
 1

Task Assignment for a Physical Agent Team via a Dynamic
Forward/Reverse Auction Mechanism

Amr Ahmed, Abhilash Patel, Tom Brown, MyungJoo Ham, Myeong-Wuk Jang, Gul Agha
Open Systems Laboratory

Department of Computer Science
Urbana, IL 61801, USA

{amrmomen,apatel1,tdbrown,ham1,mjang,agha}@uiuc.edu
http://osl.cs.uiuc.edu

Abstract ⎯ In the dynamic distributed task assignment
(DDTA) problem, a team of agents is required to accomplish
a set of tasks while maximizing the overall team utility. An
effective solution to this problem needs to address two
closely related questions: first, how to find a near-optimal
assignment from agents to tasks under resource constraints,
and second, how to efficiently maintain the optimality of the
assignment over time. We address the first problem by
extending an existing forward/reverse auction algorithm
which was designed for bipartite maximal matching to find
an initial near-optimal assignment. A difficulty with such an
assignment is that the dynamicity of the environment
compromises the optimality of the initial solution. We
address the dynamicity problem by using swapping to
locally move agents between tasks. By linking these local
swaps, the current assignment is morphed into one which is
closer to what would have been obtained if we had
re-executed the computationally more expensive auction
algorithm. In this paper, we detail the application of this
dynamic auctioning scheme in the context of a UAV
(Unmanned Aerial Vehicle) search and rescue mission and
present early experimentations using physical agents to
show the feasibility of the proposed approach.

Keywords: Agent Coordination, Auction, Forward/Reverse
Auction, Task Assignment, Conflict Management.

1. INTRODUCTION

Recently, the problem of dynamic distributed task
assignment (DDTA) among a team of agents has gained
tremendous attention due to the wide variety of applications
that require an efficient solution to this problem like:
distributed sensor network [2], vehicle monitoring [4], and
search and rescue [6]. In the DDTA problem a team of
agents is required to accomplish a set of tasks according to a
given criteria. This criterion can be either minimizing the
time to accomplish all tasks or maximizing the utility of the
accomplished tasks in a given time frame.

Several approaches have been proposed to solve this
problem that can be classified as either centralized or
distributed. In centralized approaches, there exists a central
agent who plays the role of a leader (e.g., see [10]). This

leader aggregates information from other team members,
plans optimally for the entire team, and finally propagates
the task assignments to other team members. This
master-slave architecture has, in theory, the advantage
finding an optimal solution, but it has several disadvantages:
a single point of failure, inability to respond fast to changes
in the environments, and inability to deal with partially
observable environments.

To deal with the above shortcomings, distributed approaches
have been proposed. They attack the DDTA problem by
requiring each agent to plan for itself based on local
information (e.g., see [11]). In these approaches, agents rely
on a predefined negotiation framework that allows them to
decide what activity to do next, what information to
communicate, and to whom. A difficulty with these
approaches is that they require agents to possess accurate
knowledge about their environment—a condition that is
difficult to maintain in heterogeneous and open systems.

What is missing from the previous approaches, as reported
in [2], is a formalization of the DDTA problem that exposes
its challenging requirements and drives researchers to
design efficient algorithms for this important problem.
These efficient algorithms need to address two closely
related problems. First, the combinatorial problem: how to
find a near-optimal assignment from agents to tasks under
time and bandwidth resource constraints; and second, the
problem of environment dynamicity: how to efficiently
maintain the optimality of the assignment over time.

In this paper we present a dynamic auctioning scheme that
uses a divide and conquer strategy to approach the DDTA
problem. We address the combinatorial problem by
extending a forward/reverse auction algorithm [1] which
was originally designed for bipartite maximal matching to
handle non-unary task requirements. This algorithm
alternates between rounds of forward and reverse auctions.
In the forward stage, agents bid for tasks, while in the
reverse stage tasks (conceptually) bid for agents by reducing
their prices. Because the environment is dynamic, the
solution found during the auction may degrade from an
optimal solution into a highly inefficient one; we propose to
use swapping to locally move agents between tasks. By

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

linking these local swaps, the current assignment is morphed
into the one which should have been obtained if we had
re-executed the expensive auction algorithm.

