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W3Bop, U3: [oktopcka aucepTauvja ce 6aBu npoyyaBakeM KBaHTUTATMBHMX acnekata aTpubyta
ob6nuka MorogHUX 3a HyMepUuKy kapakTepusauujy, TO jecT Jeckpuntopa obnvka, kao u
Teopujom HeoppeheHocT, noce6HO Teopujom hasu CKynoBa, U HUXOBOM NMPUMEHOM Yy
o6paau cnvke. OpUrMHantu AONpUHOCK M pe3ynTaTi Te3e MOry ce NPUPOAHO NoAEeNUTU
y ABe rpyne, y cknafy ca npuUcTynoM U MeTOAONOrMjoM koja je kopuiheHa 3a HsMXOBO
no6ujarse. MpBa rpyna fonpuHoca OAHOCK Ce Ha yBofjerwe HOBUX Aeckpuntopa obnuka
(wecToyraoHocT W basn kBagpaTHOCTM) Kao U oaroBapajyhux mepa Koje Hymepuyku
oLieryjy Yy koM 06umy pasmaTtpaHu obnvk 3a4oBorbaBa pasmaTpaHa CBOjCTBaA. YBeAeHe
Mepe Cy NpUpoAHO AeduHuUcaHe, Teopujckn Ao6po 3acHoBaHe W 3afoBorbaBajy BehuHy
NoXerbHUX CBoOjcTaBa kKoje cBaka [obpo pAeduHucaHa mepa obnuka Tpeba Aa
3agoBorbaBa. [OMEHUMO Heke of HUX: 06e Mepe y3uMajy BPeAHOCTW U3 MHTepBana
(0,1] n pocTky Hajsehy Moryhy BpeaHOCT 1 ako v camo ako je obnuk koju ce nocmatpa
LwecToyrao, ogHOCHO ha3n KBagpaT; He MOCTOjU OBNMUK He-Hyna MoBpLUMHE uYunja je
MN3MepeHa LLeCTOyraoHoCT, OAHOCHO ha3u KBaapaTHOCT jegHaka O; obe yBeaeHe mepe
Cy WHBapuWjaHTHe y OIHOCY Ha TpaHcdopmauuje CrMYHOCTY; U Aajy pesynTtaTe Koju cy y
cKknagy ca Teopujcku [OoKasaHWM pesynTaTuMma, kao W IbyACKOM nepuenuujom u
ouyekvBatbuMa. BpOjHM EKCMEPUMEHTU Ha CUHTETUYKAM U pearHuMm npumepuma
NpuUKkasaHu Cy y Luiby UIycTpoBaka TEOPWjCKM [IOKa3aHWX pas3maTpara U npyxara
jacHujer yBupa y mnoHallawe yBeAeHWX Mepa. HbuxoBa NpegHOCT U KOPUCHOCT
WNYCTPOBaHW Cy Yy pasNWuMTMM 3afauvma npenosHaBaka W Knacudukauuje cnvka
objekata HEKONWKO MO3HATUX W Hajuelwhe kopuwheHux 6asa cnuka. Mopepn Tora,
[IOKTOpCKa Tesa CafpXu UCTPaxuvBatba Be3aHa 3a NpuUMeHy Teopuje HeogpeheHocTu, y
yXKeM cMmucry Teopuje hasn CKynoBa, y pasnnmuuTuM 3agauuma obpaae crivike 1 aHanuse
obnuka. Pasnukyjemo 3apaTke Koju ce oAHOCe Ha u3fBajate kapaktepucTuka obnuka u
OHe KOju ce ofHoce Ha moGorbluatse MepdopMaHcu PasfMuUTUX TexHuka obpage u
aHanuse cnuke. LLITo ce Tu4e npee rpyne 3aaataka, 6aBuMo ce npUMeHoM Teopuje dasu
ckynosa y 3ajauuma feduHucara HOBOT Aeckpuntopa asu obnuka, HaseaH asu
KBaApaTHOCT, U Mepera Konuko je thasu kBagpaTaH nocmaTtpanu asu obnuk. Y apyroj
rpynu 3apataka 6aBMMO Cce  UCTp no6ort nepgopmaHcn oueHe
TpaHcopmaLmje Cnuke eyknuackum pactojakuma y Tpu aumensuje (30 EAT), kao un
curHaType HenmpekugHor obnuka y [Be [MMeH3Vje 3acHOBaHe Ha pacTojaiy of
ueHTpouaa obnuka. OBO nocnefwe ce MocebHO ornefa y MOCTUTHYTOj TAaYHOCTU U
NpeLmn3HOCTH oLeHe, noBehaHoj MHBapUjaHTHOCTW y OAHOCY Ha poTauujy U TpaHcrauujy
objekTa, kao 1 pobYCTHOCTU y NPUCYCTBY LymMa U HeoapeheHoCTU koje cy nocneauua
HecaBplueHocTH ypeRaja unu ycnoea cHUMama.

Mocneawu pesyntatu ce Takofle ofHOCE W Ha ApYry rpyny OpuriHanmHWX AonpuHoca
Tese KOjU Cy MOTMBMCAHW YMHEHWLOM Aa aHanusa obnuKa TpaguuuMoHanHo
npeTnocTaerba Aa cy o6jekTu Ha CrMLM NPEeTXOAHO jefJHO3HAYHO W jaCHO U3ABOjEHU M3
cnuke. TakBo u3gBajate objekata ce 0BMYHO MNocTwke y npouecy jacHe (To jecT
61HapHe) cermeHTaLmje opUrMHarHe crvke rae ce ofrnyka o NPUNagHoOCTM Tauke objekTy
Ha CMUUM [OOHOCK Ha jeAHO3Ha4YaH W HEeABOCMMUCNEHW HauvH. MeRytum, ycnen
HeCaBpLUEHOCTV ycrioBa Wi ypefhaja 3a CHUMare, MPUCYCTBA LIyMa U PasfMunTnx
BPCTa HEMPELM3HOCTN (Ha NpuUMep HerocTojake MpeLusHe rpaHnLe oBjekTa Unu jacHnux
rpaHvua namely camux objekata, rpeluke y pavyHawy, HegocTaTka uHdopmaumja, UTa.),
MOry ce MojaBUTU pasfUYUTA HUBOWM HECWUIypHOCTW U HeogpefeHocTu y mnpouecy
[lOHOLLIeH-a OAMyKe y Be3n ca npunapHoluhy Tayke cnvke. OBo je noce6HO BUArbMBO Y
cnyyajy auckpetusaumje (TO jeCT Y3OpKOBakba) HenpekuaHoOr [OMeHa Cruke kapa
eMeMeHT Cruke, MNpuapyXeH ofrosapajyhoj Tauku y3opka AOMeHa, Moxe 6uTu
[leNMMUYHO MOKPUBEH Ca BULLe objekaTa Ha crmuun. Y TOM CMUCIY, UMamo a OBa BpCTa
cerMeHTauMje MoXe NOTEHUMjanHO AOBECTW [0 MOrpeluHe OAafnyke O MpUnagHoOCTU
Tayaka Cnvke, a camum TUM W HenoBpaTHor rybutka nHopmaumja o o6jektma Koju ce
Ha cnuuy Hanase. To MPoW3nasn U3 YMkEeHWULE Aa CerMeHTauuja cruke u3BedeHa Ha
0Baj HauYMH He [03BOSbaBa Aa Tayka Crvke Moxe AeNUMUYHO Y ogpeheHoM oBumy GuTK
4naH nocmartpaHor objekTa Ha Cnuuu, WTO Aarbe BOAW MOTEHLMjanHOM pU3UKy Ja Tauke
[enMMUYHO cappxaHe y o6jekTy npe cermeHTauuje Hehe GUTW npuapyxeHe o6jekTy
HakKoH cermeHTaumje. MehyTum, ako ce ymecTo OWHapHe cermMeHTauvje W3BpLIM
cerMeHTauuja Crvke rge ce OAnyka O MpUNagHOCTV Tauke Crvke OGjeKTy AOHOCK Ha
HauuH Kkoju omoryhaBa fga Tayka Moxe AeNUMUYHO 6UTK YnaH objekta y Hekom obumy,
Tafla ce AoHOLEe GUHapHE OAMNyKe O YNaHCTBO Tauke OBjeKTy Ha crnuuu Moxe nabehu
y OBOM paHOM kopaky aHanuse. To garbe pesyntupa Aa ce NoTeHUMjanHo Benuka
KonuuMHa uHdpopmaumja o objekTUMa MPUCYTHAM Ha CIULM MOXe CayyBaTu HaKOH
cermeHTauuje, 1 KOpUCTUTK y cnegehum kopauuma aHanuse. C TuM y Beau, of noce6Hor
VHTepeca 3a Hac jecTe cneuujanHa BpcTa hasy CermeHTauuje Crnuke, cermeHtauuvja
3acHOBaHa Ha MOKPUBEHOCTW eneMeHaTa Crnuke, koja kao pesyntat obesbefyje dasu
OMrUTanHy penpeseHTauMjy Chvke TAe je BpedHOCT YNaHCTBa AoferbeHa CBakoM
eneMeHTY MpomnopLMOHariia Herosoj penaTuBHOj MOKPUBEHOCTU HENPEKUAHUM 0GjeKTOM
Ha opurMHanHoj cnuuu. Y oBoj Tean 6aBMMO ce UCTpaxuBaweM Mofena aurntanusaumje
NOKPUBEHOCTU KOjU Mpyxa OBakBy BPCTY penpeseHTauujy Cruke v npecTaBrbamo Kako
ce mory noctuhu 3HavajHa noborblarba y oueHu 31 EAT, kao 1 curHatype HenpekmaHor
obnuka 3acHOBaHe Ha pacTojaky Of] LieHTpouaa, ako cy MHopmaumje o NOKPUMBEHOCTM
A0CTYNHe Y OBO] penpesexTauuii cvke pasMaTpare Ha oarosapajyiv Hauut
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Abstract, AB:

The doctoral thesis deals with the study of quantitative aspects of shape attributes
suitable for numerical characterization, i.e., shape descriptors, as well as the theory of
uncertainty, particularly the theory of fuzzy sets, and their application in image
processing. The original contributions and results of the thesis can be naturally divided
into two groups, in accordance with the approaches used to obtain them. The first group
of contributions relates to introducing new shape descriptors (of hexagonality and fuzzy
squareness) and associated measures that evaluate to what extent the shape considered
satisfies these properties. The introduced measures are naturally defined, theoretically
well-founded, and satisfy most of the desirable properties expected to be satisfied by
each well-defined shape measure. To mention some of them: they both range through
(0,1] and achieve the largest possible value 1 if and only if the shape considered is a
hexagon, respectively a fuzzy square; there is no non-zero area shape with the measured
hexagonality or fuzzy squareness equal to 0; both introduced measures are invariant to
similarity transformations; and provide results that are consistent with the theoretically
proven results, as well as human perception and expectation. Numerous experiments on
synthetic and real examples are shown aimed to illustrate theoretically proven
considerations and to provide clearer insight into the behaviour of the introduced shape
measures. Their advantages and applicability are illustrated in various tasks of
recognizing and classifying objects images of several well-known and most frequently
used image datasets. Besides, the doctoral thesis contains research related to the
application of the theory of uncertainty, in the narrower sense fuzzy set theory, in the
different tasks of image processing and shape analysis. We distinguish between the tasks
relating to the extraction of shape features, and those relating to performance
improvement of different image processing and image analysis techniques. Regarding the
first group of tasks, we deal with the application of fuzzy set theory in the tasks of
introducing new fuzzy shape-based descriptor, named fuzzy squareness, and measuring
how much fuzzy square is given fuzzy shape. In the second group of tasks, we deal with
the study of improving the performance of estimates of both the Euclidean distance
transform in three dimensions (3D EDT) and the centroid distance signature of shape in
two dimensions. Performance improvement is particularly reflected in terms of achieved
accuracy and precision, increased invariance to geometrical transformations (e.g.,
rotation and translation), and robustness in the presence of noise and uncertainty
resulting from the imperfection of devices or imaging conditions.

The latter also refers to the second group of the original contributions and results of the
thesis. It is motivated by the fact that the shape analysis traditionally assumes that the
objects appearing in the image are previously uniquely and crisply extracted from the
image. This is usually achieved in the process of sharp (i.e., binary) segmentation of the
original image where a decision on the membership of point to an imaged object is made
in a sharp manner. Nevertheless, due to the imperfections of imaging conditions or
devices, the presence of noise, and various types of imprecision (e.g., lack of precise
object boundary or clear boundaries between the objects, errors in computation, lack of
information, etc.), different levels of uncertainty and vagueness in the process of making
a decision regarding the membership of image point may potentially occur. This is
particularly noticeable in the case of discretization (i.e., sampling) of continuous image
domain when a single image element, related to corresponding image sample point, is
covered by multiple objects in an image. In this respect, it is clear that this type of
segmentation can potentially lead to a wrong decision on the membership of image
points, and consequently irreversible information loss about the imaged objects. This
stems from the fact that image segmentation performed in this way does not permit that
the image point may be a member to a particular imaged object to some degree, further
leading to the potential risk that points partially contained in the object before
segmentation will not be assigned to the object after segmentation. However, if instead of
binary segmentation, it is performed segmentation where a decision about the
membership of image point is made in a gradual rather than crisp manner, enabling that
point may be a member to an object to some extent, then making a sharp decision on the
membership can be avoided at this early analysis step. This further leads that potentially
a large amount of object information can be preserved after segmentation and used in the
following analysis steps. In this regard, we are interested in one specific type of fuzzy
segmentation, named coverage image segmentation, resulting in fuzzy digital image
representation where membership value assigned to each image element is proportional
to its relative coverage by a continuous object present in the original image. In this thesis,
we deal with the study of coverage digitization model providing coverage digital image
representation and present how significant improvements in estimating 3D EDT, as well
as the centroid distance signature of continuous shape, can be achieved, if the coverage
information available in this type of image representation is appropriately considered.
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Abstract

The doctoral thesis deals with the study of quantitative aspects of shape attributes
suitable for numerical characterization, i.e., shape descriptors, as well as the theory
of uncertainty, particularly the theory of fuzzy sets, and their application in image pro-
cessing. The original contributions and results of the thesis can be naturally divided
into two groups, in accordance with the approaches used to obtain them. The first
group of contributions relates to introducing new shape descriptors (of hexagonality
and fuzzy squareness) and associated measures that evaluate to what extent the shape
considered satisfies these properties. The introduced measures are naturally defined,
theoretically well-founded, and satisfy most of the desirable properties expected to be
satisfied by each well-defined shape measure. To mention some of them: they both
range through (0, 1] and achieve the largest possible value 1 if and only if the shape
considered is a hexagon, respectively a fuzzy square; there is no non-zero area shape
with the measured hexagonality or fuzzy squareness equal to 0; both introduced mea-
sures are invariant to similarity transformations; and provide results that are consistent
with the theoretically proven results, as well as human perception and expectation.
Numerous experiments on synthetic and real examples are shown aimed to illustrate
theoretically proven considerations and to provide clearer insight into the behaviour
of the introduced shape measures. Their advantages and applicability are illustrated
in various tasks of recognizing and classifying objects images of several well-known
and most frequently used image datasets. Besides, the doctoral thesis contains re-
search related to the application of the theory of uncertainty, in the narrower sense
fuzzy set theory, in the different tasks of image processing and shape analysis. We
distinguish between the tasks relating to the extraction of shape features, and those
relating to performance improvement of different image processing and image anal-
ysis techniques. Regarding the first group of tasks, we deal with the application of
fuzzy set theory in the tasks of introducing new fuzzy shape-based descriptor, named
fuzzy squareness, and measuring how much fuzzy square is given fuzzy shape. In the
second group of tasks, we deal with the study of improving the performance of esti-
mates of both the Euclidean distance transform in three dimensions (3D EDT) and the
centroid distance signature of shape in two dimensions. Performance improvement is



ii

particularly reflected in terms of achieved accuracy and precision, increased invari-
ance to geometrical transformations (e.g., rotation and translation), and robustness in
the presence of noise and uncertainty resulting from the imperfection of devices or
imaging conditions.

The latter also refers to the second group of the original contributions and results
of the thesis. It is motivated by the fact that the shape analysis traditionally assumes
that the objects appearing in the image are previously uniquely and crisply extracted
from the image. This is usually achieved in the process of sharp (i.e., binary) seg-
mentation of the original image where a decision on the membership of point to an
imaged object is made in a sharp manner. Nevertheless, due to the imperfections of
imaging conditions or devices, the presence of noise, and various types of imprecision
(e.g., lack of precise object boundary or clear boundaries between the objects, errors
in computation, lack of information, etc.), different levels of uncertainty and vague-
ness in the process of making a decision regarding the membership of image point
may potentially occur. This is particularly noticeable in the case of discretization
(i.e., sampling) of continuous image domain when a single image element, related to
corresponding image sample point, is covered by multiple objects in an image. In
this respect, it is clear that this type of segmentation can potentially lead to a wrong
decision on the membership of image points, and consequently irreversible informa-
tion loss about the imaged objects. This stems from the fact that image segmentation
performed in this way does not permit that the image point may be a member to a par-
ticular imaged object to some degree, further leading to the potential risk that points
partially contained in the object before segmentation will not be assigned to the ob-
ject after segmentation. However, if instead of binary segmentation, it is performed
segmentation where a decision about the membership of image point is made in a
gradual rather than crisp manner, enabling that point may be a member to an object
to some extent, then making a sharp decision on the membership can be avoided at
this early analysis step. This further leads that potentially a large amount of object
information can be preserved after segmentation and used in the following analysis
steps. In this regard, we are interested in one specific type of fuzzy segmentation,
named coverage image segmentation, resulting in fuzzy digital image representation
where membership value assigned to each image element is proportional to its rela-
tive coverage by a continuous object present in the original image. In this thesis, we
deal with the study of coverage digitization model providing coverage digital image
representation and present how significant improvements in estimating 3D EDT, as
well as the centroid distance signature of continuous shape, can be achieved, if the
coverage information available in this type of image representation is appropriately
considered.



Rezime

Doktorska disertacija se bavi proucavanjem kvantitativnih aspekata atributa oblika
pogodnih za numericku karakterizaciju, to jest deskriptora oblika, kao i teorijom
neodredenosti, posebno teorijom fazi skupova, i njihovom primenom u obradi slike.
Originalni doprinosi i rezultati teze mogu se prirodno podeliti u dve grupe, u skladu sa
pristupom i metodologijom koja je koriS¢ena za njihovo dobijanje. Prva grupa dopri-
nosa odnosi se na uvodenje novih deskriptora oblika (Sestougaonosti i fazi kvadrat-
nosti) kao i odgovarajuéih mera koje numericki ocenjuju u kom obimu razmatrani
oblik zadovoljava razmatrana svojstva. Uvedene mere su prirodno definisane, teori-
jski dobro zasnovane i zadovoljavaju veéinu poZeljnih svojstava koje svaka dobro
definisana mera oblika treba da zadovoljava. Pomenimo neke od njih: obe mere uzi-
maju vrednosti iz intervala (0, 1] i dostiZu najve¢u mogucu vrednost 1 ako i samo ako
je oblik koji se posmatra Sestougao, odnosno fazi kvadrat; ne postoji oblik ne-nula
povrsine ¢ija je izmerena Sestougaonost, odnosno fazi kvadratnost jednaka O; obe uve-
dene mere su invarijantne u odnosu na transformacije sli¢nosti; i daju rezultate koji
su u skladu sa teorijski dokazanim rezultatima, kao i ljudskom percepcijom i oceki-
vanjima. Brojni eksperimenti na sinteti¢kim i realnim primerima prikazani su u cilju
ilustrovanja teorijski dokazanih razmatranja i pruZanja jasnijeg uvida u ponaSanje
uvedenih mera. Njihova prednost i korisnost ilustrovani su u razliitim zadacima
prepoznavanja i klasifikacije slika objekata nekoliko poznatih i najcesc¢e koris¢enih
baza slika. Pored toga, doktorska teza sadrZi istraZivanja vezana za primenu teorije
neodredenosti, u uZem smislu teorije fazi skupova, u razli¢itim zadacima obrade
slike i analize oblika. Razlikujemo zadatke koji se odnose na izdvajanje karakter-
istika oblika i one koji se odnose na pobolj$anje performansi razli¢itih tehnika obrade
i analize slike. Sto se ti¢e prve grupe zadataka, bavimo se primenom teorije fazi
skupova u zadacima definisanja novog deskriptora fazi oblika, nazvan fazi kvadrat-
nost, 1 merenja koliko je fazi kvadratan posmatrani fazi oblik. U drugoj grupi za-
dataka bavimo se istrazivanjem poboljSanja performansi ocene transformacije slike
euklidskim rastojanjima u tri dimenzije (3D EDT), kao i signature neprekidnog ob-
lika u dve dimenzije zasnovane na rastojanju od centroida oblika. Ovo poslednje se
posebno ogleda u postignutoj ta¢nosti i preciznosti ocene, povecanoj invarijantnosti
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u odnosu na rotaciju i translaciju objekta, kao i robustnosti u prisustvu Suma i neo-
dredenosti koje su posledica nesavrsenosti uredaja ili uslova snimanja.

Poslednji rezultati se takode odnose i na drugu grupu originalnih doprinosa teze
koji su motivisani ¢injenicom da analiza oblika tradicionalno pretpostavlja da su ob-
jekti na slici prethodno jednoznacno i jasno izdvojeni iz slike. Takvo izdvajanje ob-
jekata se obi¢no postiZe u procesu jasne (to jest binarne) segmentacije originalne slike
gde se odluka o pripadnosti tacke objektu na slici donosi na jednoznacan i nedvos-
misleni nac¢in. Medutim, usled nesavrSenosti uslova ili uredaja za snimanje, pris-
ustva Suma i razlicitih vrsta nepreciznosti (na primer nepostojanje precizne granice
objekta ili jasnih granica izmedu samih objekata, greSaka u racunanju, nedostatka in-
formacija, itd.), mogu se pojaviti razliciti nivoi nesigurnosti i neodredenosti u procesu
donosenja odluke u vezi sa pripadnoscu tacke slike. Ovo je posebno vidljivo u sluc¢aju
diskretizacije (to jest uzorkovanja) neprekidnog domena slike kada element slike,
pridruZen odgovarajucoj tacki uzorka domena, moZze biti delimi¢no pokriven sa vise
objekata na slici. U tom smislu, imamo da ova vrsta segmentacije moZe potencijalno
dovesti do pogresne odluke o pripadnosti tacaka slike, a samim tim i nepovratnog
gubitka informacija o objektima koji se na slici nalaze. To proizlazi iz Cinjenice
da segmentacija slike izvedena na ovaj nacin ne dozvoljava da tacka slike moze de-
limi¢no u odredenom obimu biti ¢lan posmatranog objekta na slici, Sto dalje vodi
potencijalnom riziku da tacke delimi¢no sadrzane u objektu pre segmentacije nece
biti pridruZzene objektu nakon segmentacije. Medutim, ako se umesto binarne seg-
mentacije izvodi segmentacija gde se odluka o pripadnosti tacke slike objektu donosi
na nacin koji omogucava da tatka moZe biti ¢lan objekta u nekom stepenu, tada se
donosSenje binarne odluke o ¢lanstvo tacke objektu na slici moZe izbeéi u ovom ranom
koraku analize. To dalje rezultira da se potencijalno velika koli¢ina informacija o ob-
jektima prisutnim na slici moZe sacuvati nakon segmentacije, i koristiti u sledeéim
koracima analize. S tim u vezi, od posebnog interesa za nas jeste specijalna vrsta fazi
segmentacije slike, pokrivenost segmentacija slike, koja kao rezultat obezbeduje fazi
digitalnu reprezentaciju slike gde je vrednost ¢lanstva dodeljena svakom elementu
slike proporcionalna njegovoj relativnoj pokrivenosti neprekidnim objektom na orig-
inalnoj slici. U ovoj tezi bavimo se istraZzivanjem modela digitalizacije pokrivenosti
koji pruza ovakvu vrstu reprezentaciju slike i predstavljamo kako se mogu postici
znacajna poboljSanja u oceni 3D EDT, kao i signature neprekidnog oblika zasno-
vane na rastojanju od centroida, ako su informacije o pokrivenosti dostupne u ovoj
reprezentaciji slike razmatrane na odgovarajuéi nacin.

S obzirom da ljudski vizuelni sistem razume oblik kao jednu od vaZznih kompo-
nenti neophodnih za opaZanje i prepoznavanje objekata koji nas okruzuju, onda i ne
iznenaduje Cinjenica zaSto analiza oblika predstavlja jedan od veoma vaZnih koraka
(nakon dobijanja slike, njene potencijalne predobrade i izdvajanja objekata, odnosno
segmentacija slike) u kojoj su odredene karakteristike objekta izdvajaju, a zatim ko-
riste u narednim koracima analize slike. To se ne odnosi samo na odredene jednos-



tavne zadatke prepoznavanja geometrijskih oblika, napisanih brojeva ili odStampanih
karaktera, ve¢ i na druge komplikovanije zadatke kompjuterske vizije, gde analiza ob-
lika predstavlja samo jedan od neophodnih koraka pre nego $to se primeni odredeni
algoritam vestacke inteligencije ili rutina masinskog ucenja. To sledi iz Cinjenice dau
razli¢itim oblastima istraZivanja i primena, zahvaljujuci brzom razvoju tehnologija za
snimanje slika, imamo priliku da radimo sa velikom koli¢inom podataka zasnovanih
na slici. Izazovi rada sa ovim slikama mogu biti viSestruki s obzirom da postoji stalna
potreba za njihovom analizom, obradom, uporedivanjem ili klasifikacijom. U svim
tim zadacima, u zavisnosti od primena i zahteva postavljenih ispred nas, potrebno
je identifikovati i razumeti kontekst objekata na slici kako bi sadrzaj same slike bio
razumljiv. Shodno tome, kao odgovor na ove izazove, do sada je razvijeno nekoliko
razlicitih pristupa i raCunarskih metoda sa teorijskog i eksperimentalnog stanovista.
S tim u vezi, trebalo bi napomenuti da znacaj i prednosti ovih metoda prvenstveno
zavise od njihove primenljivosti u razli¢itim oblastima istraZivanja. Pomenimo samo
nekoliko: poljoprivreda [95, 102, 145, 163], astronomija [49, 65], biologija [93, 100],
botanika [41, 77, 84], ekologija [11], geografija [5, 168], medicina [28, 55, 106, 114],
robotika [56, 98], daljinsko oCitavanje [132—-134, 177], transport [14, 52, 62, 126], itd.

U ovoj tezi posebnu paznju usmeravamo na karakterizaciju objekta koja se zas-
niva na analizi oblika, imajuéi u vidu da oblik kao jedna od elementarnih vizuelnih
osobina objekta (zajedno sa teksturom i bojom) ima razlicite atribute koji se mogu nu-
mericki oceniti, i, shodno tome, iskoristiti za karakterizaciju objekta. Oblik se obi¢no
se predstavlja kao ograniena, ne nuzno povezana, oblast u ravni ili prostoru koja
odreduje prostorni opseg objekta, odnosno njegov nosac, kada su iz njega iskljucene
njegove vizuelne karakteristike poput teksture i boje. Kao takav, oblik se moze
identifikovati sa siluetom objekta koja se dobija njegovim osvetljenjem beskonacno
dalekim izvorom svetlosti [94]. VazZnost oblika kao alata za analizu i karakterizaciju
objekta dovela je do njegovog proucavanja u razliitim zadacima analize objekata i
rezultirala obimnom literaturom koja se odnosi na ovu temu [9, 47, 67, 83, 109, 116,
125, 139, 166]. U nastavku ¢emo predstaviti nekoliko razlicitih alata u analizi oblika
koji se razlikuju po osnovu nekoliko kriterijuma, $to ¢e nam omoguditi da razmatrane
alate 1 metode, koriSéene u tezi, moZemo na odgovarajuci nacin klasifikovati. Os-
novna podela izmedu razliditih pristupa u analizi i karakterizaciji oblika ti¢e se nacina
kako se karakteristike oblika izdvajaju iz samog oblika, odnosno koje tacke oblika se
koriste u njegovoj karakterizaciji [167, 181]. S tim u vezi razlikujemo tehnike zasno-
vane na celoj oblasti oblika koje koriste sve tacke oblika i one zasnovane na granici
oblika koje koriste samo tacke granice oblika [94]. U tom kontekstu, tehnike zas-
novane na oblasti su globalne po svojoj prirodi i uglavnom su usmerene na globalnu
analizu oblika radi njegove karakterizacije. Kao takvi pokazali su se korisnim u radu
sa generickim oblicima i podacima slabijeg kvaliteta, i takode su i stabilni u pris-
ustvu Suma. Medu najcesce koriS¢enim metodama zasnovanim na oblasti su moment
invarijante [66, 153, 172], sloZeni deskriptor slike [87], genericki Furijeovi deskrip-



vi

tori [180], Zernike momenti [43, 142—144], pseudo-Zernike momenti [42], itd. Treba
istadi da, iako su globalne i robustne u razli¢itim zadacima analize, metode zasno-
vane na oblasti oblika Cesto ukljucuju intenzivna i prilicno zahtevna racunanja, i ne
obezbeduju jasnu razliku izmedu sli¢nih objekata [101]. Medutim, u nekim zadacima
analize objekta informacije o granici oblika mogu biti od znacajnije od informacija
dostupnih iz cele oblasti oblika. Ovo proizilazi iz ¢injenice da veéina ljudi moZe
jedinstveno opisati i identifikovati oblik koriste¢i njegovu granicu. Kao takvi, obicno
su efikasniji i laksi za karakterizaciju oblika, u poredenju sa tehnikama zasnovanim
na celoj oblasti oblika [101]. Medutim, ove tehnike imaju odredena ogranicenja koja
mogu znacajno smanjiti njihovu korisnost i primenljivost. Naime, oni su generalno
osetljivi na Sum i razliite nivoe promene oblika koji su posledica razlicitih efekata,
kao Sto su, na primer, promena ugla iz kojeg se objekat posmatra, prisustvo razli¢i-
tih prepreka u sceni, poput drveca, zgrada ili vozila koja delimi¢no ili u potpunosti
preklapaju oblik koji razmatramo, itd. Pored toga, ove metode su prili¢no osetljive
ako granica oblika nije kompletna ili ako se sam oblik sastoji od viSe disjunktnih
oblasti ili rupa [180]. Do sada su uvedene razliCite tehnike zasnovane na granici
oblika i obi¢no ukljucuju signaturu oblika [50, 51, 81, 140], Furijeove deskriptore
[12, 82, 140, 164, 178], talasice deskriptore [173, 178], zakrivljenost na viSestrukim
skalama [101], tehnike na viSestrukim skalama [3, 46, 123, 140], kompleksne mreze
[7-9, 64, 116], itd.

Drugi kriterijum za klasifikaciju alata za analizu oblika proucavanih u tezi odnosi
se na to da li je rezultat njihove primene predstavljen u obliku skalara ili vektora, ili
u obliku druge slike oblika ili grafa [94]. U vezi s tim, razlikujemo tehnike skalarne
transformacije koje transformisu, odnosno preslikavaju sliku koja sadrzi oblik u skup
skalara ili vektora, i tehnike transformacije domena koje transformiSu domen slike
oblika u drugu odgovarajucu sliku ili graf. U vezi prve grupe tehnika analize, do
sada su razvijeni razliciti pristupi ¢iji je cilj numericka karakterizacija oblika. Ovo
proizlazi iz Cinjenice da oblik, kao jedan od osnovnih atributa objekta, ima nekoliko
razli¢itih karakteristika (npr. geometrijske, topoloske ili njihove odgovarajuce kom-
binacije) koja se mogu numericki oceniti. Najce$¢i pristup u zadacima ovog tipa
jeste proucavanje odredene topoloske ili geometrijske karakteristike datog oblika,
pogodne za numericku karakterizaciju (npr. kompaktnost, konveksnost, elipticnost,
izduZenost, kvadratnost, itd.), takode nazvan deskriptor oblika, a zatim osmisliti
metodu, odnosno meru oblika, koja ocenjuje u kom obimu razmatrani oblik zadovol-
java ovo svojstvo. PoZeljan, ali ne i sustinski zahtev jeste da ponasanje tako osmisl-
jene mere bude intuitivno jasno i nedvosmisleno $to je moguce vise, jer se tada njeno
ponasanje moze relativno lako razumeti i predvideti unapred. Glavna ideja je dodeliti
nekoliko numerickih karakteristika, izraCunatih iz deskriptora oblika, objektima koji
se razmatraju, a zatim ih koristiti kao komponente odgovarajuceg vektora karakter-
istika dodeljenog svakom posmatranom objektu. To nam omogucava da se odredeni
zadaci analize objekata, koji se zasnivaju na njihovom uporedivanju, prepoznavanju,
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podudaranju ili klasifikaciji, mogu izvoditi u odgovarajuéem vektorskom prostoru
karakteristika koriste¢i odabranu metriku, a ne u prostoru objekata. Ovaj pristup se
zatim moze lako prosiriti na razli¢ite zadatke analize objekata koji se zasnivaju na ob-
liku, a koji se izvode na racunarima. Imajuéi to u vidu, prirodno je ocekivati da veéa
dimenzija vektora karakteristika moZe obezbediti vecu razliku izmedu razmatranih
objekata. Shodno tome, zbog stalnih zahteva za §to viSe numerickih karakteristika
oblika, sve je veca potreba za proucavanjem novih deskriptora oblika, kao i za diza-
jniranjem novih metoda za merenje ve¢ postojecéih deskriptora oblika. Ovo poslednje
proizilazi iz Cinjenice da, zbog raznolikosti zadataka analize objekata, kao i posto-
janja razli¢itih baza objekata razlicite sloZenosti, ne postoji jedinstvena mera oblika
koja se efikasno moZe primeniti u svakom zadatku analize objekta, s obzirom da mera
koja daje dobre rezultate u jednom zadatku ne mora nuZno da se ponasa shodno nasim
ocekivanjima u drugom zadatku. S tim u vezi do sada je razvijeno nekoliko deskrip-
tora oblika, ukljucujuci one za koje je ve¢ razvijeno nekoliko prate¢ih mera oblika.
Napomenimo samo nekoliko: konveksnost [86, 113], kompaktnost [88, 127, 128],
elipticnost [34, 160], izduzenost [48], kvadratnost [122], vijugavost [28, 76, 114],
trougaonost [120], itd. Takode, postoji nekoliko generickih deskriptora oblika, koji
nisu prvobitno uvedeni za merenje odredenog atributa oblika, ali koji mogu pruZiti
odgovarajudi vektor karakteristika koji vrlo dobro mozZe opisati razmatrani oblik. Ovi
deskriptori u vecini primena nemaju jasnu geometrijsku ili topolosku interpretaciju, i
obicno se uvode kao rezultat nametanja odredenih zahteva koje svaki dobro definisani
deskriptor oblika treba da zadovolji. Medu njima imamo invarijante oblika zasnovane
na momentima [60, 66, 153], Furijeove deskriptore [51, 164, 169], Furijeove moment
invarijante [165], itd.

Sa druge strane, tehnike transformacije domena obezbeduju reprezentaciju slike
originalnog oblika u obliku druge slike (npr. mapa rastojanja [53], transformacija
medijalne ose [6, 16], konveksni omota¢ oblika [152]) ili grafa [7-9, 64, 116], i
obicno se koristi za strukturalno opisivanje i karakterizaciju objekata [30, 31]. Medu-
tim, tako dobijena reprezentacija oblika se takode moZe posmatrati medukorakom
koji prethodi numerickoj karakterizaciji samog oblika. Na ovaj nacin se izdvajanje
karakteristika oblika vr$i indirektno iz transformisanog domena oblika, umesto direk-
tno iz njegovog originalnog domena. To proizlazi iz ¢injenice da gotovo sve tehnike
analize oblika, u jednom koraku njihove implementacije, transformiSu informacije o
obliku zasnovane na slici u skup brojeva ili vektora koji numericki opisuju sam ob-
lik [157]. U tom smislu, mapa rastojanja, graf, odnosno mreza, konveksni omotac
ili medijalna osa oblika mogu se koristiti kao medurezultat za alate analize objekata
koji pretpostavljaju da je ova vrsta transformacije slike prethodno izvrSena. Primeri
su brojni, a ovde pominjemo samo nekoliko: merenje rastojanja izmedu objekata na
slici, pronalaZenje najkraceg puta izmedu dve tacke u prisustvu prepreka, izracuna-
vanje Furijeovih ili talasi¢a deskriptora, racunanje broja objekata prikazanih na slici,
itd. Takode, nekoliko ovako definisanih zadataka obrade slike posebno je razmatrano
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i ilustrovano u posebnoj sekciji na kraju Poglavlja 3.

Tredi kriterijum klasifikacije tehnika analize oblika odnosi se na pitanje ocuvanja
informacija o obliku koji se analizira. U zavisnosti od toga da li se razmatrani oblik
moZe jednoznacno ili sa kontrolisanom precizno$éu rekonstruisati iz odgovarajuce
reprezentacije ili odredenog broja deskriptora, razlikujemo metode koje ouvavaju i
metode koje ne ouvavaju informacije o obliku. Tako, na primer, imamo da vecina
ve¢ pomenutih deskriptora oblika zasnovanih na geometrijskim ili topoloskim karak-
teristikama (na primer, kompaktnost, izduzenost, konveksnost, kvadratnost, itd.) ne
ocuvavaju informacije o obliku koji analiziraju, te se stoga originalni oblik iz njih ne
moZe rekonstruisati sa kontrolisanom preciznos¢u. Ovo poslednje sledi iz Cinjenice
da postoje razliciti oblici koji imaju iste pridruZene mere ovih deskriptora pa je na
osnovu njih nemogudce rekonstruisati sam oblik. Sa druge strane, disk kao oblik se
moZe jedinstveno rekonstruisati iz momenata nultog i prvog reda. To proizlazi iz Cin-
jenice da je pridruzeni moment nultog reda jednak povrsini diska, dok momenti prvog
reda normalizovani povr§inom oblika odreduju koordinate centra diska. Pored toga,
postoje reprezentacije oblika koje omoguéavaju njegovu rekonstrukciju ukoliko se
posmatraju samo odredene klase oblika. U vezi s tim, imamo da signatura oblika kao
jednodimenzionalna funkcija, koji predstavlja dvodimenzionalni oblik, omoguéava
njegovu rekonstrukciju u zavisnosti od njene definicije i svojstava oblika na koji se
primenjuje. Na primer, u slucaju objekata koji su zvezdasti, signatura zasnovana na
rastojanju od centroida oblika omogucava njegovu jedinstvenu rekonstrukciju u ide-
alnom, neprekidnom, i bez prustva Suma, slucaju. Sli¢no se odnosi i na signaturu
poprecnog preseka koja omoguéava Zeljenu rekonstrukciju ako i samo ako je raz-
matrani oblik simetri¢an. Medutim, u slu€aju signature zasnovane na kompleksnim
koordinatama, odnosno funkciji poloZaja, grani¢nih tacaka, ili funkciji ugla tangente
odredenog u svakoj tacki granice oblika, omoguéena je jedinstvena rekonstrukcija
oblika bez ikakvih dodatnih zahteva ili ogranicenja [78].

Pored toga, trebalo bi napomenuti da tradicionalni pristup zadacima analize ob-
jekata podrazumeva da je originalna slika prethodno jasno i nedvosmisleno segmen-
tirana u procesu jasne, odnosno ostre segmentacije slike, nakon cega sledi analiza
izdvojenih komponenti. Shodno tome, segmentacija slike kao proces razdvajanja
originalne slike na jasno definisane oblasti, odnosno komponente koje se sastoji od
tacaka koje dele odredene zajednicke karakteristike (npr. prostorne, vizuelne, ge-
ometrijske, topoloske, itd.) jeste od posebne vaZnosti za kvalitet tehnika koje se ko-
riste u sledecim koracima analize objekata. U tom smislu, sustinsko pitanje koje se
u tim zadacima postavlja jeste kako i po kojim kriterijumima se moZe doneti od-
luka o tome koje tacke slike pripadaju objektima koji se nalaze na slici. Donosenje
takve odluke obi¢no se zasniva na jasnom, nedvosmislenom, dualnom, dvovalent-
nom, binarnom, da-ne ili ta¢no-netacno, i nista izmedu toga, rezonovanju i odluci-
vanju. Na ovaj nacin se originalna slika transformi$e u oStru (to jest binarnu, dvo-
valentnu, odnosno crno-belu) sliku gde se tackama objekta pridruzuje vrednost 1,
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odnosno nivo bele boje, zasnovan na odgovoru da, ta¢no, pripada ili jeste ¢lan ob-
jekta, dok se tackama koje ne pripadaju obliku pridruzuje vrednost 0, odnosno nivo
crne boje, shodno odgovoru ne, neta¢no, ne pripada ili nije clan objekta. Medu-
tim, zbog postojanja razliCitih izvora nesigurnosti i nepreciznosti koji mogu nastati
pri radu sa slikama, a do kojih dolazi pre svega usled nesavrSenosti uredaja za sni-
manje slike (npr. ogranicene rezolucije, greSaka u diskretizaciji, odnosno uzorkovanja
neprekidnog domena slike), nepovoljnih uslova snimanja, prisutnosti Suma koji se ne
moZe izbeci u procesu stvaranja slike, primene razlicitih algoritama za obradu slike
(npr. zamudivanje ili izgladivanje slike), itd., nuzno dolazi do pojave nesigurnosti i
u procesu donoSenja odluke u vezi pripadnosti tacke slike odredenom objektu. Pri
tome, nesigurnost podrazumeva nedostatak vaznih i sa aspekata dizajniranja samog
modela odlucivanja sustinskih informacija odakle imamo da se osnovne karakteris-
tike 1 parametri modela ne mogu sa sigurno$c¢u znati, a neophodne odluke determinis-
ticki predvideti i doneti. Ovo prvenstveno sledi iz ¢injenice da, usled gore pomenutih
izvora nesigurnosti, granice razli¢itih objekata koji se pojavljuju na slici postaju ne-
jasne ili neodredene, ¢ime se iskljucuje sigurnost u procesu odlu¢ivanja o pripadnosti
tacke slike odredenom objektu na slici. U tom smislu, sasvim je jasno da model od-
luc¢ivanja zasnovan na donosSenju jasne i nedvosmislene odluke nije dovoljno obucen
i ne pruza dovoljnu fleksibilnost u cilju odgovarajuceg opisivanja i tretmana ove vrste
nesigurnosti. Kao rezultat toga, imamo da ovako definisani model donoSenja odluka,
zasnovan na principu dihotomije, ne odgovara adekvatno izazovima koji poti¢u od
nepostojanja ostro definisanih granica objekata ili granica izmedu razlicitih objekata
na slici. Shodno tome, model zasnovan na donosenju odluka, pracen principom vise-
manje, a ne dihotomije da-ne ili tacno-neta¢no, mnogo je poZeljniji i znacajniji u
zadacima tretiranja ove vrste nesigurnosti, omoguéavajuéi da tacka slike moZe biti
¢lan objekta u odredenom stepenu. Na osnovu toga, pripadnost tacke odredenom ob-
jektu na slici moZe se izraziti u obliku iskaza Cija istinitost ne mora biti apsolutna,
iskljuciva, dvovalentna, odnosno binarna, i moze se izraziti stepenom u rasponu od
0 do 1, zavisno od stepena njegove istinitosti. Ova vrsta nesigurnosti koja se odnosi
na odsustvo ostro definisanih kriterijuma pripadnosti elementa slike odredenom ob-
jektu na slici, i koja je data na postepen a ne na apsolutni nacin, opisujuéi u kom
stepenu je neki iskaz tacan, naziva se rasplinutost. U tom smislu, umesto primene
binarne segmentacije koja rezultira dvo-vrednosnom, odnosno binarnom slikom, ras-
plinuta ili fazi segmentacija, izvedena na nacin da tacke mogu da pripadaju nekom
objektu u odredenom stepenu, transformiSe originalnu sliku u sivu sliku, koja se sas-
toji od tacaka objekta kojima je dodeljen intenzitet 1 ili nivo bele boje, tacaka koje
ne pripadaju objektu i kojima je dodeljen intenzitet O ili nivo crne boje, i tacaka koje
delimicno pripadaju objektu i kojima su dodeljene nivoi sive boje izmedu crne i bele
boje, u skladu sa njihovom delimi¢nom pripadano$¢u objektima na slici. Shodno
tome, fazi segmentacija je posebno vazna kada informacije koje se odnose na objekte
prisutne u originalnoj slici moraju biti sacuvane $to je duZe moguée u segmentiranoj
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slici, $to moZe biti od posebnog znacaja u narednim koracima analize. Ovo proizlazi
iz Cinjenice da ova vrsta segmentacije slike smanjuje rizik donosenja pogresne jasne
odluke o pripadnosti tacke objektu u ovom ranom koraku analize, $to potencijalno
moZe dovesti do oCuvanja znacajne koli¢ine vaznih informacija o objektima koji su
prisutni u originalnoj slici.

