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Abstract

In 2001, Lui Sha published a paper entitled “Using Simplicity to Control Com-
plexity.” It describes an architecture that switches between a high-assurance-
control subsystem and a high-performance-control subsystem. But his solution
is much bigger and can be more widely applied; the Simplex architecture is a
solution-creating technique for combining two algorithms such that a system
retains the safety of the first while gaining the features of the second.

Using this architecture has been difficult because it has not been clear what
kinds of problems the Simplex architecture solves; neither has it been clear in
what ways developers can describe Simplex to conduct an early analysis of their
own Simplex-based designs.

Simply put, my work is as much about Simplex as it is about describing
Simplex architectures. This dissertation provides a collection of precise, logical
descriptions of the Simplex architecture in four different modeling paradigms.
I also describe my implementation of a Simplex architecture in a distributed
control environment.

ii



For Keesha, a good dog.

iii



Acknowledgements

How shall I go in peace and without sorrow? Nay, not without a wound in the
spirit shall I leave this city.

Long were the days of pain I have spent within its walls, and long were the
nights of aloneness; and who can depart from his pain and his aloneness
without regret?

Kahlil Gibran, The Prophet. 1923.

In The Prophet, Almustafa spends twelve years in the city of Orphalese
waiting for his ship to return him to the isle of his birth. One day, he climbs
the hill near the city and sees his ship returning. He is exuberant; he gets to
go home. But just as quickly as his heart fills with joy, it is diluted with equal
parts sorrow. While his years in the city have been unkind to him and have
caused him great pain, the people have not. As he reflects upon this, the people
of the city, who have also seen his ship approach, gather at the city gates to say
their farewell.

At the time I deposit this dissertation, I will have been in Illinois for five
years, ten months and 21 days. In that time, the Midwest has offered me
an army of friends, colleagues and mentors that have helped me through this
greatest life challenge:

• My best friend: Joe Hendrix.

• My advisor who challenged me with research and taught me how to brag
about myself: Lui Sha.

• The funding agencies and industry leaders who gave their financial sup-
port: National Science Foundation, Rockwell Collins, and Lockheed Mar-
tin. This includes NSF award CSR-EHS:0720482.

• My small circle of good friends who kept me out of my tree with their pep
talks, bike rides, ice cream and skim lattes: Erin Wolf Chambers, Amy
Young, Shamsi Iqbal, and Iulia Dragan-Chirila.

• The Bevande Baristas who made so many of those lattes: Jane and
Bethany.

iv



• The woman who helped me get to multiple foreign countries, register for
conferences, write and send important recommendation letters, get a job,
and cope: Molly Flesner.

• Those who were lost: Andy Pack, the “Old Timer” Kent McConkey and
Dr. Jennifer Hou.

• Those who were born: Grace Chambers, Thomas Belcher, Cole Stewart,
Sean Thompson, Sarah and Chet Gardner, Miles and Mason Williams.

• The woman who made sure I got paid on time every semester: Shirley
Finke.

• The university staff who helped me with funding, scholarship applications,
outreach, and bureacratic administrivia: Angie Bingaman, Barb Cicone,
Mary Beth Kelley, Kay Tomlin, Holly Bagwell, Sonya Harris, and Colin
Robertson.

• The Mckinley physician who told me stories about anacondas, told me
my finger would grow back, and helped me discover the three-medication
combo that would enable me to breathe in and out in the over-pollenated
midwest: Dr. Walter Maguire.

• My university faculty mentors: Susan Larson, Klara Nahrstedt, Lenny
Pitt, Elsa Gunter, Craig Zilles, Ralph Johnson, and P. R. Kumar.

• My MentorNet mentor who textually kicked my butt; when I whined about
staying at graduate school for a seventh year, she wrote to me, in all caps,
DO NOT LINGER: Beth Simon.

• The goofy gentleman I met at SIGCSE in Houston who turned out to be
invaluable in my job search, in planning a security course, and eating good
food at later SIGCSE conferences: Paul Myers.

• The handful of strangers who agreed to talk to me about their jobs as
teaching university professors which helped me to find my own job as a
university professor: Roshanak Roshandel, Adair Dingle, Tammy VanDe-
Grift and Laurie Murphy.

• My “older brothers” in the Real-Time and Convergence Lab research
groups who all graduated before me and taught me important lessons in-
cluding the very practical lesson about keeping diagrams organized neatly
throughout graduate school so that they do not have to be redrawn for the
defense and dissertation: Deepu Chandy, Spencer Hoke, Satish Gopalakr-
ishnan, Xue Liu, Ajay Tirumala, Sumant Kowshik, Craig Robinson, and
Qixin Wang.

• My “younger brothers” who taught me more important lessons and gave
me more respect than I probably deserved: Mu Sun, and Min Young Nam.

v



• All the friends and colleagues who ever read one of my mediocre paper
drafts, unsatisfying job application packages, or watched one of my lame
practice presentations, including my qual practice presentation where I
melted into tears and Iulia had to pull me out of the bathroom and Joe had
to tell Pedro to “let her answer the question” which is the moment when I
really, really liked him: Damon Cook, Jeffrey Overby, Matt Belcher, Nitish
Korula, Margaret Fleck, Danny Dig, Chris Garver, Michael Treaster, Jay
Patel, Tony Chang, Jodie Boyer, Brittney Smith, Nicholas Chen, Adam
Lee, Maurice Rabb, Roger Whitney, Ramona Thompson, and Baris Ak-
temur.

• The people who made me laugh: Heather Metcalf, Michael “The Artist”
Katelman, Santiago Escobar, Clownhair Zack, Nat Thompson and Roy
Campbell.

• My friends who kept reality nearby with radio shows, stories about women
and mothers and daughters and husbands and boyfriends, sign language,
and drawings of Thomas the Train: Ben “Hige-Chan” Walt, Kit Moore,
Christina McQuirk, Chetan Palajani, Gretchen Klein, Zoe Chao, Grace
Chambers, Ruchi Bhanot, Kim Belcher, and Lars Olendorf.

• The MergeSort dancers.

Finally, my thanks to the west coast satellite team: my mother and brother
and father and friends: Erin, Chet2, Sarah, Mrs. Clock, Cousin Lisa and Michael
and the twins, Cheryl, Ryan, Maritza, Megan, and Rob, all of whom I will see
very soon.

vi



Table of Contents

1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The easy button: A vision for software development . . . . . 5
2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 My other office is the convergence laboratory . . . . . . . . . 9
3.1 The five layers of the testbed . . . . . . . . . . . . . . . . . . . . 10
3.2 The application layer . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The Etherware layer . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 The real world layer . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 The testbed’s frontier: Nine cars, a camera, a C++ com-
ponent, and a Java BufferedReader . . . . . . . . . . . . . 12

3.5 Motivating the need for proven, domain-specific solutions . . . . 13
3.5.1 A case study of design patterns in the convergence labo-

ratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.1 Memento usage improves system availability . . . . . . . . 15
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1 Summary

As a computer science researcher, I focus on the field of software engineering for
real-time systems; I investigate how to conduct early safety analyses of safety-
critical, real-time systems. Many such systems are Cyber-Physical Systems, or
CPS, which comprise networked devices monitoring and controlling the physi-
cal world. Their domains include avionics, automobiles and health-management
networks. For these domains, safety is paramount. Yet, current software engi-
neering practices lack the foundations necessary to reason about the safety of
these real-time systems. My work blends software engineering principles with
a detailed knowledge of the CPS domain to provide developers with models
of proven solutions; developers can use these models to instantiate their own
solutions and conduct early evaluations of their safety-critical architectures.

To make an impact on software development for the CPS domain, I ground
my research in the challenging systems development problems faced in the avion-
ics industry. Systems in this industry are developed in multiple successive stages.
Partial designs are captured in the early stages in databases, diagrams, and
spreadsheets. Safety is designed into the system based on technical lore and the
past experiences of senior designers. Domain expertise is important, but safety
properties cannot be evaluated until the later stages when implementation ar-
tifacts are available. Severe design flaws discovered at these late stages adds
detrimental cost to a project.

I have investigated architecture-level reference models to provide early de-
sign analysis without implementation artifacts. I leveraged numerous case stud-
ies, expert domain knowledge, and industry standards to innovate models of
proven, domain-specific solutions for next-generation model-driven development
processes.

Background

In 2001, Lui Sha published a paper entitled “Using Simplicity to Con-
trol Complexity.” It describes an architecture that switches between a high-
assurance-control subsystem and a high-performance-control subsystem. But
his solution is much broader and more applicable; the Simplex architecture is
a solution-creating technique for combining two algorithms such that a system
retains the safety of the first while gaining the features of the second.

Using this architecture has been difficult because it has not been clear what
kinds of problems the Simplex architecture solves; neither has it been clear in
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what ways developers can describe Simplex to conduct an early analysis of their
own Simplex-based designs.

Simply put, my work is as much about Simplex as it is about describing Sim-
plex architectures. My work provides a collection of precise, logical descriptions
of the Simplex architecture in four different modeling paradigms. As a result,
developers now have a formulaic design approach to utilizing and analyzing the
Simplex architecture for their own applications.

Summary of results

A case study of design patterns to motivate the need for domain-
specific solutions for the CPS domain (Chapter 3). A natural origin for a
model-driven development process is software patterns [30]. Patterns are proven
solutions for a variety of problems faced by software developers. Aside from a
small handful [19, 81], not many patterns are available for the CPS domain,
especially those that pay attention to the hazards that can occur in CPS. My
case study demonstrates how four classic design patterns are not sufficient for
CPS developers, and motivates the need for domain-specific solutions, like the
Simplex architecture

Etherware is a middleware for networked control [7] which drives much of
my research. Though not an avionics system, Etherware is a tangible, very ap-
plicable, non-proprietary example of CPS. It is a component-based, networked
system that observes and controls the physical world. Etherware’s original de-
velopers used design patterns for its architecture. Based on a case study of
Etherware’s pattern usage, I illustrate the positive and negative impact that
four classic design patterns have on key safety qualities [15]. The lesson gained
from my survey is that CPS have characteristics that stand far apart from other
domains. CPS relate to the physical world, a place that is adverse to safety.
These systems are subject to unreliable interactions: sporadic or incorrect sensor
input, and control commands not followed with precision. As a result, develop-
ers for these system need proven, domain-specific solutions.

A problem architecture in the CPS domain (Chapter 4). Etherware’s
navigation system is subject to unreliable sensor input and thus can calculate
a flawed estimate of car locations. Yet, the navigation system must also deliver
location information in such a way that collisions between cars are avoided. The
same kind of interaction between navigation and control in Etherware is seen
in flight control systems on commercial aircraft. The aircraft navigation system
supplies location information to the autopilot, one of the most safety-critical
subsystems in flight control. What kinds of models do developers need to resolve
potential safety hazards due to interactions between unreliable components and
safety critical ones?

To develop a collection of proven solutions for this problem first requires
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a clear understanding of the problem itself. These systems must control the
behavior of a plant situated in an environment introducing disturbances to the
plant. The software that controls the plant is not directly connected to it; it
may only make observations via a sensor and issue commands via an actuator.
I have developed a detailed problem architecture which highlights hazards of
this disconnect. Between estimating the plant state and articulating safety re-
quirements, the Simplex problem frame presents a challenging problem to solve.
However, understanding the problem puts a developer significantly closer to
solving the problem successfully. Imagine trying to climb a mountain without
knowing the terrain ahead; is it icy, rocky, or thousands of feet tall?

Modeling proven solutions during early design stages (Chapters 7,
8, and 10). I defined the problem architecture, but I also precisely defined
a collection of Simplex solutions. These descriptions are provided as: i) A
parameterized model in Maude, an executable specification language; ii) a pa-
rameterized model in AADL, an architecture description language; iii) a model
in Higher Order Logic. As a result, developers now have multiple approaches for
a formulaic design approach to utilizing and analyzing the Simplex architecture
for their own applications.

Many CPS subsystem features can be described at two levels: minimal re-
quired features and desirable features. This divides a subsystem into two control
algorithms. One is clearly safe. It is simple enough to verify. The second has
more desirable features, but is too complicated to verify. Architectures for these
subsystems can be created using any of my Simplex reference models which de-
scribe this technique for combining two such algorithms so that a system retains
the safety of the first while gaining the features of the second.

A case study of a semi-automated analysis of specific Simplex archi-

tecture instances (Chapter 9). Given that I have grounded my work in
the avionics domains, I have worked towards making my architecture solutions
accessible to industry engineers. Formal logic offers the complete verification
of safety properties, but demands a certain mathematical knowledge not found
in most CPS developers who often come from the electrical and mechanical
engineering industries. Based on industry surveys, I developed a set of six met-
rics to evaluate an automated Simplex analysis tool. Based on these metrics, I
have conducted a case study of the existing AADL interpreter made available
by José Meseguer and his formal methods group at the University of Illinois
at Urbana-Champaign. Based on the case study, I provide a set of concrete
recommendations to the formal methods group to improve their toolchain for
an industrial setting.

A new prototype of the Simplex architecture in a distributed control
environment (Chapter 11). My Simplex research conducted in the Ether-
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ware testbed was driven by a demand for safety in real-time, mission-critical,
embedded systems. When I was introduced to the testbed in 2004, cars were be-
having strangely; at times, they were colliding with each other, a definite safety
violation. My Simplex prototype provides the testbed with notable improve-
ments in the way that cars are located and identified by the vision subsystem.
In experimental trials, cars are now correctly reported at least 99% of the time.
Moreover, the vision subsystem now expresses car location confidence so that
other components can take fail-safe measures; cars are stopped if their locations
are not well-known.

Intellectual Merit

Cyber-physical systems face uncertainty. Unreliable sensors, flawed plant
estimates, inaccurate or worn-down devices, unreliable third-party components,
and missing environmental assumptions all contribute to this uncertainty. My
research has uncovered a proven system architecture which allows for the use of
unreliable components to interact with safety-critical components without com-
promising safety. I have precisely identified and implemented solutions which
can provide safety despite this kind of uncertainty.

Broader Impact

Model-driven development is a new development process paradigm that em-
phasizes higher levels of abstraction than current languages such as C++ and
Java offer. At each stage of development, the system is represented as a more
and more refined model, until the final system deployment is generated auto-
matically. This kind of development process is currently getting a lot of at-
tention, and promises to solve many of the problems faced in developing large,
component-based systems. The computer science community is far from this
kind of development process, but my models of proven solutions and my case
study of a semi-automated analysis take the next steps toward this goal. Al-
though set in the avionics domain, I expect that my research into modeling
proven solutions for this domain can be extended to other domains of CPS.
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2 The easy button: A vision
for software development

Staples is an office supply company that advertises “the easy button.” Need
pens? Push the easy button. Need hot high tech gifts? Push the easy button.
Want to save 10% on printer ink? Easy. Button. In reality, the button is a link
that users can place on their Windows desktop to make ordering office supplies
easier. In television commercials, the button is glossy and cartoon-red; it sits
on the desk of the savvyest office employee, while the other employees fret in
disaster, covered in yellow stickies and glue.

The commercials are silly, but the concept is visionary: a simple interface
that is easy to use and empowers users with exactly what they need. There
are other examples: Apple Computer’s one-button mouse and Amazon.com’s
1-Click patent. Science fiction offers more advanced machines. “Star Trek: The
Next Generation” characters have their replicator. Walk up to the machine and
say, “Make me a roast beef sandwich,” and it does.

What if this easy-button concept could be abstracted, applied not just to
machines and their interfaces, but also to the construction of these machines?
It would be the machine to build and program all other machines. Like the
replicator, one could approach it and say, “Make me a machine to mow my
lawn,” or, “Write me a program to control an airplane.” This kind of machine for
software might put me out of a job; I would happily spend more time practicing
yoga and perhaps finally learn how to surf. Yet, as David Parnas warns, this
kind of machine could not possibly exist for building software.

Depending on Parnas’ television habits, he may know nothing of the easy
button or the Star Trek replicator. Instead, he speaks about a rational design
process, and that it may only be faked [56]. There are too many forces against a
logical approach to developing software: Customers who don’t know what they
want, budget restrictions that force developers to reuse old or incompatible
parts, political pressures that change the direction of the project, the C.E.O
who insists on hiring his incompetent nephew. Ultimately, “human errors can
only be avoided if one can avoid the use of humans” but no rational machine
may be built either.

Walker Royce, Vice President of IBM Rational Worldwide Brand Services,
describes similar observations of the development cycle,

The typical sequence for the conventional engineering project manage-
ment style is: (1) early success via paper designs and thorough (often
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too thorough) artifacts; (2) commitment to executable code late in the
life cycle; (3) integration nightmares due to unforeseen implementa-
tion issues and interface ambiguities; (4) heavy budget and schedule
pressure to get the system working; (5) late shoe-horning of suboptimal
fixes, with no time for redesign; and (6) a very fragile, unmaintainable
product, delivered late [60, pg 46].

To address these issues, Parnas describes a series of thorough design, doc-
umentation, and implementation steps for a rational design process. Faking
it is worthwhile, he argues, because it guides programmers on how to proceed
to the next step, design better, backtrack less, and measure the progress for a
particular project.

Parnas’ faked rational process begins with the beautifully crafted require-
ments document that succinctly describes the behavior of the system; it is with-
out duplication and inconsistencies, and it contains “everything you need to
know to write software that is acceptable to the customer, and no more.” It is
written by the software’s users, it is backed by a simple mathematical model,
and it is organized using a separation of concerns. The requirements document
is just step one of seven, and each step must be brilliantly documented. Parnas’
admits the difficulty in this. Programmers regard documentation as evil, and if
pressed, may not be able to identify a sentence out of a police line-up.

* * *

My domain of interest is Cyber-Physical Systems, or CPS, which comprise
networked devices that monitor and control the physical world. These systems
have three qualities that make them particularly interesting for a case study in a
rational design process. First, they include critical infrastructures such as auto-
mobiles, manufacturing plants, avionics and health-management networks. For
these domains, safety is paramount. Second, they relate to the physical world
and are subject to unreliable interactions. Sensor input is sporadic or incorrect,
and control commands are not always followed with precision. Third, CPS ar-
chitects take advantage of the Commercial-Off-The-Shelf (COTS) component
model. As a result, they gain the valuable expertise of third-party companies at
a lower cost, but face the complexity of assembling large numbers of components
they may know little about or may not be able to explicitly verify.

The task of faking a rational design process for CPS seems even more impos-
sible: Improve the development of safety-critical systems built from a collection
of black-boxes which relate to a multitude of unknowns in the physical world.
In these systems, a single component fault must not invalidate system safety
requirements, violate deadlines, or cause further mayhem in other components.
Their massive size and small budgets do not allow formal verification of every
component, so the architecture must be able to cheaply handle faults. More-
over, third-party components may be too complex to be formally verifiable, or
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they may simply be untrusted. Why don’t I just invent anti-gravity; it seems
like an easier task.

Whether or not it seems possible is perhaps a premature question; one ought
to ask first, “Is the ideal, even faked, really worthwhile?” One might reject ide-
als published by academics; most of these people have never had to deliver
robust software to demanding clients. However, Parnas’ argument is backed by
a community of industrial software developers who demand better specification
and evaluation tools for CPS. For example, the Core Method, based on sur-
vey results from member companies of the Software Productivity Consortium,
echoes the rational design process; it describes the features that customers want
for specifying requirements for large real-time systems. Paraphrased from [23],
features should include:

• Testable precision. Support the development of precise and testable
specifications for real time, mission-critical, embedded systems.

• Boundary delineation. Support the delineation of system boundaries,
the precise specification of system interfaces, and the description of the
system’s environment. Users may indicate where the specification is in-
ternally incomplete, although the tool must allow users to isolate fuzzy or
incomplete requirements and proceed with work on requirements that are
well understood.

These features are just part of the dream, but what is the reality? To-
day’s CPS developers, especially those in the avionics domain, are challenged
by the huge systems they must develop and the lack of a rational design pro-
cess with which to develop them. Instead, they rely heavily on heuristics and
recommended practices [43]. Early designs are partially captured in ad-hoc rep-
resentations using database, diagram, and spreadsheet artifacts. Safety must
be designed into the system based heavily on technical lore and the past expe-
riences of senior designers. As a result, safety properties cannot be evaluated
until late development stages when implementation artifacts are available.

To close the gap between today’s development cycle and the seemingly im-
possible rational design process, I have conducted research into a collection of
precise reference models of the Simplex architecture. Introduced by Lui Sha
over ten years ago, the Simplex architecture has been demonstrated on a num-
ber of case studies, including an inverted pendulum [3, 42], a diving controller
[71], and an F-16 controller [65]. Thus far, it has been difficult for people to
tell whether Simplex is applicable to their problem and how they might archi-
tect solutions based on Simplex principles. My Simplex reference model serves
as a precise model of a proven solution in the CPS domain for model-driven
developers to reuse in their own solution architectures.
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2.1 Contributions

My research contribution is a proven system architecture in the CPS domain
which allows for the use of an unreliable component to interact with a safety-
critical component without compromising safety. This proven system architec-
ture is described at the logical design stage in such a way that it is repeatable; it
is described precisely enough so that developers may conduct an early analysis
of their own domain-specific architectures without implementation artifacts.

My work is as much about Simplex as it is about describing Simplex archi-
tectures. In particular, I make these contributions:

1. A case study of design patterns to motivate the need for domain-specific
solutions for the CPS domain (Chapter 3).

2. A collection of precise, logical descriptions of the Simplex architecture, a
proven solution in the CPS domain. These descriptions are provided as:

• A problem frame architecture (Chapter 4),

• A parameterized model in Maude, an executable specification lan-
guage (Chapter 7),

• A parameterized model in AADL, an architecture description lan-
guage (Chapter 8),

• A model in Higher Order Logic (Chapter 10).

3. A case study of a semi-automated analysis allowing the assembly of specific
Simplex architecture instances and evaluation of their safety properties
(Chapter 9)

4. A new prototype of the Simplex architecture in a distributed control en-
vironment. I find this contribution especially exciting; it is the first time
that the Simplex architecture has been prototyped for such a large plat-
form in a research setting (Chapter 11).

8



3 My other office is the
convergence laboratory

One of the greatest driving forces in my research has been the convergence
laboratory testbed at the University of Illinois at Urbana-Champaign [1] [31].
This testbed uses a networked, component-based middleware for control called
Etherware [6].

I selected the testbed because it demonstrates the three qualities of interest
for the CPS domain introduced in Section 2. First, the testbed models a critical
infrastructure: a small fleet of cars whose key safety property is collision avoid-
ance. Second, the testbed is designed for control; it relates to the physical world.
Such a control system must model real-world devices in the software. States of
external devices must be represented in the code using software proxies. Device
states and their proxies must be consistent. Third, it is a component-based
testbed whose multiple components execute concurrently across multiple nodes.
The testbed controls the plant using multiple heterogeneous nodes concurrently
executing tasks such as sensing and actuation.

Convergence Lab Application

Actuator

Vision
Sensor

Plant

Trajectory
Planner

Controller
waypoints

control commands

car info

actuation commands

actuation
feedback

color panels

Figure 3.1: The testbed application components control a fleet of remote-
controlled cars.

Since my research requires me to work as an application developer for the
testbed, I introduce it here. This description provides sufficient background
for the motivating case study of design patterns described later in this chapter
and the implementation described in Chapter 11. For those more interested
in learning about Etherware and the convergence laboratory, consult Girish
Baliga’s doctoral dissertation [7].
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3.1 The five layers of the testbed

The convergence laboratory testbed employs a five-layer architecture. They are,
from top down:

• Application. Application-layer components, shown in Fig. 3.1, execute
on top of the testbed’s Etherware middleware to control a fleet of remote-
controlled cars. The application is based on a control loop consisting
of a Vision Sensor, Controller, and Actuator. The Trajectory Planner
generates waypoints for each car to be followed by each car’s Controller.
The cars have two directives. First, they must follow the set of waypoints
determined by the system Trajectory Planner to reach a set of goal-bins
in the network of roads. Second, they must do so without colliding with
any other cars.

• Etherware. Implemented in Java, it is a domain-specific middleware for
control over wireless or wired networks. The lossy channels and commu-
nication delays in wireless networks force Etherware to provide tools and
services which accommodate these drawbacks without sacrificing control
system stability. Etherware’s goals are distributed operation, location in-
dependence and asynchronous communication, while being both scalable
and robust.

• Operating System. Consists of support for threads and interprocess
communication.

• Network. Consists of the physical layer of the typical network protocol
stack.

• The Real World. A layer also observed in the Pedestal pattern [62], as
discussed in Chapter 5. The real world layer consists of a plant and envi-
ronment. The plant consists of the physical devices under the machine’s
control; in this case, these are the camera and the motors that control
the steering angle and velocity of the cars. The environment consists of
disturbances; one example is the friction of the track.

3.2 The application layer

The application model in the testbed is a collection of components. Each com-
ponent is wrapped in a Shell (or Façade [29]) which provides a uniform interface
between Etherware and the component. Components can record their state in
a Memento [29]. The Memento offers support for failed component restart, mi-
gration and upgrade. Etherware service components also use these same design
patterns.

Components at the Application layer communicate with each other via com-
munication channels called Message Streams. Components may Tap a Message

10



Stream to intercept messages communicated between components. In this way,
components may Filter [32] messages communicated between components along
a Message Stream.

MessageStream

control 
commands

Application

Controller

Shell

Actuator

Shell

Collision
Avoidance

Filter

Shell

Etherware

Tap

filtered control 
commands

Figure 3.2: An example of Etherware’s Message Stream and Tap. All application
components are wrapped in a Shell. The Controller sends controller commands
to the Actuator which receives these commands as filtered by the Collision
Avoidance Filter.

The application of interest to this dissertation is the collision avoidance
application; I mention it here to exemplify the Tap. The collision avoidance
application uses the Tap mechanism to do its job. As shown in Figure 3.2,
the Controller sends controller commands to the Actuator. Another appli-
cation component, the Collision Avoidance Filter, intercepts these controller
commands from the Message Stream using a Tap. If a car’s trajectory is to
intersect another, the Collision Avoidance Filter filters dangerous commands
from the message stream, altering their contents to be the “stop” command.
Once the two cars’ trajectories diverge, the commands are no longer altered.

3.3 The Etherware layer

Etherware itself is made up of two parts, a kernel and a set of three service
components. The kernel schedules tasks and delivers messages to local compo-
nents in the Etherware and Application layers. The service components provide
additional services. The first service is a ProfileRegistry which manages the
available components in the system. A LocalProfileRegistry is located on each
node and maintains a list of components on the particular node. A single node
is equipped with a GlobalProfileRegistry which maintains a list of the other
components throughout the system, including their name and port information.
Meanwhile a second service, the IPNetworkMessenger, provides the functional-
ity necessary for message delivery to other nodes in the network.
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Messages communicated by Etherware are well-formed XML files. Message
delivery functionality is restricted to the IPNetworkMessenger, making it simple
to port Etherware to different network types [7]. The third service provided by
Etherware is a NetworkTimeService translates time stamps of messages from
one machine to another so that messages may be properly ordered for stable
control. The service constructs a table of clock offsets and skews for the set of
machines in the distributed system, and translates time stamps based on the
appropriate offset, skew and communication delay.

3.4 The real world layer

The real world layer consists of a plant and environment. The plant consists
of the physical devices under the machine’s control. Given that the plant must
interface to the Etherware and Application layers, I describe it here.

cars actuators

camera

Real World

Figure 3.3: The real world layer comprises cars, actuators, and two cameras
mounted to the ceiling of the testbed laboratory.

As shown in Fig. 3.3, the plant comprises:

• Cars. A small fleet of remote-controlled, battery-powered cars.

• Actuators. A set of FM-transmitters, one for each car. Each actuates
the two motors which control steering angle and velocity on a given car.

• Cameras. Two cameras are mounted to the left and right halves of the
testbed’s ceiling to capture the two halves of the driving platform.

Ideally, I would just plug an actuator into Etherware via a Java interface,
but reality is not that simple. This is actually one of the reasons I was originally
drawn to embedded systems research: how does one make a computer talk to a
thing like a car or a camera?

3.4.1 The testbed’s frontier: Nine cars, a camera, a

C++ component, and a Java BufferedReader

Every car in the testbed is equipped with a little paper quilt of six color patches
that uniquely identifies it. Observations of car locations and orientations are
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made in the testbed with two cameras mounted to the ceiling. The raw camera
feed is processed by a C++ Matrox Imaging Library (MIL) that extracts a set
of color blobs.

So far so good. But how does one go from this C++ library to the Java Vision
Sensor component which delivers car information to the rest of the Etherware
application? The collection of blobs produced by the MIL are interpreted by
a C++ module, CarTracker. This C++ modules is invoked by the Etherware
VisionSensor component as a Java Runtime object. The location information
is relayed to Etherware via a Java BufferedReader named CarTrackerReader.
Once received, the VisionSensor can deliver the car information to the rest of
the interested components.

carTrackerReader

Shell

Proxy

Operating System

Real World

camera

Etherware

Car
Tracker

Application

Vision Sensor

Figure 3.4: The CarTracker is a C++ component executed by Etherware as
a Java Runtime object which uses a third-party imaging library to extract car
location information. The location information is relayed to Etherware via a
BufferedReader named CarTrackerReader. The CarTracker is invoked by the
VisionSensor component and housed within the component’s Shell.

3.5 Motivating the need for proven,

domain-specific solutions

Armed with this introduction to the testbed, I return to the greater vision of this
dissertation: an offering of Simplex described precisely enough so that devel-
opers may conduct an early analysis of their own domain-specific architectures
without implementation artifacts. This description must support model-driven
development, featuring testable precision and boundary delineation.
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A natural origin for a model-driven development process is software patterns
[30]. Patterns are proven solutions for typical problems faced by software devel-
opers. However, aside from a small handful of resources [19, 62, 81], not many
patterns are available for the CPS domain, especially those that pay attention
to the hazards that can occur in CPS. As a result, many CPS developers are
faced with building solutions based on generic design patterns.

My early work with patterns investigates the impact of developing domain-
specific solutions based on generic patterns. My case study evaluates Etherware,
a domain-specific middleware for networked control whose original developers
used design patterns for its architecture. Though not an avionics system, Ether-
ware is a very applicable, non-proprietary example of a CPS. It is a component-
based, networked system that observes and controls the physical world while
maintaining strict safety properties.

3.5.1 A case study of design patterns in the convergence

laboratory

My case study examines four patterns [30, 32]. They are:

• Memento. Records the internal state of an object. This record can be
used to later restore the state of the object.