The rest of this paper is organized as follows. The next
section describes our application, i.e., a UAV (Unmanned
Aerial Vehicle) search and rescue scenario. Sections 3 and
4 provide a detailed description of the use of the dynamic
auctioning scheme within this application. Section 5
describes the UAV agent architecture, while Section 6
presents our flexible experimental setting and reports on
early experiments with this domain. In Section 7 we discuss
related work, and finally Section 8 concludes this paper and
lists several future research directions.

2. THE APPLICATION DOMAIN

We used a search and rescue mission as an example of the
DDTA problem. In this application domain, a collection of
UAVs1 roam a rectangle mission area looking for targets
(downed pilots, injured civilians, etc). These targets move
according to a pre-determined path not known to the UAVs.
Each target has a step utility function as depicted in Figure 1
and requires a minimum number of UAVs to be serviced.
This step utility function means that before the target gets its
required number of UAVs, none of its utility can be
consumed by the team. Once the requisite number of UAVs
arrive near the target, it is deemed to have been serviced.
UAVs monitor targets and coordinate to form groups to
service them subject to maximizing the total team benefit as
described by Equation 1:

targets ()

max at
t a group t

t cutil
∈ ∈

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑
(1)

where group(t) is the set of UAVs assigned to target t, utilt is
the utility value of target t, and cat is the cost incurred by
UAV a to service target t (in our scenario, this is the cost of
the path length along which the UAV moves to the target).

3. THE FORWARD / REVERSE AUCTION

The forward/reverse auction algorithm was originally
proposed by Bertseka and Castanon to solve the asymmetric
assignment problem in which the goal is to match m persons
with m out of n objects (m < n) while maximizing the total
benefit of the match [1]. The algorithm proceeds in
alternating rounds of forward and reverse auctions. In the
forward stage, people bid for objects and the highest bidders
get assigned to the objects. In the reverse stage, objects
conceptually bid for people by reducing their prices to
attract more persons. It was shown in [1] that this alternation
of forward and reverse auctions deals better with price wars
than either of its components (only forward or only reverse)

1 In this paper, the term UAV and Agent are used interchangeably.

and tends to terminate substantially faster than other
approaches. We can use this work as a basis for solving
each phase of the dynamic distributed task assignment.
However, one shortcoming of this approach is that it only
deals with unary task requirements (i.e. all tasks require
single agent each).

To understand the challenges imposed by dealing with
multi-requirement tasks, consider the scenario depicted in
Figure 2: a team of three agents are required to service two
targets that require three and two agents respectively. A
direct application of the scheme in [1] would result in agent
1 and 2 gets assigned to target 1 whereas agent 3 gets
assigned to target 2. This pattern would continue
indefinitely and would result in no utility gain because of
the shape of the targets’ utility functions (see Figure 1). To
circumvent this problem we propose a dynamic non-linear
target utility function. In our scheme, the utility of the target
as viewed by a single agent is increased non-linearly with
the number of agents assigned to this target (Section 3.3). In
the previous scenario depicted in Figure 2, this would result
in target 1 luring agent 3 to leave target 2 and join agent 1
and 2 in servicing it.

3.1. Overview of the Protocol

We define two main roles in our protocol: the target
auctioneer agent and the bidder agent. The former is
responsible for running the auction on behalf of the target,
while the latter competes with other bidder agents to service
this target. It should be noted that the distinction drawn by
the above two roles is a functional one rather than being a
temporal or existential one. For example, an agent may be
the auctioneer for more than one target, play the role of the
auctioneer for a given target and bidder for other ones, or
even bid for a target for which it is the auctioneer. This is
acceptable because we implicitly assume integrity of the
team members: no agent would give itself an advantage
when bidding for a target for which it is the auctioneer.