Medutim, s obzirom da su objekti koje bi trebalo analizirati obi¢no dostupni kao
veé digitalizovani, ili se u nekom koraku njihove analize moraju digitalizovati, od
posebnog znacaja u zadacima analize objekata jesu fazi segmentirani objekti defin-
isani na digitalizovanom domenu originalne slike. Konkretno, bavi¢emo se prouca-
vanjem odredene vrste fazi digitalne reprezentacije objekta koja je zasnovana na de-
limi¢noj pokrivenosti elemenata slike neprekidnim objektom prisutnim u originalnoj
slici. Takav model digitalizacije generiSe reprezentaciju objekta sa nivoima sive boje,
koja se takode naziva reprezentacija pokrivenosti, pri ¢emu je nivo sive boje pridruZen
svakom elementu slike proporcionalan njegovoj relativnoj pokrivenosti posmatranim
neprekidnim objektom. U ovom modelu, vrednosti intenziteta su u opsegu od 0, za
elemente koji nemaju presek sa objektom, do 1, za elemente koji su u potpunosti
sadrZani u objektu, dok su vrednosti izmedu njih dodeljene elementima koji su de-
limi¢no pokriveni objektom slike i pojavljuju se samo na granici objekta. S tim
u vezi, nivo sive boje dodeljen svakom elementu slike moZe se direktno koristiti
za definisanje stepena njegove pripadnosti odgovaraju¢em digitalnom fazi objektu.
Prednosti digitalne reprezentacije slike dobijene kao rezultat fazi segmentacije orig-
inalne slike u odnosu na binarnu reprezentaciju mogu se naci u slede¢im radovima
[26, 146, 147, 150]. Postignuti rezultati takode podsti¢u i motiviSu dalja istraZivanja u
raznim zadacima analize i obrade slike, posebno u zadacima poboljSanja performansi
razlicitih tehnika i alata kada je dostupna samo diskretna reprezentacija posmatranog
objekta. S tim u vezi, u tezi ¢emo predstaviti kako se tako definisana reprezentacija
slika moZe koristiti za poboljSanje performansi ocena ne tako slicnih alata za obradu
i analizu slike, kao §to je transformacija euklidskim rastojanjima u tri dimenzije (3D
EDT) i signatura oblika zasnovana na rastojanju od centroida oblika. Pobolj$anja koja
¢e biti predstavljena u tezi odnose se na smanjenu pristranost i varijansu, poboljSanu
invarijantnost u odnosu na rotaciju i translaciju, kao i robustnost u prisustvu Suma.

Konac¢no, uzimajuéi u obzir sva razmatranja i zapaZanja koja su do sada predstavl-
jena u ovom poglavlju, u ovoj tezi predstavicemo nekoliko razliCitih alata i tehnika
analize zasnovanih na obliku koje moZemo klasifikovati shodno prethodno navedenim
kriterijumima, a u zavisnosti od pristupa koji se koriste za njihovo uvodenje. Tako
se, na primer, prema prvom predstavljenom kriterijumu, tehnike uvedene u ovoj tezi
mogu klasifikovati kao metode zasnovane na oblasti koje koriste celokupni sadrzaj
slike koja sadrZi objekat od interesa (nove mere oblika Sestougaonosti i fazi kvadrat-
nosti, kao i metode za preciznije ocenjivanje EDT u tri dimenzije sa pod-vokselskom
preciznoscu), ali i tehnike koje se zasnivaju samo na informacijama o granici oblika
(kao $to je signatura oblika zasnovana na rastojanju od centroida oblika definisana
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kao preslikavanje koji svakoj grani¢noj tacki datog dvodimenzionalnog oblika do-
deljuje njeno euklidsko rastojanje od centroida oblika). Sto se ti¢e drugog kriterijuma
klasifikacije tehnika i metoda razmatranih u tezi, razlikujemo one koje kao rezultat
obezbeduju numericku karakterizaciju oblika, odnosno tehnike skalarne transforma-
cije oblika, kao $to su nova mera heksagonalnosti i nova mera fazi kvadratnosti obika,
kao i novi pristup oceni neprekidne signature oblika zasnovane na rastojanju od cen-
troida oblika koriste¢i njegovu diskretnu reprezentaciju u slucaju kada je ona jedino
dostupna, ali takode i na one koje pruzaju nenumericku karakterizaciju slike koja
sadrZi oblik, to jest tehnika transformacije domena slike, kao $to je novi pristup ocen-
jivanja trodimenzionalne transformacije euklidskim rastojanjima sa podvokselskom
precizno$c¢u. Konacno, prema treCem kriterijumu klasifikacije metoda analize oblika,
razmatrane metode se mogu podelite na one koje omoguéavaju rekonstrukciju, sa
kontrolisanim nivoom preciznosti, oblika na koji su primenjene, to jest metode ocu-
vanja informacija, kao $to je signatura oblika na osnovu rastojanja od centroida, ali i
trodimenzionalna EDT, kao i one koji ne ocuvaju informacije o obliku, to jest metode
neocuvavanja informacija. Medu poslednjima su mere heksagonalnosti i fazi kvadrat-
nosti oblika, s obzirom da one ne omogucavaju rekonstrukciju oblika na koji su pri-
menjene, buduéi da postoji viSe razlicitih oblika koji imaju iste preidruZene mere.
Stoga se rezultati predstavljenih metoda mogu koristiti kao karakteristike predmeta
koji se istraZuju i kao takvi nalaze svoju primenu u raznim zadacima analize i obrade
slike, u prepoznavanju oblika, i identifikaciji i klasifikaciji objekata. Ovo poslednje
dolazi iz Cinjenice da, u velini slucajeva, dobijeni rezultati mogu biti od sustinskog
znacaja u sloZenim zadacima kompjuterske vizije koji pretpostavljaju primenu ra-
zlicitih algoritama klasifikacije maSinskog ucenja. Pored toga, treba napomenuti da
razmatrane tehnike analize oblika nisu razvijene za odredeni zadatak ili primenu u
analizi objekata zasnovanih na obliku, i kao takve mogu biti od posebne koristi u
Sirokom spektru primena u zadacima obrade slike, zajedno sa zadacima prepozna-
vanja i klasifikacije objekata. Takode trebalo bi napomenuti da to ne znac¢i da metode
opisane u tezi pruZaju najbolje rezultate u svakoj primeni analize objekata. Ovo
poslednje proizlazi iz Cinjenice da razliite primene obi¢no zahtevaju proucavanje
razlicitih aspekata analize objekta, ¢ime se u vecini slucajeva iskljucuje moguénost
jedinstveno primenjenog pristupa u svakoj primeni.

Struktura teze

Teza je organizovana u osam poglavlja. Ovde je ukratko dat sadrZaj svakog poglavlja.
Prvo poglavlje objasnjava potrebu za proucavanjem novih deskriptora oblika, kao i
primenu teorije neodredenosti, pre svega teorije fazi skupovau obradi slike i zadacima
analize objekata zasnovanih na obliku. Ukratko je predstavljena i motivacija za samu
tezu, kao i kratak pregled prethodnih rezultata i izazova koji ¢e biti obuhvadeni i na
odgovarajudi nacin tretirani u tezi.
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Poglavlje 2 opisuje teorijske, to jest matemati¢ke koncepte koji ¢e biti od posebnog
znacaja u jednom delu predstavljenog istrazivanja, kao §to su teorija fazi skupova i
model digitalizacije zasnovan na pokrivenosti kao posebnom slucaju koncepta fazi
digitalizacije. U ovom poglavlju sumirani su razliciti izazovi koji proizilaze iz procesa
segmentacije, odnosno digitalizacije originalne slike, usled prisustva nesigurnosti
i neodredenosti u pogledu pripadnosti elemenata slike objektu koji je prisutan na
slici, i ilustrovane prednosti primene teorije fazi skupova za resavanje ovih izazova.
Pored toga, u ovom poglavlju predstavljena je digitalna reprezentacija slike zasno-
vane na delimicnoj prekrivenosti elemenata slike. Vrednost intenziteta pridruZena
svakom elementu slike u ovoj reprezentaciji bi¢e zatim koriS¢en u Poglavljima 41 6
za poboljSanje performansi ocene transformacije slike euklidskim rastojanjima u tri
dimenzije (3D EDT) i signature neprekidnog dvodimenzionalnog oblika zasnovane
na rastojanju od centroida. Poglavlje takode definiSe potrebne pojmove koji ¢e biti od
posebne vaznosti u Poglavlju 7 gde se uvodi novi deskriptor fazi oblika koji definise
u kojoj meri je fazi kvadratan dati fazi oblik.

Poglavlje 3 predstavlja koncept transformacije rastojanjima (DT) u obradi slike
sa teorijskog i eksperimentalnog stanovista, ilustrujuéi istovremeno veéinu DT algo-
ritama za raCunanje potrebnih rastojanja koji su do sada objavljeni u literaturi. Algo-
ritmi su predstavljeni na sistematski i potpuno prirodan nacin, pocevsi od najjednos-
tavnijih do komplikovanijih, pruzajuéi ¢itaocu mogucnost da bolje razume osnovnu
ideju i motivaciju koja stoji iza svakog od razmatranih algoritama. Pored toga, za
svaki od posmatranih algoritama predstavljen je odgovarajuéi pseudo-kod, kao i ilus-
tracija njihove primene, racunska sloZenost, gornje granice odgovarajucih odstupanja
od ta¢ne EDT, itd. Primenljivost i prednosti nekoliko proucavanih DT algoritama
ilustrovani su u razli¢itim zadacima obrade slike predstavljenim na kraju poglavlja.

Poglavlje 4 opisuje kako se znaajno poboljSanje performansi 3D EDT moze
postici ako se koristi reprezentacija slike zasnovana na pokrivenosti voksela. U takvoj
reprezentaciji, vrednost intenziteta pridruZena svakom vokselu trodimenzionalne slike
koristi se da bi se ocenio poloZaj objekta unutar voksela. Tako ocenjena pozicija ob-
jekta unutar granicnog voksela moze se dalje koristiti za pobolj$anje ocena razli¢itih
3D EDT algoritama. Ovo poglavlje predstavlja dva nova algoritma za ocenu 3D EDT
sa podvokselskom ta¢no§¢u. Oba uvedena algoritma su linearna u pogledu vremenske
sloZenosti u odnosu na broj voksela slike. Sva teorijska zapaZanja i rezultati koji
se odnose na implementaciju predloZenih algoritama za ocenu EDT u tri dimenzije
detaljno su razradeni u ovom poglavlju. Eksperimentalna ocena poboljSanja perfor-
mansi predloZenih algoritama u pogledu smanjene varijanse u odnosu na rotaciju i
translaciju, kao i povecane tacnosti i preciznosti ocenjenih euklidskih rastojanja, ko-
risteci sinteticke i realne primere, takode je predstavljena u ovom poglavlju.

Poglavlje 5 uvodi novu meru oblika koja definiSe koliko je dati oblik Sestougaoni.
Uvedena mera ima nekoliko poZeljnih svojstava koja bi trebalo da zadovolji svaka do-
bro definisana mera oblika. Spomenimo samo neke od njih: 1) nova mera heksagonal-
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nosti uzima vrednosti iz intervala (0, 1]; 2) nova mera dostiZe najveéu moguéu vred-
nost 1 ako i samo ako je razmatrani oblik Sestougao; 3) nova mera oblika je prirodno
definisana i teorijski dobro zasnovana; 4) invarijantna je u odnosu na geometrijske
transformacije kao $to su rotacija, translacija, i skaliranje oblika; i 5) dobijeni rezul-
tati odgovaraju ljudskoj percepciji i intuiciji. Staviie, nova mera Sestougaonosti ob-
lika obezbeduje takode nekoliko korisnih posledica ¢ija su svojstva takode razma-
trana teorijski i eksperimentalno ocenjena. Otuda, imamo novu metodu za ocenu ori-
jentacije oblika koja je odredena pravcem koji optimizuje novu meru Sestougaonosti,
kao i novu meru izduZenosti oblika koja je definisana kao koli¢nik duZina poluosa
odgovarajuceg pridruzenog Sestougla koris¢enog za definisanje nove mere Sestougaonosti.
Brojni primeri i eksperimenti predstavljeni su u ovom poglavlju kako bi se ilustrovala
razlicita svojstva i ponaSanje uvedenih mera oblika. Poglavlje takode sadrzi zadatke
klasifikacije koji se izvr$avaju na nekoliko poznatih i najce$c¢e razmatranih baza slika
u cilju ilustracije efikasnosti i prednosti predloZenih mera oblika.

Poglavlje 6 predlaZe novi iterativni pristup za ocenu signature oblika na osnovu
rastojanja od centroida koriste¢i informacije o pokrivenosti sadrzane u diskretnoj
reprezentaciji slike. PredloZena metoda ocenjuje u svakoj iteraciji poziciju objekta
unutar granicnog piksela, koja se zatim koristi za poboljSanje ocene same signature u
sledecoj iteraciji. PredloZeni algoritam je jasno i saZeto predstavljen, sa posebnim os-
vrtom na potrebne pretpostavke i pravce poboljSanja same ocene signature. U ovom
poglavlju je takode predstavljena statisticka ocena predloZenog algoritma u odnosu na
nekoliko do sada proucavanih algoritama za ocenu signature. U tom smislu, dobijeni
rezultati potvrduju znacajna poboljSanja u pogledu smanjenja pristranosti i varijanse
ocenjene signature, povecanja robustnosti u prisustvu Suma, kao i smanjenja transla-
cione i rotacione varijanse.

Poglavlje 7 sledi isti koncept kao i u Poglavlju 5, ali sada u slu¢aju nove mere
koja ocenjuje stepen do kojeg je neki fazi oblik fazi kvadrat. Nova mera fazi kvadrat-
nosti intuitivno je jasno definisana i teorijski dobro zasnovana, §to omoguéava da
se njeno ponasanje moZe razumeti i predvideti do odredenog nivoa i pre nego S$to
se izvrsi odredena evaluacija. Sve razmatrane karakteristike nove mere fazi oblika
teorijski su potvrdene i ocenjene kroz razliCite eksperimente i primere. Nova mera
pokazala se vrlo korisnom u raznim zadacima klasifikacije objekata koriste¢i samo
nekoliko prili¢no jednostavnih deskriptora oblika. Razmatrani eksperimenti klasi-
fikacije izvedeni su na tri velike poznate baze slika koje su do sada opseZno prouca-
vane od strane drugih autora u razli¢itim proucavanjima. Posebna paZnja u ovom
poglavlju posveéena je odgovarajucoj diskusiji i komentarima u vezi sa uporedivan-
jem postignutih rezultata sa onima dobijenim u Poglavlju 5 uklju¢ivanjem nove mere
Sestougaonosti oblika.

Poglavlje 8 sumira zaklju¢ne primedbe teze i daje kratak pregled originalnih do-
prinosa predstavljenih u samoj tezi. Takode su navedeni potencijalni pravci i ideje za
buducda istraZivanja.
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Chapter 1

Introduction

This thesis considers the quantitative aspects of shape attributes that are suitable for
numerical characterization, i.e., shape descriptors, and the theory of uncertainty, in
the narrower sense the theory of fuzzy sets, with their application in image process-
ing. Given that human visual system understands the shape as one of the important
components necessary to perceive and recognize the objects that surround us, then it
is not surprising that shape analysis represents one of the very important steps (after
an image acquisition, its potential pre-processing, and object detection, respectively
image segmentation) in which certain object features are extracted, and then used in
the following image analysis steps. This applies not only to certain simple tasks of
recognizing geometric shapes, written numbers or printed characters but also to other
more complicated computer vision tasks, where the shape analysis represents only
one of the necessary steps before a particular artificial intelligence algorithm or ma-
chine learning routine is applied. This comes from the fact that in different fields of
research and applications, thanks to the rapid development of image acquisition tech-
nologies, we have an opportunity to work with a large amount of image-based data.
The challenges of working with images generated in this way can be multiple, given
that there is a permanent need for their analysis, processing, comparison or classifi-
cation. In all of these tasks, depending on the applications and requests set against
us, it is necessary to identify as well as understand the context of the imaged objects
in order to make the content of the image itself understandable. Consequently, as
an answer to these challenges, several different approaches, and computing methods
have been developed so far, both from theoretical and experimental points of view.
In this regard, it should be noted that the importance and benefits of these methods
depend primarily on their applicability in different areas of research. Just to mention
a few: agriculture [95, 102, 145, 163], astronomy [49, 65], biology [93, 100], botany
[41, 77, 84], ecology [11], geography [5, 168], medicine [28, 55, 106, 114], mobile
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robots [56, 98], remote sensing [132—-134, 177], transportation [14, 52, 62, 126], etc.

In this thesis, we focus our attention on the object characterization based on
the shape, given that the shape as one of the elementary visual object features (to-
gether with texture and color) has a variety of attributes which can be evaluated
numerically, and, consequently, used for object characterization. It is usually pre-
sented as a bounded, not necessarily connected, region specifying the spatial extent
of the object when its visual characteristics such as texture and color have been ex-
cluded from it. As such, it can be identified with a silhouette of the object obtained
by its illumination from an infinitely distant source of light [94]. Importance of a
shape as a tool for objects analysis and characterization has led to its study in vari-
ous object analysis tasks and resulted in the extensive literature related to this topic
[9, 47, 67, 83, 109, 116, 125, 139, 166]. In the following, we will present several
shape-based tools that differ according to a few criteria, which will allow us to clas-
sify the approaches considered in this thesis appropriately. In this respect, over the
years, different approaches have been proposed to analyze shapes and they are mainly
classified into region-based and boundary-based approaches [94]. The main distinc-
tion among these approaches is based on how features are extracted from the shape
[167, 181]. In that context, region-based techniques are focused on global analy-
sis to extract the features representing the shape itself. As such, they are global
and have proven to be useful in working with generic shapes and low-quality im-
age data, and they are robust in the presence of noise as well. Among the most
commonly used region-based methods are moment invariants [66, 153, 172], com-
pound image descriptor [87], generic Fourier descriptors (GFDs) [180], Zernike mo-
ments [43, 142—-144], pseudo-Zernike moments [42], etc. It should be pointed out
that although they are global and robust in different analysis tasks, the region-based
methods often involve intensive and rather tedious computations, and do not provide
a clear distinction among the similar objects [101]. However, in some applications,
information about the boundary of shape may be of greater importance than the in-
formation available from the shape region. This arises from the fact that most people
can uniquely describe and identify a shape using its boundary. As such, they usually
tend to be more efficient and easily derived, compared to region-based techniques
[101]. However, these techniques have certain limitations that can significantly re-
duce their usability and applicability. Namely, they are generally sensitive to noise
and different levels of variation of shapes resulting from different effects, such as,
for example, changing the angle from which the object is viewed, the presence of
various obstacles in the scene such as trees, buildings or vehicles that partly or com-
pletely overlap the shapes we are considering, etc. Besides, these methods are pretty
sensitive if the boundary of a shape is not complete and some points are missing,
or if the shape itself is consisting of several disjoint regions or holes [180]. So far,
various boundary-based techniques have been introduced and they usually include
shape signatures [50, 51, 81, 140], Fourier descriptors (FDs) [12, 82, 140, 164, 178],
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wavelet descriptors (WDs) [173, 178], curvature scale space (CSS) [101], multiscale
techniques [3, 46, 123, 140], complex networks (CNs) [7-9, 64, 116], etc.

Another criterion to classify shape analysis tools studied in this thesis is based on
whether the result of their application is numerical or non-numerical [94]. In this re-
gard, we distinguish scalar-transform techniques that transform (i.e., map) an image,
containing the shape, into a set of numbers (scalars or vectors) and space-domain
techniques transforming the image of shape into another image or graph. Regarding
the first group of analysis techniques, different approaches have been developed so
far aiming at the numerical characterization of the shapes. This follows from the fact
that the shape, as one of the elementary object properties, has several various prop-
erties (e.g., geometrical, topological, or their combinations) that can be evaluated
numerically. The most common approach in these tasks is to study a certain topo-
logical or geometrical feature of a given shape, suitable for numerical characteriza-
tion (e.g., compactness, convexity, ellipticity, elongation, squareness, etc), also called
shape descriptor, and then to devise a method, resp. shape measure, that evaluate
to what extent the shape considered satisfies this property. A desirable, but not es-
sential requirement is that the behaviour of such a devised method is intuitively clear
and unambiguous as much as possible since its behaviour is then relatively easy to
understand and predict in advance, even before a specific analysis task is performed.
The main idea is to assign several numerical features, computed from the shape de-
scriptors, to object under consideration, and then to use them as the components of
the corresponding feature vector assigned to each object observed. This enables us
that certain object analysis tasks, which are based on their comparing, recognizing,
matching, or classifying, can be performed in the corresponding feature vector space
using chosen metric rather than in the object space. This approach can then be eas-
ily extended to various shape-based object analysis tasks performed on computers.
Taking this into account, it is natural to expect that a larger dimension of the feature
vector may provide greater distinction between the objects under consideration. Con-
sequently, due to the permanent demand for more numerical characterizations, there
is an increasing need to study new shape descriptors, as well as to design new meth-
ods for measuring already existing shape features. The latter results from the fact that,
due to the diversity of object analysis tasks as well as the existence of different image
databases of objects of varying complexity, there is no single shape measure apply-
ing efficiently to every object-based application, since a measure performing well in
one application does not necessarily produce results according to our expectations in
another application. In this regard, several shape descriptors have been developed so
far, including those for which several measures have already been designed. Just to
mention a few: convexity [86, 113], compactness [88, 127, 128], ellipticity [34, 160],
elongation [48], squareness [122], tortuosity [28, 76, 114], triangularity [120], etc.
Also, there exist several generic shape descriptors, not originally introduced to mea-
sure particular shape attribute, but which can provide corresponding feature vector
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describing the considered shape very well. These descriptors in most applications
do not have a clear geometrical or topological interpretation, and they are usually
introduced as a result of imposing certain requirements that each well-defined shape
descriptor should satisfy. Some of them are moment invariants [60, 66, 153], Fourier
descriptors (FDs) [51, 164, 169], Fourier moment invariants [165], etc.

On the other hand, space-domain techniques produce a non-numerical represen-
tation of the original shape image given in the form of another image (e.g., distance
map [53], medial axis transform (MAT) [6, 16], convex hull [152]) or graph [7-
9, 64, 116], and is usually used for structural object description and characterization
[30, 31]. However, such an obtained non-numerical shape representation can also be
considered as an intermediate step preceding numerical characterization of shape. In
this way, shape feature extraction is performed indirectly from its transformed do-
main, instead of directly from the original one. This follows from the fact that virtu-
ally all the shape analysis techniques, at one step of their implementations, transform
image-based information into a set of numbers describing the shape itself [157]. In
this respect, distance map, graph, respectively network, convex hull, or skeleton can
then be used as an input for object-based analysis tools that assume that this type of
image transformation has been previously performed. Examples are numerous and
herein we mention only a few: measuring the distances between the objects, finding
the shortest path between two points among the obstacles, computation of Fourier or
wavelet descriptors, computing the number of objects shown in the image, etc. Some
of these image processing tasks will be particularly considered and illustrated in a
separate section at the end of Chapter 3.

The third criterion for classifying the shape analysis techniques is based on preser-
vation information. Depending on whether the shape considered can be reconstructed
with a controllable precision from its corresponding representation or from a cer-
tain number of descriptors, we distinguish between information-preserving and non-
preserving methods. Thus, for example, we have that most already mentioned shape
descriptors based on geometrical or topological characteristics (e.g., compactness,
elongation, convexity, squareness, etc.) do not preserve information about the shape
they analyze, and therefore the original image shape cannot be reconstructed from
them, due to existence of different shapes that have the same assigned measures of
these descriptors. On the other hand, the shape of disc can be uniquely reconstructed
from its zeroth- and first-order moments. This comes from the fact that the associated
moment of zeroth-order amounts the area of the disc, while the first-order moments
normalized by the shape area determine the coordinates of the disc center. Besides,
there exist shape representations that allow its reconstruction if only certain classes
or types of shapes are considered. In this regard, we have that the signature of shape
as a one-dimensional function, representing the two-dimensional shape, enables its
reconstruction depending on its definition and the properties of the shape to which it
is applied. For example, in the case of a star-shaped object, the centroid distance sig-
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nature enables its unique reconstruction in an ideal, continuous, and noise-free case.
The similar refers to the cross-section signature, which allows desired reconstruction
only if the shape considered is symmetrical one. However, in the case of the signature
based on the complex coordinates, i.e., position function, or tangent-angle function,
a unique reconstruction of shapes is enabled without any additional requirements or
restrictions [78].

Besides, it should be mentioned that the traditional approach to the tasks of ob-
ject analysis implies that the original image is previously clearly and unequivocally
segmented in the process of image segmentation, followed by the analysis of the ex-
tracted objects. Consequently, image segmentation as a process of separating the
original image into clearly defined regions, consisting of the points that share certain
common characteristics (e.g., spatial, visual, geometrical, topological, etc.), is of ut-
most importance for the quality of the techniques used in the following analysis steps.
In this respect, an essential question arising is how and by what criteria we can make
a decision on what image points belong to an object present in the image. Usually,
making such a decision is based on a clear, unambiguous, dual, bivalent, yes-no, or
true-false, and nothing in between, reasoning and judgment. In this way, the original
image is transformed into the crisp (i.e., binary, two-valued, 2-level, or black-white)
image where the object points are assigned value 1, resp. white level, based on the
answer yes, true, belongs to or is a member of the object, while the non-object points
are assigned value 0, resp. black level, related to the answer no, false, does not belong
or is not a member of the object. However, due to the existence of various sources
of uncertainty and imprecision that may occur when working with images, originated
primarily due to imperfection of imaging acquisition devices (e.g., limited resolution,
errors in discretization, resp. sampling errors), adverse imaging conditions, presence
of noise that cannot be avoided in the imaging acquisition process, application of dif-
ferent image processing algorithms (e.g., image blurring or smoothing), etc., it also
necessarily leads to uncertainty in decision-making process regarding the member-
ship of an image point to a particular object. In doing so, uncertainty implies the
lack of important and, from the aspects of designing the model of making decisions
itself, essential information, contributing that the basic characteristics and parameters
of the model cannot be known with certainty, and necessary decisions cannot be de-
terministically predicted and made. This primarily stems from the fact that, due to
above-mentioned sources of uncertainty, the boundaries of different objects appearing
in the image become unclear or indefinite, thus excluding the certainty in the process
of deciding on the membership of an image point to a particular object. In this regard,
it is quite clear that a model based on making a clear and unambiguous decision is
not sufficiently trained, and does not provide sufficient flexibility aiming at the appro-
priate description and treatment of this type of uncertainty. This further implies that
the model based on the dichotomy principle does not adequately correspond to reality,
given that the conclusions drawn for this model are not relevant and potentially have a
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little impact on reality. Consequently, the model based on making decisions followed
by the principle of more-less rather than a dichotomy yes-no or true-false is much
more desirable and meaningful in the tasks of treating of this type of uncertainty, en-
abling that image point may be a member of an object to some extent. Based on this,
a membership of point to a particular imaged object can be expressed in the form of
a statement whose truth need not be absolute, exclusive, bivalent, i.e., binary, and can
be expressed in a graded manner ranging from O to 1, depending on the degree of
its truth. This type of uncertainty relating to the absence of sharply defined criteria
of the membership of an image point to an object, and which is given in a graded
rather than an absolute manner, describing to what extent a certain statement is true,
is called fuzziness. In this respect, instead of applying binary segmentation resulted in
two-valued (i.e., binary) image, the fuzzy segmentation, performed in a manner that
the points can belong to an object to a certain level, transforms the original image
into the gray-level image, consisting of the object points which are assigned the in-
tensity 1 or white level, non-object points that are assigned intensity O or black level,
and the points that partially belong to an object, which are assigned the gray-levels in
between black and white, according to their partial membership to an imaged object.
Consequently, fuzzy segmentation is particularly important when information relat-
ing to objects present in the original image needs to be preserved as long as possible
in the segmented image, which may be of particular importance in subsequent anal-
ysis steps. This follows from the fact that this type of image segmentation reduces
the risk of making a wrong clear decision on the membership of image point at this
early analysis step, which may potentially lead to the preservation of a large amount
of important information about the objects present in the original image.

However, given that the objects we need to analyze are usually available either as
already digitized or must be digitized at some stage of their analysis, we are mainly
interested in fuzzy segmented objects defined in the digital image space. Specifi-
cally, we are dedicated to one particular type of fuzzy digital object representation
based on the partial coverage of the image elements by a continuous object present
in the original image. Such a digitization model provides a gray-level object repre-
sentation, also called coverage representation, where the gray-level assigned to each
image element is proportional to its relative coverage by a continuous imaged object.
In this model, intensity values are in the range from 0, for the elements having no
intersection with the object, to 1, for the elements that are completely contained into
an object, while the values between them are assigned elements which are partially
covered by an imaged object and appear only on the object boundary. In this regard,
the gray-level assigned to each image element can be directly utilized to define its
membership level to the corresponding digital fuzzy object. Advantages of the digital
image representation obtained as a result of fuzzy segmentation, relative to the binary
digital representation, can be found in [26, 146, 147, 150]. These results also encour-
age and motivate further research in various image analysis and image processing
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tasks, especially in the tasks of improving the performance when only the discrete
representation of the object is available. In this respect, we will present how such
a defined image representation can be used to improve the performance of the esti-
mates of not so similar image analysis tools such as 3D Euclidean distance transform
(3D EDT) and the centroid distance signature of shape. Improvements that will be
presented in the thesis refer to decreased bias and variance, improved invariance to
rotation and translation, and robustness in the presence of noise as well.

Finally, taking into account all the considerations and observations presented so
far in this chapter, in this thesis we will present several different shape-based analysis
tools and techniques that differ with respect to three criteria mentioned above, de-
pending on the approaches used to introduce them. Thus, for example, according to
the first criterion presented, the techniques introduced in this thesis can be classified
as region-based methods that use the entire content of an image containing an object
of interest (the new measures of shape hexagonality and fuzzy squareness, as well
as methods for sub-voxel precise estimating of the EDT in three dimensions), but
also techniques based only on shape boundary information (such as centroid distance
signature defined as a mapping which assigns its Euclidean distance from the shape
centroid to each boundary point of a given two-dimensional shape assigns). Regard-
ing the second criterion for classifying techniques and methods studied in the thesis,
we distinguish those that provide numerical characterization, in the form of numbers
or vectors, respectively scalar-transform techniques, such as new measures of shape
hexagonality and fuzzy squareness, as well as a new approach to evaluating a contin-
uous centroid distance signature of shape from its discrete representation in the case
when it is only available, but also those that provide non-numerical characterization
of image-based shape data, i.e., domain-transform techniques, such as a new approach
to estimating the three-dimensional Euclidean distance transform estimated with sub-
voxel precision. Finally, according to the third classification criterion, the consid-
ered methods can be categorized into those that allow the reconstruction of the shape
to which they were applied with a controllable level of precision, i.e., information-
preserving methods, such as centroid distance signature, but also 3D EDT, as well
as those that do not preserve the shape information, i.e., information-non-preserving
method. Among the latter are the measures of shape hexagonality and fuzzy square-
ness, given that the associated shape measures do not provide a distinction between
the objects to which they are applied in the sense that there exist multiple different
shapes that have the same associated measures, and therefore their reconstruction is
not possible. Therefore, the results of our presented methods can be used as features
of the objects that are being under the study and, as such, find their application in
various tasks of analysis and image processing, pattern recognition, and objects iden-
tification and classification. The latter comes from the fact that, in most cases, the
results obtained can be essential in the complex tasks of a computer vision that as-
sume the application of diverse machine learning classification algorithms. Besides,
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it should be noted that the considered shape analysis techniques have not been devel-
oped for a specific shape-based object analysis task or application, and, as such, can
be of particular benefits in a wide range of applications in image processing tasks,
along with the objects recognition and classification tasks. It should also be noted
that this does not mean that the methods described in the thesis perform well in every
object-based application. This stems from the fact that various applications usually
require a study of different aspects of the object analysis, thus excluding in most cases
the possibility of a uniquely applied approach in every application.

1.1 The structure of the thesis

The thesis is organized into eight chapters. A brief survey of the contents of each
chapter is given below. The first chapter explains the need for studying new shape
descriptors, as well as the application of the theory of uncertainty, primarily the fuzzy
set theory in image processing and shape-based object analysis tasks. The motivation
for the thesis is also briefly presented, as well as a short survey of the previous results
and challenges that will be covered and appropriately treated in this thesis.

Chapter 2 describes the theoretical, i.e., mathematical concepts that will be of par-
ticular importance in one part of the presented research such as the fuzzy set theory
and coverage digitization model as a special case of fuzzy digitization concept. This
chapter summarizes various challenges arising from the process of segmentation, re-
spectively digitization of the original image, due to the presence of uncertainty and
vagueness regarding the membership of image elements to an object present in the
image, and illustrates advantages of applying the fuzzy set theory to address these
challenges. In addition, the chapter presents the digital image representation based
on the partial coverage of image elements as a result of coverage digitization of the
original image. The intensity value assigned to each image element in this image
representation will then be used in Chapter 4 and 6 to improve performances of the
estimate both Euclidean distance transform in three dimensions (3D EDT) and cen-
troid distance signature of a continuous two-dimensional shape. The chapter also
defines the necessary terms related to the fuzzy set theory that will be of particular
importance in Chapter 7 where we introduce a new fuzzy shape descriptor that defines
to what extent given fuzzy shape is a fuzzy square.

Chapter 3 presents the concept of distance transforms (DTs) in image process-
ing from both theoretical and experimental point of view, illustrating at the same time
most DT algorithms for computing the necessary distances that have been reported so
far in the literature. The algorithms are presented in a systematic and completely nat-
ural way, starting from the simplest to the more complicated ones, giving the reader
ability to better understand the underlying idea and motivation behind each of the
algorithms considered. Besides, the corresponding pseudo-code is presented for each
of the DT algorithms observed, as well as an illustration of their implementation,
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computational complexity, upper bounds of the corresponding deviations from the
exact EDT, and so on. The applicability and advantages of several studied DT algo-
rithms are illustrated in the various tasks of image processing presented at the end of
the chapter.

Chapter 4 describes how significant improvement in 3D EDT performance can be
achieved if a representation of an image based on voxel coverage is used. In such
a representation, the intensity value assigned to each voxel of a three-dimensional
image is considered to provide an estimate of the object position inside the voxel
with sub-voxel precision. Such an estimated object position within the voxel can be
further used to improve estimates of different 3D EDT algorithms. This chapter in-
troduces two novel algorithms for estimating sub-voxel accurate 3D EDT. Both new,
introduced algorithms are linear in terms of time complexity relative to the number
of voxels of the image. All theoretical observations and results related to the im-
plementation of the proposed EDT algorithms in three dimensions are elaborated in
detail in this chapter. Experimental evaluation of the performance improvement of
the proposed algorithms in terms of reduced variance with respect to rotation and
translation, as well as increased accuracy and precision of the estimated Euclidean
distances, using both synthetic and real examples, is also presented in this chapter.

Chapter 5 introduces a new measure of shape that defines how much a given shape
is hexagonal. The measure introduced has several desirable properties that any well-
defined shape measure should satisfy. We will mention only a few of them: 1) the
new measure of hexagonality takes values from the interval (0, 1]; 2) it is maximized
(i.e., the maximal possible value 1 is reached) if and only if the considered shape
is a hexagon; 3) the new shape measure is naturally defined and theoretically well-
founded; 4) it is invariant with respect to geometrical transformations such as rotation,
translation, and scaling); and 5) the results obtained match human perception and in-
tuition. Furthermore, a new measure of shape hexagonality provides several useful
consequences whose properties have also been considered theoretically and evaluated
experimentally. In this regard, we achieve a novel method for evaluating the shape
orientation that is determined by a direction that optimizes new hexagonality measure
and a new measure of shape elongation defined as a ratio of the semi-axes lengths of
the corresponding associated hexagon used to define a new measure of hexagonality.
Numerous examples and experiments are presented in this chapter to provide an illus-
tration of the properties as well as the behaviour of the introduced shape measures.
The chapter also contains the classification tasks performed on several well-known
and most commonly considered image datasets to illustrate the efficiency and bene-
fits of the proposed shape measures.

Chapter 6 proposes a new iterative approach for evaluating the shape signature
based on the centroid distance using the coverage information contained in discrete
image representation. The method proposed estimates in each iteration the object
position within a boundary pixel, which is then used to improve the signature itself
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in the following iteration. The proposed algorithm is clearly and concisely presented,
with special reference to the necessary assumptions and directions for improving the
signature estimate itself. A statistical evaluation of the proposed algorithm relative to
several signature estimation algorithms studied so far is also presented in this chapter.
In this regard, the obtained results confirm significant improvements in reducing the
bias and variance of the estimated signature, increased robustness in the presence of
noise, as well as a reduced translational and rotational variance.

Chapter 7 follows the same concept as in Chapter 5, but now in the case of a
new measure that evaluates the degree to which a given fuzzy shape is fuzzy square.
The new measure of fuzzy squareness is intuitively clearly defined and theoretically
well-founded, resulted that its behaviour can be understood and predicted to a certain
level before any evaluation is performed. All the considered features of the new fuzzy
shape-based measure have been theoretically treated and evaluated through various
experiments and examples. The new measure has proven to be very useful in di-
verse object classification tasks using only a few fairly simple shape descriptors. The
classification experiments discussed have been performed on three large well-known
image databases, which have been extensively studied so far in various studies by
other authors. Particular attention in this chapter is devoted to appropriate discussion
and comments regarding the comparisons of the achieved results with those obtained
in Chapter 5 by including the new measure of shape hexagonality.

Chapter 8 summarizes the concluding remarks of the thesis and provides a short
review relating to the original contributions presented in this thesis. It also outlines
potential directions and ideas for future research.



Chapter 2

Fuzzy set theory

Since its introduction by Zadeh [179], the fuzzy set theory has rapidly developed and
explored its applicability in a variety of directions and many disciplines. Examples
of applications are diverse and include decision theory, expert systems, information
processing, artificial intelligence, robotics, meteorology, agriculture, medicine, pat-
tern recognition, and remote sensing [27, 44, 58, 110, 124, 183]. Image processing
and image analysis are also among them. One of the main reasons for this lies in the
fact that it provides a fairly powerful apparatus and framework to effectively handle
the various levels of uncertainty and vagueness present when dealing with images.
The theory of fuzzy sets was originally introduced to generalize the classical notion
of set and statement to accommodate them to the uncertainties and ambiguities in-
herent in human speech, reasoning, and decision making. As such, it is based on the
premise that a precise description of many real systems is practically impossible and
that non-sharply defined classes play a very important role in human thinking and
natural language. In this respect, the fuzzy set theory is a natural framework for han-
dling the challenges in which the source of uncertainty and vagueness is the absence
of sharply defined criteria for class membership. This type of uncertainty related to a
vague definition of membership criteria is also referred to as imprecision or fuzziness
and usually refers to a gradual transition between membership and non-membership
rather than abrupt [179].