• Façade. Provides a simplified, high-level interface for a set of objects.
Clients invoking these objects’ services don’t have to be concerned with the
differences between their varying interfaces, and can just invoke services
using the Façade.

• Proxy. Instantiates an object in place of another. In many cases, a Proxy
creates a local placeholder for a remote object.

• Filter. Allows dynamic compositions of objects to perform transforma-
tions on streams of data.

I evaluate Etherware’s pattern usage based on each pattern’s impact on
availability, robustness, and reliability, three qualities which impact a system’s
safety [44, 9]. The evaluation also includes a dependency inversion analysis
[18] to analyze the relationships between component failures. The case study
does not intend to evaluate the patterns themselves, but rather advance the
community’s understanding of patterns’ utility in the CPS domain.

3.5.2 Metrics

A system is safety critical when its incorrect behavior can directly or indirectly
lead to a state hazardous to human life [44]. Decisions which shape the archi-
tecture for CPS are driven in part by three qualities; availability, reliability, and
robustness [44, 9].
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• Availability can be quantified by the probability that a system is avail-
able when needed [9]. To increase availability of software components, de-
velopers can use fault-detection or fault-recovery tactics such as heartbeat,
a periodic signal emitted by one component and monitored by another.

• Reliability can be quantified by the probability that a component will
perform its intended function satisfactorily for a prescribed time and un-
der stipulated environmental conditions [44]. Reliability is important to
safety-critical, real-time systems, for it insures that components correctly
execute to completion and meet their deadlines. For example, a Watchdog
pattern can be used to monitor the internal, time-dependent computa-
tional progress of a subsystem [19].

• Robustness is the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environment con-
ditions [54]. One approach to robustness is to ensure that components
enter a fail-safe state under such conditions. The Safety Executive [19] is
one pattern that describes how to coordinate a component’s entry into its
fail-safe state.

3.6 Results

3.6.1 Memento usage improves system availability

Etherware components may store state information in a Memento at termina-
tion. Using the Memento, Etherware can perform quick reinitialization of failed
components, or migrate components to other nodes during system execution.
The Memento helps Etherware to achieve high availability, since quick restarts
and component migration increase the probability that a component is available
when needed.

While Etherware’s Memento improves availability, it can be so expensive
that it affects reliability. The time and space demanded by storing and trans-
ferring the Memento can decrease the probability that a component will perform
its intended function, since there is more opportunity for error. However, fore-
going it also means foregoing the advantage of quick restarts and component
migration. For Etherware in particular, the potential expense has not been a
concern; it has not caused problems with the message size and transmission
time demanded by the Memento.

The Memento also offers a means to improve robustness. In many cases,
component failures are contained within a component’s Shell and components
can recover gracefully by restarting with a Memento.

Overall, the Memento is important for safety-critical systems. In terms of
all three software qualities, Etherware’s Memento has a predominately positive
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Figure 3.5: A failed component remains in the Message Stream. Messages from
the application-level Controller to the Actuator are sent via the Shell of the
failed component, incurring unnecessary delay and possible corruption.

impact on safety. In particular, there has been significant benefit arising from
the capability for quick component restarts.

3.6.2 Façade usage may incur dependency inversions

Etherware employs a Façade or Shell to mask the failures of application-level
components from the rest of the system. While Etherware’s Shell has little im-
pact on availability, it improves reliability. Thanks to the quick restart provided
in part by the Memento, a component can fail and restart within a Shell without
other component’s knowledge, and still perform its function by the deadline.

In the same way, the Shell achieves greater system robustness, since com-
ponent failures are contained within a component’s Shell and components can
recover gracefully by restarting with a Memento. Unfortunately, some compo-
nent failures in Etherware are not recoverable during system execution, despite
the Memento.

When such failures occur, failed components contained in their Shells remain
in the path of the Message Stream as seen in Figure 3.5. This forces messages
to incur unnecessary and possibly harmful delay. Moreover, messages may also
be corrupted as they make their way from their source to their destination via
failed components that are tapping or filtering a given Message Stream.

Though somewhat helpful in improving robustness, it is important to con-
sider the criticality of a Shell with respect to its component. The dependency
inversion analysis [18] conducted in [15] provided insights to the interactions
between critical and non-critical components in the system. “Dependency in-
version” is the dependency of a safety-critical component on less critical compo-
nents [18]. This is an undesirable alternative to a use relationship in which one
component uses the services of another, but can continue to perform in spite of
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any failure of the other.
The analysis revealed a dependency inversion between a Shell and its com-

ponent in Etherware. As a result, one must consider the alternatives to resolve
this relationship. The first alternative is to utilize fault-tolerance techniques
that eliminate possible fault propagation from the less critical component to
the more critical one, thereby removing the dependency inversion. The de-
pend relationship becomes a use relationship. If such techniques are not viable,
the second alternative is to recategorize the less critical component at least as
safety-critical level as the critical component. This implies that more time and
budget must be dedicated to validating the newly categorized component.

3.6.3 Proxy usage results in system-wide failure

Etherware is a middleware for controlling devices in the physical world, or the
Real World layer [62]. These devices must be represented in software at the
Application layer. This is done using a Proxy. Figure 3.4 summarizes the de-
tails of the single Proxy used in the collision avoidance application. This Proxy,
invoked by a separate component and housed within that component’s Shell,
mirrors the state of all the cars on the track. Two cameras capture the loca-
tions of all the cars on the track. A VisionTracker processes the camera image
to uniquely identify each car, obtain its x-position, y-position, and orientation,
and stream them all to Etherware via a special buffer, CarTrackerReader. The
Proxy then receives location information from this reader.

In the original design of Etherware, the Proxy was not considered as a pos-
sible source of system failure. Its functionality was assumed to be too simple to
cause system failure. However, the wear and tear of the physical devices led to
unexpected failure. The color panels used on the cars for unique identification
faded over time, causing the VisionTracker to treat one car as two different cars
in the exact same location. A division-by-zero occurred in the C++ component,
leading to a segmentation fault in the VisionTracker. The C++ component was
invoked as an external program using Java’s Runtime exec() method. The
segmentation fault caused the Java Virtual Machine on the particular node to
crash. Without the node providing the VisionTracker, car locations could not be
obtained, and the remaining components suffered. The bug led to a system-wide
failure.

The bigger question is, “Is it really Proxy’s fault?” No. In this case, the
proxy was doing exactly what it was supposed to do. The real problem was that
the original designers of Etherware did not design the proxy carefully enough
such that it was robust against inaccurate observations of the physical world.
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3.6.4 Filter usage improves robustness by mitigating

message delay and loss

Etherware’s support for components to Filter the Message Stream provides a
mechanism by which communication delays and errors can be mitigated. In
particular, the Kalman Filter improves robustness, since failure to convey a
particular sensor message does not cause failure in the Controller. This partic-
ular use of a Kalman Filter is rather unlike what was originally intended by the
pattern authors. Instead of composing operations on streams of data, as done
by the Collision Avoidance Filter, the Kalman Filter estimates the current state
of the cars using previous data and control commands.

This observation about the use of the Filter motivated the development of
a new software pattern. The Kalman Filter performs state estimation based
on current and previous data rather than simply applying an operation to a
stream of data. Investigations of other safety-critical middleware technologies,
notably the Gain Scheduler Middleware described in [76, 77], demonstrated
similar augmentations. As a result, what came from the Etherware case study
was not simply the lessons learned from pattern usage, but also my development
of a particular software pattern. This pattern, the Adaptive Control Filter is
described in its entirety in [14].

3.7 Lessons learned

The case study illustrates the positive and negative impact the usage of four
classic design patterns in Etherware has on key safety qualities. The results
of the case study found positive and negative impacts. The Memento design
pattern improves system safety while the Filter improves robustness. However,
implementing a Proxy for real world devices requires consideration such that
robustness is not negatively impacted. Similarly, Façade can introduce depen-
dency inversions.

The lesson gained from the Proxy usage is most relevant. Because CPS relate
to the physical world, they have characteristics that stand far apart from other
domains. The physical world is a place that is adverse to safety. These systems
are subject to unreliable interactions: sporadic or incorrect sensor input, and
control commands that are not always followed with precision. As a result,
developers for these system need proven, domain-specific solutions that account
for their special safety requirements.
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4 Defining the Simplex
problem domain

Having motivated the demand for domain-specific CPS solutions, the next step is
to identify one family of CPS problems that require solutions. Problem frames
[38] is an approach developed by Michael Jackson to describe and categorize
problems. They are used to describe a software development project’s problem
architecture, and decompose a problem into multiple subproblems. In this way,
smaller subproblems can be resolved using well-understood solutions.

4.1 Problem frames tutorial

Problem frames are used to describe a software development project’s problem
architecture, and decompose a problem into multiple subproblems. In this way,
smaller subproblems can be resolved using well-understood solutions.

A problem frame is decomposed into individual domain descriptions: a single
machine domain, a collection of domain descriptions, and a set of requirements
on the domains. Suppose the problem is to write software to drive a remote-
controlled car around a circular track. The car is equipped with a left and a
right sensor; each detects the car’s distance from either edge of the track. Using
this example, and Fig. 4.1, I quickly tour of the essential parts of a problem
frame:

• Machine domain. Indicated by a double-stripe, the machine domain is
the computer whose software must be designed and developed to solve a
problem. For the car and track problem, the machine domain contains
the software developers must write to control the car.

• Given problem domain. Shown as a plain box, a given problem domain
is one whose description is given, such that the software developer is not
allowed to design the domain. For the car and track problem, the given
problem domain is comprised of the remote-controlled car and track

• Designed problem domain. Indicated by a single-stripe, it is a problem
domain that the software developer gets to design, such as a database or
display.

• Shared phenomena. The solid lines represent the interfaces between
domains, or what Jackson calls shared phenomena. For the car and track
problem, an example of shared phenomena is the machine command to
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the car. This is data that is generated and sent by the machine domain
and is received and used by the car’s actuators.

• Requirement. Indicated by a dashed oval and arrow, the requirement
stipulates some required behavior in a particular domain that the machine
domain must guarantee. The requirement is a description of what a do-
main must do, not a description of how the machine achieves it. For the
car and track problem, the car is required to drive along the track, but no
statement is made as to how this ought to happen.

Given 
problem domain

Machine
domain

Requirement

a

b Designed 
problem domain

c

d

Figure 4.1: A basic problem frame. Boxes represent the various domains. La-
beled interfaces between the domains represent shared phenomena.

4.2 Problem frame catalog

Jackson introduces a catalog of different problem frames that can be applied to a
variety of individual subproblems. He organizes this catalog using two different
dimensions:

• Domain Types. Based on the phenomena shared by a domain, a do-
main may be causal or lexical. Section 4.2.1 describes these two types of
domains.

• Problem Frame Classes. A number of problem frame classes exist; I
introduce three that apply to the CPS problem domain. Based on the type
of problem being solved, an individual problem frame can be a required,
connection domain, or model building problem frame. Sections 4.2.2-4.2.4
describe each.

4.2.1 Domain types

Shared phenomena may be causal or symbolic. Causal phenomena are directly
controlled by some domain, such as a car’s velocity; meanwhile, symbolic phe-
nomena simply express values which symbolize other phenomena, such as a
database entry storing a car’s velocity. These types of phenomena define the
types of domains in a problem frame.
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Jackson describes two types of domains relevant to this dissertation: lexical
and causal. A lexical domain is a physical representation of symbolic phenom-
ena; these domains comprise data stored in main memory or on a hard disk.
Lexical domains are typical in computer science, and include databases, file
systems, or any other structure which manipulates symbolic phenomena.

In a causal domain, there are explicit rules about the relationships among
phenomena. Consider again the example of controlling a remote-controlled car.
If the machine domain commands the car to increase its speed, the car’s motor
turns faster, and its speed increases.

4.2.2 Required behavior problem frame

The required behavior problem is to build a machine which controls some real-
world behavior so that it satisfies certain conditions. Shown in Fig. 4.2, the
problem frame consists of two domains: the control machine, indicated by a
double stripe, and the controlled domain. The “C” labeling the controlled
domain indicates it is causal. The requirement, in the dashed oval, stipulates
some desired relationship involving phenomena b in the controlled domain.

Controlled
Domain C

Control
machine

Required
behaviour

a b

Figure 4.2: Jackson’s required behavior problem frame. The “C” indicates that
the domain or phenomena are causal.

Fig. 4.3 shows the example problem frame with a car controller machine
and a causal car and track domain. The car controller and the car share two
phenomena; I use Jackson’s notation to label these. The car controller generates
steering angle and speed commands to the car; I indicate this with CC!{angle,
speed} to make it explicit that the car controller domain generates this shared
phenomena. The car provides track sensor feedback indicating its distance from
either edge of the track. Similarly, this phenomena is labeled CT!trackSensor.

C

Car and 
track

Car
controller

Required
Behavior

CC ! {angle, speed} position 

CT ! {trackSensor}

Figure 4.3: My example of the required behavior problem frame: build a ma-
chine which directs a car to drive along a track.

The car and track domain description must contain the information neces-
sary to build the car controller machine. This includes properties about the
car and track, including: i) the dimensions, mass, and maximum speed of the
car; ii) the shape or road conditions of the track. Moreover, the requirement
constrains the car and track domain such that the car’s position stays within
the track.
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Similarly, the car controller machine specification must “describe a machine
whose behavior will ensure that the requirement is satisfied” [38]. For example,
the car controller machine must use the car and track domain properties to
calculate and issue appropriate commands based on sensor readings.

4.2.3 Connection domain problem frame

Fig. 4.4 shows a connection domain problem frame. The problem is to build
a machine that controls some behavior in an environment. The machine is
connected to the environment indirectly through a sensor and actuator domain.
With respect to the environment, there are two kinds of shared phenomena. The
first are the monitored variables controlled by the environment. The second are
the controlled variables controlled by the actuator. The requirements describe
the relationship between the monitored variables and the controlled variables in
the environment.

Machine

machine command

sensor data

Environment

monitored variables

controlled variables
Actuators

Requirements

controlled
variables

Sensors

Figure 4.4: The connection domain problem frame. The machine interacts with
the environment via two connection domains.

In the previous subsection, I introduced the simple problem of a car following
a track. I used the required behavior class to describe the problem. It has only
two domains: the controlled and the controller. But even simple systems like
this have more that need to be considered. First, sensors must be used to detect
the car’s distance from either edge of the track. Second, a remote control device,
or actuator, must be used to control the motors on the car. These sensor and
actuator domains, which relay information from the controlled domain to the
control machine, are two examples of what Jackson calls a connection domain.

Revisiting the example in Fig. 4.5, this problem domain makes the sensor and
actuator domains explicit. In doing so, it distinguishes the monitored variables
from the controlled ones. The track sensors monitor the voltage levels at the
left and right. These voltage values are translated into left and right track
positions, and reported to the car controller. The car controller uses these
values to calculate the next steering angle and speed commands, which are sent
to the actuator domain. The actuators translate these commands into voltages
and are given to the car’s stepper motor which controls the steering, and the
DC motor which controls the speed.
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Figure 4.5: My example of a connection domain problem frame. The car con-
troller machine is connected indirectly to the car environment via a sensor and
actuator domain.

4.2.4 Model builder problem frame

In the previous problem frame, recall that the track sensor domain must trans-
late the voltage values obtained from the environment into values which can
be reported to the car controller. For simple scenarios, this translation merits
a few variables to keep an internal, software view of the real world. In the
simple car and track example, it only takes a couple operations to translate
the track sensor readings into the car’s actual distance from either side of the
track. These operations require the granularity of the sensor readings, the units
of measurement, and other calibration information.

However, in more complex scenarios, this translation from the sensor read-
ings to the software’s internal view of the real world suggests that the sensor
domain must maintain a full model of the environment. Suppose that instead
of simple sensors, an aerial camera is used to monitor the location and direction
of the car. In this case, an arsenal of vision libraries would be necessary to
translate raw camera data into the software’s internal view of the real world.
Such a scenario demands a model.

The model building problem frame makes modeling the real world explicit.
Any problem using this domain is split into two subproblems; the machine that
builds the model and the machine that uses it. Using the example shown in
Fig. 4.6, the problem is: i) to build a machine that models the real world, and;
ii) build a machine that displays the modeled real-world phenomena.

The model building problem frame is special because it is explicitly trans-
lating causal phenomena in the real world into lexical phenomena that another
machine can manipulate. As a result, the real world domain is labeled with a
“C” indicating that it is a causal domain; the “X” indicates that the model is
a lexical domain.

The requirements in this problem frame are also somewhat unique, compared
to my previous problem frames. In the top of Fig 4.6, notice that the dashed line
connecting the real world and the requirements has no arrow. This means that
the requirements only refer to phenomena in the real world, but do not constrain
them. This is because the ultimate goal of the model building problem frame
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Figure 4.6: The model building problem domain (top). The problem is to build
a model which approximates the real world. A second problem frame (bottom)
uses the modeled phenomena to display the causal events.
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Figure 4.7: The example problem must model the car and track using informa-
tion obtained from the track sensors, a connection domain.

is to create a machine such that the causal events correspond to the symbolic
representation of that phenomena.

What does this mean for my example? As shown in Fig. 4.7, I must consider
the problem of modeling the car and track, using information obtained via the
track sensors. As before, the track sensors monitor the real world via voltage
values of the left and right sensors. The track sensors provide track positions
to the modeling machine. These positions are then represented as modeled
positions, which ultimately lead to a modeled car position.

There is a real challenge in solving the model builder. For even in a causal
domain, the set of modeled physical laws may not always be followed. Motors
wear out, sensors break, and control commands are lost over unreliable commu-
nication lines. Moreover, the model may be incomplete; an unexpected failure,
such as a fire, could occur. In the implementation highlighted in Chapter 11,
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the challenge was to combine an unreliable camera with a set of physical laws
to result in a 99% correct identification rate.

4.3 The Simplex problem frame

Armed with a quick tutorial on problem frames, and an introduction to the
connection problem frame and model builder problem frame, I can discuss one
family of problems seen in the CPS domain. I call it the “Simplex Problem
Frame” because this family of problems can be solved by the Simplex architec-
ture that will be introduced in the next chapter.

The problem is to build a machine which:

1. Controls some part of the physical world according to some minimum fea-
ture set such that safety is guaranteed. If safety requirements are met,
then the machine may control the physical world according to some addi-
tional desired features;

2. Controls this part of the physical world via two connection domains: a
sensor domain, and an actuator domain;

3. Guarantees safety despite the connection domain’s unreliability.

Only problems whose functionality can be divided into a “minimal feature
set” and “desired feature set” can be formulated into a Simplex problem frame.
For problems without this dichotomy, the Simplex architecture is useless.

To describe the problems solved by the Simplex architecture, I contribute
two additional problem frame concepts not provided by Jackson’s work.

• Decompose the Environment Domain. Given that the Simplex ar-
chitecture is predominately targeted for control domains, I use the ubiq-
uitous language [22] of the domain and separate the environment into an
environment and a plant. This distinction is described in Section 4.3.1.

• Identify the Observable Safety Properties The Simplex architecture
requires that the safety properties maintained in the physical plant are
properties that can be observed. Moreover, these properties must further
be broken into high-confidence safety and core safety. These kinds of safety
properties are articulated in Section 4.3.2

4.3.1 Decomposing the environment domain

Given that the Simplex architecture is predominately targeted for control do-
mains, it is important to make a distinction between the plant and the envi-
ronment. In control systems, the plant consists of the physical devices under
the machine’s control: the speed or turning angle of the car. The environment
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consists of disturbances: phenomena which can disturb the plant, but the ma-
chine cannot control. Disturbances can include phenomena such as the road
conditions or the current wind speed.

Sensors

Actuators

Machine Requirements

machine command

sensor data
Environment

monitored
variables

controlled
variables

Plant

disturbances
controlled
variables

Figure 4.8: For control systems, separate the environment domain from the
plant domain.

To make this notion of a plant explicit, revisit the connection domain prob-
lem frame. Fig. 4.8 separates the plant domain from the environment domain.
The sensors share monitored variables with both the plant and the environment.
In addition, the plant and the environment share a set of disturbance variables
introduced by the environment. In many control scenarios, many of the phe-
nomena in the environment are considered a disturbance to the plant. This is
because the disturbance phenomena are assumed, are not directly detectable, or
are too costly to detect. Most systems can safely assume the gravitational con-
stant on earth; the modeling machine uses this assumed value when modeling
the plant. In automotive systems, sensors cannot directly detect icy road condi-
tions, but they can detect the slip rates of a vehicle’s wheels or the side-to-side
motion of a vehicle.

Thus, the union of the monitored variables and disturbance variables from
the environment represent all possible information about the environment. How-
ever, the control machine must calculate and issue its commands based on the
model built from: i) the monitored variables, and; ii) the assumptions made on
the disturbance variables in the domain descriptions.

4.3.2 Observable safety properties

To motivate the concept of observable safety properties, return to the simple
example with the car and track. Suppose again that the remote-controlled car
must follow a circular track. The car is equipped with a left and right sensor such
that each detects the car’s distance from either edge of the track. Moreover,
suppose that the track has a wall on either side which the car must not hit.
Thus, it becomes a matter of safety that the car follow the track precisely.

First, to monitor safety properties in a plant, one must recognize that the
software cannot detect directly whether or not the car has hit the wall. The
software may only observe the values returned by the sensors. If the system
never observes that the sensors return a value of “0” indicating the car’s distance
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from the wall, then the system can only conclude that the car has not yet
hit the wall. Still, it may the case that a sensor has failed, and the system
concludes that the system is safe based on erroneous information. Certainly, for
any safety-critical system, redundancy is a useful approach to avoiding some of
these problems [33].

Second, it is also necessary to differentiate between high-confidence safety
and core safety. Consider the scenario in which the car is driving directly toward
a wall and is currently 3 meters from the wall. In the time instant in which the
3 meter distance is observed, the car is safe; it is not colliding with the wall.
However, if the car is also moving at a speed of 3 meters-per-second, then in the
next second, the car will not be safe. Thus to achieve high-confidence safety:

• The plant must be safe at the current time instant;

• The modeling machine can predict, based on the current control command,
that the plant will be safe in a future time window.

To state it another way, when a system has achieved high-confidence safety,
it means that choosing the complex algorithm command now will not prevent
the simple algorithm command from ensuring safety later.

There are a number of reasons why monitoring these kinds of safety prop-
erties is not trivial. First, for plants that cannot be modeled using a linear
Gaussian model, it is a challenge to build a modeling machine which can pre-
dict future plant states. Second, in cases of monitoring distributed systems,
knowledge at a given node may be incomplete [39].

Simplex, like any architecture concerned with safety, cannot guarantee ab-
solute safety. First, its safety is limited by the safety properties that can be
monitored by the system. The initial Simplex prototype could not have suc-
ceeded without the ability to detect if the pendulum were within its stability
envelope. Second, it is limited by developer paranoia. A system can only be
robust against the faults and failures that a developer anticipates. For example,
in the early inverted pendulum prototype, Simplex could not have prevented
pendulum instability that resulted from a faulty or corrupt sensor.

4.3.3 The problem frame

To formulate this family of problems seen in the CPS domain, I have decomposed
the problem into three problem frames. The first is a model building problem
frame. The second two are variations on the required behavior problem frame.
Each problem frame decomposition interfaces the machine to the physical world
via a connection domain.

Fig. 4.9 summarizes the collection of three problem frames. The top panel
is the model builder; the problem is is to build a machine that constructs a
precise model, or a safe approximation of the environment. To say the model
is safe means that the modeled states are within limited safety tolerances of
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the actual values in the real world. If these tolerances are not met, the model
must indicate how, so that the software entities using the model can make
appropriate decisions. Thus, the model requirements constrain the modeled
variables to approximate the monitored and controlled variables in the plant
and environment. Moreover, the safety requirements constrain the modeled
variables such that they are within a safe range of the monitored variables.

The bottom two panels of Fig. 4.9 show the two connection domain problem
frames that use the model. The problem is to build a machine that controls
some part of the physical world, according to a set of safety requirements. For
the center panel of Fig. 4.9, this machine implements a set of minimal features
while guaranteeing the core safety requirements. For the bottom panel, the
machine implements the set of desired features only if the high-confidence safety
guarantees are met.

As a result, the Simplex problem frame demands three sets of safety require-
ments be defined. I list them here, each with a concrete example from the car
and track example in Fig. 4.5

• Model safety requirements. The model is required to provide an es-
timation of the real world within a specified tolerance. For example, the
model should approximate the location of a car within 0.25 meters.

• Core safety requirements. The simple machine is required to maintain
plant safety. For example, the car must keep a distance of 0.5 meters from
the track wall.

• High-confidence safety requirements. The complex machine is re-
quired to maintain high-confidence plant safety. For example, the car
must keep a distance of 0.75 meters from the track wall.

Between building a good model and articulating the safety requirements,
the Simplex problem frame presents a challenging problem to solve. However,
understanding the problem puts a developer significantly closer to solving the
problem successfully. Imagine trying to climb a mountain without knowing the
terrain ahead; is it icy, rocky, or thousands of feet tall?
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Figure 4.9: The trio of problem frames that comprise the family of problems. 1.
The model builder describes the problem of building a model that approximates
the disturbances as well as the monitored and controlled variables in both the
environment and the plant. 2. The connection domain problem frame describes
only the minimal required behavior. 3. Another connection domain problem
frame describes the desired features along with the high-confidence safety re-
quirements.
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5 Simplex: Using simplicity
to control complexity

In 2001, Lui Sha published a paper entitled “Using Simplicity to Control Com-
plexity.” It describes an architecture that switches between a high-assurance-
control subsystem and a high-performance-control subsystem. But his solution
is much bigger and can be more widely applied; the Simplex architecture is a
solution-creating technique for combining two algorithms such that a system
retains the safety of the first while gaining the features of the second.

One Simplex prototype is an inverted pendulum control application [3, 42].
The safety requirement is that the pendulum must not fall. The simple algo-
rithm is used as a baseline control algorithm; it has been proven to work and
is invoked only when the pendulum falls outside its stability envelope. The
complex algorithm uses additional, possibly unverified, control laws and is used
as long as the pendulum is stable. The emphasis of the prototype is dynamic
upgrades: developers can upload untested control algorithms to the system on-
the-fly without worry of a falling pendulum.

The Simplex architecture has been demonstrated on a number of case stud-
ies, including an inverted pendulum [3, 42], a diving controller [71], and an F-16
controller [65]. For each prototype, the system’s functionality is separated into
a “minimal feature set” enforced by a simple controller and “desired feature
set” implemented by a complex controller.

Fig. 5.1 pictorially summarizes the complete Simplex architecture. Each
box is a domain and each directed line indicates the data flow between do-
mains. The figure shows a solution architecture; unlike the domains of Michael
Jackson’s problem frames, these domains are simply abstract components that
reside within the architecture. Starting from the bottom of the figure, the en-
vironment introduces disturbances to the plant. Sensors can partially monitor
the environment and the plant. The sensors deliver sensor data to the modeling
machine that builds the model−−or the software’s internal view of the external
world.

The model delivers modeling events to both the simple machine and the
complex machine. Each machine uses the event information to calculate an
appropriate control command. Each machine forwards its control command
to the decision machine, which chooses the appropriate control command to
maintain the safety requirements.

For each pair of control commands, the decision machine forwards the se-
lected control command to the model. The selected command is recorded in the
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Figure 5.1: The Simplex Architecture

model for estimation and prediction purposes by the modeling machine as well
as sent to the actuators. Finally, the actuation command reaches the plant, and
the control loop is complete.

The decision machine is the brain of Simplex. To make the choice between
the two algorithms, the decision machine requires all of the requirements spec-
ifications from the trio of Simplex problem frames:

• Model safety requirements. The model is required to provide an esti-
mation of the real world within a specified tolerance.

• Core safety requirements. The simple machine is required to maintain
plant safety.

• High-confidence safety requirements. The decision machine may
only choose the complex complex controller if high-confidence plant safety
is present.

Thus, the decision machine has a big job to do. Based on the properties
delivered by the modeling machine, it has to determine if the current plant
state satisfies the high-confidence safety requirements. If so, it is free to choose
the control command from the complex machine. Otherwise, if the plant state
satisfies only the safety requirements, it must choose the control command from
the simple machine.
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Figure 5.2: Two Simplex prototypes. 1. The inverted pendulum. A small cart
moves back and forth along a track to keep the rod balanced. 2. The diving
controller. A small capsule navigates up and down a metal rod to mimic the
surface and submerge control for a submarine.

5.1 Examples: The Simplex prototypes

To provide more tangible examples of the problem-domain based description of
the Simplex architecture, I discuss two existing Simplex prototypes developed
at the University of Illinois at Urbana-Champaign and the Software Engineering
Institute. These are the inverted pendulum and the diving controller prototypes,
depicted in Fig. 5.2.

It is interesting to note the application-specific ways in which the complex
machine differs from the simple machine. As shown in the upcoming prototypes,
this difference varies according to the system’s goals. For the inverted pendulum,
the goal of the system was to provide for dynamic upgrades. Two controllers
are available to balance the pendulum. The complex controller is allowed to be
uploaded dynamically during system execution. This complex controller is used
as long as the pendulum stays within a given safety envelope. Otherwise, the
simple controller is used.

For the diving controller prototype, the goal was robustness. Developed
for the United States Navy to demonstrate robust control in a distributed,
component-based system, the diving controller uses quadruple-redundant Sim-
plex architecture. The simple controller is robust but has lousy performance.
The complex controller has better performance but at times produces faulty
control commands.

Developers interested in using the Simplex architecture may likely be inter-
ested in its cost. In particular, what is the tradeoff between the benefits of
the complex controller and the cost of the additional resources of the modeling
machine, decision machine, and complex controller. This is difficult to predict,
except empirically. Some analyses of cost have been performed [28], but only
by experiments on individual prototypes.
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5.1.1 The inverted pendulum

To demonstrate the ability of Simplex to support on-line upgrades, the inverted
pendulum prototype was developed [3, 42]. Shown in Fig. 5.2, an inverted
pendulum is composed of a rod (the pendulum), balanced on a cart that can
move along a track. The cart’s x-position must be constantly repositioned such
that the pendulum remains balanced.

Problem frame

The inverted pendulum’s problem frame is characterized by the plant, environ-
ment, sensors and actuators. The plant is the pendulum and the cart and the
monitored variables are the angle of the pendulum and the x-position of the cart.
The environment is the cart’s track and the pendulum’s surroundings. Sensors
capture the x-position and the angle information of the pendulum. Two motors
actuate the new x-position and angle according to incoming control commands.

