
THREAD ESCAPE ANALYSIS

FOR A

MEMORY CONSISTENCY-AWARE COMPILER

BY

CHI-LEUNG WONG

BEng., The Hong Kong University of Science and Technology, 1995

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Copyright by Chi-Leung Wong, 2005

Abstract

The widespread popularity of languages allowing explicitly parallel, multi-threaded

programming, e.g. Java and C#, have focused attention on the issue of memory model

design. The Pensieve Project is building a compiler that will enable both language

designers to prototype different memory models, and optimizing compilers to adapt to

different memory models. Among the key analyses required to implement this system

are thread escape analysis, i.e. detecting when a referenced object is accessible by more

than one thread, synchronization analysis, and delay set analysis. This thesis describes

the overall Pensieve compiler and presents in detail its thread escape analysis as well

as experimental results showing the effectiveness of the compiler when the target code

is following the sequentially consistent memory model. On both single-threaded and

multi-threaded programs the performance is up to 100% of the performance of the same

programs executing under a relaxed memory model.

iii

This work is dedicated to my parents, my wife and my daughter

iv

Acknowledgments

First of all, I would like to give thanks to God for His guidance throughout my gradu-

ate career — from Hong Kong to Santa Barbara and from Santa Barbara to Champaign.

Throughout these transitions, I have met many good friends and learned a lot from dif-

ferent people, which has enriched my life. I also know my strengths and my weaknesses

better through this experience. My graduate studies would not have been completed

without His guidance.

All the members of the Pensieve project share credit for the completion of this work:

Professor David Padua, Professor Samuel Midkiff, Dr. Jaejin Lee, Dr. Zehra Sura, and

Xing Fang.

My advisor, Professor David Padua, provided me with the opportunity to participate

in different interesting projects. In the Pensieve project, when my exploration of a fast

escape analysis went in the wrong direction, he pointed it out and helped lead my research

back in the right direction. Moreover, the quality of this dissertation has been improved

tremendously because of his efforts with revisions, even on the weekends.

Many discussions with Professor Samuel Midkiff provided me with insights about the

work presented in this dissertation. He also contributed to revisions of this dissertation.

I would also like to thank him for being my mentor when I worked as an intern at IBM

T. J. Watson Research Center, where I gained my work experience in the industry.

Dr. Zehra Sura plays an important role in the design and implementation of the

Pensieve system. I am grateful for her patience in listening to my ideas, even when they

were premature. I found the discussions interesting and simulating, which helped a lot

in the design of the escape analysis algorithm.

v

I also want to thank Xing Fang for the implementation of the fence insertion algo-

rithms which are used extensively in this dissertation. His effort in coordinating the use

of Purdue machines is highly appreicated.

I would like to thank the other members on my committee, Professor Marc Snir,

Professor Sarita Adve, Professor Josep Torrellas, and Professor Martin Rinard. Their

comments and suggestions played an important role in the improvement of the work

presented in this dissertation.

It has been a memorable experience working with members of the Polaris research

group. Many of the former members (George Almasi, Calin Cascaval, Jaejin Lee, Peng

Wu, Yuan Lin, Jianxin Xiong, and Jianjing Zhu) helped me adapt to the research group. I

also want to thank the current members (Ganesh Bikshandi, Shengnan Cong, Maŕıa Jesús

Garzarán, Jia Guo, Xiaoming Li, Gang Ren, and Nick Rizzolo) and Jun Nakano for their

help in giving me comments on my presentations. Special thanks goes to Sheila Clark

who helped me with a lot of administrative matters and proofreading of this dissertation.

In the beginning, when I transferred to UIUC, I worked with the Concurrent Systems

Architecture Group (CSAG). The CSAG people, including Professor Andrew Chien, Jay

Byun, Aaron Coday, Julian Dolby, Greg Koenig, Sudha Krishnamurthy, Scott Pakin,

Luis Rivera and Geetanjali Sampemane, helped me get started as a graduate student at

UIUC.

I would like to thank Dr. Tin-Fook Ngai for introducing me to the world of compilers

when I was studying in Hong Kong. He also provided me with valuable advice in pursuing

my graduate career.

In my graduate life at UIUC, I have received lots of support and prayers from broth-

ers and sisters in the Illini Chinese Christian Fellowship and the Champaign Chinese

Christian Church. They have made Champaign feel more like a hometown to me.

I also want to thank my parents for providing me a stress-free environment to grow

up in. They let me develop my own interests naturally without confining me with their

vi

preferences. They also bought my first computer which was the beginning of my pro-

gramming life. I also want to thank my grandfather for giving me a book about Calculus

at a young age. His intention was to help me learn area calculation, but the book-reading

process actually developed my reasoning skills to rigorously handle complicated concepts.

Finally, I would like to thank my wife, King-Shan, for her support and companionship.

Working together with her in DCL made my graduate career a two-person battle rather

than a one-man job. Toward the end of my graduate career, she took care of our family

and our daughter, Dorcas, so that I could focus on my work without worrying about

other things. My lovely daughter, Dorcas, has been another source of energy that has

helped me complete my research at UIUC.

vii

Table of Contents

List of Tables . xii

List of Figures . xiii

1 Introduction . 1

1.1 Memory Models . 2

1.1.1 Sequential Consistency . 3

1.1.2 Relaxed Consistency Models . 6

1.1.3 Impact on Compiler Optimizations 8

1.2 Enforcing Memory Models . 10

1.2.1 Representing Memory Model Requirements 11

1.2.2 Determining Orders to Enforce — Delays 12

1.2.3 Conservatively Approximating of Delays By Considering Shared
Accesses Only . 16

1.3 Structure of Thesis . 17

2 Pensieve Compiler System Design . 18

2.1 Goal of the Pensieve Compiler System 19

2.2 Overall Organization . 19

3 Thread Escape Analysis . 22

3.1 Problem Statement . 23

3.2 Escape Analysis for the Java Programming Language 24

3.2.1 Static Fields . 24

viii

3.2.2 Thread Creation and Thread Objects 25

3.2.3 Statements Processed by Escape Analysis 26

3.3 Connectivity Analysis . 26

3.3.1 Goal of Algorithm Design . 27

3.3.2 Reachable Set . 27

3.3.3 The Simplified Version of Connectivity Analysis 29

3.3.3.1 Computing the Reachability Set 30

3.3.3.2 Representing the Approximate Reachable Set 32

3.3.3.3 The Algorithm to Compute the Reachability Set by Con-
necting Variables . 33

3.3.3.4 Bottom-up Phase . 34

3.3.3.5 Topdown Phase . 39

3.3.3.6 Reconstruction . 42

3.3.4 Full Version of Connectivity Analysis 43

3.3.4.1 A Motivating Example 43

3.3.4.2 Computing the Reachability Set 44

3.3.4.3 Bottom-up Phase . 45

3.3.4.4 Topdown Phase . 50

3.3.5 Extended Version of Connectivity Analysis — keeping track of
thread allocation sites . 53

3.3.6 Some Properties of Connectivity Analysis 53

3.4 Uses of Thread Escape Analysis . 55

3.4.1 Fence Insertion . 56

3.4.2 Synchronization Removal . 56

3.5 Adapting Bogda’s and Ruf’s Escape Analyses 57

3.5.1 Similarity of the Two Analyses 57

3.5.2 Outline of Bogda’s Analysis . 58

3.5.3 Adapting Bogda’s Analysis . 63

3.5.4 Outline of Ruf Analysis . 66

3.5.5 Adapting Ruf’s Analysis . 71

ix

3.6 Qualitative Comparison between the Analyses 72

3.6.1 Precision . 73

3.6.1.1 Cases Where Connectivity Analysis is More Precise . . . 73

3.6.1.2 Cases Where Bogda’s Analysis is More Precise 73

3.6.1.3 Cases Where Ruf’s Analysis is More Precise 74

3.6.1.4 All Cases . 75

3.6.2 Lattice . 77

3.6.3 Space Complexity . 80

3.6.4 Time Complexity . 82

3.7 Issues of Method Summaries Cloning . 88

3.7.1 Not Cloning Non-recursive Method Calls 88

3.7.2 Imprecision due to a Single Context 90

3.7.3 Imprecision due to Multiple Contexts 91

3.8 Reducing the analysis overhead — IR Caching 92

3.9 Issues in a Dynamic System Setting . 92

3.10 Incremental Connectivity Analysis . 95

3.11 Previous Works . 98

4 Experimental Results . 99

4.1 Evaluation Criteria . 99

4.2 Experiment Settings . 101

4.2.1 Target Architectures . 101

4.2.2 Software Settings . 102

4.3 The Benchmarks . 103

4.4 Evaluating Analysis Time . 104

4.4.1 Raw Analysis Time vs Number of Union and Find Operations . . 105

4.4.2 Observations . 105

4.4.3 Interpretations . 108

4.4.4 Incremental Analysis Time . 113

x

4.5 Evaluating Analysis Precision . 113

4.5.1 Number of Object Created Marked as Escaping 113

4.5.1.1 Static Counts . 117

4.5.1.2 Dynamic Counts . 120

4.5.2 Fences Inserted to enforce SC using Thread Escape Analysis . . . 122

4.5.2.1 Static Fence Counts . 122

4.5.2.2 Dynamic Fence Counts 122

4.5.2.3 Application Execution Times and Slowdowns 125

4.5.2.4 Interpretation . 128

4.5.2.5 Extended Connectivity analysis (connect3) 128

4.5.2.6 Full Connectivity analysis (connect2) 130

4.5.2.7 Bogda’s analysis (bogda) 131

4.5.2.8 Adapted Ruf’s analysis (ruf5) 133

4.5.2.9 Simplified Ruf’s analysis (ruf3) 134

4.5.2.10 Summary . 135

4.5.3 Synchronization Removal Driven by Thread Escape Analysis . . . 136

5 Conclusion . 140

5.1 Limitation . 141

5.2 Open Problem . 141

5.2.1 Improve Precision of Connectivity Analysis 141

5.2.2 Another application of connectivity analysis — Object Coallocation 142

Bibliography . 144

Vita . 158

xi

List of Tables

3.1 Notations used in time and space complexity analyses 80

3.2 Notations used in time complexity analysis 83

4.1 SPECjvm98 Benchmarks Suite information 104

4.2 Java Grande Multi-threaded Benchmarks Suite information 104

4.3 Analysis time comparison of escape analyses in ms 109

4.4 Union-find count comparison of escape analyses 112

4.5 Incremental Connectivity Analyses time in ms 114

4.6 Union-find count of Incremental Connectivity Analyses 115

4.7 Abbreviations used in Table 4.8 . 116

4.8 Object types used in Table 4.9 and Table 4.10 to classify objects 117

4.9 Classify objects created for Intel platform. First numbers are the static
counts while the second numbers are the dynamic counts 118

4.10 Classify objects created for PowerPC platform. First numbers are the
static counts while the second numbers are the dynamic counts 119

4.11 Static fence counts . 123

4.12 Dynamic fence counts . 124

4.13 Performance of benchmarks: time in seconds 125

4.14 Performance of benchmarks: slowdowns 127

4.15 A summary of issues of difference escape analyses on performance of ap-
plication programs . 136

4.16 Static number of object allocation site marked as local 138

4.17 Dynamic number of synchronization removed 139

xii

List of Figures

1.1 Fence instruction example. 4

1.2 Impact on Redundant Load Elimination. 9

1.3 An example illustrating program statement ordering required by memory
models . 10

1.4 An example illustrating apparent relaxed program statement ordering . . 11

1.5 Delay Graph of the program shown in Figure 1.3 13

1.6 An example illustrating program statement ordering is respect in the pres-
ence of reordering . 14

1.7 Delay Graph of the program shown in Figure 1.6 15

1.8 Conservative Approximation of Delays 16

2.1 Overview of the Pensieve system . 20

2.2 Two Settings of the Pensieve system(assuming SC) 21

3.1 Escaping Object vs Non-escaping object 23

3.2 Static field . 25

3.3 Thread Creation . 25

3.4 Statements processed by our escape analysis algorithm. 26

3.5 Exact vs Approximate Reachability Set Information 30

3.6 A Program Showing the Possibly of Having Exponential Sized Analysis
Data Structure . 31

3.7 Rules for analyzing a method m . 35

3.8 Bottom-up Phase Example . 38

3.9 An Running example illustrating analysis of run method 40

xiii

3.10 Rule for analyzing call instruction of a method m 41

3.11 An example showing the difference between top-down and bottom-up phases 42

3.12 An Motivating example for the full version of analysis 43

3.13 Importance of being field sensitive for fields of Runnable objects 46

3.14 Importance of being field sensitive when a class has both Runnable and
non-Runnable fields . 47

3.15 Implementing Unify operation using Find and Union. 47

3.16 Importance of being field sensitive when a class has both Runnable and
non-Runnable fields . 48

3.17 Before and after analyzing line 8 . 48

3.18 Rules for analyzing a method m . 49

3.19 Computing the context connectivity information of run() for thread class
C using connectivity information of constructors of C. 51

3.20 Rule for analyzing call instruction of a method m 52

3.21 Rules for analyzing a method m . 54

3.22 An Example Illustrating Field Sensitivity of Escape Analysis 54

3.23 An Example Illustrating Flow Sensitivity of Escape Analysis 55

3.24 Removing synchronizations using method specialization 57

3.25 Rules for analyzing a method m to compute s-escape information 60

3.26 Merging two alias sets in phase 2 . 61

3.27 Rules for analyzing a method m to compute f-escape information 64

3.28 The Rule for analyzing call statement of a method m to compute f-escape
information . 65

3.29 An example illustrating processing of throw and catch statements 68

3.30 An synchronized object referenced by o published to a static field ESC . . 68

3.31 Rules for analyzing a method in Ruf’s analysis 69

3.32 Removing synchronization in the top-down pass 71

3.33 A program where connectivity analysis is more precise 73

3.34 A program where Bogda’s analysis is more precise 74

3.35 A program where Ruf’s analysis is more precise 75

xiv

3.36 An example illustrating different kinds of objects w.r.t different escape
analyses . 76

3.37 Merging two alias sets in phase 2 . 78

3.38 A program causing big lattice when performing Ruf’s analysis 79

3.39 An Example Illustrating the issues of not cloning non-recursive method calls 89

3.40 An Example Illustrating the imprecision of not cloning method summaries
due to a single context . 91

3.41 An Example Illustrating the imprecision of not cloning method summaries
due to multiple contexts . 91

3.42 An Example Illustrating Incomplete program at runtime 93

3.43 An Example Illustrating the Need of Method Invalidation 94

3.44 An Example Illustrating the possibility of invalidating method on stack . 95

3.45 An Motivating example for incremental analysis 96

4.1 Classifying Objects Created . 100

4.2 Analysis Time Regression Graphs for Intel Platform 106

4.3 Analysis Time Regression Graphs for PowerPC Platform 107

4.4 Analysis Time Graph . 110

4.5 Union-Find Count Graph . 111

4.6 Slowdown Graph . 126

xv

Chapter 1

Introduction

Shared memory is one of the popular parallel programming paradigms. In this paradigm,

the different threads1 of the program communicate with each other by reading from and

writing to shared memory locations. Experience shows that, to improve performance, it

is necessary that the memory accesses follow an order of execution that is not the most

intuitive one. For this reason, memory models have been developed. They specify the

memory system behavior observed by different processors. It is not trivial to define a

memory model which is both easy to use and implemented efficiently. In light of this,

it was decided to develop the Pensieve compiler system in order to provide a testbed to

evaluate memory models by creating “virtual” memory models. Given a program, the

Pensieve compiler will some day be able to generate different versions of machine code

corresponding to different memory models. An important issue in the system design is

performance — both the compilation time and application time should be minimized. In

this thesis, we focus on a component of the system — thread escape analysis2. We will

describe a novel fast escape analysis and the evaluation of the analysis by comparing to

relevant analyses.

1We use threads and processors interchangeably in this thesis
2Since this thesis focuses on thread escape analysis, we use thread escape analysis and escape analysis

interchangeably

1

This thesis makes the following contributions:

• it describes the Pensieve compilation system;

• it describes a fast escape analysis usable in JIT time that operates in the presence

of dynamic class loading;

• it presents a quantitative comparison with two other efficient escape analyses; and

• it reports data comparing the performance of the relaxed memory model and a se-

quentially consistent memory model enforced by our compiler using our fast escape

analysis.

In this chapter, we will introduce memory models in Section 1.1 and describe how to

enforce memory models in Section 1.2. In Section 1.3, we describe the structure of this

thesis.

1.1 Memory Models

A memory model specifies the memory system behavior. It can be specified for program-

ming languages as well as hardware.

Definition 1.1.1 The memory model of a programming language specifies the

memory behavior for programs written in that language independently of the hardware

where the program is to execute.

Definition 1.1.2 A hardware memory model specifies the memory behavior of the

hardware seen by the machine code.

Memory models are important because they define the allowable set of outcomes of a

parallel program and, as a result, allow programmers to reason about their programs.

2

Until recently, memory models were of concern only to expert systems programmers, and

computer architects. With the advent of languages like Java and C#, more programmers

write multi-threaded programs usually targeted at internet, database, and GUI applica-

tions, which often require multi-threaded programming. Because of this, memory models

have become an issue for a large part of the programmer community and for language

and compiler designers. The trade-offs between ease-of-use and performance have become

increasingly important.

The issue of memory models can be illustrated by a busy-wait synchronization ex-

ample shown in Figure 1.1(a). Both x and a are shared variables accessible by two

concurrent threads. Thread 1 does some computation and stores the result in a. It uses

x to inform Thread 2 that a new value of a is ready to be read. Thread 2 waits for the

data by executing a while loop. In the loop it reads x and waits until the value becomes

non-zero. It will then read the value from a. Both the values of x and a are eventually

propagated from Thread 1 to Thread 2 . However, for performance reasons the compiler

or hardware may reorder the two memory operations done by Thread 1 such that the

update of x propagates to Thread 2 before the update of a. If this happens, when T1

is executed, it could read the updated value of x (i.e. 1), prematurely quiting the loop.

When T2 is executed, an old value (i.e. 0) of a could be read. Therefore, the intention of

the program is not achieved.

1.1.1 Sequential Consistency

A well-known memory model is sequential consistency (SC), defined by Lamport as

follows[Lam79]:

Definition 1.1.3 (Sequential Consistency [Lam79]) A multiprocessor system is se-

quentially consistent if the result of any execution is the same as if the operations of

all the processors were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the order specified by its program.

3

Both x and a are zero initially.

// Thread 1
...

S1: a = 1;
S2: x = 1;

// Thread 2
...

T1: while (x==0) wait;
T2: print a;

(a) Busy-wait synchronization

...
U1: a = 1;
U2: fence
U3: x = 1;

...
V1: while (x==0) wait;
V2: fence
V3: print a;

(b) Fence instruction insertion to avoid reordering.

Figure 1.1: Fence instruction example.

SC is often considered to be the simplest and most intuitive memory consistency model

[Hil98].

Consider again the example shown in Figure 1.1(a). If the system is assumed to follow

SC, the result of the execution has to be the same as if the operations S1, S2, T1 and T2

were executed in some sequential order, and the operations of each individual processor

appear in the sequence in the order specified by its program — S1 must appear before S2

and T1 must appear before T2. With these constraints, we have the following conclusions:

1. By the requirements of SC, T2 must appear after T1, so the suffix of the execution

sequence must be . . . T1, T2.

2. To exit the loop at T1, the value of x must not be 0.

3. Since the value of x was initially 0, S2 must have been executed before exiting the

loop, so the suffix of the execution sequence must be . . . S2, T1, T2.

4

4. By the requirement of SC, S1 must appear before S2, so the suffix of the execution

sequence must be S1 . . . S2, T1, T2.

5. Since S1 appears before T2 in the sequence, the value of a must not be 0.

We can see SC precludes some reorderings of memory access, making of outcomes of

the program more intuitive to the programmers. However, this comes at a cost in pro-

gram performance. Therefore, other memory models have been proposed to relax the

constraints on the memory access order while keeping the models reasonable for the

programmers.

Before describing in more detail the different memory models, some definitions are

given below. They are from [GLL+90, SD87]. Following [GLL+90], we assume that local

requirements like uniprocessor control and data dependence orders are enforced.

Definition 1.1.4 (Performing a memory access w.r.t a processor [GLL+90]) A

Load by processor Pi is considered performed with respect to another Pk at a point in

time when subsequently issued Store to the same address by Pk cannot affect the value

returned by the Load. A Store by Pi is considered performed with respect to Pk at a

point in time when a subsequently issued Load to the same address by Pk returns the

value defined by this Store(or a subsequent Store to the same location).

Using Definition 1.1.4, we can define the notion of performing globally.

Definition 1.1.5 (Performing a memory access globally [GLL+90]) A Store is

globally performed when it is performed with respect to all processors. A Load is globally

performed if it is performed with respect to all processors and the Store which is the

source of the returned value has also been globally performed.

Scheurich and Dubois[SD87] described a sufficient condition for SC and Gharachorloo

et al[GLL+90] presented it in a slightly difference way as follows.

5

Condition 1.1.1 (Sufficient Conditions for SC [GLL+90]) The following two con-

ditions are sufficient to guarantee SC:

1. Before a Load is allowed to perform with respect to any other processor, all previous

Load accesses from the same processor must be globally performed and all previous

Store accesses from the same processor must be globally performed, and

2. Before a Store is allowed to perform with respect to any other processor, all pre-

vious Load accesses from the same processor must be globally performed and all

previous Store accesses from the same processor must be globally performed.

Condition 1.1.1 imposes constraints to the hardware so that some performance im-

proving optimizations cannot be applied. In addition, it constrains compiler optimiza-

tions that may reorder memory accesses such as redundant load elimination and loop

invariant motion. This will be discussed in more detail in Section 1.1.3.

1.1.2 Relaxed Consistency Models

Most multiprocessor systems implement consistency models, such as weak ordering and

release consistency [AG96], which impose fewer constraints than SC on the order of

shared memory accesses. Where clear, we will refer to these more relaxed models by the

acronym RC. RC models allow more instruction reordering, increasing the potential for

instruction level parallelism and as a result can potentially deliver better performance.

Synchronization primitives, such as fences, are used in these systems to force an order on

memory operations that is more constrained than that implied by the default consistency

model.

Weak consistency is one kind of relaxed consistency models. It distinguishes mem-

ory accesses into synchronization memory accesses and non-synchronization memory ac-

cesses. The synchronization accesses are operations like lock and unlock operations which

6

are used to control ordering among processors. The non-synchronization accesses are reg-

ular Load and Store operations.

The conditions to ensure weak consistency presented in [GLL+90] are defined as

follows.

Condition 1.1.2 (Conditions for Weak Consistency [GLL+90]) The following three

conditions are sufficient to guarantee weak consistency:

1. before an ordinary Load or Store access is allowed to perform with respect to

any other processor, all previous synchronization accesses must be performed with

respect to all processors, and

2. before a synchronization access is allowed to perform with respect to any other

processor, all previous ordinary Load or Store accesses must be performed with

respect to all processors, and

3. synchronization accesses are sequentially consistent with respect to one another.

By comparing Condition 1.1.2 and 1.1.1, we can see the weak consistency model

allows more reorderings of memory accesses than SC. A Load access, for example, does

not need to wait for other Load or Store accesses to be performed globally. When the

program shown in Figure 1.1(a) is executed assuming weak consistency, the Store of x

can be performed before the Store of a is performed globally. Therefore, it is possible

that the update of x propagate to Thread 2 first before the update of a. As described

before, this violates the intention of the programmer.

To prevent undesired reorderings, memory models provide mechanisms to delay per-

forming memory accesses. For hardware, fences instructions are used to enforce the

ordering.

7

Definition 1.1.6 (Fence) A fence instruction is a control instruction that delays ex-

ecution of memory accesses. It divides the stream of memory accesses into two sets Sb

and Sa where:

• Sb is the set of memory accesses before the fence instruction; and

• Sa is the set of memory accesses after the fence instruction.

The fence instruction delays the execution of memory accesses in Sa until memory ac-

cesses in Sb are performed3.

Figure 1.1(b) shows a correct implementation of the busy-wait construct. We assume

that the fence ensures that the memory accesses before the fence are all performed globally

before any of the memory accesses after the fence are carried out. In the program, the

fence in Thread 1 ensures that by the time U3 is executed, the Store of a has been

performed globally, so its value is available at Thread 2. This ensures that the update of

a arrives at Thread 2 before that of x. The fence executed in Thread 2 ensures that all

the Load of x must be performed globally before executing V3. By the time x receives

the value of 1, the update of a has been arrived, so the Load of a must be 1.

1.1.3 Impact on Compiler Optimizations

In Section 1.1.1 and Section 1.1.2, when we talk about enforcing reordering, we focus on

the hardware aspect. In this section, we discuss how the requirements of memory models

(e.g. Condition 1.1.1) impact compiler optimizations.

Compiler optimizations may change the memory access pattern of programs. Exam-

ples of such optimizations are dead code elimination, common subexpression elimination,

and redundant load elimination. In these optimizations, changes in the program cause

3Depending on the semantics of a specific fence instruction, the meaning of “performed” may mean
“performed to all processors” or “performed globally”.

8

S1: r1 = x;
S2: r2 = y;
S3: if (!r2) goto S2;
S4: r3 = x;

T1: x = 10;
T2: y = 1;

(a) Original program

S1: r1 = x;
S2: r2 = y;
S3: if (!r2) goto S2;
S4: r3 = r1;

T1: x = 10;
T2: y = 1;

(b) Transformed program

S1: r1 = x;
S4: r3 = x;
S2: r2 = y;
S3: if (!r2) goto S2;

T1: x = 10;
T2: y = 1;

(c) Equivalent program

Figure 1.2: Impact on Redundant Load Elimination.

reorderings of memory accesses or in the case of elimination of memory accesses, behav-

iors equivalent to a reordering. If the reorderings are prohibited by the memory models,

the corresponding program transformation should not be done.

A redundant load elimination example has been shown in Figure 1.2. The original

program is shown in Figure 1.2(a). Assume that x and y are memory locations while r1,

r2 and r3 are registers. Redundant load elimination replaces the last load of x by reusing

the value of first load stored in r1 and the transformed program is shown in Figure 1.2(b).

The transformed program is equivalent to the program shown in Figure 1.2(c). Com-

paring the original program and the equivalent program, we can see the transformation

has essentially reordered S2 and S4. The last load of x is performed before the load of

y. If the memory model requires the last load of x be performed after the load of y,

the transformation has violated that requirement. For example, if the original program

assumes SC is enforced, the loop is used to wait for the availability of the value of x.

The transformed program is essentially skipping the loop, violating the intention of the

programmer.

9

1.2 Enforcing Memory Models

In this section, we describe the theoretical foundation of the Pensieve system. As de-

scribed in the previous section, memory models imply orderings of memory accesses.

However, as shown in [SS88], since what really matters is the final outcome of the pro-

gram, not all the orderings need to be enforced. All that matters is that the final outcome

of the program be consistent with the orderings required by the model. That is, the or-

derings must “appear to be followed” but they do not have to be enforced. To generate

efficient and correct code, a compiler must determine which memory accesses may not

be reordered and enforce only those orderings.

Theorems formulated in [SS88] focused on enforcing the sequential consistency (SC)

model. The idea is

1. formulate memory model requirements as program statement orderings (described

in Section 1.2.1);

2. identify the program statement ordering that must be enforced (described in Sec-

tion 1.2.2); and

3. use of machine primitives to enforce the orders identified (described in Chapter 2).

All variables equals zero initially.

// executed by Thread 1
S1 : X = 1 ;
S2 : Y = 2 ;

// executed by Thread 2
T1 : y = Y;
T2 : x = X;
T3 : pr in t x , y ;

Figure 1.3: An example illustrating program statement ordering required by memory
models

10

1.2.1 Representing Memory Model Requirements

To find out program statement orderings required by a memory model, we make use of

the conditions imposed by the memory model on the orderings between memory accesses.

For SC, we use Condition 1.1.1, while for weak consistency we use Condition 1.1.2. Given

a pair of statements S1 and S2, if the condition requires that S2 appears to be performed

only after S1 is performed, then, S1 → S2 is an order required by the memory model.

Consider a multi-threaded program shown in Figure 1.3. Condition 1.1.1 requires that

before any memory access allowed to be performed, all previous memory accesses must

be globally performed. Because of that, the following orderings are required: S1 → S2,

T1 → T2, T1 → T3 and T2 → T3, and all transitive orderings. These orderings are the

set of program statement orders if sequential consistency is enforced.