The causes of imprecision in image processing and image analysis can vary ac-
cording to their nature and the level of its presence in an image. To mention a few:
an imprecise or insufficiently distinct boundary between the different entities in an
image, the effects arising from a limited resolution or the presence of noise that can
not be avoided in the process of image acquisition, the effects resulting from image
processing where, for example, the application of different filtering algorithms can
affect a presence of vagueness and imprecision in an image, etc. Fuzziness as a prop-

11



12 CHAPTER 2. FUZZY SET THEORY

erty can be recognized both as internal image quality and as an unwanted but natural
outcome results from the different imaging conditions [15]. Advantages of repre-
senting the objects as the fuzzy sets can be numerous, and they undoubtedly lead to
an increased interest in applying the fuzzy set theory in different image processing
and object recognition tasks. For example, they are of particular importance if the
uncertainty and ambiguity captured by an image need to be taken into account and
used as long as possible in the tasks of image data analysis [75]. In this regard, the
preservation of fuzziness is usually closely related to the preservation of important
image information as well as the components present in the image. Based on this,
the concept of fuzzy sets represents a natural and also mathematically well-founded
framework for treating and studying such information that results from a fuzziness
present in an image. In this chapter, the basic mathematical framework of the theory
of fuzzy set will be described, with particular reference to its application in the tasks
where uncertainty present in an image is not something undesirable that should be
discarded, but potentially additional source of information contributing to the per-
formance improvement of various tools and techniques in image analysis and image
processing.

Mathematically speaking, the theory of fuzzy sets represents an extension of the
classical set theory where the gradual membership of an element to a set under con-
sideration is allowed. In this regard, let us first recall that in the classical set theory,
based on two-valued logic, each element of the reference set is either a member or
a nonmember of the observed subset. More formally, let us denote with X the ref-
erence set and let S be its arbitrary subset, i.e., S C X. Then each element x of the
reference set X is either a member of the subset S or not a member of S. This is
usually described by characteristic function with only two values defining an unam-
biguous distinction between elements x € X which are members of S and those which
are not. Based on this, the classical subset S is defined by its characteristic function
Xs : X — {0,1} mapping each x € X into the two-valued set {0, 1} as follows:

1, xe8,

xs(x)={ 0. x¢s. .1

Then, for all x € X, if y,(x) = 1, it follows that x is a member of S, whereas if
Xs(x) = 0, then x is not a member of S.

The characteristic function can be generalized such that the membership values
belong to a certain interval, indicating their membership to the observed set in ques-
tion. In other words, the membership of a given element to a fuzzy set is usually
described by a function assigning a value from the unit interval [0,1] to a given el-
ement, in accordance with its level of membership to fuzzy set. As expects, larger
values imply higher levels of set membership. Such a defined function is also called
a membership function, whereas the set defined by it is called a fuzzy set. Following
this, the membership function of a fuzzy set S is a function ug : X — [0, 1], where
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MU, (X) represents a membership grade of x € X to a fuzzy set S. Formally, the fuzzy
sets are defined by Zadeh in [179] as follows.

Definition 2.1 [179] A fuzzy subset S defined on the reference set X is a set of the
ordered pairs S = { (X, s (X)) | x € X'}, where g : X — [0, 1] is a membership function
of S, and i,(X) a membership grade of x € X to S.

Three basic operations related to crisp sets such as the standard complement, in-
tersection, and union can also be extended to fuzzy sets. Such generalized operations
are also known as the standard fuzzy set operations, and herein we will provide their
definitions. Before that, the three basic relations among the fuzzy sets are introduced.

Definition 2.2 A fuzzy subset S is empty, S # 0, if u(x) =0, forall x € X.

Definition 2.3 Two fuzzy subsets S i T are equal, S =T, if U (x) = ur(x), for all
x e X.

Definition 2.4 A fuzzy subset S is a subset of fuzzy set T, S C T, if pug(x) < ur(x),
forallx € X.

Definition 2.5 The standard complement of the fuzzy subset S according to the ref-
erence set X is a fuzzy subset § given by membership function Uug(x) = 1 — u (x), for
allx e X.

Given two fuzzy subsets S and T, then the standard intersection, SNT, as well as
the standard union, SUT, are given as follows.

Definition 2.6 The standard intersection of fuzzy subsets S and T, SNT, is defined
for all x € X with membership function psnr(x) = min{u(x), ur(x)}.

Definition 2.7 The standard union of fuzzy subsets S and T, SUT, is defined for all
X € X with membership function g r(X) = max{u,(x), ur(x)}.

Further, of particular importance for our research are the crisp subsets related to
a fuzzy subset, and which are formally defined as follows.

Definition 2.8 The a-cut of a fuzzy subset S is a crisp subset S* defined as S* = {x €
X|us(x) > a}, forall o € (0,1].

Definition 2.9 The support of a fuzzy subset S is the crisp subset Supp(S) = {x €
X |ug(x) > 0}.

Definition 2.10 The core of S is the crisp subset Core(S) = {x € X|u,(x) = 1}.
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Besides, herein we provide some basic definitions related to the observed fuzzy
subset S, originally introduced in [45], that will be needed for better understanding of
the research presented in Chapter 6.

Definition 2.11 A subset S C X is a star-shaped relative to a point x € S, if for all
y € S, a line segment that connects X and 'y is completely contained in S.

Definition 2.12 The kernel of a subset S is the set of all x € S so that forally € S, a
line segment connecting X andy is contained in S.

Definition 2.13 A fuzzy subset S is fuzzy star-shaped relative to x € S, if, for all
o € (0,1], all its a-cuts are star-shaped relative to X.

Definition 2.14 The kernel of a fuzzy star-shaped subset is an intersection of the
kernels of all its a-cuts.

Given that of particular interest for our research is to apply certain shape descrip-
tors and the theory of uncertainty in image processing, the theory of fuzzy sets takes
a special place in the research presented in the dissertation itself. This stems from
the fact that imaged objects are suitably represented by spatial fuzzy sets defined in
the appropriate image space [15], for example, R" or Z", for continuous or digital
images, respectively. The membership value assigned to image point expresses the
level of uncertainty in terms of its spatial membership to the observed object, i.e.,
for any image point x, the membership function (x) represents to what extent that
point is a member of fuzzy object. However, bearing in mind that objects available
are usually given as already digitized, or if they are not, then at some point of their
processing or analysis will have to be digitized, we are interested in digital fuzzy sets
defined on the digital grid X C Z", n = 2,3, as the corresponding reference set for
2D and 3D digital images. Besides, when dealing with digital images only a finite
number of gray-levels representing the membership values is available. In this regard,
we can assume that there exists » equally distributed values corresponding to every
digital image element, according to a level of their belongingness to an image object.
Such an integer value r is also called a membership resolution, which leads us to the
following definition of the digital fuzzy subset:

Definition 2.15 A digital fuzzy subset S defined on the reference set 7" represents
a set of ordered pairs S = { (X, lU;(X)) | X € Z"}, where pg : ZI" — {0,1,...,r} is a
membership function of S.

The digitization of a fuzzy set represents the generalization of the crisp digitiza-
tion of a given set S, which is formally defined as follows:

Definition 2.16 For a given continuous set S C R", inscribed into an integer grid 7",
the Gauss digitization of S is

Dg(S)={xeZ"|xeS}. (2.2)



Fuzzy set theory 15

The generalization of digitization to fuzzy sets is then formally defined as follows:

Definition 2.17 For a given continuous fuzzy set S C R", inscribed into an integer
grid 7", the r-level digitization of S is

Dr(8) = {(x,u;(x)) [x € Z", ui(x) = [r- us(x) ]}, 2.3)
where | x| denotes the largest integer not greater than x.

Before we are able to apply some of the shape analysis tools, it is necessary that
the original image is first segmented, i.e., divided into certain homogeneous compo-
nents that are present in the image. The process of transforming an input image into
the image whose elements sharing similar characteristics (e.g., visual, geometrical,
topological) are assigned the same label is called image segmentation. As a result
of segmentation, the original image is split into homogeneous entities consisting of
image elements that have the same assigned label. Usually, the segmentation is per-
formed in a crisp manner where each image element can belong to only one of the
components present in an image. Such a generated image segmentation is also re-
ferred to as crisp or binary segmentation, and it is closely connected with possible
loss of important information that is present in the original image. This follows from
the crisp decision made on image elements that are partially covered by one or more
image components. It is usually achieved using a certain threshold basing on which
decision, whether the observed image elements belong to an object or not, is made.
However, contrary to the crisp segmentation of an image, the segmentation in which
the partial membership of the image elements to more than one image components
is allowed, i.e., each image element is assigned values of memberships to more than
one image objects, then the resulting segmentation is called a fuzzy segmentation. In
this case, such an assignment of the membership values, i.e., vector of memberships,
reduces the possibility of making a wrong decision with respect to membership of
image elements, leading to preserving a potentially large amount of important infor-
mation contained in the original image. Benefits and importance of fuzzy segmen-
tation are particularly visible in the following step in image analysis consisting of
various techniques and procedures used for analyzing image components which are
previously obtained in the process of image segmentation. Usually, fuzzy segmen-
tation generates an image where most of the elements are assigned the values close
to 0 or 1, and which, as such, can be considered as either background or foreground
image elements. The remaining image elements are usually located on the boundary
of the object and they are assigned the values between O and 1, in accordance with
the degree of their membership to the object in question. Such a generated image
segmentation is closely connected with the fuzzification of the input image based on
the coverage of the image elements by the observed imaged object, where the mem-
bership value is specified by the level of its relative coverage by the object itself. In
this case, the gray levels assigned to each image element can be directly utilized to
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define the membership to the corresponding digital fuzzy object. Such an obtained
fuzzy segmentation is called coverage segmentation, and it is specified by pure image
elements, i.e., elements completely covered by imaged object or background, as well
as in-between elements which are partially covered by an imaged object, and which
are most likely located on the object boundary. In this thesis, we will present how
such a defined image representation can be used to improve the performance of not
so similar image analysis tools such as 3D Euclidean distance transform (3D EDT)
and the signature of a shape based on the centroid distance function. It should be
emphasized as well that these tools are generic ones, not designed for a specific task,
and as such, they can be used in various image processing and object analysis tasks.
Improvements that will be presented in the thesis refer to decreased bias and vari-
ance, improved invariance with respect to rotation and translation, and robustness in
the presence of noise as well.

Now, we will provide a formal definition of the coverage representation of the
image itself. First of all, it is necessary to mention that the partition of a reference set
is commonly defined as a family of disjoint non-empty subsets whose union is equal
to the reference set. This definition can be then easily extended to the definition of a
fuzzy partition of the reference set.

Definition 2.18 A fuzzy partition of a reference set X is a family of nonempty fuzzy
subsets P(X) = {X;}ier such that }_p, (x) =1 for allx € X.
icl
In that context, we give a general definition of a coverage representation of a
given continuous set S C X concerning a given partition of a reference set. Then, we
proceed with the inclusion of certain restrictions to enable a better adaptation of such
a model to tasks that are of interest.

Definition 2.19 For a given partition P(X) = {Xi}ic1 of the reference set X, the
coverage representation of a subset S C X with respect to a partition P(X) is a con-
tinuous fuzzy subset {(X;, 1g(X;))|X; € P(X)} where uy(X;) = |X;NS|/|X;| and |S|
denotes area/volume/Lebegues measure of S.

Since our research is concerned with improving the performance of certain con-
tinuous tools in image processing which are estimated from the discrete (i.e., digital)
image representation, we assume that the continuous image space R” is the reference
set and P(R") is Voronoi partition of R" generated by integer points from Z". The
Voronoi region generated by integer point x € Z" is called a spatial element, and
herein (according to notation from [149]) it will be denoted with o(x), whereas the
corresponding membership function (o (x)) with o(x). Therefore, o (x) represents
a set of all the points from R” that are closer to x than to any other point in Z", in
terms of the Euclidean distance. To avoid possible ambiguity, in the case of the points
at equal distance from the points in Z", we use the convention that the lower and left
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edges in each image dimension are contained in the corresponding spatial element.
Based on this, Voronoi partition P (IR") of the reference set R”, specified by points
from Z", is defined in [149] as a family of the left closed n—dimensional unit cubes,
centeredinx € Z", i.e.,

P(R"):{o(x):xﬂ_%,%mxezn}. 2.4)

Given that, according to (2.4), there exists one-to-one correspondence between
the integer points x € Z" and associated spels 6(x), we come to the following defini-
tion of coverage digitization in R", which is originally introduced in [149]:

Definition 2.20 For a given continuous object S C R" | inscribed into an integer grid
Z", the coverage digitization of S is

De(S) = {(x;a(x)) [x€ 2"}, a(x) = %

It is interesting to mention that in the case when n = 2, the corresponding digi-
tization is called a pixel coverage digitization, whereas, for n = 3, it is also referred
to as a voxel coverage digitization. However, such a definition of digitization in R”"
implies real coverage values assigned to spels defined on Z”, and as such it is of little
practical importance when working with digital images, given that in such cases there
exists a discrete number of limited grey-levels representing the spels coverage. This
brings us to the definition of the quantized coverage digitization, introduced in [149].

(2.5)

Definition 2.21 For a given continuous object S C R" | inscribed into an integer grid
7", the r-level quantized coverage digitization of S is

ox)NS| 1
oS 1

DL, (8) = {(x, 0’ (x)) [x € 2}, “WZ%V|d@| 2

]. (2.6)
It is easy to notice that the set of all the possible coverage values in r-level quan-
tized digitization is {0, %, %, ..., % = 1}, where the integer r representing the number
of coverage levels is called a coverage resolution. Thus, for r = 1, this set corre-
sponds to only two possible gray-levels available for binary digital image. However,
in the case of some complex objects where the exact coverage of image elements is
difficult, or maybe impossible to compute analytically, the appropriate approximation
of the corresponding coverage values can be of essential importance. The usual way
to achieve this is to split an image element into several sub-elements (e.g., by increas-
ing the image resolution or dilating the object we are considering), and then apply the
Gauss digitization to them, as indicated in Definition 2.16. The coverage value is
then approximately expressed by the fraction of image sub-elements whose centers
are covered by the object itself. This leads us to r-sampled coverage digitization of
continuous object S C R”, defined in [149], as follows:
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Definition 2.22 For a given continuous object S C R", inscribed into an integer grid

7", the r-sampled coverage digitization of S is

[6"(x) NS
[67(x)]

where r-sampled spel 6" (X) represents a set of r'" points belonging to ¢ (X) is defined

as

D)= {(x&(x)|xez"},  &(x)=

cov

2.7

A —6(r r—1r—1 r—1
(x) = {o(x)m(yir()) |y €2 8() = (= 5= ) -
Finally, it should be noted that the definition of coverage digitization does not
answer the question of how the object of arbitrary complexity can be presented in
such an image representation. In the case of a relatively simple, or analytically well-
defined continuous subsets, the coverage representation can be computed relying on
the initial definition of coverage digitization. On the other side, in the case of more
complex real objects, the corresponding coverage segmentation algorithms are used
instead to provide coverage image representation. In this context, numerous image
segmentation algorithms producing a coverage representation have been suggested in
the literature so far. For more details, we refer the reader to works [89, 97, 147, 148].
A formal definition of coverage image segmentation is given in [149] as follows.

Definition 2.23 A coverage segmentation of an image I into m components is a set

of ordered pairs

lo(x) NS
lo(x)|

where S; C R" is an extent of the i-th image component, and A, is a corresponding

set of m-component (fuzzy) segmentation vectors, given as

Seovn(l) = {(x,0(x) | x € Ip C Z", (X)) € A}, o ~ (2.8)

Ap={0o= (01, 00,...,00,) €0,1]" | Y oty =1}. (2.9)
=1

In general case, the continuous subsets S; are not available, leading that the values
of oy should be estimated only from the data present in the image. Following this, the
image segmentation based on the coverage of image elements can also be considered
as a coverage partition P(Ip) of the digital image domain Ip C Z", specified by a
family of fuzzy subsets Scov(I); = {(x,@(x)) | x € Ip},i = 1,2,...,m. Specially,
if instead of a set A,,, we consider its subset A, consisting of m-component crisp
segmentation vectors

An={a=(ar,0,...,0,) €{0,1}" | Yo =1}, (2.10)
i=1

then the corresponding partition of the digital image domain Ip C Z", consisting of
m disjoint crisp subsets Seyisp (I)i = { X, 0;(X ‘ xelp, qi(x)=1},i=1,2,....m



Chapter 3

Distance transforms

In the various digital image processing tasks, the question of how to measure dis-
tances between image elements is of particular importance. Traditionally, the distance
transform (DT) represents a basic framework for computing these distances. The dis-
tance transform is usually defined on a digital binary image I : G — {0,1}, G C Z",
consisting of object and background image elements, as the mapping that each el-
ement of the image maps to its value of the distance to the nearest element of the
object. In other words, the distance transform is a global image transformation con-
verting an input binary image into a gray-level image where the assigned value of
each image element corresponds to its distance to the nearest object element. Such a
generated image is called a distance map of I, and if there is no ambiguity between
the generated distance map and the distance transform, they can be identified.

The distance transform can be defined using arbitrary metrics. Among the sev-
eral ones, the most popular are those based on the Euclidean metric, also called the
Euclidean distance transforms (EDTs), whose popularity stems from their desirable
properties necessary in many applications. However, although the concept of DT is
relatively simple, the computation of EDTs with good efficiency and precision is a
rather difficult task. These challenges arise from the fact that the computation of EDT
is essentially a global operation, and, as such, computationally very expensive. Based
on this, one possibility to overcome these challenges is to propose methods that ap-
proximate the global distances by propagating the distances between the neighboring
image elements through an image, in a pretty efficient way.

This idea was motivated by the ease of computation and was first published in
[117, 118]. Since then many different DT algorithms based on the local distances
propagation have been developed in the literature [18, 36, 53, 61]. Such algorithms
could differ in terms of their accuracy, computational complexity, the order of scan-
ning the image, possibility for parallelization, etc. Herein, we will present the basic

19
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concept of the DTs from both the theoretical and practical standpoint of view. An
overview of most well-known algorithms introduced to date is also provided. The
presented algorithms are organized in several sections according to their dimensions
and types of the metrics applied to provide a reasonably efficient approximation of
EDT. The upper bounds of the difference of each presented DT from the exact EDT
are also commented in this chapter following the results presented in [18, 19]. Most
of these computations are not presented in detail, even though the results presented
can be approximately validated by evaluating distances, in the worst possible case,
for a sufficiently large image and then compared them with the corresponding exact
Euclidean distances.

One-dimensional DT is presented due to the completeness and better understand-
ing of the basic idea of DT algorithms. Detailed explanations and illustrations of the
presented algorithms relating to their implementation, accuracy, and direction of im-
proving the performance are given for two-dimensional algorithms [18, 38, 53]. Re-
garding the three-dimensional algorithms, there are no special additional challenges,
except the need for more resources and efficient presentation of the results obtained
[18, 74]. Therefore, in this chapter, we will keep on the two-dimensional case, and
then we will follow a similar approach, without considering the details, in the case of
three-dimensional DT algorithms. The illustrations and comparisons of the presented
algorithms for two-dimensional and three-dimensional DTs are also provided. Given
that DT is a generic tool, it is of particular importance in diverse image processing
and computer vision tasks. In this chapter, we will also present several examples
illustrating the applicability of DT algorithms in such tasks. The latter refers to the
applicability of DT in the task of finding the shortest path between two given points
among obstacles, with particular reference to the case of robot navigation originally
introduced in cite Ilic2018.

3.1 Mathematical background

Even though the idea of distance transform is rather simple and intuitively clear,
it is convenient to provide its precise theoretical foundation to avoid confusion and
ambiguity in working with it. Herein we recall the basic mathematical framework
necessary for better understanding of the concept of distance transform.

Definition 3.1 Let X be an arbitrary non-empty set, and let d : X x X — R be a
function which assigns to each pair of elements from X a real number. The function
d is a metric on X, if for all x,y,z € X, it holds the following properties:

1° d(x,y) >0, non-negativity,

20 d(x,y) =0 x =Yy, separability,
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30 d(x,y) =d(y,x), symmetry,
4% d(x,7) <d(x,y)+d(y,2), triangle inequality.

The ordered pair (X,d) is called a metric space, while a number d(x,y) is called a
distance between the elements x,y € X. In short, X is a metric space if a metric d is
assumed. The function d is called a distance if fulfilling only the property 1°. If it
satisfies the properties 1°,2° and 39, the distance d is called a semi-metric, whereas
if it fulfils the properties 1°,3% and 4°, the distance d is called a pseudo-metric. To
date, various examples of metrics have been defined in the literature. Among them,
several ones play an important role in diverse image analysis and image processing
tasks. Herein we will mention only some of them.

Example 3.1.1 The function d : R x R — R defined as
d(x,y):|x—y|,x,y€R, (31)
is called a natural metric on R.

Example 3.1.2 The function d, : R" x R* — R,n € N, defined as
n 1
d(5,y) = (L li=wi?)", x=(@m), y= 01 ) R (32)
i=1

is a metric on R", which is also called the Euclidean metric on R".

Example 3.1.3 One of the useful generalization of the previous metric defined on
R" n € N, defined as follows:

1

n P
dp(xay): <Z|xi_yi|p> ) x:(xla"'vxn)vy:(yla"'vyn)ERn~ (33)
i=1

Several special cases of d;, metric will be of particular importance in the following
of this chapter, primarily because of their applicability in various image processing
and computer vision tasks. Most interesting cases considered herein are

n
fOI‘p:1: d]()C,y): Z|xi_yi|a
i=1
0 ! (3.4)
fOI‘pZZZ dZ(xay): <Z|xi_yi|2> )
i=1
which are also known as a city block and Euclidean metric, respectively; and for

p = oo, when, by definition, we denote with d..(x,y) a metric defined as

dw(xay) = {E?gﬂ'xi_yi'a (35)
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and which is also referred to as a chessboard metric. It should be noted that validity
for the latter denotation, i.e., when p = oo, is based on the fact that lim d, (x,y) =
p—roe

dm(xvy)'

Definition 3.2 Let a distance d : X x X — R U{0} and non-empty set S C X be
given. Distance transform (DT) defined on X is a mapping D which assigns to each
point x € X its distance to the set S:

D(x) = inf d(x,a), xeX. (3.6)
acs
From the point of application in image processing tasks of particular interest is
to observe the distances (i.e., metrics) defined on some discrete set G C R”. Such
a discrete set is also called a grid and its elements are then called grid points. In a
special case, for G C Z", we also talk about digital grid (or integer lattice) defined
on the reference set R”. As it has been already mentioned, such a digital grid G also
induces a partitioning of R” into disjoint regions consisting of the points which are
closer to one grid point than to any other points from G. This partitioning of R”" is
called a Voronoi partition or tessellation of the reference set R” and corresponding
regions are also called Voronoi regions or Voronoi tiles. Also, the corresponding grid
points are called sites, sources or influence points. The Voronoi region associated with
an arbitrary grid point is also called a spel, short for a SPatial ELement. For n =2 and
n = 3, spatial elements are also called pixels (short for picture elements) and voxels
(short for volume elements), respectively. Besides, a digital grid G also induces a
digital distance (i.e., metric) d : G Xx G — R, G C Z", according to conditions stated
in Definition 3.1. In that context, of particular interest are metrics from (3.5) and (3.4)
restricted to digital plane Z? and digital space Z°.
For each pixel p = (px,py) € 72, there exist four pixels having a common edge
with p. These pixels are called 4-neighbors, and set of all such neighbors is named
4-neighborhood of pixel p:

Ni(p) ={(px+dx,py+dy) | dy,dy € {—=1,0,1}, |di| +|dy| =1} (3.7)

In terms of distance, Ny (p) represents a set of four pixels g that are at a city block
distance 1 from the pixel p, i.e., di(p,q) = 1. These four neighbors are connected
horizontally and vertically with p, and are therefore called direct or edge neighbors
of pixel p as well (for an illustration, see Fig. 3.1(a)). Besides, four neighboring
pixels having a common vertex with pixel p are called diagonal neighbors. A set of
all diagonal neighbors, denoted as Np(p), is called D-neighborhood of pixel p:

No(p) ={(px+dv,py+dy) | dr,dy € {—1,0,1}, |dy| +|dy| = 2}. (3.8)

These four neighbors are also called indirect or vertex neighbors of pixel p (as given
in Fig. 3.1(b)). This brings us to eight neighbors having a common edge or vertex
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Figure 3.1: Illustrations of corresponding neighbors, i.e., neighborhoods, for a given
pixel p. (a) Four pixels g represent 4-neighborhood of p, NVy(p); (b) four pixels g
determine D-neighborhood of pixel p, Np(p); and (c) eight pixels g represent 8-
neighborhood of p, Ng(p).

with pixel p. Such neighbors are called 8-neighbors of the pixel p, while a set of all
8-neighbors, Ng(p), is called 8-neighborhood of pixel p:

Ns(p) = {(px+dv.py+dy) | d,dy € {—1,0,1}, max(|di],|dy[) =1} (3.9)

Following this, we have that 8-neighborhood of p represents a set of all vertical,
horizontal and diagonal neighbors of p, i.e., Ng(p) = Ny(p) UNp(p). In terms of
distance, Ng(p) represents a set of eight pixels g that are at a chessboard distance 1
from the pixel p, i.e., dw(p,q) = 1 (see eight brighter pixels ¢ in Fig. 3.1(c)).

Taking this into account, the city block and chessboard distances, defined on the
digital grid G C 72, are also known as 4-neighbors and 8-neighbors distances. This
further implies that these two distances can be denoted for any two grid points p =

(px, py) and g = (gx,qy) as follows:

ds(p,q) = |px—ax| + Py — @y,

(3.10)
dg(p,q) = max(|px— qx|,|py — ay|)-

Further, we would like to mention geodesic or path-generated distances on Z?.
Before that, it is necessary to first define the path between two arbitrary pixels in the
digital plane. A path P(p,q) = (p = po, P1,---,Pn = q) from the pixel p to the pixel
g in Z? is a sequence of distinct pixels p; € Z?, where p; and p;| are the neighbors
foralli=0,...,n— 1. The ordered pairs of two neighbors (p;, pi+1), i=0,...,n—1,
are called the local steps along the path. The length of the path P(p,q) is defined
as |P(p,q)| = Zf’;ol d(pi,pi+1), where d(pi, pi+1) 18 a local distance or weight of the
step (p;, pi1) and d is an arbitrary chosen distance (metric) in Z2. The path P(p,q)
is the shortest or minimal path from p to ¢ if its length is minimal among all the
existing paths from p to g. Assuming that each pixel is considered as a node on a
graph, which is connected to its neighbors depending on the used neighborhood, the
digital distance between two pixels is defined in [175] as follows:



24 CHAPTER 3. DISTANCE TRANSFORMS

Definition 3.3 The distance between two points p and q is the length of the shortest
path connecting p and q in an appropriate graph.

Following this, we have that the shortest city block (chessboard) path from p to
q consists of the minimal number of 4-connected (8-connected) neighbors along the
path from p to g. Then the number of neighbors in the minimal city block (chess-
board) path is called city block (chessboard) distance between p and ¢. It is easy
to notice that the diagonal distances are then overestimated (i.e., underestimated)
by city block (i.e., chessboard) metric, given that the diagonal steps are measured
as 2 steps (i.e. 1 step), instead of /2 steps. This further implies that the city-
block metric overestimates, while the chessboard metric underestimates the global
Euclidean distances. Finally, if the Euclidean distance d, is observed, then the path
with minimal length |P(p,q)| = Zf’;ol do(pi,piy1) is called the shortest Euclidean
path from p to g, while its appropriate length is called the Euclidean length of the
path P(p,q). It is easy to notice that all the shortest Euclidean paths P(p,q) con-
sist of (ds4(p,q) — ds(p,q)) 8-connected neighbors and (2 - ds(p,q) — da(p,q)) 4-
connected neighbors, while its corresponding Euclidean length amounts [P (p,q)| =
(2-ds(p,q) —da(p,q)) -1+ (da(p,q) — d3(p,q)) - /2. Such a defined distance is also
called a quasi-Euclidean distance, which, following the triangle inequality, over-
estimates the global Euclidean distance, given that the Euclidean distance d,(p,q)
is always shorter than |P(p,q)| because only horizontal/vertical and diagonal steps
have been considered.

Definition 3.4 Let G C Z",n € N, be a digital grid, S C Z" an arbitrary non-empty
set, and d : G X G — R a given distance defined on G. The distance transform, defined
on G C Z", with respect to S, is a mapping D which assigns to each grid point p € G
its shortest distance to S, in accordance with a given distance d :

D(p) = mind(p,a), p €G. (3.1
acs

A given subset S is usually considered to be a binary segmented object, defined on
the digital grid G, i.e.,I: G — {0,1}, G C Z". From the definition of distance trans-
form (Definition 3.4), it can be easy to devise the simplest, also called brute-force,
algorithm for computing DT that can be expressed as follows: for each image pixel
p, its distance to each object pixel is computed, and minimum of all the computed
distances is assigned to pixel p in the distance map D. However, such a computation
is essentially a global operation which incorporates the global distance minimization
for each image pixel independently. In addition, it should be noted that the number of
operations required depends not only on the size of the image but also on its content.
For example, let suppose that an image of size n X n consists of k object pixels and
n* — k background pixels. Given that for each background pixel it is necessary to com-
pare its distance to each object pixel, the number of necessary operations performed
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by brute-force algorithm is then equal to Num(k) = k- (n> — k). After differentiat-
ing Num(k) with respect to a number of object pixels, the maximal value is reached
for k = %, i.e., where the numbers of the object and background pixels are equal.
This further implies that the maximal number of necessary operations is then equal to
Num(%) = % (n?— ”—22) =n*/2 = O(n*) [53]. On the other side, Num(k) reaches
the minimal value for k = 1, as well as for k = n? — 1, i.e., either if only one object
or only one background pixel is given in image. Then the minimal number of nec-
essary operations equals Num(1) = Num(n> — 1) = n> — 1 = Q(n?). Consequently,
depending on the image content, the number of necessary operations is bounded by
the best case Q(n?) (lower bound) and the worst case O(n*) (upper bound), for an
image of size n x n pixels [53]. Because of this, the computation of DT can be highly
costly, and consequently less attractive for practical use. One approach to avoid these
challenges is to consider redundancy (i.e., locality) of the metrics where the global
distances are computed by propagating the local distances between the neighboring
pixels. The observed neighborhood is usually of the size of 3¢,5¢ or 7¢ elements,
where d is image dimension. This idea is based on the following property of metrics
on R".

Proposition 3.1 For each point x € R", there exists y from the neighborhood of x,
with the same closest influence point.

Proof 3.1 Let z € R" be the closest influence point of x, i.e., x € VR(z). Since the
Voronoi region is an open set, there exists an open neighborhood B(x,r), r > 0, of
points x so that B(x,r) C o(z). This establishes the proof, since always exists y €
B(x,r), y # x, which, together with B(x,r) C 0(z), implies that x and y have the same
closest influence point z. U

In other words, the Voronoi regions defined on the reference set R” are always
connected sets. If the observed points are restricted to the digital grid, Proposition
3.1 implies that the distance value assigned to each digital point can be computed
observing the distance values assigned to its neighbors. This property of metrics is
called regularity, while metrics satisfying this property are called regular metrics.

Definition 3.5 [53] A metric d is regular if, for every p and q such that d(p,q) < 2,
there exists r, different from p and q, such that d(p,q) = d(p,r) +d(r,q).

It should be mentioned that most algorithms based on the local distance propa-
gation do not compute the exact EDT since the properties listed in Proposition 3.1
and Definition 3.5 are not satisfied in the case of the Euclidean metric defined on the
digital grid. Moreover, if we observe the digital grid G C R”, the closest influence
grid point of the observed point is not necessarily the closest influence point of all its
(digital) neighbors. This property of discrete Euclidean metric can be expressed as
follows:
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Figure 3.2: Example of disconnected Euclidean Voronoi region using 4-connectivity.
Although the pixel g is closer to pixel p; than to p; and p3, it achieves a wrong value
equals 9 propagated from p; or p3 using 4-connectivity, instead of 8 propagated from
p2. Each color represents the corresponding Voronoi regions. Pixels equidistant to
pvl and p, are shown in white. The final distance values are then obtained as a square
root of the values assigned.

Proposition 3.2 Discrete Euclidean Voronoi regions are not generally connected sub-
sets.

Let us consider the discrete Voronoi regions in Z? around three given influence
pixels pi, p» and ps3, as presented in Fig. 3.2. It can be noticed that the Voronoi
region around the pixel p, is disconnected relative to 4-connectivity. Therefore, the
Voronoi region to which the pixel ¢ belongs cannot be deduced from the Voronoi
regions of its 4-neighbors. In other words, if the nearest influence pixel to pixel g is
deduced from the four direct neighbors, then the wrong decision can be made given
that the pixel p; is hidden from g by pixels p; and p3. As a consequence, we have
that the discrete Euclidean distance cannot be computed from the Euclidean distances
of its 4-neighbors, leading that DT algorithm based on the local distance propagation
assigns a wrong distance to g using 4-connectivity. In the case presented, we have
that g receives a wrong distance v/3%2+ 02 = 3, instead of the exact distance value
V22 422 = /8. It might be said that this property of a discrete Euclidean metric is the
reason why Euclidean DT algorithms were first introduced in the [38], around fifteen
years after the first non-Euclidean algorithms that were introduced around 1966 [117].
Distance transform algorithms are traditionally categorized in a way that the local
distances are propagated through the image into the chamfer (i.e., non-Euclidean) and
vector (i.e., Euclidean) DTs. In the first group of DT algorithms, the new value of the
distance is computed from the distances of its neighbors by adding the appropriate
local distances (or weights), contained in the advance chosen neighborhood [18, 19,
22, 25, 154]. Contrary to them, vector DTs compute the distance vector from the
distance vectors of its neighbors by adding appropriate local distance vectors. The
necessary distances are then computed from assigned distance vectors [38, 63, 105,
112, 129]. A comparative overview of both distance propagation algorithms can be
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Figure 3.3: Example of one-dimensional DT algorithm. Four lines from the top to the
bottom represent the original one-dimensional image, initialized input image, initial-
ized image after the forward pass, and final image after the backward pass, respec-
tively. The star symbol denotes infinity (i.e., large enough integer).

F=[3 0] p=[0]+1]

Figure 3.4: Distance masks for one-dimensional DT algorithm

found in [18, 36, 53, 61, 74].

3.2 One-dimensional distance transform

Before we describe the main idea of the algorithms for computing DTs, let first con-
sider one-dimensional binary image (i.e., a string of elements) as given in Fig. 3.3.
Ones represent the object elements, while zeros are the background elements. The
input binary image is first initialized as follows: zeros are assigned to the object ele-
ments, while infinity (i.e., a sufficiently large integer) is assigned to the background
elements. The algorithm consists of two passes over an image. In the first pass, also
called forward pass, the initial values of the image elements are updated as follows:

Forward pass :
forx<2,... .number_of_elements (3.12)

D'(x) + min(DO(x),Dl (x—1)+1)

where D°(x) and D' (x) represent the initial and updated value of element x, respec-
tively. The result of the forward pass is illustrated in the third line of Fig. 3.3. It
can be noticed that each image element is assigned a value equal to its distance to the
nearest object element to the left.

In the second pass, also called backward pass, the distance values computed in
the forward pass are updated as follows:
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Backward pass :

for x < number_of_elements —1,...,1 (3.13)

D*(x) + min(Dl(x),Dz(x—i— 1+1),

where D?(x) is updated and final DT value of x. The result of the backward pass is
shown in the fourth line of Fig. 3.3. Each image element is assigned the exact value
of the distance to the nearest object element.

This algorithm can also be described using the distance masks F' and B given in
Fig. 3.4. In the forward pass, the zero entry of the forward mask F is placed over
the second image element, and the local distances in the mask are added to the image
elements below them. The new value of the second image element is then set to the
minimum of these sums. The mask F is then moved to the next image element to the
right, and its new value is computed in the same manner. This process is repeated
until the last element in the image is reached. In a similar way, the backward pass can
be described using the backward mask B which is now moved from the right to the
left.

Finally, it is worth noting that masks similar to these can be used to provide a
better understanding of most DT algorithms. If we understand them once, then we
can understand all such defined DT algorithms. The usual procedure can be illustrated
in the following way: the local distances in the mask are added to the distance value
of image elements covered by the mask, and the new value of the image element
(under the center of the mask) is then set to the minimum of all these computed sums.

3.3 Two-dimensional distance transforms

In contrast to one-dimensional distance transform, where the local distances are prop-
agated only along one dimension, two-dimensional propagation-based DT algorithms
can be of different properties concerning the accuracy, time complexity, way of im-
plementation, the order of image scanning, etc. In the case of two-dimensional DTs,
the original binary image is initialized in a way that the object pixels are set to zeros,
while the background pixels are set to infinity (i.e., an integer large enough). The
local distances can be propagated through the image both in parallel and sequential
fashion. Following this, we can distinguish parallel and sequential (recursive) DT
algorithms. The underlying idea of propagation-based DT algorithms is to propagate
the local distances as waves over the whole image, starting from the pixels initialized
by zeros. In the case of the Euclidean distance, the propagation is carried out in cir-
cular waves. When the background pixel is reached by a given wave, then the new
value is set to the minimum distance from the object. Such a wave propagation can
be naturally implemented in a parallel fashion [39, 174].
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+b | +a | +b +b | +a | +b |

+a 0 +a +a 0 0 +a
F = B=

+b | +a | +b | +b | +a | +b

(a) (b) (©)

Figure 3.5: Distance masks used in 2D algorithms for computing DTs. Mask on the
left is used in the parallel computation of DTs, whereas the remaining two on the right
are used in the sequential (i.e., recursive) computation of DTs. These two masks are
obtained by splitting the left symmetrical mask.

A parallel propagation-based algorithm represents an iterative procedure, where
all image pixels are processed in each iteration. The procedure iterates until there are
no changes in the distance map during the whole iteration. In the case of 3 x 3 cho-
sen neighborhood, the parallel algorithms can be described by symmetrical distance
mask, as presented in Fig. 3.5(a). During each iteration, the center of the mask is
placed over each image pixel, and the local distances are added to the distance values
of image pixels below them, which have been computed in the previous iteration. The
new distance value of image pixel (below the mask center) is a minimum of all the
computed sums. Following this, the parallel algorithm is defined as follows:

DHxy) = min (D (x+iy+))+d())), (3.14)
(i,j)emask

where DX(x,y) is the distance value of image pixel at (x,y) position in the k-th iter-

ation, while d(i, j) is the local distance (i.e., weight) at (i, j) position in the distance

mask (centered at (0,0)).

Consequently, we have that in each iteration the local distances can be propagated
only at a distance equal to the size of the neighborhood considered. Thus, the num-
ber of necessary iterations is proportional to the largest distance in the image. The
time complexity is then of order O(n), for an image of size n X n, on the architecture
with one processor per pixel (i.e., a total of n”> processors). This leads to time com-
plexity of order O(n?), making parallel algorithms more expensive and practically
non-efficient.

The equivalent result can be achieved by implementing the sequential (i.e., recur-
sive) propagation-based DT algorithms. The first sequential algorithms have been in-
troduced by Rosenfeld and Pflatz [117, 118] with non-Euclidean metrics such as city
block, chessboard and octagonal metrics. However, these metrics provide a rough ap-
proximation of the corresponding Euclidean distances, making them less interesting
from the aspect of accuracy, but also interesting when the emphasis is on the speed
of DT computation. Following this idea, many authors have studied this approach
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to improve the approximation of the Euclidean metric [18, 19, 25, 103]. In the se-
quential DT algorithms, image pixels are processed line by line, from the top left
corner to the bottom right corner of the image, and then in opposite direction. The
distance value of each image pixel is updated using its current distance value and in-
cremented distance value of previously processed neighbors. The propagation goes in
direction from previously processed to the presently processed image pixel. When an
image pixel is currently processed, its distance value is compared with the distances
assigned to its neighbors incremented by corresponding local distances. Minimum
of these computed sums is assigned to current image pixel as its updated distance
value. In this fashion, distance values are propagated from each object pixel in the
appropriate direction. In the case of 3 x 3 chosen neighborhood, the distances from
three pixels above and one left to the current pixel are incremented by appropriate
local distances and then propagated in the forward pass. In the backward pass, the
distances from three pixels below and one right to the current pixel are propagated in
the opposite direction, previously incremented by appropriate local distances. Each
pass utilizes only the distance values that have already been updated.

These algorithms can be illustrated using the distance masks which are obtained
by splitting the symmetrical parallel distance mask (presented in Fig. 3.5(a)) into
the distance masks given in Fig. 3.5(b) and Fig. 3.5(c). In the forward pass, the
zero entry of the forward mask F is positioned over the second image element in the
second row of the image, and then the local distance values in the distance mask
are summed with the distance values of the image elements below them. Minimum
of these sums is assigned to image pixel below the zero entry of the distance mask.
The mask F is then moved to the next image element in the same row, and the new
distance value is computed in the same manner. This process is repeated from the
left to the right until the last element in the second row is reached, and then for each
row from the top to the bottom of the image. In the backward pass, the zero entry of
the backward mask B is placed over the image element in the row and column before
the last row and column. The new distance value is computed in the same manner
as in the forward pass. The mask B is then moved from the right to the left along
the same row until the element in the first column is reached. This process is then
repeated along each row from the bottom to the top of the image. The pseudo-code
of the sequential propagation-based DT algorithm is then given as follows:

Forward pass :
fory<2,....number_of_rows
forx<2,....,number_of_columns

D/ (x,y) (m)inF(DO(x+i,y+j) +d(i, )
Lj])e
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Backward pass :

fory < number_of_rows—1,...,1

for x < number_of_columns —1,...,1

D" (x,y) < min (Dde(x+i,y+j) +d(i,j))
(i.j)eB

(3.15)

where DU is initialized image, D/*? (D) is distance value of image pixel at (x,y)
position in the forward (backward) pass, d(i, j) is the local distance in the distance
mask, and number_of_rows and number_of_columns are the numbers of image rows
and columns, respectively.