The problem is to build a machine that keeps the pendulum balanced. The
requirements are:

• Model safety requirements. Provide a precise estimation of the pen-
dulum angle and x-position. Based on the properties of the cart and track,
determine if the pendulum is within one of two stability envelopes. The
first stability envelope describes the maximum angle and x-positions that
can occur before the pendulum falls. The second, the restricted stability
envelope, places a tighter bound on these angle and x-position require-
ments. The model must use the estimation of the current state to identify
if the pendulum is in either stability envelope. For the inverted pen-
dulum, such stability envelopes are defined by “stability in the sense of
Lyapunov” [10].

• Core safety requirements. The pendulum must stay within the stabil-
ity envelope.

• High-confidence safety requirements. The pendulum must stay in
the restricted stability envelope.

Architecture

The Simplex architecture for the inverted pendulum prototype matches exactly
the architecture summarized in Fig. 5.1. The only matter to discuss is the
modeling machine and the decision machine.

The implementation of the modeling machine for the inverted pendulum is
grounded in control theory. It uses the domain description of both the plant and
the environment − properties such as the mass of the cart and friction coeffi-
cients of the track − to identify the stability envelopes using the Lyapunov [50]
calculation. Given that the modeling machine identifies these envelopes, the
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Figure 5.3: The problem frames for the diving controller. 1. The diving con-
troller model builder must keep track of the capsule position and volume of air
in the storage tank. 2. The core requirements with connection domain problem
frame associates the control command with the safe position of the capsule.

decision machine is very simple: if the pendulum is in the restricted stability
envelope, use the complex control command, otherwise, use the simple control
command.

5.1.2 The diving controller

To demonstrate the ability of Simplex to perform in a component-based, dis-
tributed control system, a diving controller prototype [71] was developed. The
diving controller, whose physical prototype is summarized in Fig. 5.2, mimics
the control necessary for a submarine to submerge and surface.

Problem frame

The diving controller’s problem frame is characterized by the environment,
plant, sensors and actuators. The environment consists of a 5-foot tall, cylin-
drical water tank. Vertically installed in the tank is a metal rod; the plant is
a capsule, or “submarine,” which slides up and down the rod. Whether or not
the capsule submerges is determined by the amount of air pumped into it. Ex-
cess air, unnecessary when the capsule is fully submerged, is kept in a storage
tank mounted to the top of the tank; air is transferred between the capsule and
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storage tank via an air hose. Two sensors detect the position of the capsule and
the volume of air in the storage tank. An air pump is used for actuation, either
by pumping air out of the storage tank and into the capsule, or vice versa.

The problem is to build a machine that raises and lowers the capsule accord-
ing to user input via a graphical user interface. The requirements are:

• Model safety requirements. The model must provide a precise esti-
mate of the capsule position and volume of air in the storage tank.

• Core safety requirements. The capsule must maintain a position ac-
cording to the last-received well-formed command from the user. The
capsule must maintain this position despite flawed user commands, as
well as software, hardware, and network faults.

• High-confidence safety requirements. The capsule must maintain
a position according to the last-received well-formed command from the
user.

Fig. 5.3 summarizes two of the three Simplex problem frames for the diving
controller. The top of the figure shows the model building problem frame;
the problem is to build a machine that can approximate the position of the
capsule in the tank. This problem begins with the water tank which introduces
disturbances into the plant. The plant comprises the capsule and air storage
tank. The position of the capsule and the volume of air in the storage tank
are the monitored variables. From the sensors, the modeling machine reads
the voltage for the position and air volume which are then translated into the
symbolic phenomena: the modeled position of the capsule and volume of the
tank.

The bottom of Fig. 5.3 shows the first connection domain problem frame
describing the requirements for the behavior of the capsule. The core safety
requirements constrain the control commands of the simple machine against
the position of the capsule. In other words, the control commands must always
keep the position of the capsule in a safe state. For this prototype, safety
means to follow the well-formed commands presented to the system by the user
interface.

The second problem frame describing the desired features has been omitted
from the figure. It differs only by the high-confidence requirements and the
complex machine. Given that the high-confidence safety requirements make no
statement about faults, any ill-formed commands from the user, or faults in the
the communication between components, will result in the use of the simple
machine.

Architecture

Fig. 5.4 summarizes the architecture of the diving controller prototype. Four re-
dundant control systems are used, each one equipped with a simple and complex
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Figure 5.4: The Simplex architecture for the diving controller prototype. Four
redundant control systems are used. Detail: Each control system is equipped
with a simple and complex machine.

machine. The simple control algorithm used is robust, but has very low perfor-
mance. The complex control algorithm has better performance, but sometimes
produces faulty commands. Moreover, the decision machine is equipped with
a third safety controller in case communication is severed between the control
machines and the decision machine. This safety controller, again, performs low
performance but robust control for the capsule.

5.2 Uncovering the necessary vocabulary for

describing the Simplex architecture

Armed with this introduction to the Simplex architecture and two of its ex-
ample prototypes, I return to the greater vision of this dissertation: an offer-
ing of Simplex described precisely enough so that developers may conduct an
early analysis of their own domain-specific architectures. This description must
support model-driven development, featuring testable precision and boundary
delineation.

To provide such a Simplex model requires a description language with a
vocabulary appropriate to Simplex; a good place to start is to understand what
must be said about software architectures in general. “Software architecture” is
one of those nebulous terms that are difficult to precisely articulate; moreover,
the software engineering community does not exactly agree on a definition. One
just has to pick a favorite. In their book [9], Bass, Clements, and Kazman define
software architecture as follows,
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The software architecture of a program or computing system is the
structure or structures of the system, which comprise software ele-
ments, the externally visible properties of those elements, and the re-
lationships among them.

To expand this definition more concretely, a software architecture is a set of
components about which the following is known:

• Component Interfaces: A well-defined means by which each component
communicates or interacts with other components.

• Connections: A description of how individual components in the system
are connected together.

• Component Behavior: The observable functionality of a component as
far as it affects or influences other components.

Given this definition of software architecture, a language that describes the
Simplex architecture must be able to express at least these three things: inter-
faces, connections, and behavior. Is that enough?

Recall the Simplex problem architecture defined in Chapter 4. The problem
is to build a machine that controls some part of the physical world according to
some minimum feature set such that safety is guaranteed. If safety requirements
are met, then the machine may control the physical world according to some
additional desired features.

When describing the solution architecture to this problem, developers must
describe three sets of requirements. First, they must describe the model’s safety
requirements–or the accuracy and precision of the software’s estimate of the
physical world. Second, they must describe the core safety requirements by
which the simple machine must maintain plant safety. Third are the high-
confidence safety requirements for the complex machine.

Clearly, interfaces, connections and behavior are not enough. To describe or
model the Simplex architecture, developers need a way of describing all of these
safety requirements. The language for describing these requirements depends
on the specific application. Simple applications are fine with English, others do
not need anything more expressive than Linear Temporal Logic1.

Interfaces, connections, behavior, safety. Is that enough?
Recall in Fig. 5.5 the Simplex architecture diagram. Notice the line that

divides the software components from the physical world. Unlike enterprise sys-
tems or web applications, much of real-time software’s behavior is dedicated to
modeling or controlling the physical world. This line is the same “axis of sym-
metry” in Barry Rubel’s Pedastle pattern for control systems shown in Fig. 5.6;
it provides a boundary interface between the real world and the software world
[62].

1Linear Temporal Logic, or LTL, will not always suffice. For a more comprehensive frame-
work addressing a formal description of safety for Simplex, refer to Chapter 10.
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Figure 5.5: The Simplex Architecture

Because of the physical world’s prominence in the Simplex architecture, a
description language ought to differentiate the physical world from the soft-
ware. By the same token, it is important to delineate the interface between the
software and the physical world.

There is one last thing that’s needed to effectively describe the Simplex
architecture if it is going to be a reusable architecture: parameterization. One
must be able to separate the generic parts of Simplex from the application-
dependent ones. This way, there is no dangerous editing of information that
doesn’t need it.

Think about it: the keystone to Simplex is choosing between two alter-

axis of symmetry

Operator
Interface

Management
of Model

Model of
Real World

Real
World

Figure 5.6: Barry Rubel’s four layer architecture, or Pedastle design pattern,
which highlights an axis of symmetry between the “Real World” and the software
which models and controls that world.
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natives. No matter the application −− diving controller, inverted pendulum,
or F-16 fighter −− the architecture’s behavior boils done to a simple if-then
construct: If the system has high confidence safety, then choose the complex
command; otherwise, choose the simple one. What it means to be a “system”
or to have “high confidence safety” is very application-dependent; a descrip-
tion language should empower a developer to only fill in the necessary details
without mucking around in the generic behaviors.

That’s it. One needs six language constructs to describe a Simplex architec-
ture:

• Component interfaces. Expose the abstracted functionality of the com-
ponent as it may be accessed by other components.

• Component connections. Describe how components are connected via
their interfaces.

• Component behavior. Express the functionality of the component as
it may affect the functionality of other components.

• Safety properties. Express the properties that must always be true for
a component or subsystem.

• Hardware-software delineation. Allow types which identify compo-
nents in the physical world and the software one.

• Parameterization. Separate generic functionality from application spe-
cific functionality; identify what is required from other components.

How do they all fit within the three features set out at the beginning of this
dissertation? Recall from [23] that real-time developers want:

• Testable precision. Support the development of precise and testable
specifications for real time, mission-critical, embedded systems.

• Consistency definition. Define what makes a set of requirements con-
sistent, including principles, guidelines, and techniques for determining
if requirements are internally consistent and for keeping them internally
consistent when they are changed.

• Boundary delineation. Support the delineation of system boundaries,
the precise specification of system interfaces, and the description of the
system’s environment. Users may indicate where the specification is in-
ternally incomplete, although the tool must allow users to isolate fuzzy or
incomplete requirements and proceed with work on requirements that are
well understood.

Fig. 5.7 breaks the six language constructs into three categories. The first
two categories are not new: testable precision and boundary delineation. The
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Express the properties that must always be true for a 
component or subsystem.

C.1.  Safety properties

T.1.  Component behavior Express the functionality of the component as it may affect 
the functionality of other components. 

B.3.  Connections Describe how components are connected via their interfaces.

B.2.  Component interface Expose the abstracted functionality of the component, as it 
may be accessed by other components. 

B.4.  Parameterization Separate generic functionality from application-specific 
functionality ; identify what is required from other components. 

B.1.  Hardware-software
        delineation

Allow types which identify components in the physical 
world and the software one.

Support precise and testable specifications. Testable Precision

Boundary Delineation
Support precise specification of system interfaces; 
support description of the system's environment. 

Safety Definition
Define what makes an architecture safe for the complex
controller and the simple controller. 

Figure 5.7: The six language constructs necessary to describe Simplex architec-
tures

third is necessary to include in any definition of safety in an architecture de-
scription of Simplex. Of course, the perfect language does not exist. In an
ideal world, a developer writes the perfect description language for modeling
her domain. But research is never ideal; subsequent chapters evaluate three
approaches to modeling Simplex and how they fare against these six language
constructs.
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6 A dot and a big table

What lays ahead are three chapters describing three different approaches to
describing the Simplex architecture in a machine checkable format. In order
to make a fair comparison of the three, I have created an example which is
simple enough that it can be modeled by even the simplest of the three, but it
is interesting enough to make a useful comparison.

This section details this simple example and summarizes the comparison of
the three tools. Interested readers can go on to the next three chapters to get
the details, but the punchline of my six years of graduate school is shown in
Fig. 6.2.

6.1 The simple dot example

Consider an object, a dot, starting at x = 0 meters and moving in one dimension
towards a wall located at 50 meters. The dot has one safety requirement; do
not hit the wall. The dot has one functional requirement; get as close to the
wall as quickly as possible.

Given this is Simplex, I separate the control of the dot into an unreliable
complex controller and a trustworthy simple controller:

• Complex controller. Command the object to move towards the obstacle
at its maximum velocity.

• Simple controller. Command the object to stop completely.

For the purposes of the modeling machine, I summarize what is known about
the dot in its environment. The dot can move at a maximum velocity of 1 meter-
per-second. For the purposes of this simple example, control commands are
issued as a target velocity, v. The object executes these control commands with
exact precision. The object has instant acceleration, but when traveling at its
maximum velocity, its maximum breaking force yields a minimum deceleration
rate of 1

7 meter-per-second2. Thus, it takes 3.5 meters to stop when moving at
full speed. Sensor data provides perfect observations about the dot’s location,
expressed as a distance from the dot’s origin.

The example may seem unrealistic, and it is. Instant acceleration? Perfect
observations? Keep in mind though that my work is not about control laws
or sensor precision. My work is about description and automated analysis of
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Simplex architectures. I created the dot and the wall scenario because I wanted
a concrete example that I could carve into the Simplex component-based archi-
tecture

At a high level, how should Simplex work for this example? The object starts
at 0 meters, at a safe distance from the obstacle. Hence, the Simplex decision
machine chooses the complex controller’s output to move full speed towards the
obstacle. As the object approaches the obstacle, and nears an unsafe distance,
it enters a state that does not satisfy high confidence safety; Simplex must
choose the simple controller output. Upon receiving each input, the chkr must
determine the following in order to choose the un or tw output:

• What is the current position?

• Suppose the complex controller’s command is issued, what is the estimate
of the dot’s position at the next time-step?

• Is the estimate of the dot’s position a high-confidence safety state? That
is, could a simple control command be issued at the next timestep that
would ensure the dot does not hit the wall?

That is, the decision machine must examine the current state and “possible
next” states of the dot to determine if the output from complex controller is
recoverable. If so, then the decision machine chooses the complex controller’s
output. Otherwise, it chooses the simple command.

Fig. 6.1 shows the transition from choosing the complex controller to the
simple one. Indicated by (1), the dot reaches position x = 45 meters at 45
seconds. Given the complex controller output, an estimate of the next state is
made; the single possible next state is x = 46 meters. Since the dot has high-
confidence safety, the complex control is selected. Indicated by (2), the object
reaches position x = 46 meters at 46 seconds. This time, the decision machine
chooses the simple controller and chooses it for subsequent outputs. Finally,
indicated by (3), the dot is stopped safely at x = 49.5 meters.

 45 46 47 48 49 50

(1) (2) (3)
x’ x’

Figure 6.1: Transitioning from unreliable to trustworthy output.

6.2 Comparing three tools: Maude, AADL,

A2M

I have precisely defined a collection of Simplex solutions in three different spec-
ification paradigms: Maude, AADL, and a2m. Maude is an executable spec-
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ification language developed at SRI and the University of Illinois at Urbana-
Champaign. AADL, or the Architecture and Analysis Description Language, is
a standard architecture description language offered by the Society of Automo-
tive Engineers. The third, a2m is an AADL interpreter implemented in Maude
which offers a set of executable semantics for a small subset of AADL.

The table below summarizes my comparison of these three paradigms. Each
approach is rank-ordered low, medium, or high. A high score indicates that the
tool is the best among the three for the particular metric. Brave readers can
continue with the next three chapters to uncover the details of my evaluation;
I summarize it here for the reader’s convenience.

Comparison Maude AADL A2M

S.1.  Safety properties HI LOW MED

B.4.  Parameterization MEDHI LOW

B.3.  Connections HIMED LOW

B.2.  Component interface HI MEDLOW

B.1.  Hardware-software
        delineation MED LOWHI

T.1.  Component behavior HI LOW MED

Figure 6.2: A comparison of three tools for describing the Simplex architectures.

6.2.1 Maude

An executable specification language, Maude offers an expressiveness that gives
developers significant power to describe models and execute them. With a
really fantastic way for parameterizing modules, the ability to describe safety
properties in linear temporal logic, and executable specifications, Maude stands
out as the best approach among the three. Where it falls short is its lack of a
domain-specific vocabulary; its rich expressiveness allows developers to describe
almost anything, but this leads to an almost paralysis modeling systems. For
more details, see Chapter 7.

6.2.2 AADL

The most industrial of the three, AADL is a dictionary of vocabulary evolved
over many years by multiple teams of academics and industry partners. While
its vocabulary is useful for describing component interfaces and connections, its
lack of executability makes it difficul to do any kind of safety analysis. For more
details, see Chapter 8.
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6.2.3 A2M

An exciting joint project between the Real-Time Systems Integration and For-
mal Methods research groups at the University of Illinois, a2m offers the po-
tential for an approach that has the apt dictionary of AADL but with the
executability of Maude. At this time, it is only a prototype −− hence all the
medium and low scores −− but as it is developed and adapts more of the AADL
standard, I believe that this tool has the potential to offer developers a safety
analysis tool with real utility. For more details, see Chapter 9.
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7 Modeling Simplex in Maude

All kinds of word processing applications check spelling as I type. If I spell “far-
mar” instead of “farmer,” a dashed red line underlines the word. Smarter appli-
cations advise on grammar rules. Given the phrase, “Message receive events,”
Microsoft Word suggests “Messages receive events.” Spelling and grammar are
the syntax of the English language; they are the rules by which one may struc-
ture words into a sentence.

Just like human languages, computer languages are defined by syntactic rules
which define the structure of a program. Their dictionaries are smaller but their
grammars are stricter. Every class in C++ must end with a semicolon. If a
semicolon is missing, the C++ compiler gives an error; it may or may not be
coherent. If I omit a period from the end of an English sentence, other people
don’t mind as much

There are a variety of computer languages available for a number of com-
putable tasks. High-level imperative languages like C, C++ and Java have the
vocabularies and structures necessary for a software developer to command a
computer to execute the instructions necessary to play an .mp3 file, compute
a least common multiple, or display a graphical interface. Other languages are
functional; yet others are logical, while still others are descriptive.

The previous chapter outlined a very useful set of language constructs nec-
essary to describe Simplex. So far, these constructs have been treated as the
collection of words necessary to talk about Simplex: the necessary syntax. But
there is more to a language than just its syntax, there is also its semantics: its
meaning.

Semantics are important for one very big reason: testable precision. To con-
duct an early safety analysis of the Simplex architecture, one needs a description
of the architecture in some computer language: one that can be read by other
developers, but can also be evaluated by tools such as a model-checker.

Enter Maude. Maude is an executable specification language developed by
José Meseguer of the University of Illinois, Steven Ecker and Carolyn Talcot at
the Stanford Research Institute, and Manuel Clavel of Universidad Complutense
de Madrid. Maude is based on rewriting logic which José Meseguer argues has,
“a simple and intuitive, yet precise, semantics. As a result, Maude has an
expressiveness and ease of specification that allows for many different kinds of
systems, and at different levels of abstraction” [66].

I am certain not every developer would agree with this assessment, but
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an executable specification language certainly has immense value. What does
it mean for it to be executable? It is the same reason why Grigore Rosu’s
programming languages class always felt to me like an infomercial: You get the
interpreter for FREE! That is, by defining a set of syntax and semantics in
Maude, one has also implicitly defined an interpreter for the language or model.
Define Peano arithmetic and with it comes a rudimentary calculator.

This chapter highlights my Maude Simplex model; it also evaluates Maude
against the six metrics for Simplex description set out by Chapter 5.

7.1 A very brief introduction to Maude

To be clear, this dissertation should not be treated as a resource for learning
Maude. For those interested in learning Maude there are a number of useful
resources. My personal favorite is the “Maude Primer” written by a college stu-
dent doing a summer internship at SRI [51]. The primer is direct, accessible and
well-written, a well-received break from most academic gobbledeegook. There
is also José Meseguer and friends’ latest book, “All About Maude” [13]; it is an
exhaustive description of the Maude language and all of its affiliated extensions
and tools. Over 3 inches thick, it is also a weapon.

7.2 A Simplex model in Maude

I now describe the Simplex architecture for the simple dot example introduced
in Chapter 6 as implemented in Maude. This model began as a pilot project
to understand the minimum amount of information necessary to model-check
Simplex in Maude. The focus was not on AADL architecture constructs like
ports and components; the focus was on domain-specific knowledge necessary
for analysis. As a result, the model is simple. I like it that way.

The fully executable Maude specification for the simple dot example is avail-
able in Appendix J as well as the Real-Time System Integration group’s sub-
version code repository. The file name is parameterized-dot.maude. Rather
than dump out the code here, allow me to give a brief tour.

I start the tour with how I parameterize the model. Ideally, a description
language for Simplex should easily separate the generic from the application-
specific. Maude does a beautiful job. This is done using a theory. In simple
terms, a theory is just a set of statements that are true. For example, in the
theory of linear algebra there is the statement: x + y = y + x.

Similarly, a Simplex theory is a statement of vocabulary. It is all the words
I use to talk about Simplex and how they relate to each other: a system, a
set of commands, a simple controller, a complex controller, an internal model
of the physical world, an some boolean operator which evaluates if a particular
complex command is allowed:
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--- Theory for the Simplex Machine. The Simplex Machine

--- Consists only of the simple controller, the complex

--- controller, and the checker.

fth SIMPLEX-MACHINE-TH is

protecting BOOL .

sort System .

sort Command .

--- Simple and Complex controllers

op simple-controller : System -> Command .

op complex-controller : System -> Command .

--- On-line estimate of the system. Maintain a system

--- estimate after issuing the command.

op step : Command System -> System .

--- Checker

op cmd-allowed? : Command System -> Bool .

endfth

Using the Simplex theory, I can parameterize the Simplex behavior. The key
to the Simplex architecture’s behavior is the decision machine. Based on the
properties delivered by the modeling machine, it has to determine if the current
plant state satisfies the high-confidence safety requirements. If so, it is free to
choose the control command from the complex machine. Otherwise, if the plant
state satisfies only the safety requirements, it must choose the control command
from the simple machine. This functionality is generic to all implementations of
Simplex, whether a diving controller, an inverted pendulum, or an F-16. This
all boils down to a simple conditional equation seen below:

mod SIMPLEX-MACHINE{X :: SIMPLEX-MACHINE-TH} is

op simple-controller : X$System -> X$Command .

op complex-controller : X$System -> X$Command .

op cmd-allowed? : X$Command X$System -> Bool .

op simplex : X$System -> X$Command .

var S : X$System .

var Cmd : X$Command .

ceq simplex(S) = Cmd

if Cmd := complex-controller(S)
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/\ cmd-allowed?(Cmd, S) .

eq simplex(S) = simple-controller(S) [owise].

rl S => step(simplex(S), S) .

endm

So far, the model has no information about dots or walls; it is generic and
can be used for modeling many applications. I define all of the dot-specific
information in another Maude module, DOT-SIMPLEX-MACHINE.

For the simple dot example, a System is described by the position of the
dot, the position of the wall, and the current velocity of the dot1.

--- System membership: A well-founded system comprises a

--- wall position (Wpos), car position, and a car velocity.

--- Notice that a system configuration is made up either of

--- assumptions about the environment or sensor observations.

mb [wall-pos(WPos) ; car-pos(CPos) ; car-vel(Vel)]

: Dot-System .

There are two possible Commands for the dot:

--- Possible commands for the controllers to execute.

op accel : -> Dot-Command [ctor].

op stop : -> Dot-Command [ctor].

The key to this module is the decision machine. It is implemented as
dot-cmd-allowed?, a boolean predicate that takes a command and a system;
it returns true if the command will not put the dot in harm’s way.

--- The checker performs a ‘‘lookahead’’ to make sure that

--- the command is allowed. That is, given the maximum

--- speed, can the car still decelerate in time to avoid

--- colliding with the wall?

op dot-cmd-allowed? : Dot-Command Dot-System -> Bool .

eq dot-cmd-allowed?(Cmd, [car-pos(CPos) ; wall-pos(WPos) ; St])

= CPos + (top-speed * top-speed) / (2 * - max-decel) < WPos .

With the semantics of dot-specific information defined, I use a Maude view

to map the dot implementation to the generic parameters of the theory.

--- Map the particular implementation

--- of the dot simplex machine to the

--- general simplex machine theory.

view Dot from SIMPLEX-MACHINE-TH to DOT-SIMPLEX-MACHINE is
1In some cases, the “dot” is referred to as a “car” in the code, as in car-pos or car-vel.

Terrible coding practice, but it is what it is.
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sort System to Dot-System .

sort Command to Dot-Command .

op simple-controller to dot-simple-controller .

op complex-controller to dot-complex-controller .

op step to dot-step .

op cmd-allowed? to dot-cmd-allowed? .

endv

7.3 Model-checking the Simplex specification

Model-checking is the determination that a model satisfies a property. Thus,
there are two input to model-checking: a system specification and a property
specification.

With Maude comes the incredibly valuable ability to model-check a speci-
fication. I want to make sure that the system I have specified is safe: the dot
must never hit the wall. I want to check that the dot position is always “before”
or less than the wall position. First, I must define the property:

op before-wall : -> Prop .

eq [car-pos(CPos) ; wall-pos(WPos) ; Cfg] |= before-wall

= CPos < WPos .

Then I check the property against the model:

red modelCheck(init, [] before-wall) .

Maude yields a positive result.

reduce in DOT-MODEL-CHECK : modelCheck(init, []before-wall) .

rewrites: 194 in 0ms cpu (9ms real) (~ rewrites/second)

result Bool: true

7.4 Evaluation of modeling Simplex in Maude

7.4.1 Testable precision

Component behavior

It is not enough to describe just the components and connections of a software
architecture. Boxes and lines are not telling. A software architecture description
also needs behavior information for testable precision.

The fact that Maude is an executable specification language has immense
value. By defining a set of syntax and semantics in Maude, one has also im-
plicitly defined an interpreter for the language or model. Moreover, one can use
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the Maude model-checker to determine if a given model satisfies a particular
property. This is useful for the goals of automating the analysis of Simplex ar-
chitectures, since it is necessary to show that a particular architecture maintains
safety: the dot does not hit the wall, the pendulum does not fall, the car does
not collide.

7.4.2 Boundary delineation

Hardware-software delineation, interfaces, and connections

For Maude, it does not make sense to discuss these three metrics individually:
hardware-software delineation, component interfaces, and component connec-
tions. The same discussion will apply to each. I group them together in this
section.

Return to José Meseguer’s statement: Maude has, “a simple and intuitive,
yet precise, semantics. As a result, Maude has an expressiveness and ease of
specification that allows for many different kinds of systems, and at different
levels of abstraction” [66].

Maude is expressive. But expressiveness and ease of specification do not nat-
urally go hand in hand. This is because of human psychology. There is a myth
that “the more choice the better” Yet researchers have empirically demonstrated
just the opposite. Some of the first to do so were Sheena Iyengar and Mark Lep-
per. They asked, “What happens when the range of alternatives becomes larger
and the differences among options become relatively small?” [37].

To answer this question, they went where people are faced with hundreds
of choices: a grocery store in Menlo Park, California. They set up two tables
featuring gourmet jellies: one table for each day. The first table featured 6 exotic
gourmet jellies: from kiwi to lemon curd. The second featured 24. Almost 30%
of shoppers who looked at the limited selection table bought some jelly. Only
3% of shoppers bought jelly from the extensive table [37].

This study was conducted in 2000, and subsequent research has demon-
strated a similar theme; too much choice is paralyzing. How do I pick one
mustard out of the 250 mustards offered at the grocery store? Maude is expres-
sive; it is the grocery store of specification languages. It can do anything; it is
paralyzing.

Maude does not offer a specific vocabulary for modeling hardware-software
delineation. Yet because Maude is so expressive, it is possible to specify these
things. One needs only to define the semantics for hardware and software inter-
faces, communication channels, and their integration. It can be done; it is just
hard to know where to begin.

Parameterization

Parameterization is where I feel Maude shines. With its theory and view mech-
anisms, I can define any collection of concepts, parameterize a module using
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that collection, and map a specific implementation to the collection. For Sim-
plex, these are concepts like a Command, a System or the boolean predicate
cmd-allowed?. Then I can use that theory to parameterize another module
which defines the behavior.

I complained about Maude’s expressiveness in an earlier section. I do not
want to define my own semantics for communication channels and hardware
interfaces before I begin work on specifying my own architecture. However,
the expressiveness offered by the theory-view concept is incredibly useful. I
can parameterize a module at whichever granularity that seems appropriate
for the domain. I do not have to extend a collection of components one at a
time using some arcane inheritance mechanism; I get to choose that Simplex is
parameterized by a collection of concepts.

7.4.3 Safety definition

Safety properties

The model checker offered by Maude is a linear temporal logic model checker.
Linear temporal logic, or LTL, is a temporal logic in which one may describe
properties of a single path of execution. Thus, any safety property that can be
expressed in terms of LTL may be checked by the Maude model checker. For
the simple dot example LTL is plainly adequate. I want to check that globally
along the path of execution the dot does not hit the wall.

7.5 Conclusion

My favorite kind of jelly is blackberry. If I were to go to a grocery store, and
the only kind of jelly that they carried was Simplify brand blackberry pecan
jelly, I would buy three jars. I eat a lot of peanut butter and jelly sandwiches
given my graduate stipend. But if I were to go to a grocery store that carried
anywhere from six to 250 kinds of jelly2, but none of them were blackberry, I
would likely not make a jelly purchase at that particular store.

There is a tradeoff between limited and extensive choice. Similarly, there is
a tradeoff between expressiveness and ease of specification. Maude is expressive;
it is an expressiveness that is sometimes paralyzing. Other languages may not
be as expressive, but they could facilitate easier specifications given the right
vocabulary. Still other, less appealing, languages may not be as expressive; they
may not have the right vocabulary. They may not have any blackberry jelly.

Despite this expressiveness challenge, Maude offers a lot for modeling Sim-
plex architectures: executability and fantastic parameterization.

2This isn’t crazy-talk. The grocery store in Menlo Park discussed in [37] carried over 250
kinds of mustard
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8 Modeling Simplex in AADL

One candidate language considered by Lui Sha’s research group for describing
Simplex is the Architecture Analysis & Design Language Standard, commonly
referred to as “AADL.” Initiated by Sha’s colleagues Jun Li and Peter Feiler
in 1999 [45], this architecture description language standard was adopted by
the International Society of Automotive Engineers in 2004. The language was
created so that real-time and embedded systems designers had a more formal
way to design and analyze software systems in a machine checkable format.

The key thing to note about AADL is that it is just syntax. It is a dictionary
of words with an accompanying structure. If I write the sentence, “Jazzy goats
drill the cranberries to a rough kitchen,” no word processor would complain. It
fulfills all of the syntactical rules of English. I can even diagram it:

goats drill cranberries
Jazzy

the to

a rough

kitchen

But what is the meaning? How do goats drill and what makes them jazzy?
The eerie feeling that I get from writing this weird and meaningless sentence
is similar to the feeling I get when I am writing architecture descriptions in
AADL. Because AADL is not executable−−because it has no compiler or formal
semantics−−I am not at all sure if the architecture I have described makes any
sense. While it is easy for human beings to spot weird sentences like mine about
jazzy goats, its difficult to spot weirdness in the sometimes bulky AADL.

