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Abstract ⎯ In the dynamic distributed task assignment 
(DDTA) problem, a team of agents is required to accomplish 
a set of tasks while maximizing the overall team utility. An 
effective solution to this problem needs to address two 
closely related questions: first, how to find a near-optimal 
assignment from agents to tasks under resource constraints, 
and second, how to efficiently maintain the optimality of the 
assignment over time. We address the first problem by 
extending an existing forward/reverse auction algorithm 
which was designed for bipartite maximal matching to find 
an initial near-optimal assignment. A difficulty with such an 
assignment is that the dynamicity of the environment 
compromises the optimality of the initial solution. We 
address the dynamicity problem by using swapping to 
locally move agents between tasks. By linking these local 
swaps, the current assignment is morphed into one which is 
closer to what would have been obtained if we had 
re-executed the computationally more expensive auction 
algorithm. In this paper, we detail the application of this 
dynamic auctioning scheme in the context of a UAV 
(Unmanned Aerial Vehicle) search and rescue mission and 
present early experimentations using physical agents to 
show the feasibility of the proposed approach. 
 
Keywords: Agent Coordination, Auction, Forward/Reverse 
Auction, Task Assignment, Conflict Management. 

1.  INTRODUCTION 

Recently, the problem of dynamic distributed task 
assignment (DDTA) among a team of agents has gained 
tremendous attention due to the wide variety of applications 
that require an efficient solution to this problem like: 
distributed sensor network [2], vehicle monitoring [4], and 
search and rescue [6]. In the DDTA problem a team of 
agents is required to accomplish a set of tasks according to a 
given criteria. This criterion can be either minimizing the 
time to accomplish all tasks or maximizing the utility of the 
accomplished tasks in a given time frame. 

Several approaches have been proposed to solve this 
problem that can be classified as either centralized or 
distributed. In centralized approaches, there exists a central 
agent who plays the role of a leader (e.g., see [10]). This 

leader aggregates information from other team members, 
plans optimally for the entire team, and finally propagates 
the task assignments to other team members. This 
master-slave architecture has, in theory, the advantage 
finding an optimal solution, but it has several disadvantages: 
a single point of failure, inability to respond fast to changes 
in the environments, and inability to deal with partially 
observable environments. 

To deal with the above shortcomings, distributed approaches 
have been proposed. They attack the DDTA problem by 
requiring each agent to plan for itself based on local 
information (e.g., see [11]). In these approaches, agents rely 
on a predefined negotiation framework that allows them to 
decide what activity to do next, what information to 
communicate, and to whom. A difficulty with these 
approaches is that they require agents to possess accurate 
knowledge about their environment—a condition that is 
difficult to maintain in heterogeneous and open systems. 

What is missing from the previous approaches, as reported 
in [2], is a formalization of the DDTA problem that exposes 
its challenging requirements and drives researchers to 
design efficient algorithms for this important problem. 
These efficient algorithms need to address two closely 
related problems.  First, the combinatorial problem: how to 
find a near-optimal assignment from agents to tasks under 
time and bandwidth resource constraints; and second, the 
problem of environment dynamicity: how to efficiently 
maintain the optimality of the assignment over time.  

In this paper we present a dynamic auctioning scheme that 
uses a divide and conquer strategy to approach the DDTA 
problem. We address the combinatorial problem by 
extending a forward/reverse auction algorithm [1] which 
was originally designed for bipartite maximal matching to 
handle non-unary task requirements. This algorithm 
alternates between rounds of forward and reverse auctions. 
In the forward stage, agents bid for tasks, while in the 
reverse stage tasks (conceptually) bid for agents by reducing 
their prices. Because the environment is dynamic, the 
solution found during the auction may degrade from an 
optimal solution into a highly inefficient one; we propose to 
use swapping to locally move agents between tasks. By 
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linking these local swaps, the current assignment is morphed 
into the one which should have been obtained if we had 
re-executed the expensive auction algorithm.  

