
Moara: Flexible and Scalable Group-Based Querying
System

Steven Y. Ko1, Praveen Yalagandula2, Indranil Gupta1,

Vanish Talwar2, Dejan Milojicic2, Subu Iyer2

1University of Illinois at Urbana-Champaign 2HP Labs, Palo Alto

Abstract. Users and administrators of large-scale infrastructures (e.g., datacen-

ters and PlanetLab) are frequently in need of monitoring groups of machines

in the infrastructure. Though there exist several distributed querying systems for

this monitoring purpose, they are not group-based; they mostly focus on querying

the entire system. In this paper, we present Moara, a new querying system that

makes two novel contributions. First, Moara builds aggregation trees for differ-

ent groups and adaptively maintains the trees to optimize the total message cost.

Second, Moara supports a query language allowing groups to be specified implic-

itly via predicates consisting of arbitrarily nested unions and intersections. Our

evaluations on Emulab, on PlanetLab, and with large-scale simulations, demon-

strate Moara’s ability to answer complex queries within a fraction of a second,

to deal with high levels of dynamism in groups, and to incur a low bandwidth

overhead per host per query in comparison to existing centralized and distributed

aggregation systems.

1 Introduction
Large-scale distributed infrastructures have become increasingly common in various

domains. Today’s enterprise data centers [1] are equipped with thousands of machines

and run thousands of different applications and services. Federated computing infras-

tructures such as PlanetLab [2], proposed GENI infrastructure [3], and computational

grids [4] consist of thousands of hosts providing resources for a number of projects.

A frequent need of the users and the administrators of such infrastructures is moni-

toring and querying the status of groups of machines in the infrastructure, as well as the

infrastructure as a whole. These groups may be static or dynamic, e.g., the PlanetLab

slices, the machines running a particular service in a datacenter, or the machines with

CPU utilization above 50%. Further, users typically desire to express complex criteria

for the selection of the host groups to be queried. For example, “find top-3 loaded hosts

where (ServiceX = true) and (Apache = true)” is a query that targets two groups - hosts

that run service X and hosts that run Apache. Dynamic groups mean that the size and

composition of groups vary across different queries as well as time.

In general, users and administrators desire to monitor the performance of these

groups, to troubleshoot any failures or performance degradations, and to track usage

of allocated resources. These requirements point to the need for a group-based query-
ing system that can provide instantaneous answers to queries over in-situ data targeting

one or more groups. In fact, several existing distributed aggregation systems [5–7] can

be considered as a special case of group-based querying systems, as they target querying

of only a single group, i.e., the entire system.

Any group-based querying system should satisfy three requirements: flexibility, effi-
ciency, and scalability. First, the system should be flexible to support expressive queries

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

that deal with multiple groups, such as unions and intersections of different groups. Sec-

ond, the system should be efficient in query resolution—it should minimize the message

overhead while responding quickly with an answer. Third, the system should scale with

the number of machines, the number of groups, and the rate of queries.

In this paper, we propose Moara, a new group-based distributed aggregation sys-

tem that targets all three requirements. A query in Moara has three parts: (query-
attribute, aggregation function, group-predicate), e.g., (Mem-Util, Average, Apache =
true). Moara returns the resulting value from applying the aggregation function over the

values of query-attribute at the machines that satisfy the group-predicate.

Moara makes two novel design contributions over existing systems [5–7]. First,

Moara maintains aggregation trees for different groups adaptively based on the under-

lying environment and the injected queries to minimize the overall message cost and

query response time. Basically, the aggregation tree for a group in Moara is an op-

timized sub-graph of a global spanning tree, which spans all nodes in the group. By

aggregating data over these group-based aggregation trees, Moara achieves lower mes-

sage cost and response latency for queries compared to other aggregation systems that

contact all nodes. Further, we adapt each aggregation tree to deal with dynamism.

Second, Moara’s query processor supports composite queries that target multiple

groups simultaneously. Composite queries supported by Moara are arbitrary nested set

expressions built by using logical operators or and and, (respectively set operations ∪
and ∩) over simple group-predicates. Simple group-predicates are of the form (attribute
op value), where op ∈ {<, >,≤,≥, =, �=}. Consider our previous example “find top-

3 loaded hosts where (ServiceX = true) and (Apache = true)”, which is a composite

query that targets the intersection of two groups - hosts that run service X and hosts

that run Apache. Instead of blindly querying all the groups present in a query, Moara’s

query processor analyzes composite queries and intelligently decides on contacting a

set of groups that minimizes the communication overhead.

We implemented a prototype of Moara by leveraging the FreePastry DHT (Dis-

tributed Hash Table) [8] and SDIMS [7] systems. Our evaluation consists of experi-

ments on Emulab [9] and PlanetLab, as well as large-scale simulations. Our experimen-

tal results indicate that, compared to previous global hierarchical aggregation systems,

Moara reduces response latency by up to a factor of 4 and achieves an order of magni-

tude bandwidth savings. Our scalability experiments confirm that Moara’s overhead for

answering a query is independent of the total number of nodes in the system, and only

grows linearly with the group size. Finally, we show that Moara can answer complex

queries within hundreds of milliseconds in systems with hundreds of nodes under high

group churn.

In this work, we focus on efficiently supporting one-shot queries (as opposed to re-

peated continuous queries) over a common set of groups, since we expect this type of

queries to be more common in the kind of infrastructures we are targeting at — dat-

acenters and federated computing systems. We expect most users will be performing

one-shot queries over common groups (e.g., the same PlanetLab slice, machines in a

datacenter, etc) during the time when their service or experiment is running. Further, a

user interested in monitoring groups continually can invoke one-shot queries periodi-

cally. Our use cases in Section 2 motivates this design decision further.

3

Any distributed system subjected to dynamism in the environment, suffers from the

CAP dilemma [10], which states that it is difficult to provide both strong consistency

guarantees and high availability in failure-prone distributed settings. Moara treads this

dilemma by preferring to provide high availability and scalability, while providing even-

tual consistency guarantees on aggregation results. This philosophy is in line with that

of existing aggregation systems such as Astrolabe [6] and SDIMS [7]. Moara could also

allow the use of metrics proposed by Jain et al. [11,12] in order to track the imprecision

of the query results; however, studying these is beyond the scope of the current paper.

2 Motivation and Use Cases
We highlight the need for on-demand flexible querying and for dealing with dynamism

by presenting two motivating scenarios - data centers and federated infrastructures.

Consolidated Data Centers: In the last few years, medium and large-scale enter-

prises have moved away from maintaining their own clusters, towards subscribing to

services offered by consolidated data centers. Such consolidated data centers consist of

multiple locations, with each location containing several thousands of servers [1]. Each

server runs heterogeneous operating systems including virtual machine hosts. While

such consolidation enables running unified management tasks, it also introduces the

need to deal with scale.

Workloads on these data centers typically include Terminal Services, SOA-based

transaction workloads (e.g., SAP), and Web 2.0 workloads, e.g., searching and collab-

oration. Figure 1 presents some on-demand one-shot queries that data center managers

and service owners typically desire to run on such a virtualized enterprise. Several of

these one-shot queries are for aggregating information from a common group of nodes

including cases where groups are expressed as unions of groups (e.g., the third query

in table), or intersections (e.g., the last query). We would like to generalize this to pro-

vide managers with a powerful tool supporting flexible queries using arbitrarily nested

unions and intersections of groups. In addition, these workloads vary in intensity over

time, causing considerable dynamism in the system, e.g., terminal services facing high

user turnaround rates.

Federated Computing Infrastructures: In today’s federated computing infras-

tructures such as PlanetLab [2] and global Grids [4], as well as in proposed infrastruc-

tures, e.g., GENI [3], users wish to query current statistics for their distributed applica-

tions or experiments. For instance, PlanetLab creates virtual subgroups of nodes called

“slices” in order to run individual distributed applications. Monitoring is currently sup-

ported by tools such as CoMon [13] and Ganglia [14], which periodically collect CPU,

memory, and network data per slice on PlanetLab [2]. Due to their periodic nature, they

are not open to on-demand queries that require up-to-date answers. Further, increasing

the frequency of data collection is untenable due to storage and communication costs.