The above examples show the program orderings for SC. For weak consistency, fewer

orderings are required. Consider the example shown in Figure 1.4,

// executed by Thread 1
S0 : acquire
S1 : x = X;
S2 : Y = x ;
S3 : release

// executed by Thread 2
T1 : X = 1 ;
T2 : release

Figure 1.4: An example illustrating apparent relaxed program statement ordering

To enforce weak consistency, Condition 1.1.2 is applied:

• Since before any memory accesses is allowed to be performed, all previous syn-

chronization accesses must be performed, we have the orderings: S0 → S1 and

S0 → S2.

• Since before any synchronization access is allowed to perform, all previous memory

accesses must be performed, we have the orderings:S1 → S3, S2 → S3, T1 → T2.

11

• Since synchronization accesses are SC with respect to one another, we have the

ordering S0 → S3.

• Transitive orders induced by the above orders.

The model, however, does not requires the ordering S1 → S2. Note that the order is

required locally by data dependence. If we change S2 to “Y = 0”, then there is no data

dependence between S1 and S2 and the order S1 → S2 needs not be enforced at all.

After finding the program statement orderings, we are ready to find out the program

statement orderings that need to be enforced.

1.2.2 Determining Orders to Enforce — Delays

To determine the orders to enforce, a delay graph is constructed first.

Definition 1.2.1 A delay graph is a graph G = (V, P ∪ C) where:

• V is the set of nodes. It represents the set of simple statements in a shared-memory

parallel program4.

• P is the set of program statement ordering required by the memory model (called

program edges in [SS88]).

• C = {(S1, S2)|S1 and S2 have conflicting memory accesses for some S1, S2 ∈ V }.
Two memory accesses are conflicting if they address the same memory location and

at least one of them is a write (called conflict edges in [SS88]).

It is shown in [SS88] that the orderings that must be enforced are (S1, S2) ∈ P such

that (S1, S2) occurs on a minimal mixed cycle.

4Assume complicated statements like X=A+B have been broken down into statements t1=A, t2=B,
t3=t1+t2, X=t3, so that each statement contains at most one memory access

12

Definition 1.2.2 A minimal mixed cycle is:

• minimal — it is not possible to form another cycle using a subset of the nodes on

the cycle; and

• mixed — the cycle consists of edges from both P and C.

The orderings that must be enforced are called delays. Note that in [SS88] there is

following assumption

A delay between two storage accesses u and v forces access u to complete

before access v begins.

Here the meaning of “complete” depends on the memory model. If the delay is to enforce

SC, the meaning of “complete” is globally performed as required by Condition 1.1.1. If the

delay is to enforce weak consistency from ordinary Load to a synchronization access, the

meaning of “complete” is performed with respect to all processors (not globally performed)

as required by Condition 1.1.2. Both [SS88] and this thesis assume that the hardware

provides primitives such as fences powerful enough to enforce these completion orderings.

Consider the example of Figure 1.3. Suppose SC is to be enforced. The delay graph

is shown in Figure 1.5.

S1

S2

T1

T2

T3

Figure 1.5: Delay Graph of the program shown in Figure 1.3

There are four delays in the graph:

13

1. T1 → T3 due to the cycle T1, T3, T1

2. T2 → T3 due to the cycle T2, T3, T2

3. S1 → S2 and T1 → T2 due to the cycle S1, S2, T1, T2, S1

We can see the delays correctly capture the fact that S1 and S2 cannot be reordered.

Moreover, the first two orders are conventional dependences.

Consider the program shown in Figure 1.6. Again, suppose SC is to be enforced.

In this example, the statements S1 and S2 can be reordered without violating SC. In

All variables equals zero initially.

// executed by Thread 1
S1 : X = 1 ;
S2 : Y = 2 ;

// executed by Thread 2
T1 : x = X;
T2 : y = Y;
T3 : pr in t x , y ;

Figure 1.6: An example illustrating program statement ordering is respect in the pres-
ence of reordering

this case, the output 0, 2 resulting from the reordering is also SC conforming because

the execution order T1, S1, S2, T2, T3 respects the SC ordering requirement generating

output 0, 2.

Consider the example shown in Figure 1.6. The delay graph is shown in Figure 1.7.

There are two delays in the graph:

1. T1 → T3 due to the cycle T1, T3, T1

2. T2 → T3 due to the cycle T2, T3, T2

We can see in this graph we don’t have the delay S1 → S2 because there is no minimal

mixed cycle containing S1 → S2. The delays correctly capture the fact that S1 and S2

can be reordered.

14

S1

S2

T1

T2

T3

Figure 1.7: Delay Graph of the program shown in Figure 1.6

As described above, a delay V1 → V2 is a program edge in a minimal mixed cycle.

There are two possible cases:

• All nodes of the minimal mixed cycle are from the same thread. In this case the

only valid minimal mixed cycle is of the form (V1, V2, V1). This can be proved by

contradiction. Assume a minimal mixed cycle of size n > 2 : (V1, V2, . . . , Vn, V1).

Without loss of generality, we can select a conflict edge Vi → Vi+1 where 1 ≤ i ≤ n.

Since Vi and Vi+1 are from the same thread, there are two cases:

– Vi → Vi+1 is a program edge. Since Vi → Vi+1 is a conflict edge, Vi and Vi+1

have a conflicting access, so Vi+1 → Vi is also a conflict edge. Hence Vi, Vi+1, Vi

is a cycle containing both conflict and program edges.

– Vi+1 → Vi is a program edge, so Vi, Vi+1, Vi is a cycle containing both conflict

and program edges.

Combining both cases, we see V1, V2, . . . , Vi, Vi+1, . . . , Vn, V1 is not minimal, con-

tradicting that the assumption that V1, . . . , Vn, V1 is minimal. Hence the original

assumption is wrong and we conclude that a minimal mixed cycle where all nodes

are from the same thread contains two nodes and only two nodes.

Since V1, V2, V1 is a minimal mixed cycle and V1 → V2 is a program edge, V2 → V1 is

a conflict edge. Therefore, V1 and V2 have conflicting access and the delay V1 → V2

15

corresponding to a dependence of the program. This is enforced automatically by

a correct compiler and architecture.

• The minimal mixed cycle contains nodes from multiple threads.

It is clear that is the second kind of delays that a memory-model aware compiler is needed

to enforce.

1.2.3 Conservatively Approximating of Delays By Considering

Shared Accesses Only

We can see from the previous section that the delay set analysis is an interthread analysis.

In the absence of the thread structure of the program, we can still approximate the delay

information conservatively.

As described in Section 1.2.2, delays corresponding to a minimal mixed cycle within a

thread is a dependence which is enforced by a correct compiler and architecture. There-

fore, in this section, we focus on delays corresponding to a minimal mixed cycle across

different threads.

The approximation can be illustrated by Figure 1.8. If T1 → T2 is a delay, it is within

T1

T2

a possible path to complete
the minimal mixed path

S1

S2

Figure 1.8: Conservative Approximation of Delays

a minimal mixed cycle containing:

• the program edge T1 → T2;

• a conflict edge S1 → T1;

16

• a conflict edge T2 → S2; and

• the dotted path containing other conflict edges and program edges.

Since S1 → T1 and T2 → S2 are conflict edges, S1 has a conflicting access with T1 and

S2 has a conflicting access with T2. Because S1, S2 are in different threads than that

of T1 and T2, T1 and T2 access memory locations that are shared with other threads.

Therefore, two statements are not connected by a delay if either one of them accesses

only memory location local to its thread. On the other hand, it is sufficient (though

conservative) to assume a delay for each pair of statements T1 and T2 if T1 → T2 is a

program edge and both access memory location shared with other threads.

Determining whether a statement accesses memory location shared with another

thread can be done using a technique called escape analysis, described in detail in Sec-

tion 3.

1.3 Structure of Thesis

In Chapter 2, we describe the Pensieve system design. In Chapter 3, we describe in detail

the escape analysis proposed in this thesis and also other escape analysis algorithms that

we compare to the analysis described in this thesis. In Chapter 4, experimental results

are presented to evaluate the escape analysis quantitatively. This thesis concludes in

Chapter 5.

17

Chapter 2

Pensieve Compiler System Design

Given the challenges, why consider using any memory model other than one that is

relaxed? The design of memory consistency models for both hardware and software is

a difficult task [AG96]. It is particularly difficult for a programming language because

the target audience is much wider than the target audience for a machine language,

making usability a more important criteria. Adding to this problem is the fact that the

programming language community has little experience designing programming language

consistency models, and therefore each new attempt is very much a voyage into uncharted

territory. The difficulty of reaching a consensus on an ideal memory model is exacerbated

by the fact that the quality of a model depends both on its ease of use (i.e. how hard it is

to write correct programs using the model) and the performance the model can deliver to

programs. Therefore, it is desirable to be able to make apples-to-apples comparisons of

different memory models, executing on different hardware, so that the trade-offs involved

can be quantified. Our Pensieve Compiler System is a tool designed to facilitate this job.

In the rest of this Chapter we describe the goal of the Pensieve Compiler System in

Section 2.1. In Section 2.2, we describe the overall organization of the compiler system.

18

2.1 Goal of the Pensieve Compiler System

The ultimate goal of the Pensieve project is to allow the memory model of the pro-

gramming language to be implemented by the compiler atop the memory model of the

machine. Accomplishing this ultimate goal makes the Pensieve compiler a powerful tool

for prototyping different memory models and consistency models and measuring their

relative performance on a common, consistent optimization base. A detailed discussion

of it is beyond the scope of this thesis. In the near term, our goal is to show that on a sig-

nificant number of programs we achieve acceptable performance on SC programs relative

to those executing using the default relaxed memory model. It is the system for this near

term goal that we report on in this thesis. In this thesis we focus on implementing SC

on top of two platforms supporting more relaxed memory models — the Intel platform

and the PowerPC platform.

2.2 Overall Organization

The Pensieve Compiler System is an extension of the Jikes RVM infrastructure [AAB+00,

BCF+99].

Delay identification described in Section 1.2 is the fundamental analysis that needs to

be done to ensure program transformations preserve subset correctness. The delays are

the ordering constraints to be enforced both by the compiler and the hardware. Figure 2.1

shows the overview of the Pensieve system. It shows three phases:

1. In the analysis phase, a set of delays is computed.

2. We have examined each optimization in the original Jikes [AAB+00, BCF+99] com-

piler, and augmented it to be aware of delay information in our Pensieve-Jikes sys-

tem. In the modified code optimization phase, the set of delays identified by the

analysis phase is consulted to check whether the optimizations would violate the

19

Consistency Model
Hardware Memory

Constraints
Ordering

to Enforce

and Optimization
Fence Insertion

Optimizations
Code

Target Program

Program
Analyses

Source Program

Figure 2.1: Overview of the Pensieve system

delay. If an optimization transformation violate a delay, that transformation would

not be applied.

3. In the fence insertion and optimization phase, fences are inserted into the program

to make sure the delays are enforced by the hardware. Rather than inserting one

fence for each delay, we aim at inserting the fences efficiently. This phase looks for

opportunities to synchronize multiple delays with a single fence instruction. The

details of this phase are described in [FLM03a, FLM03b].

As described in Section 1.2, precise delay information can be computed by a delay

set analysis strategy while (conservative) approximate delay information can be com-

puted by using escape analysis exclusively. Both approaches have been considered and

Figure 2.2 gives a graphical overview of the two settings of the Pensieve system. In this

thesis we do not use delay set analysis. Instead, we use escape analysis to compute the

delay information. We can consider the use of delay set analysis to compute the delay

20

information as an extension to our system. The two settings correspond to the two ways

Consistency Model
Hardware Memory

Constraints
Ordering

to EnforceOptimizations
Code

and Optimization
Fence Insertion

Target Program

Source Program

Thread Escape
Anaysis

Program Analyses

Analysis
Delay Set

Consistency Model
Hardware Memory

Constraints
Ordering

to Enforce

and Optimization
Fence Insertion

Optimizations
Code

Target Program

Source Program

Thread Escape
Anaysis

Program Analyses

(a) The Pensieve System setting
computing full delay information

(b) The Pensieve System setting
computing conservative approxi-
mate delay information

Figure 2.2: Two Settings of the Pensieve system(assuming SC)

of computing delay information:

• Full delay information computation is shown in Figure 2.2(a), the goal of the

program analyses is to find out the ordering constraints using delay set analysis.

The thread escape analyses is used to prepare information needed by delay set

analysis. The detail of delay set analysis is described and evaluated in Zehra Sura’s

PhD thesis [Sur04].

• Conservative approximate delay information computation is shown in Fig-

ure 2.2(b). The only analysis of interest is thread escape analysis which computes

approximate delay information (described in Section 1.2.3).

In this thesis, we only deal with the second approach which makes use of escape

analysis to compute the delay information.

21

Chapter 3

Thread Escape Analysis

This chapter focuses on thread escape analysis. In Section 3.1, we first state the problem

of thread escape analysis. As our escape analysis is for the Java programming language,

we describe some features of Java considered by our analysis in Section 3.2. In Section 3.3,

a new escape analysis algorithm, which we call Connectivity Analysis, will be presented.

In Section 3.4, two uses of escape analysis will be described. In Section 3.5, we briefly

describe the next two fastest known escape analysis algorithms and their adaptations to

our system:

• Bogda’s Escape Analysis [BH99];

• Ruf’s Escape Analysis [Ruf00]

Since Bogda’s and Ruf’s escape analyses were developed for synchronization removal,

they were modified so they could be used in the Pensieve system for enforcing SC. These

adaptations will be described in Section 3.5. In Section 3.6, the algorithms will be

compared qualitatively. After that, we discuss some issues influencing the cost and

precision of the analyses:

• Cost and precision trade-offs due to cloning (Section 3.7).

22

• Our technique to reduce the analysis overhead by caching the intermediate repre-

sentation (IR) used by the compiler (Section 3.8).

• Analysis issues in a dynamic compilation setting (Section 3.9).

In Section 3.10, we describe an incremental connectivity analysis which is faster and

as precise as the non-incremental one. Finally, in Section 3.11, other escape analysis

algorithms will be described.

3.1 Problem Statement

Thread escape analysis aims at identifying objects which may be accessed by two or more

threads.

Figure 3.1 shows a program code accessing two kinds of objects. The object created in

Thread 1 and referenced by esc is accessed in Thread 2 via the field this.data. We say

that the referenced object is thread-escaping. In contrast, the object created in Thread

1 referenced by local is not accessible from threads other than Thread 1. We say that

it is thread-local. Throughout the discussion, we say that a variable escapes when the

variable may reference an escaping object.

1 // main () executed by Thread 1
2 void main (St r ing args) {
3 MyThread t = new MyThread () ;
4 Data e s c = new Data () ;
5 Data l o c a l = new Data () ;
6 t . data = esc ;
7 t . s t a r t () ;
8 }

class MyThread extends Thread { 1

Data data ; 2

// run () executed by Thread 2 3

public void run () { 4

Object o = this . data ; 5

// work on o 6

} 7

} 8

Figure 3.1: Escaping Object vs Non-escaping object

Besides identifying objects that may be referenced by two or more threads, thread

escape analysis also identifies the statements where escaping objects are accessed. To

23

avoid interthread analysis, many escape analysis algorithms (including Bogda’s escape

analysis) conservatively assume that an object that may be referenced via a static field,

or via a thread object is escaping. In our technique, we refine these assumptions so an

object is assumed to be escaping if it may be referenced via a static field or a thread

object and the object is accessed by more than one thread.

3.2 Escape Analysis for the Java Programming Lan-

guage

In this thesis we focus on escape analyses for the Java programming language. Our

analysis algorithm takes advantages of the type safety feature of Java.

In Section 3.2.1 and Section 3.2.2, we describe two features in Java that can cause

objects to be escaping. In Section 3.2.1 we describe static fields while in Section 3.2.2 we

describe thread objects. In Section 3.2.3, we list the statements that must be processed

by our escape analysis algorithm.

3.2.1 Static Fields

Definition 3.2.1 (Static field) A field is a static field if it is declared with a static

keyword in a class declaration.

A static field can be considered as a global variable because it can be accessed from any

point of a program. Figure 3.2 shows an example of accessing a static field Global.o.

It is declared inside class Global. It is accessed inside foo by specifying the class name

Global and the field name o using the dot operator.

24

1 class Global {
2 static Object o ;
3 }
4 class Main {
5 public void foo () {
6 Global . o = new Object () ;
7 }
8 }

Figure 3.2: Static field

3.2.2 Thread Creation and Thread Objects

In Java, there are two ways to create threads. Figure 3.3 shows how threads are created

and started. In both cases, the start method is used to start a new thread of execution

and the execution starts from the run method. Moreover, within run, this references

the same object as me in main. We say the referenced object is a thread object in this

thesis. We can see thread objects are shared between the thread creators and the created

threads.

class MyThread extends Thread {
. . .
public MyThread () {
}
public void run () {

this . data = . . . ;
}

}
static void main (St r ing [] a rg s) {

MyThread me = new MyThread () ;
me . s t a r t () ;

}

class MyThread implements Runnable {
. . .
public MyThread () {
}
public void run () {

this . data = . . . ;
}

}
static void main (St r ing [] a rg s) {

MyThread me = new MyThread () ;
Thread t = new Thread (me) ;
t . s t a r t () ;

}
(a) by subclassing java.lang.Thread (b) by implementing java.lang.Runnable

Figure 3.3: Thread Creation

25

3.2.3 Statements Processed by Escape Analysis

Figure 3.4 shows statements that are processed by escape analyses. The analysis focuses

on statements that access reference variables.

x = y Assignment statement
x[] = y
y = x[]

Array access statement

x.f = y
y = x.f

Field access statement

y = getstatic f
putstatic f y

Static field access statement

a0=a1.n(a2, . . . , ak) Method call statement
y.start() Thread start call statement
return x Return statement
throw x Exception throw statement

Figure 3.4: Statements processed by our escape analysis algorithm.

3.3 Connectivity Analysis

In this section, a new escape analysis algorithm is proposed. In Section 3.3.1, the goal

of the algorithm design is described. In Section 3.3.2, we will introduce the reachable set

which is a key concept of the algorithm. After that, we describe the three versions of the

connectivity analysis:

• A simplified version of connectivity analysis algorithm which conservatively handles

program with Runnable objects (Section 3.3.3).

• The full version of connectivity analysis which produces more precise result for

program with Runnable objects (Section 3.3.4).

• The extended version of connectivity analysis which is an extension of the full algo-

rithm which gives even more precise result especially for single threaded programs

(Section 3.3.5).

26

Finally, we describe some properties of connectivity analysis in Section 3.3.6.

3.3.1 Goal of Algorithm Design

In the Pensieve System, the escape analysis algorithms used in this study were imple-

mented as a module within a dynamic compilation system described in more detail in

Section 4.2.2. As discussed in Section 2.1, one of the goals of the Pensieve system is to

execute programs with acceptable performance, so we need to avoid performance degra-

dation. Because of the dynamic compilation strategy, the time to perform escape analysis

is part of the overall execution time. Therefore, to minimize the overall execution time,

we cannot use an expensive analysis algorithm where effectiveness is achieved at great

cost. In this project, we balanced performance of the analysis algorithm and its accu-

racy. While we are not aiming at having an escape analysis that is precise for all program

points, the analysis should be precise enough for frequently executed methods so that

fences are not unnecessarily inserted within those methods. In light of this, we choose to

design the simplest possible algorithm in order to minimize the cost of the analysis. As

we later show in Chapter 4, this suffices for many programs. Like earlier algorithms, our

algorithm analyzes objects ignoring subscripts. This is acceptable for most Java codes.

Also, since the union-find data structure is very efficiently used in both escape anal-

ysis and pointer analysis, we chose to use this data structure to represent the analysis

information. In the following section, we describe the reachable set which is used to

compute escape information and can be represented efficiently using the union-find data

structure.

3.3.2 Reachable Set

In this section, we describe the notion of reachable set which is crucial to the analysis.

Before defining reachable the set, we present several auxiliary definitions.

27

Definition 3.3.1 (Objects) We define the set Objects as the set of objects instanti-

ated in the program.

Definition 3.3.2 (References) We say that a local variable v references an object o

where o ∈ Objects, if v may contain the address of o at some point of an execution of

the program.

Definition 3.3.3 (Directly Reaching Relation for Objects) We say that an object

o1 is directly reaching an object o2 iff one the following situations is true:

Case 1: o1 = o2

Case 2: o1.f contains the address of o2 for some field f of o1

Definition 3.3.4 (Reaching Relation for Objects) We define the reaching rela-

tion as the transitive closure of the directly reaching relation. That is, we say an

object o1 is reaching an object o2 iff there exists objects o′0, o
′
1 . . . o′k for some k > 0 such

that:

• o′0 = o0;

• o′k = o1;

• o′i is directly reaching to o′i+1 for 0 ≤ i ≤ k − 1

Definition 3.3.5 (Reachable set of an object o, ReachableSet(o)) An object o′ ∈
Objects belongs to the reachable set of an object o, ReachableSet(o), if o is reach-

ing o′.

Definition 3.3.6 (Reachable set of a local variable y, ReachableSet(y)) An object

o ∈ Objects belongs to the reachable set of a local variable y, ReachableSet(y), if y

28

references an object o′ and o′ is reaching o. That is,

ReachableSet(y) =
⋃

y references o

ReachableSet(o)

We can find out the escape information using the following strategy:

• Introduce an artificial variable ESCAPE;

• Assume ESCAPE points to v if v is:

– assigned a value from a static field;

– assigned to a static field; or

– used to start a thread. That is, there is a call v.start() in the method

• We (conservatively) assume that a variable v is escaping if ReachableSet(v) ∩
ReachableSet(ESCAPE) is not empty.

Like other escape analysis algorithms, only reference variables are considered when per-

forming the analysis. For example, the analysis does not process the statement “x=y.f”

if x is of int type.

3.3.3 The Simplified Version of Connectivity Analysis

In this section we describe the simplified version of the connectivity analysis algorithm.

We describe the representation of the connectivity relation in Section 3.3.3.2. Then,

in Section 3.3.3.3, we present an outline of the strategy to compute the connectivity

relation. We will describe in more detail how connectivity is computed in Section 3.3.3.4,

Section 3.3.3.5, and Section 3.3.3.6.

29

3.3.3.1 Computing the Reachability Set

To compute precise reachability set information, we need to keep track of field references.

For example, the three statements “c.f2 = b”, “c.f3 = y” and “x.f1 = a” should

imply that:

• ReachableSet(c.f2) = ReachableSet(b);

• ReachableSet(c.f3) = ReachableSet(y); and

• ReachableSet(x.f1) = ReachableSet(a).

f2 f3

b c y

f1

x a

Figure 3.5: Exact vs Approximate Reachability Set Information

The information is pictorially shown in Figure 3.5. As c.f2 and c.f3 do not reach

any common objects, we conclude that ReachableSet(b) ∩ ReachableSet(y) is empty.

However, as shown in Chapter 4, keeping track of this information incurs analysis

time because the analysis data structure is more complicated and it takes more time to

compute on the data structure. Consider the program in Figure 3.6. To avoid merging

the reachable sets of t.left and t.right in f1 due to method invocations to the same

method f0, the analysis data structure of f0 is copied before used in the analysis of f1.

When processing the method calls, the analysis data structure of f0 is copied twice —

one copy is used for the method call “f0(t.left)” and the other for “f0(t.right)”.

We call this copying operations cloning. More detailed discussion of cloning will be given

in Section 3.3.3.4. Suppose there are k + 1 methods f0, f1, . . . fk. There are 4k + 4

statements while there are
∑k+1

i=0 2i = 2k+2−1 nodes for fk in the analysis data structure

30

to keep track of precise field reference. This shows that the analysis data structure can

be of exponential size of the number of methods.

1 . . .
2 void f 2 (t) {
3 f 1 (t . l e f t) ;
4 f 1 (t . r i g h t) ;
5 }
6 void f 1 (t) {
7 f 0 (t . l e f t) ;
8 f 0 (t . r i g h t) ;
9 }

10 void f 0 (t) {
11 t . l e f t = new TreeNode () ;
12 t . r i g h t = new TreeNode () ;
13 }

Figure 3.6: A Program Showing the Possibly of Having Exponential Sized Analysis
Data Structure

Because of this, we compute the (conservative) approximation, ReachableSetapp,

instead by not recording the field reference. The statement “c.f2 = b” implies that

ReachableSet(c) ⊇ ReachableSet(b). Since we do not record the field reference in the

analysis, the analysis conservatively assumes ReachableSetapp(c) = ReachableSetapp(b).

Similarly, the analysis conservatively assumes that “c.f3 = y” implies that

ReachableSetapp(c) = ReachableSetapp(y). Because of this, we cannot conclude that

ReachableSetapp(b) ∩ ReachableSetapp(y) is empty. However, we can conclude that

ReachableSetapp(x) ∩ ReachableSetapp(b) is empty. We can see the approximation in-

troduces imprecisions to the analysis result but our experimental result in Chapter 4

shows that the imprecisions do not introduce performance losses for many benchmark

programs when SC is enforced. On the other hand, with this approximation, the analysis

time is reduced significantly for many programs. Consider the program in Figure 3.6

again. There is just one node for fk in the approximate analysis since there is no dif-

ference between t.left and t.right. The node represents all objects reachable from

t. Another property of the approximate reachable set is that given two such sets A

31

and B, they are either disjoint (A ∩ B = φ) or they are the same (A = B). With this

property, the approximate reachablet set can be implemented efficiently. A more detailed

discussion is given in Section 3.3.3.2.

The idea of the simplified version of analysis is to compute for all variables v,

ReachableSetapp(v) which is a superset of ReachableSet(v). Therefore, for any variables

v1, v2, we have

ReachableSet(v1) ∩ ReachableSet(v2) �= φ

⇒ ReachableSetapp(v1) ∩ ReachableSetapp(v2) �= φ

However the converse it not true. In the example, we have ReachableSetapp(b) ∩
ReachableSetapp(y) �= φ but ReachableSet(b) ∩ ReachableSet(y) = φ. Moreover, the

following negative information is useful:

ReachableSetapp(v1) ∩ ReachableSetapp(v2) = φ

⇒ ReachableSet(v1) ∩ ReachableSet(v2) = φ

Therefore, if the approximate reachable set of a variable v and the approximate

reachable set of ESCAPE have empty intersection, the precise reachable set of a vari-

able v and the precise reachable set have empty intersection as well, which implies

the variable v must not be escaping. We say two variables v1, v2 are connected if

ReachableSetapp(v1) ∩ ReachableSetapp(v2) �= φ.

3.3.3.2 Representing the Approximate Reachable Set

We can see from the previous section that computing the approximate reachable set

requires two basic operations:

• Find the approximate reachable set of v, given a local variable v;

32

• Merge two approximate reachable set together to form a larger approximate reach-

able set

These two operations can be implemented efficiently using the union-find data struc-

ture [CLR90]. We call this data structure the connectivity set which supports the follow-

ing operations:

• Find(x) — find the connectivity set for x. Using Find, we can check whether the

approximate reachable sets of two local variables x, y have a non-empty intersection

by checking whether Find(x) equals Find(y).

• Union(S1, S2) — perform the union of two approximate reachable sets S1 and S2.

That is, after it is executed, we have that a new value S such that Find(x)=S for

any x ∈ S1 ∪ S2. Using Union, we can merge the connectivity sets of variables x

and y together by performing Union(Find(x), Find(y)).

In the following discussion, when we perform the union operation on the connectivity

sets of two local variables, we say we connect the two local variables. Also, we say two

variables are connected if their connectivity sets have non-empty intersection. Using the

Find operation, we can check whether a variable v is escaping by checking whether v is

connected to ESCAPE.

3.3.3.3 The Algorithm to Compute the Reachability Set by Connecting Vari-

ables

The connectivity analysis is a two-phase analysis. Each phase computes a connectivity

relation for each method m. The computed relation records the connectivity of formal

parameters (Param�), exception value (Exceptionm), the return value (Returnm) and

the artificial ESCAPE variable.

33

1. The bottom-up phase computes the effect of methods. It computes how the

methods connect the formal parameters. This will be described in Section 3.3.3.4.

2. The top-down phase computes the context of methods. It combines the connec-

tivity relation of actual arguments in different call sites. This will be described in

Section 3.3.3.5.

Note that both the top-down and bottom-up phases do not save the connectivity infor-

mation of local variables. Given a method, we can construct the connectivity information

of local variables whenever needed by using the analysis result of the bottom-up phase

and top-down phase. This will be covered in Section 3.3.3.6.

3.3.3.4 Bottom-up Phase

The bottom-up phase is performed by visiting the strongly connected component (SCC)

graph induced by the call graph1 in reverse topological order.