The rest of this paper is organized as follows. The next 
section describes our application, i.e., a UAV (Unmanned 
Aerial Vehicle) search and rescue scenario.  Sections 3 and 
4 provide a detailed description of the use of the dynamic 
auctioning scheme within this application. Section 5 
describes the UAV agent architecture, while Section 6 
presents our flexible experimental setting and reports on 
early experiments with this domain. In Section 7 we discuss 
related work, and finally Section 8 concludes this paper and 
lists several future research directions. 

2.  THE APPLICATION DOMAIN 

We used a search and rescue mission as an example of the 
DDTA problem. In this application domain, a collection of 
UAVs1 roam a rectangle mission area looking for targets 
(downed pilots, injured civilians, etc). These targets move 
according to a pre-determined path not known to the UAVs. 
Each target has a step utility function as depicted in Figure 1 
and requires a minimum number of UAVs to be serviced. 
This step utility function means that before the target gets its 
required number of UAVs, none of its utility can be 
consumed by the team. Once the requisite number of UAVs 
arrive near the target, it is deemed to have been serviced. 
UAVs monitor targets and coordinate to form groups to 
service them subject to maximizing the total team benefit as 
described by Equation 1: 

targets ( )

max at
t a group t

t cutil
∈ ∈

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑  
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where group(t) is the set of UAVs assigned to target t, utilt is 
the utility value of target t, and cat is the cost incurred by 
UAV a to service target t (in our scenario, this is the cost of 
the path length along which the UAV moves to the target). 

3.  THE FORWARD / REVERSE AUCTION 

The forward/reverse auction algorithm was originally 
proposed by Bertseka and Castanon to solve the asymmetric 
assignment problem in which the goal is to match m persons 
with m out of n objects (m < n) while maximizing the total 
benefit of the match [1]. The algorithm proceeds in 
alternating rounds of forward and reverse auctions. In the 
forward stage, people bid for objects and the highest bidders 
get assigned to the objects. In the reverse stage, objects 
conceptually bid for people by reducing their prices to 
attract more persons. It was shown in [1] that this alternation 
of forward and reverse auctions deals better with price wars 
than either of its components (only forward or only reverse) 

                                                        
1 In this paper, the term UAV and Agent are used interchangeably.  

and tends to terminate substantially faster than other 
approaches. We  can use this work as a basis for solving 
each phase of the dynamic distributed task assignment. 
However, one shortcoming of this approach is that it only 
deals with unary task requirements (i.e. all tasks require 
single agent each).  

To understand the challenges imposed by dealing with 
multi-requirement tasks, consider the scenario depicted in 
Figure 2: a team of three agents are required to service two 
targets that require three and two agents respectively. A 
direct application of the scheme in [1] would result in agent 
1 and 2 gets assigned to target 1 whereas agent 3 gets 
assigned to target 2. This pattern would continue 
indefinitely and would result in no utility gain because of 
the shape of the targets’ utility functions (see Figure 1). To 
circumvent this problem we propose a dynamic non-linear 
target utility function. In our scheme, the utility of the target 
as viewed by a single agent is increased non-linearly with 
the number of agents assigned to this target (Section 3.3). In 
the previous scenario depicted in Figure 2, this would result 
in target 1 luring agent 3 to leave target 2 and join agent 1 
and 2 in servicing it.  

3.1. Overview of the Protocol 

We define two main roles in our protocol: the target 
auctioneer agent and the bidder agent. The former is 
responsible for running the auction on behalf of the target, 
while the latter competes with other bidder agents to service 
this target. It should be noted that the distinction drawn by 
the above two roles is a functional one rather than being a 
temporal or existential one. For example, an agent may be 
the auctioneer for more than one target, play the role of the 
auctioneer for a given target and bidder for other ones, or 
even bid for a target for which it is the auctioneer. This is 
acceptable because we implicitly assume integrity of the 
team members: no agent would give itself an advantage 
when bidding for a target for which it is the auctioneer.   