In contrast to the above systems, we need a system to answer one-shot queries that

seek to obtain up-to-date information over a common group of machines, that can be run

on-demand or periodically by an end-host, and are flexibly specified. Some examples of

our target queries include: number of slices containing at least one machine with CPU

utilization > 90% (basic query), CPU utilization of nodes common to two given slices

(intersection query), or free disk space across all slices in a given organization (union

query).

4

Tasks Queries
Resource Allocation Average utilization for servers belonging to (i) floor F, (ii) cluster C, (iii) rack R

Number of machines/VMs in a given cluster C

VM Migration Average utilization of VMs running application X version 1 or version 2
List of all VMs running application X and are VMWare based

Auditing/Security Count of all VMs/machines running firewall
Count of all VMs running ESX server and Sygate firewall

Dashboard Max response time for Service X
Count of all machines that are up and running Service X

Patch management List of version numbers being used for service X
Count of all machines that are in cluster C and running service X.version Y

Fig. 1: Illustrative Queries for Managing the Virtualized Enterprise

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 n

od
es

Slices ranked according to the number of nodes

Assigned Nodes
In-Use Nodes

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 200 400 600 800 1000 1200 1400

of
 M

ac
hi

ne
s

U
se

d

Time (min)

Job 0 Job 1

Job 0
Job 1

Fig. 2: (a) Usage of PlanetLab nodes by different slices. We show both node assignment to slices

and active usage of nodes. Data collected from a CoTop snapshot [15]. (b) Usage of HP’s utility

computing environment by different animation rendering jobs. We show the number of machines

each job uses.

Need for Group-based Aggregation: As illustrated by above two target scenarios,

we expect that most of the queries are one-shot queries over common groups of ma-

chines. Moreover, the predicate in a query specified as a logical expression involves

several groups, e.g., some groups in the above examples include the set of nodes in a

PlanetLab slice, the set of nodes running a given Grid task, the set of nodes with CPU

utilization > 90%, etc. In the worst case, such a group may span the entire system.

In practice though, we expect the group sizes to vary across different queries and

with time. In Figure 2(a), we plot the distribution of PlanetLab slice sizes, analyzed

from an instance of CoMon [13] data. Notice that there is a considerable spread in

the sizes. As many as 50% of the 400 slices have fewer than 10 assigned nodes, thus a

monitoring system that contacts all nodes to answer a query for a slice is very inefficient.

If we consider only nodes that were actually in use (where a slice has more than one

process running on a node), as many as 100 out of 170 slices have fewer than 10 active

nodes. In another example case, Figure 2(b) presents the behavior of two jobs over a

20-hour period from a real 6-month trace of a utility computing environment at HP with

500 machines receiving animation rendering batch jobs. This plot shows the dynamism

in each group over time.

These trace studies indicate that group sizes can be expected to be varying across

time in both consolidated centers as well as in federated computing infrastructures.

Thus, an efficient querying system has to avoid treating the entire system as a single

group and globally broadcasting queries to all nodes.

5

3 The Basics of Moara
In this section, we first discuss how Moara end-nodes maintain data and how queries

are structured. Then we discuss how Moara builds trees for individual groups.

3.1 Data and Query Model
Information at each node is represented and stored as (attribute, value) tuples. For ex-

ample, a machine with CPU capacity of 3Ghz can have an attribute (CPU-Mhz, 3000).

Moara has an agent running at each node that monitors the node and populates (at-
tribute, value) pairs.

A query in Moara comprises of three parts: (query-attribute, aggregation function,

group-predicate). The first field specifies the attribute of interest to be aggregated, while

the second field specifies the aggregation function to be used on this data. We require

this aggregation function to be partially aggregatable. In other words, given two partial

aggregates for multiple disjoint sets of nodes, the aggregation function must produce

an aggregate that corresponds to the union of these node sets [6, 7]. This admits aggre-

gation functions such as enumeration, max, min,sum, count, or top-k. Average can be

implemented by aggregating both sum and count.

The third field of the query specifies the group of machines on which the above

aggregation is performed. If no group is specified, the default is to aggregate values

from all nodes in the system. A group-predicate (henceforth called a “predicate”) is

specified as a boolean expression with and and or operators, over simple predicates of

the following form: (group-attribute op value), where op ∈ {<, >,=,≤,≥, �=}. Note

that this set of operators allows us to implicitly support not in a group predicate. Any

attribute that a Moara agent populates can be used as either query-attribute or group-
attribute.

A simple query contains a simple predicate. For example, the simple predicate (Ser-

viceX = true) defines all machines running ServiceX. Thus, a user wishing to compute

the maximum CPU usage across machines where ServiceX is running will issue the

following query: (CPU-Usage, MAX, (ServiceX = true)). Alternately, the user could

use a composite predicate, e.g., (ServiceX = true and Apache = true). This composite

query is defined with set operators ∪ and ∩.

Note that the query model can be easily extended so that instead of a query-attribute,

a querier can specify any arbitrary program that operates upon simple (attribute, value)
pairs. For example, a querier can specify a program that evaluates (CPU-Available >
CPU-Needed-For-App-A) as query-attribute, to see how many nodes are available for

the application A. Similarly, group-predicate can be extended to contain multiple at-

tributes by defining new attributes. For example, we can define a new attribute att as

(CPU-Available > CPU-Needed-For-App-A), which takes a boolean value of true/false.

Then att can be used to specify a group. However, for this paper, we mainly focus on the

techniques for efficiently answering the queries for given group-predicates and hence

restrict query model to contain only simple attributes.

3.2 Scalable Aggregation
We describe here how Moara aggregates data for each group.

DHT trees: For scalability with large number of nodes, groups, and queries, Moara

employs a peer-to-peer in-network aggregation approach that leverages the computing

6

and network resources of the distributed infrastructure itself to compute results. These

trees are used for spreading queries, and aggregating answers back towards the source

node. In our architecture, a lightweight Moara agent runs at each server from which

data needs to be aggregated. These agents participate in a structured overlay routing

algorithm such as Pastry [8], Tapestry [16], or Chord [17]. These systems allow routing

within the overlay, from any node to any other node, based on the IDs of these nodes

in the system. Moara uses this mechanism for building aggregation trees called DHT

trees, akin to existing systems [7, 18, 19]. A DHT tree contains all the nodes in the

system, and is rooted at a node that maps to the ID of the group. For instance, Figure 3

shows the tree for an ID with prefix 000 using Pastry’s algorithm with one-bit prefix

correction. We choose to leverage a DHT, since it handles physical membership churn

(such as failures and join/leave) very modularly and efficiently. Also, we can construct

aggregation trees clearly, given a group predicate.

Basics of Resolving Queries: Given a simple

000

111 110

010

011

001

101 100

Fig. 3: DHT tree for an ID with pre-

fix 000

query with predicate p, Moara uses MD-5 to hash

the group-attribute field in p and derives a bit-string

that stands for the group ID. The DHT tree for this

ID is then used to perform aggregation for this query,

e.g., Figure 3 shows the DHT tree for an attribute

“ServiceX” that hashes to 000.

When a simple query is generated at any node in

Moara, it is first forwarded to the root node of the

corresponding DHT tree via the underlying DHT

routing mechanism. The root then propagates it down-

wards along the DHT tree to the leaves. When a leaf receives a query, it evaluates the

predicate p in the query (e.g., ServiceX=true). If the result is true, it replies to its parent

the local value for the query attribute (e.g., CPU-Usage). Otherwise, it sends a null

reply to its parent. An internal node waits to reply to its parent until all its children have

replied or until a timeout occurs (using values in Section 7). Then, it aggregates the val-

ues reported by its children, including its own contribution if the predicate is satisfied

locally, and forwards the aggregate to its parent. Finally, the root node replies to the

original querying node with the aggregated value.

Moara Mechanisms: The above “global aggregation” approach has every node

in the system receive every query. Hence, it is inefficient in resolving queries targeting

specific groups. Moara addresses this via three mechanisms.

First, Moara attempts to prune out branches of the tree that do not contain any

node satisfying the predicate p. We call this tree a pruned tree or a group tree for p.

For example, in Figure 3, if nodes 111, 110, and 010 do not satisfy the predicate, then

the root does not forward the query to 010. However, this raises a challenge – how do

internal nodes know whether any of their descendants satisfy the predicate. For instance,

if node 110 decides to install ServiceX and thus satisfies the predicate, the path from

the root to this node will need to be added to the tree. Further, if the composition of a

group changes rapidly, then the cost for maintaining the group tree can become higher

than query resolution costs. Section 4 presents Moara’s dynamic adaptation mechanism

that addresses this dilemma.