Based on this, the time complexity of sequential DT algorithms is of order (’)(nz),
for an image of size n X n, on the architecture of only one processor [39]. This re-
sult makes sequential algorithms much more efficient than parallel ones, requiring
only one processor for implementation. Besides, parallel and sequential algorithms
provide the same final DTs in most cases, with the exception that the sequential algo-
rithms are significantly more efficient than the parallel ones on the sequential archi-
tectures. This is the main reason why in our research we are focused on sequential
DT algorithms. To illustrate the difference between the parallel and sequential DT
algorithms, we present one simple, but also illustrative example.

Example 3.3.1 The local distances a and b in the distance masks, given in Figure
3.5, represent the distances between the direct and diagonal neighbors, respectively.
For different values of local distances, we get different chamfer (i.e., weighted) DTs.
E.g., for 4-neighbors DT, we have a = 1 and b = o, indicating that each sum in-
cluding b will be ignored from computing the new distance value since only the hori-
zontal/vertical steps are considered. On the other side, for 8-neighbors DT, we have
a=1andb =1, implying that all local distances (horizontal, vertical and diagonal)
are considered. Parallel and sequential algorithms for 8-neighbors (i.e., chessboard)
DT to the binary image, i.e., its initialization (given in Fig. 3.6), are illustrated in
Fig. 3.7 and Fig. 3.8, respectively. The parallel algorithm is implemented using the
distance mask presented in Fig. 3.5(a), while the sequential algorithm is implemented
using the distance masks F and B, given in Fig. 3.5(b) and 3.5(c), in the forward and
backward pass, respectively. As noticed, the final computed distance map is the same
regardless whether the parallel or sequential DT algorithm is applied to compute the
required distances. Again, it should be noted that this latter does not have to be true
in the general case.
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0 0 o 0 0 0o 0 # * * * * * *
0 0 o 0 0 0 0 # * * * * * *
0 0 0 0 0 0 0 * * * * * * *
0 0 0 1 1 0 0 * * # 0 0 * *
0o 0 0 1 1 0 0 * * #* 0 0 * *
0 0 0 0 0 0 0 * * * * * * *
0 0 o 0 0 0 0 # * * * # * *

() (®)

Figure 3.6: Illustration of the first step in chamfer DT computations where the orig-
inal binary image (ones and zeros represent object and background, respectively) is
given in (a), and its initialization (the star symbol denotes infinity, i.e., an integer
large enough) is given in (b).

3.3.1 Chamfer distance transforms

Chamfer distance transforms usually refer to algorithms with the local distances a
and b set to arbitrarily real positive numbers. In this regard, the 4-neighbors and 8-
neighbors DTs are also the chamfer ones with local distances a = 1 and b = oo, as well
as a =1 and b = 1, respectively. However, not all combinations of local distances
can give meaningful DTs. To ensure this, the local distances should be selected in a
way to meet appropriate constraints. In the case of 3 x 3 neighborhood, the natural
constraints relating the local distances a and b are defined as follows:

O0<a<b<?2-a, (3.16)

given that the diagonal step is never shorter than the horizontal (or vertical) step, and
is always shorter than one horizontal plus one vertical step. Otherwise, the diagonal
step would be shorter than one horizontal plus one vertical step, and as such, it would
be ignored. Elaborating this, the chamfer distance between two arbitrary pixels p =
(px, py) and g = (gx, qy) is then defined as follows:

d(p,q) =dy-b+(di—d,)-a, (3.17)

where d and dy are the numbers of horizontal and vertical steps between p and q.
Without loss of generality, we can suppose that 0 < dy, < d,. Otherwise, dy and d,
can change places in (3.17). This follows from the fact that the minimal path between
any two pixels which consists of at most two straight-line segments always exists. A
proof of the existence of such a minimal path can be found in [103].
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L L * 2 02 2 2 2 2 302 2 2 2 2 2

o1 1 1 1 % 2 01 1 1 1 2 302 1 1 1 1 2

* % 1 0 0 1 ¥ * 2 1 0 0 1 2 32 1 0 0 1 2

* % 1 0 0 1 % 2 1 0 0 1 2 32 1 0 0 1 2

o1 1 1 1 % 2 01 1 1 1 2 302 1 1 1 1 2
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Figure 3.7: Example of parallel chessboard DT algorithm to image given in Fig. 3.6.
The parallel algorithm, described by the mask presented in Fig. 3.5(a), is performed
through the first (a), second (b) and third iteration (c).

* * * * * * * 3 3 3 3 3 3 3
* * ® * * ® * 3 2 2 2 2 2 2
* * * * * * * 3 2 1 1 1 1 2
* * * 0 0 1 2 3 2 1 0 0 1 2
* * 1 0 0 1 2 3 2 1 0 0 1 2
* 2 1 1 1 1 2 32 1 1 1 1 2
32 2 2 2 2 2 3 2 2 2 2 2 2
(@) (b)

Figure 3.8: Example of sequential chessboard DT algorithm to image given in Fig.
3.6. The sequential algorithm, illustrated by masks in Fig. 3.5(b) and Fig. 3.5(c), is
performed using the forward (a) and backward pass (b).
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To estimate how well 4-neighbors (i.e., city block) and 8-neighbors (i.e., chess-
board) distances approximate the global Euclidean distances, in [18] it has been es-
timated an upper bound of their differences from the corresponding exact Euclidean
distances in the worst possible case. All such computed differences are obtained sim-
ilarly, so that, without going into details, herein we will illustrate only few of them.
For example, the difference of the distance (3.17) from the corresponding Euclidean
distance is given as follows:

Diff = \/d?+d?—dy-b— (d;—dy)-a. (3.18)

In the case of 8-neighbors distance dg, equality (3.17) becomes ds(p,q) = dy,
while the difference (3.18) reaches the maximal value (\/§ —1)-d, for dy = d.
Consequently, an upper limit of the difference, for an image of size N x N, amounts
(v/2—1)-N =~ 0.41-N, implying that 8-neighbors distance dg always underestimates
the corresponding Euclidean distance. However, in the case of 4-neighbors distance
dy, equality (3.17) becomes d4(p,q) = dx + dy, while the corresponding difference
from the exact Euclidean distance becomes

Diff = \/d?+d2 —d;—d,. (3.19)

The absolute value of the difference (3.19) reaches the maximum value (v/2 —2) - d,
again for dy = dy. An upper bound of the difference is then equal to (V2-2)-N=~
—0.59 - N, indicating that 4-neighbors distance ds always overestimates the corre-
sponding Euclidean distance. Also, it can be noticed that 8-neighbors distance pro-
vides slightly better result than 4-neighbors distance, as expected.

Further, relying on the main result of [103] (that the shortest path between two
pixels consists of only horizontal/vertical and diagonal steps), Montanari has pro-
posed the quasi-Euclidean distance assigning the exact Euclidean lengths to the local
distances a and b:

a=1, b=v2. (3.20)
Such defined distance, also known as chamfer-Euclidean distance, always overesti-
mates the Euclidean distance. This result follows from the fact that the Euclidean
length of the shortest path between two image pixels is always shorter than the corre-
sponding Euclidean distance between them (following the triangle inequality). Then,
the difference (3.18) becomes

Diff = \/d?+d} —dy- V2~ (dy—dy), (3.21)

which achieves the maximum (v/2v2 —2—1)-d,, for dy = \/(v/2—1)/2 -d,. An

upper bound of the difference (3.21) is equal to (1/2v/2 —2—1)-N ~ —0.09- N, con-
firming again that the quasi-Euclidean distance always overestimates the Euclidean
distance.
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However, it can be noticed that all aforementioned local distances a and b do
not provide the best possible (i.e., optimal) approximation of the Euclidean distance.
Herein, the term optimality usually relates to different criteria for determining the
local distances to minimize the corresponding difference from the exact Euclidean
distance. One choice for the optimal local distances isto seta=1and 1 < b < 2, and
then compute an optimal local distance b to minimize the difference defined as

Diff = df—l—dyz—dx—(b—l)-dy, (3.22)
where 0 < d, < d,. The optimal value is then the value minimizing the function

max(1—v/2b—b2,|b—V2|), 1 <b <2, (3.23)

i.e., the value b representing the solution of the equation

1—V2b—b2=V2—b, (3.24)
that is,

b=1/V2+1\/V2—1~1.3507. (3.25)

Based on this, an upper limit of the difference (3.22) amounts 1/ V2—vVV2—1-N=~
0.06- N, for an image of size N X N. Such a result also confirms that the optimal local
distances provide the best possible approximation of the Euclidean metric, among
all the already mentioned distances such as 4-neighbors, 8-neighbors, and quasi-
Euclidean metrics.

However, for the sake of computational efficiency, in most digital image process-
ing tasks, integer arithmetic is more convenient. This results from the fact that the ap-
propriate integer distances are more preferable if the accent is on the speed and ease
of DT computation, aimed at avoiding floating-point operations. Therefore, an ap-
propriate integer approximation of the optimal local distances, so-called sub-optimal
integer distances, are of particular interest. Usually, the sub-optimal approximations
can be obtained by multiplying the optimal local distances with an integer factor and
then rounding them to the nearest integer. Thus, for example, in the case of optimal
distances @ = 1 and b ~ 1.3507 (3.25), and integer factor 3, we get the following
integer distances:

a=3,b=4. (3.26)

The final DT is then computed dividing the distances generated by 3. An upper bound
of the difference is then equal to (v/2 —4/3)-n ~ 0.08 - n, for an image of the size
of n x n, leading that a greater difference from the EDT is achieved, compared to the
one obtained using the corresponding optimal local distances. This is something that
can be expected, given that the integer distances are not the exact optimal ones, but
their approximations, implying that a greater deviation from the corresponding exact
EDT is more expected.
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3.3.2 Vector distance transforms

In the previous section, we have noticed that the accuracy of the corresponding cham-
fer DTs decreases as the size of an image increases. As it has been mentioned, this
follows from the fact that the corresponding differences from the exact Euclidean
distances are dependent on the image size. To provide a better approximation of the
global Euclidean distances, Danielsson [38] has introduced two sequential algorithms
for computing EDT, which are performed like chamfer DT algorithms. In such algo-
rithms, instead of the relative distances, the absolute values of the relative coordinates
to the nearest object pixel (i.e., integer distance vectors) are propagated over an im-
age. The final Euclidean distances are then computed as the Euclidean lengths of the
corresponding distance vectors assigned to each image pixel.

Two sequential Euclidean distance algorithms, proposed by Danielsson [38], dif-
fer concerning the neighborhood observed. The simpler one, 4-neighbors sequential
Euclidean distance algorithm (4SED), requires checking only four direct neighbors
(horizontal and vertical) of each image pixel. To improve accuracy, the author pro-
posed using a larger neighborhood for distance vector propagation. This results in
another sequential algorithm, also called 8-neighbors sequential Euclidean distance
algorithm (8SED), which relies on inspecting all eight closest neighbors of each im-
age pixel. Consequently, the 8SED algorithm is more numerically complex (i.e.,
expensive), given that more visited neighbors require more numerical operations.

These algorithms are similar to the corresponding chamfer DT algorithms, with
one essential change. In the case of sequential chamfer DT algorithms, described in
Section 3.3.1, the relative distances are propagated over an image at propagation angle
of 135°, while herein the distance vectors are propagated at an angle of 180°. This
is achieved by modifying the raster scanning procedure with two additional scans
along each image row, from left to right and from right to left, at each step in the
vertical direction. These two additional scans require more computations, given that
more comparisons of the distance vectors are needed. Besides, most image pixels are
processed and updated more than once until they receive the final distance value.

Following this, in the sequential EDT algorithms, four passes, arranged into two
super passes, over an image, are necessary. In both super passes, an image is in-
spected both from the left to the right, and from the right to the left. Each pixel,
centered at (x,y), is assigned the distance vector D(x,y), which, at the end of the
algorithms, will point out to the nearest object pixel. Contrary to the chamfer DT
algorithms, the original binary image is now initialized by two different distance vec-
tors: object pixels are set to vector 0 = (0,0), while the remaining image pixels are
set to vector * = (*,%) (where * denotes a suitably large integer):

(0,0), if (x,y) belongs to the object,
D(x,y) ¢ { (%,%), otherwise. (3.27)

Sequence of the required operations consists of comparing the distance from the



3.3. TWO-DIMENSIONAL DISTANCE TRANSFORMS 37

current pixel (x,y) to the pixel (x,y)+D(x,y) with the distances from the current pixel
to the piXClS (xneighvyneigh) + D(xneigh;Yneigh)’ where Xneigh = x+1and Yneigh =Y +1
denote corresponding neighbors of the current pixel. If some of the computed dis-
tances is less than the length of the vector assigned to the current pixel, the distance
vector D(xvy) is then replaced by vector (xneighayneigh) + D(xneighayneigh) - (xay)7
where (Xpeigh, Yneigh) is chosen to reach the smallest distance from (x,y). The first
super pass of 4SED algorithm is then defined as follows:

D(x,y) <—min{ gg’f)i,ly))(iy(ﬂ 01))7“0’1)’ (3.28)

o J DY),
D(x,y) <—m1n{ D(x+1,y)+ (1,0), (3.29)

where passes along each row y go from the left to the right (3.28), and then from the
right to the left (3.29). The second super pass consists of the similar operations, but
in opposite direction, i.e., from the bottom to the top, and along each row y from the
right to the left (3.30), and then from the left to the right (3.31):

.| D(x,y),
D(x’y)““““{ Dyt 1)+ (0,1, Dx+1,y)+ (1,0, 30

] Dx.y),
D(xvy)<—m1n{ D(x—1,y)+ (1,0). (3.31)

The 8SED algorithm is performed similarly as 4SED one, with the difference that
more neighboring pixels are inspected. The first super pass is given as:

D(x,y),
D(x,y) +min{ D(x—1,y—1)+(1,1), D(x,y—1)+(0,1), (3.32)
D(X—|— lay_ 1)+ (17 1)7 D(.X— 17y)+ (170)7
. D(x,y),
D(x,y) <—m1n{ D(x+1,y) +(1,0), (3.33)
while the second super pass is defined as
D(x,y),
D(x,y) ~min¢ D(x+1,y+1)+(1,1), D(x,y+1)+(0,1), (3.34)
D(X—l,y—l—l)—F(l,l), D(.X—'—l,y)—F(l,O),

] Dx.y),
D(x,y) < mln{ D(x—1,y)+ (1,0), (3.35)
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Figure 3.9: Distance masks for two-dimensional vector DT algorithm

where, for the sake of simplicity, in both described algorithms we use notation v <—
min{® | @ € V}, instead of v <— argmin|®|. The final Euclidean distance map is

then computed as the Euclidean length of the distance vector assigned to each image
pixel.

It is also worth noting that both described sequential EDT algorithms can be com-
pletely described by masks of the relative positions given in Fig. 3.9, where the dis-
tance masks for 4SED algorithm are obtained by omitting the distance vectors (1,1).
In each pass, the distance masks are moved over an image, and its corresponding dis-
tance vectors are then added to the distance vectors assigned to image pixels below
them. The distance vector with the minimal Euclidean length is then assigned to im-
age pixel below the center of the mask. In the first super pass, the forward mask F
is moved from the left to the right along the second image row, and then the forward
mask F, is moved from the right to the left along the same image row. These two
passes are repeated along each image row, from the top to the bottom of the image.
In the second super pass, the backward masks By and B, are moved in the opposite
direction (the mask B; from the right to the left, and then the mask B, from the left
to the right). The pseudo-code of both EDT algorithms is given as:

Forward super pass :
fory<2,... . number_of_rows

forx<«+2,... .number_of_columns [/ the first pass

D(x,y) <= min (D(x+i,y+j)+v(i,j))
(laJ>EFl

for x < number_of_columns —1,...,1 // = the second pass

D(x,y) <= min (D(x+i,y+j)+v(,J))
(laJ>€F2
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Backward super pass :
fory < number_of_rows—1,...,1
Sfor x < number_of_columns —1,...,1 // = the third pass

D(x,y) <= min (D(x+i,y+j)+ V(i j))
(i’j)EBl

forx<2,...,number_of_columns |/ the fourth pass

D(x,y) <= min (D(x+i,y+j)+ V(i j))
(i’j)EBZ

(3.36)

where D(x,y) is the distance vector at (x,y) image position, v(i, j) is a local distance
vector at (i, j) position in the distance mask (centered in (0,0)), while number_of_rows
and number_o f_columns are the number of image rows and columns, respectively.

Advantages of 4SED and 8SED algorithms, compared to chamfer DT algorithms
is visible by observing the maximum difference (i.e., error) from the exact Euclidean
DT. In [38] the author has shown that the maximum difference from the exact EDT,
for 4SED and 8SED algorithms, does not depend on the image size, and amounts
0.29 and 0.09 of an image pixel, respectively, with most image pixels having the ex-
act Euclidean distance. Although these algorithms do not always provide the exact
Euclidean DT, these errors (less than half of the pixel) make these algorithms very
popular and interesting for further research. E.g., in [176] the author introduced two
refined versions of 4SED and 8SED algorithms, where the signed relative coordinates
to the nearest object pixel are propagated over an image, instead of the absolute ones.
The simpler one, called the 4-neighbors signed SED algorithm (4SSED), represents
the signed extension of the 4SED algorithm, while the second one, called 8-neighbors
signed SED algorithm (8SSED), is more accurate and represents the signed extension
of 8SED algorithm. These algorithms produce the signed distance map, where each
pixel is assigned the signed distances to the nearest object pixel along both coor-
dinate (i.e., image) axes. Given that the coordinate distances are assigned to each
image pixel, together with their orientation, the exact position of the nearest object
pixel is determined for each image pixel as well. Further improvement was made by
Leymarie and Levine [85], where the authors have proposed implementation which,
in terms of computational complexity, is comparable to the chamfer (i.e., scalar) DT
algorithms. Such an efficient implementation has been achieved by eliminating the
floating-point operations such as multiplications and square root operations, as well
as using only integer arithmetic. This reduces computational complexity of 4SSED
algorithm to one equivalent to corresponding chessboard DT.
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Figure 3.10: Illustration of implementation of 8SED algorithm to binary image in
Fig. 3.6. The first row illustrates the original binary image after its initialization,
where symbol * denotes a suitably large integer. Second and third row illustrates the
forward and backward super passes. In the first and second column two additional
images are presented, consisting of the numbers of horizontal and vertical steps to the
nearest object pixel, in a current super pass. The third column represents the sums of
the squared integers contained in first two additional images in the same row.
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42426  3.6056  3.1623  3.0000  3.0000  3.1623  3.6056
3.6056  2.8284  2.2361 2.0000  2.0000  2.2361 2.8284
3.1623 22361 1.4142  1.0000  1.0000  1.4142  2.2361
3.0000  2.0000 1.0000  0.0000  0.0000 1.0000  2.0000
3.0000  2.0000 1.0000  0.0000  0.0000  1.0000  2.0000
3.1623 22361 1.4142  1.0000  1.0000  1.4142  2.2361

3.6056  2.8284  2.2361 2.0000  2.0000  2.2361 2.8284

Figure 3.11: The final Euclidean distance map of the binary image, given in Fig. 3.6,
using 8SED algorithm. The final Euclidean distances are computed using the square
root of the distance image given in Fig. 3.10(1).

Finally, we want to mention something about the practical aspect of the described
sequential EDT algorithms. For this purpose, two additional images of the same
size as the original image are necessary, aimed to store the numbers of the vertical
and horizontal steps of each image pixel to the nearest object pixel. The Euclidean
distance assigned to each image pixel is then computed as the square root of the
sum of these numbers squared. To illustrate the implementation of the sequential
EDT algorithms, let us consider 8SED algorithm and its implementation to the binary
image given in Fig. 3.6. Instead of comparing the square root of the sum of squared
numbers of vertical and horizontal steps, we compare and store only the sum of the
squared numbers. Thus avoiding operations with floating-point, we can accelerate
algorithm implementation, as proposed in [85]. Complete implementation of such
an algorithm is in Fig. 3.10, while the final Euclidean distance map, obtained by
computing the square root of the distance image in Fig. 3.10(i), is shown in Fig.
3.11.

3.4 Three-dimensional distance transforms

In this section, we consider a digital space Z3 and distance d : G x G — R defined on
the digital grid G C Z3, according to Definition 3.1. The Voronoi region associated
with an arbitrary grid point v € Z3 is now called a voxel, while a common boundary
of two Voronoi regions is called a Voronoi face. Besides, a common boundary of
two Voronoi faces is called Voronoi edge. Endpoints of the Voronoi edges are called
the Voronoi vertices representing the common points of two Voronoi edges. Further,
for each voxel there exist six voxels having a common face. These six voxels are
also called 6-neighbors, whereas the corresponding set of all 6-neighbors is called
6-neighborhood of the voxel. In terms of the distance, the 6-neighborhood consists
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of all voxel neighbors at a city block distance 1. Also, twelve neighbors having a
common edge are called the edge neighbors of the voxel, while the eight neighbors
sharing the common vertex are called the vertex neighbors of the voxel. Finally,
twenty six voxels having a common face, edge or vertex are called the 26-neighbors,
and set of all 26-neighbors is called a 26-neighborhood of the voxel. In terms of dis-
tance, the 26-neighborhood represents a set of all neighbors of the voxel located at
a chessboard distance 1. Exploiting this, we have that the corresponding city block
and the chessboard distances, defined on the digital grid G C 73, is also called 6-
neighbors distance dg, as well as the 26-neighbors distance dyg, respectively. More
formally, for any two integer lattice points v = (vy,vy,v;), w = (Wy, wy,w;) € Z, the
city block, chessboard and Euclidean digital distances in Z> are defined as follows:

de(v,w) = |vx —wy| + |vy_Wy| + vz —wel,

drs(v,w) = max(|vy —wyl, [vy —wy, [v: —w|), (3.37)

delv,w) = /(o= w2+ (v = w2+ (v — w2

Now we can talk about path, local step, local distance and minimal (i.e., shortest)
path between two voxels. All these terms can be introduced in Z3 in a similar way
as the corresponding terms in Z2, replacing the term pixel with term voxel. Thus
a path P(v,w) = (v = vg,v1,...,v, = w) between two voxels v,w € Z3 is defined as
a sequence of voxels v; € Z>, where v; and v; ;| are the neighboring voxels for all
i=0,...,n— 1. The ordered pairs of two neighboring voxels (v;,viy1), i=0,....n—1,
are called the local steps along the path. The length of the path between two voxels is
defined as a sum of the local distances assigned to each local step along the path, for
a given metric. The path P (v,w) is the shortest or minimal path if it is of the minimal
length among all the existing paths from v to w. The distance between two voxels is
then defined as a length of the minimal path between these two voxels.

3.4.1 Chamfer distance transforms in 3D

As it has been mentioned, the computation of the three-dimensional DTs follows the
same pattern as in the two-dimensional case. In the case of the chamfer DTs in 3D,
the original binary image is first initialized in a way that the object voxels are set to
zero, while the background voxels are set to infinity (i.e., a suitably large integer).
Similar as in the 2D case, the chamfer DTs are computed in two passes over an image
and can be completely described using two 3D distance masks, as presented in Fig.
3.12. In the first pass, the forward mask F is moved over an image from left to right,
top to bottom, and front to back. In the second pass, the backward mask B is moved in
opposite direction. The new distance value of the image voxel, covered by the center
of the forward/backward mask, is the minimum of all the sums of the local distances
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+c +b +c
F = +b | +a | +b B= 0 | +a
+c | +b | +c +b | +a | +b
+b | +a | +b +c | +b | +c
+a 0 +b | +a | +b
+c +b +c

Figure 3.12: Masks for three-dimensional chamfer distance algorithms. Above sub-
masks are at the upper level within each corresponding 3D mask.

and corresponding distance values assigned to image voxels covered by the mask.

The values of a, b and ¢ within the corresponding distance masks, as given in
Fig. 3.12, represent the local distances between the face, edge, and vertex neighbors,
respectively. Depending on the choice of the values assigned to the local distances
within the masks, the different 3D chamfer DT algorithms can be obtained. For
example, fora=1, b =c =00, 0ora= b= c =1, we get 6-neighbors distance dg, and
26-neighbors distance dyg, respectively. To evaluate the accuracy of these distances,
Borgefors [18] estimated how much they differ from the exact Euclidean distance
transform in 3D. An upper bound for 6-neighbors and 26-neighbors distance, for an
image of size N X N X N, is equal to —1.27N and 0.73N, respectively. Exploiting
this, it can be noticed that 6-neighbors (i.e., 26-neighbors) distance overestimates
(i.e., underestimates) the corresponding exact Euclidean distances.

To provide a better approximation of the global Euclidean distance, the local dis-
tances a,b and c can be set to any real number. Thus in [18], the author considered
the chamfer DT algorithms where the corresponding local distances are set to their
true Euclidean lengths:

a=1,b=v2,c=3. (3.38)

Such a defined distance is called qguasi-Euclidean distance in 3D, given it equals
the exact Euclidean length of the shortest path between two voxels. A maximum
of the difference from the Euclidean distance amounts —0.147N, making the quasi-
Euclidean DT a very rough approximation of the exact EDT. In order to improve the
accuracy of the approximation, Borgefors considered in [18, 22] the local distances
which are set to their optimal values, where the term optimality refers to different
criteria aimed to minimize the corresponding difference from the exact EDT. One
such a possibility, introduced in [18], is given as follows:

a=1, b~ 131402, ¢ ~ 1.62803, (3.39)

where the corresponding upper bound of the difference from the EDT, for an image
of the size of N X N x N, is approximately equal to 0.10N.
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As already mentioned in the 2D case, the use of real distance values in the corre-
sponding DT algorithms can be the source of their weakness in terms of time com-
plexity. Particularly, having in mind that all the necessary computations are carried
out for three-dimensional distances. Consequently, it is of particular interest to use
integer arithmetic rather than the corresponding real-valued one, since the integer lo-
cal distances are more desirable from the aspect of their implementation regarding the
time complexity. Hence, sub-optimal integer approximations of the local distances,
obtained by multiplying the optimal real distances by corresponding integer factor
and then rounding them to the nearest integers, can be of particular importance in
such cases. In that context, starting from the above-mentioned optimal triplets of lo-
cal distances (3.39) and scaling factor 3, the following integer distances are obtained:

a=3,b=4c=5 (3.40)

where the upper bound of the difference from the exact EDT, for an image of the size
of N X N X N, equals —0.12N. Again, we can conclude that the use of the appropri-
ate sub-optimal local distances contributes to greater deviation from the exact global
Euclidean distances, as already shown in (3.26).

3.4.2 Vector distance transforms in 3D

The two-dimensional sequential EDT algorithms, proposed by Danielsson [38], can
easily be generalized to three dimensions. In this context, two sequential 3D EDT
algorithms, called 6-neighbors sequential Euclidean distance algorithm (6SED) and
26-neighbors sequential Euclidean distance algorithm (26SED) have been proposed
in [18] as 3D extensions of the already described 4SED and 8SED algorithms, respec-
tively. As it can be expected, a larger number of the considered neighbors contributes
to a closer approximation of the exact Euclidean distances as well. Contrary to the
algorithms in 2D, herein the eight passes (arranged into the forward and backward
super passes) over a volume image are necessary to propagating the relative coor-
dinates to the nearest object voxel. At the end of the algorithms, each image voxel
is assigned three integers representing the numbers of the local steps to the nearest
object voxel along each image coordinate, and then the final distances are equal to
the Euclidean length of the 3D integer vector assigned. Herein the original 3D binary
image is first initialized using integer vectors 0 = (0,0,0) and * = (x,*,*) (where x*
again denotes a suitably large integer):

(0,0,0), if (x,y,z) belongs to the object,

(%,%,%), otherwise. (3.41)

D(x,y,2) {

As expected, both sequential 3D EDT algorithms can be described using the 3D
distance-vector masks given in Fig. 3.13, where the masks describing 6SED al-
gorithm are obtained by omitting the mask vectors (1,1,1), (0,1,1), (1,0,1) and
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Figure 3.13: Masks for three-dimensional EDT algorithms. Above sub-masks are at
the upper level within the masks corresponding.

(1,1,0), given that only the face neighbors have been considered. In the forward su-
per pass, the forward mask F1 is moved from the left to the right along the second
row in the second image slice (plane), and then the mask F?2 is moved back from the
right to the left along the same row. These two passes are repeated for each row in the
second slice. The third forward mask F3 is moved from the right to the left along the
row before the bottom in the same slice, and then the mask F4 is moved back from
the left to the right. These two passes are repeated for each row from the bottom to
the top in the second image slice. All these four passes are repeated for each image
slice in the volume image from the front to the back. In the backward super pass, the
backward masks are moved similarly, but in the opposite direction. Based on this, the
pseudo-code of both sequential 3D EDT algorithms is given in the following way:
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Forward super pass :
forz<2,...,number_of_slices
fory<2,... ,number_of_rows

forx<+2,...,number_of_columns |/ the first pass

D(x,y,z) <~ min . Dx+i,y+j,z+k)+v(i,j,k))

(i,j:k) € Fy
for x < number_of_columns —1,...,1 // = the second pass
D(x,y,z) <= min (D(x+i,y+j,2+k)+V(i,/.k))
(i,j.k) € P
fory < number_of_rows—1,...,1
for x < number_of_columns —1,...,1 //« the third pass
D(x,y,z) <= min (D(x+i,y+j,2+k)+V(i,).k))
(i,j.k) € F3
forx<«2,.... .number_of_columns [/ x the fourth pass

D(x,y,z) < min  (D(x+i,y+ j,z+k)+v(i,j,k))
(I)J?k) € Fy

Backward super pass :
for z < number_of_slices—1,...,1
fory < number_of_rows—1,...,1

for x < number_of_columns —1,...,1 /[« the fifth pass

D(x,y,2) < 0 Ar]gin g D@Ly +j,z4k) +v(i, j,k))
iJ, i
forx<«2,... .number_of_columns // * the sixth pass

D(x,y,z) <= min  (D(x+i,y+j,z+k)+v(i,j,k))
(-, ak> € BZ

fory<2,...,number_of_rows
forx<+2,....number_of_columns // * the seventh pass

D(x,y,z) <= min _ (D(x+i,y+j,z+k)+v(i,j,k))
(i,4,k) € By

for x < number_of_columns —1,... 1 // * the eighth pass
D(x,y,z) = min (D(x+i,y+j,z+k)+v(i,j,k))

(i,jk) € By
(3.42)
where D(x,y,z) represents the distance vector assigned to image voxel at (x,y,z) po-
sition, v(i, j, k) is a local distance vector at (i, j, k) position in the vector mask (cen-



3.5. ILLUSTRATIONS OF DTS IN 2D AND 3D 47

tered at (0,0,0)), and number_of_slices, number_of_rows and number_of_columns
are the numbers of image slices, rows and columns, respectively. Again it can be
noticed that, for the sake of simplicity, in the pseudo-code presented we have used

the notation v < min(w‘ ® €V), instead of v + argmin‘ a)|
weV eV

3.5 Illustrations of DTs in 2D and 3D

This section illustrates the properties of DT algorithms in 2D and 3D that have already
been considered and described in this chapter. In the case of 2D algorithms, we ob-
serve the performances related to the visual characteristics of the associated distance
maps, the shape of propagation of the assigned distances, and their local distribution
over an image. In that context, Fig. 3.14, from the top to the bottom, presents the
distances computed from the central pixel (in an image of a size of 100 x 100 pixels)
using dg, dg, chamfer d 3 4 (given in (3.26)), and 8SED propagation-based DT algo-
rithm, respectively. In the first column the distance maps are shown, generated by
corresponding DT algorithms, where lighter color corresponds to a greater assigned
distance value. To provide a better illustration of the performance of the algorithms
considered, we observe the propagation of the computed distances in the correspond-
ing distance maps. The second column of Fig. 3.14 presents digital circles (associated
with appropriate DT) propagated from the central pixel over the whole image. It can
be noticed that the d4 and dg metrics provide a rough approximation of the circular
(i.e., Euclidean) distance propagation. Thus, d4 metric generates a diamond-shape
distance propagation where the observed digital circles are squares rotated by an an-
gle of £45°, whereas dg metric produces a square-shape distance propagation with
squares as the corresponding digital circles. On the other hand, the chamfer DT algo-
rithm d 3 4) propagates the octagons over an image, which as such represent a better
approximation of the appropriate exact Euclidean circles. For 8SED algorithm, we
observe that the distance propagation is closest to the exact circular (i.e., Euclidean)
distance propagation, whereas the observed circles are then the exact Euclidean dig-
ital circles. To provide an additional illustration, we present, in the third column of
the figure, the central 7 x 7 sub-maps of the appropriate distance maps, which serve
to illustrate how the central distances are distributed over the corresponding distance
map. Odd distances are underlined for clarity. It should be noted that in order to ob-
tain the exact distances assigned to image pixels, it is necessary to divide the values
presented in the third row by 3. On the other hand, regarding the 8SED algorithm,
the generated values which are displayed in the fourth row represent the squares of
the corresponding Euclidean distances. To obtain final Euclidean distances, it is nec-
essary to compute the square root of the values assigned to each image pixel.
Finally, it should be noted that the algorithms presented can be of particular im-
portance in a variety of image processing and computer vision tasks and applications.
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6 5 4 3 4 5 6
5 43 2 3 4 35
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Figure 3.14: First column, from the top to the bottom, presents distance maps con-
sisting of the distances from the single central pixel utilizing ds, dg, d(34) (3.26),
and 8SED propagation based DT algorithms; the second column illustrates the corre-
sponding digital circles propagated over an image starting from the central pixel; and
the third column contains the central 7 x 7 sub-maps of the corresponding distance
maps, aimed to illustrate the distribution of the assigned distances in the correspond-
ing distance maps. Odd distances are underlined for clarity.
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We will provide more about this in the following section, while herein we emphasize
only several important aspects of their applications that relate to certain requirements
and restrictions. In this sense, if the essential requirement is to compute the distances
as close as possible to the exact Euclidean distances, then 8SED algorithm [38] is
of particular importance. However, as it has already been mentioned, this algorithm
requires real-valued arithmetic, as well as two additional images of the same size as
the original one to store the intermediate results of the algorithm. Thanks to the im-
provements proposed in [85], implementation of 8SED can be further improved and
accelerated as well. On the other hand, the simplest, but also the fastest among all DT
algorithms presented in this chapter, is ds DT algorithm, providing at the same time
the roughest approximation of the exact EDT. Such a property comes from its simple
spatial complexity which contributes to its poor accuracy. Taking into account these
considerations, we have that if the speed of the algorithm is more important than its
accuracy, then ds metric can serve to obtain a preliminary insight into the distance
distribution over an image, as shown in Fig. 3.14. Otherwise, in all other applications
and tasks, its applicability and usefulness is rather limited and focused only on its
theoretical aspects.

On the other hand, to illustrate the performance of several DT algorithms in 3D,
we will follow the concept similar to 2D algorithms where, due to limitations regard-
ing the visualization of the distance maps generated, we observe only the shape of
the digital spheres generated using the corresponding DT algorithm. The obtained
digital spheres of radius of 20 voxels, centered within the central voxel (of an im-
age of 100 x 100 x 100 voxels) using de, da6, d(3 45) (given in (3.40)), and 26SED
algorithms are shown in Fig. 3.15. It can be noticed that a coarse approximation of
the exact Euclidean sphere is clearly visible for dg and d¢ DT algorithms, where the
associated digital spheres are the octahedron (Fig. 3.15(a)) and cube (Fig. 3.15(b)),
respectively. On the other hand, as it has already been noticed, a better approxima-
tion is provided using d(3 45) DT algorithm where the associated digital sphere is
deltoidal icositetrahedron consisting of 24 quadrilateral faces, whereas, in the case
of 26SED propagation-based algorithm, the corresponding digital sphere is actually
exact Euclidean digital sphere. Such a property of 26SED algorithm makes it as the
most accurate propagation-based DT algorithm among the other 3D algorithms al-
ready discussed in this chapter. Following this, if it is necessary to achieve as close as
possible approximation of the exact Euclidean distances, then the 26SED algorithm
is rather a recommending one. However, its drawbacks are related to the execution
time and memory requirements, given that three additional images of the same size as
the original image are necessary to store three integers assigned to each image voxel.
These three integers represent the numbers of steps to the nearest object voxel in all
three image directions. The final Euclidean distance assigned to image voxel is then
equal to the square root of the squares of these three stored integers. Similarly, as for
2D, the 26SED algorithm can be significantly simplified and accelerated if integer
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Figure 3.15: Illustration of the digital spheres with radius of 20 voxels, centered in
the central image voxel, computed using the dg (a), da (b), d(3 4 5) (¢) and 26SED (d)
propagation based algorithms.

arithmetic is applied, instead of the real-valued arithmetic. This can be achieved by
extending the concept, originally presented in [85] for 2D, where, instead of applying
square root operations and manipulation with intermediate floating-point results in
each algorithm step, we are working only with integers representing the sum of the
squares of the stored integers. The final Euclidean distances are then computed as the
square root of such integers. It should be noted that this algorithm will be of our par-
ticular interest in research presented in the following chapter, where we will show that
performance in terms of increased precision and accuracy, together with increased in-
variance with respect to rotation and translation, can be significantly improved if the
coverage information about voxel, available in the corresponding voxel coverage im-
age representation, is treated appropriately. In that context, we will present two novel
EDT algorithms that are theoretically well-designed and experimentally evaluated in
the following chapter.
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Figure 3.16: Illustrations of DT application in counting the imaged overlapping coins.
(a) Original image; (b) the corresponding binary image with only one connected com-
ponent; (c) the distance field of the complement of (b); and (d) watershed segmenta-
tion applied to the negative of the image in (c), where each number denotes a single
connected component.

3.6 Applications of DTs

As we have already mentioned, in this section, we will briefly present several appli-
cations of DT in various image processing and computer vision tasks. Given that the
concept of DT is one of the fundamental, but also a generic tool in various shape-
based analysis tasks, we present herein several experiments to illustrate importance
and usefulness of DT algorithms, and also to provide a better understanding of the
theoretical considerations discussed in this chapter.

- Separation of overlapping objects using the watershed image segmentation
[158]: Figure 3.16 illustrates the applicability of DT in the task of counting the
image objects (i.e., coins) shown in Fig. 3.16(a). The most common challenge
appearing in such tasks is a possibility of the existence of overlapping objects
that may be presented in the appropriate binary image as one connected com-
ponent (see Fig. 3.16(b)). Considering this, the corresponding separation of
such a connected component is one of the most essential steps in counting the
image objects observing the number of the connected components in the binary
image observed. This can be achieved by computing DT to the complement of
the binary version of original image aimed to obtain the corresponding distance
map (given in Fig. 3.16(c)), and then perform the watershed segmentation to
the negative distance map. Following this, the overlapping objects are then
correctly separated, and each object is then presented as a single connected
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Figure 3.17: The computation of dilation and erosion of a binary image using DT. (a)
Original binary image; (b) distance map of image in (a); (c) thresholded version of
(b) using the Otsu thresholding method [107]; (d) distance map of the complement
of (a); and (e) thresholded version of (d). Images in (c) and (e) are the same as those
obtained by dilation and erosion using a structuring ball of a size equal to threshold
applied to (b) and (d), respectively.

component (see Fig. 3.16(d)). In such a way, it is established a one-to-one
correspondence between the number of image objects and their corresponding
associated components, what was our initial intention.

The computation of morphological operations such as dilation, erosion, open-
ing, closing, etc. [35, 111]; For an illustration of this type of DT application,
we consider dilation and erosion of binary image (given in Fig. 3.17(a)) where
the structuring element is a ball of a given metric. Assume that the original
image is first transformed into the distance map (Fig. 3.17(b)), and let suppose
that such an obtained distance map is then thresholded using a threshold equal
to the radius of a given structuring element. The resulting image (given in Fig.
3.17(c)) is then the same as a dilated original image using the same structuring
element. Similarly, if the corresponding DT is applied to the complement of
the original image (Fig. 3.17(d)), and then thresholded at a level defining the
structuring element, the resulting image is then the same as the eroded origi-
nal image using the same structuring ball (Fig. 3.17(e)). Regarding the other
morphological operations, the applicability of DTs follows from the fact that
morphological operations can be expressed as a combination of dilation, ero-
sion and corresponding set operations, whose connection with DT algorithms
has been already discussed.



3.6. APPLICATIONS OF DTS 53

- Computing the geometrical representations and shape descriptors such as skele-
tonization, Voronoi diagrams, medial axis transforms, etc. [23, 32, 33, 130,
155]; To illustrate applicability of DT algorithms in such defined image pro-
cessing tasks, we have considered a Voronoi tessellation of a plane generated
by a set of 9 influence points given as shown in Fig. 3.18(a). For an illustration,
we observe dy, dg and quasi-Euclidean d 13 (3.20) DT algorithm, along with
parallel EDT algorithm proposed in [174]. The four obtained Voronoi tessella-
tions associated with the corresponding DT algorithms are shown in Fig. 3.18.
Such an obtained Voronoi tessellations are also referred to as pseudo-Voronoi
tessellations, due to their discrete (i.e., digital) nature, as well as dependence on
the choice of the corresponding DT algorithm. The exact Euclidean tessellation
is also included to illustrate the accuracy of the generated (pseudo-)Voronoi tes-
sellations. In that sense, each Voronoi region is labeled by a certain grey level,
whereas the Voronoi diagram generated using the exact Euclidean distance is
given in color. As it can be seen, the resulting pseudo-Voronoi tessellations can
deviate significantly depending on the metric that is used. Following this, most
image pixels assigned to wrong Voronoi regions are visible in Fig. 3.18(b) and
3.18(c), in the case of d4 and dg DT algorithms. Large portions of such pixels
are particularly visible and present close to the left edge of the image in the
middle, as well as around the center of the image. As expected, in the case of
quasi-Euclidean DT algorithm d“, V2) (3.20) (given in Fig. 3.18(d)), the gen-
erated results are improved in terms of achieved accuracy and precision, even
though several pixels being still assigned to wrong Voronoi regions. Finally,
the parallel EDT algorithm [174] provides the exact digital Voronoi tessella-
tion based on the Euclidean distance, as shown in Fig. 3.18(e).