Figure 3 gives an overview of the agent states pertaining to 
the auction protocols and their possible interactions.  The 
auction starts once a new target is detected inside the 
mission area. The nearest UAV is considered as its 
auctioneer agent and it announces a new auction. In case of 
a tie, the highest ID agent is selected.  After the selection, 
all UAV agents start competing for the new target and the 
auction runs in rounds, each of a predetermined time. 
During each round, the auctioneer agent receives bids from 
bidder agents and updates the target price appropriately 
(Section 3.2). At the end of each round, the auctioneer agent 
evaluates its current state: if it collects the required number 
of agents for the target, then it announces the result to 
winner agents which form a winner group to service the 
target, and this information becomes common knowledge in 
the team. Otherwise, the auctioneer agent reduces the price 
of the current target (reverse step) and propagates the new 
price to the agent team members. The above procedure is 
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repeated until the target is assigned. 

It should be noted that the framework allows for more than 
one auction to be run concurrently. In this case, the bidder 
agents need to choose which target to bid for (Section 3.3). 

At the end of this stage, a near-optimal static assignment is 
found, and the resulting agent groups are announced by the 
auctioneers. Ratio 

3.2. Auctioneer Agent’s Policy 

The agent which plays the role of an auctioneer for a given 
target t has a very straightforward policy, parameterized by 
two variables: Round_Time which is the time period for 
each forward round and Price_Reduce_Ratio which is 
the ratio used to update the target price in the reverse step. 
The auctioneer agent starts by setting the price of the target 
to zero. During the forward stage, it keeps a decreasing list 
(received_bids) of the received bids. Upon reception 
of a given bid, it first updates the received_bids and 
then updates the price of the target (pricet) using the 
Equation 2. 

 
[ ] if num( _ )  

min [ ] otherswise                               
i

t t tprice received_bids req received bids req

receved_bids i

= ≥⎧⎪
⎨
⎪⎩

 

(2) 

where reqt is the minimum number of bids required to 
service target t. 

Because the auctions are running asynchronously and under 

the auspice of different auctioneer agents, bidder agents may 
change their bidding decision and decide to bid for another 
target (see Section 3.3). In order to do this, each bidder 
sends a Bid_Retract_Request to the old best target 
auctioneer agent first. This is because a bid is viewed as a 
provisional commitment from the bidder to service the 
target if the auctioneer agent deems it a winner. The bid 
retraction request may be received by the auctioneer agent 
during the forward round. To respond, the auctioneer agent 
simply removes the retracted bidder from the received_bids 
list and updates the target price using Equation 1. 

At the end of the round, the auctioneer agent examines the 
provisional commitments it has received. If it has received a 
sufficient number of bids, it chooses the best ones based on 
the target requirement. The auctioneer agent then tries to 
turn these provisional commitments into final ones by a 
simple two way handshaking protocol with the winning 
bidders. This handshaking mechanism is required because 
the winner bidders may have chosen to retract their 
provisional commitments, but the requests they sent may not 
have arrived at the auctioneer agent. If the auctioneer agent 
manages to turn sufficient (based on the target requirements) 
provisional commitments into final ones, then the auction 
ends and the winners are notified. If the auctioneer agent 
fails to collect sufficient final commitments, the auctioneer 
proceeds as if it did not acquire the required number of bids. 
In this case, it updates the target price based on the 
remaining provisional bidders using Equation 2. After that it 
reduces the target price by multiplying it with the 
Price_Reduce_Ratio, which constitutes the reverse step, 
and broadcasts the new price to start a new forward round. 

#Agents 

A3 A1 A2 

T2 T1 

Figure 1 - Step Utility Function 

Figure 2 - Multi-requirement 
Targets Challenges. T1 requires 3 
UAVs, and T2 requires 2 UAVs 

Utility 

Bidding 

Auction 
Start 

Collecting 
Bids 

Round 
End 

Reverse 
Step 

Auction 
End 

Announce  

Task Auctioneer 

No Target 

New 
Target 

Servicing 
Target 

Won 
Auction 

Bidding 

No Target 

New 
Target 

Servicing 
Target 

Won 
Auction 

New  

Target 

Announce  Announce 

Figure 3 - Inter-roles Interaction in the Forward/Reverse Auction Protocol 

Not Enough Bids 

Enough Bids 

Bidder Agent Bidder Agent 



 4 

This two round approach is repeated until the target is 
assigned. 