7

Second, Moara reduces network cost and response latency by short-circuiting the

group trees, thus reducing the number of internal tree nodes that do not satisfy the pred-

icate. For instance, in Figure 3, if node 010 does not satisfy the predicate but node 110
does, then the former can be eliminated from the tree by having 110 receive queries

directly from the root. Section 5 describes how this reduces the bandwidth cost of ag-

gregating a group with m nodes in a system of N nodes, from O(m log N) to O(m).
Third, Moara efficiently resolves composite queries involving multiple groups by

rewriting the predicate into a more manageable form, and then selecting a minimal

set of groups to resolve the query. For example, an intersection query (CPU-Util, avg,

(floor=F1 and cluster=C12)) is best resolved by sending the query to only one of the

two groups - either (floor=F1) or (cluster=C12) - whichever is cheaper. This design

decision of Moara is detailed in Section 6.

4 Dynamic Maintenance
Given a tree for a specific group, Moara reduces bandwidth cost by adaptively pruning

out parts of the tree, while still guaranteeing correctness via eventual completeness.

Eventual completeness is defined as follows - when the set of predicate-satisfying nodes

as well as the underlying DHT overlay do not change for a sufficiently long time after

a query injection, a query to the group will eventually return answers from all such

nodes. For now, we assume that the dynamism in the system is only due to changes

in the composition of the groups (“group churn”); we will describe how our system

handles node and network reconfigurations (churn in system) later in Section 7.

To resolve queries efficiently, Moara could prune out the branches of the corre-

sponding DHT tree that do not contain any nodes belonging to the group. However,

to maintain completeness of the query resolution, Moara can perform such aggres-

sive pruning only if it maintains up-to-date information at each node about the status

of branches at that node. For groups with high churn in membership relative to the

number of queries (e.g., CPU-Util < 50), maintaining group status at each node for

all its branches can consume high bandwidth - broadcasting queries system-wide may

be cheaper. For relatively stable groups however (e.g., (sliceX = true) on PlanetLab),

proactively maintaining the group trees can reduce bandwidth and response times. In-

stead of implementing either of these two extreme solution points, Moara uses a dis-

tributed adaptation mechanism that, at each node, tracks the queries in the system and

group churn events from children for a group predicate and decides whether or not to

spend any bandwidth to inform its parent about its status.

Basic Pruning Mechanism: Each Moara node maintains a binary local state vari-

able prune for each group predicate. If prune for a predicate is true (PRUNE state),

then the branch rooted at this node can be pruned from the DHT tree while querying

for that predicate. Whenever a node goes from PRUNE to NO-PRUNE state, it sends

a NO-PRUNE message to its parent; the reverse transition causes a PRUNE message

to be sent. When the root or an internal node receives a query for this predicate, it will

forward the query to only those of its children that are in NO-PRUNE state.

Note that it is incorrect for an internal node to set its state for a predicate to PRUNE

based merely on whether it satisfies the predicate or not. One or more its descendants

may satisfy the predicate, and hence the branch rooted at the node should continue to

8

UPDATE
SAT

NO−PRUNE

Decided by
dynamic
adaptation policy

SAT
NO−PRUNE

NO−UPDATE

NO−UPDATE

NO−SAT
NO−PRUNE

NO−SAT
PRUNE

UPDATE

SAT 1−>0

SAT 1−>0SAT 0−>1

SAT 0−>1

Start

NO−UPDATE, NO−SAT

NO−UPDATE, SAT

Change/Send NO−PRUNE
ChangeChange

Query

Query/Send PRUNE

UPDATE, NO−SAT

Start

Fig. 4: (a) State machine for dynamic adaptation mechanism (b) State changes at a Moara node for

kUPDATE = 1 and kNO−UPDATE = 1. With these values, (UPDATE, SAT) is not reachable,

thus is not shown here.

receive any queries for this predicate. Further, an internal or a leaf node should also

consider the churn in the predicate satisfiability before setting the prune variable. For

example, suppose the predicate is (CPU-Util < 50) and a leaf node’s utilization is fluc-

tuating around 50% at a high rate. In this case, the leaf node will be setting and unsetting

prune variable, leading to a large number of PRUNE/NO-PRUNE messages.

Due to the above reasons, we define the prune variable as a variable depending on

two additional local state variables—sat and update. sat is a binary variable to track if

the subtree rooted at this node should continue receiving queries for the predicate. Thus

sat is set to 1 (SAT) if either the local node satisfies the predicate or any child node is

in NO-PRUNE state.

update is a binary state variable that denotes whether the node will update its prune
variable or not. So, when update = 1 (UPDATE state), the node will update the prune
variable; but, when update = 0 (NO-UPDATE state), the node will cease to perform

any updates to the prune variable irrespective of any changes in the local satisfiability,

or any messages from its children. In other words, a node does not send any PRUNE

or NO-PRUNE messages to its parent when it is in NO-UPDATE state. So, to ensure

correct operation, a node can move into NO-UPDATE state only after setting prune =
0. This guarantees that its parent will always send the queries for the predicate to this

node. Formally, we maintain the following invariants:

update = 1 AND sat = 1 =⇒ prune = 0
update = 1 AND sat = 0 =⇒ prune = 1

update = 0 =⇒ prune = 0
The transition rules for the state machine at each node is illustrated in Figure 4(a).

Note that a node sends a status update message to its parent whenever it moves from

PRUNE to NO-PRUNE state or vice-versa. This state machine ensures the following in-

variant – each node in the system performs at least one of the following: (a) sends status
updates upwards to its parent, or (b) receives all queries from its parent. This invari-

ant suffices to guarantee eventual completeness because after the group stops changing,

any node that satisfies the predicate will be in SAT state. Therefore, the node and its

ancestors will all be in NO-PRUNE state, and thus the node will receive the next query.

Procedure 1, 2, and 3 show pseudo-code on how Moara evaluates each variable.

Adaptation Policy: To decide the transition rules for the update state variable,

Moara employs an adaptation mechanism that allows different policies. Our goal is

to use a policy that minimizes the overall message cost, i.e., sum of both update and

query costs. In Moara, each node tracks the total number of recent queries and local

changes it has seen (in the tree) - we will explain recentness soon. Each node keeps two

9

Procedure 1 Updating sat variable for each predicate

Initial Value: sat← 0
Procesure Call: whenever there is a local attribute change or an update from any child

cnt← 0
for each child do

if there is no state associated with this child regarding the given predicate then
// by default, a parent does not maintain any state on its children

// Also, states can be garbage-collected after a period of inactivity

cnt++
else if child is in NO-PRUNE state then

cnt++
end if

end for
if the predicate is locally satisfied then

cnt++
end if
if cnt > 0 then

sat = 1
else

sat = 0
end if

Procedure 2 Updating update variable for each predicate

Initial Value: update← 0 // in the beginning, a node receives every query

Procesure Call: whenever there is a new query received or a sat variable change

if 2× qn < c then
update← 0

else if 2× qn > c then
update← 1

end if

query counts - qn, the number of queries recently received by the system while the node

is in NO-SAT state, and qs, the number of recent queries received by the system while

it was in SAT state. The node also keeps track of the number of times the sat variable

toggled between 0 and 1, denoted as c.

A node in NO-UPDATE state would exchange a total of BNU = 2× (qn +qs) mes-

sages with its parent (two per query), while a node in UPDATE state would exchange

BUP = c + 2 × qs messages (one per change, and two per query). Thus, to minimize

bandwidth, the transition rules are as follows: (1) a node in UPDATE state moves to

NO-UPDATE if BNU < BUP , i.e., 2×qn < c; (2) a node in NO-UPDATE state moves

to UPDATE if BNU > BUP , i.e., 2× qn > c. In order to avoid flip-flopping around the

threshold, we could add in hysteresis, but our current design performs well without it.