For each method in the SCC, the connectivity information is computed by processing

all of its statements, one by one, in any order according to the rules shown in Figure 3.7.

Before discussing the rules we present the operations used to define them:

• ResolvedMethods(a, n) returns the set of methods that a call may refer to.

• InSameSCC(m1, m2) checks whether the two methods m1 and m2 are in the same

SCC of the call graph.

• Union(〈r1, . . . , rn〉, 〈s1, . . . , sn〉)) performs Union(ri, si) for 1 ≤ i ≤ n.

• clone(〈r1, . . . , rn〉) creates a copy of the data structure representing the object sets

r1, . . . , rn and their connectivity. That is, clone(〈r1, . . . , rn〉) returns the connectiv-

ity sets 〈r′1, . . . , r′n〉 such that for 1 ≤ i ≤ n the following two conditions hold:

1The call graph is constructed by our implementation of Rapid Type Analysis[Bac98]

34

1. x = y Union(Find(x), Find(y))

2.
x[] = y
y = x[]

Union(Find(x), Find(y))

3.
x.f = y
y = x.f

Union(Find(x), Find(y))

4.

y = getstatic y
putstatic f y
y.start()

Union(Find(y), Find(ESCAPE))

5. a0=a1.n(a2, . . . , ak)

sc = 〈Find(a1), . . . ,Find(ak),Find(a0),Find(Exceptionm)〉
foreach f(p1, . . . , pk) ∈ ResolvedMethods(a1, n) where

p1, . . . pk are the formal paramters

fc = 〈Find(p1), . . . ,Find(pk),
Find(Returnf),Find(Exceptionf)〉

if InSameSCC(m, f) then

Union(sc, fc)
else

Union(sc, clone(fc))
endif

end foreach

6. return x Union(Find(x), Find(Returnm))

7. throw x Union(Find(x), Find(Exceptionm))

Figure 3.7: Rules for analyzing a method m

– If ri = Find(ESCAPE), then r′i = Find(ESCAPE). That is, we do not clone the

connectivity set for the artificial variable ESCAPE.

– If Find(ri) = Find(rj) for some 1 ≤ j ≤ n, then Find(r′i) = Find(r′j). That

is the connectivity relation of ri and rj is copied to the returned data structure.

The simplified version of connectivity analysis handles array accesses and field accesses

identically. For array accesses, we only have connectivity sets for whole arrays, i.e. the

connectivity set of an element is that of the whole array. Similarly, for field accesses, we

only have connectivity sets for whole objects, i.e. the connectivity set of a field is that

of the whole object.

We illustrate the rules of simplified version of connectivity analysis (shown in Fig-

ure 3.7) as follows:

35

1. For each instruction x = y, we do Union(Find(x), Find(y)). Performing this

operation makes ReachableSetapp(x) = ReachableSetapp(y).

2. For each instruction x[] = y or y = x[], we do Union(Find(x), Find(y)). This

conservatively reflect that objects reachable from x are also reachable from y and

vice versa. This is conservative because the array object pointed by x is actually

not reachable from y, so the approximate reachable set of y is a superset of the

precise one. We do not distinguish the array elements from the array because this

can save the analysis time without causing slowdowns of programs as shown in

Chapter 4.

3. For each instruction x.f=y or y=x.f , we do Union(Find(x), Find(y)). This

is similar to the case of the processing array access instruction. By being field

insensitive, the analysis time can be reduced. However, we find that for certain

kinds of objects, the analysis should be field sensitive to improve the precision.

Detailed discussion is given in Section 3.3.4 when we describe the full version of

connectivity analysis.

4. For each instruction y = getstatic f or putstatic f y , we do Union(Find(y),

Find(ESCAPE)). This makes ReachableSetapp(y)=ReachableSetapp(ESCAPE).

5. For each method call, there may be more than one method that could be invoked.

All such possible methods will be processed when the statement containing the

invocation is analyzed. When inside the body of a method m, for each method f

that an invocation could refer to, we proceed as follows:

Case 1: m and the resolved method f are not in the same SCC in the call graph. Due

to the way we traverse the callgraph, the analysis result of f is available when

the invocation is analyzed. We simply clone the data structure containing the

connectivity of the formal parameters, result value and exception value. Using

the cloned data structure, we perform a Union operation for the corresponding

36

formal and actual arguments, result value, exception value one. The cloning

operation helps improve precision as described in more detail in Section 3.7.

Case 2: Both m and the resolved method f are in the same SCC in the callgraph.

If we were to clone the result of the analysis of f as in the previous case, a

fix-point computation would be needed to analyze m and f . To avoid this fix-

point computation, we follow [Ruf00] and do not clone the analysis result of

f . We could have done the fix-point computation at a much lower cost than is

needed for [Ruf00], but we did not do it because we find the current strategy

sufficient for our test cases. Unlike [Ruf00], doing the fixpoint computation is

much cheaper in our analysis because we are mostly field-insensitive, making

the cost of unification much cheaper. In general, not cloning the method

summary hinders the precision because information specific to m could be

propagated to f . A detailed discussion of the imprecision due to not cloning

method summaries is presented in Section 3.7.

6. For each return statement return x, we do Union(Find(x), Find(Returnm)).

This makes ReachableSetapp(x)=ReachableSetapp(Returnm).

7. For each exception throwing statement throw x, we do

Union(Find(x), Find(Exceptionm)). This makes ReachableSetapp(x) =

ReachableSetapp(Exceptionm).

At the end of the analysis, we save the connectivity information for arguments, return

value and exception value only to save the space needed. As mentioned above, the

connectivity information of the other variables is recomputed when needed.

Example of bottom-up phase

Consider the program in Figure 3.8. As the bottom-up analysis phase follows reverse

topological order when traversing the SCC graph, it visits buildTree before work. With-

37

1 static TreeNode bui ldTree (int l e v e l) {
2 TreeNode t = new TreeNode () ;
3 Data td = new Data () ;
4 t . data = td ;
5 i f (l e v e l != 0) {
6 TreeNode t l = bui ldTree (l e v e l − 1) ;
7 TreeNode t r = bui ldTree (l e v e l − 1) ;
8 t . l e f t = t l
9 t . r i g h t = t r ;

10 }
11 return t ;
12 }
13 static TreeNode gt ;
14 static void work () {
15 TreeNode t = bui ldTree (1 0) ;
16 gt = t ; // pu t s t a t i c
17 TreeNode gt1 = gt . l e f t ;
18 Data gd = gt1 . data ;
19 TreeNode l t = bui ldTree (1 0) ;
20 TreeNode l t 1 = l t . l e f t ;
21 Data ld = l t 1 . data ;
22 }

Figure 3.8: Bottom-up Phase Example

38

out going into the detail of how the analysis handles each instruction, we highlight the

end result for each method. Note that buildTree is recursive with respect to itself, so

when the method calls at lines 6 and 7 are analyzed, its analysis result is used without

cloning because it is in the same SCC as its caller. The analysis simply concludes that

all variables t, td, tl, tr are in the same connectivity set. Note that ESCAPE is not con-

nected to them, so the bottom-up phase says that executing buildTree does not make

the variables escape. At the end of analysis of buildTree, to reduce the memory require-

ments, all the information is dropped except the result value and the ESCAPE value. It

records that the return value does not connect to ESCAPE.

When work is visited, the analysis of buildTree has been done already. The cloned

result of buildTree is used to analyze method calls at lines 15 and 19. Using the analysis

result, the analysis find that t and lt are not escaping. When line 16 is analyzed, the

putstatic instruction makes t escaping (i.e. t and ESCAPE are connected). Since the

analysis result of buildTree has been cloned, connecting t and ESCAPE does not make

the result value of buildTree connected to ESCAPE. Thus, lt is not connected to ESCAPE

due to the analysis of line 16. As the analysis continues, t, gt1, gd and ESCAPE will

be connected. On the other hand, lt, lt1 and ld are connected but none of them are

connected to ESCAPE, so they are not escaping.

3.3.3.5 Topdown Phase

The top-down phase is performed by visiting the SCC graph induced by the call graph in

topological order. In this phase the context connectivity information is computed. That

is, it determines how the callers connect the formal parameters of a method. For each

method m in the SCC, the context connectivity information of m is used as the initial

connectivity information to do the analysis. This information was computed when the

callers of m is processed. There are two exceptions — the main method of the program

and run methods for Thread classes:

39

• For the main method, it may not have callers because it is the entry point of the

program. We simply assume that the formal parameters of main method are not

escaping (i.e. no formal parameters are connected to ESCAPE) and use that as the

context connectivity information.

• For the run method, it is the entry point of threads. We assume this is connected

to ESCAPE.

Consider the example shown in Figure 3.9, after executing lines 5 and 6, two threads,

say T1 and T2 start execution at MyThread.run()2 . For T1, the this variable in

// Executed by the main thread
void main (St r ing [] a rg s) {

MyThread t1 = new MyThread () ;
MyThread t2 = new MyThread () ;
t1 . s t a r t () ; // S ta r t s thread T1
t2 . s t a r t () ; // S ta r t s thread T2

}
class MyThread {

Data data ;
MyThread () {
}
// Executed by threads T1 and T2
public void run () {
}

}

Figure 3.9: An Running example illustrating analysis of run method

run has the same value as t1 in main which is executed by the main thread. For

T2, the this variable in run has the same value as t2 in main executed by the main

thread. In the simplified connectivity analysis, the algorithm is conservative when

analyzing the run method because of the sharing behavior of this in run method.

As described above, the analysis constructs the context connectivity information

2There is another way to create and start threads by writing code in classes implementing the
Runnable interface, described in Section 3.2.2. For simplicity we describe the analysis of run() for
Thread classes but in our implementation we also handle run() of Runnable classes in a similar manner.

40

for run assuming this is connected to ESCAPE. This is too conservative for some

programs. The full version of the analysis described in Section 3.3.4 can handle

this pattern more precisely.

Using this information, the analysis performs the intraprocedural analysis as described

in Section 3.3.3.43. After the intraprocedural analysis, we are ready to propagate the

context connectivity information further to methods invoked by m. It visits each method

invocation instructions of m following the rule shown in Figure 3.10

a0=a1.n(a2, . . . , ak)

sc = 〈Find(a1), . . . ,Find(ak),Find(a0),Find(Exceptionm)〉
foreach f(p1 . . . , pk) ∈ ResolvedMethods(a1, n)
fc = 〈Find(p1), . . . ,Find(pk),
Find(Returnf),Find(Exceptionf)〉

if InSameSCC(m, f) then

Union(sc, fc)
else

Union(clone(sc), fc)
endif

end foreach

Figure 3.10: Rule for analyzing call instruction of a method m

Note that in Figure 3.10, instead of cloning the callee information, the caller infor-

mation is being cloned. This is to avoid information of one callee propagating to another

callee.

Example of top down phase

The topdown phase determining how formal parameters are connected by the actual

parameters in the caller. The difference between top-down and bottom-up connectivity

information is illustrated by the program shown in Figure 3.11.

3When handling method calls, we perform cloning for recursive as well as non-recursive methods

41

void main (St r ing args) {
Data x , y , z ;
y . f = z ;
f (x , y , z) ;

}
// top−down : a , b , c connected
// bottom−up : a , b connected
f (Data a , Data b , Data c) {

a . f = b ;
}

Figure 3.11: An example showing the difference between top-down and bottom-up
phases

After the bottom-up phase, the bottom-up connectivity information of f records that

a and b are connected and that a and b are not connected to c. This summarizes

what f does to its formal parameters. The top-down phase computes main, the caller

of f, affects the connectivity of the formal parameters of f. Just before propagating the

context connectivity information from main to f, the working connectivity information

summarizes that x, y and z are connected. This information is propagated to f as its

context connectivity information: a, b and c are connected.

3.3.3.6 Reconstruction

After the top-down and bottom-up phases, for each method m, we have the context con-

nectivity information of m and the connectivity information for callees of m. Using these

pieces of information, we can reconstruct the connectivity information of local variables of

m. This reconstruction of connectivity information is cheap because it does not perform

interprocedural analyses. All it does is using the context connectivity information as the

initial working connectivity information to perform intraprocedural analysis described in

Section 3.3.3.4.

42

3.3.4 Full Version of Connectivity Analysis

As we see from our discussion in Section 3.3.3, the simplified version of connectivity

analysis is efficient but it may be too conservative when analyzing run method of thread

classes. In this section, we describe the full version of connectivity analysis which is

more precise when compared with the simplified one. Although the full version is more

precise, it is similar to the simplified one, and includes two phases. The first phase is

the bottom-up phase (described in Section 3.3.4.3) and the second phase is the top-down

phase (described in Section 3.3.4.4).

3.3.4.1 A Motivating Example

// Executed by the main thread
void main (St r ing [] a rg s) {

Input shared = new Input () ;
MyThread t1 = new MyThread(shared) ;
MyThread t2 = new MyThread(shared) ;
t1 . s t a r t () ; // S ta r t s thread T1
t2 . s t a r t () ; // S ta r t s thread T2

}
class MyThread {

Data data ;
Input shared ;
int sum ;
MyThread(Input shared) {

this . shared = shared ;
data = new Data () ;

}
// Executed by threads T1 and T2
public void run () {

int s t ep s = shared . s t ep s ;
this . sum = 0 ;
for (int i = 0 ; i < s t eps ; i ++) {

// work on MyThread . data
. . .

}
}

}

Figure 3.12: An Motivating example for the full version of analysis

43

An motivating example is shown in Figure 3.12. In this program, for T1, we have the

following observations:

• The t1 variable in main and this in run point to the same object. However, the t1

variable in main is only used to start the thread, so it is safe to assume this.sum

is accessed by T1 only.

• t1.shared and t2.shared point to the same object and it is accessed by both T1

and T2.

• t1.data is accessed by T1 only.

The full version of connectivity analysis aims at identifying this.data and this.sum as

unshared accesses. In order to do this, the analysis must be able to distinguish fields of

the Runnable object, so that it can determine that this.data and this.shared point

to different objects.

3.3.4.2 Computing the Reachability Set

In the simplified version of connectivity analysis, we merge the connectivity sets of local

variables v1 and v2 whenever it is found that ReachableSet(v1)∩ReachableSet(v2) is not

empty. Therefore, the simplified version of the analysis is field-insensitive as we do not

distinguish different fields of an object. As illustrated by the program in Figure 3.12,

this may be too imprecise. In this section, we present a field sensitive algorithm for two

kinds of objects: Runnable objects and objects having Runnable fields. For example,

when the analysis processes a statement “r.data = d” where r is of Runnable type, it

does not merge the connectivity set of r and d. Instead, it records that the connectivity

set of r points to the connectivity set of d.

44

3.3.4.3 Bottom-up Phase

The bottom-up phase is similar to the one described in Section 3.3.3.4. We present the

rules in Figure 3.18 and highlight the differences in this section. Before discussing the

rules, we present the operations used in the algorithm:

• DeclaringClass(f) returns the declaring class of the field f .

• IsRunnableClass(c) check whether the class c implements the java.lang.Runnable

interface.

• HasRunnableF ield(c) check whether the class c has a field implementing the

java.lang.Runnable interface.

• FieldAccess(s, f) returns the connectivity set that is referenced by the connectivity

set of s with field access f . If no such set is there, a new connectivity set is created

and the analysis records that the connectivity set of s references the newly created

connectivity set with field access f .

• The Unify operation is implemented using Union and Find operations as shown

in Figure 3.15.

• Unify(〈r1, . . . , rn〉, 〈s1, . . . , sn〉)) performs Unify(ri, si) for 1 ≤ i ≤ n.

There are two differences between the rules in Figure 3.18 and those in Figure 3.7.

These two differences aim at achieving the same goal — to make the analysis field sensitive

for runnable objects or objects containing runnable fields:

1. Handling of field accesses

Unlike the simplified version of connectivity analysis, for field accesses, if the field is

declared in a runnable class or the declaring class has a runnable field, the analysis

will not merge the container and containee connectivity sets together. Consider the

field access x.f = y: if x is of runnable type, FieldAccess(Find(x), f) is unified

45

with Find(y) instead of unifying Find(x) and Find(y). Here we are trading off

between cost and precision. We are willing to be field sensitive in these cases

because the cost is low and it captures a common pattern of Java programs. It

is natural for Java programs to allocate data objects which are usually accessed

within the running thread only. This situation is illustrated with the example code

of Figure 3.13. In the example, data is accessed intensively inside run() only,

class MyThread implements Runnable {
Data data ;
Input input ;
MyThread(Input i) {

input = i ;
}
public void run () {

// work on data
}

}

Figure 3.13: Importance of being field sensitive for fields of Runnable objects

while input refers to an escaping object. If the analysis is not field sensitive, for the

method run(), this, this.data and data.input will be merged together, making

all the variables marked as escaping.

Moreover, since runnable objects are assumed to escape often, distinguishing runnable

fields from non-runnable fields saves the analysis from marking too many objects

as escaping. This is illustrated by example 3.14. In the example, myWorker refer-

ences the thread that accesses a Data object. If the analysis is field insensitive, the

connectivity set of, say x.data has to be merged with x.myWorker, forcing x.data

to be escaping, although in reality, x.data is not accessed outside the execution of

the thread referenced by myWorker.

2. Use of the Unify operation rather than the Union operation.

Since we want to be field-sensitive for some objects, we cannot use Union opera-

tions to merge results. Consider the example shown in Figure 3.16. As we do not

46

class Data {
Runnable myWorker ;
OtherData data ;

}

Figure 3.14: Importance of being field sensitive when a class has both Runnable and
non-Runnable fields

Unify(xs, ys)

begin

if Find(xs) = Find(ESCAPE) and Find(ys) �= Find(ESCAPE) then

Unify(ys, ESCAPE)

end if

if Find(ys) = Find(ESCAPE) and Find(xs) �= Find(ESCAPE) then

Unify(xs, ESCAPE)

end if

Union(xs, ys)

foreach f ∈ SetOfFieldAccesses(xs) ∪ SetOfFieldAccesses(ys)
xfs = FieldAccess(xs, f)
yfs = FieldAccess(ys, f)
if xfs and yfs not unified before then

Unify(xfs, yfs)
end if

end foreach

end

Figure 3.15: Implementing Unify operation using Find and Union.

restrict the order of analyzing statements, let us consider the order of analyzing

lines 7, 9, and then 8. Figure 3.17 shows the result before and after analyzing line

8: as shown in the figure, if Union operation is used, the analysis cannot correctly

identify that a and y reference the same connectivity set. If a Unify operation is

used instead, the unification is performed correctly and it computes the information

that a and y reference the same connectivity set.

When method calls are analyzed, instead of using the Union operations to incor-

porate callee results to the caller, Unify operations are used.

47

1 class MyRunnable implements Runnable{
2 Data data ;
3 }
4

5 public void main (St r ing [] a rg s) {
6 MyRunnable x = new MyRunnable () ;
7 Data y = x . data ;
8 MyRunnable z = x ;
9 Data a = z . data ;

10 }

Figure 3.16: Importance of being field sensitive when a class has both Runnable and
non-Runnable fields

x

data

y z

data

a z a

data

y x

data

x y

data

az

(a) Before analyzing line 8 (b) After analyzing line 8
using the Union operation

(c) After analyzing line 8
using the Unify operation

Figure 3.17: Before and after analyzing line 8

48

x = y Unify(Find(x), Find(y))
x[] = y
y = x[]

Unify(Find(x), Find(y))

x.f = y
y = x.f

c = DeclaringClass(f)
if IsRunnableClass(c) or HasRunnableF ield(c) then

Unify(FieldAccess(Find(x), f), Find(y))

else

Unify(Find(x), Find(y))

endif

y = getstatic y
putstatic f y
y.start()

Unify(Find(y), Find(ESCAPE))

a0=a1.n(a2, . . . , ak)

sc = 〈Find(a1), . . . ,Find(ak),Find(a0),Find(Exceptionm)〉
foreach f(p1, . . . , pk) ∈ ResolvedMethods(a1, n)
fc = 〈Find(p1), . . . ,Find(pk),
Find(Returnf),Find(Exceptionf)〉

if InSameSCC(m, f) then

Unify(sc, fc)
else

Unify(sc, clone(fc))
endif

end foreach

return x Unify(Find(x), Find(Returnm))

throw x Unify(Find(x), Find(Exceptionm))

Figure 3.18: Rules for analyzing a method m

49

3.3.4.4 Topdown Phase

The topdown phase of the full version of connectivity analysis is also similar to that of

the simplified version. Again, for each method m in the SCC, the context connectivity

information of m is used as the initial connectivity information to do the analysis. The

information was computed when the callers of m were processed, except for the main

method and the run methods for Thread classes:

• Context Connectivity of the main method. The way to determine the context

connectivity information of the main method is the same as that of the simplified

version.

• Context Connectivity of run() methods for Thread classes. In the full

version of connectivity analysis, we do not simply assume this of run() to be

escaping as we did in simplified connectivity analysis. Instead, we construct a

more precise context connectivity information where each field of the thread object

is checked if no multiple threads read or write to them. This is done by checking

the following conditions:

– The created thread object does not connect to the formal parameters of the

thread creating method. In the example, we check whether:

∗ t1 is connected to args; and

∗ t2 is connected to args.

This ensures the thread object is not method escaping with respect to the

thread creating method.

– The created thread object O, once started (i.e. O.start() is executed), is

only used in a join call (i.e. O.join()). This ensures that the thread object is

not accessed inside the method calling the constructor(s) of the thread objects

and also not passed to another created thread.

50

If the check is true, the analysis constructs the context connectivity information for

run() using the connectivity information of the thread constructors. The algorithm

is shown in Figure 3.19.

runContext = ⊥
foreach constructor c =<init>(p1, . . . , pn) of C

〈csp1 , . . . , cspn ,⊥, csExceptionc〉 = clone(ConnectivityInfo(c))
for i = 2 to n

Unify(pi, Find(ESCAPE))

end for

Unify(runContext, 〈csp1〉)
end foreach

ContextConnectivityInfo(C.run()) = runContext

Figure 3.19: Computing the context connectivity information of run() for thread class
C using connectivity information of constructors of C.

Conceptually, we use the connectivity information of constructors of the thread class

as the context connectivity information of the run method. To avoid the analysis of

the run method changing the analysis results of the connectivity information of the

constructors, clonings are performed. The analysis assumes the objects passed to the

constructors are potentially shared among different thread instances, so it unifies the

argument connectivity sets with the escaping connectivity set.

Similar to the simplified connectivity analysis, the context connectivity information

is used to perform the intraprocedural analysis described in Section 3.3.4.3. After the

intraprocedural analysis, we propagate the context connectivity information further to

methods invoked by m. The analysis visits each method invocation instructions of m

following the rule shown in Figure 3.20.

Consider again the example shown in Figure 3.9. Because of the way threads are

created and started, thread shared data and thread local data would usually be connected

in the previous algorithm. In the example shown in Figure 3.9, in run(), this.shared

51

a0=a1.n(a2, . . . , ak)

sc = 〈Find(a1), . . . ,Find(ak),Find(a0),Find(Exceptionm)〉
foreach f(p1 . . . , pk) ∈ ResolvedMethods(a1, n)
fc = 〈Find(p1), . . . ,Find(pk),
Find(Returnf),Find(Exceptionf)〉

if InSameSCC(m, f) then

Unify(sc, fc)
else

Unify(clone(sc), fc)
endif

end foreach

Figure 3.20: Rule for analyzing call instruction of a method m

and this.data are connected because both of them are connected to this. Moreover,

this in run() should be considered escaping because:

• this in run() and t1 in main() may reference the same object; and

• run() and main() are executed by different threads.

When the program shown in Figure 3.9 is analyzed, the connectivity information of

the constructor of MyThread is used. The connectivity information is 〈c1, c2,⊥,⊥〉 where:

• Find(this) = c1 and Find(shared) = c2; and

• FieldAccess(c1, MyThread.shared) = c2 and FieldAccess(c1, MyThread.data) = c3.

As shared is the argument of the constructor, the analysis unifies c2 with Find(ESCAPE),

making FieldAccess(c1, MyThread.shared) equals Find(ESCAPE). At the end the context

connectivity information for run() is 〈c1〉 Since there may be more than one constructors

available for the thread class in general , the analysis merge all of them together and use

the merged information.

52

3.3.5 Extended Version of Connectivity Analysis — keeping

track of thread allocation sites

The full version of connectivity analysis can be strengthen in a way similar to what is

done in [Ruf00]. An extra phase is done before the bottom-up phase. Identical to Phase

1 in [Ruf00], it computes for each method m, InvokingThreads(m), the set of thread

allocation sites in the program of which thread are spawned to invoke the method directly

or indirectly.

We need to annotate each connectivity set c’s attributes:

• c.accessed — record whether a load/store operation has been done for the objects

represented by c.

• c.accessThreads — record the set of thread allocation sites that represents the

threads that perform load/store on the objects represented by c.

Figure 3.21 shows the new rules for the analysis extension. It is analogous to those

presented in [Ruf00]. Similar to [Ruf00], when z = Unify(x, y) is performed where either

x or y are connected to ESCAPE and the other has the accessed attribute being true, the

thread allocation sites associated with the current method are added to z.accessThreads.

Using this extended analysis, for a store instruction like x.f = y, a fence can be

avoided if Find(x).accessThreads is empty, or it contains a single thread allocation site

which is executed at most once even if x is connected to ESCAPE.

3.3.6 Some Properties of Connectivity Analysis

In this section we discuss some properties of connectivity analysis.

With a trade-off between analysis cost and precision, escape analyses can be catego-

rized as:

53

x[] = y
y = x[]

Find(x).accessed = true

if Find(x) = Find(ESCAPE)
Find(x).accessThreads∪ =InvokingThreads(m)

end if

Unify(Find(x), Find(y))

x.f = y
y = x.f

Find(x).accessed = true

if Find(x) = Find(ESCAPE)
Find(x).accessThreads∪ =InvokingThreads(m)

end if

c = DeclaringClass(f)
if IsRunnableClass(c) or HasRunnableF ield(c) then

Unify(FieldAccess(Find(x), f), Find(y))

else

Unify(Find(x), Find(y))

endif

Figure 3.21: Rules for analyzing a method m

• Field sensitive vs. field insensitive — do we distinguish different fields of objects?

This can be illustrated by an example shown in Figure 3.22. A field sensitive

void main (St r ing args) {
MyThread t = new MyThread () ;
Data e s c = new Data () ;
Data l o c a l = new Data () ;
t . data = esc ;
Object o = new Object () ;
o . f = l o c a l ;
o . g = es c ;

}

Figure 3.22: An Example Illustrating Field Sensitivity of Escape Analysis

escape analysis says that o.f is not escaping while o.g is. A field insensitive escape

analysis can only say that a field of o is escaping. Therefore, it cannot distinguish

whether o.f or o.g is the escaping object, and it has to conservatively assumes

that both o.f and o.g are escaping.

54

• Flow sensitive vs. flow insensitive — are we interested in the escaping property

for different program points? This can be illustrated by an example shown in

Figure 3.23. A flow sensitive escape analysis can tell that esc is not escaping

1 void main (St r ing args) {
2 MyThread t = new MyThread () ;
3 Data e s c = new Data () ;
4 Data l o c a l = new Data () ;
5 t . data = esc ;
6 }

Figure 3.23: An Example Illustrating Flow Sensitivity of Escape Analysis

before the statement at line 5. A flow insensitive one, however, does not keep track

of program point information. Therefore, it can only say that esc is escaping at

some program point.

Using this terminology, we can say that:

• all the connectivity analyses are flow-insensitive;

• a simplified version of connectivity escape analysis is field-insensitive; and

• a full version and the extended version of connectivity escape analysis is field-

insensitive. for most objects but field-sensitive for runnable objects and objects

having runnable fields

3.4 Uses of Thread Escape Analysis

The result of thread escape analysis can be used in at least two areas — fence insertion

and synchronization removal.

55

3.4.1 Fence Insertion

In the Pensieve system, thread escape analysis is used to reduce the number of fences

inserted to the program. Thread escape analysis computes may escape information. If

an object O is not marked as escaping by the analysis, O must not be accessible by

another thread. Because of this, loads and stores to fields of a not marked object can

never be observed by another thread. So, no orderings need to be enforced for such

memory accesses. As described in Section 2.2, in the Pensieve system setting computing

conservative approximate delay information, we conservatively assume that each pair

of references to variables reaching escaping objects are in a minimal mixed cycle. This

assumption ignores the overall parallel structure of the application and the order of access

to variables during execution, but despite its simplicity our analysis produces good results

as discussed in the next section.