3.3. The Bidding Strategy 

A bidder agent’s strategy is rather more complex than the 
auctioneer’s strategy. While a bidder agent is in the bidding 
state (see Figure 3), it keeps track of the current prices of all 
known non-assigned targets. The bidder agent then needs to 
make two decisions: firstly, which target to bid for, and 
secondly, how much to bid for this target. The situation is 
exacerbated by the fact that the information needed to 
answer these questions (price updates from old auctioneers 
and new target announcements) arrives asynchronously to 
the bidder agent. To solve this problem, the bidder agent 
first answers the above question using Algorithm 1, and 
whenever the bidder agent receives new information, it 
re-computes this answer using the same algorithm. If the 
best target changes, the bidder first retracts its bid from the 
old target auctioneer agent and then sends a new bid to the 
new target auctioneer agent. 

Algorithm 1 - GetBestTrgetBiddingStructure for agent i 
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where: 

utilj = utility of target j ,  

reqj = # of UAV required by target j 

asnj = # of UAV assigned to target j 

cij = cost of agent i to service target j 

pricej = current price of target j 

Algorithm 1 is very intuitive. First, it computes the two 
most beneficial targets. It then bids for the first target with a 
bid value equal to the difference between the two benefits 
[1]. In calculating the benefit for target j, the utility of this 
target is divided by the remaining number of its 
requirements, which constitutes the non-linear utility 
function described in Section 3.1. 

The bidder agent repeats the above procedure until it 

receives a request from the auctioneer agent to turn its 
provisional bid into a final one. In this case it needs to check 
that it is still provisionally committed to this target. If so, it 
answers positively; otherwise, it answers negatively. Finally, 
once the bidder agent receives the results of the auction to 
which it has submitted a bid, it can go in either of two ways: 
if it wins the bid, the agent starts to work in servicing the 
target and coordinate with its group members; otherwise it 
repeats the above procedure until it gets assigned to a target. 

4.  SWAPPING: DYNAMIC MAINTENANCE OF 

AUCTION RESULTS    

The auction algorithm results in a near-optimal assignment 
at the time it was executed [1]. At the end of an auction, 
agents are divided into groups each of which is working on 
servicing a given target. However, as the agents proceed to 
accomplish this task, both the agent states and the target 
states might change in a way that renders this assignment 
sub-optimal. One way of dealing with this problem is to 
periodically run the auction algorithm. However, running 
the auction algorithm is very expensive and does not make 
efficient use of the information that the agents already have. 
If we analyze the set of successive optimal assignments, we 
would discover that they morph into each other seamlessly 
through a finite set of possible swaps: a change of the 
assigned targets between two agents.  To leverage this 
observation into an algorithm, we need to design an efficient 
and robust algorithm that has the following two properties: 

� Efficiency: All negotiations need to be local between 
member agents of the two respective groups affected by 
the swap. 

� Robustness: Group membership is assumed to be a 
global knowledge between group members. Therefore, 
the algorithm should maintain this property across 
swaps.  

Let the current assignment under which the agents are 
working be S. While each agent is servicing its target, the 
agent periodically monitors the environment and considers 
swaps with nearby agents. The agent then examines all these 
candidate swaps and finds the best swap and its 
corresponding new assignment S’. The benefit of the swap is 
computed as the difference between the values of these two 
assignments using Equation 1. The agent decides to start 
negotiating the swap with the other group’s member if the 
swap benefit is larger than a given threshold. The intuition 
behind using a threshold is twofold: first, it avoids thrashing 
between groups due to small perturbations of the 
environment, and second, it provides a way of weighing the 
benefit of the swap against the resources needed to execute 
the swap (such as the number of messages that are needed to 
maintain intra-group synchronization). 

Once a swap is selected for execution by an initiator agent, 
this agent starts to negotiate the swap with the other group's 
member. As usual, the need for synchrony combined with 
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the distributed nature of the application complicates the 
negotiation. To understand this, consider the situation in 
which there are two groups, each of which has three 
members. If two different pairs of members decide to swap 
at the same time, intra-groups synchronization becomes 
very hard and expensive to maintain. To prevent this 
situation from taking place, we stipulate a third requirement: 

� Isolation: At any given time there can be at most one 
swap taking place between any two groups. 