Remembering Recent Events: Each node in Moara maintains a recent “window”

of events for the counters mentioned above (qn, qs, and c). We use a window of kUPDATE

10

Procedure 3 Updating prune variable for each predicate

Procesure Call: whenever there is a change in either update or sat
if update == 1&& sat == 1 then

prune← 0
else if update == 1&& sat == 0 then

prune← 1
else if update == 0 then

prune← 0
end if

events if the node is in UPDATE state, and a window of kNO−UPDATE events if it is

NO-UPDATE. In practice, we found that kUPDATE = 1, kNO−UPDATE = 3 works

well, and we use these values in our implementation. For illustration purposes though,

Figure 4(b) depicts the state machine for kUPDATE = kNO−UPDATE = 1. In this

case, notice that whenever a node: (i) is in the PRUNE state and observes a change

in sat (c = 1, qn = 0), it switches to (NO-UPDATE, SAT); (ii) is in (NO-UPDATE,

NO-SAT) and receives a query (qn = 1, c = 0), it switches to UPDATE.

One corner issue with the above approach is that when a node is in the PRUNE

state, it does not receive any more queries and thus cannot accurately track qn. Note

that this does not affect the correctness (i.e., eventual completeness) of our protocol

but may cause unnecessary status update messages. To address this, the root node of

an aggregation tree in Moara assigns a sequence number for each query and sends that

number piggybacked along with the queries. Thus, any node that receives a query with

sequence number s is able to track qn using the difference between s and its own last-

seen query sequence number. In addition, our implementation suffers only minimally

since we use small kUPDATE values. For instance, for kUPDATE = 1, when a node in

(UPDATE, SAT) undergoes a local change, it immediately switches to NO-UPDATE,

and sends no more messages to its parent.

State Maintenance: By default, each node does not maintain any state, which is

considered as being in NO-UPDATE state. A node starts maintaining states only when

a query arrives at the node. Without dynamic maintenance, merely maintaining pruned

trees for a large number of predicates (e.g., a tree for each slice in the PlanetLab case

or a tree for each job in the data center) could consume very high bandwidth in an

aggregation system. With dynamic maintenance, pruning is proactively performed for

only those predicates that are of interest at that time. Once queries stop, nodes in the

aggregation tree start moving into NO-UPDATE state with any new updates from their

children and hence stop sending any further updates to their parents.

We note that a node in NO-UPDATE state for a predicate can safely garbage-collect

state information (e.g., predicate itself, recent events information, etc) for that predicate

without causing any incorrectness in the query resolution. So, once a predicate goes out

of interest, eventually no state is maintained at any node and no messages are exchanged

between nodes for that predicate. Several policies for deciding when to garbage-collect

state information are possible: we could 1) garbage-collect each predicate after a time-

out expires, 2) keep only the last k predicates queried, 3) garbage-collect the least fre-

11

quently queried predicate every time a new query arrives, etc. However, studying these

policies is beyond the scope of this paper. We also note that we do not consider DHT

maintenance overhead. In addition, note that global aggregation trees are implicit from

the DHT routing and hence require no separate maintenance overhead.

Finally, since Moara maintains state information for each predicate, it could be more

efficient if we aggregated different predicates. For example, predicates such as CPU-

Util > 50, CPU-Util > 60, and CPU-Util > 70 could be aggregated as one predicate,

CPU-Util > 50, so that Moara could maintain only one tree. This design choice requires

careful study on the tradeoff between the state maintenance overhead and the bandwidth

overhead incurred by combining different trees with the same attribute. This is outside

of the scope of this paper, since we focus on the tradeoff of the bandwidth overhead

based on the query rate and the group churn rate.

5 Separate Query Plane
Given a tree that contains m predicate-satisfying nodes, using the pruned DHT trees

of the previous section may lead to O(m log N) additional nodes being involved in

the tree. These extra nodes would typically be internal tree nodes that are forwarding

queries down or responses up the tree, but which do not satisfy the predicate themselves.

This section proposes modifications to the protocol described in Section 4 in order to

reduce the traffic through these internal nodes.

Our idea is to bypass the internal nodes, thus creating a separate query plane which

involves mostly nodes satisfying the predicate. This optimizes the tree that we built

(Section 4) further by eliminating unnecessary internal nodes. This reduces the tree to

contain only O(m) nodes, and thus resolves queries with message costs independent of

the number of nodes in the system. Note that this technique has similarities to adapta-

tions of multicast trees (e.g., Scribe [18]), but Moara needs to address the challenging

interplay between dynamic adaptation and this short-circuiting.

To realize a separate query plane, each node uses the states, constraints and transi-

tions as described in Section 4. In addition, each node runs operations using two locally

maintained sets: (i) updateSet is a list of nodes that it forwards to its parent; (ii) qSet is a

list of children or descendant nodes, to which it forwards any received queries. We con-

sider first, for ease of exposition, modified operations only for nodes in the UPDATE

state. When a leaf node in UPDATE state begins to satisfy the tree predicate, it changes

to SAT state as described in Section 4 and sets its UpdateSet to contain its ID. In ad-

dition, when sending a NO-PRUNE message to its parent, it also sends the updateSet.
Each internal node in turn maintains its qSet as the union of the latest received update-
Sets from all its children, adding its own ID (IP and port) if the tree predicate is satisfied

locally. The leaf nodes do not need to maintain qSets since they do not forward queries.

Finally, each internal node maintains its updateSet by continually monitoring if

|qSet| < threshold, where threshold is a system parameter. If so, then updateSet is the

same as qSet, otherwise updateSet contains a single element that is the node’s own ID

regardless of whether the predicate is satisfied locally or not. Whenever the updateSet
changes at a node and is non-empty, it sends a NO-PRUNE message to its parent along

with the new updateSet informing the change. Otherwise, it sends a PRUNE message.

The above operations are described assuming that all nodes are in UPDATE state.

When a node is NO-UPDATE state, it maintains qSet and updateSet as described above,

12

but does not send any updates to its parent. For correctness, a node moving from UP-

DATE to NO-UPDATE state sends its own ID along with the NO-PRUNE message to

its parent so that it receives future queries.

If parameter threshold=1, the above mecha-

D

No-Sat Sat

{B}
Sat

Sat

Sat

Sat

G

R

FCBA

H

{B}

{B}

{B}

{D}

{C,D}

{C}

{H}

{C} {D} {F}

{F}

Sat

Fig. 5: Separate Query Plane for thresh-
old=1. We assume all nodes are in UP-

DATE mode. Each node’s qSet is shown

next to it, and updateSet on the link to its

parent.

nisms produce the pruned DHT tree described

in Section 4, while threshold > 1 gives trees

based on a separate query plane. This is because

with threshold=1, an internal node that receives

an updateSet from any of its children will pass

along to its parent an updateSet containing its

own ID, even if the predicate is not satisfied lo-

cally. However, with threshold > 1, the only in-

ternal nodes that do not satisfy the predicate lo-

cally but receive queries, are ones that are main-

taining a qSet of size ≥ threshold. Such nodes

are required to receive queries so that they can

be forwarded to its descendants. However, the

tree bypasses several other nodes that do not sat-

isfy the predicate, thus obtaining bandwidth savings. Specifically, an internal node that

has |qSet| < threshold and does not satisfy the predicate, does not include its own ID in

the updateSet, and thus does not receive queries.

Having a high value of threshold in the system bypasses several internal nodes in

the tree. However, this comes at the expense of a higher update traffic since any update-
Set changes need to be communicated to the parent. Figure 5 shows an example with

threshold=1.

Adaptation and SQP: Our SQP design with updateSet and qSet variables at nodes,

as described above, allow us to easily use the adaptation policy rules described in Sec-

tion 4. In this case, qn at a node is the number of queries received by the system when

that node’s updateSet does not contain its ID (similar to NO-SAT state) and qs is the

number of queries received at other times. The number of changes c is the number of

changes to the updateSet variable. With these definitions, a node can use same adapta-

tion policies as described in Section 4. One exception is the use of the query sequence

number: for correct calculation of qn at a bypassed node, each node piggybacks its last

seen sequence number alongside all its status update messages to its parent.

Overhead analysis: For a group with m nodes, we analyze the overhead for for-

warding a query in the separate query plane, assuming all nodes are in UPDATE state.

First, notice that all leaf nodes in this tree satisfy the predicate - if some leaf did not,

then it would be pruned out by the above rules. Second, the tree has the maximum links

when all m predicate-satisfying nodes are at the leaves of this tree. This means that

since threshold > 1, no internal node (other than the root node) in the tree has fewer

than 2 children - if it did, it would be bypassed by the above rules. However, no tree

with m leaves and internal node degree > 2 has more than m internal nodes. Thus, the

total number of nodes, other than the root, receiving the query is ≤ 2 · m = O(m),
independent of system size.