3.4.2 Synchronization Removal

Another use of thread escape analysis is to remove redundant synchronization. Again, we

are using the negative result of escape analysis. For any object O not marked as escaping,

O cannot be accessible by another thread. Therefore, lock and/or unlock operations done

to O are done in the sequence lock, . . ., unlock,. . .,lock,. . .,unlock and they are done by

a single thread only. Because of this, the lock and unlock operations are unnecessary as

they will always be executed sequentially by a single thread. Note that to implement

the semantics of the monitorenter and monitorexit bytecode, the compiler should still

need to put fences in place of the lock and unlock operations.

56

3.5 Adapting Bogda’s and Ruf’s Escape Analyses

In this thesis we will compare our connectivity analysis with two efficient escape analysis

algorithms. They are Bogda’s analysis [BH99] and Ruf’s analysis [Ruf00]. In this section,

we outline their algorithms and describe how to adapt them for fence insertion.

3.5.1 Similarity of the Two Analyses

Both analyses were originally developed to remove synchronization by performing method

specialization. Figure 3.24 shows an example illustrating how specialization is done to

remove synchronization. In the example, the synchronization block in g is removed by

void main (St r ing [] a rg s) {
// assume ESC escaping
// l o c not escap ing
f (ESC) ;
f (l o c) ;

}
void f (Object o) {

g (o) ;
}
void g (Object o) {

synchronized (o) {
}

}

void main (St r ing [] a rg s) {
// assume ESC escaping
// l o c not escap ing
f (ESC) ;
fdash (l o c) ;

}
void f (Object o) {

g (o) ;
}
void fdash (Object o) {

gdash (o) ;
}
void g (Object o) {

synchronized (o) {
}

}
void gdash (Object o) {

// synchronized b lock removed
}

Before synchronization removal After synchronization removal

Figure 3.24: Removing synchronizations using method specialization

introducing new methods fdash and gdash that are nearly identical to f and g except

that the argument is assumed to be non-escaping. In the specialized method if the

57

synchronization block performed on objects assumed not escaping, it is removed4. For

those objects which are found to be non-escaping, the specialized method is called instead.

In the example, fdash is invoked on the non-escaping object. Eventually gdash is called

on the non-escaping object without performing synchronization.

We can see performing specialization causes code expansion. While this may be fine

for synchronization removal, as the number of synchronizations in a program is small,

this is not feasible for the Pensieve system, which potentially has a synchronization for

each load and store operation.

Because of the difference in the application of escape analysis we need to adapt both

analyses for fence insertion without method specialization. Since specialization is not

done only one version of code is generated for every method. The generated code is

called at all call sites, so it has to be conservative enough that it can be used for all

calling contexts.

3.5.2 Outline of Bogda’s Analysis

Bogda’s analysis is a two phase escape analysis:

1. The first phase determines objects that are stack-escaping. An object is called

stack-escaping if its reference value can be stored into a field of another object. For

example, an instruction x.f = y causes y to be stack-escaping because its reference

value is stored into x.f. The rules for analyzing a method in phase 1 is shown in

Figure 3.25. The idea is quite simple:

• Objects referenced by a reference variable are assumed to be stack escaping

(s-escaping) if the value of the variable:

– is stored into or received from an array or a field of an object;

4For correct Java semantics, a fence is needed just before entering the synchronized block and another
fence is needed just after the synchronized block. Therefore, even if lock/unlock operations are removed,
the fences should not be removed

58

– is stored into or received from a static field;

– is used to start a thread; or

– is thrown as an exception.

• For assignment statements, “x = y”, the analysis assumes both variables ref-

erence to the same set of objects by performing a Union operation. If either

x or y was assumed to be s-escaping, the combined set of objects are assumed

to be s-escaping.

• For return statements “return x”, the analysis handles the statement as if an

artificial return variable is being assigned from x.

• For method calls “a0 = a1.n(a2, . . . , ak)”, the stack-escape information is im-

ported from the callee. Since the return value of a call may be the value passed

as an argument, the analysis check this case. If the return value is the same

as argument ai, the analysis considers the method call as if an assignment

statement “a0 = ai” is also done.

2. The second phase uses the result of phase 1 to determine objects that are field-

escaping. An object is field-escaping if its reference can be stored into a field of a

stack-escaping object. For example, two instructions x.f = y and y.g = z cause z

to be field-escaping because its value is stored into y.f, where y is stack-escaping.

Note that y is not field-escaping if we only consider these two instructions. This

phase, in additional to keeping track of alias set of variables, also considers the alias

set of fields of objects. To reduce the analysis cost, only one level of field reference

is considered, so objects reachable by two or more field references are assumed to

be escaping. The rules for second phase are shown in Figure 3.27 and Figure 3.28:

• Objects referenced by a reference variable are assumed to be field escaping

(f-escape) if the value of the variable:

– is stored into or received from a static field;

– is used to start a thread; or

59

x = y

Let this be UnifyPhase 1(x, y)
xs = Find(x)
ys = Find(y)
Union(xs, ys)

xys = Find(x)
xys.sescape = xs.sescape or ys.sescape

x[] = y
y = x[]
x.f = y
y = x.f

Find(y).seacape = true

y = getstatic y
putstatic f y
y.start()
throw y

Find(y).seacape = true

a0=a1.n(a2, . . . , ak)

foreach f(p1, . . . , pk) ∈ ResolvedMethods(a1, n)
pa = 〈Returnf , p1, . . . , pk〉
for i = 0 to k

Find(ai).sescape = Find(ai).sescape or Find(pai).sescape

end for

for i = 1 to k

if Find(pi) = Find(Returnf)
UnifyPhase 1(ai, a0)

end if

end for

end foreach

return x UnifyPhase 1(x,Returnm)

Figure 3.25: Rules for analyzing a method m to compute s-escape information

– is thrown as an exception.

• For assignment statement, “x=y”, the analysis first merges the f-escape infor-

mation in a way similar to phase 1. This ensures the merged alias set inherits

the alias f-escaping set if either one of the original alias set is f-escaping. In

this phase, the analysis keeps track of one level of field references, so when

merging two alias sets together, we may need to recursively merge alias sets

referenced by the original alias sets. This can be illustrated by Figure 3.26. In

Figure 3.26(a), two alias sets are merged. 1©. Following the rule, the f-escape

information is being merged first. The result is shown in Figure 3.26(b). Now

60

3 4

1 2
!fescape !fescape
!sescape

sescape
!fescape

sescape
fescape

f

x

f

y

!sescape 1 Find(x)

2 Find(y)

3 FieldAccess(Find(x),f)

4 FieldAccess(Find(y),f)

(a) Merging Find(x) and Find(y)

3 4

1 25
!fescape
!sescape

4

1

2

!fescape
!sescape

sescape
!fescape

sescape
fescape

f

x

f

y

!fescape
!sescape

5 Find(x), Find(y)

3 FieldAccess(,f)

FieldAccess(,f)

(b) Merged Find(x) and Find(y), merging 3© and 4©.

3 4

1 25

6

f f

!sescape
!fescape

sescape
!fescape

FieldAccess(Find(y),f)
FieldAccess(Find(x),f),

!fescape
!sescape

x

f

y

sescape
fescape

!fescape
!sescape

sescape
fescape

5 Find(x), Find(y)

6

(c) Finished the whole merging process

Figure 3.26: Merging two alias sets in phase 2

61

that the stack-escaping properties of 1© and 2© are both false, meaning that

both 1© and 2© may point to another alias set mark as not f-escaping. This is

indeed the case for 1©. Therefore, the analysis continues the merging process

for 3© and 4©. Since the f-escape property of 4© is true, the merged alias set

inherits this property, making the merged alias set f-escaping. Since 3© and 4©
are stack-escaping, the analysis does not continue the merging process further.

• For field access statements, “x.f = y” or y = x.f , there are two cases:

– If the alias set for x is stack-escaping, the analysis simply marks the alias

set for y f-escaping, following the definition of f-escaping.

– If the alias set for x is not stack-escaping, then the alias set for x.f (i.e

FieldAccess(Find(x), f)) may or may not be f-escaping, depending on the

f-escaping property of the alias set of y. Therefore, the analysis merges

FieldAccess(Find(x), f) with Find(y).

• Array access statements are processed as if statements accessing an artificial

field $ELT .

• For return statements “return x”, the analysis handles the statement as if an

artificial return variable is being assigned from x.

• For method calls “a0 = a1.n(a2, . . . , ak)”, there are four loops shown in Fig-

ure 3.28. The first loop imports f-escape information from the callee. The

second loop merges alias sets of return value and arguments if the alias infor-

mation of the callee says the method called may return the argument passed.

The third loop merges the alias sets of ai.f and aj, if the alias information

of the callee says the method call may make ai.f and aj point to the same

object. It is handled as if processing the statement ai.f = aj . The fourth loop

handles the case that the alias information says the method called may make

ai.f and aj .h pointing to the same object. There are two cases:

62

– Both the alias sets of ai and aj are not stack-escaping. Since the analysis

keeps track of one level of field reference, it merges the alias set of ai.f

and aj.h following the information from the callee.

– One of the alias sets, say aj , is stack-escaping. This means the alias

set of aj is pointed to by another alias set of field reference. Since the

analysis keeps track of one level of field reference, it does not keep track

of alias information of aj .h because aj .h is reachable by two levels of field

references. It simply assumes alias sets of aj .h are f-escaping. Since the

alias information of callee says ai.f and aj .h may point to the same object,

the analysis marks the alias set of ai.f f-escaping.

Bogda’s analysis marks objects to be escaping if they are field-escaping. We can see

Bogda’s analysis is an 1-level escaping analysis — objects reachable by another object

via more than one field references are assumed to be escaping. Unlike the connectivity

analysis, the Bogda’s analysis performs fixpoint iteration for recursive functions.

3.5.3 Adapting Bogda’s Analysis

The analysis was formulated as constraints in [BH99]. The authors did not describe how

the analysis is performed, but only say the constraint problem converges to a fixpoint.

Because of this, we choose to implement the analysis as efficiently as possible: we traverse

the call graph in a way similar to our connectivity analysis and we use the union-find

data structure to implement the analysis.

As described in Section 3.5.1, synchronization is removed by method specialization.

Bogda does this by finding objects not reachable from any formal parameter. Such

objects found to be not escaping are candidates for optimization and specialization by

the optimizer. Because of this technique of finding candidate objects, the context of a

method is not relevant. In the Pensieve system, we are interested in the context of a

63

x = y

This is handled by UnifyPhase 2(Find(x),Find(y))
where UnifyPhase 2(xs, ys) is defined as follows:

Union(xs, ys)

xys = Find(xs)
xys.fescape = xs.fescape or ys.fescape

if xs.sescape =false and ys.sescape =false then

for each field f of xs and ys

UnifyPhase 2(FieldAccess(xs, f), F ieldAccess(ys, f))
end for

end if

x.f = y
y = x.f

This is handled by UnifyF ieldAccess(x, f, y) where
UnifyF ieldAccess(x, f, y) is defined as follows:
xs = Find(x)
ys = Find(y)
if xs.sescape = false then

UnifyPhase 2(FieldAccess(xs, f), ys)
else

ys.fescape = false

end if

x[] = y
y = x[]

UnifyF ieldAccess(x, $ELT, y)

y =
getstatic f
putstatic f y
y.start()
throw y

Find(y).feacape = true

a0=a1.n(a2, . . . , ak) See Figure 3.28
return x UnifyPhase 2(x,Returnm)

Figure 3.27: Rules for analyzing a method m to compute f-escape information

64

a0=a1.n(a2, . . . , ak)

foreach f(p1, . . . , pk) ∈ ResolvedMethods(a1, n)
pa = 〈Returnf , p1, . . . , pk〉
for i = 0 to k

Find(ai).fescape = Find(ai).fescape or Find(pai).fescape

if Find(ai).sescape =false then

foreach field f of pai

if FieldAccess(Find(pai), f).fescape =true then

FieldAccess(Find(ai), f).fescape =true

end if

end foreach

end if

end for

for i = 1 to k

if Find(pi) = Find(Returnf)
UnifyPhase 2(ai, a0)

end if

end for

for i, j ∈ [0, k]
foreach f such that FieldAccess(pai, f) = Find(paj)
UnifyF ieldAccess(ai, f, aj)

end foreach

end for

for i, j ∈ [0, k]
foreach f, h such that

FieldAccess(pai, f) = FieldAccess(paj , h)
if Find(ai).sescape = false

and Find(aj).sescape = false then

UnifyPhase 2(FieldAccess(ai, f), F ieldAccess(aj , h))
else if Find(ai).sescape = false

FieldAccess(ai, f).fescape =true

end if

end foreach

end for

end foreach

Figure 3.28: The Rule for analyzing call statement of a method m to compute f-escape
information

65

method when inserting fences because the same code is executed no matter where the

method is invoked.

In order to compute the context escape information, we adapt Bogda’s analysis to

propagate context information as we do for connectivity analysis. This is done by travers-

ing the SCC graph of the call graph in topological order and propagate information from

callers to callees. To do this, two additional phases are needed. The first propagates

stack-escape information and the second propagates field-escaping information.

After performing these phases, we can perform the reconstruction phase to recover es-

cape information for local variables in way similar to what is described in Section 3.3.3.6.

3.5.4 Outline of Ruf Analysis

Like connectivity analysis, Ruf’s analysis does not need a fixpoint computation for re-

cursive functions. It is a three phase escape analysis:

1. The first phase computes for each method the set of thread allocation sites in the

program of which thread are spawned to invoke the method directly or indirectly.

The analysis also records whether a thread allocation site is executed multiple times

or not.

2. The second phase computes

(a) for each method the escape information of its formal parameters, return value

and exception value. The escape information is represented as an annotated

alias set. The alias set represents objects at runtime. Each set keeps track of:

• whether the set is synchronized on;

• whether the set is escaping; and

• the thread allocation sites representing the threads that synchronize on

the objects represented by this alias set.

66

(b) for each static field (and objects reaching from that field), the thread allocation

sites representing the threads that synchronize on the field.

The rules are shown in Figure 3.31. They make use of the Unify operation shown

in Figure 3.15. When two alias sets are unified, all alias sets reachable are unified

as well. The idea of the analysis is to perform unification operations according to

the semantics of the statements:

• For statements, “x = y”, the analysis unifies the alias sets of x and y.

• For field access statements, “x.f = y” and “y = x.f”, the analysis unifies the

alias sets of x.f and y.

• For array access statements, the analysis considers the statement as if state-

ments access the artificial field $ELT .

• For static field access statements, “y = getstatic f” and “putstatic f y”,

the analysis unifies the alias set of y and the alias set for the static field. The

isGlobal attribute of the alias set for static fields is assumed to be true, i.e.

Find(f).isGlobal = true. Therefore, after the unification operation, all alias

sets reachable from the alias set of y have the isGlobal begin true.

• For return statements, the analysis handles the statements as if assignment

statements to an artificial return variable.

• For throw statements, the analysis handles the statements as an assignment

statements to an artificial exception variable if the exception may be caught

outside the method being analyzed. If the analysis can identify exception han-

dlers within the same method corresponding to the exception being thrown, it

will perform unification accordingly. This is illustrated by the example shown

in Figure 3.29. Since the exception te is caught at line 4, the alias sets of te

and ce are being unified. This is not shown in Figure 3.31 for brevity.

• For “monitorEnter y” and “monitorExit y statements, the analysis marks

the alias set of as y being synchronized. If the alias set of y has been marked

67

1 try {
2 throw te ;
3 } catch (Except ion ce) {
4 . . .
5 }

Figure 3.29: An example illustrating processing of throw and catch statements

as global (isGlobal = true), then it has been found to be shared with other

threads. This implies that a shared object represented by the alias set is

synchronized. Therefore, the analysis adds to the set of threads that syn-

chronized on the alias set of y, Find(y).syncThreads,the threads that in-

vokes the method being analyzed (InvokingThreads(m)). A symmetric case

is possible — an object synchronized somewhere is marked as escaping. An

example is shown in Figure 3.30. When line 3 (monitorEnter o) and line

4 (monitorExit o) are processed, it is not yet known if the variable o will

point to an escaping object, so the analysis only marks the alias set of o be-

ing synchronized, i.e. Find(o).synchronized = true. Later when line 5 is

processed, Find(o) is unified with Find(ESC). This makes the alias set of o

escaping. The analysis recognize this fact and will add to to the set of threads

that synchronized on the alias set of o, Find(o).syncThreads,the threads that

invokes foo, (T).

• As with the connectivity analysis, for method calls, “a0=a1.n(a2, . . . , ak)”,

there are two cases:

1 static Object ESC;
2 // invoked by thread T
3 void foo (Object o) {
4 synchronized (o) {
5 }
6 ESC = o ;
7 }

Figure 3.30: An synchronized object referenced by o published to a static field ESC

68

(a) If the resolved method is in the same SCC as the method being analyzed,

the alias summary of the resolved method is used without cloning. For

each actual argument a, its alias set Find(a) is unified with the alias set

of the corresponding formal parameter p (i.e Unify(Find(a), Find(p)) is

performed). Similarly, unification is performed for return and exception

values. This corresponds to the Unify operations shown in the rules.

(b) If the resolved method is not in the same SCC as the method being ana-

lyzed, the alias summary of the resolved method is cloned and the Unify

operation is performed as the previous case.

x = y
Unify(Find(x), Find(y))

x.f = y
y = x.f

This is handled by UnifyF ieldAccess(x, f, y) where
UnifyF ieldAccess(x, f, y) is defined as follows:
Unify(FieldAccess(Find(x), f),Find(y))

x[] = y
y = x[]

UnifyF ieldAccess(x, $ELT, y)

monitorEnter y
monitorExit y

Find(y).synchronized = true

if Find(y).isGlobal = true

Find(y).syncThreads∪ =InvokingThreads(m)
end if

y = getstatic f
putstatic f y

Unify(y,Find(f))

a0=a1.n(a2, . . . , ak)

sc = 〈Find(a1), . . . ,Find(ak),Find(a0),Find(Exceptionm)〉
foreach f(p1 . . . , pk) ∈ ResolvedMethods(a1, n)
fc = 〈Find(p1), . . . ,Find(pk),
Find(Returnf),Find(Exceptionf)〉

if InSameSCC(m, f) then

Unify(sc, fc)
else

Unify(sc, clone(fc))
endif

end foreach

return x Unify(x,Returnm)
throw x Unify(x,Exceptionm)

Figure 3.31: Rules for analyzing a method in Ruf’s analysis

69

3. Remove the synchronization by specialization. This is done in a top-down order

with respect to the SCC call graph similar to the top-down phase of the connec-

tivity analysis. When a method is visited, the context alias information is used as

the initial analysis result. The analysis then computes alias information for local

variables following the rules described in Figure 3.31 with the exception of method

call handling. In this phase, whether or not the called method is in the same SCC

as the method being analyzed, the summary information is cloned before perform-

ing the Unify operation. After computing the information for local variables there

are two possible things to do for code generation:

• If the method has monitorEnter o and monitorExit o statements and the

alias set for o does not have multiple threads in the alias set’s syncThreads

attribute. This implies the objects pointed to by o do not have multiple

threads synchronizing on, so the synchronization operations can be replaced

by fence insertions.

• If the method has method calls, the analysis uses the alias information of

actual arguments, return values and exception values to compute the context

alias information for the method. If the computed context alias information is

different from the alias information for the method computed in the bottom-

up phase, a specialized version of the method is invoked instead. For each

method, the analysis maintains context alias information associated to the

method, each context corresponds to a specialized version of method. This is

illustrated by a program shown Figure 3.32 The information for bar computed

in the bottom-phase says that:

– Find(o).isGlobal = false;

– Find(o).synchronized = true; and

– Find(o).syncThreads = {}.

In the topdown phase, when foo is processed, two calls to bar are encountered.

The local variables’ alias information is reconstructed. Using the reconstructed

70

static Object ESC;
// invoked by thread T1 , T2
static void foo () {

bar (new Object o) ;
bar (ESC) ;

}
static void bar (Object o) {

synchronized (o) {
}

}

Figure 3.32: Removing synchronization in the top-down pass

information, the context alias information for the calls are computed. For the

first call, the information is the same as that computed in the bottom-up phase,

so the call invokes a non-specialized version of bar. Since the synchronization

is performed for o where Find(o).syncThreads = {}, the synchronization

operations are removed in the non-specialized version of bar. For the second

call, the context information says that:

– Find(o).isGlobal = true;

– Find(o).synchronized = true; and

– Find(o).syncThreads = {T1, T2}.

Since the information is different from that computed in the bottom-up phase,

a specialized version of bar is invoked. In this specialized version of bar, the

synchronization is performed for o where Find(o).syncThreads = {T1, T2},
so the synchronization operations cannot be removed.

3.5.5 Adapting Ruf’s Analysis

We can see Ruf’s analysis can be considered as an extension of alias analysis style escape

analysis by keeping track of threads synchronizing on objects. In this study, we adapt the

analyses directly by keeping track of threads accessing objects rather than synchronizing

on them. We have two implementations in our study:

71

1. The first implementation does not keep track of the threads that access objects.

An object is consider escaping if the object is reachable from static fields or thread

objects.

2. The second implementation does keep track of the threads that access objects. An

object is consider escaping if it is escaping in the first implementation’s sense and

if it is being accessed by multiple threads.

To avoid performing specialization, we modify phase 3 of the analysis. Instead of

performing specialization when propagating escaping information from callers to callees,

we only propagate the information from callers to callees. Given a method, we merge

all of the escape information from its callers. This is the context escape information for

the method. Note that this propagating process involves fixpoint computations inside

SCCs. For example, for a program having method f calling g which calls f recursively,

the context information propagation is done by performing an iterative process for f and

g until no context information is changed.

Again, after performing all phases, we can reconstruct escape information for local

variables by using the context escape information computed in modified phase 3 and

escape information computed in phase 2.

3.6 Qualitative Comparison between the Analyses

In this section, we attempt to study the difference between the analyses in a qualita-

tive way. We will compare the differences in their lattice, precision and complexity. A

quantitative discussion is presented in Chapter 4.

72

3.6.1 Precision

In this section, we study the precision of the analyses. We are interested in identifying

cases where one analysis is more precise than others.

3.6.1.1 Cases Where Connectivity Analysis is More Precise

An example program that demonstrates the precision of connectivity analysis is shown

in Figure 3.33. Connectivity analysis can identify this.data is only accessed within the

thread that executes run() and claims that this.data is not escaping. Ruf’s and Bogda’s

analysis are conservative for runnable objects — all objects reachable from runnable

objects are considered escaping, so they consider this.data to be a shared access5.

void main (St r ing [] a rg s) {
new MyThread () . s t a r t () ; // c r e a t e s thread T1
new MyThread () . s t a r t () ; // c r e a t e s thread T2

}
class MyThread {

Object data ;
// executed by threads T1 , T2
public void run () {

this . data = . . . ;
// i s t h i s . data a shared a c c e s s ?

}
}

Figure 3.33: A program where connectivity analysis is more precise

3.6.1.2 Cases Where Bogda’s Analysis is More Precise

An example program that demonstrates the precision of Bogda’s analysis is shown in

Figure 3.34. Bogda’s analysis is more precise than other two in this case because it com-

5For adapted Ruf’s analysis, keeping track of set of threads accessing this.data does not help proving
this.data not escaping. As run is executed by multiple threads (T 1 and T 2), Ruf’s analysis claims
that this.data is written by multiple threads.

73

putes the escape information for recursive methods by performing fix point computation.

It can correctly identify that foo does not cause its argument in to escape. In fact, in

is not even accessed in the body of foo. Because of this, it correctly claims that o is

not escaping and therefore, o.data is not a shared access. For connectivity and Ruf’s

analyses, fixpoint computation is avoided by not cloning the information of foo when

analyzing foo itself. The analyses unify in and ESC, making in escaping. This causes

o to be marked as escaping. Because bar is invoked by multiple threads, connectivity

analysis, extended connectivity analysis and the adapted Ruf’s escape analysis claim that

o.data is a shared access.

// invoked by threads T1 , T2
void bar () {

Object o = new Object () ;
foo (o) ;
o . data = . . . ;
// i s o . data a shared a c c e s s ?

}
static Object ESC;
// invoked by threads T1 , T2
void foo (Object in) {

foo (ESC) ;
}

Figure 3.34: A program where Bogda’s analysis is more precise

3.6.1.3 Cases Where Ruf’s Analysis is More Precise

An example program that demonstrates the precision of Ruf’s analysis is shown in Fig-

ure 3.35. Ruf’s analysis is more precise in this case because it keeps a more precise alias

information. As we can see from Figure 3.35(b), Ruf’s analysis can correctly identify that

c is pointing to a non-escaping object, so c.data is not a shared access. For connectivity

analysis, since c and ESC are connected, they point to the same connectivity set, so c is

considered escaping. Therefore, connectivity analysis concludes that c.data is a shared

access. Bogda’s analysis assumes objects reachable by more than one field’s references

74

class ListNode {
ListNode next ;
Data data ;

}
static Data ESC;
// invoked by threads T1 , T2
void foo () {
ListNode a = new ListNode () ;
ListNode b = new ListNode () ;
ListNode c = new ListNode () ;
a . next = b ;
b . next = c ;
b . data = ESC;
c . data = . . . ;
// i s c . data a shared a c c e s s ?

}

a

next

next

����
����
����
����
����

����
����
����
����
����

ESC

b

cdata

data

(a) The program
(b) The lattice when the program

is analyzed by Ruf’s analysis

Figure 3.35: A program where Ruf’s analysis is more precise

are escaping, so c is pointing to an escaping object, as it is pointed by a.next.next (two

field references). Hence, Bogda’s analysis concludes that c.data is a shared access.

3.6.1.4 All Cases

In previous sections, we have seen cases where one analysis is more precise than the

rest. Figure 3.36 shows three sets corresponding to objects found to be escaping by the

three escape analyses. For the discussion in this section, for simplicity, let us assume that

Ruf’s analysis is a simplified version which marks objects if they are reachable from static

variables or runnable objects, and the analysis does not consider whether the object is

accessed by multiple threads. Similarly, the connectivity analysis is the base analysis not

including the extension given in Section 3.3.5.

The cases described in previous sections are due to objects in the shaded regions. For

example, connectivity analysis is more precise in the program described in Section 3.6.1.1

because there are objects in the top shaded region — objects which are Bogda-escaping

and Ruf-escaping but not connectivity-escaping. In summary:

75

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Connectivity analysis more precise

������
������
������
������
������
������

������
������
������
������
������
������

Bogda’s analysis more precise

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Ruf’s analysis more precise

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Ruf−escaping

Connectivity−escaping

Bogda−escaping

Figure 3.36: An example illustrating different kinds of objects w.r.t different escape
analyses

76

• Connectivity analysis can precisely identify objects reachable by a thread but that

are exclusively accessed by the thread.

• Bogda’s analysis can precisely identify non-escaping objects passed to recursive

methods. For example, in the program described in Section 3.6.1.2, it can identify

that o is not escaping while connectivity and Ruf’s analyses cannot.

• Ruf’s analysis can precisely identify objects that are “deeply inside” some data

structure (i.e. reachable by multiple field references x.f.g) and the data structure

has some escape objects (i.e. connected to an escaping object).

We can see the properties of these distinctive objects are orthogonal. For example, an

object can fulfill the first two properties but not the third, then the object will be found

to be non-connectivity-escaping and non-Bogda-escaping analysis but is Ruf-escaping. In

Chapter 4, we will quantitatively study objects with different escaping properties w.r.t.

different escape analyses.

3.6.2 Lattice

In this section, we study the lattices of the analyses, focusing on how complex they can

be. This is related to the cost of the analysis as more complicated lattices takes more

time to merge. Given a connectivity set/alias set S, we can see how large the lattice

structure can be. Figure 3.37 shows the lattices for different algorithms:

The worst case connectivity lattices can be divided into two cases:

• Without runnable type objects, a connectivity set does not point to another con-

nectivity set via a field reference. This scenario is shown in Figure 3.37(a). This

is the common case in a program as most of the time a program does not work on

runnable type objects.

77

S

���
���
���

���
���
���S

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

Runnable objects/
objects containing runnable fields

���
���
���
���

���
���
���
���

(a) Worst case connectivity sets
representing objects of

non-runnable types

(b) Worst case connectivity sets
representing objects having

runnable types

S

S

(c) Worst case Bogda alias sets (d) Worst case Ruf alias sets

Figure 3.37: Merging two alias sets in phase 2

78

• With runnable type objects, the worst case is shown in Figure 3.37(b) where the

connectivity sets represents some object of runnable type or containing runnable

type fields. We do not expect this case to happen in practice. Even in a program

with many recursive calls, it is unusual for the calls to be working on data structures

with many of related runnable objects.