Back to Maude, the executable specification language developed by UIUC’s
own José Meseguer and others. Work is currently underway to define the formal
semantics of AADL in Maude. With that in place, AADL specifications have
both syntax and semantics, and tools like the Maude model-checker can be used
to verify safety properties.

This chapter focuses on the vocabulary of AADL; how well AADL suf-
fices against the six metrics for a language to describe Simplex. Chapter 9
describes current plans to define a formal semantics for AADL and to automat-
ically model-check instances of Simplex described in AADL using the Maude
model-checker.
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8.1 A very brief introduction to AADL

To be clear, this dissertation should not be treated as a resource for learning
AADL. For those interested in learning AADL there are a number of useful
resources. Depending on taste, one might begin with the AADL standard [70]
published by the Society of Automotive Engineers who generously sell it for
$59.00. The folks at the Software Engineering Institute also provide a getting
started guide [26] packed with more prose and more examples. Instead, this
dissertation offers a brief introduction to AADL, sufficient to understand this
chapter’s discussion. The AADL code for the example in this section can be
found in Appendix B.

8.1.1 History and motivation

AADL began humbly as the “Avionics Architecture Description Language” [2];
it was influenced by MetaH and evolved into AADL from a collaboration be-
tween Boeing, Honeywell, and the United States Army. The avionics domain
sees very complex systems, and AADL’s inventors wanted a modeling language
to describe the architectures of these hard real-time, safety-critical embedded
computer systems [2, pg 1].

One important characteristic the inventors wanted to support was the rather
unique life cycles seen in the avionics domain. An airplane’s life cycle is long,
both in terms of its design and maintenance. The Boeing 747 was designed in
28 months, first deployed in 1970 and is still in flight today [74]. As a result, the
key feature of AADL is partial specification. Over a lengthy design stage, not
everything may be initially known about its various components; still, developers
want to evaluate even their partial designs. Moreover, these “systems exist in
many forms, such as instances of a system deployed in different contexts or a
system evolving over time” [25, pg v]

However, as the language evolved and became a standard, the next gener-
ation of AADL language designers at the Software Engineering Institute chose
to generalize it and market it for a wider audience; they renamed it the “Archi-
tecture and Analysis Description Language” [70] and offer it as a language to
describe any component-based embedded system.

8.1.2 AADL core standard

Developers using AADL can model their systems as a collection of components.
Components are categorized into the following: application software, hardware
execution platform, and composite. These three span the following 10 subcate-
gories which comprise the “core vocabulary” of the description language [24].
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• Application software: thread, thread group, process, data1, subpro-
gram.

• Hardware execution platform: bus, memory, device, processor.

• Composite: system.

Remember, the key feature of AADL is partial specification. As a result,
there are two separate descriptions of a component: its type and its imple-
mentation. The component type specifies the external interface of the compo-
nent, expressed in terms of ports, subprograms, flows, and properties. Prede-
fined properties are available−−such as a thread’s Execution Time or a flow’s
Actual Latency [70]−−but new properties can be introduced into the language.
Once a type is described, one may also specify one or more implementations of
that type. The component implementation specifies the internal structure of a
component.

Suppose, for example, one wanted to use AADL to describe a control loop
architecture consisting of sensor, controller, and actuator. For the sensor, one
would choose the device component category. A very generic component type
declaration would describe an input port which reads the voltage value and an
output port which reports the sensor data.

data voltageValue

properties

Source_Data_Size => 16 bits;

end voltageValue;

data sensorData

properties

Source_Data_Size => 16 bits;

end sensorData;

device dvcSensor

features

Input : in event data port voltageValue;

Output: out event data port sensorData;

end dvcSensor;

Given this generic type declaration, one could then have multiple implemen-
tations of a sensor device. For example, one could have a temperature sensor
that outputs ambient temperature along with units of measure. Expressing this
can be done by creating an implementation of the sensorData type.

1Like Roy Fielding et. al. in [27], data is treated as a key aspect in an AADL system,
rather than encapsulated and hidden within objects in the architecture

54



data implementation sensorData.temperature

subcomponents

temperature : data int;

measurementUnits : data string;

end sensorData.temperature;

AADL also offers an extends mechanism that allows developers to define
partial specifications or families of components: similar to what abstract classes
provide in Java. This mechanism can be used either at the component type
or component implementation level. Going back to the dvcSensor type decla-
ration, one could let this component type represent a family of sensors. Every
sensor in this family has an input and an output, but some are more specialized.
One may use the extends mechanism to create a subtype, defining those sensors
that also have an output that indicates an internal error.

device dvcSensorWithError extends dvcSensor

features

InternalError: out event data port errorData;

end dvcSensorWithError;

The AADL component implementation also specifies the component’s con-
nections to other components via ports. Ports are logical connection points
which can pass data, events raised by subprograms, or both [70, pg 96]. There
are three kinds of ports: data, event and the dubious event data port which
provides an interface for message transmission with queuing [26, pg 56].

Suppose that a developer needs to connect the sensor component to a con-
troller component. This is done via ports. First, consider a very simple control
process with two ports:

process proController

features

controlInput: in event data port sensorData;

controlOutput: out event data port controlCommand;

end proController;

Notice that because AADL has a global namespace, the names of the ports
must differ; I cannot reuse the names Input and Output. To connect the sensor
to the control, I can do so within an AADL system implementation, or what is
also called a system instance model.

system sysControlLoop

end sysControlLoop;

system implementation sysControlLoop.simple

subcomponents
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mySensor: device dvcSensor;

myController: process proController;

connections

event data port

mySensor.Output -> myController.controlInput;

end sysControlLoop.simple;

To organize an AADL specification, one has two alternatives. One can place
the entire specification in a single file. Or one may use the package construct,
which is a “named grouping of declarations and property specifications” [26].
Every package must be contained in its own file, and every package has its
own namespace. The simple sensor example that has been presented here is
contained in its own package in Appendix B:

package pkgSensor

...

end pkgSensor;

Other packages that may want to make use of the sensor specification use a
double-colon construct. For example, suppose in another package, a developer
extends the dvcSensor component type:

device mySensor extends pkgSensor::dvcSensor

...

end mySensor;

8.1.3 AADL behavior annex

Looking over the AADL standard, it seems to me that the developers of AADL
might not exactly agree on my favorite software architecture definition from
Bass and friends: connections, interfaces, and behaviors. While the key feature
was partial specification, the original SAE standard had no way of describing
component behavior. In 2004, an AADL specification simply amounted to com-
ponents and their connections: boxes and lines.

Fortunately, AADL is extensible via annexes. An annex enables a user to
extend the AADL language, allowing the incorporation of specialized notations
within a standard AADL model [26, pg 10]. Any developer can write an annex
to describe anything one desires, but some particular annexes have been adopted
into the standard. One is the behavior annex. In 2006, French researchers at
Ellidiss Technologies, FéRIA, and ENST de Bretagne partnered with Airbus
France to develop and publish the behavior annex [57]. This annex allows one
to describe thread and subprogram execution behavior using a Mealy finite state
automata description language.

Behavior is described by a set of guarded state transitions. Upon a state
transition, an action may take place. The syntax is:
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<state id> -[ <guard> ]-> <state id> { <action> };

To continue our example, suppose that our temperature sensor can be mod-
eled with a two-state finite automata. It has a “detect” and a “report” state.

data implementation sensorData.temperature

subcomponents

temperature : data int;

measurementUnits : data string;

annex behavior_specification {**

state variables

voltageValue : Behavior::boolean ;

temperatureValue : Behavior::integer ;

states

detect : initial state;

report : state;

transitions

--- If there is a value on the Input port, set

--- the state variable equal to the value on

--- the port.

detect -[ on Input ? ]-> report

{ voltageValue := Input; };

--- Translate the voltageValue into the

--- temperature and send on the output port.

report -[ ]-> detect

{ temperatureValue := voltageValue * 3 ;

Output ! (temperatureValue); };

**};

8.2 A Simplex model in AADL

I now describe the generic Simplex architecture and the instantiation of that
model for the simple dot example. The model is summarized in Fig. 8.1 using
the graphical notation prescribed by the Software Engineering Institute.

I have delineated the two parts of the architecture using the AADL system.
On the top of Fig. 9.1 is the software system, sysSoftware, which contains
the modeling machine, the two controllers, and the decision machine. At the
bottom of Fig. 9.1 is the hardware system, sysRealWorld, which consists of the
physical plant and devices: the sensor and actuator.

The generic Simplex architecture specification is available in Appendix D as
well as the Real-Time System Integration group’s subversion code repository.
The instantiation of the generic architecture for the simple dot example is avail-
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thrModelMachine
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Figure 8.1: The architecture model for Simplex in the subset of AADL provided
by the A2M Interpreter. A rounded rectangle represents a system. A solid
parallelogram represents a process. A dashed parallelogram represents a thread.
An arrowhead represents an event data port. Only two threads in the system
are periodic: the thrSimpleController and the proComplexController. The
remaining threads are aperiodic dispatch, reacting only to the messages they
receive.

ble in Appendix E as well as the repository. Rather than dump out the code
here, allow me to highlight a couple of noteworthy points.

The software system is the generic Simplex architecture. It provides generic
definitions for a modeling machine, decision machine, and controller. It defines
all of the components and their connections, but defines no behavior. For ex-
ample, the component type for a very basic controller is just an input port and
an output port.

package pkgController

public

-- The Controller accepts model data from

-- the model builder and issues a command.

process proController

features
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iptModelData: in event data port ;

optCmd: out event data port ;

end proController;

end pkgController;

A simple controller just extends this basic package:

process proSimpleController extends

pkgController::proController

end proSimpleController;

For the developer who wants to instantiate the generic Simplex architecture,
four parts must be specified:

1. Behavior for the modeling machine thread.

2. Behavior for the two controller threads.

3. Behavior for the decision machine thread.

4. The hardware system.

To instantiate the generic Simplex architecture requires use of the AADL
extends construct. For the simple dot example, to define the behavior for the
modeling machine thread first requires extending the component type defined
by the generic specification. Essentially, the developer must use port refinement
to define the types of the ports:

thread thrDotModelMachine

extends simplex::thrModelMachine

features

ipthrMonVar :

refined to in event data port Behavior::integer ;

opthrSimpleModelData :

refined to out event data port Behavior::integer ;

opthrComplexModelData :

refined to out event data port Behavior::integer ;

end thrDotModelMachine;

From there, I define the thread implementation as usual, specifying the be-
havior of the modeling machine thread using the behavior annex. The spec-
ification for the behavior of the controllers and decision machine is similar;
developers must extend the component type and then define the component
implementation.

For Simplex applications, the entire hardware system is domain-specific,
and left up to the developer to define. To aid with specification, I have defined
a collection of generic packages for actuator, sensor, and plant, as shown in
Appendix C.
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8.3 Evaluation of AADL for describing Simplex

I return to the six requirements for describing Simplex, summarized in Fig. 8.2.
For each requirement, this section discusses what AADL provides such that it
is good enough; it also describes what is missing and why it is not absolutely
great.

The component type declaration specifies the component’s 
external interface: ports,  subprograms, flows, and properties.

A component’s type declaration specifies its properties.  
Predefined types are available; developers may add new ones.

Provides three categories: application software, execution 
platform, and composite.

C.1.  Safety properties

Support precise and testable specifications. Testable Precision

T.1.  Component behavior

B.3.  Connections

Boundary Delineation
Support precise specification of system interfaces; 
support description of the system's environment. 

B.2.  Component interface

B.4.  Parameterization

B.1.  Hardware-software
        delineation

The behavior annex  describes  thread and  subprogram 
behavior using a finite state machine description language.

AADL Evaluation

The component implementation specifies the component’s 
connections to other  components via their ports.

Offers an extends mechanism; developers can define partial 
specifications and add details to inheriting components. 

Safety Definition
Define what makes an architecture safe for the complex
controller and the simple controller. 

D

C

B

B

D

D

Score

Score

Score

Figure 8.2: The six requirements for describing Simplex, and how AADL suffices.

8.3.1 Testable precision

Ideally, AADL ought to support the development of precise and testable speci-
fications for real time, mission-critical, embedded systems. For describing Sim-
plex architectures, I evaluate how well AADL describes component behavior.

Component behavior

It is not enough to describe just the components and connections of a software
architecture. Boxes and lines are not telling. A software architecture description
also needs behavior information for testable precision.
Why it’s good enough. The AADL behavior annex allows description of
thread and subprogram behavior using a finite state machine description lan-
guage.
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Why it’s not great. The Simplex architecture boils down to a simple if-then
construct which is very easy to express as a parameterized conditional equation
in straight Maude:

ceq simplex(S) = Cmd

if Cmd := complex-controller(S)

/\ cmd-allowed?(Cmd, S) .

eq simplex(S) = simple-controller(S) [owise].

These four lines express the following: choose the complex command if the
command is “allowed”; choose the simple command otherwise2.

Mimicking a parameterized if-then construct using only guarded transitions
is clunky; to do so demonstrates the AADL’s sometimes unnecessary bulk. The
following are the state transitions taken from the simple dot example instanti-
ation of the Simplex AADL decision machine:

transitions

--- Consume any incoming complex command.

--- Conduct the safety check on the incoming

--- complex command. Assess how far from a starting

--- point of 0 the dot is, plus a safety envelope.

sReceive -[ ipthrComplexCmd ? (inCCmd) ]-> sReceiveSimple

{ complexRcpt := complexRcpt + 1 ;

distanceFromStart := dotPos + inCCmd + safetyEnv ; } ;

--- Consume any incoming simple command

sReceiveSimple -[ ipthrSimpleCmd ? (inSCmd) ]-> s2

{ simpleRcpt := simpleRcpt + 1; } ;

--- Check if the complex command is safe and

--- send it if it is safe.

s2 -[ on (distanceFromStart < wallPos) ]-> s4

{ dotPos := dotPos + inCCmd ;

opthrCmd ! (inCCmd); } ;

--- Double-check that the plant is still safe.

s4 -[ on (dotPos < wallPos) ]-> sReceive { aux := 0 ; } ;

--- If the plant is no longer safe,

--- then the system has failed.

s4 -[ on (dotPos >= wallPos) ]-> fail {aux := 0 ; } ;

--- If the complex command is not safe,

2In case you skipped it, dear reader, there is more discussion on the parameterized Maude
model of Simplex in Chapter 7.
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--- send the simple command

s2 -[ on (distanceFromStart >= wallPos) ]-> s3

{ dotPos := dotPos - inSCmd ;

opthrCmd ! (inSCmd) ; } ;

--- Double-check that the plant is still safe.

s3 -[ on (dotPos < wallPos) ]-> sReceive { aux := 0 ; } ;

--- If the plant is no longer safe,

--- then the system has failed.

s3 -[ on (dotPos >= wallPos) ]-> fail {aux := 0 ; } ;

**};

8.3.2 Boundary delineation

Ideally, AADL ought to support the delineation of system boundaries, the pre-
cise specification of system interfaces, and the description of the system’s envi-
ronment. Users may indicate where the specification is internally incomplete,
although the tool must allow users to isolate fuzzy or incomplete requirements
and proceed with work on requirements that are well understood.

Hardware-software delineation

Simplex architecture descriptions would benefit from a description language
providing categories which identify components in the physical world and the
software one. This is because real-time and embedded systems very often con-
trol and monitor the physical world.

Why it’s good enough. AADL provides three categories of components:
application software, execution platform, and composite. As a result, develop-
ers can describe devices such as sensors, or software components such as threads.

Why it’s not great. As I mentioned in Section 4.3.1 when discussing this
family of CPS problems, it is important for Simplex developers to make a dis-
tinction between the plant and the environment. The plant consists of the
physical devices under the machine’s control; the environment consists of dis-
turbances. Because of AADL’s limited categories, developers ought to model a
system’s environment as a ... device?. A process? Unintuitive. Moreover,
with the exception of the clunky behavior annex, there’s no obvious way to de-
scribe how to maintain an internal model of the plant and environment; there’s
no good way to describe the solution to the model builder problem introduced
in Section 4.2.4.

Moreover, larger real-time systems, such as avionics, cannot be cleanly di-
vided into “application software” and “execution platform.” For example, a
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flight control system has a control application potentially running on top of
some middleware, on top of some OS, on top of some hardware, in the house
that Jack built. It is true that a single developer or development team might
not work at all of these layers; they may not wish to specify all the details of
these levels. Even so, there is no natural vocabulary in AADL for describing
layered components.

Instead, developers have to make careful use of the extends mechanism,
where an application component extends a middleware component. This means
that a developer describing an application may very well have to look into the
implementation of a middleware component in order to know what to extend.
This is not good practice. Work done by Vergnaud and others [78] describes a
loose mapping from middleware design to an AADL description: AADL pack-
ages, for example, map to reactive components in middleware. Their discussion
is intriguing but the paper offers no enlightening examples.

Finally, not much of interest can be said about an AADL device from an
application standpoint. While it might make sense to model an actuator as a
device, the AADL vocabulary limits me to talk about only its ports and its
properties. As a result, I have modeled all of the hardware for the Simplex
architecture as processes and threads. In this way, I can use the behavior annex
to describe their function.

Component interface

According to my chosen architecture definition, it is necessary to describe the
abstracted functionality of one component insofar as it can be accessed by other
components.

Why it’s good enough. The component type declaration specifies the com-
ponent’s external interface in terms of ports, subprograms, flows, and properties.

Why it’s not great. AADL differentiates between a component’s type and its
implementation such that, “a component implementation declaration specifies
implementation-specific property values” [25]. However, the divide between
what is defined in the component type and the implementation is weird; it does
not correspond to what a developer must know to use a component without
looking at the implementation.

In his book, Domain Driven Design Eric Evans talks about the necessity of
“Intention-Revealing Interfaces” [22]. He writes, “If a developer must consider
the implementation of a component in order to use it, the value of encapsulation
is lost.” Returning to the sensor example, the data type declaration for the
sensorData reveals only the size of the data:

data sensorData

properties
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Source_Data_Size => 16 bits;

end sensorData;

This is not exactly useful for the developer who must integrate this sensor
component with his own. Instead, the developer must dig down into a particular
component implementation to learn that sensor data consists of a temperature
measurement and its units:

data implementation sensorData.temperature

subcomponents

temperature : data int;

measurementUnits : data string;

end sensorData.temperature;

However, it is possible to provide a more “Intention-Revealing Interface”
in AADL by describing subprograms in a data’s type declaration. For the
sensor example, a developer may specify the subprograms that are called on
sensorData:

subprogram getTemperature

end getTemperature;

subprogram getUnits

end getUnits;

data sensorData

features

getTemperature: subprogram getTemperature;

getUnits: subprogram getUnits;

properties

Source_Data_Size => 16 bits;

end sensorData;

As a result, developers using the sensor package can gleam from just the
sensorData type declaration that it consists of a temperature measurement
and its accompanying units. But the particular data shared cannot be known
without looking at the implementation.

Component connections

Again, according to Bass and friends’ definition of software architecture, a good
description language must describe how components are connected via their in-
terfaces.

Why it’s good enough. The AADL component implementation specifies the
component’s connections to other components via ports.
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Why it’s not great. First, port refinement means that port data types do
not have to be named. Given that AADL’s intent is to describe architectures in
such a way that automatic analyses can be performed, leaving out these kinds
of details and deferring them to the implementation seems out of line with the
goal. How helpful is any kind of safety analysis if one cannot even perform type
checking?

Fortunately, the behavior annex practically forces the developer to type her
ports. Consider the following state transition:

idle -[ input ? (msg) when msg = 1 ]-> wait

The guard input ? (msg) checks if there is a message on the port input.
If so, it places the value of the message in the state variable msg. State variables’
types must be declared in the annex. If the state variable type does not match
the port type, the AADL parser give the rather dubious error:

incompatibe [sic] argument: edu.cmu.sei.aadl.model.component

Second, port connections can only be made in the implementation. This
causes problems that have surfaced before. Like Evans writes, “If a developer
must consider the implementation of a component in order to use it, the value of
encapsulation is lost.” Unfortunately, unlike with the component interface, there
is no way around this issue; ports can only be connected in an implementation.

Third, the port semantics described by the behavior annex have side-effects
on the automata. Return to the example transition:

idle -[ input ? (msg) when msg = 1 ]-> wait

The guard conducts two tests. First it tests if there is any message availble
on the port input. If so, the input is placed in the state variable msg. Second,
the guard tests if the value in the state variable is equal to 1.

What is the caveat? Suppose that the value at the port input is 5. Even
though this value fails the second test, the state variable is still assigned the
value 5. To me, this is an undesirable side-effect. Why should the state change
if no transition is made?

Finally, there is no way to express “no message available” in the guards.
Consider the first transition in the automata for the decision machine:

sReceive -[ ipthrComplexCmd ? (inCCmd) ]-> sReceiveSimple

{ complexRcpt := complexRcpt + 1 ;

distanceFromStart := dotPos + inCCmd + safetyEnv ;

} ;

For this transition, if there is a message at the input port for the complex
command, transition to the next state. Ideally, if the complex command is
not available, I would like to consume the simple command instead, and move
onto the next state. There is no expression for “no message available”; one
alternative is something like this:
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sReceive -[ ipthrComplexCmd ? (inCCmd) ]-> sReceiveSimple {...}

sReceive -[ ]-> sReceiveSimple {...}

But implementations of the behavior annex are free to choose state transi-
tions non-deterministically. Even if there is a message available at the port, an
interpreter could still choose the second transition during a given execution of
the automata.

Another alternative is to use less readable specifications: encoding a program
counter into the automata so that the appropriate transition is taken whether
there is or is not a message at the port. Equally unsatisfying.

Parameterization

Why it’s good enough. AADL offers an extends mechanism with which
developers can define partial specifications and add details to inheriting compo-
nents. For Simplex, developers need to extend four component type definitions
and then define a particular component implementation for each one.

Why it’s not great. Visually, I would like to be able to parameterize the
Simplex architecture in this way:

High

Plant State 
Observations

Control 
CommandHi h

Simple
Controller

Complex
Controller

Decision
Machine

Modeling
Machine

Figure 8.3: In the ideal case, parameterizing Simplex means clearly identifying
the collection of concepts that must be defined for the specific application.

Simplex has a generic assembly with a collection of concepts that must be
defined for the specific application. In the specification, I want to make it very
obvious what is the collection of components that make up the architecture.
With AADL, this is not possible. Because the only parameterization construct
is extends, there is no way to group a collection of concepts as can be done so
beautifully in Maude. Developers can only extend individual components one
at a time; aside from putting all the concepts in a single file, there is no way to
make this collection explicit. As a result, concepts that ought to be defined for
the specific case could be easily forgotten.

8.3.3 Safety definition

The key goal of Simplex is safety; a Simplex architecture is defined by three sets
of safety requirements:
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• Model safety requirements. The model is required to provide an esti-
mation of the real world within a specified tolerance.

• Core safety requirements. The simple machine is required to maintain
plant safety.

• High-confidence safety requirements. The complex machine is re-
quired to maintain high-confidence plant safety.

And it is the Simplex architecture itself that teaches developers the princi-
ples and guidelines for keeping these requirements consistent using the decision
machine, the complex controller, and the simple controller.

Safety properties

When describing the solution architecture for Simplex, developers must describe
three sets of requirements: system safety requirements, core safety requirements,
and high-confidence safety requirements. To describe or model the Simplex ar-
chitecture, developers need a way of describing all of these safety requirements.

Why it’s good enough. A component’s type declaration specifies its proper-
ties. Predefined property types are available; developers may add new ones.

Why it’s not great. So far, Linear Temporal Logic has been mentioned as a
useful way to describe safety properties in a Simplex architecture. However, one
may only use an LTL expression in one of two ways in AADL. First, developers
can add any property they like to a specification; LTL would be most conve-
niently expressed as an aadlstring. For example, in the file srmSafetySet, I
add the new property CoreSafetyRequirement:

property set srmSafetySet is

CoreSafetyRequirement: aadlstring applies to (all) ;

end srmSafetySet;

Then, in the specification for the Simplex decision machine for the dot ex-
ample, I describe this property as a string:

thread implementation thrDecisionMachine.dotExample

properties

srmSafetySet::CoreSafetyRequirement =>

’’[] (CPos < WPos)’’ ;

annex behavior_specification {**

state variables

CPos : Behavior::integer ;

WPos : Behavior::integer ;

...

end thrDecisionMachine.dotExample ;
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However, using a string in this way decouples parsing the LTL expression
from the AADL specification. This means that I could write a “correct” spec-
ification −− one that can be parsed by the AADL parser −− but contains an
ill-formed LTL expression.

The only other alternative is to use an annex to define this collection of
safety properties. For this, the developer must write her own parser. Very
unsatisfying.

8.4 Conclusion

Despite its many drawbacks, AADL is one of the best among the available de-
scription languages for modeling Simplex. Unlike other description languages,
like UML and RT-UML, which focus on modeling object-oriented software at
the class level, AADL uses a more natural vocabulary for the real-time do-
main. AADL Words like component and device are a better fit than RT-UML’s
ConcurrentUnit and SchedulableAction.

Moreover, design decisions in research projects are not solely based on merit.
Take a look at the history of two of the project’s collaborators: Lui Sha and
Peter Feiler. In a previous lifetime, Peter Feiler worked as Lui Sha’s project
supervisor during his time at the Software Engineering Institute. Collabora-
tors are often difficult to secure in research, so many tend to stick with who
they know. Sometimes−−more often than the naive graduate student might
think−−research decisions are based on human relationships.
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9 The AADL2Maude
toolchain

Felix Ungar: I put order in this house. For the first time in months, you’re
saving money. You’re sleeping on clean sheets. You’re eating hot meals for a
change and I did it.

Oscar Madison: Yes, you did. And after we’ve had your halibut steak and
tartar sauce, I get to spend the rest of the evening watching you Saran Wrap
the leftovers.

Neil Simon, The Odd Couple. 1965.

The Architecture and Analysis Description Lanugage, or AADL, is just syn-
tax. By itself, it does not do anything. It has a parser, but it is not executable;
it has no compiler. Both the core standard and the behavior annex include a
“semantic narrative” which very briefly describes, for example, the periodic dis-
patch of a thread or the message delay on a port. There are missing details that
might be relevant to the modeling task at hand. For example, what happens if
a message arrives when a thread is in its completed state? Does it immediately
become active? Without some kind of executable semantics, it is difficult for
a developer like myself to write an architecture description without that eerie,
uneasy feeling about goats and cranberries.

This dissertation is part of a much larger project dedicated to the automated
verification of avionics. It is motivated by two needs. First, there is a need for
an industrial strength tool to effectively analyze avionics architectures. Second,
there is a need for formal tools to evolve such that they are accessible and useful
to a Rockwell Collins engineer: the average guy who does not have three decades
of training in temporal logic and category theory.

The larger project is a collaboration between Rockwell Collins, Lui Sha, and
José Meseguer. One of their goals is to formalize AADL in rewriting logic, using
Maude. With this formalization, The AADL description can be subjected to
different kinds of formal analyses, including model-checking.

Dedicated moviegoers might remember the 1968 movie, “The Odd Couple”
with Walter Mathau and Jack Lemmon. Mathau’s Oscar is a fat and sloppy
cigar smoking womanizer; Lemmon plays Felix, an uptight neat-freak with a
menagerie of allergies. Felix moves into Oscar’s apartment after his wife leaves
him. Funny antics ensue.

The combination of AADL and Maude is another odd couple. I see AADL
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as Oscar, sloppy with his partial specifications and somewhat unnecessary bulk.
Maude is my Felix, dotting every i and lower-case j in his specifications, unable
to cope with bulky models due to his “allergy” to infinite states. Even in group
meetings Professors Sha and Meseguer seem a little bit like Oscar and Felix:
Lui Sha with his shoes off, feet on the chair, and José Meseguer in his sweater
vest.

Stepping away from my goofy metaphor, defining a formal semantics for
AADL in Maude is a big challenge. The key to AADL is partial specification,
but model-checking cannot do without details. For example, AADL’s notion
of refinement means that data, ports, and the like do not necessarily need to
declare their types. Meanwhile, in Maude, it is impossible to model-check a
specification without these kinds of details.

This chapter describes the AADL2Maude toolchain that has resulted from
the Sha-Meseguer collaboration. It also describes my contribution to the project:
a case-study of the toolchain from a Simplex architecture perspective. With this
case study comes the first known example of a formal automated analysis of a
Simplex architecture.

9.1 The big links in the long chain

The AADL2Maude toolchain, as it has been envisioned by the Sha-Meseguer
collaboration, permits developers to write an AADL specification that can be
machine-checkable by tools like Maude’s model-checker. As of writing this chap-
ter, the toolchain’s full implementation is incomplete, so I comment here on its
design.

There are a number of plug-ins that, integrated together, make the toolchain
possible. They are:

• OSATE. Pronounced “Oh-Sah-Teh” to sound Japanese1, this Eclipse
plug-in was developed by TopCaseD and the AADL team at SEI; it offers
a text and graphical editor, parser, and a small collection of analysis tools
including the Cheddar resource and scheduling analysis tool [75]. There
is also an OSATE-BA plug-in which allows developers a behaviour annex
parser. In OSATE, AADL models are maintained as textual AADL files
or as XML-based AADL model files, providing a convenient interface to
other plug-ins, such as MOMENT.

• MOMENT2AADL. MOMENT is a formal model-management frame-
work available in Eclipse for which the underlying algebraic specification
lanugage is Maude. The MOMENT framework offers tools for a number
of languages, including AADL. The MOMENT2AADL plug-in takes as

1Do not confuse the fake Japanese word “Oh-Sah-Teh” with the real Japanese word “Oh-
Sah-Eh-Te” which is the imperative form of the verb “Oh-Sah-Eh-Ru” which means “to pin
down” or “to grasp” as in “Tom got a grip on his emotions.”
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input an AADL model represented in XML and outputs a Maude term;
simply put, it translates one kind of tree to another. Formal analysis can
then be conducted on the Maude term.

• MOMENT Maude daemon. This daemon encapsulates a Maude pro-
cess into a set of Java classes; it offers an API which can control the
Maude process in batch or interactive mode. As a result, developers can
conveniently invoke Maude from within the Eclipse IDE.