13

6 Composite Queries
So far, we have described how to build and maintain a single tree corresponding to one

simple predicate. We now describe how a query with a composite predicate is satisfied.

Specifically, we first expand on the multiple possible trees, one tree per simple predicate

in the composite query, that such a query entails (Section 6.1). Then, we explain how

Moara plans a given query (Section 6.2), and how it selects a low-cost groups of nodes

to execute a given composite query (Section 6.3).

6.1 Maintaining Multiple Trees
Section 4 explains the maintenance of trees for simple predicates, starting from the time

a predicate is first encountered. If this predicate does not reappear again in subsequent

queries in the system, then all nodes in the tree will eventually move to NO-UPDATE

state (due to group churn events), and thus there will be no load, either query or update,

along the tree. Thus, Moara trees become silent and incurs zero bandwidth cost if not

used, obviating the need to explicitly delete trees for simple predicates. Furthermore,

Moara does not maintain trees for composite queries, since these might be exponentially

large in number - instead, it decides which simple predicate trees (existing or not) will

be selected to execute a given composite query. This decision process is described next.

6.2 Composite Query Planning
Consider the following composite query: “find the average free memory across ma-

chines where service X and Apache are running”. Suppose we have one group tree for

(ServiceX=true) and another tree for (Apache=true). A naı̈ve way to resolve the query

would be to query both trees in parallel. However, we observe that bandwidth can be

saved, without compromising completeness of answers, by (1) sending the query to any

one of the trees (because it is an intersection query), and (2) choosing the tree that incurs

a lower query cost.

Based on this observation, Moara answers arbitrary nested queries involving and
and or boolean expressions across simple predicates by selecting a small cover. A

cover for a given composite query Q is defined as a set of groups (selected from among

simple predicates inside Q) which together contain all nodes that satisfy the composite

predicate in Q. Thus, we only need to send Q to a cover to obtain a complete answer.

We can compute a cover for a query Q by exploring the boolean expression structure

recursively as follows:

• cover(Q=“A”) = {A} if A is a predefined group.

• cover(Q=“A or B”) = cover(A) ∪ cover(B).

• cover(Q=“A and B”) = cover(A), cover(B), or (cover(A) ∪ cover(B)).

For example, for a query with expression ((A and B) or C), the above rules derive

{A,C}, {B,C}, and {A,B,C} as possible covers. We call such covers as structural covers

since we infer them from the structure of the boolean expression.

Once the query originating node calculates the cover for a given query Q, the com-

posite query is forwarded to the roots of trees corresponding to each group in the cover,

the answers from these trees are aggregated, and finally returned to the querying node.

Notice that it is possible for some node(s) to receive multiple copies of the query, if they

are present in multiple trees which appear in the cover for Q. Such nodes reply with the

14

((A or B) and (A or C)) or D

CNF Conversion

Cover Evaluation

(A or B or D) and (A or C or D)

min(|A| + |B| + |D|, |A| + |C| + |D|)

Fig. 6: Example query processing

Semantic information (A or B) (A and B)

A ∩ B = φ {A,B} {}
A ∩ B �= φ and A ⊇ B and A ⊆ B {A} {A}

⇒ (A=B)

A ∩ B �= φ and A ⊇ B and A � B {A} {B}
A ∩ B �= φ and A � B and A ⊆ B {B} {A}
A ∩ B �= φ and A � B and A � B {A,B} {A},{B}

Fig. 7: Semantic info to reduce cover sizes

attribute value to only one of the trees they are present in, eliminating duplicate an-

swers. This requires nodes to remember the query ids (based on sender IP and sequence

number). Such information is cached for 5 minutes in our Moara implementation.

To further save on bandwidth, we would like to select a low-cost cover. This is

done by minimizing both the number of groups in the selected cover, as well as the

total cost of querying this cover. We explore below three ways of deriving a low-cost

cover: (1) structural optimizations, which rewrite the nested query to select a low-cost

structural cover consisting of simple predicates that already appear within the query, (2)

estimates of query costs for individual trees, and (3) semantic optimizations, which take

into account semantic information obtained from users or query attributes.

6.3 Query Optimization: Finding Low-Cost Covers

Given a composite query, Moara first transforms it into a Conjunctive Normal Form

(CNF) expression using distributive laws of and and or operators. A CNF form is a

two level expression of and’s across a series of or terms.

It is important to notice that in the CNF form of a composite predicate for query

Q, each series of or terms is a possible cover - this is due to the same reason as our

intersection optimization explained earlier. Thus, if Moara can evaluate the query cost

of each of these structural covers (as a sum of the query costs for all sets in the cover),

then it can select the minimal cost cover for executing the query Q. We will describe

query cost calculation soon, but before that we give an example of the query rewriting as

well as proof sketch of why the CNF form gives the minimal-cost cover for a composite

predicate.

Figure 6 shows an example transformation. Consider a query targeting ((A or B)

and (A or C)) or D. Moara first transforms the expression to the equivalent CNF: (A

or B or D) and (A or C or D). Moara chooses one cover between the two structural

covers - either {A, B,D} or {A, C,D}, whichever has a lower cost.

If query cost estimates for individual groups are up-to-date and available at the tree

roots, we can prove by contradiction that our structural optimizations produce a cover

that is minimum in cost. Suppose that the given CNF expression is E = A1 and A2

and . . .and An, where each term Ai is an or of positive literals and hence a structural

cover for E. Assume the contrary, i.e., suppose there exists a structural cover C with

a lower cost than our covers. In each term Ai of expression E, if we substitute the

literals from set C with 0, the expression should evaluate to 0 (since C is a structural

cover). However, since Ai’s are and-ed, there has to be some Aj that evaluates to 0 in

this substitution. Thus, all groups in this Aj have to be a part of C. However, this is a

contradiction since Aj is a cover with cost no more than C.

15

Relation between pair of groups Description Example pair of groups

Intersection (without inclusion) Two groups intersect properly (CPU-Util < 50), (CPU-Util > 20)

Discontinuous Intersection The intersection is not continuous (CPU-Util < 50), (CPU-Util �= 20)

Equivalence Two groups are identical (CPU-Util < 50), (CPU-Util < 50)

Inclusion One group is a subset of another (CPU-Util < 50), (CPU-Util < 20)

Disjointedness Two groups do not intersect (CPU-Util < 50), (CPU-Util > 80)

Fig. 8: Defining operators of groups that allow relation inference between two groups

Estimating Query Costs for Trees: In order to enable low-cost cover calculation,

the root node of each tree for a simple predicate continually maintains the query cost for

that tree. The query cost is fetched by the querying node and used in the low-cost cover

calculation described above. Within the tree, the cost for each query is simply 2 × np,

where np is the number of nodes in NO-PRUNE state. The values of np are aggregated

continually up the tree. Each internal node stores this count for its own subtree, modifies

the count according to its own state, and piggybacks this information atop all updates

and query responses to its parents. Although this lazy updating of the counts means the

query costs may be stale at times, this only affects communication overhead, but not the

correctness of the response.

Using Semantic Optimizations: If semantic information is available about the

groups, then Moara can further optimize the communication costs by choosing a bet-

ter cover. We explore two kinds of semantic information in our system: (i) information

from description of the group, and (ii) user supplied semantic information. For exam-

ple, consider two groups A and B defined as follows: A = {nodes with memory < 2G}
and B = {nodes with memory < 1G}. Then, we can infer from these definitions that

B ⊆ A. In Figure 8, we list relations between two groups that Moara infers by analyz-

ing the operations that define those pair of groups. Once we have semantic information

either inferred from the description of the groups or supplied by a user, Moara applies

the optimizations detailed in Figure 7 to obtain a low-cost cover. As another instance,

Moara implicitly supports not operator by observing complement relations in the spec-

ified groups (the last row in Figure 8), and the following optimizations:

• (A or B) and (A or C) = A, if C = not (B)

• (A or C) and B = A and B, if C = not (B)

• (A or B) and C = A and not (B), if C = not (B)

7 Implementation and Evaluation
We have built a prototype of Moara using SDIMS [7] and FreePastry [8]. All other

Moara protocols, described in Section 3 through Section 6, are built atop these systems.