The worst case Bogda’s lattices is shown in Figure 3.37(c). Since the analysis

is an 1-level limited analysis, it restricts the depth of lattice to one level. An object is

conservatively assumed to be escaping if it is pointed by an object represented by one of

the bottom alias sets.

The worst case Ruf’s lattices is shown in Figure 3.37(d). This case happens for

program with recursive calls. An example program is shown in Figure 3.38. In the

static TreeNode f1 () {
t = new TreeNode () ;
t . l e f t = null ;
t . r i g h t = null ;
return t ;

}
static TreeNode f2 () {

t = new TreeNode () ;
t . l e f t = f1 () ;
t . r i g h t = f1 () ;
return t ;

}
static TreeNode f3 () {

t = new TreeNode () ;
t . l e f t = f2 () ;
t . r i g h t = f2 () ;
return t ;

}
. . .
static TreeNode f100 () {

t = new TreeNode () ;
t . l e f t = f99 () ;
t . r i g h t = f99 () ;
return t ;

}

Figure 3.38: A program causing big lattice when performing Ruf’s analysis

79

a(f) the number of formal parameters declared in method f
V the maximal number of local variable seen in the programs
A the maximal number of formal parameters seen in the pro-

gram, i.e. maxm∈Methods a(m)
Methods the set of methods in the program
M number of methods in the program, i.e. |Methods|
F the maximal number of fields among all class
C number of static fields

Table 3.1: Notations used in time and space complexity analyses

program, the lattice size of f1 is 20 − 1, f2 is 22 − 1, f3 is 23 − 1, . . ., f100 is 2100 − 1, so

the size of lattice for the topmost recursive method is of exponential size in the number

of methods. This pattern happens in recursive programs like parsers.

3.6.3 Space Complexity

In this section, we discuss the worst case space complexity of the different algorithms.

Table 3.1 shows the notations used in both time and space complexity analyses. In all

analyses, the cost can be divided into three parts:

• space saved for each method;

• space saved for each global data (for static fields and if needed for thread objects);

and

• space for reconstruction.

The space complexity analysis of Ruf’s analysis:

• For each method, the alias sets of arguments, and the exception and return value

are saved. From the rules of Ruf’s analysis, we see that at most two alias sets

are created for each statement not performing method call. For each method call,

the worst case scenario happens when the method called is not recursive, which

80

causes information cloning. Therefore we have the following equation for N(m),

the number of alias sets created when analyzing m:

N(m) = 2 × nc(m) +
∑

s∈CallStmts(m)

max
m′∈CalledMethods(s)

N(m′)

where nc(m) is the number of statement not performing method call for m,

CalledMethods(s) is the set of methods called by s. Therefore, N(m) = O(NncN
M
c).

The complexity is O(number of alias sets + number of outgoing edges) =

O(NncN
M
c + NncN

M
c F) = O(NncN

M
c F).

• Ruf’s analysis saves information for static fields and thread objects. As we see from

the rule, an alias set is created for each field or for the runnable type, so the cost

is O(C + 1 + (C + 1)F) = O(CF).

• In reconstruction, for each local variable, alias sets are constructed. For each local

variable, an alias set is created, which contribute to a cost of O(V). Therefore, the

cost is O(V (1 + F) + NncN
M
c F).

Combining, the cost is O(M ∗NncN
M
c F + CF + V F + NncN

M
c F) = O(F (M ∗NncN

M
c +

C + V)). The space complexity analysis of Connectivity analysis:

• For sequential programs, there are no runnable objects, so no connectivity set points

to another connectivity set:

– For each method, the connectivity sets of arguments, return and exception

values are saved. Since no connectivity set points to another connectivity set,

the space complexity for a method f is O(a(f) + 2)

– A connectivity set is reserved for ESCAPE which takes O(1)

– In reconstruction, for each local variable, one connectivity set is constructed.

For each local variable, space cost is O(1)

Therefore, the space complexity is O(M × (A + 2) + 1 + V) = O(MA + V).

81

• For multi-threaded programs, the worst case is the same as that of Ruf’s analysis.

The cost is, therefore, O(F (M ∗ NncN
M
c + C + V)).

The space complexity analysis of Bogda’s analysis:

• For each method, the alias sets of arguments and the return value are saved.

Since the analysis is an 1-limiting analysis, the space complexity for a method

f is O((a(f) + 1) × (1 + F)) where F is the number of fields in a class having

maximal number of fields.

• Bogda analysis does not save information for global data.

• In reconstruction, for each local variable, alias sets are constructed. For each local

variable, space cost is O(1 + F).

Therefore, the space complexity is O(M×(A+1)×(1+F)+V ×(1+F)) = O((MA+V)×
F)) where M is the number of methods, A is the maximal number of formal parameters

seen in the program.

3.6.4 Time Complexity

In this section, we discuss the worst case time complexities of different algorithms. Ta-

ble 3.2 shows the notations used in time complexity analysis.

In all analyses, the cost can be divided into three parts:

• a Bottom-up phase computing method information;

• a Top-down phase computing context information; and

• a Reconstruction information using the above two pieces of information.

So,

82

α(n) the inverse Ackermann’s function
I(m) the cost of interprocedural analysis for method m
P (m) the cost of propagating context information from m
c(s) the time complexity of a statement s
Z the total number of alias/connectivity sets in the analysis
Stmts the set of all statements in the program
Stmts(m) the set of statements in method m
CallStmts(m) the set of call statements in method m
ReconstructMethods the set of methods performed reconstruction to obtain infor-

mation for each local variable
ReconstMethodStmts ∪m∈ReconstructMethodsStmts(m)
Nnc the maximal number of statement not performing method

call among all methods, i.e. max |Stmts(m)−CallStmts(m)|
Nc the maximal number of call statement among all methods,

i.e.maxm∈Methods |CallStmts(m)|
Table 3.2: Notations used in time complexity analysis

Time Complexity = Complexity of bottom-up phase + Complexity of top-down phase

+ Complexity of reconstruction

The time complexity of Connectivity analysis:

In both the top-down and bottom-up phase, each method is visited once to invoke the

intraprocedural analysis. In the top-down phase, context information propagation is

done by visiting call statements one more times following the rule shown in Figure 3.10.

For reconstruction, an intraprocedural analysis is invoked to compute information for

methods that needs the information. Therefore,

Time Complexity =
∑

m∈Methods

I(m) +
∑

m∈Methods

(I(m) + P (m)) +
∑

m∈ReconstructMethods

I(m)

= 2
∑

m∈Methods

I(m) +
∑

m∈Methods

P (m) +
∑

m∈ReconstructMethods

I(m)

83

The interprocedural analysis cost can be divided into a cost for processing call statements

and a cost for processing statements not performing method call. Also, the cost of

propagating context information is the same as processing all call statements in the

method, so we have

I(m) =
∑

s∈Stmts(m)

c(s)

and

P (m) =
∑

s∈CallStmts(m)

c(s)

so

Time Complexity = 2
∑

m∈Methods

∑

s∈Stmts(m)

c(s) +
∑

m∈Methods

∑

s∈CallStmts(m)

c(s)

+
∑

m∈ReconstructMethods

∑

s∈Stmts(m)

c(s)

As we can see from the rule, call statements are more expensive to analyze than other

statements. Let e(m) be the most expensive call statement to analyze for method m,

then the time complexity can be bounded as

Time Complexity ≤ 2
∑

m∈Methods

∑

s∈Stmts(m)

c(e(m)) +
∑

m∈Methods

∑

s∈CallStmts(m)

c(e(m))

+
∑

m∈ReconstructMethods

∑

s∈Stmts(m)

c(e(m))

=
∑

m∈Methods

(2|Stmts(m)| + |CallStmts(m)|)c(e(m))

+
∑

m∈ReconstructMethods

|Stmts(m)|c(e(m))

= (2|Stmts| + |CallStmts| + |ReconstMethodStmts|)c(S)

= O((|Stmts| + |ReconstMethodStmts|)c(S))

84

where S is the most expensive call instruction to analyze in the program. The value

of c(S) includes two components — cloning and unification of arguments connectivity

sets. Since both are traversing connectivity sets reachable from the arguments, their

complexities are the same. The complexity can be bounded by the product of:

• the max number of formal parameter seen in the program A;

• the max number of methods resolved, bounded by M ; and

• the number of nodes reachable from a given connectivity set.

There are two cases for the bound:

• For single threaded programs, there is no runnable objects, so each connectivity set

does not point to another connectivity set. Therefore, c(S) = O((A×M×1)α(Z)) =

O(AMα(Z)).

• For multithreaded programs, in an unlikely worst case, there can be an exponential

number of connectivity sets reachable from a given connectivity set, so c(S) =

O((A × M × NncN
M
c)α(Z)) = O(AMNncN

M
c α(Z)).

Therefore, the time complexity is O((|Stmts|+|ReconstMethodStmts|)AMα(Z)) for single

threaded program and O((|Stmts|+|ReconstMethodStmts|)AMNncN
M
c α(Z)) for program

with runnable objects.

The time complexity of Bogda’s analysis:

In both top-down and bottom-up phase, two subphases are performed — one for com-

puting s-escape information and then other for computing f-escape information. As we

see from the rules in Figure 3.27 and Figure 3.28, every rule for f-escaping computation

is more expensive than the corresponding rule for s-escaping, so the time complexity of

Bogda’s analysis is dominated by the time complexity of f-escape information compu-

tation. Thus, we just need to compute the bound of f-escape information computation.

85

Like connectivity analysis, call statements are more expensive to analyze than other

statements, so using a notation similar to the case of connectivity analysis, we have

Time Complexity = (d + 2) × ∑

m∈Methods

I(m) + (d + 2) × ∑

m∈Methods

(I(m) + P (m))

+
∑

m∈ReconstructMethods

I(m)

= O(d
∑

m∈Methods

I(m) + d
∑

m∈Methods

P (m) +
∑

m∈ReconstructMethods

I(m))

where d is the maximal number of back edges on any acyclic path in a call graph. The

factor d is due to Bogda’s analysis being an iterative analysis. Following calculation

similar to that for connectivity analysis, we have

Time complexity = O((d|Stmts| + |ReconstMethodStmts|)c(S))

where S is the most expensive call instruction to analyze in the program. The value of

c(S) can be bounded by considering unifying a call which has A actual arguments, M

resolvable methods and each alias set is pointing to F alias sets. Therefore, c(S) is the

product of M and the sum of the following four complexities, each corresponds to one of

the loops in Figure 3.28:

1. Cost of importing of escape information, C1, this is the case where escape informa-

tion for alias sets reachable from the arguments is imported, so

C1 = O((A + A × F)α(Z)) = O(AFα(Z))

2. Cost of unifying with return value, C2

This is the case where every argument needs to unify with the return value, so

C2 = O(A × (1 + F)α(Z)) = O(AFα(Z))

86

3. Cost of unifying cases where ai.f = aj for some i, j ∈ [0, A] and some field f , C3

This is the case where for every i, j ∈ [0, A], the alias set of ai.f is unified with that

of aj for some field f . Since ai.f is s-escaping already, the unification is done after

performing the union operation for alias sets of ai.f and aj . It does not attempt

to unify fields of aj , so

C3 = O(A × A × Fα(Z)) = O(A2Fα(Z))

4. Cost of unifying cases where ai.f = aj.h for some i, j ∈ [0, A] and some field f, h,

C4

This is the case where for every i, j ∈ [0, A], the alias set of ai.f is unified with

that of aj.h for some field f, h. Since both ai.f and aj .h are s-escaping already, the

unification is done after performing the union operation for alias sets of ai.f and

aj .h, so

C4 = O(A × A × F × Fα(Z)) = O(A2F 2α(Z))

Combining all cases, we see c(S) = O(A2F 2α(Z)), so the time complexity is O((d|Stmts|+
|ReconstMethodStmts|)A2F 2α(Z)).

The time complexity of Ruf’s analysis:

In bottom-up phase, each method is visited once and in each method, each statement

is visited once. In the top-down phase, each SCC is visited once and methods inside an

SCC are visited multiple times until a fixpoint is achieved. Following similar notations

described above, we have

Time Complexity =
∑

m∈Methods

I(m) + (d + 2) × ∑

m∈Methods

(I(m) + P (m))

+
∑

m∈ReconstructMethods

I(m)

= O(d
∑

m∈Methods

I(m) + d
∑

m∈Methods

P (m) +
∑

m∈ReconstructMethods

I(m))

87

where d is the maximal number of back edges on any acyclic path in a call graph. The

factor d results from the topdown phase being done iteratively inside an SCC. In the

worse case, the whole program is in a single SCC. Following a similar calculation as in

the connectivity analysis, we have

Time complexity = O((d|Stmts| + |ReconstMethodStmts|)c(S))

where S is the most expensive call instruction to analyze in the program. The complexity

of c(S) is obtained in the way similar to the multithreaded case of connectivity analysis

c(S) = O(AMNncN
M
c α(Z))

Therefore, the complexity is O((d|Stmts| + |ReconstMethodStmts|)AMNncN
M
c α(Z)).

3.7 Issues of Method Summaries Cloning

By not cloning the method summary of a recursive method, connectivity and Ruf’s

analyses can avoid performing an iterative fixpoint computation for methods inside the

same SCC. While this can reduce the analysis time, it reduces precision, and see in the

benchmark programs we evaluated. In this section, we describe how the imprecision

can arise by not cloning method summaries. In Section 3.7.1, we discuss what would

happen if we do not perform cloning for non-recursive method calls. In Section 3.7.2 and

Section 3.7.3, we discuss how imprecision is incurred for recursive method calls in the a

single calling context and multiple calling context cases respectively.

3.7.1 Not Cloning Non-recursive Method Calls

In both connectivity analysis and Ruf’s analysis, two phases are needed because cloning

is performed when incorporating non-recursive method call summaries. The issue is

88

illustrated in the example shown in Figure 3.39 The analyses first visit methods in

1 static Object ESC;
2

3 f () {
4 Object o = new Object () ;
5 Object p = new Object () ;
6 g (o , ESC) ;
7 g (ESC , p) ;
8 }
9

10 g (Object x , Object y) {
11 }

Figure 3.39: An Example Illustrating the issues of not cloning non-recursive method
calls

bottom-up order. Therefore, when g is analyzed, f is not yet analyzed. In this example,

nothing is done for g as it is empty. When f is analyzed, the method calls at line 6

and line 7 are processed. Since cloning is applied for the summary of g, any operations

performed in analysis of f will not change the analysis summary of g, so the information

that x can receive an escaping actual argument is not saved in the summary of g. Because

of this, a top-down phase is needed to propagate the calling context information from

callers to callee. In this example, the top-down phase will propagate the information

that x is escaping and y is escaping from f to g.

If cloning is not performed when incorporating the summary of g to f, we need not

perform two phases (bottom-up then top-down) — only one phase is needed. Regardless

of the order of visiting methods, when g is analyzed, nothing is done for its summary.

When f is analyzed, without cloning of summary of g, ESCAPE and y are placed in the

same connectivity set or alias set, and ESCAPE and x are placed in the same connectivity

set or alias set. Therefore, after analyzing f and g once, the summary of g should

have recorded that x and y receive escaping actual arguments. However, the saving of

one analysis comes with a cost in analysis precision. Since cloning is not applied when

incorporating summary of g, after line 6 and line 7 of f are analyzed, we have o, ESCAPE

89

and x sharing the same alias set or connectivity set, so o is marked as escaping. Similarly,

p is marked as escaping. Nevertheless, it is obvious that o and p are not escaping. In

fact, if cloning is applied when incorporating the summary of g, and a two phase analysis

is done, o and p will not mark as escaping because:

• in the bottom-up phase, the summary of g is cloned, so the analysis of line 6 does

not mark y as escaping. Hence p will not be marked as escaping. Similarly, o will

not be marked as escaping.

• in the top-down phase, as shown in Figure 3.10, the caller’s (f’s) information is

cloned before unifying with the callee’s (g’s) information. Therefore, the processing

of line 6 does not change the information of o and the processing of line 7 does not

change the information of p.

Therefore, this example shows that cloning method summaries, while increases the anal-

ysis time, can improve the precision of the analysis.

3.7.2 Imprecision due to a Single Context

Figure 3.40 shows an example to illustrate the imprecision due to a single context. Since

f and g are in the same SCC, their summaries are not cloned when the program is

analyzed. Therefore, when line 3 is analyzed, the connectivity set or alias set of a and

of x are merged. Later, when line 4 is analyzed, the connectivity set or alias set of ESC

and of x are merged. Thus, we have a, ESC and x sharing the same connectivity set,

and so a to be marked as escaping. We see from the example, that the variable x is not

even accessed inside g but this recursive call causes a escaping. This imprecision can

propagate outside the SCC. In the example, h is outside the SCC containing f and g.

The call at line 13 makes y escaping even if cloning is done for g when analyzing h.

90

1 static Object ESC;
2

3 f () {
4 g (a) ;
5 g (ESC) ;
6 }
7

8 g (Object x) {
9 f () ;

10 }
11

12 h () {
13 g (y) ;
14 }

Figure 3.40: An Example Illustrating the imprecision of not cloning method summaries
due to a single context

3.7.3 Imprecision due to Multiple Contexts

A formal parameter inside a recursive method can be marked as escaping even if no

caller passes an escaping actual argument to that method. Consider the example shown

in Figure 3.41. We can see the formal parameter y does not receive an escaping argument

1 static Object ESC;
2

3 f () {
4 g (a , a) ;
5 g (ESC , b) ;
6 }
7

8 g (Object x , Object y) {
9 f () ;

10 }

Figure 3.41: An Example Illustrating the imprecision of not cloning method summaries
due to multiple contexts

from any calling context. However, with the calls at line 4 and line 5, y is marked as

escaping:

91

1. line 4 causes connectivity set or alias sets of a, x and y merged

2. line 5 causes connectivity set or alias sets of ESC and x; b and y merged

Combining the two steps, ESC, a, b, x and y all share the same alias set or connectivity

set. Hence, y is escaping.

3.8 Reducing the analysis overhead — IR Caching

In the Jikes RVM, before analyzing a method, the IR for the method must be generated

first. The original implementation of Jikes RVM requires IR regeneration even if a method

has been analyzed before. Because of this, we find that Bogda’s analysis runs slower even

if it performs the same number of union/find operations when compared with connectivity

analysis and Ruf’s analysis. This is because Bogda’s analysis is an iterative analysis that

converges on a fixpoint and a method can be revisited many times. To have a fair raw

time comparison, we augmented the Jikes system to perform IR caching, significantly

reducing the overhead of IR regeneration.

3.9 Issues in a Dynamic System Setting

In previous sections, to simplify the discussion, we described the escape analyses algo-

rithm assuming that all methods are available when the analyses are performed. That

is, the analyses we presented are whole program analyses. However, this assumption is

not true in a dynamic compilation system as the program may need to be be considered

partial all the time as new classes may be loaded as the program is running. At any point

in the program execution, the methods compiled may be based on partial information

about the program. Later when new classes are loaded, some assumptions about the

program may be violated, and the previously generated code may no longer be valid.

The system should invalidate these methods, causing them to be compiled later if they

92

are called. In this section, we discuss our speculative approach which is used to handle

the cases when complete information is not available.

Because of dynamic loading, it is not always possible to know the code associated

with each method invocation. This can be illustrated by the example in Figure 3.42

Depending on the value of n, at line 2, either C1.f() or C2.f() is called at line 4. When

1 void foo (St r ing n) {
2 Class c = Class . forName (n) ;
3 A a = (A) c . newInstance () ;
4 a . f () ;
5 }
6 abstract class A {
7 abstract public void f () ;
8 }
9 class C1 extends A {

10 public void f () { }
11 }
12 class C2 extends A {
13 public void f () { }
14 }

Figure 3.42: An Example Illustrating Incomplete program at runtime

foo is compiled, it is not known which class is being loaded at line 2 as line 2 has not

been executed yet, so it is not known what method is invoked at line 4.

In the Pensieve system, we use an incremental strategy to determine target methods

of a method invocation. When foo is analyzed, without knowing any possible concrete

types of a, the analysis just assumes it is calling nothing. Later when line 3 is executed,

an instance of class A is created by the newInstance call. This causes the constructor of,

say C1 (not shown in the example for brevity) to be compiled. After the compilation of

the constructor, escape analysis assumes that objects of class C1 could be instantiated,

so the concrete type of a can be C1 and C1.f() may be invoked at line 4. Therefore, the

information about the program has been changed and the whole program is re-analyzed.

This may or may not change the escape information of foo. Because of this change, we

need to invalidate methods if the previously compiled code used the escape information

93

which is now too optimistic after the change. Figure 3.43 shows the need of method

void foo (St r ing n) {
bar (new Data ()) ;
Clas s c = Class . forName (n) ;
A a = (A) c . newInstance () ;
a . f () ;

}
void bar (Data d) {

data = d . data ;
}
abstract class A {

abstract public void f () ;
}
class C1 extends A {

public void f () {
. . .
// e s c i s e scap ing
bar (e s c) ;

}
}

Figure 3.43: An Example Illustrating the Need of Method Invalidation

invalidation. When bar is compiled, class C1 is not yet loaded. Later, when bar is

compiled, it is known that the formal parameter d of bar references a non-escaping

object, so no fences are needed for the load d.data. Later, when the analysis learns that

C1 is loaded, the whole program is re-analyzed and it is found that the formal parameter

of bar can reference an escaping object if bar is called from line 17. Hence, the code

for bar is invalidated. Later when bar is invoked, the compiler will use the correct

information (saying that d could be escaping) and a fence is inserted before the load of

d.data.

In some situations, the method being invalidated is actually on the activation stack.

This can be illustrated by an example in Figure 3.44. Again, when foo is compiled,

the analysis does not know C1.f() is called. It assumes a is not escaping so fences are

not needed for the load a.data. Later, when C1 is being loaded during foo’s execution,

the whole program is re-analyzed and found that a can escape because of the call a.f().

Therefore, an invalidation should be done for foo because a fence is needed for the load

94

void foo (St r ing n) {
Class c = Class . forName (n) ;
A a = (A) c . newInstance () ;
a . f () ;
d = a . data ;

}
abstract class A {

int data ;
abstract public void f () ;

}
class C1 extends A {

public void f () { // t h i s e s cape s in f }
}

Figure 3.44: An Example Illustrating the possibility of invalidating method on stack

a.data. However, foo is still on the activation stack, so invalidation does not change

the code being executed. We have found that connectivity analysis does not encounter

such situations with SPECjvm98 and Java Grande benchmarks. In general, techniques

like on-stack-replacement[FQ03] are needed to address this problem.

3.10 Incremental Connectivity Analysis

Because of dynamic class loading, the whole program is analyzed whenever the call graph

changes. Since the change is usually small, a full-fledged analysis is not usually necessary.

In the Pensieve system, an incremental strategy is implemented for connectivity analysis.

The idea is to reuse previously computed information when possible. Figure 3.45

shows an example where an incremental strategy can reduce the analysis cost. In both

incremental and non-incremental strategies, the program is executed in the following

way:

1. when when main is executed, class A1 is loaded and A1.g() and A1.bar are included

to the call graph.

95

class Main {
static public void main (St r ing [] a rg s) {

Class c = Class . forName (‘ ‘ A1 ’ ’) ;
A a = (A) c . newInstance () ;
a . g () ;
bar () ;

}
static void bar () { }

}
class A1 extends A {

void g () {
Class c = Class . forName (‘ ‘ A2 ’ ’) ;
A b = (A) . c . newInstance () ;
b . h () ;

}
}
class A2 extends A {

void h () {
// t h i s e s cape s in h ()

}
}

Figure 3.45: An Motivating example for incremental analysis

2. Later when A1.g is executed, class A2 is loaded and A2.h() is included in the call

graph.

In the absence of the incremental strategy, the whole program is re-analyzed, when

call graph is changed. Therefore, main, g and bar will be analyzed when A1 is loaded.

Later, when A2 is loaded, main, g, bar and h will all be re-analyzed, i.e., all methods are

re-analyzed.

In the our incremental strategy, when A1 is loaded, in the bottom up phase:

• g is analyzed because it is newly included in the call graph;

• main is analyzed because it has a new callee g; and

• bar is not analyzed because do not have any new direct or indirect callee.

and in the top down phase:

96

• main is analyzed because it has a newly included callee g;

• bar is not analyzed because the context escape information for bar is not changed;

and

• g is analyzed because it is newly included in the call graph. changed.

Later, when A2 is loaded, in the bottom up phase:

• h is analyzed because it is newly included in the call graph;

• g is analyzed because it has a new callee h;

• main is not analyzed because the escape information for g does not change; and

• bar is not analyzed because do not have any new direct or indirect callee.

and in the top down phase:

• main is not analyzed because its context escape information is not changed and

escape information for g and bar is the same;

• bar is not analyzed for the reason same as that of main;

• g is analyzed because it has a new callee h; and

• h is analyzed because it is newly included in the call graph. changed.

We can see from the example that the incremental strategy can skip analyzing methods

which are not affected by the newly loaded method. For example, bar can be skipped

during re-analysis resulting from both class loadings while main is skipped during the

re-analysis resulting from the second class loading.

Note that this incremental strategy is not implemented for Bogda’s and Ruf’s anal-

yses. When we perform comparisons among the escape analyses, we do not enable the

incremental strategy of connectivity analysis.

97

3.11 Previous Works

In addition to [BH99, Ruf00], much has been done for escape analysis for multi-threaded

object oriented languages developed [CGS+99, WR99, Bla99, SR01, RMR01, VR01,

GS00]. Some of them [CGS+99, WR99, SR01, RMR01, VR01] focus on analysis precision

while other [Bla99] focus on reducing analysis cost. As for application, many [CGS+99,

WR99, Bla99, RMR01] are used for synchronization removal while other [Bla99, GS00,

RMR01, VR01] for allocating objects on stack.

We chose to compare our analysis with [BH99, Ruf00] because they are efficient and

they are similar in nature. These can be consider unification-based analyses. On the

other hand, [CGS+99, WR99, SR01, RMR01, VR01] are graph-based analyses. While

graph-based analyses are more precise, they are more expensive when compared with

unification-based analyses. Blanchet’s analysis[Bla99] is a simplified alias analysis style

escape analysis using integers as the lattice. It is not clear whether [Bla99] is more efficient

than [BH99, Ruf00] and connectivity analysis. Finally, [GS00] is a linear algorithm in

term of time and space complexity. However, it is focusing on stack allocation and does

not compute enough information to perform fence insertion.

98

Chapter 4

Experimental Results

In this section we present the results of executing benchmark programs compiled with

our Pensieve compiler using the escape analyses described in Section 3. In Section 4.1,

we describe the evaluation criteria. Then, in Section 4.2, we describe the environment

where the experiments were conducted. In Section 4.3, we present the benchmarks used

to evaluate the system. Performance numbers will be presented in Section 4.4 and Sec-

tion 4.5

4.1 Evaluation Criteria

In this study, the effectiveness of escape analyses is evaluated. This includes analysis

time and analysis precision:

• Analysis time can be evaluated directly by measuring the time spent in performing

the analysis. A disadvantage of using raw analysis time is that it is a function of

the implementation. Because of this, we would like to use some implementation

independent figure of merit to evaluate the analysis time. This quantity should

reflect the algorithmic cost but be independent of implementation choices (e.g.

using a java.lang.HashMap vs using a java.lang.TreeMap). From the earlier

99

discussions, we can see that the basic operations, used by all analysis algorithms

are Find and Union, so the number of Find and Union are ideal implementation

independent quantities to compare analysis complexity. Therefore, in Section 4.4,

both the raw analysis time and the number of Find and Union are presented.

• Analysis precision can be evaluated in many ways as it depends on the usage of

the analysis. In this study, the precision is evaluated in the following ways:

1. Number of created objects marked as escaping by different escape analyses.

Simplified Ruf’s

Adapted Ruf’s

Connectivity

Bogda’s

*

Figure 4.1: Classifying Objects Created

Figure 4.1 shows a Venn diagram of the sets of objects marked as escaping.

The region marked by “*” represents the set of objects marked as escaping

by both simplified Ruf’s analysis and connectivity analysis but not escaping

by neither adapted Ruf’s analysis nor Bogda’s analysis. In Section 4.5.1, we

discuss our findings in the number of objects falling into different regions. We

report both the dynamic count — number of objects created at runtime, and

static count — number of object creation points in the source program.