The result of integrating these plug-ins is a five-stage toolchain that begins
with an AADL Eclipse plug-in and ends with the Maude model-checker. An
envisioned use-case for this toolchain is:

1. Start up the Eclipse Integrated Development Environment.

2. Use the OSATE Eclipse plug-in to write the textual specification of an
architecture in AADL.

3. Use the MOMENT2AADL plug-in to convert the AADL .aaxl file into
a Maude term; in other words, convert the XML tree into a tree that is
readable by Maude.

4. Translate the Maude term into the format expected by the AADL-Maude
Interpreter.

5. Use the MOMENT Maude Daemon to invoke the Maude model-checker
and model-check the architecture description.

9.2 What is ready now: Peter’s interpreter and

my examples

What is currently available for the toolchain, in addition to the plethora of
plug-ins described above, is a small AADL interpreter implemented in Maude
by Peter Olveczky. This means that developers can write in an AADL-like
language to describe their architecture using a small subset of the AADL syntax:
systems, processes, threads, ports, and a small portion of the behavior annex.
I refer to it as the AADL2Maude interpreter, or the a2m interpreter.

Consider a very simple example; a single component which transmits a single
integer output equal to 1 exactly once. To describe this architecture in AADL
means that I need to describe a single system component; within that system
there is a process and within that process there is a thread. I can use the
behavior annex to describe the thread’s behavior as a finite state automata with
two states. Below shows a portion of this single thread example description in
Appendix F; I include only the thread specification here:
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thread thrSimpleThread

features

prtThreadOut: out event data port Behavior::integer;

end thrSimpleThread;

thread implementation thrSimpleThread.impl

subcomponents

none ;

connections

none ;

properties

Dispatch_Protocol => periodic;

annex behavior_specification {**

states

s0 : initial state;

s1 : state;

transitions

s0 -[]-> s1 { prtThreadOut!(1); };

**};

end thrSimpleThread.impl;

To describe this thread, I need to talk both about its type thrSimpleThread
and its implementation thrSimpleThread.impl. In its type, I dictate its single
output port, prtThreadOut. In its implementation, I indicate that its dispatch
protocol is periodic and I detail its behavior using the annex.

If the toolchain were complete, I could automatically translate the above
AADL specification into a format that can be analyzed by Maude. Instead, I
must write for the a2m interpreter directly. Describing this same thread in the
a2m interpreter demands a little bit different syntax. The following is a portion
taken from the exectuable code listed in Appendix G:

eq thread(thrSimpleThread) =

ports (prtThreadOut out event data thread port)

dispatch periodic-dispatch(1) .

eq TI thread thrSimpleThread . impl =

< TI : Thread | features :

ports(thread(thrSimpleThread)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrSimpleThread)),

status : completed,

behavior :

(states
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initial: s0 complete: s0 s1

transitions

s0 -[]-> s1 {prtThreadOut ! (1)}) > .

The original developer of the a2m interpreter, Peter Olveczky, was dedicated
to making the syntax of the two as identical as possible. I am impressed; he got
about 90%. Yet, notice a major difference between the AADL syntax and the
a2m syntax.

Features are part of the implementation, not part of the type.

This difference speaks. It yells out to the world that AADL and Maude are
indeed an odd couple. For Maude, a component implentation is not optional;
there is no partial specification here. There is no point in separating the com-
ponent type and the component implementation because both are needed to
conduct model-checking.

There are also other subtler differences in the syntax. Subcomponents, for
example, are not separated by any delimiter, but connections are separated by
a semi-colon. Consider this portion of code from the simple Simplex example
discussed later in this chapter. The three components are separated by returns;
a comma separates the subcomponents from the connections, but individual
semi-colons separated the connections.

eq SI system sysDotSimplex . impl =

< SI : System | features : system(sysDotSimplex),

subcomponents :

( idPSC process proSimpleController . impl )

( idPCC process proComplexController . impl )

( idPDM process proDecisionMachine . impl ) ,

connections :

( idPSC . optSimpleCmd --> idPDM . iptSimpleCmd ) ;

( idPCC . optComplexCmd --> idPDM . iptComplexCmd )

> .

These subtler differences speak to Maude operators and syntax design. While
I appreciate the original designer’s attempt to keep the two in step, the subtle
differences were such that I felt I had to relearn the lanugage; 90% is not enough.
Given that I had to learn another “AADL-like” language, I think time would
perhaps be better spent on providing more functionality, even if the syntax is
not identical. Moreover, given the effort to provide an automatic translation
between the two, it seems that the need for identical syntax is less important.

With the a2m version of the system specification complete, I can conduct
model-checking. Model-checking requires two parts: a system specification and
a property specification. To create the property specification for the a2m inter-
preter, I must write a separate module indicating a target state of interest, as
shown in Appendix H.
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The initial state is specified in the behavior annex via keywords like initial
and assignments to state variables. The target state is specified in a sepa-
rate, above-mentioned Maude module. With this pair, one can perform a timed
search on the model, using Real-Time Maude tools:

(tsearch [1] init =>* {C:Configuration}

such that outputValue(C:Configuration) with no time limit .)

Again, I am reminded what an odd couple these two are. To conduct model-
checking, one needs a system specification and a property specification. The
system specification is a statement of how a system ought to behave. The
property specification is a statement of the system’s desired behavior. Model-
checking is about making sure the two match; yet, there is no notion in AADL
of these separate statements of what something ought to do and what something
is desired to do.

In the end, the a2m interpreter offers executable semantics for a working sub-
set of AADL. One can write an AADL-like specification using simple guards,
simple actions, and integer messages. Model-checking takes place outside the
realm of AADL, with a property specification specified in a separate Maude
module. While the setup may be a bit clunky now, the Sha-Meseguer collabo-
ration has the potential for a very powerful toolchain which automatically checks
the safety of critical architectures.

9.3 A Simplex model for the A2M interpreter

I now describe the Simplex architecture for the simple dot example introduced
in Chapter 6. I use only the implemented AADL subset in the a2m interpreter:
systems, processes, threads, ports, and some of the behavior annex. The model
is summarized in Fig. 9.1 using the graphical notation prescribed by the Software
Engineering Institute.

I have delineated the two parts of the architecture using the AADL system.
On the top of Fig. 9.1 is the software system, sysSoftware, which contains
the modeling machine, the two controllers, and the decision machine. At the
bottom of Fig. 9.1 is the hardware system, sysRealWorld, which consists of the
physical plant and devices: the sensor and actuator.

The neatly depicted control loop in Fig. 5.1 is echoed here in SEI’s messier
and bulkier graphical notation. Starting from the bottom-center of the figure
is the plant process, denoted proPlant. Within the plant process is the plant
thread which describes the behavior of the plant. Notice that every process in
the diagram has an accompanying thread; there is admittedly little use for the
processes in this architecture except that the AADL semantics demand that
threads belong inside processes.

Continuing with the diagram, a sensor monitors the plant and sends the
monitored variable out of the system via the soptMonVar port. This variable is
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iptComplexModelData

siptCmd

optSimpleModelData

proModelMachine

thrModelMachine

iptMonVar
optComplexModelData

Figure 9.1: The architecture model for Simplex in the subset of AADL pro-
vided by the A2M Interpreter. A rounded rectangle represents a system. A
solid rhombus represents a process. A dashed rhombus represents a thread.
An arrowhead represents an event data port. Only two threads in the system
are periodic: the thrSimpleController and the proComplexController. The
remaining threads are aperiodic dispatch, reacting only to the messages they
receive.

received by the modeling machine process, proModelMachine which maintains
the software’s internal view of the external world. The modeling machine de-
livers modeling events to both the simple controller and the complex controller.
Each controller uses the event information to calculate an appropriate control
command. Each controller forwards its control command to the decision ma-
chine; for each pair of control commands, the decision machine process forwards
the selected control command to the actuator in the hardware system. Finally,
the actuation command reaches the plant, and the control loop is complete.

So far, I have only talked generically about the architecture loop, omitting
the details of the simple dot example. This could be misleading since there is
nothing generic about this architecture description. The a2m subset does not
have any support for parameterization. As a result, all of the behavior described
is specific to the simple dot example.
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The fully executable a2m specification for the simple dot example is available
in Appendix I as well as the Real-Time System Integration group’s subversion
code repository. Rather than dump out the code here, allow me to highlight a
couple of noteworthy points.

9.3.1 The reactive plant

Consider the thread behavior for thrPlant:

eq TI thread thrPlant . impl =

< TI : Thread | features : ports(thread(thrPlant)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrPlant)),

status : completed ,

behavior :

(states

initial: sReceive complete: sReceive

state variables

(inCmd |-> 0)

(realDotPos |-> 0)

(pRecpt |-> 0)

transitions

--- Receive an incoming command;

--- update the position of the dot, and

--- ‘‘send’’ the dot position to the sensor.

(sReceive -[ ipthrCmd ? (inCmd) ]-> sReceive

{ (pRecpt := pRecpt + 1) ;

(realDotPos := realDotPos + inCmd) ;

(opthrPhysPhenom ! (realDotPos)) } ) ) > .

The plant is described by a single-state automata which is executed aperi-
odically; it is activated whenever it receives an inCmd from the actuator on the
port ipthrCmd. Upon activation, it executes three simple actions; it receives
the new command, updates the position of the dot, and sends the new position
to the sensor.

9.3.2 The two-phase, periodic controllers

All but two of the threads in the architecture have aperiodic dispatch; like the
plant, these threads are simply reacting to messages received on their ports.
However, the architecture is not purely reactive. The simple controller and
complex controller are both periodic. Consider the following behavior for the
complex controller’s thread:
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eq TI thread thrComplexController . impl =

< TI : Thread | features :

ports(thread(thrComplexController)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrComplexController)),

status : completed,

behavior :

(states

initial: s0 complete: s0 s1

state variables

(cXmit |-> 0)

(complexCommand |-> 2)

(cModelData |-> 0)

transitions

(s0 -[ ]-> s1

{

(opthrComplexCmd ! (complexCommand)) ;

(opthrComplexCmdForSimple ! (complexCommand))

}) ;

(s1 -[ ipthrComplexModelData ? (cModelData) ]-> s0

{

(cXmit := cXmit + 1)

} ) ) > .

The complex controller operates in two phases. Upon activation at state
s0, the controller transmits its latest command to the decision machine and
the simple controller via its two output ports. The complexCommand is 2, which
means the complex controller always directs the dot to go two meters-per-second.
After transmission, the controller goes to sleep. Upon its next activation, it
increments the transmission count, cXmit, and goes to sleep again.

How do I know the automata goes to sleep at both state 0 and 1? This two
phase behavior is specified by the set of “complete” states. Upon reaching these
states, the automata goes to sleep until its periodic dispatch makes it active
again. It is this code snippet that makes it so:

complete: s0 s1

That’s how, but why? Why is the automata two phases, when all of that
functionality could easily be packed into a single transition? It is due to the
port semantics defined in the a2m interpreter.

There are three things to know about the port semantics in the a2m inter-
preter.

• Event data input ports are buffered.
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• Event data output ports are not buffered.

• If a thread has a value in its input port, even if it has reached complete
state, it will remain active.

To understand the impact of these semantics, consider the connection be-
tween the complex controller and the decision machine. Upon every other ac-
tivation, the complex controller transmits a complex command. The decision
machine is a five-state automata with aperiodic dispatch and a single complete
state. This means that it begins in its initial state; it executes until it returns
to its initial state, and then it goes to sleep. It does not become active again
until it has a message on its input ports; it is reactive.

These port semantics have two significant impacts on specifying systems for
the a2m interpreter. First, consider the lack of buffering on the output ports.
This means that if the controller output were not connected to anything, the
first message transmitted by the controller would sit at the port, it would not
be consumed by any other process, and the system would be unable to progress.
This is due to the following rewrite rule in the file time.maude:

--- For ports, if any transfer not yet dealt with: mte is 0:

eq mte

(< P : Port | buffer : ML :: transfer(ML’) :: ML’’ >) = 0 .

This is just one equation of the collection that defines the “mte,” or the
maximum time elapsed ; it is the amount of time that can elapse between two
events in the specified system. An mte of zero means that time does not progress.
So, if an output port generates an output that is not consumed, the system does
not execute any further.

Second, if the controllers did not execute in their two-phase fashion, there
would always be a pair of commands available to the decision machine, and it
would stay permanently active; once again, time would never progress. Execut-
ing the two controllers in two phases means that the decision machine has time
to consume the control commands, execute, and go to sleep before the next pair
of commands become available.

9.3.3 Making a choice: The five-state decision machine

The decision machine must choose between the two control commands. The
complex command always instructs the dot to go at two meters per second. The
simple command always instructs the dot to stop. The decision machine chooses
the control command based on the state of the dot. If it is in a high-confidence
safety state−−if it is within stopping distance of the wall−−it chooses the com-
plex command. Otherwise, it chooses the simple one.

The decision machine behavior is very simplified due to the limited func-
tionality of the a2m interpreter. Actions consist of simple integer expressions:
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addition, subtraction, and multiplication. Thus, to assess if the complex com-
mand can be chosen is a simple matter of addition. The decision machine reads
in the complex command, increments the number of times a complex command
has been received (very useful for debugging) and calculates the dot’s distance
from its starting point.

(sReceive -[ ipthrComplexCmd ? (inCCmd) ]-> sReceiveSimple

{ (complexRcpt := complexRcpt + 1) ;

(distanceFromStart := dotPos + inCCmd + safetyEnv)

} ) ;

The calculation includes a safety envelope, or safetyEnv which accounts
for stopping distance. In subsequent states, the decision machine determines if
the distanceFromStart is less than the wall position. If so, then choose the
complex command.

9.4 Executing and model-checking the Simplex

specification

With the a2m interpreter comes the incredibly valuable ability to execute a
specification. Given the a2m interpreter is implemented in Real-Time Maude,
I can perform a timed fair rewrite or a tfrew on the specification.

(tfrew init in time < 100 .)

I execute for 100 time units; that is long enough such that if my specification
is incorrect, there is substantial time for the dot to accidentally hit the wall. At
the end of the tfrew, I get an output with the following highlights:

• The position of the dot is 44 meters. The last command received was the
simple command. The plant has received 50 commands. That is,

(inCmd |-> 0)(pRecpt |-> 50)realDotPos |-> 44 .

• The complex controller and simple controller have each transmitted an
output 50 times. That is,

(simpleCommand |-> 0)transmissions |-> 50

and

(cXmit |-> 50)complexCommand |-> 2
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These highlights are fantastic. By executing the specification, I can surmise
that the decision machine begins choosing the simple command long before the
dot is in danger of hitting the wall.

Not only can I execute the specification, I can also use the Maude model-
checker to evaluate any safety properties. Model-checking requires two parts:
a system specification and a property specification. To create the property
specification for the a2m interpreter, I must write a separate module indicating
a target state of interest, as shown in Appendix J. For example, I can define
a state called crashing which yields a dot position equal to the wall position.
This is defined by:

>) = VAL:Valuation ==

(inCmd |-> 0)(pRecpt |-> 50)realDotPos |-> 50 .

Then I use a timed search to determine if the model I have defined ever
reaches this crashing state.

(tsearch [1] init =>* {C:Configuration}

such that crashing(C:Configuration) with no time limit .)

A bit of warning, this particular timed search takes multiple hours on my
iBook G4.

9.5 Analyzing dependency inversions in A2M

While my focus on Simplex has been safety, another interesting characteristic
that has long been lauded by Lui Sha is this architecture’s ability to eliminate
dependency inversions. A dependency inversion occurs when the functionality
of a highly-critical component depends on a lesser critical one. By separating
the control task into two, the safety of the plant depends on a verifiably safe,
simple controller instead of a potentially unreliable monolithic controller.

Given that A2M can take advantage of the tools made available by Maude,
the fact that Simplex can eliminate dependency inversion can be systematically
demonstrated. No matter how slow, buggy, or hostile I can imagine the complex
controller to be, executing and model-checking the model demonstrates how it
has been decoupled from the plant.

As with any modeling approach, this does have its limitations. It is limited
by two things: developer paranoia and expressibility. First, a system can only be
robust against the faults and failures that a developer anticipates. For example,
in the early inverted pendulum prototype, Simplex could not have prevented
pendulum instability that resulted from a faulty or corrupt sensor. Second,
even if developer paranoia is high, it is useless if the given hostile complex
controller cannot be modeled in the given language.
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While the A2M toolchain is effective at demonstrating the elimination of
dependency inversions in models of software and hardware, Chapter 11 demon-
strates how one must turn a skeptical eye at the physical world to insure that
even the plant and the sensors work reliably so not to compromise the critical
path of system execution.

9.6 Evaluation of the A2M interpreter for

Simplex

I return to the six requirements for describing Simplex, summarized in Fig. 9.2.
For each requirement, this section discusses what a2m provides such that it is
good enough; it also describes what is missing and why it is not absolutely great.

Specifiy the component’s external interface in terms of ports.

Hardware and software components may be specified in
separate systems.

T.1.  Component behavior

B.3.  Connections

B.2.  Component interface

B.4.  Parameterization

B.1.  Hardware-software
        delineation

A subset of the behavior annex is executable: simple guards,
simple actions, integer messages.

A2M Evaluation

Specifiy the component’s connections to other components 
via their ports.

No support.

S.1.  Safety properties Specifiy the desireable safety properties in a separate model-
checking module.

Support precise and testable specifications. Testable Precision

Boundary Delineation
Support precise specification of system interfaces; 
support description of the system's environment. 

Safety Definition
Define what makes an architecture safe for the complex
controller and the simple controller. 

Score

Score

Score

B

F

B

B

D

B

Figure 9.2: The six requirements for describing Simplex, and how A2M suffices.

9.6.1 Testable precision

It is not enough to describe just the components and connections of a software
architecture. Boxes and lines are not telling. A software architecture description
also needs behavior information for testable precision.
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Component behavior

Why it’s good enough. Enjoying the executable semantics offered by the
a2m interpreter is an invaluable experience and really shows off the potential of
this tool.

Why it’s not great. At this time, only a small subset of AADL is currently
available. The only thing that stands between a decent tool and a great tool is
adding more AADL semantics to it. Future case studies, such as the ongoing
project to model Rockwell’s synchrnous bus, or PALS, will definitely help to
create an even more useful interpreter.

9.6.2 Boundary delineation

Ideally, a specification language for Simplex ought to support the delineation
of system boundaries, the precise specification of system interfaces, and the
description of the system’s environment. Users may indicate where the speci-
fication is internally incomplete, although the tool must allow users to isolate
fuzzy or incomplete requirements and proceed with work on requirements that
are well understood.

Hardware-software delineation

Why it’s good enough. Because the AADL system construct is supported in
the a2m interpreter, the simple dot example separates the physical world from
the software one by putting each in a separate system.

Why it’s not great. The a2m supports only a handful of AADL constructs;
yet even if it supported all of AADL it would still have the same hardware-
software delineation challenges as plain AADL. It is important for Simplex de-
velopers to make a distinction between the plant and the environment. But
AADL’s categories are limited; is a system’s environment as a device or a
process? Moreover, with the exception of the clunky behavior annex, there is
no obvious way to describe how to maintain an internal model of the plant and
environment; there’s no good way to describe the solution to the model builder
problem introduced in Section 4.2.4.

In addition, the same criticism I made of the divide between application
software and the execution platform applies here. A flight control system has a
control application running on top of some middleware, on top of some OS, on
top of some hardware. It is true that a single developer or development team
might not work at all of these layers; they may not wish to specify all the details
of these levels. Even so, there is no natural vocabulary in AADL for describing
layered components.

Instead, developers have to make careful use of the extends mechanism,
where an application component extends a middleware component. This means
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that a developer describing an application may very well have to look into the
implementation of a middleware component in order to know what to extend.
This is not good practice. Work done by Vergnaud and others [78] describes a
loose mapping from middleware design to an AADL description: AADL pack-
ages, for example, map to reactive components in middleware. Their discussion
is intriguing but the paper offers no enlightening examples.

Component interface

According to my chosen architecture definition, it is necessary to describe the
abstracted functionality of one component insofar as it can be accessed by other
components.

Why it’s good enough. Because features are not separate from the component
implementation in a2m, the component interface is specified simply as a list of
ports associated with a given component. Consider this list of ports for the
modeling machine thread:

eq thread(thrModelMachine) =

ports (ipthrMonVar in event data thread port)

(opthrSimpleModelData out event data thread port)

(opthrComplexModelData out event data thread port)

dispatch aperiodic-dispatch .

Why it’s not great. In his book, Domain Driven Design Eric Evans talks
about the necessity of “Intention-Revealing Interfaces” [22]. He writes, “If a
developer must consider the implementation of a component in order to use it,
the value of encapsulation is lost.” Looking at my own list of ports for the
modeling machine, it is not very easy to determine the intention of this thread;
this list says nothing about the functionality of the thread that may be accessed
by others. In comes a monitored variable, and out go two model data. Are the
model data calculated from the monitored variable? Is the model data simply a
forwarded monitored variable? Something else? Without looking at the thread
behavior, it is impossible to tell.

Component connections

Why it’s good enough. Similar to AADL, components are connected via
three kinds of ports: event, data, and the event data port.

Why it’s not great. The port semantics defined in the a2m present a real
challenge. In their current form, the port semantics do not offer any way to
model distributed systems. This is due to two facts:

• Output ports are not buffered.
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• If there is an output port that is generating messages but is not connected
to any input, the entire system comes to a screeching halt, the mte is zero,
and time cannot progress.

I admit for the simple dot example that it is simply erroneous to have an
output port that generates a message but has no complementing input port to
consume it. But what about a more realistic system? Consider two devices
communicating with each other over a bus. Suppose that one wants to analyze
the behavior of the system given that the bus is faulty. It is impossible to
do this with the current port semantics; yet it is quite possible for an actual
system to progress just fine for a short time despite a faulty bus. As a result,
there is no practical way to truly model a distributed system in the current a2m

interpreter.

Parameterization

Why it’s good enough. It’s not. There is currently no support available for
parameterization in the a2m interpreter.

9.6.3 Safety definition

The key goal of Simplex is safety; a Simplex architecture is defined by three sets
of safety requirements:

• Model safety requirements. The model is required to provide an esti-
mation of the real world within a specified tolerance.

• Core safety requirements. The simple machine is required to maintain
plant safety.

• High-confidence safety requirements. The complex machine is re-
quired to maintain high-confidence plant safety.

Safety properties

Why it’s good enough. The model checker offered by Maude is a linear
temporal logic model checker. Linear temporal logic, or LTL, is a temporal
logic in which one may describe properties of a single path of execution. Thus,
any safety property that can be expressed in terms of LTL may be checked by
the Maude model checker. For the simple dot example LTL is plainly adequate.
I want to check that globally along the single path of execution the dot does
not hit the wall.
Why it’s not great. While for the simple dot example, LTL is adequate,
expressing safety properties for the general case of Simplex requires a more
expressive temporal logic. Chapter 10 details why Simplex may need more than
LTL and it describes an alternate logical framework not checkable in Maude.
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A note on the usability of Maude

Not many may realize this: there are two separate implementations of the Maude
lanugage. There is “Core Maude” which is the Maude language implemented
in C++. For instance, my simple dot example described in Chapter 7 was cre-
ated in Core Maude. Then there is “Full Maude”; this is the Maude language
implemented in Core Maude, with a few additional features. The a2m inter-
preter was written by Peter Olveczky in Real-Time Maude; a further specialized
implementation made up from Full Maude and a few global clocks [55].

The brutally honest truth is that starting out with Full Maude is a miserable
experience; this is due to its very poor parser. Writing specifications is a slow
process; even expert Maude developers must work with Full Maude one line at
a time so not to introduce a syntax error for which the parser gives no coherent
error message.

For example, one of the first steps to writing a specification is to declare the
names of the ports. This is done like so:

op opthrCmd : -> PortId [ctor]

However, if one omits the space between “:” and “-” all full Maude can say
is that there is a syntax error somewhere in the file. There are even more dire
cases than this. Consider this transition:

(s1 -[ on (aux == true) ]-> s2

{ (isSafe := (carPos + 40 < wallPos)) }) ;

Accidentally add a space between “]” and “-” and Maude fails silently; she
reports nothing.

That said, it took only two two months for me to adjust to the challenges
presented by the Full Maude parser. I learned to write my specifications just a
couple of lines at a time; I became an expert at very incremental refactoring.
To my own surprise, I am willing to put up with a painful parser for the benefit
of executability. I would much rather use a2m than plain AADL.

Other caveats when using the A2M interpreter

Because of the way the a2m specifications are defined, it is very easy to make
dangerous mistakes that go unreported; these mistakes can take some hours
and days to debug, depending on one’s experience with the tool. I include this
section for the future a2m developers hoping I can save them valuable debugging
time.

Consider the begining of the simple dot example in Appendix I:

--- Declare all the names and ids of things.

ops sysSimplex sysSoftware sysRealWorld :

-> SystemName [ctor] .
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ops idSS idSRW MAIN : -> SystemId [ctor] .

op impl : -> ImplName [ctor] .

--- Process Names and IDs

op proComplexController : -> ProcessName [ctor] .

...

An a2m specification begins with the model’s signature. It is the model’s
syntax: a declaration of all the names that are to be used in the model’s seman-
tics. Because of this organization, if a name is used in a wrong component, no
error is reported.

Let me give an example. Consider the following transition in the component
thrDecisionMachine:

--- The complex command is not safe. If the simple one is

--- available, send it and update the internal model of

--- the car’s location.

(s3 -[ ipthrSimpleCmd ? (inSCmd)]-> sReceive

{

(carPos := carPos - inSCmd) ; (opthrCmd ! (inSCmd))

} ) ) > .

This transition uses two of the five states for the decision machine. However,
suppose that I replace sReceive by s0. This is an error, but a2m does not report
it; the AADL parser would. In a2m, s0 has been declared in the signature of
the model, but it is not one of the states intended for the decision machine.
Maude does not complain because the state name has been declared at the top
of the file. Instead, when executing the model, execution cannot progress after
time 0 because there is no transition from s0 to any other state in the decision
machine thread.

Let me give another example. Consider this incorrect portion of the simple
dot example, the specification for the modeling machine process and thread:

eq PRI process proModelMachine . impl =

< PRI : Process | features : process(proModelMachine),

subcomponents :

(tidMM thread thrModelMachine . impl) ,

connections :

(iptSimpleMonVar --> tidMM . ipthrSimpleMonVar ) ;

(tidMM . opthrSimpleModelData --> optSimpleModelData) ;

(tidMM . opthrComplexModelData --> optComplexModelData)

> .

eq thread(thrModelMachine) =

ports (ipthrSimpleMonVar in event data thread port)
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(opthrSimpleModelData out event data thread port)

dispatch aperiodic-dispatch .

...

The process proModelMachine specifies three connections between the model
machine process and thread. Meanwhile, the thread thrModelMachine declares
only two ports. However, because the name opthrComplexModelData has been
declared in the model signature, there is no error reported. Once again, when
executing the model, execution cannot progress after time 0 because there is a
discrepancy between these ports and their connections.

All told, whenever I found a model specification that could not progress past
time 0, it was usually due to a discrepancy in the ports and their connections.

9.7 Conclusion

Despite its limited functionality, quirky port semantics, and Full Maude’s poor
parser, the a2m interpreter stands high above plain AADL for one simple reason:
executability. The a2m offers a decent level of testable precision; I can write a
specification, execute it, and iterate. I learn significantly more about a system
specification when I get to execute it than when I just put it down on paper or
stuff it into a parser. I look forward to great things from the a2m interpreter.
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10 Simplex in higher order
logic

The Simplex architecture is designed to combine two redundant components
or order to achieve a particular goal with the greatest possible performance
while making safety a priority. On the one hand, an unreliable component is
designed for high performance; it is a complex, possibly unverifiable component
in my system that yields safe output most of the time. On the other hand, a
trustworthy component is designed for safety. The trustworthy component has
fewer features, but has been verified that it yields safe output all of the time.

So far, the focus on this dissertation has been on the architecture specifi-
cation: drawing boxes and lines, describing behavior, and conducting analysis.
For the simple dot example, safety properties expressed in linear temporal logic
were enough; but what about more complicated examples? Consider the general
statement of control systems described in [4]:

Given a state machine whose transitions are partitioned into control-
lable and uncontrollable, a set of safe states, the control problem asks
for the construction of a controller that chooses the controllable tran-
sitions so that the machine always stays within the safe set.

For the general case, I want to express the current plant state in terms of the
most recently received control command and the most recently monitored con-
trol variable. Yet at the same time, the next control command partially depends
on the currently monitored control variable. This kind of reactivity cannot be
expressed in linear temporal logic, because one cannot relate state variables
across different states. To express reactivity within the Simplex architecture, I
want to express that there must exist at least one simple controller output that
will always keep the plant in a safe state. Expressing this alternation of “any
possible input” and “one control command” is a challenge.

In this section, I describe the logical reference model I developed with com-
mittee member Elsa Gunter for reasoning about Simplex. In particular, I present
a logical framework for a “recoverable” or high-confidence safety state, and
describe how the decision machine uses this framework to uphold the safety
requirements.
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Figure 10.1: The Simplex reference model.

10.1 Decomposition of the logical reference

model

Shown in Fig. 10.1, my logical Simplex reference model consists of the following
decomposition:

External Context

Consists of all the physical devices external to the computing machine. This
includes the Plant being controlled, as well as the Environment in which the
Plant operates. The Environment includes Disturbances to the Plant, actuator
dynamics, and sensor inaccuracies. The External Context contains no software,
at least from the perspective of the development team. Perhaps there is a sensor
that contains embedded code, but it is not under the discretion of development.
A Sensor provides Sensor Data and an Actuator receives Control Commands.

Domain Model

Represents everything that is known about the External Context that can be
used to estimate the behavior, or dynamics, of the Plant. It maintains an
estimate of the current Plant state given Sensor Data and Control Commands.
It can project the Plant state one time-step into the future. The Domain Model
interprets the Sensor Data and sends it to the Machine. The Machine replies
with an output which the Domain Model translates to a Control Command for
the Environment.

Machine

Consists of all of the control logic used to generate control actions applied to
the Plant. The Machine comprises multiple redundant subsystems designed to
achieve the same minimal performance goals. A Checker chooses between the
outputs of the redundant components depending on the current Plant state.

89



Safety Requirements

Safety requirements are a statement of what must always be true in the Plant
to achieve safety. The Safety Requirements are embedded in the Machine so
that it can choose an output from its redundant subsystems that will keep the
Plant in a safe state, both now and in the future.

This decomposition I describe, notably the separation of the Machine func-
tionality from the Domain Model is based on the principle of separation [10, 80].
To summarize, an optimal state estimate and optimal control action can be
computed separately, and are still optimal when combined. Since this reference
model depends on this separation result providing for such equivalent optimal
control, it is not applicable to the CPS domain when the theorem is not valid
[79].