To achieve these requirements, an agent within each group 
is assigned to be the group leader. Let a swap take place 
between an initiator agent and an intended agent. The swap 
proceeds as follows: 

1. Initialization - The initiator of the swap asks its group 
leader for permission to start a new swap. This 
permission is granted as long as no other swap is taking 
place. 

2. Requesting a swap - Upon reception of the swap 
permission from its own group leader, the initiator agent 
contacts the intended agent in the other group to inform 
it about executing the swap. 

3. Responding to the swap - Once the intended agent 
receives the swap request, it asks for permission from its 
own group leader. Based on its leader response (grant or 
decline), it informs the initiator of its decision (accept or 
decline). 

4. Swap execution - Once the two parties agree on the 
swap, each one informs its peers about the group update. 

5. Finalization - After the initiator and intended agents 
inform their peers about the swap, they report to their 
group leaders that intra-group synchronization has been 
achieved. 

As evident from the above procedure, a swap requires a 
large number of messages back and forth between group 
members; therefore the SWAP_THRESHOLD should be 
adjusted to take this into consideration. Currently, this 
threshold is treated as a pre-determined parameter to the 
framework, and its value is set based on a worst case 
analysis.  

5.  UAV AGENT ARCHITECTURE 

We provide a function-oriented specification of different 
components of a UAV agent simulated in the experiment 
and the information flow between these components. The 
emphasis here will be of the reasoning part of the agent.  

Figure 4 depicts the UAV agent components as well as the 
information flow between them. The central component of 
the agent architecture is the world model which includes the 
main memory of the agent. The world model stores various 
kinds of problem information at different levels of 
abstraction. The world model is fed with vision data from 
the communication module, and the model provides various 

retrieval functions to other components of the agent. This 
allows a component to examine the world around the agent 
at a level of details that is suitable for the component’s task.  

The coordination module is the brain of the agent: it is 
where all decisions are taken.  Specifically, the module is 
responsible for sequencing the agent decision making 
process as well as coordinating the overall team members’ 
actions (team-level action sequencing). The main 
responsibility of the coordination module is to decide the 
agent’s current mode of operation (roaming, bidding, or task 
execution), and to run the auction framework detailed earlier. 
The module also provides partial coordination results to the 
world model; such results include: which target I am 
currently committed to, which group I am a member of, 
what is my role in this group, thus making them available to 
other modules. 

 

Figure 4 - Internal Architecture of a UAV Agent 

The target handling and motion planning modules are 
responsible for materializing decisions of the coordination 
module. The responsibilities of these modules are to decide 
which point of the target to go to, and to coordinate with 
other group members to avoid conflicts. The coordination is 
done by exchanging path-planning messages between group 
members through the communication module. Afterwards, 
the collision avoidance module monitors the world by 
examining the world model and avoid collisions using an A* 
algorithm [16]. 

6.  EXPERIMENTAL RESULTS  

The primary goal of experiments is to demonstrate our 
framework using a set of robot cars. Each car is controlled 
by an iPAQ PDA running Microsoft Pocket PC and receives 
localization information from a leader vision server 
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collaborating data from four vision servers, each of which is 
connected to an overhead video camera. A vision server 
takes images from a camera, searches for unique color 
plates mounted on each robot car and calculates the 
corresponding robot’s identification and heading. A leader 
vision server takes localization information from each vision 
server, and sends filtered and regulated localization 
information to the iPAQs. The iPAQs use an internal WiFi 
interface for inter-agent communication. Different cars are 
used to represent UAVs and targets (see Figure 5). It is quite 
clear that this hardware setting makes discovering logical 
errors as well as tracing the agents’ behavior very hard. To 
deal with these issues, we developed a hardware/software 
shared agent code architecture that allows us to simulate this 
hardware setting in software while at the same time 
guaranteeing interoperability when porting this code to the 
hardware setting. The main design philosophy of the system 
is to ease parallel developments and testing. The agent’s 
(UAV/Target) implementation is isolated from the 
architecture on which the system is running. The system can 
run in two modes: Simulated Mode or Real Mode. 