2. Fence insertion driven by escape analysis. The number of fences inserted

reflects the effectiveness of escape analysis in helping reducing the number of

unnecessary fences. In Section 4.5.2, we include both the dynamic number of

fences executed and the static number of fences inserted in the code.

100

3. Synchronization removal driven by escape analysis. The number of synchro-

nization operations removed reflects the effectiveness of escape analysis in

helping reducing amount of unnecessary synchronization. In this study, in-

stead of removing synchronizations explicitly as done in [BH99, Ruf00], we

put a runtime check in the lock/unlock runtime library call. If the object is

marked as non-escaping, the lock and unlock operation can be skipped. In Sec-

tion 4.5.3, we include both the static number of object allocation sites marked

as creating thread local objects and the dynamic number of synchronization

executed.

4.2 Experiment Settings

In this section, we describe the machine and software settings for the experiments. We

describe the machine settings in Section 4.2.1 and the software settings in Section 4.2.2.

4.2.1 Target Architectures

The experiments are performed on two platforms — the Intel platform and the PowerPC

platform:

• The Intel platform is a Dell PowerEdge 6600 SMP with 4 Intel 1.5Ghz Xeon pro-

cessors with 1MB cache each, and 6G system memory.

• The PowerPC platform is an IBM SP 9076-550 with 8 375Mhz processors with 8GB

system memory.

101

4.2.2 Software Settings

Our compiler system is implemented on top of the Jikes Research Virtual Machine

[AAB+00, AFG+00a, BCF+99] version 2.3.1. It is a virtual machine written mostly in

Java. We use the FastAdaptiveSemiSpace configuration (internal assertions removed,

with adaptive infrastructure and a semispace copying garbage collector) with no fences

inserted within the virtual machine code. For the experiments reported below, we do not

use the adaptive compilation system. This is to avoid the nondeterministic behavior due

to the adaptive compiler system’s decisions in performing optimizations. We force the

system to use the optimizing compiler and code invalidation is done when the compiler

finds that previously generated code is too optimistic. To evaluate the overhead of our

system, we compare the performance of programs assuming a SC programming language

memory model to the performance of programs assuming the default Jikes RVM pro-

gramming language memory model. Under this default memory model, the compiler

performs memory access optimizations such as redundant load elimination, dead store

elimination, and loop invariant code motion, without being constrained by inter-thread

effects. When compiling for the SC model , we assume there is a delay edge between

every pair of shared data accesses found from the algorithm described in Chapter 3.

There are two major settings of the compiler:

1. Baseline setting(base) — default setting without inserting fences nor constraining

compiler optimizations. This is the original Jikes compiler without modifications.

2. Escape analysis settings — inserting fences and constraining compiler optimizations

using escape analysis results. There are five sub-settings:

(a) Bogda’s Escape Analysis (bogda) says that objects are escaping if they can

be reached by the global state or can be reached by another object via two or

more heap references

102

(b) Connectivity Analysis (connect2) says objects are escaping if they are con-

nected to the global state.

(c) Extended Connectivity Analysis has two criteria depending on the use of es-

cape analysis:

• If the analysis is used for fence insertion(connect3), objects are escaping

if they are connected to the global state and are loaded and/or stored by

multiple threads.

• If the analysis is used for synchronization removal(connect4), objects are

escaping if they are connected to the global state and are synchronized

by multiple threads.

(d) Simplified Ruf’s Escape Analysis (ruf3) says objects are escaping if they are

marked reachable by the global states.

(e) Adapted Ruf’s Escape Analysis has two criteria depending on the use of escape

analysis:

• If the analysis is used for fence insertion (ruf5), objects are escaping if

they are reachable by the global state and are loaded and/or stored by

multiple threads.

• If the analysis is used for synchronization removal (ruf4), objects are

escaping if they are reachable by the global state and are synchronized by

multiple threads.

4.3 The Benchmarks

We evaluate our system using two sets of benchmarks — the SPECjvm98 benchmark

suite and the Java Grande benchmark suite. SPECjvm98 is a general purpose com-

puting suite from the Standard Performance Evaluation Corporation (SPEC). The Java

Grande Forum Multi-threaded Benchmarks Suite is a multi-threaded scientific compu-

tation benchmark from the Edinburgh Parallel Computing Centre (EPCC). Table 4.1

103

Program #methods Lines of Src Description
201 compress 58 11273 Modified Lempel-Ziv method (LZW)

202 jess 450 20925 The Java Expert ShellSystem
209 db 56 11374 Memory resident database

213 javac 778 - Java compiler from the JDK 1.0.2
222 mpegaudio 190 - An application decompresses audio files

227 mtrt 184 14146
A multithreaded implemen-
tations of raytracer

228 jack 294 - A Java parser generator

Table 4.1: SPECjvm98 Benchmarks Suite information

Program # methods Lines of Src Description
moldyn 39 11414 Molecular Dynamics simulation

montecarlo 109 13678 Monte Carlo simulation
raytracer 73 11981 3D Ray Tracer

Table 4.2: Java Grande Multi-threaded Benchmarks Suite information

briefly describes the SPECjvm98 benchmarks suite and Table 4.2 briefly describes the

Java Grande Forum Multi-threaded Benchmarks suite. For some of the benchmark pro-

grams, the source file is not available, and so the source line counts are not available for

them.

4.4 Evaluating Analysis Time

In this section, we present the analysis time results. Both the analysis time in seconds

and the number of union and find operations are reported. In Section 4.4.1, we presents

some data to show the relationship between raw analysis time and number of union and

find operations. The analysis time is shown in Table 4.3 and its graphical plot is shown in

Figure 4.4. Note that in the graph, we also include the geometric means of all benchmark

programs’ analysis time with respect to different escape analyses algorithm. The number

of union and find operations are shown in Table 4.4 and its graphical plot is shown in

104

Figure 4.5. Similar to the case of the analysis time graph, we include the geometric

means of all benchmark programs’ number of union and find operations.

4.4.1 Raw Analysis Time vs Number of Union and Find Oper-

ations

In this section, we relate the raw analysis time and the number of union and find op-

erations. Figure 4.2 and Figure 4.3 shows the regression graphs for Intel and PowerPC

platforms respectively. For each platform, we show the regression graph for individual

analysis algorithms as well as that for combined data for all analysis algorithms. We can

see in all cases, the values of R2 are very close to 1 where R is the correlation coefficient.

This shows that in all cases there is a linear relationship between the raw analysis time

and the number of union and find operations.

4.4.2 Observations

We can see from the data that the connectivity analysis and the extended connectivity

analyses are the fastest analyses. This is reflected in both the raw analysis time and the

number of union-find operations on both platforms:

• For the Intel platform, it takes less than 42 seconds to perform the full connectiv-

ity analysis and 47 seconds to perform the extended connectivity analysis, while

it takes at most 316 seconds to perform Bogda’s analysis, 934 seconds to perform

simplified Ruf’s analysis and 991 seconds to perform adapted Ruf’s analysis. Sim-

ilarly, for the number of union-find operations, the connectivity analyses require

less than 75 million union-find operations to analyze programs while Bogda’s anal-

ysis requires more than 402 million union-find operations to analyze 202 jess,

and Ruf’s analyses require more than 1800 million union-find operations to analyze

213 javac.

105

C
o

n
n

ect2 D
ata an

d
 its R

eg
ressio

n
 (In

tel)

y =
 0.0007x

R
2 =

 0.9965

0

10000

20000

30000

40000

50000

0
1E

+
07

2E
+

07
3E

+
07

4E
+

07
5E

+
07

6E
+

07
7E

+
07

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

C
onnect2

Linear (C
onnect2)

C
o

n
n

ect3 D
ata an

d
 its R

eg
ressio

n
 (In

tel)

y =
 0.0006x

R
2 =

 0.998

0

10000

20000

30000

40000

50000

0
20000000

40000000
60000000

80000000

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

C
onnect3

Linear (C
onnect3)

B
o

g
d

a D
ata an

d
 its R

eg
ressio

n
 (In

tel)

y =
 0.0007x

R
2 =

 0.9891

0
50000

100000
150000
200000
250000
300000
350000

0.00E
+

00
1.00E

+
08

2.00E
+

08
3.00E

+
08

4.00E
+

08
5.00E

+
08

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

B
ogda

Linear (B
ogda)

R
u

f3 D
ata an

d
 its R

eg
ressio

n
 (In

tel)

y =
 0.0005x

R
2 =

 0.9988

0

200000

400000

600000

800000

1000000

0
500000000

1000000000
1500000000

2000000000

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

R
uf3

Linear (R
uf3)

R
u

f5 D
ata an

d
 its R

eg
ressio

n
 (In

tel)

y =
 0.0004x

R
2 =

 0.9997

0
200000
400000
600000
800000

1000000
1200000

0
5E

+
08

1E
+

09
1.5E

+
09

2E
+

09
2.5E

+
09

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

R
uf5

Linear (R
uf5)

A
ll D

ata an
d

 its R
eg

ressio
n

 (In
tel)

y =
 0.0005x

R
2 =

 0.9816

0
200000
400000
600000
800000

1000000
1200000

0
5E

+
08

1E
+

09
1.5E

+
09

2E
+

09
2.5E

+
09

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

A
ll

Linear (A
ll)

F
ig

u
re

4
.2

:
A

n
aly

sis
T

im
e

R
egression

G
rap

h
s

for
In

tel
P

latform

106

C
o

n
n

ect2 D
ata an

d
 its R

eg
ressio

n
 (P

o
w

erP
C

)

y =
 0.0015x

R
2 =

 0.9978

0

20000

40000

60000

80000

100000

0
1E

+
07

2E
+

07
3E

+
07

4E
+

07
5E

+
07

6E
+

07
7E

+
07

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

C
onnect2

Linear (C
onnect2)

C
o

n
n

ect3 D
ata an

d
 its R

eg
ressio

n
 (P

o
w

erP
C

)

y =
 0.0014x

R
2 =

 0.999

0

20000

40000

60000

80000

100000

120000

0
20000000

40000000
60000000

80000000

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

C
onnect3

Linear (C
onnect3)

B
o

g
d

a D
ata an

d
 its R

eg
ressio

n
 (P

o
w

erP
C

)

y =
 0.0017x

R
2 =

 0.994

0

200000

400000

600000

800000

0.00E
+

00
1.00E

+
08

2.00E
+

08
3.00E

+
08

4.00E
+

08
5.00E

+
08

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
erato

n
s

Time (ms)

B
ogda

Linear (B
ogda)

R
u

f3 D
ata an

d
 its R

eg
ressio

n
 (P

o
w

erP
C

)

y =
 0.0015x

R
2 =

 0.9999

0

500000

1000000

1500000

2000000

2500000

3000000

0
500000000

1000000000
1500000000

2000000000

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

R
uf3

Linear (R
uf3)

R
u

f5 D
ata an

d
 its R

eg
ressio

n
 (P

o
w

erP
C

)

y =
 0.0012x

R
2 =

 1

0

500000

1000000

1500000

2000000

2500000

3000000

0
50000000

0
1E

+
09

1.5E
+

09
2E

+
09

2.5E
+

09

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

R
uf5

Linear (R
uf5)

A
ll D

ata an
d

 its R
eg

ressio
n

 (P
o

w
erP

C
)

y =
 0.0013x

R
2 =

 0.9899

0
500000

1000000
1500000
2000000
2500000
3000000
3500000

0
5E

+
08

1E
+

09
1.5E

+
09

2E
+

09
2.5E

+
09

N
u

m
b

er o
f U

n
io

n
-fin

d
 o

p
eratio

n
s

Time (ms)

A
ll

Linear (A
ll)

F
ig

u
re

4
.3

:
A

n
aly

sis
T

im
e

R
egression

G
rap

h
s

for
P
ow

erP
C

P
latform

107

• For the PowerPC platform, It takes less than 94 seconds to perform the full connec-

tivity analysis and 106 seconds to perform the extended connectivity analysis, while

it takes at most 726 seconds to perform Bogda’s analysis, 2656 seconds to perform

simplified Ruf’s analysis and 2831 seconds to perform adapted Ruf’s analysis. Sim-

ilarly, for the number of union-find operations, the connectivity analyses require

less than 75 million union-find operations to analyze programs while Bogda’s anal-

ysis requires more than 402 million union-find operations to analyze 202 jess,

and Ruf’s analyses require more than 1800 million union-find operations to analyze

213 javac.

Moreover, we see that the variation of analysis cost (in terms of time and number of

union-find operations) of connectivity analyses is smaller than that of Bogda’s and Ruf’s

analyses.

4.4.3 Interpretations

As expected, the analysis time for connectivity analyses is smaller because:

• Unlike Bogda’s analysis, it does not need to do fixpoint computations for recursive

methods. We can see this from the large variation in Bogda’s analysis time for jess

and javac and the much smaller variation in connectivity analysis time for these

two programs. This is because these two programs are highly recursive.

• Unlike Ruf’s analyses, it does not need to merge complicated analysis data struc-

tures. Again, we can see this from the variation in analysis times for jess and javac.

In these two programs, the analysis data structures are large because the programs

build recursive tree structures and Ruf’s analyses need to model them in analysis

time. Connectivity analyses, on the contrary, only model the tree structures using

a smaller number of connectivity sets.

108

• For programs other than jess and javac, connectivity analyses is also cheaper than

Bogda’s and Ruf’s analyses because the structure of connectivity sets is simpler

than the alias sets used by Ruf’s and Bogda’s analyses.

Also, the analysis cost for connect3 is larger than that of connect2 while the analysis

cost for ruf5 is larger than that of ruf3 as expected. This is because connect3 and ruf5

need to maintain extra data structures (the set of thread accessing the connectivity/alias

sets). Note also that from the data, we see that the number of union-find operation

counts has a high correlation with the analysis time, so both quantities are consistent

with each other.

Benchmark bogda connect2 connect3 ruf3 ruf5
201 compress 5890 1149 1248 3189 3750
202 jess 316305 41664 46329 206198 270723
209 db 5072 934 1044 2542 3037
213 javac 192596 11123 13104 934818 991159
222 mpegaudio 11710 2205 2541 20822 23158
227 mtrt 6816 1245 1395 2871 3410
228 jack 9176 1785 1978 5803 7104

moldyn 1897 642 709 1017 1259
montecarlo 5704 1209 1380 2266 2817
raytracer 2189 737 793 1504 2002

(a) Intel Platform

Benchmark bogda connect2 connect3 ruf3 ruf5
201 compress 13934 2847 3090 8657 10385
202 jess 726847 93800 105207 515244 718604
209 db 12377 2466 2816 7079 8212
213 javac 466940 27294 32446 2656319 2831840
222 mpegaudio 27898 5706 6363 57611 65231
227 mtrt 16464 3273 3629 7913 9239
228 jack 22262 4597 5092 16316 19592

moldyn 4539 1512 1624 2899 3709
montecarlo 12188 3419 3666 6407 8417
raytracer 5232 1775 1980 3565 4713

(b) PowerPC Platform

Table 4.3: Analysis time comparison of escape analyses in ms

109

100

1000

10000

100000

1000000
Time (ms)

com
press

jess
db

javac
m

pegaudio
m

trt
jack

m
oldyn

m
ontecarlo

raytracer
A

V
G

B
en

ch
m

arks

bogda
connect2

connect3
ruf3

ruf5

(a)
Intel

P
latform

1000

10000

100000

1000000

10000000

Time (ms)

com
press

jess
db

javac
m

pegaudio
m

trt
jack

m
oldyn

m
ontecarlo

raytracer
A

V
G

B
en

ch
m

arks

bogda
connect2

connect3
ruf3

ruf5

(b)
P
ow

erP
C

P
latform

F
ig

u
re

4
.4

:
A

n
aly

sis
T

im
e

G
rap

h

110

100000

1000000

10000000

100000000

1000000000

10000000000
Num of Union and Find Operations

compress

jess

db

javac

mpegaudio

mtrt

jack

moldyn

montecarlo

raytracer

AVG

B
en

ch
m

arks

bogda
connect2

connect3
ruf3

ruf5

(a)
Intel

P
latform

100000

1000000

10000000

100000000

1000000000

10000000000

Num of Union and Find Operations

compress

jess

db

javac

mpegaudio

mtrt

jack

moldyn

montecarlo

raytracer

AVG

B
en

ch
m

arks

bogda
connect2

connect3
ruf3

ruf5

(b)
P
ow

erP
C

P
latform

F
ig

u
re

4
.5

:
U

n
ion

-F
in

d
C

ou
n
t

G
rap

h

111

Benchmark bogda connect2 connect3 ruf3 ruf5
201 compress 5840614 1472308 1818152 5651462 7868717
202 jess 402579343 60636462 74076066 340784808 586013018
209 db 5259505 1183538 1460413 4631151 6506659
213 javac 298407665 19457373 23950918 1819024377 2291711654
222 mpegaudio 12553305 2665286 3776638 38411127 51628566
227 mtrt 6524657 1549956 1946474 4708326 6630883
228 jack 9102907 2104451 2661841 11226287 16640929

moldyn 1628818 526080 694086 1058056 1508353
montecarlo 5056461 1231069 1555353 2464042 3490701
raytracer 1893013 688356 892159 1409270 2013174

(a) Intel Platform

Benchmark bogda connect2 connect3 ruf3 ruf5
201 compress 5840463 1479384 1818152 5651409 7868618
202 jess 402579024 61040205 74076133 340765843 586077538
209 db 5259307 1188496 1460419 4631552 6506478
213 javac 298407121 20135740 23950926 1819047444 2292376018
222 mpegaudio 12553212 2693776 3776632 38411072 51628504
227 mtrt 6524556 1555768 1946474 4708246 6630797
228 jack 9102253 2114067 2661833 11238773 16654691

moldyn 1628649 532701 694086 1057983 1508278
montecarlo 5087972 1240398 1555367 2462971 3491627
raytracer 1892844 696499 892171 1409236 2014399

(b) PowerPC Platform

Table 4.4: Union-find count comparison of escape analyses

112

4.4.4 Incremental Analysis Time

For connectivity analyses, we collect the time taken and the number of unions and finds

performed for the incremental analysis described in Section 3.10. The data are shown in

Table 4.5 and Table 4.6 respectively. We see that both platforms have similar behavior.

The extended connectivity analysis is slightly more expensive than the full one. For the

Intel platform, the incremental strategy speeds up the full analysis from 31% to 99% of

the non-incremental analysis time and the extended analysis from 25% to 99%. For the

PowerPC platform, the incremental strategy speeds up the full analysis from 23% to 92%

of the non-incremental analysis time and the extended analysis from 21% to 87%. We

can also see from Table 4.6, that the reduction in number of union-find operations has

similar trend.

4.5 Evaluating Analysis Precision

In this section, we present the analysis precision results. In Section 4.5.1, we report

data keeping track of the number of objects marked as escaping with respect to different

escape analyses. In Section 4.5.2, we report the number of fences inserted statically and

executed dynamically when enforcing SC. Finally, in Section 4.5.3, we report the number

when the escape analyses are used for synchronization removal.

4.5.1 Number of Object Created Marked as Escaping

For the same object in a program, different escape analyses may mark it differently due

to the precision of the analyses. For example, an object located in a binary tree may

be marked as escaping by Bogda’s escape analysis but not by Connectivity and Ruf’s

analyses. A qualitative discussion on this issue has been presented in Section 3.6.1. In

this section, we present some quantitative data to evaluate the analyses. Table 4.9 shows

the data when programs are executed on the Intel platform while Table 4.10 shows the

113

Benchmark connect2 connect3
orig inc speedup orig inc speedup

201 compress 1149 649 1.77042 1248 712 1.75281
202 jess 41664 23486 1.77399 46329 26193 1.76876
209 db 934 685 1.3635 1044 758 1.37731
213 javac 11123 6455 1.72316 13104 7743 1.69237
222 mpegaudio 2205 1197 1.84211 2541 1231 2.06418
227 mtrt 1245 882 1.41156 1395 998 1.3978
228 jack 1785 1318 1.35432 1978 1446 1.36791

moldyn 642 482 1.33195 709 532 1.33271
montecarlo 1209 837 1.44444 1380 948 1.4557
raytracer 737 580 1.27069 793 644 1.23137

(a) Intel Platform

Benchmark connect2 connect3
orig inc speedup orig inc speedup

201 compress 2847 1693 1.68163 3090 1955 1.58056
202 jess 93800 54468 1.72211 105207 60390 1.74213
209 db 2466 1770 1.39322 2816 1944 1.44856
213 javac 27294 16367 1.66762 32446 19456 1.66766
222 mpegaudio 5706 2994 1.90581 6363 3270 1.94587
227 mtrt 3273 2386 1.37175 3629 2740 1.32445
228 jack 4597 3505 1.31155 5092 3900 1.30564

moldyn 1512 1172 1.2901 1624 1327 1.22381
montecarlo 3419 2297 1.48846 3666 2469 1.48481
raytracer 1775 1399 1.26876 1980 1603 1.23518

(b) PowerPC Platform

Table 4.5: Incremental Connectivity Analyses time in ms

114

Benchmark connect2 connect3
201 compress 656861 812199
202 jess 28694898 35281097
209 db 737101 910078
213 javac 7905266 9814283
222 mpegaudio 929371 1315681
227 mtrt 945285 1187056
228 jack 1313672 1668082

moldyn 348649 462522
montecarlo 643456 817748
raytracer 457786 595562

(a) Intel Platform

Benchmark connect2 connect3
201 compress 656805 812133
202 jess 28694739 35280568
209 db 737030 909988
213 javac 7905000 9813952
222 mpegaudio 929334 1315632
227 mtrt 945189 1186933
228 jack 1313251 1667569

moldyn 348549 462398
montecarlo 643522 817846
raytracer 457707 595456

(b) PowerPC Platform

Table 4.6: Union-find count of Incremental Connectivity Analyses

115

Abbreviation Meaning
b Bogda escaping (bogda)
c2 Full Connectivity escaping (connect2)
c3 Extended Connectivity escaping (connect3)
r3 Simplified Ruf escaping (ruf3)
r5 Adapted Ruf escaping (ruf5)

Table 4.7: Abbreviations used in Table 4.8

data when programs are executed on the PowerPC platform. We expect the static and

dynamic counts for single threaded programs should be identical for both platforms.

However, as we see from the tables, there are three different counts when comparing

both platforms:

• The dynamic counts in column 8 and 26 of javac. To investigate the difference, we

identify the locations where these objects are allocated and then insert statements

manually to record the number of times these objects are allocated. We found

that the numbers are different for different runs (even for the same platform). A

similar non-deterministic behavior has been reported by the Jikes RVM Researchers

mailing list[IBM03]. The reason suggested there was that the benchmark makes

use of java.util.Hashtable. Since hashcodes for the same object may vary in

different runs, the behavior in the use of java.util.Hashtable may be different.

• The static and dynamic counts at column 26 of mpegaudio. We think this is due to

some minor bugs in the counting mechanism provided by the Jikes RVM. We found

that the counter has been inserted but the system fail to report the final values of

them. We verified that if the final values are reported correctly by including the

missed values, both platforms should have the same static and dynamic values.

Table 4.7 shows some abbreviations used in classifying objects. Using these abbrevia-

tions, objects are classified into 32 types as shown in Table 4.8. For example, if an object

is marked as not escaping by Bogda’s, escaping by both full connectivity and extended

116

Type Meaning
0 !b+!c2+!c3+!r3+!r5
1 !b+!c2+!c3+!r3+r5
2 !b+!c2+!c3+r3+!r5
3 !b+!c2+!c3+r3+r5
4 !b+!c2+c3+!r3+!r5
5 !b+!c2+c3+!r3+r5
6 !b+!c2+c3+r3+!r5
7 !b+!c2+c3+r3+r5
8 !b+c2+!c3+!r3+!r5
9 !b+c2+!c3+!r3+r5
10 !b+c2+!c3+r3+!r5
11 !b+c2+!c3+r3+r5
12 !b+c2+c3+!r3+!r5
13 !b+c2+c3+!r3+r5
14 !b+c2+c3+r3+!r5
15 !b+c2+c3+r3+r5

Type Meaning
16 b+!c2+!c3+!r3+!r5
17 b+!c2+!c3+!r3+r5
18 b+!c2+!c3+r3+!r5
19 b+!c2+!c3+r3+r5
20 b+!c2+c3+!r3+!r5
21 b+!c2+c3+!r3+r5
22 b+!c2+c3+r3+!r5
23 b+!c2+c3+r3+r5
24 b+c2+!c3+!r3+!r5
25 b+c2+!c3+!r3+r5
26 b+c2+!c3+r3+!r5
27 b+c2+!c3+r3+r5
28 b+c2+c3+!r3+!r5
29 b+c2+c3+!r3+r5
30 b+c2+c3+r3+!r5
31 b+c2+c3+r3+r5

Table 4.8: Object types used in Table 4.9 and Table 4.10 to classify objects

connectivity analyses, but not by either of Ruf’s analyses, the fact can be represented as

!b+c2+c3+!r3+!r5 and the object is classified as type 12. By consulting Table 4.9 and

Table 4.10 we find that there are indeed objects of type 12 created in mtrt.

4.5.1.1 Static Counts

The static count for a given type of object records the number of object creation sites

that create that kind of object. For example, both Table 4.9 and Table 4.10 tell us that

the static count of type 10 objects for jess is 5, meaning that there are five instructions

in jess that create objects of type 10.

Using the static counts shown in Table 4.9 and Table 4.10, we can infer some rela-

tionships between the analyses (with respect to the benchmark programs). For example,

we can infer, as expected, that adapted Ruf analysis is more precise than the simplified

Ruf analysis. This can be done by showing r5 ⇒ r3 (if adapted Ruf analysis marks an

117

BENCHMARK 0 3 8 10 12 15 16
201 compress 1/0 - 24/145 1/125 - - -
202 jess 12/2105 - 68/14544 5/5 - - -
209 db 3/405 - 34/1900 6/30 - - -
213 javac 3/94220 - 101/1635715 27/201440 - - -
222 mpegaudio 9/100 - 25/30 - - - -
227 mtrt 46/27724302 - - - 21/665 2/20 65/1720993
228 jack 10/4165 - 129/1908440 2/3749860 - - 2/85

moldyn 6/6 - - - 22/5 - -
montecarlo 4/60001 - - - 49/485207 1/1 -
raytracer 10/37094616 3/12 - - 23/8 - -

BENCHMARK 18 19 24 26 28 30 31
201 compress - - 14/2125 21/521 - - -
202 jess - - - 262/39494340 - - -
209 db - - - 24/769337 - - -
213 javac - - 1/1520 537/16752321 - - -
222 mpegaudio - - - 1028/6544 - - -
227 mtrt - - - - - - 29/2850096
228 jack - - 4/4590 203/1507735 - - -

moldyn - 10/32830 - - - 1/1 7/10
montecarlo - 2/4 - - 24/60001 3/4 7/180006
raytracer 5/273 29/19139639 - - - 1/1 7/8913003

Table 4.9: Classify objects created for Intel platform. First numbers are the static
counts while the second numbers are the dynamic counts

118

BENCHMARK 0 3 8 10 12 15 16
201 compress 1/0 - 24/145 1/125 - - -
202 jess 12/2105 - 68/14544 5/5 - - -
209 db 3/405 - 34/1900 6/30 - - -
213 javac 3/94220 - 101/1635739 27/201440 - - -
222 mpegaudio 9/100 - 25/30 - - - -
227 mtrt 46/27341003 - - - 21/665 2/20 65/1716024
228 jack 10/4165 - 129/1908440 2/3749860 - - 2/85

moldyn 6/6 - - - 22/5 - -
montecarlo 4/60000 - - - 49/485149 1/1 -
raytracer 10/35838886 3/11 - - 23/6 - -

BENCHMARK 18 19 24 26 28 30 31
201 compress - - 14/2125 21/521 - - -
202 jess - - - 262/39494340 - - -
209 db - - - 24/769337 - - -
213 javac - - 1/1520 537/16752338 - - -
222 mpegaudio - - - 1032/6548 - - -
227 mtrt - - - - - - 29/2846502
228 jack - - 4/4590 203/1507735 - - -

moldyn - 10/23600 - - - 1/1 7/10
montecarlo - 2/4 - - 24/59998 3/4 7/179998
raytracer 5/273 29/18872583 - - - 1/1 7/8852836

Table 4.10: Classify objects created for PowerPC platform. First numbers are the static
counts while the second numbers are the dynamic counts

119

object as escaping, the simplified Ruf analysis will mark it as escaping as well), which

can be shown by the absence of objects classified as both r5 and !r3. This can be shown

by the absence of type 1, 5, 9, 13, 17, 21, 25 and 29 objects. Checking the static counts,

we see that there do not exist columns for type 1, 5, 9, 13, 17, 21, 25 and 29 objects,

so the adapted Ruf analysis is more precise. Similar arguments can be made to show

that the extended connectivity analysis is indeed more precise than the full connectivity

analysis. Also, the presence of columns 3, 12 and 16 suggests that none of the analyses

are absolutely more precise than others. For example, the presence of column 3 infers

that there exist cases (in raytracer) where adapted Ruf’s analysis marks an object as

escaping but Bogda’s and connectivity analyses do not.