Figure 3 gives an overview of the agent states pertaining to
the auction protocols and their possible interactions. The
auction starts once a new target is detected inside the
mission area. The nearest UAV is considered as its
auctioneer agent and it announces a new auction. In case of
a tie, the highest ID agent is selected. After the selection,
all UAV agents start competing for the new target and the
auction runs in rounds, each of a predetermined time.
During each round, the auctioneer agent receives bids from
bidder agents and updates the target price appropriately
(Section 3.2). At the end of each round, the auctioneer agent
evaluates its current state: if it collects the required number
of agents for the target, then it announces the result to
winner agents which form a winner group to service the
target, and this information becomes common knowledge in
the team. Otherwise, the auctioneer agent reduces the price
of the current target (reverse step) and propagates the new
price to the agent team members. The above procedure is

 3

repeated until the target is assigned.

It should be noted that the framework allows for more than
one auction to be run concurrently. In this case, the bidder
agents need to choose which target to bid for (Section 3.3).

At the end of this stage, a near-optimal static assignment is
found, and the resulting agent groups are announced by the
auctioneers. Ratio

3.2. Auctioneer Agent’s Policy

The agent which plays the role of an auctioneer for a given
target t has a very straightforward policy, parameterized by
two variables: Round_Time which is the time period for
each forward round and Price_Reduce_Ratio which is
the ratio used to update the target price in the reverse step.
The auctioneer agent starts by setting the price of the target
to zero. During the forward stage, it keeps a decreasing list
(received_bids) of the received bids. Upon reception
of a given bid, it first updates the received_bids and
then updates the price of the target (pricet) using the
Equation 2.

[] if num(_)

min [] otherswise
i

t t tprice received_bids req received bids req

receved_bids i

= ≥⎧⎪
⎨
⎪⎩

(2)

where reqt is the minimum number of bids required to
service target t.

Because the auctions are running asynchronously and under

the auspice of different auctioneer agents, bidder agents may
change their bidding decision and decide to bid for another
target (see Section 3.3). In order to do this, each bidder
sends a Bid_Retract_Request to the old best target
auctioneer agent first. This is because a bid is viewed as a
provisional commitment from the bidder to service the
target if the auctioneer agent deems it a winner. The bid
retraction request may be received by the auctioneer agent
during the forward round. To respond, the auctioneer agent
simply removes the retracted bidder from the received_bids
list and updates the target price using Equation 1.

At the end of the round, the auctioneer agent examines the
provisional commitments it has received. If it has received a
sufficient number of bids, it chooses the best ones based on
the target requirement. The auctioneer agent then tries to
turn these provisional commitments into final ones by a
simple two way handshaking protocol with the winning
bidders. This handshaking mechanism is required because
the winner bidders may have chosen to retract their
provisional commitments, but the requests they sent may not
have arrived at the auctioneer agent. If the auctioneer agent
manages to turn sufficient (based on the target requirements)
provisional commitments into final ones, then the auction
ends and the winners are notified. If the auctioneer agent
fails to collect sufficient final commitments, the auctioneer
proceeds as if it did not acquire the required number of bids.
In this case, it updates the target price based on the
remaining provisional bidders using Equation 2. After that it
reduces the target price by multiplying it with the
Price_Reduce_Ratio, which constitutes the reverse step,
and broadcasts the new price to start a new forward round.

#Agents

A3 A1 A2

T2 T1

Figure 1 - Step Utility Function

Figure 2 - Multi-requirement
Targets Challenges. T1 requires 3
UAVs, and T2 requires 2 UAVs

Utility

Bidding

Auction
Start

Collecting
Bids

Round
End

Reverse
Step

Auction
End

Announce

Task Auctioneer

No Target

New
Target

Servicing
Target

Won
Auction

Bidding

No Target

New
Target

Servicing
Target

Won
Auction

New

Target

Announce Announce

Figure 3 - Inter-roles Interaction in the Forward/Reverse Auction Protocol

Not Enough Bids

Enough Bids

Bidder Agent Bidder Agent

 4

This two round approach is repeated until the target is
assigned.