Here, we discuss our implementation details and evaluation methodology.

Moara Front-End: The Moara front-end is a client-side interface of Moara. It in-

cludes an interactive shell, a query parser, and a query optimizer. Through the interactive

shell, a user can submit SQL-like aggregation queries to Moara. The query parser parses

the queries, and the query optimizer determines the groups that need to be queried

through the algorithm described in Section 6. Once the front-end determines the groups

to be queried, it generates a sub-query for each group. Each sub-query is resolved ex-

actly the same way as a normal query, except that the front-end waits until it receives

all the results from sub-queries, aggregates the results returned by the sub-queries, and

returns the final aggregate to the user.

16

Reconfigurations: To handle reconfigurations, we leverage the underlying FreeP-

astry mechanism for failure detection and neighbor set repair. When a node gets a new

parent for a predicate, it sends its current state information (e.g., updateSet) for that

predicate to the new parent. Also, when a node is waiting for a response from a child

and if the underlying DHT notifies that the child has failed or is not reachable, then

the node will proceed assuming a NULL response from the child. In addition to this,

Moara also implements a time-out mechanism (in waiting for a child’s reply to a query)

to ensure that all queries are responded to independent of FreePastry’s timeout values

for failure detection.

Evaluation Environments: We use simulation, Emulab, and PlanetLab, and choose

a suitable environment to evaluate each of our design choices. We use simulation ex-

clusively for measuring bandwidth consumption in a large-scale environment. We use

Emulab and PlanetLab to mainly measure the latency in realistic environments, namely,

a medium-scale datacenter (Emulab) and a wide-area infrastructure (PlanetLab).

For each design choice (group-based aggregation, dynamic maintenance, separate

query plane, and composite query processor), we choose the evaluation environments

that are most suitable. First, we evaluate group-based aggregation on Emulab and Plan-

etLab, since group-based aggregation is designed to reduce both latency and bandwidth

consumption. Second, we evaluate dynamic maintenance and separate query plane us-

ing simulation, since both mechanisms are designed for bandwidth optimization and

have wide choices of parameters. However, we evaluate the separate query plane on

Emulab as well to measure the latency. Lastly, we evaluate our composite query pro-

cessor on Emulab, since it only affects latency.

Workload: The workload is characterized by two factors - group churn rate and

query rate. First, since a group is defined over a particular attribute, the group churn

rate depends on how dynamic the attribute is (e.g., a group of (OS = Linux) is likely

to be static, while a group of (CPU-util < 60%) is likely to be dynamic). Second, the

query rate depends on the usage of Moara and is expected to vary widely. For example,

a datacenter operator might typically query a group once an hour on a day, but sev-

eral times a minute on days with high workloads or unscheduled downtimes. Thus, we

parameterize these factors and present the performance of Moara over the parameter

range.

7.1 Simulation Results
We perform simulation experiments to measure the bandwith overhead of Moara’s dy-

namic tree maintenance and separate query plane. Our simulations are performed with

the FreePastry simulator environment, simulating up to 16,384 nodes. Each node main-

tains an attribute A with value ∈ {0, 1}. All queries are simple queries for (A, SUM,

A = 1), which counts the number of nodes where A is set to 1.

Dynamic Maintenance: To study the dynamic maintenance mechanism under dif-

ferent workload types, we stress the system by injecting two types of events - query

events and group churn events - at different ratios. For example, a query:churn ratio of

0:500 represents an extreme type of workload where there is high group churn, but no

queries at all. On the other hand, the query:churn ratio of 500:0 represents the other

extreme where there is high query rate, but no group churn. Each group churn event

selects m nodes at random, and toggles the value of their attribute A. The value of m

17

 0

 200

 400

 600

 800

 1000

 1200

0:500 100:400 200:300 300:200 400:100 500:0

of

 M
es

sa
ge

s
pe

r
N

od
e

Query:Churn Ratio

Global
Moara (Always-Update)

Moara

Fig. 9: Bandwidth usage with various query-to-churn ratios

determines the “burst size” of attribute churn. We fix the total number of events to 500,

and randomly inject query or group churn events at the chosen ratio. All data points are

averaged over 3 runs.

Figure 9 shows the average number of messages per node in Moara under various

query:churn ratios, in a system of 10,000 nodes with m = 2000-sized group churn

events. In addition to Moara, we also plot the number of messages generated by two

other static approaches that lie at the opposing extremes. These are: 1) the Global ap-

proach, where no group trees are maintained and queries are sent to all the nodes on

the DHT trees, and 2) Moara (Always-Update) approach, where a tree is aggressively

maintained by having each child send an update to its parent on each attribute churn

event.

The Global approach is inexpensive when there are fewer queries in the system,

since it avoids the overhead of tree maintenance. On the other hand, with a high-

query:low-churn ratio, Moara (Always-Update) performs well because it always main-

tains group trees and hence incurs lower traffic than Global approach. The plots show

that Moara meets or lowers the message overhead in comparison to either of these ex-

treme design choices, at all values of query:churn ratios. When group churn is high,

Moara suppresses attribute churn events from propagating to other nodes. With more

queries than group churn events, Moara reduces query cost by maintaining trees aggres-

sively. Thus, Moara is able to adapt to various workload patterns. In the above experi-

ment, we use kUPDATE=1 and kNO−UPDATE=3. Here, we study the sensitivity of the

performance for different values for these knobs. Figure 10 plots the average number

of messages per node in a system of 500 Moara nodes under a range of query:churn

ratios for different threshold values. Although we have tried a wide range of values

(each up to 10), we only show a few representative pairs that are sufficient to show the

conclusion, in order to prevent the plot from being too crowded. When there are very

few query events in the system (compared to churn events), different threshold values

perform similarly. However, when the number of queries is high (e.g., # Queries=400),

large kUPDATE values (e.g., (3, 1) and (2, 1)) coupled with small kNO−UPDATE val-

ues lead to slightly more overall messages. This is because with larger kUPDATE and

smaller kNO−UPDATE , more Moara nodes stay in UPDATE state - thus, each child

updates its parent more often, even with small churn rates. Overall, we observe that

the sensitivity of the performance to different thresholds is very small. For all other

experiments, we use the default values of kUPDATE=1 and kNO−UPDATE=3.

18

 0

 100

 200

 300

 400

 500

 600

0:500 100:400 200:300 300:200 400:100 500:0

of

 M
es

sa
ge

s
pe

r
N

od
e

Query:Churn Ratio

(2,1)

(3,1)

(1,1)
(1,3)
(2,1)
(3,1)
(3,3)

Fig. 10: Bandwidth usage with various (kUPDATE , kNO−UPDATE). Although we have tried a

wide range of values in our simulation, we only show a few representative pairs for clarity of

presentation.

 10

 100

 1000

 1 10 100 1000 10000

A
ve

ra
ge

 Q
ue

ry
 C

os
t

Number of Nodes

(8,1)
(8,2)
(8,4)

(32,1)
(32,2)
(32,4)

(128,1)
(128,2)
(128,4) 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000
 0

 20

 40

 60

 80

 100

Q
ue

ry
 C

os
t

U
pd

at
e

C
os

t

Subset Size

qc, t = 2
qc, t = 4
qc, t = 16

uc, t = 2
uc, t = 4
uc, t = 16

Fig. 11: (a) Bandwidth usage with (threshold > 1) and without the separate query plane (thresh-

old=1) for different group sizes. Each line represents a (group size, threshold) pair (b) Query

costs (qc) and update costs (uc) of the separate query plane in a 8192-node system

Separate Query Plane: In Figure 11(a), we plot the query cost against the number

of nodes in the system for different threshold values and different group sizes. Note

that the threshold value of 1 implies the absence of a separate query plane, while higher

threshold values create a separate query plane (refer to Section 5). For this experiment,

we do not introduce any group churn during the experiment. We perform 1,000 queries

and compute the average of the query cost. Even though there is no group churn, there

are updates sent by nodes to their parents as they move into UPDATE state with the first

query message. We count those messages as the update cost.