4.5.1.2 Dynamic Counts

The dynamic counts for a given type of object records the number of objects created that

are classified as that type. For example, both Table 4.9 and Table 4.10 tell us that the

dynamic count of type 10 objects for db is 30, meaning that db creates 30 objects of type

10.

While static counts give some insight about the precision of the analyses, the counts

may not reflect the programs’ runtime behavior. For example, in the case of raytracer,

there are 10 object creation sites marked as creating type 0 objects and there are 23

object creation sites marked as creating type 12 objects. However, at runtime, there are

more than 35000000 type 0 objects created while there are less than 10 type 12 objects

created.

From the dynamic counts, we have the following observations:

• compress. Most created objects are of type 24. This means that most objects are

marked as escaping by Bogda’s and full connectivity analysis but are marked as

not escaping by the extended connectivity and the two Ruf’s analyses.

120

• jess, db, javac and mpegaudio. Most created objects are of type 26. This means that

most objects are marked as escaping by Bogda’s, full connectivity and simplified

Ruf’s analysis but are marked as not escaping by extended connectivity and adapted

Ruf’s analyses.

• mtrt and raytracer. Most created objects are of type 0. This means that most

objects are not marked as escaping by all the analyses.

• jack. Most created objects are of type 10. This means that most objects are marked

as escaping by full connectivity and simplified Ruf’s analyses but are marked as

not escaping by Bogda, extended connectivity and adapted Ruf’s analyses.

• moldyn. Most created objects are of type 19. This means that most objects are

marked as escaping by Bogda’s and both Ruf’s analyses but are marked as not

escaping by both connectivity analyses.

• montecarlo. Most created objects are of type 12. This means that most objects are

marked as escaping by both connectivity analyses but are marked as not escaping

by Bogda’s and both Ruf’s analyses.

We can see the extended connectivity is very precise for most benchmark programs

except montecarlo. Also, the adapted Ruf’s analysis is very precise for most benchmark

programs except moldyn. Bogda’s analysis is very precise for mtrt, raytracer, jack and

montecarlo. The full connectivity is precise for mtrt, raytracer and moldyn. Finally, the

simplified Ruf’s analysis is precise for compress, mtrt, raytracer and montecarlo.

Note that the dynamic counts reflect the number of object created. It does not reflect

the access pattern of objects. It is possible an analysis marked just a few object as

escaping but those objects are accessed very frequently, lowering the performance of

fence inserted application. To evaluate the performance impact of escape analyses, data

are reported in Section 4.5.2.

121

4.5.2 Fences Inserted to enforce SC using Thread Escape Anal-

ysis

In this section, we focus on comparing the differences of escape analyses with respect

to fence insertion to enforce SC. In Section 4.5.2.1 we present static fence counts when

using different escape analyses. After that we present dynamic fence counts data in

Section 4.5.2.2 and finally we present the application execution times and slowdowns in

Section 4.5.2.3. Since the interpretations of fence counts and timing data are similar, we

will first present the data and then do the interpretation after Section 4.5.2.3.

4.5.2.1 Static Fence Counts

Table 4.11 shows the static counts of fences. It records the number of fences inserted in

the programs. As we can see the numbers for both platforms are similar. However, they

are not exactly the same because the fence insertion algorithms are different for different

platforms. They take advantage of different architectural characteristics. Despite that, a

more precise escape analysis causes fewer fences to be inserted as confirmed by the data.

4.5.2.2 Dynamic Fence Counts

Table 4.12 shows the dynamic fence counts. It records the number of fences executed when

the programs are running. We can see the static fence counts are related to the number

of fences executed at runtime. For example, consider javacwhere the static fence counts

for full connectivity analysis is much greater than that for extended connectivity analysis

and similar behavior is observed for dynamic counts for javac. However, the quantitative

differences of static fence counts are not necessarily the same as that of dynamic fence

counts. For example, consider compresswhere the static fence count for Bogda’s analysis

is less than twice that for the extended connectivity analysis but the dynamic counts for

Bogda’s analysis is more than 50 times of that of extended connectivity analysis.

122

BENCHMARK S(connect2) S(connect3) S(bogda) S(ruf3) S(ruf5)
201 compress 1506 679 1262 974 679
202 jess 4922 689 4293 4222 689
209 db 1719 590 990 1057 590
213 javac 13069 1166 10841 11115 1170
222 mpegaudio 8254 798 8096 8105 803
227 mtrt 1173 1173 2450 997 997
228 jack 6570 675 4146 4650 675

moldyn 968 968 1457 1461 1461
montecarlo 1677 1677 981 790 722
raytracer 1036 1036 1172 1182 1158

(a) Intel Platform

BENCHMARK S(connect2) S(connect3) S(bogda) S(ruf3) S(ruf5)
201 compress 1373 556 1129 845 556
202 jess 5104 1171 4486 4403 1173
209 db 1725 618 1004 1071 618
213 javac 13173 1826 10951 11219 1838
222 mpegaudio 8258 913 8099 8108 918
227 mtrt 1265 1265 2460 1089 1089
228 jack 6719 974 4299 4801 976

moldyn 978 978 1461 1465 1465
montecarlo 1690 1690 996 805 737
raytracer 1058 1058 1176 1186 1162

(b) PowerPC Platform

Table 4.11: Static fence counts

123

BENCHMARK D(connect2) D(connect3) D(bogda) D(ruf3) D(ruf5)
201 compress 1.51735e+10 265723709 1.51735e+10 2.34777e+09 265723723
202 jess 1808372170 42060856 1808180546 1808153231 42060856
209 db 1705012963 812457 1168632291 1182428572 812457
213 javac 1352309030 69664708 973522787 1026356623 69655402
222 mpegaudio 1.36863e+10 781257377 1.36402e+10 1.38202e+10 781266165
227 mtrt 19984436 19972459 1810604198 19976208 19974240
228 jack 451078489 20766545 386632536 393931292 20766495

moldyn 1980726762 872997309 1.98864e+10 1.97922e+10 1.94185e+10
montecarlo 2.80338e+09 2.82196e+09 532396601 533682231 536327969
raytracer 932888205 949044196 2.83907e+10 2.82577e+10 2.87009e+10

(a) Intel Platform

BENCHMARK D(connect2) D(connect3) D(bogda) D(ruf3) D(ruf5)
201 compress 1.51735e+10 265728618 1.51735e+10 2.34778e+09 265728608
202 jess 1808372044 235550824 1808183710 1808153237 235550820
209 db 1705012933 15339247 1168638661 1182431502 15339247
213 javac 1382801274 367816016 1037187195 1056942764 367820644
222 mpegaudio 1.36863e+10 1067565473 1.36402e+10 1.38202e+10 1067574261
227 mtrt 210643599 210318334 1738557774 209899191 210126781
228 jack 451195990 58469549 388982065 394051543 58470039

moldyn 438220258 426972206 8.76589e+09 8.81127e+09 8.7397e+09
montecarlo 2.47588e+09 2.41452e+09 678088188 681266938 680966770
raytracer 1764423727 1786246544 1.56e+10 1.55852e+10 1.56259e+10

(b) PowerPC Platform

Table 4.12: Dynamic fence counts

124

4.5.2.3 Application Execution Times and Slowdowns

Table 4.13 shows the execution time of the benchmarks using different escape analyses.

This includes the baseline case where no fences are inserted due to enforcement of SC

using escape analysis. Using the data in Table 4.13, the slowdowns data is shown in

Table 4.14 and is graphically plotted in Figure 4.6.

We can see from Table 4.14 that the slowdown behavior of both the Intel and PowerPC

platforms are similar.

Benchmark base connect2 connect3 bogda ruf3 ruf5
201 compress 11.0315 244.28175 17.34725 243.8885 59.64125 17.5355
202 jess 4.67325 34.34325 5.676 34.07575 34.56125 5.9705
209 db 25.926 56.832 25.56375 47.8855 48.99875 26.117
213 javac 10.907 35.6875 13.124 29.53675 35.49025 13.8465
222 mpegaudio 9.91925 219.51725 25.696 222.246 222.4535 25.947
227 mtrt 3.6785 3.7495 3.66875 26.09775 3.7745 3.713
228 jack 6.33 14.318 6.68725 13.30475 13.3595 6.8465

moldyn 72.759 103.958 80.817 616.887 615.129 616.896
montecarlo 71.898 130.81 129.737 87.655 85.2 87.277
raytracer 55.533 71.085 74.548 841.51 844.803 844.997

(a) Intel Platform

Benchmark base connect2 connect3 bogda ruf3 ruf5
201 compress 20.96225 363.0475 26.5075 249.7985 56.44675 26.35575
202 jess 12.166 53.67075 13.877 44.203 44.17225 14.01225
209 db 35.4985 74.36925 35.31075 53.48975 52.81775 35.596
213 javac 19.88425 50.74875 22.2815 39.2605 47.4545 22.13275
222 mpegaudio 15.9815 334.38075 34.796 225.7545 227.913 33.46975
227 mtrt 5.555 5.961 5.97125 27.99075 5.89975 6.00375
228 jack 14.4135 25.0865 15.48175 22.64775 22.7945 14.88375

moldyn 67.689 107.809 120.98 474.45 473.025 473.996
montecarlo 104.318 219.325 218.322 161.971 153.435 152.477
raytracer 156.448 217.858 199.082 1293.485 1290.055 1283.624

(b) PowerPC Platform

Table 4.13: Performance of benchmarks: time in seconds

125

0 2 4 6 8 10 12 14 16 18 20 22 24
Slowdown

com
press

jess
db

javac
m

pegaudio
m

trt
jack

m
oldyn

m
ontecarlo

raytracer
B

en
ch

m
arks

connect2
connect3

bogda
ruf3

ruf5

(a)
Intel

P
latform

0 2 4 6 8 10 12 14 16 18 20 22

Slowdown

com
press

jess
db

javac
m

pegaudio
m

trt
jack

m
oldyn

m
ontecarlo

raytracer
B

en
ch

m
arks

connect2
connect3

bogda
ruf3

ruf5

(b)
P
ow

erP
C

P
latform

F
ig

u
re

4
.6

:
S
low

d
ow

n
G

rap
h

126

Benchmark connect2 connect3 bogda ruf3 ruf5
201 compress 22.14 1.573 22.11 5.406 1.59
202 jess 7.349 1.215 7.292 7.396 1.278
209 db 2.192 0.986 1.847 1.89 1.007
213 javac 3.272 1.203 2.708 3.254 1.27
222 mpegaudio 22.13 2.591 22.41 22.43 2.616
227 mtrt 1.019 0.9973 7.095 1.026 1.009
228 jack 2.262 1.056 2.102 2.111 1.082

moldyn 1.429 1.111 8.478 8.454 8.479
montecarlo 1.819 1.804 1.219 1.185 1.214
raytracer 1.28 1.342 15.15 15.21 15.22

(a) Intel Platform

Benchmark connect2 connect3 bogda ruf3 ruf5
201 compress 17.32 1.265 11.92 2.693 1.257
202 jess 4.412 1.141 3.633 3.631 1.152
209 db 2.095 0.9947 1.507 1.488 1.003
213 javac 2.552 1.121 1.974 2.387 1.113
222 mpegaudio 20.92 2.177 14.13 14.26 2.094
227 mtrt 1.073 1.075 5.039 1.062 1.081
228 jack 1.74 1.074 1.571 1.581 1.033

moldyn 1.593 1.787 7.009 6.988 7.003
montecarlo 2.102 2.093 1.553 1.471 1.462
raytracer 1.393 1.273 8.268 8.246 8.205

(b) PowerPC Platform

Table 4.14: Performance of benchmarks: slowdowns

127

4.5.2.4 Interpretation

Starting from Section 4.5.2.5, we are going to interpret the data related to fence insertion.

As described in Section 3.6.1, the following properties of the analysis algorithms are

important to the difference in the performances of the fence inserted programs:

• Handling of thread creation pattern in Java. This refers to whether the analysis

can identify the thread local objects which are reachable from Runnable objects

but not accessed concurrently. Connectivity analyses (connect2 and connect3)

have this property so they have good performance for moldyn and raytracer.

• Handling of recursive methods. This refers to whether the analysis performs fix-

point computation for recursive method calls. Bogda’s analysis is more precise than

other analyses because of this property.

• Keeping track of precise alias information. This refers to the ability of the analysis

to maintain alias information. Ruf’s analyses (ruf3 and ruf5) are more precise

than other analyses because of this properties.

• Keeping track of threads accessing escaping objects. This refers to whether the

analysis can identify objects reachable from the static fields not accessed by multiple

threads. This property enable good performance single threaded programs. Only

connect3 and ruf5 has this property.

4.5.2.5 Extended Connectivity analysis (connect3)

Extended connectivity analysis has good performance for single threaded benchmarks

(compress, jess,db,javac,mpegaudio and jack) because the extension can correctly identify

that the escaping objects are accessed by a single thread. Note that we have slowdowns

for single-threaded benchmarks like compress and mpegaudio. The reason is that they

128

access static arrays via getstatic or putstatic operations and our analyses assume

that these accesses are shared accesses, so our implementation conservatively assumes

that a delay is needed for each getstatic or putstatic operation.

For mtrt, good performance is observed because the frequently accessed objects do

not connect to an escaping object.

For moldyn, extended connectivity analysis outperforms Bogda’s and Ruf’s analyses

because it manages to identify a frequently accessed object that is not escaping. Bogda’s

and Ruf’s analyses cannot do that because the object is stored in a Runnable object. A

moderate slowdown is observed because in a frequently executed method, the program

accesses a shared array and fences are inserted there.

As in the case of moldyn, extended connectivity analysis outperforms Bogda’s and

Ruf’s analyses for raytracer because it can identify frequently accessed object as not

shared even though they are reachable from a Runnable object. It experiences moderate

slowdown because of the following code in the program:

1 static Vec voidVec ;
2 Vec shade () {
3 . . .
4 . . . = t ra ce () ;
5 . . .
6 // work on co l
7 . . .
8 return c o l ;
9 }

10 Vec t ra ce () {
11 . . .
12 return shade (. .) ;
13 . . .
14 return voidVec ;
15 }

The method shade is executed moderately frequently, so fences in this method contribute

to slowdowns. As we can see shade and trace are mutually recursive, and their sum-

maries are not cloned when performing analysis. Notice that lines 8 and 12 cause the

return values of shade and trace to be merged. Since the object voidVec is static and

129

is accessed by multiple threads, the return value of shade is considered shared too. This

causes col escaping, which leads to the insertion of fences inside shade.

The only benchmark that extended connectivity analysis does not outperform the

other analyses on is montecarlo. This is because most objects (including frequently

accessed objects) in montecarlo has a field pointing to a shared String object. Since they

are connected to a shared object, they are considered escaping and fences are inserted to

frequently executed methods.

4.5.2.6 Full Connectivity analysis (connect2)

Full Connectivity analysis behaves similar to extended connectivity analysis for multi-

threaded benchmarks (mtrt, moldyn, montecarlo and raytracer).

For single threaded benchmarks, it has similar precision as the simplified Ruf’s anal-

ysis except for compress. This is because for many benchmarks like jess, db, javac,

mpegaudio and jack, the frequently accessed objects are found to be escaping by the

simplified Ruf’s analysis, so the full connectivity analysis does not introduce many extra

fences.

Benchmark compress shows the difference in precision between simplified Ruf’s anal-

ysis and the full connectivity analysis. In an frequently executed methods decompress,

many objects reachable from this are accessed. While most of the objects reachable from

this are found to be non-escaping, the input and output buffers reachable from this are

found to be escaping for both full connectivity analysis and the simplified Ruf’s analysis.

Simplified Ruf’s analysis, representing alias information most precisely, can distinguish

escaping objects from non-escaping ones by representing them by different alias sets. Full

connectivity analysis, however, represents them by one connectivity set. Since one of the

object are found to be escaping, the whole connectivity set is assumed to be escaping

as well. This cause all objects represented by this connectivity set considered escaping,

causing. extra fences inserted in hotspot.

130

4.5.2.7 Bogda’s analysis (bogda)

Bogda’s analysis causes slowdowns for moldyn, raytracer and montecarlofor the reason

described in extended connectivity analysis.

Unlike other analyses, Bogda analysis causes slowdown for mtrt. This is because the

frequently accessed object is an octree node. Since the node can be reached by more than

1 field references, Bogda’s analysis assumes it is escaping even though it is not reachable

by static fields nor Runnable objects.

It causes a slowdown for compress. This is because the following pattern:

1 class Decompressor {
2 . . .
3 De Stack de s ta ck ;
4

5 . . .
6 class De Stack {
7 . . .
8 }
9 }

The frequently accessed object is of type Decompressor. This object has a field de stack

which is of type De Stack. Note that De Stack is an inner class declared in Decompressor,

so for each De Stack object O the Java compiler introduce a compiler generated field

this$0 so that O.this$0.de stack = O. Because of this cyclic structure, Bogda’s anal-

ysis assumes all Decompressor objects escaping. This include the frequently accessed

object, as a result, causes slowdown.

It causes slowdown for jess because the frequently called method is invoked with

receiver this. succ[..].node and the receiver is frequently accessed. We can see the

passed object is reachable by more than 1 field references, so Bogda’s analysis assumes

it is escaping.

It causes slowdown for db because in a hot method, it accesses data

like this.index[...].items.elementData[..] frequently. Bogda’s analysis assumes

131

that this.index[..] as escaping, so this.index[...].items.elementData[..] is

escaping and fences are inserted to hotspot.

It causes javac slowdown because for a frequently executed method

ScannerInputStream.read(), the frequently accessed object (referenced by this) is

marked as escaping. This is because of the following code pattern:

1 // ScannerInputStream i s o f type InputStream
2 class ScannerInputStream {
3 int read () {
4 . . .
5 // super . in i s o f type InputStream
6 super . in . read () ;
7 . . .
8 // us ing f i e l d s o f t h i s ob j e c t a l o t
9 . . .

10 }
11 }
12 // Fi l ter InputStream i s o f type InputStream
13 class Fi l ter InputStream {
14 int read () {
15 // t h i s . in i s o f type InputStream
16 return (this . in . read ()) ;
17 }
18 }

This benchmark shows the imprecision due to using object type to resolve method in-

vocation. In real execution, the ScannerInputStream object is not stored inside a

FilterInputStream object. However, because of the use of type base method reso-

lution, the above two methods look like they are mutually recursive. It looks as if the

following call is possible:

1. In ScannerInputStream.read, super.in.read is called

2. super.in could be a FilterInputStream object, so FilterInputStream.read is

called in line 6.

3. In FilterInputStream.read, this.in.read is called

4. this.in could be a FilterInputStream object, so FilterInputStream.read is

called in line 16 again.

132

5. ...

6. In FilterInputStream.read, this.in.read is called

7. this.in is a ScannerInputStream object, so ScannerInputStream.read is called

in line 16 again.

Because of this imprecision in method resolution, the analysis assumes that the this

of FilterInputStream.read may be O.in.in.in for some object O and it assumes

this is escaping because it can be reached by more than 1 field reference.

Benchmark mpegaudio experiences slowdown because the frequently called method

works on objects which are reachable from a static field,so these objects are assumed to

be escaping.

The slowdown of jack stems from a reuse of variable to reference both an non-escaping

object and an escaping exception object. that non-escaping object is reaching an object

accessed in a frequently executed method. Because of that Bogda’s analysis conserva-

tively assume that frequently accessed object escaping.

4.5.2.8 Adapted Ruf’s analysis (ruf5)

Adapted Ruf’s analysis has good performance for compress, jess,db,javac,mpegaudio, jack

and mtrt for similar reason as extended connectivity analysis.

It causes slowdowns for moldyn and raytracer because the hotspot methods accesses

objects reachable from Runnable objects which is assumed to be accessed by multiple

thread.

It outperforms extended connectivity analysis for montecarlo because it represents

alias information precisely, so it can distinguish the shared string from other non-escaping

objects. It still causes moderate slowdown because in the hotspot, a shared array is

accessed. The shared array is accessed in the following way:

133

1. A thread T is started by its creator thread P .

2. Thread T creates an array A and performs computation on that array.

3. At the end, thread T publish the array A by making it reachable from a static field.

4. Thread T finishes execution

5. The thread P processes the result of T by accessing the array A.

As we can see, though the shared array A is accessed by both thread T and thread A,

there is no concurrent accesses. Adapted Ruf’s analysis do not recognize this fact, so it

causes fences inserted for code where A is accessed.

4.5.2.9 Simplified Ruf’s analysis (ruf3)

Its behavior for moldyn, raytracer, montecarlo and mtrt is similar to that of adapted

Ruf’s analysis.

It causes slowdown for compress because the input and output buffers are found to

escaping and these buffers are accessed in the hotspot. The slowdown is not as big as

full connectivity and Bogda’s analysis because its field sensitivity allows it to discover

many non-escaping object used in the hotspot. Note that the buffers are not actually

reachable from static fields.

Like compress, jess, db, and javac experience slowdowns because for hotspot methods,

there are some frequently accessed objects found to be escaping. These objects are not

really reachable from static fields at runtime. They are marked as escaping because

they have been passed to/returned from recursive functions. Some illustrative cases have

been shown in Section 3.7. The imprecision in method resolution makes the analysis

more imprecise because more methods are considered recursive although they are not.

Benchmarks mpegaudio and jack experience slowdown for the reason described in

Bogda’s analysis.

134

4.5.2.10 Summary

We present the summary of the issues causes bad performance of appplication program

with respect to different escape analyses in Table 4.15 where the issues are numbered as

follows:

1. Handling of thread creation pattern in Java

2. Handling of recursive methods

3. Keeping track of precise alias information

4. Keeping track of threads accessing escaping objects

5. Precision of method resolution

6. Reuse of variables in generated IR

The bold numbers represents the issues are contributing to good performances while the

non-bold numbers represents the issues are contributing to bad performance.

135

Benchmark connect2 connect3 bogda ruf3 ruf5

201 compress 3, 5 4 3 5 4

202 jess 2, 5 4 3 2, 5 4

209 db 2, 5 4 3 2, 5 4

213 javac 2, 5 4 3, 5 2, 5 4

222 mpegaudio 4 4 4 4 4

227 mtrt 3 3 3 3 3

228 jack 6 4 6 6 4

moldyn 1 1 1 1 1

montecarlo 3 3 3 3 3

raytracer 1 1 1 1 1

Table 4.15: A summary of issues of difference escape analyses on performance of appli-

cation programs

4.5.3 Synchronization Removal Driven by Thread Escape Anal-

ysis

In this section, we report the effect of escape analyses on synchronization removal. Ta-

ble 4.16 shows the number of object allocation sites marked as creating thread local

objects. Table 4.17 shows the number of thread local objects participated in synchro-

nization (lock and unlock operations). Since the objects are thread local, the lock and

unlock operations could have been omitted, but they are inserted due to imprecision of

the analysis. We can see the numbers for both platforms are very similar, so we can have

our discussion with distinguishing the platforms:

136

• Full Connectivity analysis. Unlike the case when the analyses is applied for fence

insertion, the behavior of full connectivity analysis is quite different from simplified

Ruf’s analysis. This shows the importance of being field sensitive for synchroniza-

tion removal.

• Extended Connectivity analysis manages to remove many synchronization opera-

tions for single threaded programs because it can identify that the escaping objects

are synchronized by a thread only. For multi-thread programs, its behavior is

similar to the full connectivity analysis.

• Simplified Ruf’s analysis. It can remove many synchronization even being con-

servative — objects reachable by Runnable objects or static fields are escaping.

This shows the importance of field sensitivity as described in the full connectivity

analysis.

• Adapted Ruf’s analysis removes the greatest number of synchronization for most

programs except mtrt. Comparing simplified Ruf’s analysis and Adapted Ruf’s

analysis for single threaded programs, we see there is a big increase in synchro-

nization removed. This shows that many object reachable from the static fields are

being synchronized on.

• Bogda’s analysis. For some programs like compress, db, mtrt, it performs better in

removing synchronization while for other programs the precision is similar to that

of Simplified Ruf’s analysis. This suggest that limiting analysis to object reachable

by 1 level of field reference is good enough for many programs. Performing the

analysis in a fixpoint computation gives extra precision. For example, it has better

precise for mtrt even if being compared with adapted Ruf’s analysis.

As a whole, the data suggest that:

• being field sensitive is important;

• limiting the lattice to 1-level field reference is good enough;

137

BENCHMARK S(connect2) S(connect4) S(bogda) S(ruf3) S(ruf4)
201 compress 1 61 26 39 61
202 jess 13 368 93 109 645
209 db 4 80 53 48 80
213 javac 3 674 131 114 805
222 mpegaudio 9 1066 34 36 1073
227 mtrt 110 110 68 131 144
228 jack 12 350 141 145 351

moldyn 16 16 28 32 47
montecarlo 7 7 55 79 125
raytracer 48 48 36 38 81

(a) Intel Platform

BENCHMARK S(connect2) S(connect4) S(bogda) S(ruf3) S(ruf4)
201 compress 1 61 26 39 61
202 jess 13 368 93 109 645
209 db 4 80 53 48 80
213 javac 3 674 131 114 805
222 mpegaudio 9 1066 34 36 1073
227 mtrt 110 110 68 131 144
228 jack 12 350 141 145 351

moldyn 16 16 28 32 49
montecarlo 7 7 55 79 129
raytracer 48 48 36 38 81

(b) PowerPC Platform

Table 4.16: Static number of object allocation site marked as local

• detecting object synchronized by a single thread is important; and

• being a iterative fix point analysis is important

138

BENCHMARK D(connect2) D(connect4) D(bogda) D(ruf3) D(ruf4)
201 compress 0 1788 655 405 1788
202 jess 1320 24519497 94617 94666 24503865
209 db 0 240497757 182420 2030 240497858
213 javac 0 118679796 18761053 18328385 118681866
222 mpegaudio 0 20282 90 90 20282
227 mtrt 0 0 3475902 2044 2045
228 jack 0 61522476 4056159 4062965 61522458

moldyn 0 0 29 29 29
montecarlo 198107102 206572805 178149900 190836750 178988416
raytracer 580 580 40 40 628

(a) Intel Platform

BENCHMARK D(connect2) D(connect4) D(bogda) D(ruf3) D(ruf4)
201 compress 0 1788 655 405 1788
202 jess 1320 24519486 94617 94666 24503865
209 db 0 240497979 182420 2030 240497858
213 javac 0 118681866 18761053 18328385 118681866
222 mpegaudio 0 20282 90 90 20282
227 mtrt 0 0 3475902 2044 2045
228 jack 0 61522499 4056159 4062965 61522458

moldyn 0 0 29 29 29
montecarlo 194461463 197494188 178149900 190836750 178988416
raytracer 580 580 40 40 628

(b) PowerPC Platform

Table 4.17: Dynamic number of synchronization removed

139

Chapter 5

Conclusion

In this thesis, we have presented the Pensieve Compiler System. The system presented

in this thesis focuses enforcing SC on top of the Intel and PowerPC platforms. We also

presented the fast thread escape analysis, the connectivity analysis, implemented in the

system. From the data shown in Chapter 4, we can see that connectivity analysis is faster

than the escape analysis presented in [BH99, Ruf00]. The analysis time of connectivity

analysis is quite promising usable for a dynamic compilation system (for Intel platform

from 0.6 sec to 41 sec; for PowerPC from 1.5 sec to 94 sec). With the incremental

analysis enable, the analysis time can be reduced up to 50%. When the thread escape

analysis is used to enforce SC by inserting fences, the application performance is also

quite promising for both the Intel and PowerPC platforms. We performed qualitative

comparison between connectivity analysis, Bogda’s and Ruf’s analyses in Section 3.6. In

Section 4.5.1 we performed a quantitative comparison between these analyses. To our

understanding, this is the first quantitative comparison between different escape analyses.