- Robot navigation to determining the shortest path from one place to another
among the various obstacles [29, 36, 59, 138]; One such example, originally
presented in [68], is illustrated in Fig. 3.19(a) where two given points, marked
as blue and red stars, are considered as the starting and destination point of
the motion of the robot, respectively, whereas the points given in white rep-
resent obstacles (e.g., walls). For an illustration, we have considered a quasi-
Euclidean DT algorithm d, W (3.20). In the first step, distances are propagated
over an image from the starting point as the source of propagation. Figure
3.19(b) illustrates such a generated distance map where each background pixel
is assigned its shortest distance to the starting point. Similarly, in the second
step, the distances are propagated over an image, but now from the destination
point as a source of propagation. Such an obtained distance map is shown in
Fig. 3.19(c). It can be noticed that both generated distance maps are illustrated
as grey-level images where the brighter pixels correspond to larger assigned
distances. If these two maps are summed then the pixels, to which the minimal
values are assigned, belong to the shortest paths. Such a generated grey-level
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distance map is given in Fig. 3.19(d), where the pixels belonging to the short-
est paths are shown darker. As it can be noticed, we have generated a number
of different shortest paths connecting the starting and destination points, and
among them, it is necessary to pick only one. There exist many different ways
to achieve this, and herein we have decided for a morphological thinning as one
possibility to obtain only one shortest path between two given points (shown
as a white path in Fig. 3.19(e)).

Other DT applications in shape-based image analysis tasks are: shape matching
[19, 20, 108], shape measures (descriptors) based on the distance [36, 117,
118], where the distribution of the distances in the corresponding distance map
can be used as a shape descriptor, image registration [36, 80], etc. More about
application of DT algorithms can be found in [21, 53].
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(a) (b)

© (d)

(e)

Figure 3.18: (a) A Voronoi tesselation of a plane generated with 9 influence points.
Examples of (pseudo-)Voronoi tessellations for the same influence points using the
different DT algorithms: (b) city block, (c) chessboard, (d) quasi-Euclidean and (e)
EDT algorithm [174].
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(a) (®

(©) (d

(e)

Figure 3.19: Example of the shortest path computation among the obstacles using
the quasi-Eucliden DT (3.20). The starting and destination points are marked as blue
and red stars, respectively. In (b), (c) and (d), the lighter pixels, the larger assigned
distances. The darker pixels in (d) belong to one or more of the shortest paths between
the source points. Path in white in (e) is picked as particular unique shortest path using
the morphological thinning.



Chapter 4

Sub-voxel precise Euclidean
distance transforms in 3D

This chapter illustrates a relatively novel approach to improving the performance of
3D EDT algorithms based on information contained in the voxel coverage image
representation. Before that, let us recall that DTs are usually defined on a binary
image as a mapping which assigns each background voxel the distance from its center
to the center of the nearest object voxel. However, such an image representation can
be closely related to possible irreversible loss of important information about the
geometry of the imaged object. This loss of the object information, particularly on
the object boundary, can further lead to negative effects to computed EDTs in terms
of decreased precision and accuracy, as well as reduced invariance to rotation and
translation.

One possibility to deal with these challenges is to utilize the coverage image rep-
resentation defined in Chapter 2, instead of the binary image representation itself. As
it has been already mentioned, in this representation, each image voxel is assigned
value proportional to its relative volume covered by the observed imaged object. Such
assigned values are then used to estimate the position of the object within the bound-
ary voxel. Advantages of utilizing the coverage image representation, instead of the
corresponding classical binary one in the tasks of improving the accuracy of EDT
are presented in [63] for the 2D case. This result has motivated further research on
how the coverage model can be utilized to develop EDTs with sub-element precision.
The initial studies on utilizing the coverage model to achieve more accurate 3D EDTs
with sub-voxel precision have been presented in [91]. Since then this study has mo-
tivated further research to develop other sub-voxel precise EDT algorithms based on
the coverage model. In this chapter, we illustrate how considerable improvement in
the performance of Euclidean DTs can be achieved if the voxel coverage information

57



58CHAPTER 4. SUB-VOXEL PRECISE EUCLIDEAN DISTANCE TRANSFORMS IN 3D

is used to estimate the sub-voxel position of the object within the voxel. Such an ob-
tained precise estimate of the boundary position can be further utilized to obtain more
precise and more accurate 3D EDTs. In the following, we present two novel methods
of linear complexity, originally proposed in [71], for computing the EDT estimation
with sub-voxel accuracy, which can then be used to improve performance of any
vector propagation DT algorithm. The statistical evaluation of the proposed meth-
ods by their comparison both with the classical vector propagation-based EDT using
26-neighbors [18], and with the already existing method utilizing the voxel coverage
representation and sub-voxel position of the object boundary [91]. The evaluation
results clearly illustrate the performance improvement of our proposed methods in
terms of the decreased bias and variance, as well as reduced variance to rotation and
translation, compared to the other two competitive 3D EDT algorithms.

4.1 Sub-voxel estimate of the boundary position using
voxel coverage information

As it has already already said in this chapter, we will present new methods for com-
puting EDTs that utilize voxel coverage information to estimate the position of the
object boundary within the voxel. Herein we show how such a sub-voxel position of
the object boundary can be further used to improve the performance of any vector
propagation-based DT algorithm.

In that sense, let first suppose that the boundary of the object covering the voxel
is locally planar (as shown in Fig. 4.1a). Given this, it is easy to provide an estimate
of the object boundary position within the voxel using its coverage if the normal
direction of the boundary is known. In that context, let us notice that there exists a
functional relationship between the signed distance from the object boundary to the
center of the voxel, herein denoted with d,,, the volume voxel coverage v, as well as the
normal direction of the planar object boundary n. Before we start with the derivation
of the main result of the paper [71], let first note that, for all normal directions n,
relation v = 0.5 is equivalent with d,, = 0, while for each normal direction parallel to
one of the voxel coordinate axes, the linear relation d,, = 0.5 — v holds true. Otherwise,
in the case where the object normal direction is not parallel to the coordinate axes,
this linear relation can be only used as a simple approximation of the signed sub-
voxel distance d, if a normal direction of the object boundary is not known. Such a
linear approximation has been first proposed by Linnér and Strand in [91], and in the
following, it will be denoted as déi":

dlin=0.5—v. (4.1)

However, in the case when the normal direction of the object boundary is known,
the exact sub-voxel position of the object boundary within the voxel can be expressed
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Figure 4.1: (a) The normal direction of the object boundary n, signed distance d,,
volume coverage v (bolded volume), and distance x representing the intersection point
of the object boundary and x-axis. (b) Volumes v{,v»,v3,v4,vs and v¢ when ny, +n; <
ny and (c) when ny +n; > n,.

accurately. Indeed, the position of a planar object boundary within the voxel is
uniquely defined by its unit normal direction n = (n,ny,n;), as well as the signed
sub-voxel distance d, from the voxel centre (where we choose orientation such that
v < 0.5 = d,(v) > 0). For this purpose, we present an algorithm for computing the
exact distance d, (i.e., the exact object boundary position within the voxel) as a func-
tion of the voxel coverage v and the normal direction of the object boundary n. This
algorithm also represents the main (i.e., original) contribution of the work [71], and
herein we present a complete theoretical background that enables that this algorithm
will be theoretically well-founded, and its derivation mathematically correct.

In addition, it can be noticed that, for any normal direction n, the signed distance
d,(v) is antisymmetric function around v = 0.5, i.e., it holds that d, (1 — v) = —d,(v)
and d,(0.5) = 0 as well. Following this, it is enough to observe only the volume
coverages ranging through the interval [0, 0.5], as well as the normal directions
n = (ny, ny,nz) for which ny > ny > n; > 0. Besides, it is easy to notice that the other
cases are based on symmetry, and can be derived by changing the sign or swapping the
place of n,ny, and n,. In order to make the derivation of the main result easier, let in-
troduce the Cartesian coordinate system in a way as in Fig. 4.1(a), and let consider as
well the plane with the normal direction n = (ny, ny,n;) which passes through the ori-
gin (i.e., voxel vertex) O(0,0,0). By translating such a plane from the vertex (0,0,0)
to the vertex (1,1,1), we obtained the volumes vy, v,,v3,v4,vs and vg (as presented
in Fig. 4.1) representing the parts of the voxel volume to the left of the plane when it
passes the corresponding voxel vertex. The order in which the plane passes through
voxel vertices depends on the relation between n, and n, + n,. For example, in the
case of ny +n; < n, the order of vertices is (0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1)
and (1,1,0) (Fig. 4.1(b)), whereas in the case of n, +n; > n, this order becomes
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(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1) and (1,1,0) (Fig. 4.1(c)). Using an ele-
mentary geometry, we can express these volumes for a given normal direction n =
(ny,ny,n;), as follows:

n? 1 n?73nvnz+3n§
vy =1k )
nyny? 6 nxhy ’

V2 = 1ny+ng
3T 2w 4.2)
else
- ln%73nxnz+3n)2c 1 (nxfny)3
3=5% nxhy 6 nynyn;
vg=1—v3, vs=1—vy, ve=1—v1.

Now, thanks to these observations and the results derived, we are able to present
the main contribution of the paper [71], i.e., to present the complete algorithm for
computing the signed distance d, as a function of the volume coverage v, 0 <v <0.5,
for a given normal direction n = (ny,ny,n;):

Algorithm 1

Input: The normal direction of the object boundary n = (ny,ny,n;) with ny > ny, > n,
and voxel coverage v where 0 < v < 0.5.
Output: The signed distance d, from the voxel centre to the object boundary.

if (ny=0) /*impliesn,=0%
d,=05—v
elseif (v <vy)

dy = L(ny+ny+n;) — 3/6vnnyn;

elseif (v <)

d, = %(nx—l—ny) —1\/2vneny, — l—lzng
elseif (v <vs and n; # 0)
0=% bl
_ n?(ngtnb Cod=evti n;?(n;tn;?)
n2n3 22 nn3
x = CardanRoots(a,b,c,d)
if (ny+nz < nx)
select x € [, ]

ny’ ny
else
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select x € [%, 1]
endif
d, = %(nx +ny+n;) —xn,
else
if (ny+nz < nx)

ny+ng
x:V_‘_%)n—

X

else
n§ n§ ny-+ny+n;
a=2%;  p= -3t
l’ly l’ly X
nd n2+n4n? nt o nd mtndal
c=3% T d=06V—H—-5 T
nj, ny nxny ny ny
x = CardanRoots(a,b,c,d)
N ny+n;
select x € [1, = =]
endif
1
dy = 5(ny+ny+ng) —xny
endif

To provide a better understanding of the presented algorithm, it should be noted that in
some sub-cases it is necessary to make the algorithm capable to compute the roots of
the third-degree polynomial. Herein we have decided to implement Cardano formula,
the function CardanRoots(a,b,c,d), which solves the cubic equation ax’ + bx> +
cx+d =0 fora,b,c,d € R. More about the Cardano formula itself can be found in
Appendix B given at the end of thesis. Taking into account results related to Cardano
formula (16), the roots of this cubic equation can be expressed as follows:

X1 :S+T—%,

n==H -G (s-T),
b

where
S=\/R+VO*+R:, T={\R—\/O+R,
and

0= 3ac — b27 R dabc— 27a%d —2b°
942 54a3
In order to illustrate the behaviour of d,, as a function of the volume coverage v, the
plots of function d,(v), 0 <v < 1, for three given normal directions n = (ny, ny,n;),
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Figure 4.2: Signed distance function d,(v),0 < v < 1, for three different unit normal
directions n = (ny,ny,n;).

are shown in Fig. 4.2. It can be noticed that, for a fixed normal direction n, the
function d,(v),0 < v < 1 is continuous and monotonically decreasing, as well as
dy(1 —v) = —d,(v). Besides, we can notice that d, can be very well approximated
using a linear function déi” = 0.5 — v, which is obtained from the Algorithm 1 for
normal direction n = (1,0,0). Better visualization of the signed distance function
d, is shown in Fig. 4.3, where d, is plotted as a function of the normal direction
n for 6 given voxel coverage values. It can be noticed that the top surface, for v =
0, peaks at /3 /2 and for n = (1,1,1), while the bottom surface, relating to v =
0.5, is constant equal to zero, and it is equivalent with d,(0.5) = 0 for all normal
directions n. Also, it can be noticed that the function plotted is both smooth and
bounded, and, as such, it can be tabulated and interpolated with pretty good accuracy.
Taking these considerations into account, the certain rather tedious and demanding
computations of d, can be avoided, which could significantly accelerate the execution
of the algorithm itself in the sequential EDT implementation.

4.2 Proposed 3D Euclidean distance transforms

In this section, we present how the signed sub-voxel distance d,, obtained as the out-
put of the Algorithm 1, can be utilized to improve the estimation of the Euclidean
distances of any vector propagation-based 3D EDT algorithm. Based on this, we
will be able to propose novel methods for estimating the Euclidean distance trans-
forms, with sub-voxel accuracy. Of particular importance in our derivation is a clas-
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Figure 4.3: The signed distance function d,(n) for a given voxel coverage values
v € {0,0.1,0.2,0.3,0.4,0.5} (from the top to the bottom) and normal directions in
the first octant, parametrized by spherical coordinate angles ® and &

sical sequential vector propagation-based EDT algorithm [18] that has been already
described in Chapter 3. Such a defined propagation-based EDT algorithm, herein
referred to as binary EDT (BEDT), computes for each background voxel a distance
vector d; = (x;,y;,z;) pointing to the closest object voxel, and assigns to that back-
ground voxel the distance value computed as:

d; = dpepr = \/)Cl-2 +yl-2 +Zi2' (4.3)

To provide an improvement of accuracy of BEDT algorithm, the authors in [91]
proposed a linear approximation of d,, as given in (4.1), to define Anti-Aliased Eu-
clidean Distance Transform (AAEDT) as follows:

daaepr = dycepr1 = dpepr +d'™ = dggpr +0.5 —v. 4.4)

To improve the performances of such a proposed EDT approximation, the authors of
the [91] showed that accuracy can be further improved by using other non-standard
discretization grids such as Body-Centered Cubic (BCC) and Face-Centered Cubic
(FCC). However, in our research, we have focused on improving the performance
of the EDT estimates by increasing accuracy of the boundary position within the
voxel utilizing only the information available from its coverage representation on the
Cartesian Cubic grid. One possibility to achieve this improvement is based on the ap-
propriate treatment of information about the normal direction of the object boundary
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within the voxel. Such an approach, originally proposed in [71], will be exploited in
the following to improve the performance of the 3D EDT estimation.

To involve the information about the normal direction of the object boundary into
the computation of the signed distance d,, we have set one simple, but also a rea-
sonable assumption. Let us assume that the boundary of the object is approximately
orthogonal to the distance vector d; assigned to the background voxel. Such an estab-
lished assumption is asymptotically true in the sense that for the voxels close to the
object boundary it may be violated, while it becomes asymptotically more exact for
the voxels which are more and more distant from the object boundary. As a result,
this assumption provides a sufficiently good approximation of the boundary position
for the voxels which are further away from the object boundary. Thanks to this as-
sumption, we can compute the signed distance d, as the output of the Algorithm 1.
Such an estimation of d,, herein denoted with d2" ', can be used to assign the distance
value to each background voxel computed as follows:

dvcepra = depr +dJ". 4.5)

However, as already mentioned, this assumption may be not satisfied with the
voxels close to the boundary of the object. To improve the sub-voxel EDT estimation
for such voxels and their assigned distances, it is necessary to treat them with special
care to enable additional information relevant to our task. For example, one such
an approach is based on the use of local gradient vector assigned to boundary voxel
to estimate the normal direction n. This reasonable assumption can further lead to
increased accuracy of the boundary position estimate within such voxels. For this
purpose, we have decided to estimate the normal direction in each boundary voxel
utilizing three 3 x 3 x 3 Zucker-Hummel gradient filters [184]. In that context, the
signed distance d,, computed as the output of the Algorithm 1 using gradient-based
normal direction, herein denoted with d$", can be used to improve EDT estimate
for these voxels, instead of d9". Regarding the voxels located further away from the
object boundary, we follow the same approach as in dyceprz. Thus, if d, and d,
denote the distances defined as:

dazcli-l‘l7 d;,:|di><n|, (4.6)

and which are illustrated in Figure 4.4 as well, then we define the new distance value
dvceprs, assigned to each background voxel, as follows:

da+ds™ . for |d5|<0.5A dy<0.5

4.7
dpepr +dJ", otherwise. @7

dyceprs = {

Finally, it is worth mentioning that proposed EDT algorithms, based on the dis-
tances dycepr2 and dyceprs, are of a linear time complexity concerning a number
of the image voxels. This follows from the fact that the underlying sequential vector
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Figure 4.4: Local gradient vector g, signed sub-voxel distance d5", distance d; (4.3)
and distances d,;, and dj, (4.6).

propagation-based EDT algorithm [18] is of a linear complexity, i.e., of O(N) where
N is a number of image voxels, while the Algorithm 1 contains no loops and has a
constant complexity of O(1). Besides, it should be emphasized that the estimation
of the normal direction requires the distance vector d; assigned to each background
voxel. In that context, given distance vectors have to be available at each step, we
conclude that our framework proposed relates only to vector propagation-based EDT
algorithms. In the following we will illustrate the performances of the algorithms
utilizing the proposed dycgprz and dycgprs distances, in comparison both with clas-
sical 26SED algorithm [18], using dpgpr (4.3), and the approach (4.4), presented in
[91], where computation of dycgpr relies only on the voxel coverage information,
but not on the normal direction of the object boundary.

The experimental evaluation will relate to the achieved precision and accuracy of
the proposed estimation algorithms, as well as their invariance concerning the rota-
tion and translation. Herein under the term precision, we will mean how close the
differences between the correct and estimated distances (i.e., errors of estimation)
are to each other, while the accuracy will refer to how close the estimation errors
are to zero. In other words, the precision will express the degree of repeatability
(i.e., reproducibility) of the estimated results when the estimations are repeated under
unchanged conditions (less variance among the estimations repeated), even if they
are significantly far from their exact values, while accuracy represents the degree of
closeness of the estimated distances to their corresponding exact values (less bias
among the estimates obtained). In this context, if the differences of the estimated
distance values from their corresponding exact values are closer to each other, then
we say that the estimate itself is more precise, whereas if the estimated distances are
closer to their exact values, then we say that the estimate is more accurate.
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4.3 Performance of proposed 3D EDTs

To illustrate the performance of the proposed sub-voxel EDT estimations, we observe
30 different spheres with real-valued diameters in the range from 2 to 62 voxels, and
30 cubes having real-valued edge lengths from 2 to 42 voxels. For each diameter,
and edge length, we generate 50 spheres and 50 cubes, respectively, with centers
randomly positioned within the voxel, where cubes are additionally rotated randomly
(using composition of 3 successive random rotations about the coordinate axes). The
objects we observe are digitized in a rectangular grid of the size of 80 x 80 x 80
voxels using Gauss and voxel coverage digitization (following Definition 2.16 and
2.5), respectively. Volume coverage of a voxel is estimated by super-sampling of
the boundary voxels by a factor 16, and counting the number of sub-voxel centers
covered by the object (as already explained in Definition 2.22).

For computing DTs of the observed test objects, we utilize four above mentioned
estimation methods, denoted as BEDT, VCEDT1, VCEDT2, and VCEDT3. The
same propagation code is used for BEDT and voxel coverage based estimation meth-
ods, where the implementation of the latter ones requires additional consideration of
the sub-voxel signed distance, as already described above. For evaluating the per-
formance achieved for each of the EDT algorithms, three quantitative measures are
being considered:

1) root mean square error (RMSE):

RMSE = 4.8)
2) mean absolute error (MAE):
1 n
MAE = -} |% —xi], (4.9)
=
3) empirical range of errors (Range):
Range = max (£; —x;) — min (£; — x;), (4.10)

i=l...n i=1..n

where n is a number of image voxels, x; are the true values of EDT and £; are the
estimated EDT values.

For each of the observed size (diameter, or edge length), 50 digitized spheres
and 50 digitized cubes, randomly orientated and translated within the digital grid,
are generated and above-mentioned measures are computed. The errors computed,
measured in voxels, are then averaged over these 50 instances and plotted in Fig. 4.5.
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Figure 4.5: RMSE, MAE and Range, measured in voxels, of BEDT, VCEDT1 and
the proposed VCEDT?2, VCEDT3 applied to spheres (first row) and cubes (second
row) of increasing sizes.

It can be noticed that the use of coverage values contributes to improvement in ac-
curacy over BEDT. Besides, proposed VCEDT2 and VCEDT3 outperform VCEDT1
method in general, especially in the case of the spheres considered. The improvement
achieved for larger cubes is also obvious, while the methods proposed do not provide
the performance improvement for cubes with an edge length of less than 20 voxels.
Regarding the range values obtained, the reduction achieved by VCDTES3 is visible
for all the objects tested.

To provide further experimental evaluation, we consider deviations of the com-
puted EDTs of a randomly positioned sphere with a diameter of 81.8268 voxels, and
randomly positioned and additionally rotated cube with an edge length of 51.0938
voxels. To ensure that the observed objects are entirely contained within the rectan-
gular sampling grid, it is necessary to consider the integer grid of a size at least of
[(a++/3)]? voxels where a is edge length of the observed cube. As a result, the un-
derlying rectangular digital grid is now of size of 100 x 100 x 100 voxels. Histograms
of errors for these objects are shown in Fig. 4.6, while detailed results are in Table 4.1
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Figure 4.6: Histograms of errors of BEDT, VCEDT1 and proposed VCEDT2,
VCEDTS3, when applied to a sphere of diameter 81.8268 (first row) and a cube with
edge length 51.0938 (second row).

Table 4.1: RMSE, MAE and Range, measured in voxels, and Relative improvement
(regarding MAE) of BEDT, VCEDT1 and proposed VCEDT2, VCEDTS3, applied to
a sphere with a diameter of 81.8268 voxels.

| Methods | BEDT | VCEDTI | VCEDT2 | VCEDT3 |
RMSE (voxels) 0.2016 0.1054 0.0216 0.0181
MAE (voxels) 0.1371 0.0718 0.0115 0.0101
Range (voxels) 0.9999 0.5994 0.5063 0.3042
Rel. improvement 1 1.91 11.92 13.57
Rel. improvement / 1 6.24 7.11

and 4.2, for the sphere and cube, respectively. It can be noticed that noticeable im-
provement of both precision and accuracy has been achieved in the case of proposed
VCEDT?2 and VCEDT?3 methods, in comparison with BEDT and VCEDT1. Also, it
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Table 4.2: RMSE, MAE and Range, measured in voxels, and Relative improvement
(regarding MAE) of BEDT, VCEDT1 and proposed VCEDT2, VCEDT3, applied to
a cube with edge length of 51.0938 voxels.

| Methods | BEDT | vCEDTI | VCEDT2 | VCEDTS |
RMSE (voxels) | 02851 | 0.1500 0.0954 0.0946
MAE (voxels) | 02048 | 0.1173 0.0515 0.0503
Range (voxels) | 13140 | 0.9958 0.9813 0.7774
Rel. improvement 1 1.75 3.98 4.07
Rel. improvement / 1 2.28 2.33

Table 4.3: RMSE, Range, MAE, measured in voxels, of the 2D cross-section of error-
image with the largest sum of absolute errors, for BEDT, VCEDT1 and proposed
VCEDT?2, VCEDT3, applied to a sphere.

| Methoas | BEDT | VCEDTI | VCEDT2 | VCEDT3 |

RMSE 0.2282 0.1335 0.0210 0.0194
MAE 0.1890 0.1089 0.0139 0.0131
Range 0.8180 0.4482 0.2254 0.2254

notices that the results obtained indicate increased accuracy (i.e., reduction in MAE)
of approximately 4 to 14 times of the proposed VCEDT2 and VCEDT3 methods,
compared to BEDT, as well as of 2 to 7 times concerning VCEDT1. To additionally
illustrate the performance of proposed VCEDT2 and VCEDT3 relative to both BEDT
and VCEDT1, we have observed how many voxels, in the corresponding distance
maps, are assigned the distance values as close as possible to the exact Euclidean dis-
tances. In the case of the sphere considered, we have noticed that 46.72%, 66.94%,
99.28% and 99.62% of the voxels are assigned the distance values with accuracy up to
40.1 voxels in the BEDT, VCEDT1, VCEDT2 and VCEDTS3 distance maps, respec-
tively. Regarding the cube, we have noticed as well that 61.98%, 78.05%, 93.11%
and 93.25% of the voxels are assigned the distance values with accuracy up to +0.2
voxels, in the corresponding distance maps generated.

For further evaluation, we have observed the errors of the 2D slice of the com-
puted 3D distance maps in the case of the sphere already considered. In the first row
of Fig. 4.7, for each of the algorithms considered, are presented the 2D sections with
the largest sum of the absolute errors of the distance values assigned to image vox-
els. For all distances, such presented 2D sections correspond to a plane close to the
object boundary. This follows from the fact that the integer vectors, assigned to the
voxels near the object boundary, do not align well with the exact normal direction



T70CHAPTER 4. SUB-VOXEL PRECISE EUCLIDEAN DISTANCE TRANSFORMS IN 3D

L8 o
0 - -
20 40 60 80 100 20 40 60 8 100 20 40 60 8 100 20 40 60 80 100

(a) BEDT (b) VCEDT1 (c) VCEDT2 (d) VCEDT3

1400 1400 1400 1400

1200 1200 1200 1200
> 1000 > 1000
g g

H
15
8
S
ncy
=3
8
8

2
g 80) $ 800
2

Frequency
=
8
S
que!
o
=3
8

=
=
S
Frequi
=
=3
8

2 o
L 600 L 600

400 400

IS
]
S

5

S

200 200 200 200

0 0 0 0
0 02 04 06 08 1 -03 -02 -01 0 01 02 03 03 -02 -01 0 01 02 03 -03 -02 -01 0 01 02 03
Errors Errors Errors Errors

(e) BEDT (f) VCEDT1 (g) VCEDT2 (h) VCEDT3

Figure 4.7: First row presents 2D cross-sections of 3D error-image, with the largest
sum of absolute errors, for (a) BEDT, (b) VCEDTI, (¢c) VCEDT2, (d) VCEDT3,
applied to a sphere (of diameter of 81.8268). In the second row are present histograms
for respective 2D cross-sections shown in the first row.

of the object boundary, as it has been theoretically discussed in the previous section.
Histograms of the observed errors for such generated 2D sections are present in the
second row of Fig. 4.7, whereas the values of the observed errors for each of the 2D
sections are contained in Table 4.3. It can be noticed that the reduction of errors in
the case of the proposed VCEDT2 and VCEDT3 estimates are visible, given that the
brighter pixels point to higher errors assigned, and, consequently, less accurate algo-
rithms, which is particularly visible in the case of BEDT and VCEDT]1 algorithms.

In order to additionally emphasize the improvement of the proposed estimations
in terms of rotational and translational invariance achieved, we observe MAE of
BEDT, VCEDT]1, and proposed VCEDT2, VCEDT3, when they are applied to a
randomly positioned and rotated cube with edge length of 50.6802 voxels in a sam-
pling grid of a size of 100 x 100 x 100 voxels. The cube considered is further rotated
around the z-axis for angles from 0 to 180 degrees with a step of 5 degrees. For such
generated cubes, the MAE as a function of the rotation angle is provided in Fig. 4.8.
Absolute reduction in errors, as well as the reduced angular variation of the proposed
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Figure 4.8: MAE of BEDT, VCEDT1 and proposed VCEDT2, VCEDT3, when ap-
plied to a randomly positioned cube with edge length of 50.6802 voxels which is
rotated around the z-axis from 0 to 180 degrees with a step of 5 degrees.

Table 4.4: MAE, measured in voxels, of BEDT, VCEDT1, VCEDT2, and VCEDT3,
when applied to a randomly positioned cube with edge length of 50.6802 voxels
which is rotated (top rows) around the z-axis from 0 to 180 degrees with a step of 5
degrees, or translated (bottom rows) to 20 random positions.

| Methods | BEDT | VCEDT1 | VCEDT2 | VCEDT3
Rot. MAE (average) 0.2003 0.1065 0.0533 0.0522
Rot. MAE (stddev) 0.0142 0.0095 0.0022 0.0023
Transl. MAE (average) | 0.1955 0.0941 0.0574 0.0563
Transl. MAE (stddev) 0.0066 0.0014 0.0015 0.0015

VCEDT?2 and VCEDT?3, compared to both BEDT and VCEDT 1. Further evaluation
is performed for the cubes randomly translated within one voxel can be noticed. The
results obtained, contained in Table 4.4, are similar to those already presented, ex-
cept in the case of translational variance of VCEDT1 which is equal to ones achieved
for VCEDT?2 and VCEDT3. In order to evaluate numerically how the generated dis-
tances vary through rotation and translation, in Table 4.4 we show the average MAE
and standard deviation of MAE over all the observed rotations and translations. It
can also be noticed that a considerable decrease of both rotational and translational
variability, in the case of the proposed VCEDT2 and VCEDT3 estimates, is achieved.

To better understand the behaviour of the proposed sub-voxel EDT estimates,
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Figure 4.9: Al Capone object.

we have illustrated their performances on a more complex shape. As a reference
shape for this experiment, we utilize the original Al Capone object! visualized in Fig.
4.9, while for computing the ground truth distance values we utilize the method pro-
posed in [99]. Histograms of errors for the observed BEDT, VCEDT1, VCEDT2, and
VCEDTS3 algorithms are shown in Fig. 4.10, while the corresponding performance
measures are given in Table 4.5. It is easy to notice that the accuracy improvement
resulting from the use of voxel coverage information is visible, whereas the improve-
ment relative to VCEDT]1 is not as pronounced as for the simpler objects, as shown
in the previous experiments.

At the end of the experimental section, it should be said something about the per-
formance of the EDT estimation algorithms in terms of their execution time. Herein
we will observe the computational complexity of the algorithms discussed to the num-
ber of image voxels. The plots presenting the execution time, measured in seconds,
for each algorithm considered to the image size are shown in Fig. 4.11. It can be
noticed that the presented plots clearly illustrate that the algorithms discussed are of
linear time complexity. This is also consistent with the theoretical consideration, dis-
cussed in the previous section, that the algorithms presented are of linear complexity.
Also, using the look-up table of pre-computed distance values provided by Algorithm
1, the algorithm execution can be additionally accelerated if it is necessary.

The original 450 x 450 x 450 voxels Al Capone, submitted by Eric Remy, is available on the IAPR-
TC18 webpage (http://www.tc18.org).
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Figure 4.10: Histograms of errors for BEDT, VCEDT1, VCEDT2, and VCEDT3,
computed for 50 x 50 x 50 Al Capone object.

Table 4.5: RMSE, MAE and Range, measured in voxels, of BEDT, VCEDTI,
VCEDT?2, and VCEDTS3, computed for 50 x 50 x 50 Al Capone object.

| Methods | BEDT | vCEDTI | VCEDT2 | VCEDTS |

RMSE 0.1858 0.0124 0.0119 0.0118
MAE 0.3510 0.0819 0.0771 0.0760
Range 2.1773 1.0068 1.0128 0.9037
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Figure 4.11: Measured execution time, in seconds, of BEDT, VCEDT1, VCDET?2 and
VCEDTS3, applied to Al Capone object of size 18%,30°,503,90°%, and 1503 voxels, as
a function of the number of image voxels.
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Chapter 5

Hexagonality as a new shape
descriptor of the object

In this chapter, we consider a hexagonality as a new shape-based descriptor of the
object and also present a new measure which evaluates how much a given shape is
hexagonal. As one of the interesting, and also a specific aspect of the shape, the
hexagonality has a clear geometric meaning, and, as such, it can be defined by adopt-
ing some usual schemes for defining other shape descriptors. Probably the most ob-
vious approach for defining a general class of shape measures is described in cite
Rosin2008 and consists of fitting the model to the considered shape and then express-
ing the shape measure by the level of their match. Consequently, for example, one of
the possibilities for defining the shape hexagonality can be described as follows: let
fit in some way appropriately chosen hexagon FH (S) to a shape S we are measuring,
and evaluate hexagonality of S relative to the fitted hexagon FH(S). One the natural
choice for a fitted hexagon can be the hexagon whose centroid coincides the shape
centroid, and having the area equals the area of shape. Taking this into account, a
shape hexagonality measure can be defined as

_ Area(SNFH(S))
~ Area(SUFH(S))’

H i (S) (GRY)

where FH(S) denotes a hexagon rotated around its centroid to provide that the area
of SN FH(S) reaches its maximal possible value. Defined that way, hexagonality
measure H s;(S) satisfies the following important and, in many applications, desir-
able properties:

* The measured hexagonality H s; (S) is a number from [0, 1];

* The measured hexagonality H s; (S) is equal to 1 if and only if S is a hexagon;

75
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* There exist shapes with measured hexagonality H s; (S) equals 0;

* The measured hexagonality is invariant under similarity transformations.

It can be said that most of the properties represent natural requirements that any
shape descriptor should satisfy. However, among the properties listed above, the first
and third ones deserve special attention and additional consideration. To be more
precise, according to the properties stated in the first and third items, we have that
there exist shapes, with the non-zero area, whose measured hexagonality amounts 0.
Examples of such shapes are the shapes having no intersection with the corresponding
fitted hexagon (for example, see the last shape presented in Fig. 5.6). This further
implies that 0 is the lowest possible value for H f; (S), implying also that the interval
[0, 1] cannot be made as narrow as possible. As such, this property is not so desirable,
given that our initial intention was to design a new shape based measure which should
answer how much a given shape differs from a hexagon. This further motivates us to
consider another measure of hexagonality that has all the above-mentioned properties,
with the exception that for each non-zero area shape the assigned hexagonality should
be greater than 0. In this chapter, we introduce a new hexagonality measure which
ranges through the interval (0, 1] and assigns the largest value amounts 1 if and only
if the shape we are measuring is a hexagon. Also, it is invariant concerning rotation,
translation and scaling transformations.

Additional motivation for our research stems from the tasks of computer vision
and image analysis, given the new hexagonality measure has several useful conse-
quences which are also discussed and experimentally evaluated in this chapter. As a
first consequence, we present a new method for calculating shape orientation, where
the shape orientation is determined by an angle (i.e., direction), minimizing the in-
tegral in (5.21). Effectiveness of the new approach for determining the shape orien-
tation has been also demonstrated and compared with the approach for computing
the shape orientation based on the axis of the least second moment of inertia [152].
Such an introduced axis represents the line minimizing the integral of the squared
distances of all shape points to the line, and orientation of a shape is then defined as a
slope of such a line. This approach is also referred to as moment-based, given that all
the second-order shape’s moments, as given in (5.2), are used for its computing. Be-
sides, the new method for computing the shape hexagonality provides as well a new
shape elongation measure. Indeed, taking into account that a new hexagonality mea-
sure evaluates how much the shape considered differs from a hexagon, it is natural
to define shape elongation as a ratio of the lengths of the longer and shorter semi-
axis of the appropriately associated hexagon. Such a defined elongation measure has
several desirable properties that are verified both from a theoretical point of view
and experimentally using several illustrative examples. To additionally demonstrate
the behaviour of the new elongation measure, we also compared it with the standard
elongation measure based on the shape’s moments, which has been derived from the
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already mentioned standard method for computing shape orientation. All these de-
sirable properties are also theoretically proven. This can be particularly beneficial in
certain applications, given that the behaviour of such a measure can be predicted in
advance. Several experiments, performed on both synthetic and real image data, are
shown to confirm the theoretical observations and illustrate the behaviour of the new
shape-based measures. Given that new measures are not designed for a particular ap-
plication, they can be applied in different object analysis tasks. Several experiments
relating to three well-known image datasets such as MPEG-7 CE-1 [73], Swedish
Leaf [151], and Galaxy Zoo [92] datasets, are also provided to illustrate effectiveness
and benefits of the new shape measures in a variety of object classification tasks.

The chapter is organized as follows. The basic terms necessary for deriving the
main result of the chapter are in the next section. Section 5.2 introduces a new hexag-
onality measure and proves several desirable properties of it. The experiments, per-
formed on synthetic and real image data, that illustrate the behaviour of the new
hexagonality measure and also provide its comparison with H s; (), are in Section
5.3. Several consequences of the new hexagonality measure are in Section 5.4. A few
illustrative examples and theoretical considerations related to these consequences are
also included in Section 5.4. Section 5.5 provides several experiments illustrating ap-
plicability and usefulness of the new hexagonality measure in different shape-based
object analysis tasks.

5.1 Definitions and assumptions

Herein we recall some elementary definitions necessary to derive the main result of
the chapter. We also introduce several assumptions that do not restrict research pre-
sented in this chapter, but which are necessary to provide that research is theoretically
well-founded. As it has already been mentioned, the shape is one of the basic proper-
ties of the object along with texture and color. In that context, the shape is represented
by bounded (not necessarily connected) planar region, or as a set of the black pixels
on the black-white digital images.

In our derivation of the main result, we rely on moments assigned to the shape
considered. The (p,q)-moment m, 4(S) of a planar shape S is defined as follows

Mmpq(S) = //x”yqudy (5.2)
s

and has the order p 4+ g. The basic features of a shape such as the size (i.e., area)
and position (i.e., centroid) can be computed using the moments of order not greater
than one. Precisely, the zeroth-order moment mg o(S) equals the area of S, while the

centroid of S is defined as (ml’O(S) , 0.1 (5) ) . In the following, unless otherwise stated,
moo(S)? mpo(S)

we will assume that all the shapes considered have the centroid coincident with the
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origin, i.e., m; o(S) = 0 and mg 1 (S) = 0. Given that a shape of the object does not
change under the translation transformation, this assumption shall not be considered
a restriction in the shape-based object analysis tasks. We also assume that two shapes
are equal if and only if the area of their set difference is equal to zero. For instance, an
open d;-distance disc (i.e., an open square) S = {(x,y)||x|+ |y| < 1} and the closed
d;-distance disc (i.e., the closed square) S, = {(x,y)||x| 4 [y| < 1} are of the same
shape.

Further, for our research, the first two Hu moment invariants derived from the
second-order moments are of particular significance. These quantities represent two
best-known and also most widely used Hu moment invariants among all the intro-
duced in [66], primarily because of their computational complexity, given that only
the second-order moments are needed for their computation. For a given shape S,
whose centroid coincides with the origin, the first two Hu moment invariants are de-
fined as follows

Hi(5) = m (m2,0(S) +mo2(S)) 5.3)
Ha(S) = m ((mao() ~moa($)P +4mii(87). 54

It is worth noting that all Hu moment invariants are the geometric moment invariants
as well, given that they can be generated using the corresponding geometric primitives
(i.e., invariants) [ 172]. Because of this, some of the Hu moment invariants can also be
used to measure certain shape descriptors, which can be understood as their advantage
in some applications.

Finally, a new shape hexagonality measure will be derived by using d;-distance,
which is, for any two given planar points A(x,y;) and B(xy,y>), defined in (3.3) as
follows:

di(A,B) = di((x1,y1), (x2,y2)) = |x1 = 22| + |y1 = y2]- (5.5)
It is easy to verify that the set of all the points whose sum of their d;-distances from
two fixed points (also called foci) is smaller than a given constant a is a hexagon.
Without loss of generality, we will herein observe a hexagon having the centroid
coincident with the origin, and whose foci have the coordinates (¢,0) and (—c,0).
Such a defined hexagon has semi-axes parallel to the coordinate axes, and as such has
a form

Hex(a,c) ={(x,y) | [x—c|+|y|+ |x+c|+y[<2-a} (5.6)

where a is a given constant. Moreover, such a hexagon is also said to be an isothetic
hexagon. In a special case, when foci coincide with the origin, or equivalently for
¢ = 0, the formula in (5.6) defines a square (i.e., disc in terms of d;-distance), herein
denoted with S(a), as follows

S(a) = Hex(a,0) = {(x,y) | ||+ |y| < a}. (5.7
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Thanks to this fact, a square can be considered as a degenerative hexagon, which
will enable that a new shape hexagonality measure is well-defined, and its derivation
mathematically correct as well.

5.2 New hexagonality measure

In this section, we provide the theoretical framework that enables us to derive the
main result of the chapter. Considering these theoretical observations, we will define
a new shape hexagonality measure and describe several desirable properties of it. In
that context, of particular interest for our derivation will be the quantity defined as

min / (Ix = c(S)|+ [+ [x+c(S)[ + [y|) dxdy (5.8)
ee[o,zn)s
¢]

where Sy denotes rotation of a shape S for an angle 0 around its centroid. We will
show that such a considered quantity achieves the lowest possible value if and only if
S is a hexagon. This result will further lead us to a new shape hexagonality measure.
Before we start with our derivation, we first define an auxiliary hexagon Hex(S) for
a given shape S as follows:

Hex(S) = {(x.y) | = c(S)[ + [y + [x+e(S) + ¥ <2-a(s)}, (5.9
where the associated parameters a(S) and ¢(S) are defined as follows:

1/2
)

a(S) = (Area(S)- (3-%1(S)+3-\/7T(S)+1/2) /2) (5.10)

12
o(8) = (Area(S) : (3 1 (S)+3-/Ha(S) — 1/2) /2) . (5.11)
For such a defined hexagon Hex(S), it holds the following:

- Hex(S) depends only on a given shape S, and it does not change if S is rotated
for an arbitrary angle. This comes from the fact that both a(S) and c(S) are
computed from the first two Hu moment invariants and the shape area, which
are rotational invariants as well.

- The associated parameters a(S) and ¢(S) of the auxiliary hexagon Hex(S), as
given in (5.10) and (5.11), are set in the way that the area of Hex(S) is equal
to area of S, i.e., Area(Hex(S)) = Area(S) =2 (a(S)* — ¢(S)?), and also that
the first two Hu moment invariants of Hex(S) and S are equal, i.e., H(S) =

Hi(Hex(S)) and Hy(S) = Ho(Hex(S)).
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Note 5.1 It is easy to notice that the formulas in (5.10) and (5.11) make sense if and
only if H1(S)++/Ha(S) > 1/6. However, given that there exist shapes for which
this relation breaks down (e.g., for a disc it equals 1/(21)), it makes sense, in such
cases, to set ¢(S) = 0, while the other associated parameter a(8) is wmputed in the
way that the areas of Hex(S) and S are equal, i.e., a(S) = \/Area(S) /2. It should be
noticed that this is not a restriction for defining a new hexagonallry measure since, in
such cases, the corresponding auxiliary hexagon is a square S(a), i.e., a degenerative
hexagon defined in (5.7).