3.3. The Bidding Strategy

A bidder agent’s strategy is rather more complex than the
auctioneer’s strategy. While a bidder agent is in the bidding
state (see Figure 3), it keeps track of the current prices of all
known non-assigned targets. The bidder agent then needs to
make two decisions: firstly, which target to bid for, and
secondly, how much to bid for this target. The situation is
exacerbated by the fact that the information needed to
answer these questions (price updates from old auctioneers
and new target announcements) arrives asynchronously to
the bidder agent. To solve this problem, the bidder agent
first answers the above question using Algorithm 1, and
whenever the bidder agent receives new information, it
re-computes this answer using the same algorithm. If the
best target changes, the bidder first retracts its bid from the
old target auctioneer agent and then sends a new bid to the
new target auctioneer agent.

Algorithm 1 - GetBestTrgetBiddingStructure for agent i

()
1 2

1

2

 targets

 targets

Find as follows

Calculate the benefit of servicing target as follows

 ,

()

- :

argmax

argmax

-

i i

ij

j
ij ij j

j j

i ij
j

i
j

j j

a j

util
a c price

req asn

j a

j

∈

∈

= − −
−

=

=
{ }

()

1

i1

1 1 2

\

Bid for task with value

-
i i i

ij
j

i j ij ij

a

j a aπ = −

where:

utilj = utility of target j ,

reqj = # of UAV required by target j

asnj = # of UAV assigned to target j

cij = cost of agent i to service target j

pricej = current price of target j

Algorithm 1 is very intuitive. First, it computes the two
most beneficial targets. It then bids for the first target with a
bid value equal to the difference between the two benefits
[1]. In calculating the benefit for target j, the utility of this
target is divided by the remaining number of its
requirements, which constitutes the non-linear utility
function described in Section 3.1.

The bidder agent repeats the above procedure until it

receives a request from the auctioneer agent to turn its
provisional bid into a final one. In this case it needs to check
that it is still provisionally committed to this target. If so, it
answers positively; otherwise, it answers negatively. Finally,
once the bidder agent receives the results of the auction to
which it has submitted a bid, it can go in either of two ways:
if it wins the bid, the agent starts to work in servicing the
target and coordinate with its group members; otherwise it
repeats the above procedure until it gets assigned to a target.

4. SWAPPING: DYNAMIC MAINTENANCE OF

AUCTION RESULTS

The auction algorithm results in a near-optimal assignment
at the time it was executed [1]. At the end of an auction,
agents are divided into groups each of which is working on
servicing a given target. However, as the agents proceed to
accomplish this task, both the agent states and the target
states might change in a way that renders this assignment
sub-optimal. One way of dealing with this problem is to
periodically run the auction algorithm. However, running
the auction algorithm is very expensive and does not make
efficient use of the information that the agents already have.
If we analyze the set of successive optimal assignments, we
would discover that they morph into each other seamlessly
through a finite set of possible swaps: a change of the
assigned targets between two agents. To leverage this
observation into an algorithm, we need to design an efficient
and robust algorithm that has the following two properties:

� Efficiency: All negotiations need to be local between
member agents of the two respective groups affected by
the swap.

� Robustness: Group membership is assumed to be a
global knowledge between group members. Therefore,
the algorithm should maintain this property across
swaps.

Let the current assignment under which the agents are
working be S. While each agent is servicing its target, the
agent periodically monitors the environment and considers
swaps with nearby agents. The agent then examines all these
candidate swaps and finds the best swap and its
corresponding new assignment S’. The benefit of the swap is
computed as the difference between the values of these two
assignments using Equation 1. The agent decides to start
negotiating the swap with the other group’s member if the
swap benefit is larger than a given threshold. The intuition
behind using a threshold is twofold: first, it avoids thrashing
between groups due to small perturbations of the
environment, and second, it provides a way of weighing the
benefit of the swap against the resources needed to execute
the swap (such as the number of messages that are needed to
maintain intra-group synchronization).

Once a swap is selected for execution by an initiator agent,
this agent starts to negotiate the swap with the other group's
member. As usual, the need for synchrony combined with

 5

the distributed nature of the application complicates the
negotiation. To understand this, consider the situation in
which there are two groups, each of which has three
members. If two different pairs of members decide to swap
at the same time, intra-groups synchronization becomes
very hard and expensive to maintain. To prevent this
situation from taking place, we stipulate a third requirement:

� Isolation: At any given time there can be at most one
swap taking place between any two groups.