140

5.1 Limitation

A limitation of the Pensieve system is the lack of on-stack replacement (OSR) mecha-

nism [HU94]1. On-stack replacement is a technique to replace a method while the method

is running. As described in Section 3.9, method invalidation is needed in general for a

dynamic compilation system which performs compilation using information computed by

whole program analyses. In our experiments, we found that all the methods invalidated

due to connectivity analysis are all not running when invalidation is performed. How-

ever, in case of Ruf’s analysis, we do find invalidations performed for methods that are

running. In our implementation, the running methods are not replaced, so the old and

over-optimistic code is executed when the program returns to that method. Therefore,

the application performances for Ruf’s analyses presented in Chapter 4 are better than

they should be. Although the performance data for connectivity and Bogda’s analyses

are still valid, the system will be more complete if OSR is implemented.

5.2 Open Problem

With the introduction of the connectivity analysis, there are more areas to explore.

5.2.1 Improve Precision of Connectivity Analysis

Since the connectivity analysis is efficient, it is useful to explore how to extend the

connectivity analysis to be more precise without significant increase in analysis time.

There are at least three ways to extend the connectivity analysis:

1. Perform fixpoint computation for methods inside SCC. When analyzing recursive

methods inside an SCC, connectivity does not clone the method summary to avoid

1The Jikes RVM includes an implementation of OSR [FQ03] which is tailor for handling inlining, so
it is not (directly) usable for our purpose.

141

a fixpoint computation. While this improve the analysis time, it is sacrificing the

analysis precision. Unlike Ruf’s analysis, the lattice of connectivity analysis is much

simpler in practice. Therefore, it may be beneficial to clone the method summary

to improve the precision of analysis.

2. Explore more criteria to be field sensitive. From the analysis time of Ruf’s analysis,

we can see that fully field sensitive causes high analysis time. However, we also

see that being field sensitive for some important fields (e.g. Runnable fields) can

improve the analysis precision. Therefore, it is possible to improve the precision

of the analysis by finding other “important” fields and be field sensitive for them.

However, the choice of such fields should be careful to avoid making the connectivity

analysis too costly.

3. Make connectivity analysis adaptive. While being fully field sensitive for all method

would be too co-sty (like Ruf’s analysis), it would be beneficial to be more field

sensitive for frequently executed methods. We expect the number of frequently

executed methods should not be very large, so it should not increase the analysis

time too much by being more field sensitive for these method.

5.2.2 Another application of connectivity analysis — Object

Coallocation

Object co-allocation is known to be beneficial to the performance of programs with heap

allocated data [CHL99]. As pointed out by [SGBS02], one of the difficulty of object

co-allocation is to decide which objects to be co-allocated together.

One of the interesting property specific to our escape analysis is that when it marks

an object to be non-escaping. It not only means the object is not reachable by another

thread, but also means that starting from that object it is not possible to reach an object

reachable by another thread. Therefore, if we allocate all objects marked as non-escaping

together, the garbage collector can perform garbage collection without touching objects

142

in another thread (hence another processor). We expect this makes the garbage collection

more efficient because it only moves objects inside the same processor memory and it

does not need cooperation of garbage collector located at another processor.

143

Bibliography

[AAB+00] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,

V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,

J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.

The Jalapeño virtual machine. IBM System Journal, 39(1), February 2000.

[AFG+00a] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive opti-

mization in the Jalapeño JVM. In Proc. ACM SIGPLAN Conference on

Object-Oriented Programming and Systems, Languages, and Applications

(OOPSLA) 2000, Minneapolis, MN, October 2000.

[AFG+00b] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.

Sweeney. Adaptive optimization in the jalapeno jvm. Third ACM Workshop

on Feedback-Directed and Dynamic Optimization, December 2000.

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency

models: A tutorial. IEEE Computer, pages 66–76, December 1996.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In

Proceedings of The 17th Annual International Symposium on Computer Ar-

chitecture (ISCA), pages 2–14, May 1990.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-

tectures. Morgan Kaufmann Publishers, 2002.

144

[Bac98] David F Bacon. Fast and effective optimization of statically typed object-

oriented. Technical report, 1998.

[BCF+99] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael

Hind, Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan,

and John Whaley. The Jalapeño Dynamic Optimizing Compiler for Java.

In Proceedings of the 1999 ACM Java Grande Conference, pages 129–141,

Palo Alto, CA, USA, Jun 1999.

[BH99] Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in java.

In Proceedings of the 14th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, pages 35–46. ACM

Press, 1999.

[BHJ+03] Konstantin Berlin, Jun Huan, Mary Jacob, Garima Kochhar, Jan Prins,

Bill Pugh, P. Sadayappan, Jaime Spacco, and Chau-Wen Tseng. Evalu-

ating the impact of programming language features on the performance of

parallel applications on cluster architectures. In 16th Annual Workshop on

Languages and Compilers for Parallel Computing, October 2003.

[BK89] Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race

conditions in a parallel program. In Proceedings of the 3rd international

conference on Supercomputing, pages 175–185. ACM Press, 1989.

[Bla98] Bruno Blanchet. Escape analysis: correctness proof, implementation and

experimental results. In Proceedings of the 25th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 25–37. ACM

Press, 1998.

[Bla99] Bruno Blanchet. Escape analysis for object oriented languages: Applica-

tions to java. In Proceedings of the ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages, and Applications, 1999.

145

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types

for safe programming: Preventing data races and deadlocks. In Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA),

November 2002.

[CADG+93] David E. Culler, Andrea C. Arpaci-Dusseau, Seth Copen Goldstein, Arvind

Krishnamurthy, Steven Lumetta, Thorsten von Eicken, and Katherine A.

Yelick. Parallel programming in split-c. In Supercomputing, pages 262–273,

1993.

[CGHS99] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient

and precise modeling of exceptions for the analysis of java programs. ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering (PASTE), September 1999.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar,

and Samuel P. Midkiff. Escape analysis for java. In Proceedings of the ACM

SIGPLAN 1999 Conference on Objec-Oritented Programming Systems, Lan-

guages, and Applications (OOPSLA), pages 1–19, November 1999.

[CHL99] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious

structure layout. In SIGPLAN Conference on Programming Language De-

sign and Implementation, pages 1–12, 1999.

[CKS90] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event syn-

chronization in a parallel programming tool. In Proceedings of the Second

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 21–30, Seattle WA, 1990.

[CKY03] Wei-Yu Chen, Arvind Krishnamurthy, and Katherine Yelick. Polynomial-

time algorithms for enforcing sequential consistency in spmd programs with

arrays. In Sixteenth Annual Workshop on Languages and Compilers for

Parallel Computing, October 2003.

146

[CL97] M. Cierniak and W. Li. Just-in-time optimization for high-performance java

programs. Concurrency: Practice and Experience, 9(11):1063–73, November

1997.

[CLL+02] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan.

Efficient and precise datarace detection for multithreaded object-oriented

programs. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-

gramming Language Design and Implementation (PLDI), pages 258–269,

June 2002.

[CLR90] Cormen, Leiserson, and Rivest. Introduction to Algorithms. MIT Press,

Cambridge Mass., 1990.

[CS89] D. Callahan and J. Subhlok. Static analysis of low-level synchronization. In

Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel and

Distributed Debugging, pages 100–111, January 1989.

[DS91] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the pres-

ence of procedures using a data-flow framework. In Proceedings of the sym-

posium on Testing, analysis, and verification, pages 36–48. ACM Press,

1991.

[DSB88] M. Dubois, C. Scheurich, and F.A. Briggs. Synchronization, coherence, and

event ordering in multiprocessors. 21(2):9–21, 1988.

[EGP89] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchroniza-

tion analysis for debugging parallel programs. In Proceedings of Supercom-

puting ’89, pages 580–588, 1989.

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based race detection for

Java. ACM SIGPLAN Notices, 35(5):219–232, 2000.

147

[FLM03a] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. Automatic fence insertion

for shared memory processing. In 2003 ACM International Conference on

Supercomputing, June 2003.

[FLM03b] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. An optimizing and retar-

getable fence insertion algorithm. Technical Report ECE-HPCLab-033002,

High Performance Computing Lab, School of Electrical and Computer En-

gineering, Purdue University, 2003.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-

tation of the cilk-5 multithreaded language. In SIGPLAN Conference on

Programming Language Design and Implementation, pages 212–223, 1998.

[FQ03] S. Fink and F. Qian. Design, implementation and evaluation of adaptive

recompilation with on-stack replacement, 2003.

[GFV99] K. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proc. of

the 26th Annual Int’l Symp. on Computer Architecture (ISCA’99), 1999.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification,

Second Edition. Addison-Wesley, 1996.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,

Anoop Gupta, and John Hennessy. Memory consistency and event order-

ing in scalable shared-memory multiprocessors. In Proceedings of The 17th

Annual International Symposium on Computer Architecture (ISCA), pages

15–26, May 1990.

[GS93] D. Grunwald and H. Srinivasan. Data flow equations for explicitly parallel

programs. In Proceedings of the Fourth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, San Diego, CA, 1993.

148

[GS00] David Gay and Bjarne Steensgaard. Fast escape analysis and stack allo-

cation for object-based programs. In Proceedings of the 9th International

Conference on Compiler Construction, pages 82–93. Springer-Verlag, 2000.

[Har98] Stephen Hartley. Concurrent Programming: the Java Programming Lan-

guage. Oxford University Press, 1998.

[Hil98] Mark D. Hill. Multiprocessors should support simple memory-consistency

models. IEEE Computer, August 1998.

[HM91] David P. Helmbold and Charles E. McDowell. Computing reachable states of

parallel programs. Proceedings of the ACM/ONR Workshop on Parallel and

Distributed Debugging, published in ACM SIGPLAN Notices, 26(12):76–84,

1991.

[HU94] Urs Holzle and David Ungar. A third-generation self implementation: Rec-

onciling responsiveness with performance. In Proceedings of the 9th ACM

SIGPLAN conference on Object-oriented programming, systems, languages,

and applications. ACM Press, 1994.

[IA3] IA-32 Intel architecture software developer’s manual, volume 2 and 3. URL:

developer.intel.com/design/pentium4/manuals/index new.htm.

[IBM03] IBM. Jikes rvm researchers mailing list. In Archive at

http://www-124.ibm.com/pipermail/jikesrvm-researchers/2003-May/001747.html

, 2003.

[Jav03] JavaMemoryModel. Java memory model mailing list. In Archive at

http://www.cs.umd.edu/ pugh/java/memoryModel/arc hive/, 2003.

[jgf] The Java Grande Forum Multi-threaded Benchmarks. URL:

http://www.epcc.ed.ac.uk/javagrande/threads/contents.html.

149

[KJCS99] Sanjeev Kumar, Dongming Jiang, Rohit Chandra, and Jaswinder Pal

Singh. Evaluating synchronization on shared address space multiprocessors:

methodology and performance. In Proceedings of the 1999 ACM SIGMET-

RICS international conference on Measurement and modeling of computer

systems, pages 23–34. ACM Press, 1999.

[KSV96] Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism for free:

Efficient and optimal bitvector analyses for parallel programs. ACM Trans-

actions on Programming Languages and Systems, 18(3):268–299, May 1996.

[KY94] Arvind Krishnamurthy and Katherine Yelick. Optimizing parallel SPMD

programs. In Seventh Annual Workshop on Languages and Compilers for

Parallel Computing, August 1994.

[KY95] Arvind Krishnamurthy and Katherine Yelick. Optimizing parallel programs

with explicit synchronization. In Proceedings of the ACM SIGPLAN 1995

Conference on Programming Language Design and Implementation (PLDI),

pages 196–204, June 1995.

[KY96] Arvind Krishnamurthy and Katherine Yelick. Analyses and optimizations

for shared address space programs. Journal of Parallel and Distributed

Computing, 38:139–144, 1996.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers, C-

28(9):690–691, September 1979.

[LAY03] Ben Liblit, Alex Aiken, and Katherine Yelick. Type systems for distributed

data sharing. In Proceedings of the Tenth International Static Analysis

Symposium, 2003.

[Lea] Doug Lea. Java specification request (jsr) 166: Concurrency utilities. In

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html .

150

[Lea99a] Doug Lea. Concurrent Programming in Java. Addison Wesley, 1999. URL:

http://gee.cs.oswego.edu/dl/cpj.

[Lea99b] Doug Lea. Javamemorymodel: recap: concurrent reads. December 1999.

URL: www.cs.umd.edu/ pugh/java/memoryModel/archive/0358.html.

[LMP97] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static

single assignment form and constant propagation for explicitly parallel pro-

grams. In Z. Li, P.-C. Yew, S. Chatterjee, C.-H. Huang, P. Sadayappan,

and D. Sehr, editors, Proceedings of The 10th International Workshop on

Languages and Compilers for Parallel Computing, number 1366 in Lecture

Notes in Computer Science, pages 114–130. Springer, August 1997.

[LP00] Jaejin Lee and David A. Padua. Hiding relaxed memory consistency with

compilers. In Proceedings of the IEEE International Conference on Parallel

Architectures and Compilation Techniques (PACT), pages 111–122, October

2000.

[LPM99] Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algo-

rithms for parallel programs. In Proceedings of the 7th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP),

pages 1–12, May 1999.

[MC93] John M. Mellor-Crummey. Compile-time support for efficient data race

detection in shared-memory parallel programs. In Workshop on Parallel

and Distributed Debugging, pages 129–139, 1993.

[Mid95] S. Midkiff. Dependence analysis in parallel loops with i+/-k subscripts

s.p. midkiff. In 1995 Workshop on Languages and Compilers for Parallel

Computing, 1995. available as Springer Lecture Notes in Computer Science

Vol. N. 1033.

151

[Mid03] Samuel P. Midkiff. The overhead of sequential consistency in well synchro-

nized programs. Technical Report ECE-HPCLab-033001, High Performance

Computing Lab, School of Electrical and Computer Engineering, Purdue

University, 2003.

[MP87] Samuel P. Midkiff and David A. Padua. Compiler algorithms for synchro-

nization. IEEE Transactions on Computers, C-36(12):1485–1495, December

1987.

[MP90] S. Midkiff and D. Padua. Issues in the compile-time optimization of parallel

programs. In Proceedings of the 1990 International Conference on Parallel

Processing, Vol. II, pages 105–113, August 1990.

[MP01] J. Manson and W. Pugh. Core semantics of multithreaded java. In Pro-

ceedings of the ACM SIGPLAN 2001 ISCOPE/Java Grande Conferenc e,

pages 29–38, 2001.

[MPC90] Samuel P. Midkiff, David A. Padua, and Ron Cytron. Compiling programs

with user parallelism. In Languages and Compilers for Parallel Computing,

pages 402–422, 1990.

[MR93] Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis.

In Proceedings of the fourth ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 129–138. ACM Press, 1993.

[NAC99] Gleb Naumovich, George S. Avruninand, and Lori A. Clarke. An efficient

algorithm for computing MHP information for concurrent Java programs.

In Proceedings of Seventh European Software Engineering Conference and

Seventh ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering, Sept. 1999.

152

[NG92] Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition detection

for shared-memory programs with post/wait synchronization. In Proceed-

ings of the 1992 International Conference on Parallel Processing, volume II,

Software, pages II:242–246, Boca Raton, Florida, 1992. CRC Press.

[NM90] Robert H. B. Netzer and Barton P. Miller. On the complexity of event

ordering for shared-memory parallel program executions. In Proceedings

of 1990 International Conference on Parallel Processing, pages II.93–II.97,

University Park PA, 1990.

[NM91] Robert H. B. Netzer and Barton P. Miller. Improving the accuracy of data

race detection. Proceedings of the ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming PPOPP, published in ACM

SIGPLAN NOTICES, 26(7):133–144, 1991.

[NM92] Robert H. B. Netzer and Barton P. Miller. What are race conditions? some

issues and formalizations. ACM Letters on Programming Languages and

Systems, 1(1), March 1992.

[PPC] PowerPC microprocessor family: Programming environments man-

ual. URL: www-3.ibm.com/chips/techlib/techlib.nsf/products/PowerPC

970 and 970FX Microprocessors.

[Pug99] William Pugh. Fixing the Java memory model. In Proceedings of the ACM

1999 Java Grande Conference, June 1999.

[Rin01] Martin Rinard. Analysis of multithreaded programs. Lecture Notes in Com-

puter Science, 2126:1–19, 2001.

[RL98] Martin C. Rinard and Monica S. Lam. The design, implementation, and

evaluation of Jade. ACM Transactions on Programming Languages and

Systems, 20(3):483–545, 1 May 1998.

153

[RM94] J. Ramanujam and A. Mathew. Analysis of event synchronization in parallel

programs. In Languages and Compilers for Parallel Computing, pages 300–

315, 1994.

[RMR01] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis

for java using annotated constraints. In Proceedings of the ACM SIGPLAN

2001 Conference on Objec-Oritented Programming Systems, Languages, and

Applications (OOPSLA), pages 43–55, October 2001.

[RPA97] Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using specu-

lative retirement and larger instruction windows to narrow the performance

gap between memory consistency models. In Proceedings of The 9th ACM

Symposium on Parallel Algorithms and Architectures (SPAA), pages 199–

210, June 1997.

[Ruf00] Erik Ruf. Effective synchronization removal for java. In Conference on

Programming Languages, Design, and Implementation (PLDI), 2000.

[SAR99] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reconcile & Fences

(CRF): A new memory model for architects and compiler writers. In Pro-

ceedings of The 26th Annual International Symposium on Computer Archi-

tecture (ISCA), pages 150–161, May 1999.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. Eraser: A dynamic data race detector for multithreaded

programs. ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[Sch89] Edmond Schonberg. On-the-fly detection of access anomalies. In Proceedings

of the ACM SIGPLAN ’89 Conference on Programming Language Design

and Implementation, volume 24, pages 285–297, Portland, OR, June 1989.

154

[SD87] C. Scheurich and M. Dubois. Correct memory operation of cache-based

multiprocessors. In Proc. of the 14th Annual Int’l Symp. on Computer Ar-

chitecture (ISCA’87), pages 234–243, 1987.

[SGBS02] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh.

Exploiting prolific types for memory management and optimizations. In

Symposium on Principles of Programming Languages, pages 295–306, 2002.

[Sin96] Pradeep K. Sinha. Distributed Operating Systems, Concepts and Design.

IEEE Press, 1996.

[SL94] Daniel J. Scales and Monica S. Lam. The design and evaluation of a shared

object system for distributed memory machines. In Operating Systems De-

sign and Implementation, pages 101–114, 1994.

[spe] SPEC JVM Client98 Suite. URL:

http://www.specbench.org/jvm98/jvm98.

[SR01] Alexandru Sălcianu and Martin Rinard. Pointer and escape analysis for

multithreaded programs. In Proceedings of the 8th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming (PPoPP), June

2001.

[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel pro-

grams that share memory. ACM Transactions on Programming Languages

and Systems, 10(2):282–312, April 1988.

[Ste90] Guy L. Steele, Jr. Making asynchronous parallelism safe for the world. In

Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 218–231. ACM Press, 1990.

[Sur04] Zehra N. Sura. Analyzing Threads for Shared Memory Consistency. PhD

thesis, University of Illinois at Urbana-Champaign, 2004.

155

[SWF+02] Z. Sura, C.-L. Wong, X. Fang, J. Lee, S.P. Midkiff, and D. Padua. Au-

tomatic implementation of programming language consistency models. In

15th Annual Workshop on Languages and Compilers for Parallel Comput-

ing, July 2002.

[Tay83] Richard N. Taylor. A general-purpose algorithm for analyzing concurrent

programs. Commun. ACM, 26(5):361–376, 1983.

[vP04] Christoph von Praun. Efficient computation of communicator variables for

programs with unstructured parallelism. In Seventeenth Annual Workshop

on Languages and Compilers for Parallel Computing, September 2004.

[vPG03] Christoph von Praun and Thomas R. Gross. Static conflict analysis for

multi-threaded object-oriented programs. In Proceedings of the ACM SIG-

PLAN 2003 Conference on Programming Language Design and Implemen-

tation (PLDI), June 2003.

[VR01] Frederic Vivien and Martin Rinard. Incremental pointer and escape anal-

ysis. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2001.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape anal-

ysis for java programs. In Proceedings of the ACM SIGPLAN 1999 Con-

ference on Objec-Oritented Programming Systems, Languages, and Applica-

tions (OOPSLA), pages 187–206, November 1999.

[WSF+02] C.-L. Wong, Z. Sura, X. Fang, S.P. Midkiff, J. Lee, and D. Padua. The Pen-

sieve project: A compiler infrastructure for memory models. International

Symposium on Parallel Architectures, Algorithms, and Networks, May 2002.

156

[YSP+98] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-

murthy, P. Hilfinger, S. Graham, D. Gay, P. Col ella, and A. Aiken. Tita-

nium: A high-performance Java dialect. In ACM 1998 Workshop on Java

for High-Performance Network Computing. ACM SIGPLAN, 1998. URL:

http://www.cs.ucsb.edu/conferences/java98.

[YT88] M. Young and R. M. Taylor. Combining static concurrency analysis with

symbolic execution. IEEE Trans. Softw. Eng., 14(10):1499–1511, 1988.

157

Vita

Research Interest

Program analysis and optimization of object-oriented and/or explicitly parallel programs,
dynamic compilation, program optimization under different memory models.

Personal Information

Address : 1107 West Green Street, #521
Urbana, IL 61801

Phone : (217) 244-5979 (O), (217) 332-2578 (H)
Email : cwong1@uiuc.edu
Citizenship : Hong Kong (US permanent resident)

158

Education

Jan. 98 - present University of Illinois at Urbana-Champaign (UIUC)
PhD Candidate in Computer Science
PhD Thesis: Thread Escape Analysis for a Memory Consistency-

Aware Compiler
Advisor: Prof. David Padua

Sept. 96 - May 97 University of California at Santa Barbara (UCSB)
PhD in Computer Science. Transferred to UIUC

Sept. 95 - Aug. 96 Hong Kong University of Science and Technology (HKUST)
Master of Philosophy in Computer Science. Transferred to UCSB

Sept. 92 - June 95 Hong Kong University of Science and Technology (HKUST)
BEng in Computer Science GPA: 10.75/12. First Class Honors
Graduation project: Implementation of a parallelizing compiler for Intel Paragon

Teaching Experience

Jan 1997 - Jun 1997 Teaching Assistant, Department of Computer Science, UCSB
Course: Programming Languages

Sept 1995 - May 1996 Teaching Assistant, Department of Computer Science, HKUST
Course: Design and Analysis of Algorithms

159

Research Experience

Sep 2000 - present Research Assistant, Department of Computer Science, UIUC
Advisor: Professor David Padua
Project: The Pensieve Project

Aug 1998 - Sep 2000 Research Assistant, Department of Computer Science, UIUC
Advisor: Professor David Padua
Project: Fortran 95 to Java translator

2001 summer Summer Intern, IBM TJ Watson Research Center, Yorktown
Heights, NY
Mentor: Sam Midkiff, Manager: Manish Gupta
Project: Embedded Java Virtual Machine

Jan 1998 - Aug 1998 Research Assistant, Department of Computer Science, UIUC
Advisor: Professor Andrew Chien
Project: Illinois Concert C++ compiler

1993 - 1996 summers Research Assistant, Department of Computer Science, HKUST
Projects: Object-oriented program parallelization (1996)

Automatic parallelizing compiler for array-based applications(1995)
GUI for Chinese input method(1994)
Development for Chinese computing environment(1993)

Awards and Honors

1995 First Class Honours from HKUST
1995 HKUST Academic Achievement Medal
1994 - 1995 Dean’s List (HKUST)
1993 - 1995 Zheng Ge Ru Foundation Scholarship
1992 - 1993 Joyce M. Kuok Foundation Scholarship

160

Professional Activities

Reviewer for the Proceedings of the IEEE. Special Issue on Program Generation, Opti-
mization, and Platform Adaptation

Reviewer for the EuroPar Conference and the International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT)

Reviewer for the International Conference for High Performance Computing and Com-
munications (SC’02)

Reviewer for the Workshop on Languages and Compilers for Parallel Computing (LCPC’02)

Reviewer for the Workshop on Compilers for Parallel Computers (CPC’03)

Member of ACM

Publications

Zehra Sura, Chi-Leung Wong, Xing Fang, Jaejin Lee, S.P. Midkiff, and David Padua,
”Automatic Implementation of Programming Language Consistency Models”, 15th Work-
shop on Languages and Compilers for Parallel Computing (LCPC), July, 2002

Chi-Leung Wong, Zehra Sura, Xing Fang, Jaejin Lee, Samuel Midkiff, David Padua, ”The
Pensieve Project: A Compiler Infrastructure for Memory Models”, Midwest Society for
Programming Languages and Systems Workshop (MSPLS), Bloomington, Indiana, April
2002

Chi-Leung Wong, Anthony Bolmarcich, Samuel Midkiff, Peng Wu, ”ROMable code Gen-
eration for Java”. under preparation

Chi-Leung Wong, ”Source to Source Translation from Fortran 95 to Java and Evaluation
of Translated Programs”, under preparation

161

PhD Thesis

Chi-Leung Wong, ”Thread Escape Analysis for a Memory Consistency-Aware Compiler”,
Department of Computer Science, University of Illinois at Urbana-Champaign, 2005

Invited Paper

Chi-Leung Wong, Zehra Sura, Xing Fang, Jaejin Lee, Samuel Midkiff, David Padua,
”The Pensieve Project: Compiling for Sequential Consistency”, 6th International Sym-
posium on Parallel Architectures, Algorithms, and Networks (ISPAN), Metro Manila,
Philippines, May 2002

Presentation

Zehra Sura, Chi-Leung Wong, Xing Fang, Jaejin Lee, Samuel P. Midkiff, David Padua,
”A Testbed for the Design of Software Memory Consistency Models”, Work In Progress
Session, 11th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT Work In Progress Session), Charlottesville, Virgina, September, 2002

Research Projects

An Optimizing Compiler for Languages with Programmable Memory Models

This work will be part of my PhD thesis. Our research focuses on building a Java opti-
mizing compiler for explicitly parallel shared memory programs that hides the underlying
relaxed memory consistency model. The compiler presents an intuitive and natural mem-
ory consistency model to ease programming and debugging. Moreover, it provides correct
compiler optimizations that are not considered by conventional compilers. In addition,
the compiler will serve as a testbed to prototype new memory consistency models at
the language level, and to measure the effects of different memory models on program
performance.

162

Embedded Java Virtual Machine

This is my IBM summer intern project. Our basic approach is to perform ahead-of-time
compilation of classes and to generate ROMable code for those classes. The methods are
compiled ahead-of-time rather than on the target platform, so we get the performance
of compiled code without memory and time overhead of supporting a full just-in-time
compiler on the embedded device. Moreover, since we perform the compilation off-line,
we will be able to expand the necessary resources to aggressive optimizations. Since Java
is a very dynamic language, machine code generated for Java programs are traditionally
self modifying. This is not satisfactory in embedded system because machine code stored
in ROM is not modifiable. Therefore, we need to isolate the dynamically changing
components and store it in RAM while keeping the static components in ROM.

Fortran 95 to Java translator

I have constructed the whole translator including a Fortran 95 frontend and the Java
source code generator. The translator is implemented completely in Java generate the
Fortran parser. There are over 60000 lines of code. The translator can compile Fortran
95 programs into equivalent Java programs. The generated program uses the IBM array
package and modified Fortran format package by Jocelyn Paine.

Other Previous Projects

Java JIT compiler

It is a class project supervised by Dr Urs Höezle which aimed at building a Java JIT
compiler on Sparc platform from scratch. The compiler compiles methods on demand.
I was responsible for implementation of method dispatch using virtual function table. I
have designed the calling convention and virtual function table is created and used to do
method dispatch.I also participated in the design of code generation module.

Parallelizing compiler for Intel Paragon

This is my undergraduate final year project supervised by Dr Tin-Fook Ngai. Our goal
was to parallelize loops by appropriate program transformations and synchronization
system calls insertion. I and another two teammates modified the GNU C compiler to
generate our own intermediate representation (IR). The transformed IR is then fed into
the backend of the GNU C compiler to generate Intel Paragon machine code.

163

Referees

Professor David Padua
Department of Computer Science
University of Illinois, Urbana-Champaign
Siebel Center for Computer Science
201 N. Goodwin Avenue
Urbana, IL 61801-2302
Phone: +1 217 333-4223
Fax: +1 217 333-3501
Email:padua@uiuc.edu

Professor Samuel P. Midkiff
School of Electrical and Computer Engineering
Purdue University
465 Northwestern Ave.
West Lafayette, Indiana 47907-2035
Phone: +1 765 494-3440
Fax: +1 765 494-6440
Email: smidkiff@purdue.edu

Professor Jaejin Lee
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, Korea
Phone: +82-2-880-1863
Email: jlee@cse.snu.ac.kr

164