Now, we start with the derivation of the main result, where, in some statements,
we follow the approach used in [122, 161]. First, the following theorem applies.

Theorem 5.1 Let a shape S, whose centroid coincides with the origin, be given, and
also let Sg be a shape S rotated by an angle 0 around the origin. Then the following
statements are true:

J[ (=)l o1+ v <(9)] + yl)dxdy
S

8
a(S) (S =3 612
J[ (= clS) 1+ b1+ bt ()| + )y
s _8
a(8)? —c(S)3 3
& S:Hex(S), (5.13)
egggn/ (el bl b ) sty
a(S)3 —c(S)? 3
& S'is a hexagon. (5.14)

Proof 5.1 Let S be a shape satisfying the conditions of the theorem. Also, let denote
with Hex(S) the auxiliary isothetic hexagon, centered at the origin, with the vertices
(—a(8),0), (=c(S),—a(S) +c(S)). (c(S),—a(S)+c(S)). (a(s),0), (c(S),a(S) —c(S))
and (—c(S),a(S) —c(S)). It is easy to check that the areas of S and Hex(S), as well
as the areas of S\ Hex(S) and Hex(S) \ S.

From the definition of Hex(S), it holds that the sum of d,-distances of the points
Sfrom Hex(S)\ S to foci (¢(S),0) and (—c(S),0) is smaller than the sum of d\-distances
of the points from S\ Hex(S) to (¢(S),0) and (—c(S),0), i.e., if (u,v) € S\ Hex(S)
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Figure 5.1: Sum of d-distances of each point (s,#) from Hex(a,c)\ S to foci (¢,0) and
(—c,0) is smaller than the sum of d;-distances of any point (u,v) from S\ Hex(a,c)
to (¢,0) and (—c,0).
and (s,t) € Hex(S) \ S then the following applies:
lu—c(S)|+ v+ [u+c(S)|+ |v|
> |s—c(S)|+ ||+ s+ c(S)|+ 1] (5.15)

This further implies that the following equality

J] = c®)1+ bl e (5)] + 1y
S\Hex(S)

=[] Gr=e®)1+ b+ e e(9)] + )y
Hex(S)\S
~ Area(S\Hex(S))- (u=c($)] + Iv|+ u+<($)] + )

— Area(Hex(S)\S) - (Is—c(S)| + |t| + |s+c(S)|+t]),
(5.16)

holds true for some (u,v) € S\ Hex(S) and some (s,t) € Hex(S)\ S. Given Area(Hex(S) \
S) = Area(S\ Hex(S)) > 0, the last equality along with (5.15) gives the following:

//(|X—C(S)|+|y|+|x+c(S)|+|y|)dxdy2
S\Hex(S)

[ (r=c®)1+ b+t e®)]+bhdady. .17
Hex(S)\S
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Now, we establish the proof of (5.12):

J[ (= clS) 1+ b1+ bt () + y)dxdy =
S

=[x e()l+ ol + () + b ddy
S\Hex(S)

[ = e®1+ bl + b+ e(®)] + bl dxdy
SNHex(S)

> [ (e e+ ol + ee() + b dady
Hex(S)\S

[ = e®1+ bl + b+ e(®)] + bl dxdy
SNHex(S)

=[] (x= )1+ bl +x+e(S)|+ ) dxdy
Hex(S)

W | oo

. (a(S)3 - c(S)S).

Further, notice that inequality in (5.17) is strict if and only if Area(S\ Hex(S)) =
Area(Hex(S)\S) >0, i.e., if and only if the shape S is different from a hexagon. This
completes the proof of (5.13), since the equality in (5.17) holds true if and only if
Area(S\ Hex(S)) = Area(Hex(S)\ S) =0, i.e., if and only if the shapes S and Hex(S)
are the same.

To prove (5.14), let first notice that // (|x = c(S)|+ |y| + |x+c(S)| + |y|)dxdy de-

S,

pends on the orientation of the shape S,9 i.e., it changes over all rotations of S around
the origin for an angle varying through the interval [0,27). Instead, we consider
the minimum of this quantity for all rotations S¢ of the shape S around the origin.
Therefore, let denote with 0y the angle minimizing such a quantity, i.e.,

J[ (=) + b+ e +-<()] + v dady

Soy

— min //(|x—c(S)|+|y|+|x+c(S)|+|y|)dxdy. (5.18)
0ci0.2m),
)
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Now, if we suppose that the left side of (5.14) is true, i.e.,

min // = ()] Iyl + e +-(5)] + vy
0¢[0,27)

_ 38
a($)3 —c(s)3 3
then we obtain
J[ (=) + sl + e +-<(5)] + vy
Sgo _ §
a(S)F —c(5)? -3 ©-19)

This completes the proof, since the equality in (5.19), according to (5.13), implies
that shapes S(60o) and Hex(S) coincide, i.e., S must be a hexagon. O

Now, exploiting the observations and results of Theorem 5.1, we have that the
quantity

mm/ (b = e(S)|+ y1+ [x +¢(S)| + yl)dxdy
0¢cl0,2m

a($)3 —c(S)?
does not depend on the orientation of S (i.e., it is invariant to rotation), and reaches
the minimum 8/3 if and only if S is a hexagon. Based on this, we can conclude that
the quantity

8 a(S)3 —c(8)3

min // = e(S)] Iyl + e +-e(5)] + Iy dady
0¢[0,2m)

(5.20)

can be used as a new shape measure. Herein such a defined shape measure is named
a shape hexagonality measure, and will be denoted as H(S). Now, we give a formal
definition for H(S).

Definition 5.1 Let a shape S, having the centroid coincident with the origin, be given,
and let a(S) and c¢(S) be the associated parameters, defined as in (5.10) and (5.11),
or, if necessary, as in Note 5.1. The shape hexagonality measure of a given shape S,
denoted as H(S), is defined as

8 a(8)? —c(S)3

HS) = 2
min // = e(S)] Iyl + e+ e(5)] + vy
0¢[0,27)

(5.21)

with Sg¢ denoting shape S rotated by 0 around its centroid.
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Such a defined measure satisfies the basic properties of the hexagonality measure
in (5.1), with small modification regarding the first, and consequently the third prop-
erty, which has been already indicated to represent weakness for each shape measure.
To formalize this, the following theorem, based on the results and arguments of The-
orem 5.1, summarizes several properties of the new #(S) measure.

Theorem 5.2 Let a shape S, whose centroid is coincident with the origin, be given.
The hexagonality measure H(S) satisfies the following properties:

(a) H(S) € (0,1], for all shapes S;
(b) H(S)=1 < S is a hexagon;

(c) H(S) is invariant with respect to translation, rotation and scaling trans-
formations.

Proof 5.2 The first two statements follow directly from (5.12) and (5.14) provided by
Theorem 5.1. The third statement comes from the fact that the quantities a(S) and
c(S), needed for the computation of H(S), and the quantity in the denominator in
(5.21) are rotational invariants by their construction, implying that H(S) is rotational
invariant as well. Invariance to translation follows from the fact that the centroid of
S is always coincident with the origin. To prove the scaling invariance of H(S), let
suppose that S is scaled by some factor A to shape A -S = {(A-x,A-y) | (x,y) € S}.
Then, it holds:

Area(A-S) = //dxdy = //lzdxdy
s

A-S

= A2 Area(S), (5.22)
1/2
a(L-S) = (Area(?L-S)~ (3?—(1(1~S)+3\/H2(A~S)+1/2) /2)

- (12~Area(7L~S)~(3’;‘-{1(1~S)+3\/’H2(A-S)+1/2)/2)1/2
—-al$), (5.23)

1/2

c(A-S) = (Area(l-S)- (37{1(1 -8)+3/Ha(A-S) - 1/2) /2)

= (22-Area(s) - (311(5) +3/Fa(S) - 1/2) /2)'/2
_2-c(s), (5.24)
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min / (b= e(A-$)]+ o]+ v+ c(A-S)| + |y} dxdy
0€[0,2m)

— min // A x—A-c(S)+ Ay + A x4 A-e(S)] + |4 -]) - A2dxdy
0€[0,2m)

— 23 min / (b= c(S)|+ Iy + [x+c(8) |+ [y])dxy, (5.25)
0€[0,2m)

and, therefore,

a(A-8)3 —c(A-S)3

A3- min // x—c(S)| + |y + |x+c(S)] + |y|)dxdy
0e[0,27)

8 a(8)? —c(8)3
3 eé%“;ﬂ/ (15 = ()| + Iyl + b=+ €($)] + Iy dady
= H(S). (5.26)

This ends the proof of the theorem, given that (5.26) proves that H(S) is a scaling
invariant as well. O

Finally, we should say something about the algorithm for numerical computation
of H(S). In that context, Definition 5.1 provides a simple and reasonably efficient
algorithm consisting of rotation and considering each shape point. Precisely, we con-
sider all rotations of S around the origin, and compute the integral in the denominator
in (5.21) while angle 6 varies over [0,27). To accelerate the computation of this
integral, the appropriate shapes moments, as given in (5.2), can be computed for a
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suitable partition of Sy specified as follows:
51(8) = {(x,y) € Sg | x < —¢(S), y <0},
52(0) = {(x.y) €Sq | x < —(S), y > 0},
53(8) = {(x.y) €Sg | —c(S) <x<c(S), y <0},
$4(8) = {(x,y) €Sp | —c(8) <x<c(S), y>0},
55(8) = {(x.) €S | x> c(5), y <0},
S6(0) = {(x,y) €Sp |x>c(S), y>0}. (5.27)

Exploiting this, the quantities considered can be evaluated as follows:

[ (= elS)1+ Iyl + bt ()| + yl)dxdy =
5(6)

= // (—2-x—2-y)dxdy+// (=2-x+2-y)dxdy
51(6) 52(0)

—|—//Sa(e)(2-c(S)—2-y)dxdy+//S4(9>(2'C(S)+2'y)dXdy

+// (2-x—2'y)dxdy+// (2-x+2-y)dxdy
S5(6) S6(6)

==2-m10(81(6)) =2-mo,1(51(8))
—2-my0(52(8)) +2-mo,1(52(6))
+2-¢(8) -mo,0(S3(0)) —2-mo.1(S3(6))
+2-¢(S) - moo(S1(8)) +2-mo1(S4(8))
+2-m10(85(0)) —2-mo,1(S5(6))
+2-m10(S6(6)) +2-mo,1(S6(6)) (5.28)

Following this, it is enough to compute only the zeroth- and first-order moments of
the subsets in (5.27), instead of //(|x—c(S)| + [yl + |x+¢(S)| + |y|) dxdy, making
S



5.3. EXPERIMENTS ILLUSTRATING H(S) BEHAVIOUR 87

the computation of H(S) additionally simpler and faster. Besides, if a continuous
shape S is given in a discrete (i.e., digital) space with its Gaussian digitization Dg(S)
(according to Definition 2.16), our approach is based on working as long as possible
in the continuous domain, and therefore with the continuous quantities, and delay the
effects of discretization (i.e., digitization) as long as possible till the end of the pro-

cess of computation. Then, the integral // (Jx—c(S)| + [y|+ [x+c(S)|+ |y])dxdy is

s
approximated as

J] (= clS) 4151+ bt () + Iyl dxdy =
N

~ Y (li—c(DgS)|+jl+|i+c(Dg(SNHI+ i), (5:29)
(i,))€Dg(S)

where the associated parameters a(S) and c(S) are given, respectively, by their ap-
proximations a(Dg(S)) and ¢(Dg(S)) (according to (5.10) and (5.11), or Note 5.1, if
it is necessary), while the moments mp,q(S), given in (5.2), are evaluated as follows:

mp,q(S) = //xpyqudy ~ Z P jq. (530)
(
N

i,j)€Dg(S)

It can be noticed that the approximation in (5.30) is simple and easy to compute,
given that only multiplications and summations are necessary, and also provides a
very accurate estimation of the continuous shapes moments [79]. Regarding this, in
the case of the digital shapes (i.e., digital images), the latter two approximations are
of particular importance to computing a new hexagonality measure #(S).

5.3 Experiments illustrating 7 (S) behaviour

This section presents several experiments aimed to illustrate the behaviour of the new
hexagonality measure #(S). These experiments, performed on both synthetic and
real image data, are designed to provide a better understanding of the new hexago-
nality measure, and to verify the theoretical observations and results already proven
in the previous section as well. Also, we provide several experiments to compare
the behaviour of #(S) with initial hexagonality measure H f; (S), as defined in (5.1).
The first subsection concerns the synthetic examples, while the second one contains
experimental study on real image data taken from several modern image datasets.
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(a) 0.9802 (b) 0.9934 (c) 0.9845 (d) 0.9972 (e) 1.0000

Figure 5.2: Shapes defined by (5.31) for increasing value of €, and their assigned
H(S) values (given below each shape related).

0.9%r

099
H(S)

S

04 06 08 1, 12 14 16 18 2

Figure 5.3: Plot of computed #(S) values of shapes defined in (5.31) for increasing
value of parameter €.

5.3.1 Illustrations of 7{(S) behaviour on synthetic examples

First experiment: This experiment illustrates the behaviour of the new hexagonality
measure 7 (S) as the shape considered is modified through continuous variation from
a rectangle to a circle, and then to a hexagon. Several examples of such generated
shapes, defined implicitly as

2/e

X—cC
a

S(a.cie) - {<x,y> 5

o } (5.31)

are given together with their computed #(S) values in Fig. 5.2. Such defined
shapes change from a rectangle (for € = 0) through a disc (for € = 1) to a hexagon
(for € = 2). The results obtained do not contradict our expectations, and they are
also consistent with the theoretical observations that have been already discussed in
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(a) 1.0000 (b) 0.9860 (c) 0.9723 (d) 0.9589 (e) 0.9459

Figure 5.4: Shapes obtained for increasing amount of added salt and pepper noise to
a perfect hexagon given in (a). Computed 7 (S) values are given below each shape
related. Noise probabilities added to shapes in (b), (c), (d) and (e) are 0.125, 0.25,
0.375 and 0.5, respectively.

the previous section. In fact, in accordance with Definition 5.1 and Theorem 5.2,
the measured hexagonality contributes to a higher score to the rounded rectangle
(the shape in Fig. 5.2(b)), and as the shape becomes closer to a hexagon starting
from a circle, while it returns a decreasing score for a more circular shape. The
smallest 7(S) value for the five shapes presented in Fig. 5.2 is 0.9802, and it is
reached for a rectangle in Fig. 5.2(a). On the other side, the shape in Fig. 5.2(e) (i.e.,
a perfect hexagon) has the largest 7 (S) value (among the shapes in Fig. 5.2) equal to
1.0000. This is also consistent with theoretically verified results given that, according
to the statements of Theorem 5.2, the shape hexagonality measure H(S) achieves its
maximal value 1 if and only if the shape considered is a hexagon. A plot of computed
H(S) values versus increasing values of parameter € is provided in Fig. 5.3. The
plot starts with F(S) value 0.9802 for a rectangle (the shape in Fig. 5.2(a)), passes
3/2

through 0.9845 ~ %, assigned to disc given in Fig. 5.2(c) (representing as
well its local minimal value), and then increases to the largest H(S) value 1.0000,
corresponding to the shape (i.e., a hexagon) given in Fig. 5.2(e). Notice also that all
the computed H.(S) values are only the approximative ones, given that only the digital
images are used for their computation.

Second experiment: In this experiment, we illustrate the robustness of the shape
hexagonality measure 7 (S) when increasing amounts of noise are added to a per-
fect hexagon. For an illustration, five hexagons arranged according to the increasing
level of added salt and pepper noise are given in Fig. 5.4, together with their as-
signed H(S) values. The results presented are averaged over 100 instances of noised
hexagons generated at each level of noise. As expected, the largest #(S) value over
the shapes displayed in Fig. 5.4 is 1.0000, corresponding to noise-free (i.e., perfect)
hexagon (the shape in Fig. 5.4(a)), and then decreases as the amount of noise level
increases. This is following our expectations and theoretical proven results (Theorem
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IHJHW

0 005 01 015 02 025 0.35 045 05
Noise probability

Figure 5.5: Plot of computed # (S) values for shapes in Fig. 5.4 for increasing amount
of salt and pepper noise added to a hexagon given in Fig. 5.4(a).

5.2), since the increased amount of added noise leads to a larger deviation from a
perfect hexagon, resulting in the hexagonality return of a decreasing score as a noise
amount increases. A plot of computed 7 (S) values for values of increasing level
of noise is given in Fig. 5.5. The probability of noise ranges from 0, for a perfect
hexagon (given in Fig. 5.4(a)) with the largest assigned H(S) value 1, to 0.5, for a
shape in Fig. 5.4(e) with the minimal assigned #(S) value 0.9459, among the shapes
presented.

Third experiment: In the third experiment, we present several more synthetic
shapes with aim to illustrate the behaviour of the new hexagonality measure H(S) in
comparison with Hexy; (S). For a fitted hexagon FH(S), we observe the auxiliary
hexagon Hex(S) from (5.9) where the associated parameters a(S) and c(S) are de-
termined from (5.10) and (5.11), or, if necessary, as indicated in Note 5.1. The first
six shapes in Fig. 5.6 illustrate how the shape hexagonality measures depend on the
presence of holes inside the shape. The shapes presented are obtained from the star
shape without holes (the first shape in Fig. 5.6), and differ by the relative size of
the holes, their relative position, and also their number inside the shape considered.
The shapes are listed in accordance with their decreasing #(S) and H s;(S) values,
which are displayed below each corresponding shape. The hexagonality values mea-
sured by H;(S) are in the brackets. As expected, as the size of the holes inside
the shape increases (e.g., the second and third shapes in Fig. 5.6) then the computed
H(S) and H s (S) values decrease. The obtained H(S) and H f; (S) values also show
that the hexagonality measures depend on the relative position of the holes inside
the shape (the third and fourth shapes, and fifth and sixth shapes in the same figure).
Dependence on the number of the holes inside the shape (i.e., star) is illustrated by
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222 LS

_/

09392 09215 09005 0.8503 0.8342 0.8131 0.6615 0.7341 0.8195 0.9071
(0.7031) (0.6545) (0.5745) (0.5451) (0.5011) (0.4047) (0.0079) (0.0063) (0.0033) 0)

Figure 5.6: Several synthetic shapes, together with their assigned #(S) and H s (S)
values. H s;(S) values are given in the brackets.

observing the measured #(S) and H s;(S) values for the fourth and fifth, as well as
for the fourth and sixth shapes in Fig. 5.6.

On the other side, the star shape without holes (i.e., the first shape in Fig. 5.6) has
the largest measured (S) and H y;(S) values, among the shapes presented. These
results are also consistent with our perception of how the shape hexagonality should
behave, given that a higher hexagonality assigned to the first two shapes in Fig. 5.6
is rather expected than for the fifth and sixth shapes in the same figure. This is also
consistent with our initial intention that the hexagonality measures should evaluate
to what extent the shape considered differs from a hexagon. Notice also that both
hexagonality measures provide the same arrangement of the shapes, which can be
beneficial in some applications.

The last four shapes in Fig. 5.6 demonstrate how the two hexagonality measures
might establish a different ranking among the shapes considered. The shapes pre-
sented, listed with respect to their increasing #(S) values, represent the shape of a
circle line (the seventh shape in Fig. 5.6), whereas the other three shapes are ob-
tained by successive excluding the quarters of the circle line. If the same shapes are
arranged in accordance with their increasing H s; (S) values then the opposite order
is obtained. Indeed, a monotonic increase of the measured #(S) hexagonality cor-
responds to a monotonic decrease of the hexagonality measured by H ;(S). Herein
the changes in the measured hexagonality (S) do support our expectations, which
can be considered an advantage over H y;; (S). This comes from the fact that most
hexagonal shape (among these four shapes) is the last shape in Fig. 5.6 with mea-
sured H(S) value equal to 0.9071, while the least hexagonal is the seventh shape in
the same figure (i.e., a circle line) with measured # (S) hexagonality equals 0.6615.
Also, it is worth mentioning that the lowest measured H f;(S) equals 0 is assigned
to the last shape in Fig. 5.6, which can also be understood as its disadvantage over
a new hexagonality measure #(S). Besides, different rankings among the shapes
presented can also be recognized as a desirable in some applications, given that in
such cases these two hexagonality measures can be combined and used together to
improve performance of various object analysis tools. This latter will be particularly
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AAO® G A O a

0.7895 0.8126 0.8157 0.8173 0.8185 0.8466 0.8626
(0.3110) (0.3473) (0.3761) (0.3512) (0.3908) (0.3826) (0.4942)

& & & 0@ € &~

0.7679 0.7788 0.8075 0.8100 0.8184 0.8421 0.8704

(0.5316) (0.2817) (0.4238) (0.3480) (0.3546) (0.4623) (0.4995)
0.9237 0.9397 0.9405 0.9474 0.9589 0.9697 0.9748
(0.5415) (0.5546) (0.6005) (0.7511) (0.7296) (0.7663) (0.7698)

Figure 5.7: Randomly selected shapes, and their computed hexagonalities H(S)
(given below each shape). The computed H s (S) values are in the brackets.

demonstrated in the experiments in Section 5.5.

5.3.2 [Illustrating behaviour of 7{(S) on real image data

Herein we provide several experiments to illustrate the behaviour of the new hexago-
nality measure 7 (S) on real image data. To demonstrate how new measure matches
human perception, it is applied to diverse shapes from several image datasets already
discussed by others in various analysis tasks. The examples provided in the last ex-
periment illustrate the new hexagonality behaviour under various shape deformations.

Fourth experiment: This experiment illustrates the behaviour of the new hexago-
nality measure 7 (S) applied to various randomly selected shapes. Figure 5.7 presents
several such shapes together with their assigned 7 (S) values, while the measured
H 1ir(S) values are given in the brackets. In the first row in Fig. 5.7, the seven shapes
of traffic signs are ranked in accordance with their increasing #(S) values. If the
same shapes are listed with respect to H s (S) hexagonality, a slightly different rank-
ing is obtained. In fact, the third and fourth, as well as the fifth and sixth traffic
sign shapes should change their places if the ranking according to increasing H y;; (S)
is applied. It can be said that such obtained ranking is not in accordance with our
perception of the behaviour of shape hexagonality measure since we expect a higher
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hexagonality assigned to the fourth shape in the first row in Fig. 5.7 rather than for
the third shape in the same row. Also, a higher hexagonality assigned to the sixth
shape is more expectable than for the fifth shape in the same row.

Several more shapes are presented in the remaining two rows in Fig. 5.7. The
shapes presented are also arranged according to their assigned 7 (S) values. It can be
said that the changes in the measured hexagonality follow the changes in the overall
structure of the shapes considered. Although some of the shapes presented can differ
a lot, there exist also those that are similar in their nature (for example, the first and
fourth shapes in the second row in Fig. 5.7, as well as the first and third shapes in
the third row). Notice that the order of the first and fourth shapes in the second row
is changed if H s (S) is applied. Such a property of H s;(S) can be considered as its
drawback compared to H(S). On the other side, the differences in the measured ()
and H s;(S) values that have been assigned to the human shapes (the first and third
shapes in the third row) do not contradict our perception about the behaviour of the
shape hexagonality measures. In fact, we prefer a higher hexagonality assigned to the
human shape with arms spread parallel to the body (the third shape in the last row)
than for the shape with arms spread diagonally (the first shape in the same row). The
obtained results are also consistent with our initial requirement that the hexagonality
measures should quantify how much a given shape differs from the corresponding
hexagon. Notice also that the rankings with respect to both hexagonality measures,
among the shapes in the last row, differ only for the fourth and fifth shapes. Such a
property of H s;(S) can be viewed as its weakness over H (S) since the fifth shape is
recognized to be more hexagonal than the fourth shape in the same row. Finally, it
can be noticed that the shapes with higher assigned hexagonality, listed in the third
row in Fig. 5.7, represent more compact shapes containing the larger portions of the
object pixels, among all the shapes in Fig. 5.7. These results are in accordance with
human perception, since as most compact shape, among the shapes presented, can be
understood the shape of the arrow (the last shape in the third row) with the largest
measured H (S) and H 7 (S) hexagonality equal to 0.9748 and 0.7698, respectively.

To further demonstrate the properties of the new hexagonality measure, it is ap-
plied to two well-known image datasets. The first one is the animal dataset [10]
containing 20 species of animals, with each having 100 images, i.e., a total of 2000
animal images. The shapes considered have been obtained from real images through
a variation in pose, viewing angle, articulation, self-occlusion, etc. The ten low-
est and ten highest arranged shapes with respect to their increasing #(S) values are
given in Fig. 5.8, together with ten middle arranged shapes. Such an established
arrangement corresponds to our perception, given that 7 (S), according to Definition
5.1, should measure how much a given shape differs from its corresponding hexagon
Hex(S) (given in (5.9)), independently of how much the ratios of the corresponding
semi-axes differ. This further explains: 1) why #(S) returns lower values for the
shapes in the first row, characterized by increased presence of the long thin and/or



94CHAPTER 5. HEXAGONALITY AS A NEW SHAPE DESCRIPTOR OF THE OBJECT
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0.9908 0.9912  0.9914 09917 0.9926 0.9928 0.9933  0.9938 0.9939  0.9940

Figure 5.8: The ten lowest (first row), intermediate (second row), and highest (third
row) ranked shapes according to increasing 7 (S) values from animal database [10].
Computed H(S) values are given below an appropriate shape.

elongated protrusions (e.g., spider’s legs, mouse’s tail, etc.), whereas increased 7 (S)
values are assigned to more compact shapes containing larger portions of the object’s
pixels (the shapes in the second and third row), and 2) why some shapes are assigned
similar hexagonality even though they correspond to different animal species (e.g.,
the shapes in the second row, the ninth and tenth shapes in the third row, etc.).

The second well-known dataset is MPEG-7 CE-1 [73], containing a total of 1400
shapes (70 different classes, each having 20 shapes). The ten highest, intermediate
and lowest ranked shapes with respect to new H(S) measure are in Fig. 5.9. The
measured F(S) values are given below each corresponding shape. It can be said
that shapes which contain long thin or elongated portions, or which are sparse with
larger areas of non-object pixels, are recognized by H(S) as less hexagonal shapes.
On the other side, although there is no ideal hexagon in the observed dataset, it can
be said that the ten highest ranked shapes (i.e., the shapes of pencils and squares
with different level of shape deformations) can be viewed as most hexagonal shapes,
among the shapes presented in Fig. 5.9. This is also in accordance with the theoretical
considerations, since a square can be understood as a special case of a hexagon as
well (for details, see formulas in (5.6) and (5.7)). As expected, the largest measured
hexagonality F(S) is assigned to the shape of the pencil sharpened on both sides,
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Figure 5.9: The ten lowest (first row), intermediate (second row) and highest (third
row) arranged shapes according to H(S) hexagonality from MPEG-7 CE-1 dataset
[73].

representing simultaneously most hexagonal shape among the shapes discussed. It is
worth noting that there are several shapes having a similar assigned hexagonality. For
example, the first and second shapes of the horseshoes in the first row, as well as the
third and fourth shapes of the horseshoes in the same row, or the shapes of the frogs
in the second row, etc. These results are also in accordance with the results proven in
Theorem 5.2 that the new hexagonality measure 7 (S) is also invariant to similarity
transformations.

Fifth experiment: In this experiment, we illustrate how the shape deformations
contribute to changes in the measured hexagonality 7 (S). To demonstrate this, sev-
eral shapes, extracted from a time series (e.g., video), are given in Fig. 5.10, together
with their assigned 7{(S) values. The shapes presented are arranged according to the
time in which they have been extracted from the time series. Thus, for instance, the
first nine shapes in Fig. 5.10, representing a human gait, correspond to different ap-
pearances of human silhouettes in a sequence of nine consecutive frames. It can be
noticed that the corresponding shape deformations lead to the differences in the mea-
sured H(S) hexagonality. These changes correspond to our perception of how H(S)
behaves, following from the theoretical and empirical results that have been already
discussed and illustrated. For example, if the legs of the observed walker are closer to
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Figure 5.10: Examples illustrating the behaviour of 7 (S) under various shape de-
formations. #(S) values are given below the corresponding shape. The first row
represents a human gait, while the second row illustrates closing of pocketknife (the
first five shapes) and opening tongs (the latter five shapes).

each other, then lesser area of the white pixels between them contributes to increasing
the hexagonality H(S) assigned to them. Because of this, we could expect that the
shapes from the first half of the time sequence in the first row in Fig. 5.10 have higher
hexagonality measured by 7 (S) than the shapes extracted from the second half of the
same time sequence. These results are also in accordance with theoretical obser-
vations, given that, according to Definition 5.1, a new hexagonality measure 7 (S)
evaluates a degree of similarity of the measured shape to its corresponding hexagon
Hex(S), as defined in (5.9). The same argumentation applies to the series of shapes
presented in the second row. The first five shapes illustrate the deformations of the
pocketknife shape during its closing, whereas the second five shapes represent how
the shape of tongs changes when it is opening. The results obtained again confirm
our expectations, as well as the theoretical observations. It can also be noticed that
the shapes of tongs have the lower measured hexagonality 7 (S), given that they can
be considered to be less hexagonal than the remaining shapes in Fig. 5.10. This latter
is also supported by the fact that the shapes of tongs contain larger proportions of
non-object pixels in relation to all remaining shapes in Fig. 5.10.

5.4 Side results of the new hexagonality measure 7(S)

The main result of this chapter, i.e., a new hexagonality measure #(S), provides
several important consequences. The following two subsections shall describe them
in a more formal way, and list some desirable properties they satisfy.
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5.4.1 Measuring orientation based on 7 (S)

In this subsection, we illustrate a new approach to determining the shape orientation
obtained as a by-product of the method for computing a new hexagonality measure.
In fact, following the formula in (5.21), we can conclude that the new hexagonality
measure essentially represents the quantity optimized over all the rotations Sg of the
shape S around its centroid, while 6 runs through [0,27). Regarding this, it is natural
to define the orientation of a given shape S as an angle (i.e., orientation) minimizing
the integral in (5.21) for all orientations from [0,27). In the following, this orientation
will be referred to as hexagonality-based shape orientation, and it is formally defined
as follows.

Definition 5.2 The orientation of a given shape S is defined by an angle 0 for which
the integral in (5.21) achieves the minimal value.

Several shapes to illustrate the properties of such a defined method for comput-
ing shape orientation are given in Fig. 5.11. The orientations computed by standard
method [152] are in the brackets. A few animal shapes taken from the animal dataset
[10] (already mentioned in the fourth experiment) are shown in the first two rows
in Fig. 5.11. The shapes presented are ranked such that the shapes recognized to
be more compact are in the first row, while animal shapes that can be considered as
more elongated are given in the second row. It can be said that the computed orien-
tations are in accordance with our perception, given that measured orientations also
coincide with a certain axis of the shape elongation. In addition, it is worth noting
that orientations determined by these two competitive methods are very similar or
even coincide. This latter comes from the fact that the measured orientations do not
depend only on the nature of the object itself, but also on the fact that the original
shapes are replaced by their digital counterparts. This further implies that computed
orientations are given as the approximative ones. The similar reasoning applies to
the shapes of the automotive’s brands from [1] that are given in the last two rows in
Fig. 5.11. It can be noticed that all the orientations are also consistent with human
perception of what can be expected to be a shape orientation. However, among the
shapes presented, the fourth and sixth shapes in the third row in Fig. 5.11 deserve
special attention, given that these two shapes have three axes of symmetry, and they
are 3-fold rotationally symmetric shapes. For this reason, it is difficult to say what
their orientations should be. This is something that we expected, given that there
are three potential modulo 180° orientations which can be equally selected as a nat-
ural choice for shape orientation. Computed orientations are closely aligned with
the corresponding axes of the object symmetry, implying that these two competitive
methods are actually complementary and mostly compatible. This behaviour of the
new method can be considered desirable, given that, due to variations in shapes and
diversity of applications, there is no single method for computing the orientation that
can be efficiently and also successfully applied to all shapes.



98CHAPTER 5. HEXAGONALITY AS A NEW SHAPE DESCRIPTOR OF THE OBJECT

5.4.2 New elongation measure

The quantities a(S) and ¢(S) associated with a given shape S, as defined in (5.10)
and (5.11), or, if necessary, as stated in Note 5.1, can also be employed to measure
a shape elongation. Herein such a derived measure will be denoted as £(S), and its
formal definition is given as follows.

Definition 5.3 Let a shape S, having the centroid coincident with the origin, be given.
The elongation measure E(S) of a given shape S is defined as a ratio of the lengths of
the longer and shorter semi-axis of the corresponding auxiliary hexagon Hex(S), as
defined in (5.9), i.e.,

a(s)

ARG

(5.32)

Several desirable properties of the new elongation £(S), expected to be satisfied
by all elongation measures, are summarized in the following theorem.

Theorem 5.3 Given a shape S whose centroid coincides with the origin. The new
elongation measure E(S) has the following properties:

(a) E£(S) € [1,00), for all shapes S;
(b) £(S)=1 < Hex(S) is a degenerative hexagon (i.e., a square);

(c) £(S) is invariant with respect to translation, rotation and scaling trans-
formations.

Proof 5.3 Items (a) and (b) follow directly from the definition of £ (S), and properties
of the quantities a(S) and c(S). Indeed, in accordance with (5.10) and (5.11), and
also, if necessary, in accordance with Note 5.1, it follows that a(S) > ¢(S) > 0, and,
consequently,

as) ., <)

O = e ~ T e

> 1, (5.33)

Sor all shapes S. Now, it is enough to consider an isothetic hexagon Hex(t) for which
the corresponding parameters a(t) and c(t) are equal to t and t — 1, fort > 1. Based
on this, it is easy to show both E(Hex(t)) = t, and also while t ranges through [1,0)
then E(Hex(t)) reaches all values from [1,e0). Moreover, we can conclude that the
minimal possible value equals 1 is reached fort = 1, i.e., when ¢(t) = 0, implying fur-
ther that corresponding hexagon Hex(t) is then a square (i.e., degenerative hexagon,).
The item (c) follows from the fact that £(S) is computed from a(S) and c(S), which
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Figure 5.11: Several randomly selected shapes together with their computed orien-
tations (the first and second angle are given immediately below the shape), and their
measured elongations (the third and fourth assigned number below the corresponding
shape). Orientations as well as elongations of the shapes computed by the standard
methods are given in the brackets.

are translational and rotational invariants by definition, whereas (5.23) and (5.24)
give

E(A-S) =

= &(5), (5.34)
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ie., £(S) is a scaling invariant. This completes the proof of the theorem. O

Examples in Fig. 5.11 can also be used to illustrate how £(S) acts. The com-
puted values of the new £(S) and the standard & (S) elongation measure from[152]
are given as the third and fourth number below each corresponding shape. All the
measured £(S) and Ey(S) values are given as the approximative, following that dig-
ital images are used for their computations rather than their original counterparts. It
can be said that measured £(S) values match our expectations, given that we expect
that the shapes which are elongated (e.g., the shapes presented in the second row)
have a higher assigned elongation than the shapes which are more compact (e.g., the
shapes in the first row in the same figure). The similar discussion applies to shapes
of the automotive logos from [1] presented in the following two rows in Fig. 5.11.
Notice also that measured Ey(S) values for the fourth and sixth shapes of the logos
are approximately equal to 1. This is also consistent with something we expected,
given that these shapes are 3-fold rotationally symmetric for which, as already men-
tioned, the standard method does not work as expected. Indeed, in accordance with
the theoretical arguments relating to the standard elongation measure E (S) (e.g., see
Lemma 1 in [185]), we have that measured standard elongation  (S) for such shapes
is approximately equal to 1. Contrary to this, the new elongation measure is able to
provide a clear distinction among these shapes, which can be considered to be its es-
sential advantage compared to £y (S). Notice as well that shapes of the animals and
automotive brands are arranged according to increasing £(S) values. In the follow-
ing, we will present few more experiments in order to illustrate the applicability and
usability of £(S) in various object classification tasks.

5.5 Effectiveness of hexagonality in different applica-
tions

In this section, we illustrate how the new shape hexagonality measure 7 (S) can
be employed efficiently in diverse classification tasks, together with hexagonality
Hir(S) and new elongation measure £(S). Given that these new shape measures
are not designed for a specific application, we present herein a number of different
experiments aimed to illustrate advantages as well as the importance of the results ob-
tained by their use, instead of applying already known, possible complex tools which
are known to provide improvement in such tasks. For instance, in some experiments,
emphasis will not be on the best possible score for the observed database, but rather on
implementing only a few simple and fast to compute shape descriptors. To illustrate
the generality and effectiveness of the new shape-based measures, we present several
classification experiments performed on a number of well-known image databases.
Sixth experiment: First classification task. In this experiment we illustrate that
new, introduced in this chapter, shape measures can be combined, and also used
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together with other already known shape descriptors to improve their performance
when classifying images taken from MPEG-7 CE-1 image database [73]. As already
mentioned, this image database consists of 70 different classes, each having 20 shape
images. Several shape examples belonging to this image dataset are shown in Fig.
5.9. It is worth mentioning that this classification task has become very challenging
in recent years from the research point of view, but also from the aspect of application
in a wide spectrum of object analysis tasks. For the classification, we have used the
nearest neighbor classifier with a Mahalanobis distance. The experiments presented
are divided into four groups depending on the initial set of selected shape descriptors.
The results achieved using only several shape descriptors, or when they are combined
with new shape measures are shown in Table 5.1.

In the first group of experiments, a set of five global descriptors such as rectan-
gularity, roundness, compactness, area-based and perimeter-based convexities? along
with the multi-component shape measure D(S) [162] achieves a leave-one-out clas-
sification accuracy of 78.50%. If the new H (S) and H f;(S) are added into consider-
ation separately, the classification rate has increased to 82.50% and 83.50%, respec-
tively. Combining H y;;(S) and £(S) together with the initial set of descriptors, the
classification result has further improved to 85.36%. Notice that such a good result
provides relatively high improvement in accuracy of nearly 7%, which is significantly
better than the relative improvement of approximately 3.7% achieved in [122] when
the squareness measures are added to the corresponding descriptors selected by the
authors. The last three experiments further show that new shape measures are com-
plementary, and can be used together to increase efficiency in this classification task.
This can be illustrated when only H(S) and H s;(S) are combined together or sep-
arately with £(S), without initial set of descriptors. For example, combining only
H i (S) and £(S) gives accuracy of 49.07%, whereas together with H(S) the classi-
fication efficiency improves to 61.86%.

In the following group of experiments, the area-based anisotropy .A(S) [115] was
used instead of D(S). Such combined shape descriptors provide efficiency of 76.93%.
If the new elongation measure £(S) is added, then the achieved efficiency improves
to 79.50%, whereas by adding the new hexagonality measure #(S) instead, a better
accuracy of 82.00% is provided. Including the hexagonality H(S) combined sep-
arately with £(S) and Hs;(S), the classification accuracy has further increased to
83.57% and 84.79%, respectively. A better result is obtained if the two hexagonal-
ity measures are used together with new elongation measure. The classification rate
is then increased to 85.50%. Such a big improvement in accuracy of approximately

2The five global applied shape descriptors are rectangularity based on the ratio of the areas of shape
S and its minimum bounding rectangle [119], roundness based on the ratio of Area(SNCp;;) and Area(S)
where Cy;; represents the corresponding fitted circle with the same centroid, and equal area as the shape §
[96], compactness given as the ratio of the squared perimeter and area multiplied by 4 - 7 [152], area-based
convexity defined as the ratio of the areas of the shape S and its convex hull and perimeter-based convexity
given as the ratio of the perimeters of the shape S and its convex hull [159].
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Table 5.1: Classification rates obtained for different choices of the initial shape de-
scriptors augmented by new shape measures. Improvements in accuracy obtained
including the new shape measures are bolded.

Shape features Rates
6 shape features 78.50%
First group 6 shape features + H(S) 82.50%
6 shape features + H 7 (S) 83.50%
6 shape features + H f;; (S) + £(S) 85.36%
6 shape features 76.93%
Second group | © shape features + E(S) 79.50%

6 shape features + H(S) 82.00%
6 shape features + #(S) + £(S) 83.57%
6 shape features + 1 (S) + H i (S) 84.79%
6 shape features + H(S) + H;(S) + £(S)  85.50%
7 shape features 79.79%
Third group 7 shape features + £(S) 81.71%
7 shape features + H.(S) 83.14%
7 shape features + 7 s (S) 83.57%
7 shape features + H 7 (S) + £(S) 85.71%
8 shape features 83.00%
Fourth group | 8 shape features + 7£(S) 84.50%
8 shape features + £(S) 84.86%
8 shape features + H f;; (S) 86.71%
8 shape features + H 7 (S) + H(S) 87.86%
8 shape features + H 7 (S) + £(S) 87.93%

8.6% also illustrates the importance and usefulness of the new shape measures, as
mentioned in the previous group of experiments. It can also be concluded that two
hexagonality measures, together with new elongation measure, supply mostly inde-
pendent shape information, keeping the classification accuracy at a relatively high
level.
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The third group of experiments represents some kind of mixture of the first two
groups, where the initial set of the global descriptors? is further strengthened with
anisotropy .A(S) and disconnectedness D(S). These seven shape descriptors pro-
vide a classification efficiency of 79.79%. When the new elongation £(S), as well
as the two hexagonality measures H(S) and H 7;(S) has been added separately, the
reached classification has improved to 81.71%, 83.14% and 83.57%, respectively.
If the hexagonality measure H 7 (S) is further augmented with new elongation £(S)
measure, the classification efficiency has increased to 85.71%. This pretty good result
also represents a very high relative improvement of nearly 6% over the initial set of
shape descriptors described in this group of experiments. It can also be noticed that
such a high efficiency also outperforms the highest accuracy in the previous group of
experiments using the same number of shape descriptors (i.e., a total of 9 descriptors).