To achieve these requirements, an agent within each group
is assigned to be the group leader. Let a swap take place
between an initiator agent and an intended agent. The swap
proceeds as follows:

1. Initialization - The initiator of the swap asks its group
leader for permission to start a new swap. This
permission is granted as long as no other swap is taking
place.

2. Requesting a swap - Upon reception of the swap
permission from its own group leader, the initiator agent
contacts the intended agent in the other group to inform
it about executing the swap.

3. Responding to the swap - Once the intended agent
receives the swap request, it asks for permission from its
own group leader. Based on its leader response (grant or
decline), it informs the initiator of its decision (accept or
decline).

4. Swap execution - Once the two parties agree on the
swap, each one informs its peers about the group update.

5. Finalization - After the initiator and intended agents
inform their peers about the swap, they report to their
group leaders that intra-group synchronization has been
achieved.

As evident from the above procedure, a swap requires a
large number of messages back and forth between group
members; therefore the SWAP_THRESHOLD should be
adjusted to take this into consideration. Currently, this
threshold is treated as a pre-determined parameter to the
framework, and its value is set based on a worst case
analysis.

5. UAV AGENT ARCHITECTURE

We provide a function-oriented specification of different
components of a UAV agent simulated in the experiment
and the information flow between these components. The
emphasis here will be of the reasoning part of the agent.

Figure 4 depicts the UAV agent components as well as the
information flow between them. The central component of
the agent architecture is the world model which includes the
main memory of the agent. The world model stores various
kinds of problem information at different levels of
abstraction. The world model is fed with vision data from
the communication module, and the model provides various

retrieval functions to other components of the agent. This
allows a component to examine the world around the agent
at a level of details that is suitable for the component’s task.

The coordination module is the brain of the agent: it is
where all decisions are taken. Specifically, the module is
responsible for sequencing the agent decision making
process as well as coordinating the overall team members’
actions (team-level action sequencing). The main
responsibility of the coordination module is to decide the
agent’s current mode of operation (roaming, bidding, or task
execution), and to run the auction framework detailed earlier.
The module also provides partial coordination results to the
world model; such results include: which target I am
currently committed to, which group I am a member of,
what is my role in this group, thus making them available to
other modules.

Figure 4 - Internal Architecture of a UAV Agent

The target handling and motion planning modules are
responsible for materializing decisions of the coordination
module. The responsibilities of these modules are to decide
which point of the target to go to, and to coordinate with
other group members to avoid conflicts. The coordination is
done by exchanging path-planning messages between group
members through the communication module. Afterwards,
the collision avoidance module monitors the world by
examining the world model and avoid collisions using an A*
algorithm [16].

6. EXPERIMENTAL RESULTS

The primary goal of experiments is to demonstrate our
framework using a set of robot cars. Each car is controlled
by an iPAQ PDA running Microsoft Pocket PC and receives
localization information from a leader vision server

UAV

Communication
Module Robot Interface

World Model

Coordination
Module

Target Handling

Object Info

Object
Info

Coordination
Result

Object
Info

Partial
Decisions

Group
Sync.

Movement
Commands

Coordination
Messages

Messages

Motion Planning /
Collision Avoidance

Objects Info

Other
Info

Objects
UAVs

 6

collaborating data from four vision servers, each of which is
connected to an overhead video camera. A vision server
takes images from a camera, searches for unique color
plates mounted on each robot car and calculates the
corresponding robot’s identification and heading. A leader
vision server takes localization information from each vision
server, and sends filtered and regulated localization
information to the iPAQs. The iPAQs use an internal WiFi
interface for inter-agent communication. Different cars are
used to represent UAVs and targets (see Figure 5). It is quite
clear that this hardware setting makes discovering logical
errors as well as tracing the agents’ behavior very hard. To
deal with these issues, we developed a hardware/software
shared agent code architecture that allows us to simulate this
hardware setting in software while at the same time
guaranteeing interoperability when porting this code to the
hardware setting. The main design philosophy of the system
is to ease parallel developments and testing. The agent’s
(UAV/Target) implementation is isolated from the
architecture on which the system is running. The system can
run in two modes: Simulated Mode or Real Mode.