I delve into greater detail for each entity in my Simplex reference model.
Shown in Fig. 10.1, the Machine comprises an Unreliable Component, Trust-
worthy Component, and Checker, which I call un, tw, and chkr. Given inter-
preted Sensor Data, the chkr selects output from the un or the tw; preference
is given to the un to take advantage of its full features, but the output must al-
ways maintain the Plant in a safe state with respect to the Safety Requirements
expressed in the chkr.

Given the un and the tw, the chkr must be able to: i) Determine if the
un output will place the Plant in a state that satisfies the Safety Requirements
at the current time. It must also determine if tw can continue to satisfy the
requirements in the future; ii) Choose the tw output if the un output places
the Plant in a state that must eventually lead to a state that does not satisfy
the Safety Requirements ; iii) Choose the tw output in a timely manner such
that the Plant is always in a safe state.

Suppose that my Safety Requirement is that a given object does not hit a
particular obstacle. Just because the object is currently not hitting the obstacle
at this moment does not mean that it is in a safe state. It may be moving at
too high a velocity to stop before it hits the obstacle. The object can be “safe
at the moment” and still not “always safe.” Thus, I must differentiate between
three kinds of Plant states.

• Recoverable. Satisfies the Safety Requirements to such a degree that the
Plant can tolerate “aggressive” commands.

• Safe. Satisfies the Safety Requirements, yet cannot tolerate “aggressive”
commands.

• Unsafe. Does not satisfy the Safety Requirements.

To say that the Plant is in a recoverable state makes a statement about
two things: the Plant and the tw component. First, a recoverable state is
one that satisfies the Safety Requirements. Second, to say that a Plant state
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is recoverable requires that if un output is used in the current time-step, the
tw component output must be able to satisfy the Safety Requirements in the
next time-step. To state it simply, “In a recoverable state, if you choose the
unreliable command now, the trustworthy command must ensure safety later.”

unsafe

recoverable

safe

set point

xk trajectory

Figure 10.2: The Simplex state space.

I define these states for the control domain. Referring to Fig. 10.2 I denote
the state of the plant at time k as xk. As time passes, the state of the plant
evolves, forming a trajectory, T . The trajectory is dependent on the Plant
dynamics, control policy and initial condition. Hence, we represent a point in
the system trajectory at time j, under control policy U , starting with initial
condition xk as T (xk, U, j). A state is considered safe if it lies within the safety
set, which is denoted by S. Unsafe states are denoted as S̄. I define a state as
being “recoverable” if the future trajectory lies within the safety set:

T (xk, U, j) ∈ S ∀ j ≥ k (10.1)

Thus, the set of all states xk that satisfy (10.1) represents the recoverable
set R:

R := {xk : T (xk, U, j) ∈ S ∀ j ≥ k}

Note that R is dependent on the particular control policy U employed. If
I use the trustworthy controller UTW to define R, then I can stipulate the
following two requirements for the unreliable controller Uun to be accepted at
time k:

T (xk, Uun, k + 1) ∈ R

This implies that:
xk+1 = T (xk, Uun, k + 1) ∈ S

and
T (xk+1, Utw, j) ∈ S ∀ j ≥ k + 1

The notion of recoverable can also be expressed as “stability in the sense of
Lyapunov” [10].
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10.2 Logical framework

The reference model requires its logical framework to express reactivity. Given
any possible input from the External Context, subject to the Domain Model,
there must exist at least one tw output that will always keep the Plant in a
safe state. Expressing this alternation of “any possible input” and “one control
command” is a challenge.

On the one hand, I want to express the current Plant state in terms of the
most recently received input and the most recently transmitted output. Yet
at the same time, I would require recursion such that the next input partially
depends on the current output.

Streams. I assume that I are given the streams of input and output a priori.
Practically, it seems unrealistic to know all inputs at once, but I argue that,
for my purposes, is mathematically equivalent to the reactive nature I wish to
capture.

• Each stream is a sequence of inputs or outputs for each point in time. The
input stream, ins, indicates the input, i, for each time k. I denote the
input at time k as ik = ins(k).

• I denote the kth prefix of an infinite stream, s, as sk = (s(0), . . . , s(k)).
Consider a finite prefix of the input stream, insk = (ins(0), . . . , ins(k)).
The function out(insk) produces the kth output in response to the first k

inputs, meaning that I do not allow the output stream to look into the
future. To denote the output at time k, I use ok = out(insk).

• The current state of the plant, constructed from all previous inputs and
outputs, is defined by the current input/output pair, (ik, ok).

Safety. The ultimate goal of Simplex is for the Machine output to satisfy
the Safety Requirements. To express this notion of safety, I must differentiate
between two safety predicates: “safe at the moment” and “always safe.”

• I denote “safe at the moment” as sf(ik, ok). For sf(ik, ok) to be satisfied
means that the Plant satisfies the Safety Requirements in the current state
(ik, ok).

• To define “always safe” or Safe, I use a predicate pn(insk, out(insk)) that
yields the set of “possible next” inputs at time k + 1 given the input and
output prefixes up to time k. Essentially, this pn predicate is equiva-
lent to my reference model’s Domain Model, which dynamically predicts
the future state of the plant based on past and current sensor input and
command output.
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• I define Safe with respect to: i) the sf predicate; ii) the current Domain
Model of the Plant, pn; and iii) the output stream function. Thus, Safe
is evaluated dynamically with respect to the current state and the current
output.

Recoverable. In order to guarantee that the Plant is safe with respect to the
tw, I require that the Plant is in a recoverable state when choosing any output.

• The output of the un component is un(i). My only assumption of un is
that if it produces output, the output is of the correct type.

• tw uses both the original input as well as the unreliable output to calculate
its own output, tw([i0, . . . , ik], [un(i0), . . . ,un(ik)]).

• I define the recoverable predicate, r(i, o). This predicate, like pn and Safe,
can be evaluated dynamically to determine if the Plant is in a recoverable
state. A Plant is recoverable if: i) at the current time-step the current
input/output pair satisfies the Safety Requirements, sf(i, o); and ii) for
all the possible next states, a sequence of outputs exist which keeps the
Plant Safe.

r〈sf, pn,tw〉([i0, . . . , ik], [o0, . . . , ok]) =

sf(ik, ok) ∧ let out([x0, . . . , xm]) =

tw([io, . . . , ik, x0, . . . , xm],

[o0, . . . , ok, out([x0]), . . . , out([x0, . . . , xm−1])])

in Safe〈sf, pn, out〉

• Criteria: If the chkr does not choose the tw output, then the un output
must be recoverable.

ok 	= tw(insk,un(insk)) ⇒
r〈sf, pn,tw〉([i0, . . . , ik], [o0, . . . , ok])

Discussion. To evaluate the recoverable predicate requires knowledge of the
Plant’s state. Given that the system is interacting with the physical world,
the system must have three sets of information to make this evaluation. Fore-
most, it needs Sensor Data interpreted by the Domain Model. Next, it requires
knowledge of the entire External Context : the mass of the device, the speed of
the vehicle, the accuracy of the sensor. Finally, it requires an estimate of the
Plant’s current state.

Though I have shown a fairly strenuous framework, I recognize that in some
instances calculating the set of recoverable states is a more intuitive decision
procedure. For example, in the original Simplex prototype, the Lyapunov func-
tion [50, 47] was used to calculate the set of recoverable states for the inverted
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pendulum. In this paper, I do not claim to estimate a recoverable state, rather
we define what the recoverable state must imply. It is up to domain experts to
determine how to calculate the recoverable state.

10.3 Conculsion

The Simplex architecture is difficult to formally describe in the general case
because of its reactivity. Developers must express the current plant state in
terms of the most recently received control command and the most recently
monitored control variable. Yet at the same time, the next control command
partially depends on the currently monitored control variable.

Reactivity is difficult to express in industrial strength logics such as linear
temporal logic or computational tree logic. This challenge has been recognized
by the formal methods community; newer logics and approaches have emerged
to address this problem [4, 59]. The logical Simplex reference model presented
here is a higher-order logical framework to help developers describe Simplex
architectures in the general case.
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11 Simplex improves safety in
the convergence laboratory

This chapter describes one more example of the Simplex architecture. It is not
a historical prototype like the inverted pendulum or the diving controller; it is
my own prototype neatly inserted into the convergence laboratory’s testbed, an
existing platform for distributed networked control.

The convergence lab architecture is a control loop executing across dis-
tributed components in a wired and wireless network. But, as I identified
in multiple experiments, the vision sensor performs unreliably. In the worst
case conditions, the vision sensor only identifies cars correctly about half of the
time. The key safety property in the lab is collision avoidance, yet it is difficult
to achieve in the presence of unreliable sensor data.

Because of this unreliable sensor, my Simplex prototype is the first that pays
significant attention to the modeling machine. Never before had any Simplex
prototypes seen this kind of unreliable data. The bulk of my prototype is the
set of strategies that I had to develop to main the software’s internal view of
the physical world so that the decision machine could better choose between
the simple and the complex controller. As a direct result of my work, the vision
subsystem identifies cars correctly at least 99% of the time. Moreover, the vision
subsystem implicitly indicates when it is uncertain about car locations. Silence
means, “I don’t know.”

Car #1

Car #4

Car #1

Car #1

High Confidence 
Configuration

Low Confidence 
Configuration

High Confidence 
Configuration

Car #4

Car #4

1. 2. 3.

Figure 11.1: The trajectories of cars #1 and #4 cross; the car locations and
identities go from a configuration of high confidence to a configuration of low
confidence and back again.

There is a frustrating incongruity to creating the Simplex modeling machine
for the convergence laboratory: I can easily explain why tracking cars and
managing their identities with two cameras is incredibly difficult. Consider
Fig. 11.1: Cars #1 and #4 are traveling about the platform. I choose these
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two cars for the example because Car #1 is sometimes mistaken as Car #4 and
vice versa. Note in the figure that their travels are broken into three frames. In
frame 1, Cars #1 and #4 are a safe distance apart; it is fairly easy to maintain
a correct identity and location for each car. Even if reports of their identity
are incorrect, it is fairly easy to deduce that a mistake has been made by using
a validation region. To anthropomorphize the vision subsystem, “In the last
observation, Car #1 was way over there. Now you are telling me it’s way over
here!? Give me a break!”

Here comes trouble. In frame 2, Cars #1 and #4 are now in close proximity.
What happens in the worst case; Car #1 is reported as #4 and #1 is reported
as #4. It is very difficult to tell if a mistake has been made in the reporting.
Even with a set of past observations, both cars are reasonably close to the last
observation. It is easy to believe the mistaken reports. But mistaken reports
lead to weird behavior; with the cars so close together, weird behavior can
quickly lead to collisions.

The uninitiated quickly list a set of ad-hoc heuristics to solve these problems.
“Stop the car when you don’t know!” But in the second frame’s worst case, how
does the system know that it does not know? Even worse, stopping the cars
leaves them both in a low confidence configuration. “Don’t let the cars get close
together!” This can be done to some extent, but how impressive is a collision
avoidance demonstration if the cars are always 5 feet apart? “Don’t drive these
particular two cars at the same time!” Maybe. But it is currently impossible
to come up with a reasonably large set of cars which are not mistaken as any
other.

People in the radar community use a variety of Bayesian correlation ap-
proaches to solve these kind of tracking and identity management problems.
Ideally, this means calculating all possible target positions for all target iden-
tities and finding the likeliest match, a task with exponential complexity in
the number of targets. More efficient algorithms for tracking multiple targets
date back as early as 1979 and were developed with radar applications in mind.
MHT [58] maintains a set of associations which are pruned over time based on
a rank function. At each iteration, JPDA [8] computes an association matrix
which is updated by a combination of the latest observations and their marginal
probabilities.

Today, radar is not the only domain for tracking targets. The introduction
of video cameras into domains like surveillance for airport security and traf-
fic management have made it necessary to track not just blips but also color
images. BraMBLe, or the Bayesian Multiple-Blob Tracker [35], combines two
technologies to perform multiple object tracking with a static camera, even in
cases where the number of objects being tracked is unknown. First, BraMBLe
uses a blob tracker, or statistical appearance models to track foreground objects
despite their deformation across frames. As a result, both background and fore-
ground models are necessary to track the blobs. Second, a particle filter is used
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to calculate a posterior distribution over the number and configuration of ob-
jects. The algorithms presented in [17] and [46] are variations of the BraMBLe
approach, and use particle filters to achieve their goals.

Wireless sensor networks have also entered the tracking arena. Sensor net-
works must be able to track multiple objects across multiple sensors. An inter-
esting algorithm for managing target identities in a distributed fashion over a
wireless sensor network offers O(N2) complexity in the number of targets [68].
It includes an approach for how sensors can update each other with their locally
known information.

All of these algorithms are suitable for tracking targets in a variety of do-
mains, but they all seem like too much firepower for the testbed where the
problem is to use the data from two cameras to associate at most nine toy car
locations with nine known identities. One must balance goofy ad-hoc heuristics
with the complexity of updating and transposing doubly-stochastic matrices.

Thankfully, Simplex is “using simplicity to control complexity”; it is an
inspiring tag line. My approach to building the modeling machine was founded
on a simple mantra,

Be as accurate as possible; never keep secrets

By focusing my skeptical eye on the physical world of the testbed, I have
uncovered that it is possible to track cars and manage their identities with rea-
sonable accuracy and performance. I have done this by eliminating dependency
inversions between the cars themselves and the vision sensor. As demonstrated
in Chapter 9, the Simplex architecture decouples the safety of the plant from
an unreliable, monolithic controller. It does so by removing dependency in-
versions between a highly critical controller and other less-critical components.
But that alone is not enough. The testbed is an entire system; it is hardware
and software, plant and controller. The safety of the plant depends on all of the
components in the path between it and the decision machine: even the plant
itself.

11.1 Applications in the convergence

laboratory

Simplex in the convergence laboratory is integrated into the set of control ap-
plications which sit at the application level in the testbed. An applications is a
collection of components which communicate with each other over Etherware to
control a fleet of remote-controlled cars. Different applications direct the cars
towards different goals:

• Trajectory. A simple trajectory application where cars travel in a large
circle;
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• Traffic. Cars adhere to the rules of the road in a network of roads. Cars
drive on the right side of the road and stop at intersections;

• Police. A policed traffic scenario. One set of “civilian cars” follows traffic
as normal which another set of “police cars” chase a rogue car. Police cars
are given priority over civilian cars in traffic, as the civilians are stopped
to allow the police through;

• Avoidance. An extension, or additional set of components, which the
above applications may include to avoid collisions between cars.

At a high level, the key software components of all these applications are the
Vision Sensor, Trajectory Planner, Controller and Actuator. Applications vary
by choosing a particular Trajectory Planner. Far more components are involved
in the actual implementation, but these four are the core.

Networked together, the four core components execute a control loop, as
shown in Fig 11.2. The Vision Sensor observes the color panels in the plant and
converts them to car information: a list of car identities with location and ori-
entation information. Based on this information, the Trajectory Planner revises
the path that each car must take to achieve its goals; this path is expressed as
a set of waypoints to the Controller. The Controller uses the car information
and the next waypoint to calculate the next command for the Actuator which
transmits the commands to the physical plant and completes the loop.

Convergence Lab Application

Actuator

Vision
Sensor

Plant

Trajectory
Planner

Controller
waypoints

control commands

car info

actuation commands

actuation
feedback

color panels

Figure 11.2: Four key components make up the control loop which directs a
fleet of remote-controlled cars.

11.1.1 The vision sensor subsystem

Fig. 11.3 summarizes the collection of components used to implement the vi-
sion subsystem for the testbed. From the left, the subsystem begins with a
camera−−left or right−−mounted to the ceiling of the testbed. The camera
captures the systems monitored variables: the set of color panels mounted to
the car rooftops, their colors, x-position, y-position, and size.

The raw camera feed is processed by a Matrox Imaging Library that extracts
a set of color blobs. Which blobs are extracted depends on a configuration file
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Convergence Lab Application with Simplex: Vision Detail
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Figure 11.3: Logical architecture for the vision subsystem

which provides a list of blob types to locate. Simply put, I tell the library “look
for blue blobs about this big” and the library says, “I saw 2 blue blobs, here
and here.” For example, here is the line of the configuration file which defines
the color dark blue.

144 184 1 255 15 255 5 200 //DarkBlue

The library is configured by hue, saturation, luminance and size. The first
pair of numbers indicates the low and high hue values, the second pair describe
the saturation range, the third describe luminance. The fourth pair describes
the size range. The comment //DarkBlue is simply for readability of the file.
Eight colors are used in the testbed and are all described in this configuration
file.

The collection of blobs is interpreted by the CarTracker component. Using
a simple least squares algorithm, the CarTracker component reorganizes the
collection of blobs into sets that could possibly make up a car. Each sets’s
orientation and center position are calculated. If possible, a reasonable guess at
the car’s identity is made, based on a list known car identities and how well the
set’s colors match the list. Keep in mind that colors may have been observed
incorrectly, so this guess could very well be wrong. The calculations and guess
are then packaged up as a list of observations, one for each set of blobs.

Together, the CarTracker component and Imaging Library are one of the
weird frontiers of the testbed. The majority of the testbed executes in Java,
as components on top of Etherware. However, because the imaging library is
a C++ library, the CarTracker is a stand-alone component which invokes the
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library and translates the collection of blobs into observations. The observations
are snuck into Etherware via a file buffer, where they safely reach civilization.

The Vision Sensor component, executing in Etherware, takes the observa-
tions and uses both previous observations and a plant model to make more
intelligent guesses at the car’s identities and locations. Finally, the events are
sent to the Vision Server which distributes them to the other interested compo-
nents.

11.1.2 Flaws in the original vision subsystem

This section describes the algorithm and flaws of the original vision subsys-
tem. It is not intended as a therapeutic laundry list of complaints; rather, key
flaws have been selected to motivate the design decisions of the current vision
subsystem.

At a high level, the vision algorithm works in three steps. At each step, a
flaw in the original implementation contributed to the incorrect reporting of car
identities. These are summarized here, and detailed in the following subsections.

1. Extract color blobs from the camera feed. Unattractive Mead paper
made the blob colors difficult to identify. Dark green was reported as light
green; purple is hardly ever reported.

2. Group color blobs and identify cars. Color blobs grouped into cars
are matched against a set of known car identities. Due to mistaken color
observations, a group of blobs may not match any of the known identities.
These groups are not reported.

3. Filter car list. The Vision Server expects a list of unique cars and
locations. Due to mistaken identity, if two cars are observed as Car #1,
only one of them is reported; worse, the car that is reported may not
actually be Car#1.

What these three steps point to is a vicious cycle of dependency inversions.
The plant’s safety depends on commands from the controller that keep the
cars at a safe distance from each other. The controller depends on the vision
subsystem to give it useful information to calculate these commands. But the
plant itself is not amenable to observation. Bad paper makes the cars hard
to identify. This interferes with the safety of the plant. The vision subsystem
keeps some observations secret. This interferes with the safety of the plant. The
safety of the plant depends on all of the components in the path between it and
the decision machine. To eliminate all these dependencies, they must first be
understood.
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Step 1: Unattractive paper makes blobs hard to identify

The first flaw was the Mead construction paper. This paper was poorly dyed
and prone to fading, bad visibility, and mistaken identity.

To uncover this, a set of color patch experiments were conducted. Each
experiment was conducted with a car equipped with a single color patch on its
rooftop and manually driving it randomly around the left end of the platform.
Debug information was added to the CarTracker component which yielded all
the blobs identified at every iteration. A small python script, clm.py, was used
to extract the statistical performance of each blob1.

Two metrics were used to evaluate patch performance: Absolute success and
relative success. Absolute success refers to what percentage of the iterations the
given color blob was observed correctly. For example, if the experiment runs
for 10 iterations, one expects to observe 10 color blobs. If 10 color blobs of
the correct color are observed, then a color has 100% absolute success. The
graph in Fig. 11.4 summarizes the absolute success of each color patch. The top
performing colors are the fluorescents; the two fluorescent oranges and green
have enviable success. The Mead colors performed badly, with purple as the
dunce.
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Figure 11.4: Absolute success of observing color patches using the CarTracker
C++ module configured with the LeftCarConfigTracker 1.dat configuration
seen in Appendix A.

“Relative success” refers to how many times, out of the total number of
blobs observed, the given color blob was observed correctly. For example, if the
experiment runs for 10 iterations, but only 7 blobs are observed, and the color
is observed correctly 7 times, then a color has 100% relative success. All the
colors but dark blue and dark green have about 100% relative success.

Relative success for these colors was poor because the dark blue and dark
green colors were often mistaken as other colors, as shown in Fig. 11.5. If a dark
blue patch was successfully captured by the camera and imaging library, 59%

1For those interested in repeating these experiments, information and source code are
available on the convergence laboratory wiki under the “Color Patches” link. Visit the internal
wiki at https://agora.cs.uiuc.edu/display/convergencelab/Home. Members only.
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of the time, a purple patch was reported. Similarly, the dark green patch was
thought to be a light fluorescent green patch 23% of the time.

These cases of mistaken identity sometimes resulted in “extra” blobs being
reported. For example, during the first experimental trial for dark blue, 132%
of the total number of expected blobs were observed; this means that a single
patch was often reported as both a blue and purple blob. The reason for this
was a configuration file whose definition of “purple” and “blue” overlapped. See
LeftCarConfigTracker 1.dat in Appendix A and notice how the ranges of values
for hue, saturation, and luminance for purple and blue overlap.

Thus, the first motivation for redesigning the vision system was eliminate the
dependency inversion between the plant and the camera: to select new paper
and reconfigure the imaging library so that colors were observed with greater
success, and no color was mistaken for another.
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Figure 11.5: Relative success of observing dark blue and dark green patches
using the LeftCarConfigTracker 1.dat configuration seen in Appendix A.

Step 2: Unnecessary statelessness and secrecy results in car
under-reporting and mistaken identity

The original CarTracker component was secretive and stateless. If it observed
a group of colors that it did not expect, it did not report that group. Moreover,
the original Vision Sensor component did not keep track of any state or make
intelligent guesses based on the previous observations or knowledge of the plant.
It just reported the exact observations as received from the CarTracker. These
design choices led to car under-reporting and mistaken identity.

To uncover the impact of these choices, a set of car identity experiments
were conducted with Cars 1, 4, and 5. Each experiment was conducted with a
single car equipped with rooftop 1, 4, or 5; the car was manually driven about
randomly on the left end of the platform. Debug information was added to the
CarTracker component which yielded each blob set and car identity identified
at every iteration. A small python script, carId.py, was used to extract the
statistical performance of each car2.

2For those interested in repeating these experiments, information and source code are
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Figure 11.6: The success rate for car identification in the original vision subsys-
tem. In the original CarTracker component, when Car 1 is the only car driving,
it is reported correctly about 96% of the time. However, 3% of the time, it is
mistakenly reported as another car. This leaves 1% of the time when nothing
is reported at all.

Fig. 11.6 summarizes the performance of identifying a single car at a time.
Car #1 was successfully identified 96% of the time. Car #4, 92%. Car #5,
94%. At the surface, mistaken identities might seem reasonable. It is only 4%
of the time, right? No. Bad doggie, no biscuit. Fault-tolerant engineers would
scoff at these kinds of numbers. These people demand “five nines” out of their
reliable systems.

Worse, Car #1 was mistaken to be as many as eleven other cars. These
mistaken identities lead to less stability in the control of the cars.
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Figure 11.7: The many faces of Car 1. It is mistakenly reported as one of eleven
other cars approximately 3% of the time when using the LeftConfigTracker 1.dat
shown in Appendix A.

Thus, the second motivation for redesigning the vision subsystem was to re-
move the dependency inversion between the vision subsystem and the controller:
to use previous observations and knowledge of the plant to more intelligently
interpret the current observations and avoid as many mistaken identities as pos-
sible. Doing so would give the controller as useful information as possible so

available on the convergence laboratory wiki under the “Color Patches” link. Visit the internal
wiki at https://agora.cs.uiuc.edu/display/convergencelab/Home. Members only.

103



that it might calculate safe control commands.

Step 3: Aggressive filtering of the car list results in unsafe silence

The original CarTracker component chose silence above doubt. For a lonely
Car #4 driving solo around the network of roads, the CarTracker component
reported no observations almost 5% of the time. For a mission-critical system
like the testbed, this 5% is unacceptable. Yet, the third step of the vision
algorithm further reduced the rate at which cars were reported.

The Vision Server expects a list of unique cars and locations; due to mistaken
identities, it is possible to have a list of observed cars which contains multiple
entries for the same car. Thus, the final step is to filter the list of observed cars,
and keep only the unique entries that have the greatest confidence. As a result,
if two cars are observed as Car #1, only one of them is reported.

To uncover filtering’s impact, an experiment was performed with Cars 1 and
4. Using the configuration file LeftCarTrackerConfig 1.dat, Car 4 is observed
95% of the time. It is mistaken as Car #1 4.7% of the time. With Car #1
in an easily identifiable location on the driving platform and Car #4 driving
randomly, I measured the number of cars observed after step 2 and compared
it to the number of cars that are reported after step 3. Keep in mind that this
experiment did not test the correctness of cars that were actually reported; it
was only meant to examine how the number of cars reported was reduced.

Despite under-reporting due to step 2, the percentage of cars that were
observed after step 2 was 97.7%. However, list filtering reduced further the
number of cars that were reported to 96.9%, and this was only for two cars.
As the number of cars active in the testbed increase, so can the amount of
underreporting.

Thus, the third and final motivation for redesigning the vision subsystem
was to remove the dependency inversion between the vision subsystem and the
controller: to avoid under-reporting. Resolving the mistaken identity problem
partially solves this problem; but even in cases where mistaken identity could
not be resolved correctly, the aim was to report each time that some car was
observed. Once again, the controller deserves as much information as possible
to do its job.

11.2 Be as accurate as possible

Remember the mantra from the beginning of this chapter:

Be as accurate as possible; never keep secrets

The first part of my mantra, and the first step to stable control, is making
accurate observations. Bad observations can quickly lead to instability. Obser-
vations are made in the testbed with two cameras mounted to the ceiling. These
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two cameras are the left and right eyes of the testbed, tracking the location and
orientation of every car driving in the testbed.

Making accurate observations in the testbed is not straightforward. The
cameras, and the software that supports them, each comprise one Vision Sen-
sor. This pair must observe up to 54 color patches moving about, and intelli-
gently interpret those color patches as nine different vehicles, each with its own
orientation and position.

Correcting step 1: Buying better paper yields better observations

The Model Builder problem is to build a model which approximates the real
world. The resulting model acts as the software’s internal view of the real world.
I pose that solving this problem is simplified if the real world is easy to observe.

For the original testbed, this was not the case. The little paper quilt on
top of every car was made from two kinds of paper: one very good and one
very bad. The very good paper was observable 95-99% of the time. The very
bad paper was observable 7-74% of the time, with many cases of mistaken color
identification.

By replacing the bad paper with more brilliant colors found at Kinko’s and
Michael’s3, and making some minor changes to the configuration file, Fig. 11.8
shows the significant improvements that were made to rates of successful obser-
vation for each color. Even better, both dark blue and dark green are no longer
mistaken as any other color.
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Figure 11.8: Absolute success comparison of observing color patches using the
CarTracker C++ module as configured with LeftConfigTracker 2.dat seen in
Appendix A.

What Fig. 11.8 also shows, however, is that no improvements have been
made to the yellow color. I was not able to find a color that could replace the

3The convergence laboratory wiki describes all of the latest colors with instructions on
where to buy them.
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old yellow color and not be mistaken as any of the existing colors. The small
solution to this small problem is not clear to me at this time.

11.3 Never keep secrets

Accurate observations are great, but alone they are not enough. With the new
paper, the bright pink color is observed correctly about 80% of the time. What
happens to observations during the other 20% of the time and how should the
controller react? Ideally, there must be some way of indicating a problem with
the observations and if there is a problem, it should never be kept secret.

In the original implementation, there were two problems:

• A stateless and secretive Vision Sensor. The Vision Sensor did
not use past observations when interpreting sets of color patches as cars.
What was interpreted as Car #1 in one moment would just as easily be
interpreted as Car #4 in the next. Even worse, if two cars were interpreted
as Car #4, the Vision Sensor would only report one of them.

• A Controller in the dark. Because the Vision Sensor did not report
confidence with car information, the Controller had to accept as fact every
observation it was handed and plough forward to the next waypoint.

Despite the significant improvements made to the success of color patch ob-
servations, cars would still be victims of mistaken identity if not for further
improvements; color patches are not observed 100% of the time, and the Car-
Tracker’s guesses at identity are sometimes wrong.

Correcting step 2: Using the laws of physics to throw out bad

observations

Fortunately, the laws of physics must prevail in the testbed. I employed two
simple heuristics to filter out the possible mistaken identity observations that
were presented by the CarTracker. These heuristics were based the two most
frequent situations in which mistaken identity took place.

Car #1

Car #4

Car #1 Car #1

Car #4
(Reported as #1)

1. 2. 3.

Car #4

Figure 11.9: A car cannot travel faster than its maximum velocity.
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Heuristic 1: A car cannot travel faster than its maximum velocity.
One of the most frequent situations of mistaken identity in the testbed is de-
picted in Fig. 11.9. Two cars, #1 and #4, are traveling a safe distance apart.
In frame 2, Car #1 is correctly identified and reported as Car#1. However, Car
#4 is also reported as Car #1. Yet, for that second observation to be correct,
Car #1 would have had to travel faster than its maximum velocity. Impossible.
I throw out the second observation.
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In C++, this heuristic is implemented as follows in CarTrackerProxyWith-
Model.java:

while (prevObsvCarIter.hasNext()) {

// Get the latest observation

int thisIndex = prevObsvCarIter.next().intValue();

BlobInfo thisObsv = parsedBlobObsv.get(thisIndex);

// Get the most recent observation for this same car.

BlobInfo lastObsv =

__lastObsvHashMap.get(thisObsv.getCarID());

// Calculate the actual distance traveled by this car

// since the last location observation.

double actualDistance =

calculateDistance(thisObsv.getX(), lastObsv.getX(),

thisObsv.getY(), lastObsv.getY());

long timeSinceLastObservation =

timeStamp - __lastProbeTimeStamp.getValue();

// Calculate the maxiumum possible distance traveled

// by this car since the last location observation.

double maximumPossibleDistance =

timeSinceLastObservation * __MAX_MM_PER_MILLISECOND;

// Confirm that the actual distance traveled by the car is

// less than the maximum possible distance traveled.

if (actualDistance >= maximumPossibleDistance) {

// The car is too far from where it should be.