In the fourth experimental group, we observe an improvement in efficiency that
is reached by implementing new introduced shape measures, relative to already men-
tioned five global shape descriptors> augmented by the ellipticity measure (denoted
as Ep(S) in [160]), as well as the second and third affine moment invariants [57].
The classification score using these shape features is 83.00%. When the new hexag-
onality H(S) and new elongation £(S) measures were added separately, the classi-
fication rate has increased to 84.50% and 84.86%, respectively. A better accuracy
is provided by adding the hexagonality measure H s;(S) instead: 86.71%, while a
further improvement of 87.86% was obtained by combining two hexagonality mea-
sures H s (S) and H(S) along with set of the initial shape descriptors. The highest
improvement of 87.93% was obtained if the hexagonality H y;(S) measure is used
together with new elongation £(S) measure. Notice that efficiency of 87.93% repre-
sents the best achieved classification rate (i.e., a benchmark result), whereas the rate
of 87.86% represents the second highest classification result obtained for this image
dataset.

In order to further point out the importance and benefits of the new shape mea-
sures, we compare our results with rates obtained by several authors until now. For
example, the best-achieved result on this dataset until recently has been 87.13% [4]
which was obtained using the topology of the objects and curvature tree to model the
shape. On the other side, using the new, in this chapter introduced, shape measures
together with several other simple, and also fast to compute shape descriptors, the two
highest accuracies of 87.86% and 87.93% outperform the efficiency achieved in [4],
where the highest achieved accuracy of 87.93% also represents the benchmark result
on this image dataset. Another example that deserves attention is a score of 85.40%,
obtained using the inner distance shape context [90]. Moreover, as it can be seen
from Table 5.1, there exist several combinations of the shape features that are com-
plementary, and which can be combined to outperform this efficiency (for instance,
the last experiments in the second and third group of experiments, or the last three
experiments in the fourth group of experiments). Finally, we provide several more
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Figure 5.12: Shape samples of leaf images from the Swedish leaf dataset [151]. One
sample shape per each leaf specie is presented.

results that have been published so far (relating to the same image dataset), aiming
at further illustration of the quality and usefulness of the new shape measures. To
mention a few: curvature scale space (CSS) [101] 75.44%, shape context (SC) [13]
76.51%, curve edit distance [131] 78.17%, pattern spectrum and local binary pat-
tern (PS+LBP) [137] 79.38%, skeletal shape context (SSC) [171] 79.92%, generative
model [156] 80.03%, etc.

Seventh experiment: Second classification task. This experiment illustrates the
effectiveness of the new hexagonality measures H (S) and H s (S) together with new
elongation measure £(S) in the classification of leaf images taken from Swedish Leaf
dataset [151]. This dataset contains a total of 1125 colored leaf images, classified into
15 different species, with 75 images per each species. Examples of leaf images for
each species are shown in Fig. 5.12. It should be noted that there exist very high inter-
species similarities among the presented examples, which makes the classification
task performed on this database a very demanding one. Instead, Rhouma et al. [115]
have studied the dataset of 675 images consisting of 9 different species, each having
75 images. Even though the classification task was performed on a shortened (i.e.,
with reduced inter-species similarities) image dataset, the efficiency of 97% obtained
using seven multi-component shape invariants [115] and seven Hu moment invariants
[66] (i.e., a total of 14 shape features) represents essentially a very good result.

In our experimental study, we observe two groups of experiments, designed ac-
cording to the initial set of the shape descriptors used in the experiment. The classi-
fication accuracies achieved using the nearest neighbor classifier with a Mahalanobis
distance are in Table 5.2. We start with rectangularity, area-based convexity® and
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Table 5.2: Rates obtained combining different shape features together with new de-
scriptors. Results achieved including new shape measures are bolded.

Shape features Rates
5 shape features 94.96%
First group 5 shape features + H ¢ (S) 96.15%
5 shape features + £(S) 96.59%
5 shape features + H 7;; (S) + £(S) 97.63%
5 shape features + H f;,(S) + H(S) 97.93%
5 shape features + H £;(S) + H(S) + £(S)  98.07%
6 shape features 96.15%
Second group | © shape features + E(S) 96.89%
6 shape features + H s (S) 97.63%
6 shape features + H 7 (S) + £(S) 97.93%
6 shape features + H f;,(S) + H(S) 98.67%

multi-component shape disconnectedness measure D(S) [162]. In the first group of
experiments, the initial set of descriptors is further extended with roundness® and
multi-component shape measure from [115] (denoted as IImca(S)). Such a defined
set of five simple descriptors reaches a leave-one-out classification rate of 94.96%.
Including the hexagonality measure H s; (S) and new elongation measure £(S) sep-
arately, the classification rate has increased to 96.15% and 96.59%, respectively.
Combining both H s; (S) and £(S), a better accuracy of 97.63% is achieved. If the
hexagonality measure H s; (S) is further strengthened with new hexagonality mea-
sure H(S), and additionally with both H(S) and £(S), the classification efficiency
has increased to 97.93% and 98.07%, respectively. This relatively high improvement
of nearly 3.1% represents a very good classification result outperforming the best-
achieved classification rate of 97% obtained in [115], given that only eight simple
shape descriptors have been used.

In the second group of experiments, the initial set of descriptors is augmented with
the first Hu moment invariant [66], perimeter-based convexity? and multi-component
shape measure from [115] (denoted as ITmcc(S)). This set of descriptors achieves
a leave-one-out classification accuracy of 96.15%. If the new elongation measure
£(S) and hexagonality H s;(S) are included separately, the efficiency has increased
to 96.89% and 97.63%, respectively. Combining both £(S) and H s;(S) together
with the initial descriptors, the classification rate has increased to 97.93%. A further
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improvement of 98.67% has been achieved if the initial set of descriptors is strength-
ened with H z;(S) and H(S) instead. It should be noticed that this relatively high
improvement represents a better result than those achieved in the first group of ex-
periments, and, consequently, better than the best-achieved in [115] for a total of
8 shape descriptors. Such an obtained efficiency of nearly 99% also represents the
best-achieved result (i.e., a benchmark result) performed on this dataset.

It can be said that all the experiments performed illustrate that new hexagonality
measures H(S) and H 7;(S), and new elongation measure £ (S) are relatively efficient
for such a classification task. As can be seen from Table 5.2, all these relatively high
accuracies, obtained using not more than eight simple shape features, outperform the
efficiency of 89.1% (as stated in [162]) using only seven Hu moment invariants [66]
as well as the efficiency of 94.9% obtained using seven multi-component moment
invariants introduced in [115]. This can also be illustrated observing only the new
shape measures, without others in these experiments used initial shape descriptors.
For example, when we perform classification using only the hexagonality measure
H it (S), we have achieved an accuracy of 53.04%. Better accuracy was provided by
including separately H(S) and £(S): 54.07% and 63.26%, respectively. Combining
two hexagonality measures we achieved an efficiency of 75.56%, whereas H(S) and
H i (S) separately with elongation measure £(S) improve accuracy to 84.00% and
84.59%, respectively. A further improvement of 87.85% was obtained by combining
all three new shape measures.

Although our experiments were performed on a shortened image database of only
9 classes, these experiments suggest that combining new shape measures can be bene-
ficial in the tasks of leaf classification. The obtained classification scores (using only
a small number of shape features and simpler classifier) are comparable and pretty
competitive to those object-based methods, specifically designed for working on this
image database. Usually, such methods involve a much larger set of color and texture
leaf features, together with complex classifier. Some of them are: classification rate
of 82.40% achieved by Soderkvistin [151] using 20 object features; scores of 88.12%
and 89.60% obtained using the shape context and dynamic programming (SC+DP)
[90] and Fourier descriptors (FDs) [90], respectively, with more than 128 used fea-
tures; 94.67 using the distance transform network (DNT) and SVM classifier, with
more than 100 object features [116]; then rate of 95.33% obtained using the short-
est path texture context and dynamic programming (SPTC+DP) with more than 128
object features [90]; and rates of 96.28% and 96.53% using the shape tree (ST) [54]
and multiscale triangle two side lengths and angle representation (TSLA) [104] with
more than 100 and 120 applied object features, respectively.

Eighth experiment: Third classification task. In this experiment, we show that
new hexagonality measures can be successfully employed together with new elon-
gation measure in the classification task performed on the database of color galaxy
images taken from the Galaxy Zoo dataset [92]. This well-known image database



5.5. EFFECTIVENESS OF HEXAGONALITY IN DIFFERENT APPLICATIONS107

B e 0 e¢e B~

Figure 5.13: Examples of the elliptical, spiral and edge-on galaxies selected from the
Galaxy Zoo database [92], together with their extracted shapes.

Table 5.3: Results obtained using only five simple features along with new shape
measures. Scores achieved including new shape measures are given bolded.

Shape features Rates

5 shape features 77.44%
5 shape features + £(S) 80.31%
5 shape features + H(S) 81.26%
5 shape features + 7 (S) + £(S) 81.45%
5 shape features + 7 s (S) 84.32%

was previously studied by Shamir [135, 136] to design algorithms for automatic anal-
ysis and classification of galaxy images as the elliptical, spiral and edge-on galaxies.
Examples of images of galaxies together with their shapes obtained through using the
Otsu algorithm [107] are displayed in Fig. 5.13. In [136] the author described the al-
gorithm, called Ganalyzer, achieving the efficiency of 88.76% with the gold standard
adopted on the base of a manual classification performed by the author. As such, it is
not so reliable due to existence of both galaxy images which are in-between classes
and features of the galaxies that are difficult to notice using the human eye.

In our experiment, we demonstrate a simpler approach based on the use of a few
simple already mentioned shape descriptors together with our new shape measures
in order to illustrate how the simple shape features can be reasonably efficient in
this classification task. The classification scores are shown in Table 5.3. The initial
set of shape features, used in this experiment, consists of roundness?, the first and
fifth moment invariant by Hu [66], the third affine moment invariant [57] and multi-
component shape measure Imcc(S) from [115]. The nearest neighbor classifier based
on a Mahalanobis distance achieves leave-one-out classification score of 77.44%.
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The classification rate has increased to 80.31% and 81.26% by including separately
the new elongation measure £(S) and new hexagonality measure 7 (S), respectively.
A better result of 81.45% was obtained if the initial set was strengthened by both
H(S) and £(S). A further improvement of 84.32% was achieved by including only
the hexagonality measure H s;(S). This very good classification rate, achieved us-
ing only six simple shape features, illustrates also a very high relative improvement
of nearly 7% as a result of including new, in this chapter derived, shape measures.
Besides, it can be said that this result is also comparable to the rate of 88.76% ob-
tained in [136], as well as to the recent score of 88.55% achieved in [162]. Also, we
noticed that new shape measures (separately and/or together) can be relatively effec-
tive in this classification task. In fact, if we performed classification using only the
hexagonality measure 7 (S), then the achieved classification rate was 53.15%. This
result further improved to 58.13% and 67.69%, if H f;(S) and new elongation £(S)
measure were applied separately. Combining both £(S) and H(S), the classification
accuracy improves to 73.23%, while a better accuracy was obtained by combining
E(S) and H g (S) instead: 75.91%. Notice that such an obtained classification rate
(using only two simple features) is comparable to the accuracy of 77.44% obtained
using the initial five descriptors. Furthermore, this result is also better than one ob-
tained using only the first Hu moment invariant (63.36%, as indicated in [162]), as
well as arate of 70.99% obtained using the one version of D(S), as indicated in [162].



Chapter 6

Signature of shape utilizing its
pixel coverage representation

A shape signature is usually defined as an arbitrary one-dimensional function repre-
senting a given two-dimensional shape. The signature, commonly, needs to capture
most of the perceptual properties of the shape aimed to provide its unique represen-
tation. To provide its applicability in a wide spectrum of shape-based object analysis
tasks, the signature should be invariant under rotation and translation transforma-
tions, but also robust to noise and other various distortions of a shape. Different
shape signatures have been designed and developed in the literature over the years
[40, 51, 101, 181, 182]. Some of them are based on centroid distance, triangular
centroid area, curvature scale space, farthest point distance signature, as well as
complex network and spectral graph theory. Among them, signature based on the
centroid distance of the boundary points represents one of the commonly used and
also popular signatures of a shape, whose popularity follows from its simple and intu-
itive definition, and its usability for further derivation of other important, yet popular
object analysis tools such as, for example, Fourier descriptors of a shape (FDs) [182].

Commonly, the observed shapes are obtained in a process of crisp (i.e., binary)
segmentation of the original image. As we have already mentioned, the loss of in-
formation about the original continuous shape, associated with the processes of dis-
cretization and binarization, can significantly affect the performance of the corre-
sponding shape descriptor. Thus, for example, the reduced amount of shape infor-
mation contained in the discrete binary representation consequently influences the
reduction in precision and accuracy of the shape descriptor observed. The signature
of a shape as a boundary-based descriptor is additionally sensitive to rotation and/or
translation of shape, as well as to the presence of noise where a small amount of noise,
especially on the boundary of a shape, can significantly disrupt the performances of
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the signature considered.

This chapter presents a relatively recent approach to improving the performance
of shape descriptors, computing them from a coverage based shape representation,
instead of following the traditional crisp-based approach. The advantages of this ap-
proach over the binary shape representation have already been discussed in Chapter
4. The results obtained have confirmed that such a representation, rich in information
of the original shape, can be of particular importance in the tasks where the precision
and accuracy of the observed shape descriptors are of a crucial role. This motivates
and additionally encourages further research of the development of a new approach
for signature estimation based on the coverage shape representation. Thanks to these
observations, we present, in this chapter, a new method for a shape signature estimate,
originally introduced in [72], which iteratively improves the accuracy of the signature
estimates. In each iteration, the algorithm produces a more accurate and more precise
sub-pixel position of the boundary of a shape within the pixel, and consequently, a
more accurate estimate of the signature observed. Statistical evaluation results ver-
ify the theoretically discussed performance of the approach considered, compared to
both the standard crisp (i.e., binary) approach and one utilizing the average of com-
puted signatures for all a-cuts of the observed fuzzy representation of shape [26].
The achieved performance improvements are related to increased precision and accu-
racy, improved invariance to translation and rotation, and increased robustness in the
presence of noise as well.

6.1 Centroid distance signature

The signature of a shape based on the centroid distance represents one of the most
commonly used signatures in diverse shape-based object analysis tasks. The centroid
distance signature of a continuous shape is defined as a continuous function r(z), as-
signing to each boundary point (x(¢),y()), t € I C R, its (Euclidean) distance from
the shape centroid (x,y), i.e.,

(6) = /() =X+ (6(0) —y)?. 6.1

To ensure a unique reconstruction of the original object from the centroid distance
signature, the object considered needs to be a star-shaped to its centroid [78]. As
mentioned in Definition 2.11, the object S is star-shaped to the object point if, for
each boundary point, the line segment that connects them is completely within the
object S. A set of all the object points to which the observed object is star-shaped
is called a kernel of the object (see Definition 2.12). If the centroid belongs to its
kernel, then the signature based on the centroid distance can completely describe the
observed object, enabling its unique reconstruction and retrieval.
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Exploiting these observations, it can be noticed that for a star-shaped object whose
centroid belongs to its kernel, it holds that any straight half-line starting from the
shape centroid intersects the shape boundary at exactly one point. Such a property
of star-shaped objects establishes a one-to-one correspondence between the interval
[0,27) and the set of the boundary points. Moreover, such an established correspon-
dence provides parameterization of the boundary by a parameter (i.e., an angle) from
the interval [0,27), leading us to the following definition of the centroid distance
signature of a continuous star-shaped object, which is originally introduced in [72].

Definition 6.1 The centroid distance signature of a continuous star-shaped object S
is a continuous function r(0) which assigns the Euclidean length of the straight-line
connecting the centroid of the shape (x,y) and the boundary point (x(0),y(0)), to
every angle 0 € [0,27) as follows:

r(8) = \/(x(6) ~x)2 + ((6) ~)2. 6.2)

where 6 = arctan ()’(6)7"), denoting with arctan the four-quadrant inverse of the
x(6)—x

tangent, with an output values in the range of [0,21).

However, the observed continuous object is usually represented with its digitiza-
tion in the discrete space (e.g., Z2), where only its discrete representation is available.
Following this, we are interested in a signature estimation of a continuous shape from
its discrete (i.e., digital) representation, resulting usually from the process of digitiz-
ing the original continuous object. With this in mind, a continuous form signature
from its discrete representation can be defined as an appropriate restriction of a con-
tinuous signature considering only a few appropriately selected 0 samples from the
interval [0,27).

Definition 6.2 The signature of a discrete representation of a continuous star-shaped
object S is a family of ordered pairs (r(6;),0;), where r(0;) assigns the length of
the straight-line, connecting the centroid of a shape (X,y) and the boundary point
(x(6:),¥(65)), to a discrete set of sample values 6; € [0,27):

r(8) =\ (x(0) — x4 ((0) —y?, =12, (6.3)

where the sample values 0; can be selected in several ways, and their choice, in
general, could affect the shape description.

The sample values 6; can be determined in advance (e.g., using equally distributed
values of 6; over the interval [0,27)), or indirectly during the process of signature
computation. In a situation where there is no information about the object position
within the boundary pixel, it is natural to take the center of the pixel as a reason-
able sample point. For the boundary pixels, we observe object pixels that contain at
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least one background pixel in their corresponding neighborhood. Herein, we distin-
guish between the boundary pixels that are 4- or 8-connected with background pixels,
depending on whether 4- or §-neighborhood of the boundary pixel is observed, as de-
fined respectively in (3.7) and (3.9). Thus, for the object with no holes, the boundary
pixels that are 4-connected (i.e., 8-connected) with background pixel(s) are contained
in 8-connected (i.e., 4-connected) object boundary. Based on this, we can observe the
sample points within the pixels belonging to both 4- or 8-connected object bound-
aries. However, this choice of sample point necessarily introduces errors in signature
computation, since it is unlikely that the continuous shape boundary passes through
the center of the pixels. This further affects the performances of the observed signa-
ture in terms of achieved precision and accuracy, as well as its variance under trans-
lation and rotation. Also, as a boundary-based descriptor, the signature is particularly
sensitive to noise, and the choice of sample points can further increase this weakness.

Following the approach proposed in [26], one way to reduce these negative effects
is to compute the signature utilizing fuzzy discrete shape representation. In that work,
the authors analyzed two methods for signature computation based on a fuzzy repre-
sentation of a given shape. One of them, computed as the average of the signatures
estimated for each a-cut, outperforms the other one which is also analyzed, as well as
the method based on crisp shape representation. The improvements achieved are re-
lated only to increased precision, not accuracy, given that the authors did not address
the bias of the signature estimate. This result comes from the fact that the proposed
signatures utilize the center of the boundary pixel of each ¢-cut as a corresponding
sample point of the shape boundary. Taking into account these considerations, in this
chapter we present our new method, originally proposed in [72], for estimating the
signature of a shape utilizing the coverage representation of the object we are con-
sidering. Contrary to the approach introduced in [26], our novel method is based
on an estimation of the boundary position within the pixel, with sub-pixel precision.
Such a sub-pixel position within the boundary pixel can be then utilized to improve
signature in terms of increased accuracy and precision, as well as reduced variance
concerning translation and rotation transformations. Besides, the proposed sub-pixel
precise signature estimate is also more robust to the presence of noise, as compared
to other already mentioned signature estimates.

6.2 Proposed signature with sub-pixel precision

Now, we present a novel method for estimating shape signature based on its pixel
coverage representation. Under the assumption that the boundary of a shape within
a pixel is locally straight, we can estimate the edge position with sub-pixel pre-
cision as a function of a pixel coverage a, for a given normal direction of edge
n = (cos @,sin@). The discrete signature of a shape can then be computed by se-
lecting a sample point on the estimated edge within the boundary pixel. To provide
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a well defined inner point of the pixel, the midpoint of the estimated edge within the
pixel can be one of the reasonable choices. Following this, according to definition of
discrete shape signature (Definition 6.2), the Pixel Coverage Shape Signature (PCSS)
is defined in [72] as follows.

Definition 6.3 The pixel coverage signature of a star-shaped continuous object is a
collection of pairs (r(6;),6;), where r(6;) assigns the length of the straight-line con-
necting the shape centroid (X,y) and the point (X,ia(6;),Ymia(6:)), to every angle

6; € [0,27), where 6; = arctan (%), (Xmia (6:),Ymia (6i)) denotes a midpoint of

the estimated edge (within the i-th boundary pixel along the boundary of the object),
and

r(8) =/ onia(0) = %)+ Gimia (6) —¥)%, i = 1,2,....N. 6.4)

Under the assumption that the boundary of the object, within the pixel centered at
(x,), is locally straight, the coordinates of the midpoint of the edge segment can be
expressed as a function of a coverage value a and normal direction n = (cos ¢, sin @)

as follows:
(xmid;ymid) = (x+ex(aa(p)vy+ey(aa(p))v (65)

where, for all angles ¢ € [0, 7 /4], it holds that
(ex(a, (p),ey(a, (P)) =

atdn(p a l 1
3y mmg 1) 0<a<jtang,

—% ,ltan(pgagl—%tan(p, (6.6)

tan 1 1
\/ y5— 2tamp l—ztan(pgagl.

Besides, it can be noticed that the expressions in (6.6) are antisymmetric around
a=0.5, i.e., around the center of the pixel. Therefore, it is sufficient to consider only
the coverage values ranging through the interval [0,0.5], and also, due to symmetry
in @, it is enough to take only the angles ¢ € [0, 7/4]. Other cases can be obtained by
changing the sign and/or swapping the coordinates of the midpoint if it is necessary.

NI'—

6.3 Algorithm for signature estimation

In order to provide computation of the proposed pixel coverage shape signature (in
this chapter it is referred to as PCSS) based on the equations (6.4) and (6.5), it is
necessary to estimate the normal direction of the object boundary n = (cos ¢, sin @),



114CHAPTER 6. SIGNATURE OF SHAPE UTILIZING ITS PIXEL COVERAGE REPRESENTATION

¥ P
i gk+1
y S %
(vex(ai i yiveyiaini)__py (i) S AN N
iy ) e
) (et int) N, ' (XietYint) S
N >0 N
I A
.k o k]
. midj N \mid
W\ S\ g
& Y G
6 D (Xi1,Yi1) (Xit,Yi1)
(xcYe)

(a) (®) (©

Figure 6.1: (a) Shape signature based on pixel coverage, PCSS, computed to the
midpoint of the edge segment within a pixel (x;,y;), for a given coverage value a; and
normal direction ¢;. (b) and (c) Illustration of iterative estimation of the boundary
position (i.e., midpoint mid; = (x; + ex(ai, ¢i),yi + ey(ai, ¢;)) and normal direction
¢; in the two consecutive k-th and (k + 1)-th iterations, utilizing the midpoints of
the estimated edges within the two neighboring boundary pixels from the previous
iteration.

within each boundary pixel (as illustrated in Fig. 6.1). For the boundary pixels,
we consider those with assigned coverage values a > 0, which are 8-connected with
pure background pixels, having the coverage value a equals to 0. In the case of the
object without holes (e.g., star-shaped object), the pixel coverage based digitization
produces 4-connected discrete boundary of one-pixel thickness which can be easily
identified and parametrized as well.

In the following, we illustrate the main contribution of the work [72], i.e., we
present an iterative algorithm for estimating the signature of a shape utilizing its cov-
erage representation. Such an introduced algorithm is based on the current signature
estimate which is then utilized to derive the normal direction and to improve the sig-
nature estimation itself as well. The algorithm proposed utilizes only the coverage
values of the observed pixel and its two immediate neighbors (along the observed
discrete boundary), and does not require the gradient estimate of the normal direction
within each boundary pixel, as it has been considered in Chapter 4 for 3D Euclidean
distance transforms.

The initial signature is given as a sequence of the distances computed from the
shape centroid to the initial midpoints utilizing the normal direction initialized with
¢; = 6;. This further implies that the observed object edge, in each boundary pixel,
is orthogonal to the vector connecting the centroid of shape and center of the bound-
ary pixel. Edge position within each boundary pixel is then updated by estimating
the straight line perpendicular to the straight line connecting the edge midpoints in
the two neighboring boundary pixels. The current midpoints of the estimated object
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edge within each boundary pixel are estimated using the signature estimation in the
previous iteration. The new (i.e., updated) edge position (and, consequently, its new
midpoint) is then estimated using the new normal direction estimate and the coverage
value. Two consecutive iterations of such a defined signature computation process
are illustrated in Fig. 6.1(b) and 6.1(c). Such a procedure is then repeated until the
difference (i.e., distance) between two consecutive signature estimates (i.e., signature
vectors) becomes less than a given tolerance, or until some predefined number of it-
erations is reached. Herein we rely on a maximum metric d.., defined (according to
(3.5)) as follows:

du(th, 71 = max |rFF =AY k> 1, (6.7)
1<i<N
where r*~! and rf are the signature estimates (i.e., vectors of estimated signatures)

achieved in the (k — 1)-th and k-th iteration, respectively.

Taking this into account, we are now able to present the main contribution of the
work [72], i.e., a complete iterative algorithm for estimating signature of a contin-
uous shape based on its pixel coverage based discrete (i.e., digital) representation.
The algorithm presented is easy to parallelize if higher speed is necessary, given that
each line assumes parallel or vectorized computation for all boundary pixels. Cyclic
indexing is assumed when index i &= 1 reaches end values of the indices assigned to
the boundary pixels.

Algorithm 2
Input: Pixel centers (x;,y;) observed in the counterclockwise along the object bound-
ary, coverage based values a;, i = 1,...,N, tolerance € > 0, and maximum number

of iterations maxiter> 0.
Output: Pixel coverage signature PCSS, consisting of N ordered pairs (r;, 6;).

@; < arctan (;:%}y()
fork=1,2,... maxiter

compute (ex(a;, §;),ey(ai, ¢;)) according to (6.6)
kGt edan 1) = X2+ (i + ey @i, @) — y)?
o v 200
if k>1 A do(t*,r*" 1)< & then

exit the for loop

X« rf»‘cos(eik), Fi < rf»‘sin(eik)
. Xim1—%it
i < arctan (i‘i+1 —Ji-1 )
end for

PCSS={(rk,00)}, fori=1,2,...,N
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Figure 6.2: Example of adjusting the coverage of pixel intersected by more than
one object edge. The pixel marked with A, having coverage of 0.52, is intersected
twice by the exact object boundary (red dashed line), passing through the pixel B
in between. Both edge midpoints of A are not placed correctly since they are close
to the pixel center. If we assume that each edge cuts half of the background, and
utilize a coverage value (for each edge separately) of 0.76, a better result (blue line)
is achieved.

However, in the case of non-smooth objects, it can be possible to exist some
boundary pixels that are intersected several times by continuous, non-smooth shape
boundary. These pixels are visited more than once, and as a result, the algorithm
proposed could produce sub-optimal estimates of the object edge within such pixels,
which can further affect the performance of the signature estimated. Such a result
follows from the fact that the exact position of the object boundary within the pixel
cannot be correctly estimated, given that the assumption about local linearity of the
object boundary is not satisfied, as required by Algorithm 2. Consequently, the appro-
priate adjustment of using the corresponding coverage value is required to improve
the estimation of the object boundary within the pixel. One such a possibility may
be splitting the coverage values assigned to pixels at sharp corners, as a part of the
pre-processing step, and then utilizing new (i.e., updated) coverage values for each of
the edge estimates separately, as illustrated in Fig. 6.2.

Adjustment

for all pixels j which appear n; > 1 times along the boundary
. 1 aj
ifa; < 5. letaj #
l—aj
nj

else, leta; < 1 —
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Figure 6.3: Shape signatures computed by BSS (8-connected boundary observed),
ACSS and PCSS for a disc with a radius of 66.64 pixels. The errors of PCSS method
are too small that they are hardly visible at this scale.

6.4 Experimental evaluation

In the following, we provide an evaluation of the performance of the proposed cov-
erage based method for signature estimation, in comparison with methods based on
a crisp (i.e., binary) shape representation (according to Definition 6.2), and utilizing
a-cuts of the corresponding fuzzy shape representation, as proposed in [26]. These
approaches herein will be referred to as BSS (Binary Shape Signature), ACSS (o-
cut Shape Signature) and PCSS (Pixel Coverage Shape Signature), while the perfor-
mance evaluation relates to improved precision and accuracy, robustness to noise, and
invariance to translation and rotation.

In that context, we start with the initial test set consisting of discs, 6-cornered
stars, and rectangles. To get a crisp shape representation of the observed objects, the
Gauss digitization (according to Definition 2.16) of continuous shapes is performed,
whereas the coverage shape representation is analytically derived, and as such, ac-
curate to the level of floating-point operations. The observed fuzzy representation of
shape is also based on the coverage of the pixels, indicating that ACSS and PCSS
are applied to the same representation of a shape. For the exit criterion in Algorithm
2 we have used the tolerance level € = 0.0001, or the maximal number of iterations
maxiter=100.

Before we provide a more comprehensive illustration of the performance of PCSS,
let first consider one simple but rather an illustrative example, which has motivated
our proposed coverage based approach. The centroid distance signatures, estimated
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by BSS, ACSS, and PCSS, of a disc with a radius of 66.64 pixels, are presented
in Fig. 6.3. Relative to the exact centroid distance signature of a disc (i.e., a con-
stant function y = 66.64), it can be noticed a very high accuracy and precision of the
proposed PCSS method, in comparison with both more precise (with reduced angular
variations), but non-accurate (i.e., biased) ACSS, and rather imprecise (with increased
angular fluctuations) and also non-accurate BSS.

For further empirical evaluation, we observe the errors of the computed signatures
of 100 randomly positioned discs and additionally rotated 6-cornered stars, of the
same radius of 66.64 pixels. Histograms of errors (relative to exact continuous signa-
ture) for the objects observed are given in Fig. 6.4. For BSS we consider both 4- and
8-connected boundaries, while for ACSS only 8-connected boundary (as proposed in
[26]) has been observed. Regarding our proposed PCSS method, we observe only
the 4-connected boundary, given that it provides more sample points than the corre-
sponding 8-connected counterpart. It can be noticed that significant improvement in
the accuracy of the proposed PCSS has been achieved, together with a considerably
smaller range of errors, compared to both BSS (with 4- and 8-connected boundary)
and ACSS methods. The biases (i.e., lacks accuracy) for both BSS and ACSS are also
visible, together with their variances (i.e., lacks precision).

For statistical evaluation of the signature estimates considered, we observe two
quantitative measures to evaluate performances:

1) root mean square error (RMSE):

RMSE = (6.8)
2) maximal absolute error (MaxErr):
MaxErr = max | — x|, (6.9)

1<i<N

where N represents the number of boundary pixels, while x; and %; represent the
true and estimated values of the shape signature, respectively. Just to mention that
measure (6.8) has been already considered in Chapter 4 to evaluate the performances
of the proposed 3D EDTs.

For each radius ranging from 0 to 100 pixels, we observe 100 discs (as well as 100
stars) randomly translated within one pixel, whereas the stars are further randomly
rotated. In the tasks of evaluation, as the corresponding ground truth, we observe
the exact, i.e., analytically computed, signatures of the continuous objects we are
considering. To provide an estimate of biased BSS and ACSS in terms of the achieved
precision, we ignore their biases using the mean of the estimated signatures of 100
randomly translated discs of radius of 1000 pixels and subtract such a computed mean
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Figure 6.4: Histograms of errors for BSS, ACSS, and PCSS applied to a disc (a) and
a star (b), of the radius of 66.64 pixels. Errors larger than 0.01 pixels are very rare
for PCSS.

from the estimated signatures observed in the test, instead of the exact signatures.
Plots of the computed RMSE and MaxErr values are presented in Fig. 6.5. It can
be noticed that the proposed PCSS method, in general, outperforms both BSS and
ACSS methods, particularly in the case of discs of increasing radii, whereas in the
case of objects with non-smooth boundaries (e.g., stars) the limited improvement is
still present.

In the following experiment, we illustrate the rotational invariance of the observed
signature estimates. In that sense, we observe three different rotations of a rectangle
of 9 x 11 pixels, given in Fig. 6.6(b) by their coverage based representations. Plots
of estimated signatures of these shapes using these three competitive methods are
presented in Fig. 6.6(a). Each of the plots presents the estimated signatures of these
three shapes by one of the three observed estimation methods given with differently
labeled points using triangles, squares, and stars. To provide a better understanding
of the obtained results, as well as the behaviour of the estimation methods observed,
the exact signature of the rectangle is also presented in each plot as a blue continu-
ous line. Notice also that all the computed signatures previously cyclically set to the
same starting point (i.e., angle), indicating that ideally the signatures computed will
coincide. It can be noticed that variance to translation and rotation is pretty visible
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Figure 6.5: RMSE and MaxErr, measured in pixels, of BSS (4- and 8-connected),
ACSS (8-connected) and PCSS, applied to discs (first and second row) and stars (third
row) of increasing radii.

for BSS (as expected), as well as for ACSS, due to the effects of discretization. Devi-
ations of the labeled points from the continuous blue line (i.e., lack of accuracy) and
between the measurements (i.e., lack of precision) are clearly visible for both BSS
and ACSS, whereas for PCSS these points are consistently (i.e., precisely) and cor-
rectly (i.e. accurately) distributed, indicating both high precision and high accuracy.
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Figure 6.6: Signatures estimated by BSS, ACSS, and PCSS for three rotations of
rectangle. Points of the different signatures are labeled by triangles, squares, and
stars. Coverage representations of the rectangles are shown to the right.

Besides, we have also evaluated robustness to the noise presence of the proposed
PCSS relative to both BSS and ACSS. For this purpose, we observe the signatures
computed for a star when increasing grades of Gaussian noise, centered in zero and
standard deviation ranging through [0,0.25], is added. Each object generated is then
segmented by Otsu thresholding method [107] to provide crisp shape representation
(for BSS), or using the fast soft thresholding technique to provide coverage shape
representation (for ACSS and PCSS), as proposed in [147]. The computed RMSE
values of the estimated signatures for each of the observed objects are in Fig. 6.7.
It can be noticed that both estimation methods ACSS and PCSS behave better in
comparison with the crisp (i.e., noise-free) BSS, given as a blue dotted line, even
though coverage representation is degraded up to 0.2 level of noise. Regarding the
observed BSS methods utilizing 4-connected, as well as 8-connected object boundary,
the presented plots indicate their insufficient robustness in such tasks.

For an illustration of the algorithm convergence, the plots representing the dif-
ferences (i.e., distances) between two successive signature estimates do. (r*, r*~1) are
shown in Fig. 6.7(c). It can be noticed that the results obtained non-monotonically
decrease for shapes having no sharp corners (e.g., discs). Such results are also con-
sistent with our expectation, given that the main assumption about the local linearity
of the boundary can be considered to be pretty reasonable for such shapes. Contrary
to this, in the case where such an assumption cannot be considered to be reasonable
(e.g., in the case of stars), the algorithm proposed terminates when the predefined



122CHAPTER 6. SIGNATURE OF SHAPE UTILIZING ITS PIXEL COVERAGE REPRESENTATION

RMSE

Disk

= = = Noisy disk
A0 | = Star :
; ; ; ; 10 = = Opened star\
0 0.05 0.1 0.15 0.2 0.25 0 5 10
Noise level Iteration

20

(a) (b ©
Figure 6.7: RMSE for the methods considered for increasing levels of Gaussian noise.
Both PCSS and ACSS perform better even if up to 20% noise is added than what a
noise-free crisp approach (blue dotted line) does. (b) Part of the observed object with
20% noise added. (c) Asymptotic behaviour of the sequence d..(r*,r 1), k € N, for
different cases.

number of iterations is reached. Nevertheless, if the sharp angles of the star could be
smoothed by applying the appropriate morphological operations as a corresponding
pre-processing step, for example, the proposed algorithm converges as well. This
result is illustrated observing blue dashed line plotted in Fig. 6.7(c).



Chapter 7

Fuzzy squareness: a new
approach to describing the
shape

Herein we present a new fuzzy squareness measure to quantify to what extent a given
fuzzy shape matches a fuzzy square. This fuzzy shape-based measure is naturally de-
fined and theoretically well-founded, resulting in that its behaviour can be understood
and predicted in advance. As already said, there is an increasing need for studying
different descriptors of shapes, as well as defining new methods for measuring both
existing and new characteristics of shapes. This latter comes from the fact that no
measure satisfies all expected properties in all applications since a shape measure
that performs well in one task does not have to be equally efficient in another task.
Based on this, several shape descriptors has been defined so far, among which there
are those for which several different measures have been presented until now. In that
context, in Chapter 5 it has been introduced a new shape-based descriptor and also
presented a new method for measuring how much hexagonal is a given shape con-
sidered. Besides, we have presented that such a shape-based measure can provide
several useful consequences, i.e., new shape measures, which have also been proved
useful in various tasks and applications for analyzing objects. In this chapter, we
follow the same line as in Chapter 5 for defining a new shape-based descriptor of an
object, and introduce a new method for its numerical characterization.

In that sense, let us recall once again that the shape represents one of the basic
components of the object, together with color and structure, that has many charac-
teristics that can be numerically evaluated and, consequently, used to characterize
objects. Also, the shape is usually represented as a bounded planar region, which
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RO 0 D0
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Figure 7.1: Several synthetic shapes, and their measured FS,(S) and FS&y;(S).
FSi(S) values are in the brackets.

corresponds to the spatial extent of the object when its visual characteristics, such
as color and texture, have been removed from consideration. In this chapter, we as-
sume that each appearing shape will be considered to be spatial fuzzy subset having a
membership function that illustrates to what extent the spatial element belongs to an
object. As it has been already mentioned in Chapter 2, the advantages of presenting
objects as the appropriate fuzzy sets are of particular importance when the uncertainty
and vagueness, present in an image, represent the unavoided result of many imaging
techniques, or when image data we are considering is of low quality. Thanks to these
observations, we find that the concept of fuzzy sets represents a natural approach for
preserving the important information about an imaged object relating to a fuzziness
present in an image.

Being a specific feature of the object, a fuzzy squareness has an obvious geomet-
ric interpretation (i.e., meaning), which enables us to introduce it by applying some
commonly known approaches to defining object descriptors. One such approach,
which has already been mentioned in Chapter 5, consists of fitting the model to the
shape considered, and evaluating the extent of fit as the corresponding measure of
shape [121]. In the case of fuzzy shapes, this approach can be expressed as follows:
consider a fuzzy square FS(S) that in the best way fits the observed fuzzy shape S,
and then define a fuzzy squareness as the degree of similarity between FS(S) and
S. Among the several possible different choices for the corresponding fitted fuzzy
square, in this chapter we have decided to observe a fuzzy square whose support and
core are of equal areas as the support and core of S, and whose centroids are coin-
cident with the centroids of the support and core of S. Exploiting this approach, we
come to fuzzy squareness measure 7S s;(S) defined as

_ Area(SNFS(S))

FSiulS) = 3 (SUFS )

(7.1)

denoting with FS(S) rotation of a fuzzy square around the centroid so that the area
of SN FS(S) is as large as possible. Taking into account such a definition of fuzzy
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squareness, it is straightforward to verify several of its basic and also very important
properties:

P1) The measured fuzzy squareness FS f;(S) is a number from [0, 1];
P2) The fuzzy squareness F'S s (S) returns 1 if and only if for S is a fuzzy square;

P3) FSyi(S) is invariant under rotation, translation, and scaling transformations
for fuzzy objects.

Notice that among the properties listed, the property P1 deserves special consid-
eration. In fact, considering the property P1, it follows that there exist shapes whose
measured fuzzy squareness equals 0. As an illustration of this property of 7S s (S)
we can observe the last four shapes in Fig. 7.1. It can be noticed that such a property
of FSyi(S) can be considered to be its essential weakness since we are interested in
defining a new shape based measure which evaluates each non-zero area shape by de-
gree of its fuzzy squareness corresponding to value ranging through the interval (0, 1].
This further implies that a well-defined fuzzy squareness measure should satisfy all
three listed properties, requiring slightly modification relating to property P1, to pro-
vide that the measured squareness for a non-zero fuzzy shape is greater than 0. In this
chapter, we will present a new fuzzy shape squareness measure taking all the values
from (0, 1], with the largest fuzzy squareness equals 1 if and only if the shape consid-
ered is a fuzzy square. Such a defined squareness has a few elementary properties that
have been discussed from both the theoretical and experimental point of view. The
new fuzzy squareness measure is also invariant to similarity transformations. Several
various experiments to experimentally validate the behaviour of the new measure,
and to verify all the theoretically proven results are also shown. Effectiveness and
usefulness of the new fuzzy squareness measures have been demonstrated in diverse
object analysis tasks performed on several widely studied image datasets.

The chapter presented is organized as follows. The next section provides the basic
denotations and assumptions needed for deriving the main result of the chapter. A
new fuzzy squareness measure is introduced in Section 7.2. Few desirable properties
of the new squareness measure are also given in this section. Synthetic and real
image experiments to illustrate the behaviour of the new fuzzy squareness measure,
as well as the theoretically proven results from the previous section are in Section 7.3.
Benefits and importance of the new shape measure in diverse classification tasks are
illustrated in Section 7.4.

7.1 Preliminaries

This section introduces several basic definitions and notations used in this chapter.
Besides, we will also introduce several important assumptions that will not restrict
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the importance of the main result of this chapter but will enable us that its theoretical
foundation are well understood, and its derivation to be mathematically correct. Fol-
lowing this, we briefly recall some of the underlying definitions already introduced in
Chapter 2 that will be of particular importance in our derivation. Also, unless other-
wise stated, we will assume that all the appearing objects are represented as bounded
planar regions defined on Euclidean plane R?.

Definition 7.1 A fuzzy subset S defined on the reference set R? is a set of the ordered
pairs S = {((x,y), ks (x,) | (x,y) € R?} with ug : X — [0, 1] representing a member-
ship function of S, and U (x,y) denoting a membership level of (x,y) € R? to a fuzzy
set S C R2.

Definition 7.2 The a-cut of a fuzzy subset S C R?, for all o € (0,1], is a crisp subset
5% ={(x,y) € R? | us(x,y) > at}.

Definition 7.3 The support of a fuzzy subset S C R? is the crisp subset Supp(S) =
{(x.y) € R? | pg(x,y) > 0}.

Definition 7.4 The core of S C R? is defined as the crisp subset Core(S) = {x €
R? | 1y(x) = 1.