Figure 5 - Experimental Environments

Our experimental scenario used 6 UAVs and 9 mobile
targets. The performance evaluation metric we use is the
total mission time to service all targets. We ran this mission
with different settings for the two critical dynamic auction
framework parameters: namely, Round_Time(RT) and
Price-Reduce-Ratio(PPR). We also ran experiments
with and without the reverse auction stage and with and
without swapping. If swapping is disabled, then agents
would stick to there initial target assignment even if it
becomes sub-optimal later. In all of these experiments,
Swap_Threshold was set to 30 and a swap was
considered every 20 seconds (these values are set
experimentally).

As is evident from the results (Table 1 and 2), swapping and
the reverse auction step help reduce the total mission time in

all combinations of the other parameter settings.

From Table 1, small values of the RT negatively affect the
overall performance. This is largely due to the asynchrony
of the application: small RT values do not give the
auctioneer agent a chance to receive all the bids that are
submitted from bidder agents. This results in running the
auction many times because an insufficient number of bids
have been received. The optimal setting for the RT
parameter depends largely on the average message delay.
From Table 3, the best PPR setting is 50% which results in
the fastest auction termination. We are currently in the
process of conducting more experiments to understand the
role of this parameter.

Table 1: The effect of auction round time

Table 2: The effect of swapping

Table 3: The effect of the price reduce ratio

.

7. RELATED WORK

The use of economic models in multi-agent coordination in
general and task allocation in particular is not new. Various
approaches exploited auction-like approaches in both
situated [5, 12] and non-situated agents [7, 8]. However, as
we detailed before, these approaches lack a formal
specification of the DDTA problem. Moreover, they mainly
focus on how to assign tasks to agents without providing a
solid framework to maintain the assignment optimality over
time ([7] being an exception to some extent).

The forward/reverse auction was first introduced in [1] to
solve asymmetric assignment problem, and therefore it can
be regarded as a means to solve a snapshot of the DDTA

RT = 1 sec, with swapping

Forward Reverse Auction
PR=10% PR=30% PR=50%
207 sec 211 sec 163 sec

PR = 50%, RT = 1 sec

With Swapping Without Swapping
Fwd Fwd/Rev Fwd Fwd/Rev
217 sec 207 sec 249 sec 163 sec

PR=50% with swapping

RT=1 sec RT=3 sec
Fwd Fwd/Rev Fwd Fwd/Rev
217 sec 163 sec 175 sec 212 sec

 7

problem. Our work here can be viewed as extending it in
three directions: first, we allow the algorithm to deal with
non-unary task requirements by introducing non-linearity in
the task utility function; second, we adapt the initial results
of the algorithm using swapping to retain its optimality over
time; third, we provide a robust implementation for this
algorithm that deals with the distributed and asynchronous
nature of the DDTA problem. This implementation can be
viewed as a relaxed version of the two-phase commit
protocols [13].

Swapping is related to conflict management in a team of
agents. Several approaches have been proposed to deal with
the conflict management problem based on the shared
intention theory [3] in which agents inside the team are
assumed to share a common goal. This theory has been
materialized in [14, 15] as a set of reusable teamwork
heuristic rules that enable agent teams to act reliably in
dynamic situations. However, our work differs from these
generic approaches as it was designed specifically to
permeate seamlessly with our forward/reverse auction
framework.

8. CONCLUSION AND FUTURE WORK

The approach we present addresses two key challenges in
the DDTA problem: combinatorial complexity and
dynamicity. To address the combinatorial problem, we
extended a forward reverse auction [1]. The extension
makes it suitable for the distributed, asynchronous,
multi-requirement aspects of the DDTA problem. We use
swapping as a means of maintaining the optimality of the
auction results over time by chaining local,
communication-inexpensive negotiation steps. We have
applied our approach to a UAV search and rescue scenario
and reported on early experimental results demonstrate the
promise of our framework.