Figure 11(a) shows that without the separate query plane (threshold=1), the query

cost increases logarithmically as the total system size is raised. However, while main-

taining a separate query plane (threshold>1), the query cost reaches a constant value

and stays flat, independent of the number of nodes in the system. While increasing the

value of threshold decreases query cost, it can lead to more update messages as dis-

cussed in Section 5. In Figure 11(b), we plot the query costs for different threshold
values as a percentage of the query cost for threshold=1 and also plot the percentage

increase in the update costs in comparison to threshold=1. From these two plots, we ob-

serve that (1) with small groups and large total nodes (e.g., 8192 total nodes with group

size=8 or 32), using a query plane saves more than 50% bandwidth in query costs,

and (2) while using a higher value of threshold does reduce bandwidth, the savings are

marginal beyond a threshold of 2 and can incur higher update costs at large group sizes.

19

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

group32

group64

group128

group256

group500

SDIM
S

 0

 200

 400

 600

 800

 1000

La
te

nc
y

(m
s)

A
vg

 M
sg

s
pe

r
Q

ry

Latency
Msgs

 0

 50

 100

 150

 200

 250

 300

40 80 120
160

200

La
te

nc
y

(m
s)

of Churn Nodes

Interval 5
Interval 45

Fig. 12: (a) Latency and bandwidth usage with static groups (b) Average latency of dynamically

changing groups. The horizontal line shows the average latency with a static group of the same

size.

7.2 Emulab Experiments
In this section, we study both the latency and communication overhead of Moara under a

real deployment scenario in Emulab, that emulates a medium-scale datacenter. Specif-

ically, we evaluate three different workloads. First, we study performance of Moara

when querying groups of static attributes (e.g., OS = Linux). We vary the size of groups

and show the benefits of using Moara. Second, we study Moara with groups defined

over dynamic attributes (e.g., CPU-util < 60%). We stress Moara by varying the fre-

quency of changes. Third, we study composite queries with varying numbers of groups

per query.

Methodology: We create a network of 50 machines on a 100 Mbps LAN and in-

stantiate 10 instances of Moara on each machine, thus emulating a 500 node Moara

system. Each experimental run is started with one bootstrap node, followed by a batch

of 100 new instances joining after intervals of 10 seconds each. After the last join, we

wait an additional 5 minutes to warm up before initiating queries and group churn from

a Moara node. Since we are mainly interested in per-query latency and bandwidth con-

sumption, we fix the query rate and repeat the same query multiple times. As previously,

each node maintains one binary attribute A. Our default query is a count, providing the

number of nodes with A=1. All data points are the average of 3 runs.

Static Groups: Figure 12(a) compares the performance of Moara (with separate

query plane) w.r.t. both latency and bandwidth. We vary the group sizes and query

100 times for each experiment. In addition, we compare this performance against an

approach where a single global tree is used system-wide - this is labelled as the SDIMS
approach in the plot. As we can see from the figure, Moara’s latency and bandwidth

scale with the size of the group. The savings are the most significant for small groups

(e.g., set32 which has 32 nodes), where the savings compared to the SDIMS approach

are up to 4X in latency and 10X in bandwidth. The latency is reduced due to the use of

separate query plane because of short-circuiting long chains of intermediate nodes.

Dynamic Groups: We study the effect of group churn due to attribute-value changes

at individual nodes. We considered a group of 100 nodes, with group churn controlled

by two parameters churn and interval. Every interval seconds, we randomly select

churn nodes in the group to leave, and churn nodes outside the group to join.

Figure 12(b) shows the effect on query latency, of different churn values (x-axis)

for two different interval values. Queries are inserted at the rate of one query per

20

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Time (sec)

5-sec 160-node churn

 150
 200
 250
 300
 350
 400
 450
 500
 550

 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

of Groups

Complex
Union
Intersection

Comp. no SP
Uni. no SP
Inter. no SP

Fig. 13: (a) Latency over time with a dynamically changing group. The horizontal line shows the

average latency with a static group of the same size. (b) Latency with composite queries

second, and the data points are averages of 100 queries per run. The plot shows that

Moara’s query latency is not affected significantly by group churn - (1) even when we

increase the group churn rate by a 9-fold factor from Interval=45 to interval=5, Moara

experiences only a small increase in latency, and (2) the latency stays low, and around

150 ms even when the entire group membership changes every 5 seconds (interval=5,

churn=200).

Figure 13(a) provides an insight into the workings of Moara under the above work-

load, for interval=5, churn=160. Notice that the spikes in query latency occur once

every 5 seconds, around the time that the group churn batch occurs. However, notice

that (1) the peak latency stays within 300 ms, and (2) Moara query latency stabilizes

very quickly after each group churn batch, typically within 1-2 seconds. These plots

thus show that Moara is highly resilient to dynamism due to rapidly occurring attribute-

value changes.

Composite Queries: The experiments so far have focused on single groups in

Moara. Here, we microbenchmark the performance of Moara on composite queries.

Assuming S1, S2, . . . , Sn are simple single predicate groups, we study three types of

composite queries: (1) Intersection queries of the form S1 ∩S2 ∩ . . .∩Sn, for different

values of n; (2) Union queries of the form S1 ∪S2 ∪ . . .∪Sn, for different values of n;

and (3) Complex queries, which are structured as T1 ∩ T2 ∩ . . .∩ Tm, where each Ti is

a union of multiple groups. These experiments suffice to characterize Moara’s perfor-

mance since the query optimization reduces all query expressions to one of the three.

Each basic group Si consists of 50 nodes selected at random. The complex expression

we use1 is T1 ∩T2 ∩T3, and each Ti is a union of n basic groups for different values of

n. Figure 13(b) plots the latency for above three types of queries with different values

of n. For composite queries, recall that Moara first sends size probes to root nodes of

group trees, in order to make a query optimization decision. Thus, we plot not only the

total latency of a Moara query, but also the latency excluding the time to finish the size

probes. Each data point is averaged over 300 queries.

First, notice that the average completion times of all queries, including queries with

up to 10 groups, is less than 500 ms. For intersection queries, the completion times

excluding time for size probes (plot line “Inter. no SP”) do not depend on the size of

the expression. This is because Moara selects only one of these groups to propagate the

1 We found that the number of Ti’s has little effect on latency because Moara queries only one

of all Ti’s.

21

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70
C

um
ul

at
iv

e
F

ra
ct

io
n

(%
)

Time (sec)

Group 50
Group 100
Group 150
Group 200

Fig. 14: PlanetLab Latency

query. Although size probes are sent in parallel, the latency for size probes increases

slightly since Moara waits until the slowest probe response arrives. For union queries,

the total completion time of a query rises gradually with the size of the expression, as

Moara needs to contact all groups (two “Union” plots). Finally, the completion time for

complex queries is only slightly more than that of union queries, since Moara’s query

optimization selects only one of Ti’s. The additional latency is caused by two factors:

(a) the time taken for size probes is higher as we have to query the sizes for larger

number of groups, and (b) a complex set expression adds more overhead at each node,

because each node evaluates the entire complex expression to determine if it satisfies it

or not (this step could be further optimized).

7.3 PlanetLab Experiments

Methodology: We deploy Moara atop 200 PlanetLab nodes, which span several con-

tinents. Each PlanetLab node runs one instance of Moara. The instances are started

sequentially, the system is given 5 minutes to warm up, and then a series of queries is

injected from a Moara front-end running on a local machine. In order to study the be-

havior of Moara’s query latency in-depth, we perform experiments on only one group

at a time, but for different sizes of this group. Each experiment involves a total of 500

queries injected 5 seconds apart. All plotted data points are the average of 3 runs. We

do not timeout on queries, in order to obtain complete answers.

Query Response Latency: Figure 14 plots the cumulative fraction of replies re-

ceived as a function of time since query injection, on four different-sized groups. The

plot shows the responsiveness of Moara in a wide-area setting - even with as many as

100 nodes in the group, the median answer is received back within 1-2 seconds, while

90% of the answers are received within 5 seconds.

Moara versus Centralized Aggregation: Figure 15 compares Moara against a cen-

tralized approach which maintains no trees but has the Moara front-end directly query

all nodes in parallel regardless of whether they satisfy the given predicate or not (la-

belled “Central”). The response for a query from this centralized aggregator is con-

sidered complete when the centralized aggregator has received a response from every

node regarding the query. The figure plots the cumulative fraction of replies received

as a function of time since query injection. This plot illustrates that the comparison be-

tween the centralized aggregator and Moara is intuitively akin to the comparison of “the

tortoise and the hare”. In other words, for both groups of size 100 and 150, we notice

22

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40
C

um
ul

at
iv

e
F

ra
ct

io
n

(%
)

Time (sec)

Group 100
Central (Group 100)

Group 150
Central (Group 150)

Fig. 15: Moara vs. Centralized Aggregator

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 20 40 60 80 100 120 140 160 180 200 220

La
te

nc
y

(s
ec

)

Query ID

latency
bottleneck

Fig. 16: PlanetLab Bottleneck Latency

that the centralized aggregator obtains initial replies faster than Moara, but then it slows

down waiting for the remainder of the query answers from nodes.