// Throw it out.

parsedBlobObsv.remove(thisIndex);

}

}
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Heuristic 2: Two cars cannot be in the same place at the same time.
The other frequent situation for mistaken identity is depicted in Fig. 11.10. Car
#1 is reported correctly in frame 1. In the next observation, frame 2, it is
reported as Car #2. Car #2 is currently not driving on the testbed, so this
is the very first observation of this car. Yet, this observation of one car is just
a few millimeters away from the last observation of an entirely different car:
Again, impossible. Throw out the second observation.

Car #1
Car #1
(Reported as #2)

Car #1

1. 2. 3.

Figure 11.10: Two cars cannot be in the same place at the same time.

In C++, this heuristic is implemented as follows in CarTrackerProxyWith-
Model.java:

Iterator<String> lastObsvIter =

__lastObsvHashMap.keySet().iterator();

while (newCarIter.hasNext()){

// Get new observation

int thisIndex = newCarIter.next().intValue();

BlobInfo thisObsv = parsedBlobObsv.get(thisIndex);

// Compare each new observation to every

// car’s last observation.

Iterator<String> lastObsvIter =

__lastObsvHashMap.keySet().iterator();

while (lastObsvIter.hasNext()) {

String lastIndex = lastObsvIter.next();

double distance = calculateDistance(thisObsv.getX(),

__lastObsvHashMap.get(lastIndex).getX(),

thisObsv.getY(),

__lastObsvHashMap.get(lastIndex).getY());

double delta =

thisObsv.getTimestamp() -

__lastObsvHashMap.get(lastIndex).getTimestamp();
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if (distance < (__MAXIMUM_DISTANCE_BETWEEN_OBSERVATIONS)) {

// Double check that IDs are different.

if (! thisObsv.getCarID()

.equals(__lastObsvHashMap.get(lastIndex).getCarID())){

// Throw it out

parsedBlobObsv.remove(thisIndex);

} } }

}

Correcting step 3: Reporting all valid observations avoids
unnecessary underreporting

In the original implementation, the final step is to filter the list of observed cars,
and keep only the unique entries that have the greatest confidence. As a result,
if two cars are observed as Car #1, only one of them is reported.

In the current implementation, this problem is solved simply by omitting
this step. The C++ module, CarTracker, is no longer allowed to censor its own
observations.

Extra Step: Mitigating an asynchronous mode of communication
between CarTracker and Vision Sensor

The CarTracker is a C++ module. The Vision Sensor is a Java component
executing on top of Etherware. The CarTracker communicates its observations
to the Vision Sensor via a BufferedStream. This mode of communication is
completely asynchronous. Moreover, it’s polling-based. As a result, a brief
section from an experiment’s log file shows how observations can build up:

0. * * *

1. Time: 1206841461023 ms

2. blob 01 1360 790 72 114 2 4 0 1 3 5 1206841461093

3. Reported: 01

4. * * *

5. Time: 1206841461173 ms

6. * * *

7. Time: 1206841461173 ms

8. blob 01 1365 837 77 114 2 4 0 1 3 5 1206841461243

9. blob 01 1365 861 81 113 2 -1 0 1 3 5 1206841461304

10. Reported: 01
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Each iteration of Vision Sensor is marked by the * * *. Thus, on line
2, CarTracker reports a single observation of Car #1 to the Vision Sensor.
On line 3, the Vision Sensor reports Car #1. However, line 5 shows that no
observations were provided in the next iteration. But lines 8 and 9 show an
“extra” observation for that particular iteration.

The previous heuristics would incorrectly throw out multiple cars being re-
ported in the same location; one last heuristic must be introduced. It is simply,
“One car can be in the same place at the same time.”

The results of following the mantra

By following the mantra, the vision subsystem now provides observations that
are as accurate as possible; moreover it does not keep secrets.
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Figure 11.11: Improving colors, maintaining state, and using some simple heuris-
tics yields at least 99% success for car identity reporting.

Between the new paper and the new two heuristics, the identification success
of cars in the lab is happily at least 99%, as shown in Fig. 11.11. The vicious
cycle of dependency inversions has been broken. The plant is amenable to
observation. The vision sensor gives as much useful information as possible to
the controller. The controller uses this information to issue control commands to
the plant. No one component in this path of critical components is an unreliable
one

One might wonder if throwing out observations is a good idea. Thankfully, as
shown in Fig. 11.11, cars equipped with new colors are not victims of mistaken
identity all that often. In fact, Car#5 is mistaken as other cars the most, but
that happens only 0.325% of the time. As a result, these heuristics are not only
simple, they do not need to be employed very often either. This means that
throwing out observations, while at first a potentially harmful risk, is just fine
for the testbed. Bad observation? Throw it out; another will be along in about
34 milliseconds.

11.4 The resulting Simplex architecture

With my lengthy discussion of the vision subsystem, it might be easy to forget
the main purpose of this chapter: Simplex in the convergence lab. The identifi-
cation success rate is at least 99%, but what does this mean for Simplex at the
architectural level?
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Again, remember my mantra:

Be as accurate as possible; never keep secrets

The dependency inversions have been eliminated. The vision subsystem
reports everything it observes as accurately as possible. If an observation does
not make sense according to the laws of physics, it just throws it out. This means
that other components receiving reports from the vision sensor can rely on this
important fact: Silence means, “I don’t know.” As a result, other components
can take it upon themselves to act in an appropriate manner when reports have
not been received from the vision subsystem.

At first it may seem like a bad idea to use radio silence as a way of indicating
uncertainty. But for Cyber-Physical Systems it is actually ideal. It aids in
schedulability. Radio silence means no extra messages clogging up precious
resources in a real-time system. It aids in reducing complexity. Radio silence
means that even if the connection between the vision subsystem and the rest of
the testbed is completely severed, the reaction subsequent components is exactly
the same; the safety mechanism is a passive one and there is no extra code to
test.

With that in mind, I return the decomposed trio of Simplex problem frames
and explain what each means for the testbed:

• Model Builder. Build a machine which constructs a safe approximation
of the environment. The vision subsystem must provide an accurate ap-
proximation of the cars and their locations. If an observation defies the
law of physics, do not report it.

• Connection Domain for Minimal Behavior. Build a machine which
controls some part of the physical world; implement a set of minimal
functionalities while guaranteeing core safety requirements. From a pure
safety perspective, there is no minimal functionality. The cars can sit
perfectly still. The core safety requirement is that the cars must not
collide.

• Connection Domain for Desired Features. Build a machine which
implements the set of desired features only if the high-confidence safety
guarantees are met. If car locations and identities have been received
recently, then a controller may direct cars to their next waypoint.

The Simplex architecture is a solution-creating technique for combining two
algorithms such that a system retains the safety of the first while gaining the
features of the second. For the testbed, the first algorithm is the original control
algorithm used by convergence laboratory to get the cars from one waypoint
to the next. The second is also from the original platform: the Avoidance
application extension used to divert the original control commands from the
actuator and edit them with stop commands when a collision is imminent.
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Choosing between these two algorithms is easy. Because the vision subsys-
tem uses radio silence to indicate uncertainty, the decision machine only needs
to make the following choice, “Go if there has been a report. Stop if there has
not.”

The resulting architecture depicted in Fig. 11.12 summarizes the solution
4. The collection of components make up a control loop. The Vision Sensor
observes the color panels in the plant. This time, color panels are converted
into events. Each event is a list of most recently observed cars intelligently
interpreted by the sensor. This list reports their identities, locations, and ori-
entations. Events are received by three components: the Trajectory Planner,
Controller, and Collision Avoidance Supervisor.

Convergence Lab Application with Simplex

Plant
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Vision
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Trajectory
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actuation
feedback
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Filter
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commands

filtered 
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Figure 11.12: Logical architecture for the Simplex solution in the convergence
laboratory testbed.

The functionality of the Trajectory Planner and Controller is identical to the
original implementation. The Trajectory Planner uses the car information to
revise the overall path that each car must take to achieve its goals. This overall
path is maintained as a set of waypoints. The Controller also uses the car
information in order to calculate a shorter path: the path from a car’s current
location to the next waypoint determined by the Trajectory Planner.

The Controller sends control commands to the Actuator. These control
commands are intercepted by a Collision Avoidance Filter. As a result, any time
that a car’s location has not been reported in a recent time window, the Collision
Avoidance Supervisor gives permission to the Collision Avoidance Filter to alter
the control commands to stop commands; this avoids potential collisions that
could result. The Actuator receives these filtered control commands; it transmits
the commands to the physical plant and completes the loop.

Reorganizing the components of Fig. 11.12 into Fig. 11.13 makes the archi-
tecture look more like Simplex. The Simplex decision machine, or the Collision

4Please keep in mind that the full solution depicted here has not been implemented in the
testbed. Because of the 99% identification success rate, I was very hesitant to add more code
to a complex testbed already in transition between an old fleet of cars and a new one.
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Avoidance Supervisor, chooses between the control command of the car Con-
troller or the filtered command from the Collision Avoidance Filter.
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Figure 11.13: The “Simplex Looking” logical architecture. The Simplex decision
machine, or the Collision Avoidance Supervisor, chooses between two commands
based on the confidence of the car information sent by the Vision Sensor. The
Supervisor’s mantra, “Go if you know, stop of if you don’t.”

11.5 Conclusion

For a time, the convergence laboratory suffered a secretive and inaccurate vision
subsystem; safety was at risk. Thanks to the lessons of Simplex and a simple
mantra, the vision subsystem now yields an identification success rate of at least
99%. Because it is well established that the vision subsystem is radio silent
when car locations are unknown, other subsystems can react appropriately in
a Simplex fashion. Other Simplex prototypes have focused on control laws and
decision machines; this is the very first to illuminate the challenge of building a
modeling machine.
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12 Related work

Simply put, my work is as much about Simplex as it is about describing Simplex
architectures. My work provides a collection of precise, logical descriptions of
the Simplex architecture in four different modeling paradigms. As a result,
developers now have a formulaic design approach to utilizing and analyzing the
Simplex architecture for their own applications.

In the early days, Simplex began as a prototype, and then I developed it
into a design pattern [15]. While prototypes and design patterns are helpful
for learning about examples, they do not facilitate the automatic analysis of
software architectures demanded by Cyber-Physical Systems and the avionics
domain.

My solution looks to architecture description languages and formal methods
to more precisely describe the Simplex architecture and automate its analysis.
The marriage of design patterns and formal methods is not a new idea, but it
is a very good one. The key goal of this union is to bridge the gap between an
intuitive understanding of a software architecture and the rigorous mathematics
which can yield proofs of it. It is a challenge to balance this union such that
developers have tools which are “rigorous but practical” [53].

There are a number of related areas to my work. I discuss these in turn.

12.0.1 Patterns

The notion of software patterns was introduced in [29]. Three from this original
catalog are present in the Etherware middleware and are evaluated in Chapter 3.
The Memento pattern records the internal state of an object. This record can
be used to later restore the state of the object. Façade provides a simplified,
high-level interface for a set of objects. Clients invoking these objects’ services
don’t have to be concerned with the differences between their varying interfaces,
and can just invoke services using the Façade. A Proxy is used to instantiate an
object in place of another. In many cases, a Proxy creates a local place holder for
a remote object. The use of a fourth pattern, the Filter [32], is also evaluated.
A Filter allows dynamic compositions of objects to perform transformations on
streams of data.

A real-time system is a reactive system whose correctness depends on satisfy-
ing both functional and temporal requirements [48]. Some of the earliest design
patterns related to real-time systems are described in [62]; including Pedestal,
a layered approach to organizing mechanical-process systems. In Pedestal, the
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lowest layer is the Real World, consisting of actuators, solenoids, and sensors.
Higher layers consist of the software used to model, manage, and interface to
the Real World layer.

A real-time system is safety critical when its incorrect behavior can directly
or indirectly lead to a state hazardous to human life [44]. Decisions which shape
the software architecture for safety-critical, real-time systems are driven in part
by three qualities; availability, reliability, and robustness [44, 9].

Availability, α, can be quantified by the probability that a system is available
when needed. Availability is defined in [9] as,

α =
mean time to failure

mean time to failure + mean time to repair.

To increase availability in software, developers can use fault-detection or
fault-recovery tactics [9]. For example, one fault-detection tactic is to employ a
heartbeat, a periodic signal emitted by one component and monitored by another.

Reliability can be quantified by the probability that a component will per-
form its intended function satisfactorily for a prescribed time and under stipu-
lated environmental conditions [44]. Reliability is important to safety-critical,
real-time systems for it insures that components correctly execute to comple-
tion and meet their deadlines. Reliability patterns for real-time systems are
documented in [19]. A Watchdog pattern can be used to monitor the internal,
time-dependent computational progress of a subsystem. If the progress does not
proceed to specification, the Watchdog can issue a shutdown or restart signal
to the component.

Robustness is the degree to which a system or component can function cor-
rectly in the presence of invalid inputs or stressful environment conditions [54].
One approach to robustness is to ensure that components or subsystems of
components enter a fail-safe state under some conditions. For some systems, a
fail-safe state is a depowered mode. For autonomous unmanned aerial vehicles,
it is a low-energy descent. For radio-controlled boats which have lost their radio
signal, it is turning in a large circle. The Safety Executive [19] is one pattern
which describes how to coordinate a component’s entry into its fail-safe state.

There are software patterns documented specifically for middleware. QoS
Contract [49], uses three components to specify quality of service expectations,
measure quality of service conditions, and adapt system behavior for measured
quality of service. Used together in the QuO framework, these three components
create a mechanism for distributed decision-making about resource management
in real-time, embedded middleware.

Snapshot [49] describes how middleware may obtain an approximate view
of the system’s state for use in real-time, adaptive systems. Snapshot disperses
a set of system condition objects throughout the system. These objects are
queried for their object values and collected by an aggregator to construct an
approximate view.
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The Quality Connector architectural pattern [16] describes how to decouple
application components from infrastructure components so that applications
need not be concerned with non-standard quality of service interfaces. Instead,
applications can make quality of service configurations and these configurations
are adapted to the possibly evolving infrastructure components by the Quality
Connector, even when the system enters various mode changes.

This dissertation presents a case study of patterns applied to one software
system in the real-time, safety-critical domain. Other case studies in similar
domains have been published. A broad road map of real-time patterns is pro-
vided in [81] which highlights multiple case studies of patterns in the real-time
domain including those done on a microntroller-based fire alarm system and a
vessel control system. A case study of patterns applied to a large-scale em-
bedded applications for military mission planning is available in [67]. My work
complements these, further advancing the understanding of patterns’ utility in
real-time, safety-critical systems. Moreso than the other case studies, this paper
advances the depth of understanding by detailing four patterns’ implementation
and impact on one middleware for networked control.

Aside from Etherware, other middleware architectures have been proposed
for networked control systems and focus on different aspects of the problem
domain. A middleware that modifies the controller gain based on network load
conditions while leaving the original controller unaffected is described in [76, 77].
In [72], a middleware layer is inserted into the IP stack in order to develop a
fault-tolerant Ethernet for use in networked control applications. The need for
design objectives and problems associated with building embedded real-time
middleware applications with COTS are summarized in a tutorial paper [63],
and [11] provides an overview of some of the middleware applications available
for distributed systems with an emphasis on control systems.

12.0.2 Model-checking real-time systems

For my investigation into describing the Simplex architecture, I chose Maude
as one candidate for clear political reasons. There are other formalisms that
support finite automata, linear temporal logic, and model-checking, such as
NuSMV [12] or SPIN [34]. Still, there are many other powerful and novel
formalisms available for modeling real-time systems. Among these are [36, 41,
61, 64].

Message Sequence Charts [36] were adapted by the International Telecommu-
nications Union in 1996. They are a visual and textual formalism for expressing
message passing between a collection of independent “instances” or processes.
Multiple extensions have been created, including Triggered Message Sequence
Charts [64] and Symbolic Message Sequence Charts [61]. One characteristic
of MSC is that developers describe scenarios of messages passed between pro-
cesses. This is very apt for the telecommunications domain, but it is a challenge

117



to describe a reactive system such as a pacemaker using only a collection of
scenarios.

The quantitative verification methodology [41] allows developers to check
probabilistic properties about a system. Based on Markov chains, developers
describe their systems using a state automata with additional probabilistic tran-
sitions. This kind of examination is valuable for real-time systems, whose safety
properties are often measured quantitatively: the probability that the pacemaker
battery will expire after 5 years is 1 × 10−7. While there is certainly value in
verifying such properties, I have not opted to explore probabilistic models.

12.0.3 Formalizing patterns

Various approaches to the formalization of software patterns have been studied,
including [53, 73]. In 1998, Mikkonen introduced formalizing temporal behaviors
of design patterns at a high level of abstraction [53]. Based on Leslie Lamport’s
temporal logic of actions, developers may specify patterns using the primitives
class, relation, and action. In 2004, Soundarajan et al. introduced another
paradigm for formalizing design patterns; they borrow the concepts introduced
by Design by Contract [52] and describe a pattern’s responsibilities and the
rewards of abiding by them.

One limitation of my work is the language in which developers must ex-
press an architecture’s properties. When using Maude, for example, developers
are faced with expressing properties in the sometimes limited Linear Temporal
Logic, or LTL. Other work uses patterns to simplify the formulation of a system’s
properties. In 1998, Dwyer et al. offered a collection of well-understood ways
for specifying properties of a finite state machine. These “property specification
patterns” [21] recognize the steep learning curve for specifying formal proper-
ties; 500 property specifications were surveyed to result in eight patterns. Since
1998, Dwyer’s patterns have become incorporated into the Bandera project, an
integrated toolset for model checking concurrent Java software [20].

Others have extended property specification patterns. Propel, is an ap-
proach for expressing properties in both finite-state automata and a disciplined
natural language; it is a set of templates based on Dwyer’s collection [69]. Since
its inception, Propel has become a question tree-based system for guiding de-
velopers through the options that must be considered for using the patterns
for their own system [5]. Other extensions of Dwyer’s work for the real-time
domain are also available. Templates for real-time temporal logic specifications
are provided by Konrad and Cheng in three different temporal logics [40].

My work may benefit from these kinds of property specification patterns and
certainly future work out to consider these.
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A Vision configuration files

These are the configuration files for the Matrox Imaging Library to define the
8 colors used in the testbed.

SERVERNUM
2
CALIBRATION(hueL,hueH,satL,SatH,lumL,lumH,patchSizeL,patchSizeH)
211 245 1 255 78 255 15 250 //BrightPink
0 19 60 255 50 255 10 250 //DeepFlourescentOrange
41 60 80 255 30 255 7 350 //LightFlourescentGreen
20 31 70 140 50 255 10 350 //LightFlourescentOrange
144 184 1 255 15 255 5 200 //DarkBlue
45 100 1 90 20 160 7 300 //DarkGreen
31 42 80 120 60 255 20 300 //Yellow
183 226 2 90 18 125 5 250 //Purple

Figure A.1: LeftCarTrackerConfig 1.dat

SERVERNUM
2
CALIBRATION(hueL,hueH,satL,SatH,lumL,lumH,patchSizeL,patchSizeH)
198 255 1 255 53 255 15 200 //BrightPink
0 18 60 255 38 255 10 300 //DeepFlourescentOrange
53 67 75 255 45 255 7 300 //LightFlourescentGreen
20 32 70 140 50 255 10 300 //LightFlourescentOrange
142 177 1 255 15 255 7 200 //DarkBlue
51 97 33 90 16 130 7 255 //DarkGreen
36 47 34 120 29 175 15 310 //Yellow
164 205 28 138 18 111 5 175 //Purple

Figure A.2: LeftCarTrackerConfig 2.dat
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B Introductory sensor
example in AADL

--------------------------------------------------------

-- Sensor Package

--------------------------------------------------------

package pkgSensor

public

data int

end int;

data string

end string;

data errorData

end errorData;

data voltageValue

properties

Source_Data_Size => 16 bits;

end voltageValue;

data sensorData

properties

Source_Data_Size => 16 bits;

end sensorData;

device dvcSensor

features

Input : in event data port voltageValue;

Output: out event data port sensorData;

end dvcSensor;

device dvcSensorWithError extends dvcSensor

features

InternalError: out event data port errorData;

end dvcSensorWithError;
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data implementation sensorData.temperature

subcomponents

temperature : data int;

measurementUnits : data string;

end sensorData.temperature;

end pkgSensor;
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C Generic packages to aid
with instantiating Simplex
architectures in AADL
-----------------------------------

-- Actuator Package

-----------------------------------

package pkgActuator

public

-- The generic actuator takes a control

-- command as input and transmits an

-- actuation command as output.

process proActuator

features

iptCmd: in event data port ;

optActuation : out event data port ;

end proActuator;

process implementation proActuator.impl

subcomponents

tidA : thread thrActuator ;

connections

event data port iptCmd -> tidA.ipthrCmd ;

event data port tidA.opthrActuation -> optActuation ;

end proActuator.impl;

thread thrActuator

features

ipthrCmd: in event data port ;

opthrActuation : out event data port ;

end thrActuator;

end pkgActuator;

--------------------------------------------------------

-- Controller Package

--------------------------------------------------------

package pkgController
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public

-- The Controller accepts model data from the model builder,

-- and issues a command.

process proController

features

iptModelData: in event data port ;

optCmd: out event data port ;

end proController;

end pkgController;

-----------------------------------

-- Plant Package

-----------------------------------

package pkgPlant

public

-- The generic plants accepts an actuation

-- command and ‘‘transmits’’ a physical

-- phenomenon.

process proPlant

features

iptActuation: in event data port ;

optPhysPhenom : out event data port ;

end proPlant;

process implementation proPlant.impl

subcomponents

tidP : thread thrPlant ;

connections

event data port iptActuation -> tidP.ipthrActuation ;

event data port tidP.opthrPhysPhenom -> optPhysPhenom ;

end proPlant.impl;

thread thrPlant

features

ipthrActuation: in event data port ;

opthrPhysPhenom : out event data port ;

end thrPlant;

end pkgPlant;

-----------------------------------
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-- Sensor Package

-----------------------------------

package pkgSensor

public

-- The generic sensor takes a physical

-- phenomenon as input and transmits a

-- monitored variable as output.

process proSensor

features

iptPhysPhenom: in event data port ;

optMonVar : out event data port ;

end proSensor;

process implementation proSensor.impl

subcomponents

tidS : thread thrSensor ;

connections

event data port iptPhysPhenom -> tidS.ipthrPhysPhenom ;

event data port tidS.opthrMonVar -> optMonVar ;

end proSensor.impl;

thread thrSensor

features

ipthrPhysPhenom: in event data port ;

opthrMonVar : out event data port ;

end thrSensor;

end pkgSensor;
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D Generic Simplex model in
AADL

-----------------------------------

-- Generic Simplex Reference Model

-----------------------------------

package simplex

public

-----------------------------------

-- DECISION MACHINE

-----------------------------------

--- The decision machine chooses

--- between the simple control command

--- and the complex control command.

process proDecisionMachine

features

iptSCmd : in event data port ;

iptCCmd : in event data port ;

optCmd : out event data port ;

end proDecisionMachine;

process implementation proDecisionMachine.impl

subcomponents

tidDM : thread thrDecisionMachine ;

connections

event data port iptSCmd ->

tidDM.ipthrSimpleCmd ;

event data port iptCCmd ->

tidDM.ipthrComplexCmd ;

event data port tidDM.opthrCmd -> optCmd ;

end proDecisionMachine.impl;

thread thrDecisionMachine

features

ipthrSimpleCmd : in event data port ;
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ipthrComplexCmd : in event data port ;

opthrCmd: out event data port ;

end thrDecisionMachine;

-----------------------------------

-- MODELING MACHINE

-----------------------------------

--- The modeling machine maintains

--- the software’s internal view of

--- the hardware’s state.

process proModelMachine

features

iptMonVar : in event data port ;

optSimpleModelData : out event data port ;

optComplexModelData : out event data port ;

end proModelMachine;

process implementation proModelMachine.impl

subcomponents

tidMM : thread thrModelMachine ;

connections

event data port iptMonVar -> tidMM.ipthrMonVar ;

event data port tidMM.opthrSimpleModelData

-> optSimpleModelData ;

event data port tidMM.opthrComplexModelData

-> optComplexModelData ;

end proModelMachine.impl;

thread thrModelMachine

features

ipthrMonVar : in event data port ;

opthrSimpleModelData : out event data port ;

opthrComplexModelData : out event data port ;

end thrModelMachine;

-----------------------------------

-- CONTROLLERS

-----------------------------------

--- Simple Controller

process proSimpleController
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extends pkgController::proController

end proSimpleController;

process implementation proSimpleController.impl

subcomponents

tidSC : thread thrSimpleController ;

connections

event data port tidSC.opthrSCmd -> optCmd ;

event data port iptModelData -> tidSC.ipthrModelData ;

end proSimpleController.impl;

thread thrSimpleController

features

ipthrModelData : in event data port ;

opthrSCmd : out event data port ;

end thrSimpleController;

--- Complex Controller

process proComplexController

extends pkgController::proController

end proComplexController;

process implementation proComplexController.impl

subcomponents

tidCC : thread thrComplexController ;

connections

event data port tidCC.opthrCCmd -> optCmd ;

event data port iptModelData -> tidCC.ipthrModelData ;

end proComplexController.impl;

thread thrComplexController

features

ipthrModelData : in event data port ;

opthrCCmd : out event data port ;

end thrComplexController;

-----------------------------------

-- ASSEMBLING IT ALL TOGETHER

-----------------------------------

--- Simplex Control Architecture Assembly

--- The system takes as input a monitored variable;
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--- likely from some sensor monitoring the plant.

--- The system transmits an output of a control

--- command, likely to some actuator controlling

--- the control variables in the plant.

system Simplex

features

siptMonVar : in event data port ;

soptCmd : out event data port ;

end Simplex;

system implementation Simplex.impl

subcomponents

idDM : process proDecisionMachine ;

idMM : process proModelMachine ;

idSC : process proSimpleController ;

idCC : process proComplexController ;

connections

event data port siptMonVar -> idMM.iptMonVar ;

event data port idMM.optSimpleModelData

-> idSC.iptModelData ;

event data port idMM.optComplexModelData

-> idCC.iptModelData ;

event data port idSC.optCmd -> idDM.iptSCmd ;

event data port idCC.optCmd -> idDM.iptCCmd ;

event data port idDM.optCmd -> soptCmd ;

end Simplex.impl;

end simplex;
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E Simple dot example in
AADL

package simplexDotExample

public

-----------------------------------

-- THE ENTIRE SYSTEM ASSEMBLY

-----------------------------------

system sysDotSimplexExample

end sysDotSimplexExample;

system implementation sysDotSimplexExample.impl

subcomponents

idSDS : system sysDotSimplex ;

idRW : system sysRealWorld ;

connections

event data port idSDS.soptCmd -> idRW.siptCmd ;

event data port idRW.soptMonVar -> idSDS.siptMonVar ;

end sysDotSimplexExample.impl;

-----------------------------------

-- SOFTWARE

-----------------------------------

system sysDotSimplex extends simplex::Simplex

features

soptCmd :

refined to out event data port Behavior::integer;

siptMonVar :

refined to in event data port Behavior::integer;

end sysDotSimplex;

--- The software assembly is just an instance of the

--- simplex assembly in simplex.aadl

system implementation sysDotSimplex.impl

extends simplex::Simplex.impl
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end sysDotSimplex.impl;

--- Modeling Machine

thread thrDotModelMachine extends simplex::thrModelMachine

features

ipthrMonVar :

refined to in event data port Behavior::integer ;

opthrSimpleModelData :

refined to out event data port Behavior::integer ;

opthrComplexModelData :

refined to out event data port Behavior::integer ;

end thrDotModelMachine;

thread implementation thrDotModelMachine.impl

properties

Dispatch_Protocol => Aperiodic;

annex behavior_specification {**

states

s0 : initial state ;

state variables

monVar : Behavior::integer ;

mmXmit : Behavior::integer ;

transitions

--- Receive the monitored variable

s0 -[ ipthrMonVar ? (monVar) ]-> s0

{ mmXmit := mmXmit + 1 ;

opthrSimpleModelData ! (monVar) ;

opthrComplexModelData ! (monVar) } ;

**} ;

end thrDotModelMachine.impl;

--- Decision Machine

thread thrDotDecisionMachine

extends simplex::thrDecisionMachine

features

ipthrSimpleCmd :

refined to in event data port Behavior::integer;

ipthrComplexCmd :

refined to in event data port Behavior::integer;

opthrCmd :

refined to out event data port Behavior::integer;

end thrDotDecisionMachine;
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thread implementation thrDotDecisionMachine.impl

properties

Dispatch_Protocol => Aperiodic;

annex behavior_specification {**

states

sReceive : initial state ;

sReceiveSimple : state ;

s1 : state ;

s2 : state ;

s3 : state ;

s4 : state ;

fail : state ;

state variables

aux : Behavior::integer;

inSCmd : Behavior::integer;

inCCmd : Behavior::integer;

simpleRcpt : Behavior::integer;

complexRcpt : Behavior::integer;

distanceFromStart : Behavior::integer;

safetyEnv : Behavior::integer;

dotPos : Behavior::integer;

wallPos : Behavior::integer;

transitions

--- Consume any incoming complex command.