We plan to run large scale experiments on the same search
and rescue domain using our Actor Architecture (AA) which
supports up to 10000 agents [17]. We also plan to
incorporate learning in our architecture; learning can be
used, firstly to adapt the agents’ bidding decisions and,
secondly, to adapt the algorithmic parameters to the
environment dynamics, e.g., to efficiently utilize the
available bandwidth. Moreover, we plan to analytically
characterize our approach and contrast it with that in [2].
Finally, we plan to investigate the theoretical efficiency of
our multi-requirements extension to the auction algorithm.

ACKNOWLEDGMENT

This research is sponsored by the Defense Advanced
Research Projects Agency under contract number
F30602-00-2-0586. We would like to thank Hananeh
Hajishirazi for implementing part of the collision avoidance
and target handling modules and Soham Mazumdar for early
discussion on the forward/reverse auction algorithm. We

would like also to thank Professor Kumar's group for
providing us with their vision code that we used as a
reference at early stages. Finally we would like to thank
Joshua Chia for implementing an early version of the vision
system.

REFERENCES

[1] D.P. Bertsekas and D.A. Castanon, “A Forward/reverse
Auction Algorithm for Asymmetric Assignment Problems,”
Technical Report Lids-P-2159, MIT, 1993.

[2] P.J. Modi, H. Jung, M. Tambe, W. Shen, S. Kulkarni,
“Dynamic Distributed Resource Allocation: A Distributed
Constraint Satisfaction Approach,” In Intelligent Agents VIII
Proceedings of the International Workshop on Agents,
Theories, Architectures, and Languages (ATAL’01), 2001.

[3] P.R. Cohen and H.J. Levesque, “Confirmation and
joint action,” In Proceedings of the 12th International Joint
Conference on Artificial Intelligence, pages 951-957, 1991.

[5] K. Sycara, A. Pannu, M. Williamson, and D. Zeng,
“Distributed Intelligent Agents,” IEEE Expert, Special Issue
on Intelligent Systems and their Applications, 11(6):36-46,
December 1996.

[6] R. Nair, T. Ito, M. Tambe, and S. Marsella, “Task
Allocation in the RoboCup Rescue Simulation Domain: A
Short Note,” In Proceedings of the International Symposium
on RoboCup(RoboCup'01), 2001.

[7] B.P. Gerkey and M.J. Matarić, “Sold!: Auction
Methods for Multi-robot Coordination,” IEEE Transactions
on Robotics and Automation, Special Issue on Multi-robot
Systems, 18(6):758-768, October 2002.

[8] P. Caloud, W. Choi, J.-C. Latombe, C. Le Paper, and M.
Yim, “Indoor Automation with many Mobile Robots,” In
Proceedings of IEE/RSJ International Workshop on
Intelligent Robots and Systems, pages 67-72, 1990.

[10] M.B. Dias and A. Stentz, “A Market Approach to
Multirobot Coordination,” Carnegie Mellon Robotics
Institute Technical Report CMU-RI-TR-01-26, August 2001.

[11] K.S. Decker, “Environment Centered Analysis and
Design of Coordination Mechanisms,” Ph.D. Dissertation,
University of Massachusetts, May 1995.

[12] R. Davis and R.G. Smith, “Negotiation as a Metaphor
for Distributed Problem Solving,” Artificial Intelligence,
20:63-109, 1983.

[13] G. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems - Concepts and Design, 3rd edition,
Addison-Wesley, 2001.

[14] G.A. Kaminka and M. Tambe, “Robust Agent Teams

 8

via Socially-attentive Monitoring,” Journal of Artificial
Intelligence Research, 12:105-147, 2000.

[15] M. Tambe, “Agent Architectures for Flexible, Practical
Teamwork,” In Proceedings of the National Conference on
Artificial Intelligence (AAAI), August 1997.

[16] S. Russell, P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd edition, Prentice Hall, Upper Saddle River,
NJ, 2003.

[17] M. Jang, S. Reddy, P Tosic, L. Chen, G. Agha. "An
Actor-based Simulation for Studying UAV Coordination,"
15th European Simulation Symposium (ESS 2003), pp.
593-601, October 26-29, Delft, The Netherlands, 2003.