 

Figure 5 - Experimental Environments 

Our experimental scenario used 6 UAVs and 9 mobile 
targets. The performance evaluation metric we use is the 
total mission time to service all targets. We ran this mission 
with different settings for the two critical dynamic auction 
framework parameters: namely, Round_Time(RT)  and 
Price-Reduce-Ratio(PPR). We also ran experiments 
with and without the reverse auction stage and with and 
without swapping. If swapping is disabled, then agents 
would stick to there initial target assignment even if it 
becomes sub-optimal later. In all of these experiments, 
Swap_Threshold was set to 30 and a swap was 
considered every 20 seconds (these values are set 
experimentally). 

As is evident from the results (Table 1 and 2), swapping and 
the reverse auction step help reduce the total mission time in 

all combinations of the other parameter settings.  

From Table 1, small values of the RT negatively affect the 
overall performance. This is largely due to the asynchrony 
of the application: small RT values do not give the 
auctioneer agent a chance to receive all the bids that are 
submitted from bidder agents. This results in running the 
auction many times because an insufficient number of bids 
have been received. The optimal setting for the RT 
parameter depends largely on the average message delay. 
From Table 3, the best PPR setting is 50% which results in 
the fastest auction termination. We are currently in the 
process of conducting more experiments to understand the 
role of this parameter. 

Table 1: The effect of auction round time 

 

Table 2: The effect of swapping  

  

Table 3: The effect of the price reduce ratio 

. 

7.  RELATED WORK 

The use of economic models in multi-agent coordination in 
general and task allocation in particular is not new. Various 
approaches exploited auction-like approaches in both 
situated [5, 12] and non-situated agents [7, 8]. However, as 
we detailed before, these approaches lack a formal 
specification of the DDTA problem. Moreover, they mainly 
focus on how to assign tasks to agents without providing a 
solid framework to maintain the assignment optimality over 
time ([7] being an exception to some extent).  

The forward/reverse auction was first introduced in [1] to 
solve asymmetric assignment problem, and therefore it can 
be regarded as a means to solve a snapshot of the DDTA 
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problem. Our work here can be viewed as extending it in 
three directions: first, we allow the algorithm to deal with 
non-unary task requirements by introducing non-linearity in 
the task utility function; second, we adapt the initial results 
of the algorithm using swapping to retain its optimality over 
time; third, we provide a robust implementation for this 
algorithm that deals with the distributed and asynchronous 
nature of the DDTA problem. This implementation can be 
viewed as a relaxed version of the two-phase commit 
protocols [13].  

Swapping is related to conflict management in a team of 
agents. Several approaches have been proposed to deal with 
the conflict management problem based on the shared 
intention theory [3] in which agents inside the team are 
assumed to share a common goal. This theory has been 
materialized in [14, 15] as a set of reusable teamwork 
heuristic rules that enable agent teams to act reliably in 
dynamic situations. However, our work differs from these 
generic approaches as it was designed specifically to 
permeate seamlessly with our forward/reverse auction 
framework. 

8.  CONCLUSION AND FUTURE WORK 

The approach we present addresses two key challenges in 
the DDTA problem: combinatorial complexity and 
dynamicity. To address the combinatorial problem, we 
extended a forward reverse auction [1].  The extension 
makes it suitable for the distributed, asynchronous, 
multi-requirement aspects of the DDTA problem. We use 
swapping as a means of maintaining the optimality of the 
auction results over time by chaining local, 
communication-inexpensive negotiation steps. We have 
applied our approach to a UAV search and rescue scenario 
and reported on early experimental results demonstrate the 
promise of our framework. 

We plan to run large scale experiments on the same search 
and rescue domain using our Actor Architecture (AA) which 
supports up to 10000 agents [17]. We also plan to 
incorporate learning in our architecture; learning can be 
used, firstly to adapt the agents’ bidding decisions and, 
secondly, to adapt the algorithmic parameters to the 
environment dynamics, e.g., to efficiently utilize the 
available bandwidth. Moreover, we plan to analytically 
characterize our approach and contrast it with that in [2]. 
Finally, we plan to investigate the theoretical efficiency of 
our multi-requirements extension to the auction algorithm. 
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