the experiments. As shown
in [7], millions of parameter instances were observed for
some properties under monitoring, e.g., SafeIterator, putting
a critical test on the generated monitoring code. All three
systems generated unnoticeable runtime overhead in most
experiments, showing their efficiency. For the optimized
JavaMOP2, only 7 out of 66 cases caused more than 10%
runtime overhead. The numbers for the non-optimized Java-
MOP2 and Tracematches are 9 out of 66 and 15 out of
44, respectively. Figure 4 shows the comparison among
three systems using the cases where at least two of them
generated more than 10% overhead. In all cases, the opti-
mized JavaMOP2 outperformed the other two and the non-
optimized JavaMOP2 is better than Tracematches and com-
parable with the optimized one in most cases. It thus shows
that JavaMOP2 provides a more efficient solution to moni-
tor parametric specifications despite its genericity in terms
of specification formalisms.

The results also illustrate the effectiveness of the pro-
posed optimization based on the enable set: on average,
the overhead of the optimized JavaMOP2 is about 20% less
than the non-optimized one. Moreover, when the property
to monitor becomes more complicated, the improvement
achieved by the optimization is more significant. In the
two extreme cases, namely, bloat-SafeMapIterator and pmd-
SafeMapIterator, where both the non-optimized JavaMOP2
and Tracematches crashed, the optimized JavaMOP2 man-
aged to finish the executions with overehads that are reason-
able for many applications, e.g., testing.

5 Conclusion

Efficient monitoring of parametric properties turns is a
very challenging problem, due to the potentially huge num-
ber of parameter instances. Until now, solutions to this

0 200 400 600 800 1000 1200

bloat, SafeMapIterator

jython, SafeMapIterator

luindex, SafeMapIterator

pmd, SafeMapIterator

bloat, SafeSyncCollection

pmd, SafeSyncCollection

bloat, SafeSyncMap

pmd, SafeSyncMap

antlr, SafeFile

luindex,SafeFile

bloat, SafeIterator

pmd, SafeIterator

MOP-O

MOP

TM

Figure 4: Comparison of optimized JavaMOP2, non-optimized
JavaMOP2 and Tracematches

problem have either used a hardwired logical formalism, or
limited their handling of parameters. Our approach, based
on a general and property-optimized semantics of paramet-
ric traces, overcomes these limitations, while being compar-
atively quite efficient, as our evaluation shows.

References

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhotak, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. Adding trace matching with free vari-
ables to AspectJ. In OOPSLA, 2005.

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, and
K. S. McKinley. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In OOPSLA, 2006.

[3] E. Bodden, F. Chen, and G. Roşu. Dependent advice: A gen-
eral approach to optimizing history-based aspects (extended
version). Technical Report abc-2008-2, Oxford University,
2008.

[4] E. Bodden, L. Hendren, and O. Lhoták. A staged static pro-
gram analysis to improve the performance of runtime moni-
toring. In ECOOP, 2007.

[5] F. Chen, D. Jin, P. Meredith, and G. Roşu. Efficient
Formalism-Independent Monitoring of Parametric Proper-
ties (Extended Version). Technical Report UIUCDCS-R-
2008-2977, University of Illinois at Urbana-Champaign,
2008.

[6] F. Chen and G. Roşu. Towards monitoring-oriented pro-
gramming: A paradigm combining specification and imple-
mentation. In Runtime Verif., 2003.

[7] F. Chen and G. Roşu. MOP: An efficient and generic runtime
verif. framework. In OOPSLA, 2007.

[8] M. d’Amorim and K. Havelund. Event-based runtime veri-
fication of Java programs. SIGSOFT Software Engineering
Notes, 30(4):1–7, 2005.

[9] Temporal Rover. http://www.time-rover.com.

[10] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In OOPSLA, 2005.

[11] K. Havelund and G. Roşu. Monitoring Java programs with
Java PathExplorer. In Runtime Verif., 2001.

[12] Javamop results page.
http://fsl.cs.uiuc.edu/index.php/JavaMOP ICSE Results.

[13] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a
runtime assurance tool for Java. In Runtime Verif., 2001.

[14] M. Martin, V. B. Livshits, and M. S. Lam. Finding applica-
tion errors and security flaws using PQL: a program query
language. In OOPSLA, 2005.

[15] P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient moni-
toring of parametric context-free patterns. In ASE ’08, 2008.

[16] G. Roşu and F. Chen. Parametric Trace Slicing and Monitor-
ing. Technical Report UIUCDCS-R-2008-2977, University
of Illinois at Urbana-Champaign, 2008.

[17] Soot website. http://www.sable.mcgill.ca/soot/.