Figure 16 further explains why Moara’s overall completion time is shorter than the

centralized aggregator with smaller groups. We plot the total completion latency for a

Moara query in a 200-node group, along with the latency on a single bottleneck link in

the Moara tree. This bottleneck link is obtained via offline analysis, and by picking the

largest round-trip-time among all parent-child pairs in the tree. This plot shows that it is

a single bottleneck link that contributes to the latency of Moara. Moara is faster overall

in obtaining a large fraction of replies, because it avoids bottlenecks that are not part of

the queried group. In comparison, the centralized aggregator is subject to being slowed

down by all nodes that suffer from bottlenecks, mainly the slowest bottleneck.

8 Related Work
PlanetLab has several management tools in use, such as CoTop, CoMon, etc [15]. How-

ever, none of the tools addresses scalability and expressive queries simultaneously. Sev-

eral distributed systems have been proposed for aggregating data. Astrolabe [6] provides

a generic aggregation abstraction, but uses a single static tree and hence has limited scal-

ability with the number of metrics. SDIMS [7] constructs multiple trees for scalability

with the number of metrics, but assumes a single group of the entire system. PIER [20]

supports recursive SQL-style queries, but does not leverage in-network aggregation.

Huebsch et al. [21] present a way to optimize global aggregation queries, while Moara

optimizes multiple group-based aggregation trees. Seaweed [5] focuses on dealing with

data unavailability. MON [22] supports one-shot queries and constructs query trees on-

demand, but does not support expressive queries. Finally, Ganglia [14] uses a single

hierarchical tree, but collects all data without in-network aggregation.

23

Vanilla DHTs by themselves, e.g., Pastry [8], Chord [17], Tapestry [16], Kelips [23],

etc., do not support complex queries. In sensor-networks, there are several aggregation

systems whose goals bear similarities to ours (e.g., TinyDB [24] and Synopsis dif-

fusion [25]). However, their applicability is limited to wireless sensor networks with

multi-hop connectivity; utilizing these techniques in our setting would contact a large

number of nodes for any complex query.

Structured overlay based multicast systems such as Scribe [18], SAAR [26], and Se-

lectCast [27] bear some similarities with Moara, e.g., path collapsing of Scribe [18], the

shared control plane idea of SAAR [26], and predicate-based multicast of SelectCast.

However, all these system focus on building efficient trees for multicast where mainte-

nance overhead is assumed to be much smaller than the data plane costs. CUP [28] and

Shruti [29], while proposing adaptation techniques to reduce query cost, addresses a

different optimization problem than us. In these systems, queries are only spread down

to the nodes where updates are also propagated to (rendezvous points). Moara uses up-

dates for pruning the group trees and queries are sent to all predicate-satisfying nodes.

9 Conclusion
In this paper, we have presented the design and evaluation of Moara, a group-based ag-

gregation system. Moara achieves scalability with increasing numbers of machines, in-

jected queries, and groups, by: (1) intelligently resolving composite query expressions,

(2) constructing single-attribute aggregation trees that perform in-network aggregation,

and (3) dynamically maintaining group trees based on query rates and group churn rates,

thus reducing bandwidth consumption. Our experimental evaluations using simulations

and deployments atop Emulab and PlanetLab demonstrate the effectiveness of Moara

in answering queries accurately within hundreds of milliseconds across hundreds of

nodes, and with low per-node bandwidth consumption.

References

[1] HP: HP Data Centre Consolidation. http://h20331.www2.hp.com/
enterprise/cache/141741-0-0-225-121.html

[2] PlanetLab. http://www.planet-lab.org/
[3] NSF: The NSF GENI Initiative. http://www.nsf.gov/cise/geni/
[4] Foster, I.T.: The Grid2003 Production Grid: Principles and Practice. In: Proc. HPDC-13.

(2004)

[5] Narayanan, D., Donnelly, A., Mortier, R., Rowstron, A.: Delay Aware Querying with Sea-

weed. In: Proc. VLDB. (2006)

[6] Renesse, R.V., Birman, K.P., Vogels, W.: Astrolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and Data Mining. ACM Trans. on Comp.

Syst. 21(2) (May 2003) 164 – 206

[7] Yalagandula, P., Dahlin, M.: A Scalable Distributed Information Management System. In:

Proc. SIGCOMM. (2004)

[8] Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location and Routing for

Large-scale Peer-to-Peer Systems. In: Proc. Middleware. (2001)

[9] Emulab. http://www.emulab.net
[10] Brewer, E.: Towards Robust Distributed Systems (Invited Talk). In: Proc. PODC. (2000)

24

[11] Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: STAR: Self Tuning

Aggregation for Scalable Monitoring. In: 33rd International Conference on Very Large

Databases (VLDB). (2007)

[12] Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: PRISM: Precision-

Integrated Scalable Monitoring (extended). In: 8th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). (December 2008)

[13] Park, K., Pai, V.S.: CoMon: a Mostly-scalable Monitoring System for PlanetLab. SIGOPS

OSR 40(1) (2006) 65–74

[14] Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System: De-

sign, Implementation and Experience. Parallel Computing 30(7) (July 2004)

[15] PlanetLab: Contributed Software. https://wiki.planet-lab.org/twiki/
bin/view/Planetlab/ContributedSoftware

[16] Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry: A

Resilient Global-scale Overlay for Service Deployment. IEEE JSAC 22(1) (January 2004)

[17] Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-

to-Peer Lookup Service for Internet Applications. In: Proc. SIGCOMM. (2001)

[18] Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A Large-scale and

Decentralised Application-level Multicast Infrastructure. IEEE JSAC (2002)

[19] Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: SplitStream:

High-bandwidth Multicast in a Cooperative Environment. In: Proc. SOSP. (2003)

[20] Huebsch, R., Chun, B., Hellerstein, J.M., Loo, B.T., Maniatis, P., Roscoe, T., Shenker, S.,

Stoica, I., Yumerefendi, A.R.: The Architecture of PIER: an Internet-Scale Query Processor.

In: Proc. CIDR. (2005)

[21] Huebsch, R., Garofalakis, M., Hellerstein, J.M., Stoica, I.: Sharing Aggregate Computation

for Distributed Queries. In: UC Berkeley Tech Report UCB/EECS-2006-98. (2006)

[22] Liang, J., Ko, S.Y., Gupta, I., Nahrstedt, K.: MON: On-demand Overlays for Distributed

System Management. In: Proc. USENIX WORLDS. (2005)

[23] Gupta, I., Birman, K.P., Linga, P., Demers, A.J., van Renesse, R.: Kelips: Building an

Efficient and Stable P2P DHT through Increased Memory and Background Overhead. In:

Proc. IPTPS. (2003)

[24] Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An Acqusitional Query

Processing System for Sensor Networks. ACM Trans. on Database Syst. 30(1) (March

2005) 122–173

[25] Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis Diffusion for Robust Aggre-

gation in Sensor Networks. In: Proc. SenSys. (2004)

[26] Nandi, A., Ganjam, A., Druschel, P., Ng, T.S.E., Stoica, I., Zhang, H., Bhattachargee, B.:

SAAR: A Shared Control Plane for Overlay Multicast. In: Proc. NSDI. (2007)

[27] Bozdog, A., van Renesse, R., Dumitriu, D.: SelectCast: A scalable and self-repairing mul-

ticast overlay routing facility. In: SSRS ’03: Proceedings of the 2003 ACM workshop on

Survivable and self-regenerative systems, New York, NY, USA (2003) 33–42

[28] Roussopoulos, M., Baker, M.: CUP: Controlled Update Propagation in Peer-to-Peer Net-

works. In: USENIX. (2003)

[29] Yalagandula, P., Dahlin, M.: Shruti: A Self-Tuning Hierarchical Aggregation System. In:

SASO 2007