--- Conduct the safety check on the incoming

--- complex command. Assess how far from a starting

--- point of 0 the dot is, plus a safety envelope.

sReceive -[ ipthrComplexCmd ? (inCCmd) ]->

sReceiveSimple

{ complexRcpt := complexRcpt + 1 ;

distanceFromStart := dotPos + inCCmd + safetyEnv ; } ;

--- Consume any incoming simple command

sReceiveSimple -[ ipthrSimpleCmd ? (inSCmd) ]-> s2

{ simpleRcpt := simpleRcpt + 1; } ;

--- Check if the complex command is safe and

--- send it if it is safe.

s2 -[ on (distanceFromStart < wallPos) ]-> s4

{ dotPos := dotPos + inCCmd ;

opthrCmd ! (inCCmd); } ;

--- Double-check that the plant is still safe.

s4 -[ on (dotPos < wallPos) ]-> sReceive { aux := 0 ; } ;
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--- If the plant is no longer safe,

--- then the system has failed.

s4 -[ on (dotPos >= wallPos) ]-> fail {aux := 0 ; } ;

--- If the complex command is not safe,

--- send the simple command

s2 -[ on (distanceFromStart >= wallPos) ]-> s3

{ dotPos := dotPos - inSCmd ;

opthrCmd ! (inSCmd) ; } ;

--- Double-check that the plant is still safe.

s3 -[ on (dotPos < wallPos) ]-> sReceive { aux := 0 ; } ;

--- If the plant is no longer safe,

--- then the system has failed.

s3 -[ on (dotPos >= wallPos) ]-> fail {aux := 0 ; } ;

**};

end thrDotDecisionMachine.impl;

--- Simple Controller

thread thrDotSimpleController

extends simplex::thrSimpleController

features

ipthrModelData :

refined to in event data port Behavior::integer;

opthrSCmd :

refined to out event data port Behavior::integer;

end thrDotSimpleController;

thread implementation thrDotSimpleController.impl

properties

Dispatch_Protocol => Periodic;

annex behavior_specification {**

states

s0 : initial state ;

s1 : state ;

state variables

transmissions : Behavior::integer;

simpleCommand : Behavior::integer;

modelData : Behavior::integer;

transitions

--- Send the command and update the

132



--- number of transmissions.

s0 -[on true]-> s1

{ opthrSCmd ! (simpleCommand); } ;

s1 -[ipthrModelData ? (modelData) ]-> s0

{ transmissions := transmissions + 1; } ;

**} ;

end thrDotSimpleController.impl;

--- Complex Controller

thread thrDotComplexController

extends simplex::thrComplexController

features

ipthrModelData :

refined to in event data port Behavior::integer;

opthrCCmd :

refined to out event data port Behavior::integer;

end thrDotComplexController;

thread implementation thrDotComplexController.impl

properties

Dispatch_Protocol => Periodic;

annex behavior_specification {**

states

s0 : initial state ;

s1 : state ;

state variables

cXmit : Behavior::integer;

complexCommand : Behavior::integer;

cModelData : Behavior::integer;

transitions

--- Send the command and update the

--- number of transmissions.

s0 -[on true]-> s1

{ opthrCCmd ! (complexCommand); } ;

s1 -[ipthrModelData ? (cModelData) ]-> s0

{ cXmit := cXmit + 1; } ;

**} ;

end thrDotComplexController.impl;

-----------------------------------

-- HARDWARE

-----------------------------------
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--- Hardware system assembly

system sysRealWorld

features

soptMonVar : out event data port Behavior::integer;

siptCmd : in event data port Behavior::integer;

end sysRealWorld;

system implementation sysRealWorld.impl

subcomponents

idA : process pkgActuator::proActuator ;

idS : process pkgSensor::proSensor ;

idP : process pkgPlant::proPlant ;

connections

event data port siptCmd -> idA.iptCmd ;

event data port idA.optActuation -> idP.iptActuation;

event data port idP.optPhysPhenom -> idS.iptPhysPhenom;

event data port idS.optMonVar -> soptMonVar ;

end sysRealWorld.impl;

--- Actuator

thread thrDotActuator

extends pkgActuator::thrActuator

features

ipthrCmd :

refined to in event data port Behavior::integer ;

opthrActuation :

refined to out event data port Behavior::integer ;

end thrDotActuator;

thread implementation thrDotActuator.impl

properties

Dispatch_Protocol => Aperiodic;

annex behavior_specification {**

states

sReceive : initial state ;

state variables

inRWCmd : Behavior::integer ;

aRecpt : Behavior::integer ;

transitions

--- Receive an incoming command, forward

--- it to the plant

sReceive -[ ipthrCmd ? (inRWCmd) ]-> sReceive
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{ aRecpt := aRecpt + 1 ;

opthrActuation ! (inRWCmd) } ;

**} ;

end thrDotActuator.impl;

--- Plant

thread thrDotPlant extends pkgPlant::thrPlant

features

ipthrActuation :

refined to in event data port Behavior::integer ;

opthrPhysPhenom :

refined to out event data port Behavior::integer ;

end thrDotPlant;

thread implementation thrDotPlant.impl

properties

Dispatch_Protocol => Aperiodic;

annex behavior_specification {**

states

sReceive : initial state;

state variables

inCmd : Behavior::integer ;

realDotPos : Behavior::integer ;

pRecpt : Behavior::integer ;

transitions

--- Receive an incoming command, update

--- the position of the dot, and ‘‘send’’

--- the dot position to the sensor.

sReceive -[ ipthrActuation ? (inCmd) ]-> sReceive

{ pRecpt := pRecpt + 1 ;

realDotPos := realDotPos + inCmd ;

opthrPhysPhenom!(realDotPos) } ;

**} ;

end thrDotPlant.impl;

--- Sensor

thread thrDotSensor extends pkgSensor::thrSensor

features

ipthrPhysPhenom :

refined to in event data port Behavior::integer ;

opthrMonVar :

refined to out event data port Behavior::integer ;
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end thrDotSensor;

thread implementation thrDotSensor.impl

properties

Dispatch_Protocol => Aperiodic;

annex behavior_specification {**

states

sReceive : initial state ;

state variables

inSignal : Behavior::integer ;

sRecpt : Behavior::integer ;

transitions

--- Detect physical phenomenon

-- in the plant.

sReceive -[ ipthrPhysPhenom ? (inSignal) ]-> sReceive

{ sRecpt := sRecpt + 1 ;

opthrMonVar ! (inSignal) } ;

**} ;

end thrDotSensor.impl;

end simplexDotExample;
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F Single-thread example in
AADL

---

--- A simple example demonstrating the connection

--- between AADL and the A2M interpreter.

---

--- The description below is parseable in the OSATE AADL

--- plug-in for Eclipse

---

package pkgSimpleExample

public

--- The entire system.

system sysWhole

features

none ;

end sysWhole;

system implementation sysWhole.impl

subcomponents

idSS: system sysSubsystem.impl;

connections

none ;

end sysWhole.impl;

--- The subsystem .

system sysSubsystem

features

prtEventOut: out event data port Behavior::integer;

end sysSubsystem;

system implementation sysSubsystem.impl

subcomponents
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idSP: process proSimpleProcess.impl;

connections

event data port idSP.prtProcessOut -> prtEventOut;

end sysSubsystem.impl;

--- The process

process proSimpleProcess

features

prtProcessOut: out event data port Behavior::integer;

end proSimpleProcess;

process implementation proSimpleProcess.impl

subcomponents

tidST: thread thrSimpleThread.impl;

connections

event data port tidST.prtThreadOut -> prtProcessOut;

end proSimpleProcess.impl;

--- The thread

thread thrSimpleThread

features

prtThreadOut: out event data port Behavior::integer;

end thrSimpleThread;

thread implementation thrSimpleThread.impl

subcomponents

none ;

connections

none ;

properties

Dispatch_Protocol => periodic;

annex behavior_specification {**

states

s0 : initial state;

s1 : state;

transitions

s0 -[]-> s1 { prtThreadOut!(1); };

**};

end thrSimpleThread.impl;

end pkgSimpleExample;
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G Single-thread example in
A2M

(tomod VERYSIMPLE is including AADL .

--- Declare all the names and ids of things.

ops sysWhole sysSubsystem : -> SystemName [ctor] .

op impl : -> ImplName [ctor] .

op proSimpleProcess : -> ProcessName [ctor] .

ops prtEventOut prtProcessOut prtThreadOut : -> PortId [ctor] .

ops idSS MAIN : -> SystemId [ctor] .

op idSP : -> ProcessId [ctor] .

ops s0 s1 : -> Location [ctor] .

--- Thread id and name

op tidST : -> ThreadId [ctor] .

op thrSimpleThread : -> ThreadName [ctor] .

--- -------------------------------------------------------

--- -------------------------------------------------------

var SI : SystemId .

var PRI : ProcessId .

var TI : ThreadId .

--- The specification

eq system(sysWhole) = none .

eq SI system sysWhole . impl =

< SI : System | features : system(sysWhole),

subcomponents :

( idSS system sysSubsystem . impl ),

connections : none

> .
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--- -------------------------------------------------------

--- The Subsystem

--- -------------------------------------------------------

eq system(sysSubsystem) = (prtEventOut out event data port) .

eq SI system sysSubsystem . impl =

< SI : System | features : system(sysSubsystem),

subcomponents :

( idSP process proSimpleProcess . impl ),

connections :

( idSP . prtProcessOut --> prtEventOut )

> .

--- -------------------------------------------------------

--- The Process

--- -------------------------------------------------------

eq process(proSimpleProcess) =

(prtProcessOut out event data port) .

eq PRI process proSimpleProcess . impl =

< PRI : Process | features : process(proSimpleProcess),

subcomponents :

(tidST thread thrSimpleThread . impl),

connections :

(tidST . prtThreadOut --> prtProcessOut )

> .

--- -------------------------------------------------------

--- The Thread

--- -------------------------------------------------------

eq thread(thrSimpleThread) =

ports (prtThreadOut out event data thread port)

dispatch periodic-dispatch(1) .

eq TI thread thrSimpleThread . impl =

< TI : Thread | features : ports(thread(thrSimpleThread)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrSimpleThread)),

status : completed,

behavior :

(states
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initial: s0 complete: s0 s1

transitions

s0 -[]-> s1 {prtThreadOut ! (1)})

> .

--- -------------------------------------------------------

--- The Whole Thing

--- -------------------------------------------------------

op init : -> GlobalSystem .

eq init = {MAIN system sysWhole . impl} .

endtom)
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H Model-checking the
single-thread example in
A2M
(tomod MODEL-CHECK-SIMPLE is including VERYSIMPLE .

op outputValue : Configuration ~> Bool [frozen (1)] .

eq outputValue

(< MAIN : System |

subcomponents :

(C1:Configuration

< idSS : System |

subcomponents :

(C2:Configuration

< idSP : Process |

subcomponents :

(C3:Configuration

< tidST : Thread |

behavior :

states

current: L:Location

complete: LS:LocationSet

others: LS1:LocationSet

state variables

VAL:Valuation

transitions TS:TransitionSet

>)

>)

>)

>) = L:Location == s1 .

endtom)

(tsearch [1] init =>* {C:Configuration}

such that outputValue(C:Configuration) with no time limit .)
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I The simple dot example in
the A2M

(tomod DOT-SIMPLEX is including AADL .

--- Declare all the names and ids of things.

ops sysSimplex sysSoftware sysRealWorld :

-> SystemName [ctor] .

ops idSS idSRW MAIN : -> SystemId [ctor] .

op impl : -> ImplName [ctor] .

--- Process Names and IDs

op proComplexController : -> ProcessName [ctor] .

op proSimpleController : -> ProcessName [ctor] .

op proDecisionMachine : -> ProcessName [ctor] .

op proPlant : -> ProcessName [ctor] .

op proActuator : -> ProcessName [ctor] .

op proSensor : -> ProcessName [ctor] .

op proModelMachine : -> ProcessName [ctor] .

op idSP : -> ProcessId [ctor] .

op idSC : -> ProcessId [ctor] .

op idCC : -> ProcessId [ctor] .

op idDM : -> ProcessId [ctor] .

op idP : -> ProcessId [ctor] .

op idA : -> ProcessId [ctor] .

op idS : -> ProcessId [ctor] .

op idMM : -> ProcessId [ctor] .

--- System level port names

op siptCmd : -> PortId [ctor] .

op soptCmd : -> PortId [ctor] .

op soptMonVar : -> PortId [ctor] .

op siptMonVar : -> PortId [ctor] .

--- Process level port names

op optSimpleCmd : -> PortId [ctor] .

op iptSimpleCmd : -> PortId [ctor] .
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op optComplexCmd : -> PortId [ctor] .

op iptComplexCmd : -> PortId [ctor] .

op optComplexCmdForSimple : -> PortId [ctor] .

op iptComplexCmdForSimple : -> PortId [ctor] .

op optCmd : -> PortId [ctor] .

op iptCmd : -> PortId [ctor] .

op iptRWCmd : -> PortId [ctor] .

op optActuation : -> PortId [ctor] .

op iptPhysPhenom : -> PortId [ctor] .

op optPhysPhenom : -> PortId [ctor] .

op optMonVar : -> PortId [ctor] .

op iptMonVar : -> PortId [ctor] .

op optSimpleModelData : -> PortId [ctor] .

op iptSimpleModelData : -> PortId [ctor] .

op optComplexModelData : -> PortId [ctor] .

op iptComplexModelData : -> PortId [ctor] .

--- Thread port names.

op opthrSimpleCmd : -> PortId [ctor] .

op ipthrSimpleCmd : -> PortId [ctor] .

op opthrComplexCmd : -> PortId [ctor] .

op ipthrComplexCmd : -> PortId [ctor] .

op opthrComplexCmdForSimple : -> PortId [ctor] .

op ipthrComplexCmdForSimple : -> PortId [ctor] .

op opthrCmd : -> PortId [ctor] .

op ipthrCmd : -> PortId [ctor] .

op ipthrRWCmd : -> PortId [ctor] .

op opthrActuation : -> PortId [ctor] .

op ipthrPhysPhenom : -> PortId [ctor] .

op opthrPhysPhenom : -> PortId [ctor] .

op opthrMonVar : -> PortId [ctor] .

op ipthrMonVar : -> PortId [ctor] .

op opthrSimpleModelData : -> PortId [ctor] .

op ipthrSimpleModelData : -> PortId [ctor] .

op opthrComplexModelData : -> PortId [ctor] .

op ipthrComplexModelData : -> PortId [ctor] .

--- State names

op s0 : -> Location [ctor] .

op s1 : -> Location [ctor] .

op sReceive : -> Location [ctor] .

op sReceiveSimple : -> Location [ctor] .
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op s2 : -> Location [ctor] .

op s3 : -> Location [ctor] .

op s4 : -> Location [ctor] .

op fail : -> Location [ctor] .

--- Thread id and name

op tidST : -> ThreadId [ctor] .

op tidSC : -> ThreadId [ctor] .

op tidCC : -> ThreadId [ctor] .

op tidDM : -> ThreadId [ctor] .

op tidP : -> ThreadId [ctor] .

op tidA : -> ThreadId [ctor] .

op tidS : -> ThreadId [ctor] .

op tidOS : -> ThreadId [ctor] .

op tidCOS : -> ThreadId [ctor] .

op tidMM : -> ThreadId [ctor] .

op thrComplexController : -> ThreadName [ctor] .

op thrSimpleController : -> ThreadName [ctor] .

op thrDecisionMachine : -> ThreadName [ctor] .

op thrPlant : -> ThreadName [ctor] .

op thrActuator : -> ThreadName [ctor] .

op thrSensor : -> ThreadName [ctor] .

op thrModelMachine : -> ThreadName [ctor] .

--- Variables

op cModelData : -> IntVarId [ctor] .

op mmXmit : -> IntVarId [ctor] .

op modelData : -> IntVarId [ctor] .

op simpleMonVar : -> IntVarId [ctor] .

op pRecpt : -> IntVarId [ctor] .

op simpleRcpt : -> IntVarId [ctor] .

op complexRcpt : -> IntVarId [ctor] .

op cXmit : -> IntVarId [ctor] .

op transmissions : -> IntVarId [ctor] .

op receptions : -> IntVarId [ctor] .

op simpleCommand : -> IntVarId [ctor] .

op complexCommand : -> IntVarId [ctor] .

op inCCmd : -> IntVarId [ctor] .

op inSCmd : -> IntVarId [ctor] .

op inCmd : -> IntVarId [ctor] .

op inRWCmd : -> IntVarId [ctor] .

op aRecpt : -> IntVarId [ctor] .
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op safetyEnv : -> IntVarId [ctor] .

op dotPos : -> IntVarId [ctor] .

op realDotPos : -> IntVarId [ctor] .

op wallPos : -> IntVarId [ctor] .

op distanceFromStart : -> IntVarId [ctor] .

op aux : -> IntVarId [ctor] .

op inSignal : -> IntVarId [ctor] .

op sRecpt : -> IntVarId [ctor] .

--- -------------------------------------------------------

--- -------------------------------------------------------

var SI : SystemId . var PRI : ProcessId . var TI : ThreadId .

--- The specification

eq system(sysSimplex) = none .

eq SI system sysSimplex . impl =

< SI : System | features : system(sysSimplex),

subcomponents :

( idSS system sysSoftware . impl )

( idSRW system sysRealWorld . impl ) ,

connections :

( idSS . soptCmd --> idSRW . siptCmd ) ;

( idSRW . soptMonVar --> idSS . siptMonVar ) > .

--- --------------------------------------------------------

--- The Software subsystem

--- --------------------------------------------------------

eq system(sysSoftware) =

(soptCmd out event data port)

(siptMonVar in event data port) .

eq SI system sysSoftware . impl =

< SI : System | features : system(sysSoftware),

subcomponents :

( idSC process proSimpleController . impl )

( idCC process proComplexController . impl )

( idDM process proDecisionMachine . impl )

( idMM process proModelMachine . impl ) ,

connections :

( siptMonVar --> idMM . iptMonVar ) ;
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( idMM . optSimpleModelData -->

idSC . iptSimpleModelData) ;

( idMM . optComplexModelData -->

idCC . iptComplexModelData) ;

( idSC . optSimpleCmd --> idDM . iptSimpleCmd ) ;

( idCC . optComplexCmd -->

idDM . iptComplexCmd ) ;

( idCC . optComplexCmdForSimple -->

idSC . iptComplexCmdForSimple) ;

( idDM . optCmd --> soptCmd ) > .

--- --------------------------------------------------------

--- The Modeling Machine Process

--- --------------------------------------------------------

eq process(proModelMachine) =

(iptMonVar in event data port)

(optSimpleModelData out event data port)

(optComplexModelData out event data port) .

eq PRI process proModelMachine . impl =

< PRI : Process | features : process(proModelMachine),

subcomponents :

(tidMM thread thrModelMachine . impl) ,

connections :

(iptMonVar --> tidMM . ipthrMonVar ) ;

(tidMM . opthrSimpleModelData -->

optSimpleModelData)

(tidMM . opthrComplexModelData -->

optComplexModelData) > .

--- ----------------------------------------------------------

--- The Modeling Machine Thread

--- ----------------------------------------------------------

eq thread(thrModelMachine) =

ports (ipthrMonVar in event data thread port)

(opthrSimpleModelData out event data thread port)

(opthrComplexModelData out event data thread port)

dispatch aperiodic-dispatch .

eq TI thread thrModelMachine . impl =

< TI : Thread | features : ports(thread(thrModelMachine)),

subcomponents : none,

connections : none,
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properties : dispatch(thread(thrModelMachine)),

status : completed,

behavior :

(states

initial: s0 complete: s0

state variables

(simpleMonVar |-> 0)

(mmXmit |-> 0)

transitions

--- Receive the monitored variable

( s0 -[ ipthrMonVar ? (simpleMonVar) ]-> s0

{ (mmXmit := mmXmit + 1) ;

(opthrSimpleModelData ! (simpleMonVar)) ;

(opthrComplexModelData ! (simpleMonVar)) } )

)

> .

--- ---------------------------------------------------------

--- The Simple Controller Process

--- ---------------------------------------------------------

eq process(proSimpleController) =

(optSimpleCmd out event data port)

(iptComplexCmdForSimple in event data port)

(iptSimpleModelData in event data port) .

eq PRI process proSimpleController . impl =

< PRI : Process | features :

process(proSimpleController),

subcomponents :

(tidSC thread thrSimpleController . impl) ,

connections :

(tidSC . opthrSimpleCmd --> optSimpleCmd ) ;

(iptSimpleModelData -->

tidSC . ipthrSimpleModelData ) ;

(iptComplexCmdForSimple -->

tidSC . ipthrComplexCmdForSimple)

> .

--- --------------------------------------------------------

--- The Simple Controller Thread

--- --------------------------------------------------------

eq thread(thrSimpleController) =
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ports (opthrSimpleCmd out event data thread port)

(ipthrSimpleModelData in event data thread port)

(ipthrComplexCmdForSimple in event data thread port)

dispatch periodic-dispatch(1) .

eq TI thread thrSimpleController . impl =

< TI : Thread | features :

ports(thread(thrSimpleController)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrSimpleController)),

status : completed,

behavior :

(states

initial: s0 complete: s0 s1

state variables

(transmissions |-> 0)

(simpleCommand |-> 0)

(modelData |-> 0)

transitions

--- Send the command and update

--- the number of transmissions.

( s0 -[ ]-> s1 {

(opthrSimpleCmd ! (simpleCommand) ) } ) ;

( s1 -[ipthrSimpleModelData ? (modelData) ]-> s0 {

(transmissions := transmissions + 1) } ) ) > .

--- ------------------------------------------------------------

--- The Complex Controller Process

--- ------------------------------------------------------------

eq process(proComplexController) =

(optComplexCmd out event data port)

(optComplexCmdForSimple out event data port)

(iptComplexModelData in event data port) .

eq PRI process proComplexController . impl =

< PRI : Process | features :

process(proComplexController),

subcomponents :

(tidCC thread thrComplexController . impl),

connections :

(tidCC . opthrComplexCmd -->

optComplexCmd ) ;
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(tidCC . opthrComplexCmdForSimple -->

optComplexCmdForSimple ) ;

(iptComplexModelData -->

tidCC . ipthrComplexModelData)

> .

--- ------------------------------------------------------------

--- The Complex Controller Thread

--- ------------------------------------------------------------

eq thread(thrComplexController) =

ports (opthrComplexCmd out event data thread port)

(ipthrComplexModelData in event data thread port)

(opthrComplexCmdForSimple out event data thread port)

dispatch periodic-dispatch(1) .

eq TI thread thrComplexController . impl =

< TI : Thread | features :

ports(thread(thrComplexController)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrComplexController)),

status : completed,

behavior :

(states

initial: s0 complete: s0 s1

state variables

(cXmit |-> 0)

(complexCommand |-> 1)

(cModelData |-> 0)

transitions

(s0 -[ ]-> s1

{ (opthrComplexCmd ! (complexCommand)) ;

(opthrComplexCmdForSimple !

(complexCommand)) }) ;

(s1 -[ ipthrComplexModelData ? (cModelData) ]-> s0

{ (cXmit := cXmit + 1) } ) ) > .

--- -------------------------------------------------------

--- The Decision Machine Process

--- -------------------------------------------------------

eq process(proDecisionMachine) =

(iptSimpleCmd in event data port)

(iptComplexCmd in event data port)
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(optCmd out event data port) .

eq PRI process proDecisionMachine . impl =

< PRI : Process | features : process(proDecisionMachine),

subcomponents :

(tidDM thread thrDecisionMachine . impl),

connections :

(iptSimpleCmd --> tidDM . ipthrSimpleCmd ) ;

(iptComplexCmd -->

tidDM . ipthrComplexCmd ) ;

(tidDM . opthrCmd --> optCmd ) > .

--- ------------------------------------------------------

--- The Decision Machine Thread

--- ------------------------------------------------------

eq thread(thrDecisionMachine) =

ports

(ipthrSimpleCmd in event data thread port)

(ipthrComplexCmd in event data thread port)

(opthrCmd out event data thread port)

dispatch aperiodic-dispatch .

eq TI thread thrDecisionMachine . impl =

< TI : Thread | features :

ports(thread(thrDecisionMachine)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrDecisionMachine)),

status : completed,

behavior :

(states

initial: sReceive complete: sReceive

state variables

(aux |-> 0)

(inSCmd |-> 0)

(inCCmd |-> 0)

(simpleRcpt |-> 0)

(complexRcpt |-> 0)

(distanceFromStart |-> 0)

(safetyEnv |-> 2)

(dotPos |-> 0)

(wallPos |-> 5)

transitions
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--- Consume any incoming complex command. Conduct the safety

--- check on the incoming complex command.

--- Assess how far from a starting point of 0 the dot is,

--- plus a safety envelope.

(sReceive -[ ipthrComplexCmd ? (inCCmd) ]-> sReceiveSimple

{ (complexRcpt := complexRcpt + 1) ;

(distanceFromStart := dotPos + inCCmd + safetyEnv)

} ) ;

--- Consume any incoming simple command

(sReceiveSimple -[ ipthrSimpleCmd ? (inSCmd) ]-> s2

{ (simpleRcpt := simpleRcpt + 1) } ) ;

--- Check if the complex command is safe and

--- send it if it is safe.

(s2 -[ on (distanceFromStart < wallPos) ]-> s4

{ (dotPos := dotPos + inCCmd) ;

(opthrCmd ! (inCCmd)) } ) ;

--- Double-check that the plant is still safe.

(s4 -[ on (dotPos < wallPos) ]-> sReceive { aux := 0 } ) ;

--- If the plant is no longer safe, then the system has failed.

(s4 -[ on (dotPos >= wallPos) ]-> fail {aux := 0 } );

--- If the complex command is not safe, send the simple command

(s2 -[ on (distanceFromStart >= wallPos) ]-> s3

{ (dotPos := dotPos - inSCmd) ;

(opthrCmd ! (inSCmd))

} ) ;

--- Double-check that the plant is still safe.

(s3 -[ on (dotPos < wallPos) ]-> sReceive { aux := 0 } ) ;

--- If the plant is no longer safe, then the system has failed.

(s3 -[ on (dotPos >= wallPos) ]-> fail {aux := 0 } )

) > .

--- ----------------------------------------------------------

--- ----------------------------------------------------------

--- The Hardware subsystem

--- ----------------------------------------------------------

eq system(sysRealWorld) =

(siptCmd in event data port)

(soptMonVar out event data port) .
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eq SI system sysRealWorld . impl =

< SI : System | features : system(sysRealWorld) ,

subcomponents :

( idP process proPlant . impl )

( idS process proSensor . impl )

( idA process proActuator . impl ) ,

connections :

( siptCmd --> idA . iptRWCmd ) ;

( idA . optActuation --> idP . iptCmd ) ;

( idP . optPhysPhenom --> idS . iptPhysPhenom ) ;

( idS . optMonVar --> soptMonVar ) > .

--- -------------------------------------------------------

--- The Sensor Process

--- -------------------------------------------------------

eq process(proSensor) =

(iptPhysPhenom in event data port)

(optMonVar out event data port) .

eq PRI process proSensor . impl =

< PRI : Process | features : process(proSensor),

subcomponents :

(tidS thread thrSensor . impl),

connections :

(iptPhysPhenom --> tidS . ipthrPhysPhenom) ;

(tidS . opthrMonVar --> optMonVar ) > .

--- -------------------------------------------------------

--- The Sensor Thread

--- -------------------------------------------------------

eq thread(thrSensor) =

ports

(ipthrPhysPhenom in event data thread port)

(opthrMonVar out event data thread port)

dispatch aperiodic-dispatch .

eq TI thread thrSensor . impl =

< TI : Thread | features : ports(thread(thrSensor)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrSensor)),

status : completed,

behavior :
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(states

initial: sReceive complete: sReceive

state variables

(inSignal |-> 0)

(sRecpt |-> 0)

transitions

--- Detect physical phenomenon in the plant.

(sReceive -[ ipthrPhysPhenom ? (inSignal) ]-> sReceive

{ (sRecpt := sRecpt + 1) ;

(opthrMonVar ! (inSignal)) } ) ) > .

--- -------------------------------------------------------

--- The Actuator Process

--- -------------------------------------------------------

eq process(proActuator) =

(iptRWCmd in event data port)

(optActuation out event data port) .

eq PRI process proActuator . impl =

< PRI : Process | features : process(proActuator) ,

subcomponents :

(tidA thread thrActuator . impl) ,

connections :

(iptRWCmd --> tidA . ipthrRWCmd ) ;

(tidA . opthrActuation --> optActuation) > .

--- -------------------------------------------------------

--- The Actuator Thread

--- -------------------------------------------------------

eq thread(thrActuator) =

ports

(ipthrRWCmd in event data thread port)

(opthrActuation out event data thread port)

dispatch aperiodic-dispatch .

eq TI thread thrActuator . impl =

< TI : Thread | features : ports(thread(thrActuator)) ,

subcomponents : none,

connections : none,

properties : dispatch(thread(thrActuator)) ,

status : completed,

behavior :

(states
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initial: sReceive complete: sReceive

state variables

(inRWCmd |-> 0)

(aRecpt |-> 0)

transitions

--- Receive an incoming command, forward it along to the plant

(sReceive -[ ipthrRWCmd ? (inRWCmd) ]-> sReceive

{ (aRecpt := aRecpt + 1) ;

(opthrActuation ! (inRWCmd))

} )

) > .

--- -------------------------------------------------------

--- The Plant Process

--- -------------------------------------------------------

eq process(proPlant) =

(iptCmd in event data port)

(optPhysPhenom out event data port) .

eq PRI process proPlant . impl =

< PRI : Process | features : process(proPlant),

subcomponents :

(tidP thread thrPlant . impl),

connections :

(iptCmd --> tidP . ipthrCmd ) ;

(tidP . opthrPhysPhenom --> optPhysPhenom) > .

--- ----------------------------------------------------

--- The Plant Thread

--- ----------------------------------------------------

eq thread(thrPlant) =

ports

(ipthrCmd in event data thread port)

(opthrPhysPhenom out event data thread port)

dispatch aperiodic-dispatch .

eq TI thread thrPlant . impl =

< TI : Thread | features : ports(thread(thrPlant)),

subcomponents : none,

connections : none,

properties : dispatch(thread(thrPlant)),

status : completed ,

behavior :
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(states

initial: sReceive complete: sReceive

state variables

(inCmd |-> 0)

(realDotPos |-> 0)

(pRecpt |-> 0)

transitions

--- Receive an incoming command,

--- update the position of the dot, and

--- "send" the dot position to the sensor.

(sReceive -[ ipthrCmd ? (inCmd) ]-> sReceive

{ (pRecpt := pRecpt + 1) ;

(realDotPos := realDotPos + inCmd) ;

(opthrPhysPhenom ! (realDotPos)) } ) ) > .

--- --------------------------------------------------------

--- The Whole Thing

--- --------------------------------------------------------

op init : -> GlobalSystem .

eq init = {MAIN system sysSimplex . impl} .

endtom)
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J Model-checking the simple
dot example in A2M

(tomod MODEL-CHECK-DOT-SIMPLEX is including DOT-SIMPLEX .

op crashing : Configuration ~> Bool [frozen (1)] .

eq crashing ( < MAIN : System |

subcomponents :

(C1:Configuration

< idSRW : System |

subcomponents :

(C2:Configuration

< idP : Process |

subcomponents :

(C3:Configuration

< tidP : Thread |

behavior :

states

current: L:Location

complete: LS:LocationSet

others: LS1:LocationSet

state variables

VAL:Valuation

transitions TS:TransitionSet

>)

>)

>)

>) = L:Location == crash .

endtom)

(tsearch [1] init =>* {C:Configuration}

such that crashing(C:Configuration) with no time limit .)
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