Besides, by the term fuzzy point we mean a special fuzzy subset on R? defined in
[24] in the following way:

Definition 7.5 A fuzzy point at (a,b) € R? is a fuzzy subset P(a,b) defined by its
membership function as follows:

i) Up(qp) is upper semi-continuous,
ii) .uf)(a,b) (X,y) = lif and only lf(xay) = (a7b)’
iii) P(a,b)% is a compact and convex subset of R?, for all o € [0, 1].

Given that we are interested in designing a new fuzzy shape-based measure having
most of the desirable properties that each well-defined measure of shape should sat-
isfy, invariance concerning geometrical transformations of fuzzy objects, e.g., trans-
lation, rotation, and scaling, is unquestionably one of them. In this regard, we provide
herein their formal definition in the case of fuzzy objects (i.e., fuzzy sets) defined on
the Euclidean plane R? as the corresponding reference set.

Definition 7.6 A fuzzy subset S, ;) C R? is translation of a fuzzy subset S C R? for a
givenvector (a,b) if there exists a translation of the Euclidean plane T(ab) - R? - R?,
defined as T, ;)(x,y) = (x+a,y+b), if for all (x,y) € R? it holds:



7.1. PRELIMINARIES 127

1) Supp(S(ap)) = Tap) (Supp(S)),

2) ps,, (x+a,y+b)=pg(x,y).

Definition 7.7 A fuzzy subset Sq C R? is a rotation of a fuzzy subset S C R* around
the origin 0(0,0) by an angle a € [0,27) if there exists a rotation of the Euclidean
plane Ro o : R? — R? around the origin 0(0,0) by an angle o € [0,27), defined as
Ro.a(x,y) = (x-cosa —y-sina,x-sina+y-cosa), if for all (x,y) € R? it holds:

1) Supp(Se) = Ro.a(Supp(S)),

2) ps,(x-cosa—y-sina,x-sino+y-coser) = U (x,y).

Definition 7.8 A fuzzy subset A -S C R? is a scaling of a fuzzy subset S C R? by a
real number A > 0 if there exists a homothety of the Euclidean plane H ), : R? — R?
with the center in the origin 0(0,0) and the coefficient A > 0, defined as H ;5 (x,y) =
(A-x,A-y), if for all (x,y) € R? it holds:

1) Supp(A-S)="Ho(Supp(S)),
2) .U'LS(A‘ '.X,A, y) = ,U.S(X,y)-

Of particular importance for our derivation will be a fuzzy shape defined as a
planar region whose points have membership values dependent only on their distance
to the centroid of a shape. Considering this, we will use a d;-distance defined for two
given planar points A(x,y;) and B(x3,y,) as follows

di(A,B) =di((x1,y1),(x2,¥2)) = |x1 —x2| + [y1 — ¥2|- (7.2)

In this respect, let us notice that the set of all (x,y) € R? for which d;-distance from
a given point is smaller than a given constant represents a square (i.e., di-disc). Ex-
ploiting this and adopting the definition of a fuzzy disc, introduced in [17], we will
come to a new definition of a fuzzy square whose membership function depends ex-
clusively on d;-distance to its centroid. For this purpose, we will follow the approach
used in [146], suitably adapted to defining a fuzzy square. Before that, we introduce
the following definition.

Definition 7.9 Let fi : R — [0,1] be a non-increasing function, and denote with
di((x,), (x,y)) a di-distance of (x,y) to a given point (x,y) € R% A fuzzy square
F 8 having centroid (X,y) is a fuzzy set whose membership function firs : R* — [0, 1]
is defined as

nrs(xy) = p(di((xy), (x,5)))- (7.3)
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0 >
0 r R t

Figure 7.2: Plot of function fi(¢) defined in (7.4) for rR € Rand 0 < r <R.

In the following, unless otherwise stated, it is assumed that the centroid of all the
appearing fuzzy sets coincides with the origin. The assumption made in this way is
not a limitation in applications, given that the shape of a fuzzy object is invariant to
translation. Herein, we will consider a fuzzy square with membership function deter-
mined uniquely by a piece-wise linear non-increasing function it defined as

I, 1<r
t—R
i(r) = , r<t<R, .
A= —x o 7 (74)
0 , t>R,

where 0 < r < R and r,R € R (see Fig. 7.2). It is easy to notice that the function
fi(¢) together with Definition 7.9 generates a fuzzy square consisting of the points
with membership values equal to 1 within d;-distance r from the origin, equal to 0
out of d;-distance R, and strictly between 0 and 1 within d;-distance r and R from the
origin. This brings us to the conclusion that the core and support of such a generated
fuzzy square are the crisp squares (i.e., di-discs), centered at the origin, with a ra-
dius equals to r and R, respectively. Based on this, we can define a fuzzy square as a
fuzzy set F'S(r,R) with membership function ft, . R? — [0, 1] defined as follows:

1 o+l <
x|+ ]y —R
sy = EERIZRE < 75)
0 o+ =R

In a special case, for r = 0, we have a fuzzy point (according to Definition 7.5) with
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membership function

x|+ y| - R
.u']:5<0'R) (X,y) = T , for |x| + |y| <R;
while, for r = R, we get a crisp square with characteristic function yi (R) (x,y) =1,
for x|+ |y| < r.

7.2 Measuring fuzzy squareness

Now, we can derive the main result of the chapter, i.e., a new fuzzy shape squareness
measure, originally introduced in [70]. Also, several useful and desirable properties
of such a shape measure are also illustrated and theoretically verified. In that context,
let first be defined the auxiliary fuzzy square FS(S) for a given fuzzy shape S using
the membership function pi ¢ o (x,y) given as

N )
_ + |y = R(S
o )= 4 BLEDIRO ) i<y, 00
0 Wb RG)

where the quantities (S) and R(S) are defined as

1/2

r(S) = g (Area(SC)) ,

R(S) = ? (Area(SS)) 2 (1.7)

with S© and S° denoting the core and support of S, respectively. Based on this, for
such auxiliary fuzzy square FS(S), the following applies:

- FS(S) is dependent only on a fuzzy shape S, and does not change under the
rotation of S for an arbitrary angle. This follows from the fact that r(S) and R(S)
are expressed by areas of the support and core of S, which are such invariants.

- The quantities (S) and R(S) are defined in the way that the support and core of
FS(S) and S are of equal area, i.e., Area(S%) = Area( FS(S)%) and Area(S®) =
Area(FS(S)°).

Further, of particular interest for our derivation will be the quantity

59
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where Sy represents rotation of fuzzy shape S for an angle 6 around its centroid. In
the following, we will present that such a quantity achieves the largest possible value
if and only if S is a fuzzy square. This result will further provide us with a new fuzzy
squareness measure of a fuzzy shape. Before that, we prove the following theorem
where for proving some statements we follow the approach similar to the one already
used in Chapter 5.

Theorem 7.1 Let be given a fuzzy shape S having the centroid coincident with the
origin. Besides, let denote with Sg a shape S rotated for an arbitrary angle 6 around
its centroid. Then the following applies:

/ Mg ) (x:y) dxdy

< < (19)
Area(SS) + +/Area(SS) - Area(SC) + Area(SC) ~ 3
/ Mg (X.Y) dxdy
1
Area(SS) + \/Area(SS) - Area(SC) + Area(SC) 3
& §=FS(S); (7.10)

dxd
eénoagn/“” (x,y) dxdy

9 1

Area(SS) + \/Area(SS) - Area(SC) + Area(SC) 3

& S'is a fuzzy square. (7.11)

Proof 7.1 Let S be a fuzzy shape according to conditions stated in the theorem. Also,
let FS(S) be the auxiliary fuzzy square, centered at the origin, with core and sup-
port having the vertices (—r(S),0), (0,—r(S)), (r(S5),0), (0,7(S)), and (—R(S),0),
(0,—R(S)), (R(S),0), (0,R(S)), respectively. Based on this, it is easy to validate that
the support and core of S and FS(S) have the same area, as well as the set differ-
ences S5\ FS(S)S and FS(S)\ S5, and S\ FS(S)© and FS(S)C\ SC. Given
that, according 10 (1.6), l, (x,y) =0 for all (x,y) € S8\ FS(S)3, we prove (1.9)
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as follows:

/ .ufs<s)(xay)dXdy =

SS
//“fs (x,y)dxdy + //,ufs (x,y)dxdy

SS\FS(S)S SSNFS(S

/.Ufs<s)(x,y)dxdy+ /,l.l.fs<s)(x,y)dxdy
FS(5)5\85 FS(5)Snss

/ / Hrgs) (x,y)dxdy

FS(S)8

= //“fs (x,y)dxdy + //“fs (x,y)dxdy

(S)S\FS(S) FS(s)C

= % (Area(SS) + \/Area(SS) -Area(S®) +Area(SC)) :
(1.12)

The proof for (7.10) implies from the fact that equality in (7.12) holds true if and only
if Area(S5\ FS(S)%) = Area(FS(S)5\ S°)) = 0, i.e., if and only if the fuzzy shapes
S and FS(S) are the same.
To prove (7.11), it should be noticed that // Hrgis) (x,y) dxdy varies, if the shape
S
S is rotated around the origin for all orientations from [0,27). In that context, if

we denote with 6y an angle maximizing the quantity / / Mg (x,y) dxdy over all

S
rotations from [0,27), i.e
//,ursm (x,y) dxdy = eénoa;n //“fs 5 ,y) dxdy. (7.13)
5

Then, assuming that the left side of (7.11) is true, the following applies

/ Mg (X.Y) dxdy

8
% _ L (7.14)
Area(SS) 4 /Area(SS) - Area(SC) + Area(SC) 3
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This establishes the proof of (7.11), given that (7.14) and (7.10) provide that fuzzy
shapes Sg, and FS(S) are the same, implying that S must be a fuzzy square. O

Now, based on the results of Theorem 7.1, we come to the fact that the following
quantity

eén oa;z / Hrsi (,3) dxdy

0

Area(SS) 4 /Area(SS) - Area(SC) + Area(ST)

is invariant concerning the rotation of S, and reaches the maximal value 1/3 if and
only if the shape S is a fuzzy square. Considering this, we have that the quantity

eén oa%(n / Hrsis (x,) dxdy

3. % (7.15)
Area(SS)+ \/Area(SS) - Area(SC) + Area(SC)

can be used as a new shape measure. In this chapter, this measure will be named fuzzy
squareness shape measure, and its formal definition is given as follows.

Definition 7.10 Let a fuzzy shape S, centered in the origin, be given. A fuzzy square-
ness shape measure FSy(S) of shape S is defined as

eénoa;r / Hrss (003) dxdy
FS,(85)=3- i , 7.16
«(5) Area(SS) + /Area(SS) - Area(SC) + Area(ST) (.10

where Sg denotes rotated fuzzy shape S for an angle 6 around its centroid.

Several basic and also desirable properties of the new fuzzy squareness shape
measure F S, (S) are summarized in the following theorem.

Theorem 7.2 Given a fuzzy shape S, centered at the origin, the following statements
are true:

(a) FS4(S) € (0,1], for all shapes S;
(b) FS4(8)=1 & S is a fuzzy square;

(¢c) FS4(S) is invariant to similarity transformations;
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(d) if S is a crisp square, then FSy(S) =1,
(e) if S is a fuzzy point whose all a-cuts are crisp squares, then FS,(S) = 1.

Proof 7.2 Items (a) and (b) follow straightforwardly from (7.9) and (7.11) provided
by Theorem 7.1. Item (c) follows from fact that Area(S®) and Area(S®), necessary
for computation FS4(S), as well as ) max // Hrgs) (x,y)dxdy are rotational invari-

€02

[o, )SSQ
ants. Following this, we have that F S ,(S) is also rotational invariant. Translation
invariance comes from the fact that the origin and shape centroid are coincident. In
order to prove invariance fo scaling, let first assume that S is scaled by factor A to

shape A -S={(A-x,A-y) | (x,y) € S}. Exploiting this, we have the following:

Area((A-S)%) = A%-Area(S®), (7.17)
Area((A-8)€) = A% Area(S°), (7.18)
eénoa;n //H“(“ x.y)dxdy =
(A-Sg)S
.eénoa%(n //HFSG x,y)dxdy, (7.19)

and, consequently,

FSy(A-S) =

eénoa;n //H“(“ (x,3) dxdy

3. (/l Sg)°
Area((A-S)S)+ \/Area((2 -S)S) - Area((A - S)C) + Area((A - S)S)

.eénoa%(n //Hfs i (%:3) dxdy

3.
A2 Area(SS) —l—?Lz-\/Area SS) - Area(SC) + A2 - Area(SC)
= FS,(9),

giving that FS 4(S) is invariant to scaling transformation. Statement (d) follows from
(7.16), and fact that core and support of S coincide, resulting that M) (x,y) =1, for
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all (x,y) € S5. Then, we have:

eénoagn // “fs(s %,y) dady / ‘u'}‘S(S x,y) dxdy

F84(8) =3 3 -Area(SS) B Area(SS) =1

Finally, statement (e) follows from the fact that for a fuzzy square with a single-
1
element core S it holds that Area(S®) = 0 and // My (x,y) dxdy = §Area(SS),
s

ie.,
eén oa;n / Horsi (6:3) ddy / / Mg (x,y) dxdy
F&4(5)=3- = =1.
«(S) Area(SS) Area(SS)
This completes the proof of the whole theorem. O

Regarding the numerical algorithm for computing 7S, (), it can be noticed that
Definition 7.10 provides the algorithm consisting of rotating the fuzzy shape $ around

the origin, and evaluating the quantity / / Hrss) (x,y) dxdy, for all 6 through the in-
S
terval [0,27). To make a computation of such quantities faster, we suggest using the

appropriate geometric moments from (5.2), applied to suitably defined subsets of S,
similarly as already discussed in Chapter 5. Before that, the following applies:

//”fs(s) (xvy) dXdy -
S5
//“’]:5(5) ()C,y) dxdy + //HFS(S) (X,y) dxdy
SeNFS($)© SSNFS(S)5\C
= Area(S5NFS(S)C) + //‘u}‘s(s x,y) dxdy. (7.20)

SENFS(S)S\C
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Now, if we consider the partition of S% NFS (S@)S\‘C consisting of disjoint subsets

Sy = {(x,y) € SgNFS(Se)°\C | x <0, y >0},

S5 = {(x,y) € SHNFS(S9)°\C | x <0, y <0},

Sp = {(x,y) € SgNFS(Se)°\C | x>0, y >0},

Se = {(x,y) € SHNFS(86)°\C | x>0, y <0}, (7.21)
we can evaluate / Hrgs) (x,y) dxdy as follows:
S5
/ / Hrgs (X.Y) dxdy =
S5

= Area(S5NFS(S)C) + //,ufw) (x,y) dxdy
SENFS($)S\C
= Area(S§5NFS(S)%) +
1

a—

+ b'(—ml,O(Sfla)+mo,1(Sé)—ml,O(Sg)—mm(S%)

+m1’0(Sg) +mg | (Sg) + ml’o(S‘é) —my, (Sg)
—b-Area(S5NFS(S)5\%))
= Area(S5NFS(S)°) +
1

a—

t —— - (=m1,0(Sg) + mo.1(Sg) = m1,0(S5) —mo,1(S5)

+mi0(Sy) +mo,1(Sg) +mi0(S§) — mo1(S5))
+ ﬁ -Area(S5N FS(5)5\C)

(7.22)

resulting that, instead of (7.8), it is enough to compute the areas of S§ N FS(S)° and
SSNFS(S )S\C, and the first order moments of the subsets from (7.21), which further

contribute to making the computation of FS,(S) faster, but without compromising
its simplicity as well.
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Figure 7.3: Fuzzy shapes for increasing levels of salt and pepper noise added to a
fuzzy square in (a). FS,4(S) values are given below each shape. Noise levels added
to shapes in (b), (c), (d) and (e) are 0.25, 0.5, 0.75 and 1, respectively.

7.3 Experimental illustrations of 7S ,(S)

This section deals with many different experiments to provide a better understanding
of the new fuzzy squareness measure FS,(S). Experiments presented are selected
in a way to additionally describe the behaviour of new shape measure as well as
to confirm theoretically proven considerations already discussed in the chapter until
now. Besides, the experiments comparing the behaviour of the newly derived FS,(S)
with our initial fuzzy squareness measure FS f;(S) are included as well.

In the first experiment it considers the behaviour of the new fuzzy squareness
measure in the presence of increasing noise levels added to a perfect fuzzy square.
Five fuzzy squares, listed following the degree of added salt and pepper noise, are
given in Fig. 7.3, along with their measured FS,(S) squareness. Results presented
are given as the averaged squareness for 100 degraded fuzzy squares at each degree
of noise. According to our expectations, the largest S, (S) value, over the shapes
displayed in Fig. 7.3, is equal to 1.0000 and corresponds to noise-free fuzzy square
(the shape in Fig. 7.3(a)), and then decreases accordingly as the noise level increases.
This also stems from our theoretical results of Theorem 7.2, given that a larger added
noise contributes to a larger degradation of a perfect fuzzy square. To provide a better
illustration of the robustness of FS,(S) concerning added noise, a plot of computed
FS4(S) values for increasing levels of noise is given in Fig. 7.4. Again, plotted
squareness values are given as the averaged squareness for all observations at each
level of added noise. The noise probability starts from 0, for a perfect fuzzy square
in Fig. 7.3(a) and the largest 7S, (S) equals 1, and then decreases to shape in Fig.
7.3(e) with the minimal measured 7S, (S) value.

The following experiment illustrates how the new squareness measure FS,(S)
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Figure 7.4: Plot of measured FS,(S) values for shapes in Fig. 7.3, for increasing
levels of salt and pepper noise added to a fuzzy square in Fig. 7.3(a).

behaves as the shape changes under the continuous modification from a fuzzy square
to a fuzzy disc, and then to a fuzzy square again. Several such defined fuzzy shapes,
given by membership function

1 L P e < e
x|+ |y —R
w(x,y;rR,€) = % L e < x|y < R (7.23)
0 WP PR

are presented in Fig. 7.5, together with their measured 7S, (S) values. It should be
noted herein that in the boundary case, for € = 0, the membership function g (x,y;r, R, €)

is by definition reduced to the following form:
1 ;- max{[x], [y} <,

X4y —R
1(x,y;rR,0) = LR |,,_|y1|e , r<max{lx,[y[} <R, (7.24)

0 . max{hl,hl} =R

Thus the shapes presented in Fig. 7.5 modify from a fuzzy square (¢ = 0) to a
fuzzy disc (¢ = 1), and then again to a fuzzy square (¢ = 2). It can be noticed that
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Figure 7.5: Five shapes defined by (7.23) for € € {0,0.5,1,1.5,2}, together with their
assigned F'S,(S) values.

the results presented are in accordance with human perception, since, as the fuzzy
shape becomes more circular, the measured fuzzy squareness decreases from a per-
fect fuzzy square (the shape in Fig. 7.5(a)), through the rounded fuzzy square (given
in Fig. 7.5(b)) to a fuzzy disc given in Fig. 7.5(c). On the other side, the measured
fuzzy squareness increases as the fuzzy shapes become more fuzzy square (see, for
example, shapes in Fig. 7.5(d) and 7.5(e) relative to a shape given in Fig. 7.5(c) (i.e.,
fuzzy disc)). As expected, the largest FS,(S) value (among the shapes presented
in Fig. 7.5) corresponds to shapes in Fig. 7.5(a) and 7.5(e) (i.e., for perfect fuzzy
squares), while the smallest squareness equal to 0.9814 is reached for a shape of
fuzzy disc presented in Fig. 7.5(c), which can be considered to be least fuzzy square,
among the shapes in Fig. 7.5. These results are also consistent with our theoretical
results, since, as already proven, the fuzzy squareness measure FS,(S) assigns the
value 1 if and only if the shape given is a fuzzy square. For a better understanding
of the behaviour of FS,(S), Fig. 7.6 presents a plot of measured FS,(S) values for
increasing values of parameter €. The plot decreases from the maximal squareness
1.0000, for a perfect fuzzy square in Fig. 7.5(a), to 0.9814, assigned to a fuzzy disc
in Fig. 7.5(c), representing its minimal value as well, and then increases to the largest
squareness 1.0000, corresponding to a fuzzy square in Fig. 7.5(e). It can be noticed
that all the computed FS,(S) values are also following the theoretical observations
that the new measure is invariant to similarity transformations. This follows from the
fact that the second half of the shapes in Fig. 7.5 can be obtained through the corre-
sponding similarity transformations (e.g., rotation and scaling) from the shapes given
in the first half of the same figure.

Now, we observe several synthetic shapes to illustrate how the new fuzzy square-
ness measure F S, (S) acts in comparison with FS; (S). The first six fuzzy shapes
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Figure 7.6: Plot of measured FS q (S) values for shapes, defined in (7.23), for increas-
ing values of parameter €.

in Fig. 7.1 demonstrate how the squareness measures act on shapes with holes. The
shapes presented correspond to fuzzy star shapes differing by the relative size, po-
sition and number of the holes within the shape, arranged according to decreasing
FS,(S) and FSy;;(S) values. It can be noticed that, as the size of the holes in-
creases (e.g., the second and third shapes in Fig. 7.1), then the measured squareness
decreases. To illustrate how the considered fuzzy shape measures depend on the
number of holes, we observe the following three fuzzy shapes in the same figure.
As expected, with the increased number of the holes inside the shape, the measured
squareness decreases. Besides, the largest measured FS,(S) and FS;(S) values
are assigned to fuzzy star shape without holes (i.e., the first shape in Fig. 7.1). These
results also match our perception about the behaviour of the fuzzy squareness mea-
sures since we prefer that the fuzzy squareness decreases as the size of the holes and
their relative number increases from the left to the right. This is also in a line with
our initial request that the fuzzy squareness shape measures should evaluate to what
extent a given fuzzy shape matches an ideal fuzzy square. It can also be noticed that
both squareness measures provide the same ordering among the shapes considered,
which has been already proven to be of particular benefit in some applications.

Besides, it can be noticed that in the case of the last four shapes in Fig. 7.1 there
exist shapes for which the fuzzy squareness FS i (S) is not able to provide a clear
distinction among them. The shapes presented are generated from the circle line (the
seventh shape in Fig. 7.1) by excluding its quarters. The changes in the measured
fuzzy squareness FS,(S) are following our perception, which can be understood to
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be an advantage compared to FS;(S). This follows from the fact that most fuzzy
square shape is the last shape with assigned FS4(S) value equal to 0.0170, while
least fuzzy square shape is a circle line (the seventh shape in Fig. 7.1) with measured
FS4(S) equal to 0.0011. As it can be seen, the measured fuzzy squareness F'S s (S)
for the last four shapes is equal to 0. Such a property of FSy;(S) is considered, as
already mentioned, to be a disadvantage in relation to 7S, (S). However, as already
indicated in the case of hexagonality measures from Chapter 5, such a correspon-
dence established using two similar measures, which evaluate the same property of
the shape under consideration, can be particularly important in some applications,
since, as such, they can be combined to improve performance in a variety of object
analysis tasks. In this regard, we illustrate how the new fuzzy squareness measure
corresponds to human perception. Following this, it is applied to several randomly
selected image data from several commonly used image databases, whereas the gen-
erality of the new fuzzy measures is illustrated by their applicability to different types
of image data. Let mention some of them:

1. For a binary image, the city block DT (Definition 3.4) is applied to an inverse of
the convex hull for a given object is computed. Then the new fuzzy squareness
measure is applied to the normalized fuzzy set whose support coincides with
the original foreground object.

2. For a given gray-level image, the foreground objects can be viewed as the cor-
responding fuzzy shapes to which the new fuzzy shape measure can be applied
(method 2.1). Also, a gray-level image can be binarized using the Otsu thresh-
olding method [107], and then the new fuzzy squareness measure is applied
according to the method described in 1 (method 2.2).

3. For a given color image, its transformation into a gray-level image is first per-
formed, given that the color does not play a role in our considered features.
The new fuzzy squareness shape measure is then applied following the meth-
ods described in 2.

Figure 7.7 illustrates a large variety of randomly selected automotive logos taken
from [1] that are presented as gray-level images (according to methods 3 and 2.1).
The shapes are listed according to their increasing FSy(S) values, while the mea-
sured FS;;(S) values are given below in the brackets. It can be said that the ob-
tained order is not in contradiction with our initial request given the fuzzy squareness
quantifies how much a given shape differs from the fitted fuzzy square. If the shapes
are ranked according to FSy; (S), then the ordering (a) (b) (c) (d) (e) (f) (g) (h) (i)
() &) (D (m) (n) (o) (p) (q) (r) (s) (t) established by FS,(S) is replaced with (c) (a)
(®) (h) () (g) M) M) (d) (n) (&) () () (k) (m) (p) (r) (q) (s) (0). It can be noticed that
the biggest differences are in the case of highest ranked shapes by FS,(S), which is
ranked in the mean if the fuzzy squareness FS;(S) is applied. Such behaviour of
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Figure 7.7: Shapes of automotive logos along with their assigned FS,(S) and
FSir(S) values. The computed FS y;(S) values are in the brackets.

FS4(S) can be understood as an advantage over FS; (S), given that, according to
human perception, a higher squareness should receive the shape present in Fig. 7.7(t)
instead of, for example, the shapes given in Fig. 7.7(k) and 7.7(m). As expected,
the smallest measured F'S s; (S) value is assigned to the shape in Fig. 7.7(c) since
such a shape has the largest portion of non-foreground pixels. Besides, we can also
notice that the rankings according to both squareness measures differ significantly for
the shape given in Fig. 7.7(0). In fact, highly ranked shapes in Fig. 7.7(p) and (s),
according to F'S4(S), are ranked as lower fuzzy square shapes than the shape in Fig.
7.7(0). Such a property of FSy;(S) can be viewed as its weakness, since the shapes
in Fig. 7.7(p) and (s) are recognized to be more fuzzy squared than the shape in
Fig. 7.7(0). Also, it can be noticed that the highly ranked shapes in Fig. 7.7 represent
more compact shapes containing the larger portions of the object pixels. These results
match with human perception, given that as most compact shape, among the shapes
presented, can be considered the shape with the largest measured squareness S, (S)
equal to 0.9194. On the other side, the shapes having larger proportions of long and
elongated thin features, or containing multiple diverse holes are tending to be per-
ceived as lower-ranked shapes according to fuzzy squareness measures. The results
obtained are following such a perception, given that the fuzzy squareness measures
FS,4(S) and FSyi(S) assign lower squareness for the shapes given in the first row
in Fig. 7.7.

Examples of several logos of the different tire brands from [2] are presented in
Fig. 7.8 (previously prepared following the above-described methods 3 and 2.2).
The same reasoning applies as in the previous figure, since the lower FS,(S) values
are assigned to the shapes containing larger areas of non-foreground pixels (e.g., the



142CHAPTER 7. FUZZY SQUARENESS: A NEW APPROACH TO DESCRIBING THE SHAPE

© 1T > 5 V@

(a) (b) © (d (© ® (2
0.4540 0.6528 0.6651 0.7037 0.7301 0.8437 0.9172
(0.4201) (0.4208) (0.5227) (0.5015) (0.6101) (0.6672) (0.7592)

Figure 7.8: Examples of logos of tire brands, and their assigned FS,(S) values ar-
ranged in ascending order. The measured S f;; (S) are in the brackets.
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Figure 7.9: From the top to the bottom: the ten lowest, intermediate and highest-
ranked shapes, according to increasing FS,(S) values, from the animal dataset [10].
FS,4(S) values are given below the corresponding shapes.

first three shapes in Fig. 7.8) than the shapes containing a larger fraction of object
pixels (e.g., the remaining shapes in the same figure). If the same shapes are ranked
concerning fuzzy squareness FS;(S) (given in the brackets), a slightly different
ranking is then achieved. In fact, the third and fourth shapes of tire logos should
change their places if the ranking according to increasing F'S;(S) is applied. It
can be said that such a ranking is in contradiction with our expectations since we
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Figure 7.10: The ten lowest, intermediate and highest arranged shapes according to
FS,(S) (given below each shape related) from the Portuguese Leaves database [141].

expect a higher squareness assigned to the fourth rather than to the third logo shape.
Again, these results are consistent with the theoretical results, given that, according
to Definition 7.10, a new fuzzy squareness FS,(S) defines the degree to which the
measured shape is similar to its associated fuzzy square FS(S), as defined in (7.6).
In the following, we will illustrate the behaviour of a new fuzzy squareness on
several known and commonly studied image datasets. The first dataset is the animal
dataset [10], already discussed in Chapter 5. Figure 7.9 presents the ten lowest and
highest ranked shapes according to their increasing F S, (S) squareness, together with
ten intermediate shapes. The presented animal shapes are given as fuzzified version of
the original binary shapes, following method 1. It can be noticed that ranking matches
our expectation since FS,(S) evaluates the degree of how much a given fuzzy shape
differs from fitted fuzzy square FS(S). Following this, it is easy to understand why
the shapes with thin and elongated features such as wings, tails, or legs are assigned
lower 7 S,(S) values, while a higher squareness is assigned to more compact shapes
containing a larger portion of the foreground pixels (e.g., the shapes in the second and
third rows). Besides, we can note that by comparing the obtained order with the one
established using a new measure of shape hexagonality, as presented in Chapter 5, the
results achieved are following what is expected. This follows from the fact that both
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introduced shape measures are based on the area of the shape considered, given that
they are defined utilizing the corresponding integrals over the whole support of the
shape). This is the reason why such established orders are in agreement concerning
our perception of their behaviour.

The second well-known database is Portuguese Leaves dataset [141], containing
a total of 340 leaf images®. The ten lowest, intermediate and highest-ranked leaf
shapes according to new fuzzy squareness FSy(S) are in Fig. 7.10. The shapes are
given as gray-level images prepared according to the aforementioned method 2.1. It
can be noticed that lower scores of the measured squareness correspond to the shapes
recognized as more linear and elongated than the ones presented in Fig. 7.10. These
results do support our theoretical results proven in the previous section, and which
have been already discussed in some of the previous experiments. Also, it can be
concluded again that the ten highest-ranked shapes are perceived to be most compact
shapes in the figure, containing a larger fraction of the foreground pixels.

The third considered dataset, MPEG-7 CE-1 from [73] that has already been ob-
served in Chapter 5 to evaluate the performance of the new measures of hexagonal-
ity as well as their associated by-products. Contrary to these experiments, we now
illustrate how the new fuzzy squareness measures applied to the appropriate fuzzi-
fied examples of the initial corresponded shapes. Examples of ten lowest, middle
and highest-ranked shapes according to measured FS,(S) values belonging to this
dataset, previously prepared to applying fuzzy squareness measures (following the
method 1, given above) are in Fig. 7.11. Again, it can be noted that the shapes
with long thin and/or elongated object areas, or characterized by a larger fraction
of non-object features are identified by FS,(S) as lower fuzzy square shapes. Re-
garding the ten highest-ranked shapes, it is easy to notice that they are the squares
with different degree of shape deformations, which can be perceived as most square
shapes, among the shapes presented. The results obtained do not contradict our the-
oretical observations relating to the behaviour of the new fuzzy squareness measure.
This explains why the shapes represented as most compact fuzzy shapes, among the
presented shapes, are assigned a higher fuzzy squareness FS,(S). Finally, it is in-
teresting to provide a comparison of these results with those obtained in Chapter 5
when shapes from the same image dataset are ranked according to measured hexago-
nality. Regarding the shapes given in the first two rows of Fig. 5.9 and Fig. 7.11, we
can notice that the obtained results are in line with our expectation, taking into ac-
count the definitions and properties of these measures, as well as observation already
discussed in the previous experiments. However, the most interesting are the shapes
given in the third row of the corresponding figures. As the new hexagonality measure

3 Although the presented database contains 40 different plant species, the attached zip file which is
provided by the authors contains a total of 340 leaf images (classified into 30 different species), which
were recognized by the authors to be simple leaves images. Both types of images, RGB and binary, are
provided in the file attached.
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Figure 7.11: The first, second and third row present the ten lowest, middle and highest
fuzzy square shapes from MPEG-7 CE-1 [73], according to assigned FS,(S) values,
respectively. The shapes presented are given as the corresponding fuzzified shapes
according to method 1, described in the text.

classifies the squares with different degrees of deformation and corresponding pencil
shapes, as most hexagonal ones among the shapes presented, on the other hand, a
new fuzzy squareness measure classifies the fuzzified versions of the corresponding
squares given in the original image dataset as most fuzzy square. This is again in line
with our initial requirements regarding the behaviour of these two measures, given
that the new measure of hexagonality in a degenerative case can recognize square as
most hexagonal shape as well. Besides, the different order of the observed shapes
concerning these two considered measures can be of particular benefit and impor-
tance in the different tasks of analyzing and comparing objects based on their shape,
which will be detailed and discussed in the following section.
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7.4 Experiments illustrating the applicability of fuzzy
squareness

This section illustrates the effectiveness of the new fuzzy squareness measures in the
tasks of classifying images from several modern image datasets. Also, our attention
will be directed to the application of simpler shape-based analysis tools, relatively
simple and easily computable descriptors of the object, well-founded classification
algorithms, as well as the applied classifier. Such aspects will be of particular impor-
tance in experiments not aimed to achieve the benchmark result regarding the image
dataset considered, nor to apply potentially complex tools which are known to im-
prove efficiency in selected tasks of object analysis. For example, in some presented
classification tasks, which are applied to two well-known Leaf datasets from [151]
and [141], we will present the experiments involving a small number of relatively
simple descriptors to obtain the results which are comparable to those presented in
the literature up to date.

First classification task. First classification experiment illustrates that the new
fuzzy measures can be used together with several simple shape features to increase
the efficiency of classifying images from MPEG-7 CE-1 dataset [73]. We have im-
plemented the nearest neighbors classification algorithm with Mahalanobis distance.
Herein we present two groups of the experiments differing according to initially cho-
sen descriptors. The achieved leave-one-out efficiencies are shown in Table 7.1. Par-
ticular emphasis will be given to the comparison of the results obtained with those
achieved in Chapter 5 when the new hexagonality measures and their side-results are
included into consideration.

The first group of experiments starts with the area-based and perimeter-based
convexities?, the multi-component shape disconnectedness measure D(S) [162], along
with hexagonality measures H(S) and H ; (S) from [69]. Such selected shape fea-
tures reach a leave-one-out classification accuracy of 79.00%. If it is augmented with
initial fuzzy squareness shape measure F'S y; (), the classification efficiency has im-
proved to 82.79%. Better accuracy is achieved by adding the new fuzzy squareness
FS4(S) instead: 83.50%. A further improvement has been provided combining both
FSir(S) and FSy(S) together with five initial shape descriptors. The classification
performance is then increased to 86.14%, thus providing an improvement higher than
7%. Such an improvement in accuracy is approximately equal to the one achieved in
Chapter 5, using one descriptor less (i.e., a total of seven simple shape descriptors).
Also, this relatively high result is better than the results achieved in the following two
groups of experiments performed on this database using no more than nine differ-
ent descriptors of shape. For more details, see results in Table 5.1. Also, performed
experiments show that new fuzzy squareness measures are compatible, and can be
combined to achieve a better performance in such a task of classification. This is also
illustrated if only S ;(S) and FS,(S) are applied separately or together, without
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Table 7.1: Leave-one-out classification accuracies obtained using the corresponding
shape descriptors. Improvements achieved by including the new fuzzy shape mea-
sures are displayed as bolded.

Shape features Rates

5 shape features 79.00%
First group 5 shape features + F'S 7 (S) 82.79%

5 shape features + FS4(S) 83.50%

5 shape features + FS4(S) + FSyi(S)  86.14%

7 shape features 83.29%
Second group | 7 shape features + F. S4(8) 86.29%
7 shape features + F'S f; (S) 86.64%
7 shape features + FS 7/ (S) + FS4(S)  88.93%

initial five shape measures. Thus, for example, if S (S) and FS,(S) are con-
sidered separately then the achieved classification scores are of 22.57% and 27.29%,
respectively, while a better score of 51.43% is obtained if they are combined.

In the second group of experiments, three global shape descriptors such as rectan-
gularity, roundness and compactness are combined together with area and perimeter-
based convexities® and hexagonality measures H(S) and H s;(S) from Chapter 5,
instead of D(S). Such combined descriptors achieve a classification rate of 83.29%.
If the new fuzzy squareness FS,(S) is added into consideration, then the achieved
efficiency increases to 86.29%, whereas including the fuzzy squareness measure
FSir(S) instead, slightly better accuracy of 86.64% has been reached. If both fuzzy
squareness measures FS; (S) and FS4(S) are added into consideration, the clas-
sification accuracy increases further to 88.93%. It can be noticed that such a pretty
good result represents as well a relative high improvement of nearly 6% compared to
the initial five descriptors described in this group of experiments. This accuracy also
outperforms the highest achieved efficiency in the previous group of experiments,
and also the best achieved in Chapter 5 of nearly 88%, using a total of 9 simple shape
descriptors (one descriptor less than in Chapter 5). Moreover, such a good result
of approximately 89% represents also the best classification result (i.e., benchmark
result) for this image database. Notice that the results presented illustrate that both
introduced hexagonality measures from Chapter 5 together with both fuzzy square-
ness shape measures include mostly independent shape information, which further
contributes to keeping the classification efficiency at a relatively high rate. Besides,
according to the results given in Table 7.1, it is easy to notice that there are several
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more combinations of the shape features that can be combined to increase the ef-
ficiency, and which are also comparable to those achieved in the literature to date.
More about this can be found in Chapter 5.

Second classification task. This experiment demonstrates the advantages of the
new fuzzy squareness measures in the task of classifying leaf images from the Swedish
Leaf dataset [151]. As already discussed, this dataset contains 1125 color images (15
classes, 75 images per class). Examples of leaf images taken from each class are in
Fig. 5.12. This classification task represents a well-known image analysis task, given
high similarities among the leaf images belonging to different classes. It should be
noted at the beginning of the experiment that the emphasis here does not refer to ob-
taining the best possible result, i.e., benchmark result, but to presenting a relatively
simple approach that relies on the use of several easily computable shape descriptors
applied together with our new fuzzy squareness measures to illustrate their efficiency
in this classification task. The initial set of shape descriptors now consists of multi-
component shape measure D(S) [162], multi-component shape measures from [115]
(denoted as Imcc(S) and IImcc(S)), and the first Hu moment invariant [66]. The
classification results achieved using the nearest neighbors machine learning-based
classifier are given in Table 7.2. Such a defined set of shape descriptors produces a
leave-one-out classification rate of 79.26%. By including two versions of the fuzzy
squareness shape measure FS', (S) and FS2(S)* separately, the classification score
has increased to 81.48% and 82.52%, respectively. Greater improvements in the ac-
curacy of 86.07% and 92.44% have been achieved, respectively, by including two
versions of the new squareness measure FS ;(S) and F S?I(S), instead. A further

improvement of 93.33% has been achieved combining both versions FS ;(S) and
FS ?I(S ), while the additional improvement of 94.67% is obtained by adding the first
version of FS (11 (S) together with the second version of the fuzzy squareness mea-

sure JF. Sf, (S). Such a great relatively high improvement of nearly 15.5% represents a
pretty good classification result, outperforming most achieved rates in the literature to
date, given that only six simple descriptors have been used. For example, it is worth
noting that such a classification result outperforms the efficiency of 89.1%, achieved
in [115] using only seven Hu moment invariants, as well as the efficiency of 94.9%
based on the use of seven multi-component moment invariants introduced in [115].
Also, the experiments presented illustrate that the new measures are complemen-
tary, and include independent information of the shape. This can be further illustrated
by considering the results achieved using only fuzzy squareness measures without the
initial five descriptors. The classification results are given in the second part of Ta-
ble 7.2. As noticed in Table 7.2, both versions of the fuzzy squareness measures

4The first version of the fuzzy squareness measure is applied to gray-level leaf image viewed as a fuzzy
shape (following the method 2.1, given at the beginning of the previous subsection), while the second
version is applied to the distance map of the binarized leaf image (method 2.2 in the same subsection)
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Table 7.2: Accuracies obtained by combining initial descriptors with the new fuzzy
shape measures. Results obtained by including the new shape measures are given as
bold.

Shape features Rates
4 shape features 79.26%
4 shape features + F S, (S) 81.48%
4 shape features + F S (S) 82.52%
4 shape features + 7S q(S) 86.07%
4 shape features + F S(ZI(S) 92.44%
4 shape features + ]-"S;(S) + .FS?I(S) 93.33%
4 shape features + fS}](S) + FS2(S) 94.67%
Sks) 42.67%
SL(s) 48.00%
FS?,(S) 54.67%
]-"Sz(S) 56.00%
SH(S) + FSL(S) 62.37%
}‘SZ(S) + FS4(8) 64.89%
SL(S) + FSH(S) 67.70%
SL(S) + FS(S) 68.15%
Sy(8) + FS5(S) 73.04%
Sy(S) + FS5(S) 77.19%
SH(S) + FSX(S) + FS}(S) 77.48%
SL(S) + FSL(S) + FS(S) 82.81%
Sy(S) + FSy(S) + FS;(S) + FS5(S) | 86.96%

are relatively efficient in this classification task. A leave-one-out accuracies obtained
using separately .FS,II(S), FSL(S), FS%(S) and .7-"82(5) are of 42.67%, 48.00%,
54.67% and 56.00%, respectively. As expected, better efficiencies are reached by
appropriate combining two by two versions of the new fuzzy measures. For example,
the classification accuracy has improved to 62.37% if F S}I(S) and FS.,(S) are used
together; 64.89% if foI(S) and FS2(S) are used, instead; 67.70% for fS(II(S) and

FS85(S); 68.15% for FS,(S) and FS;(S); 73.04% for FSy,(S) and FS;(S); and
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77.19% for FS ,li(S) and F S;(S). Further improvements in the accuracy of 77.48%
and 82.81% are then achieved combining both versions of S, (S) with the first and
second version of FSy;(S), respectively. Additional improvement of 86.96% has
been achieved if both versions of FS,(S) and FS;(S) are employed together to
improve the classification performance. It can also be noticed that such an achieved
accuracy represents better result than those achieved in the first four experiments us-
ing five shape descriptors (i.e., one descriptor more). At the end of the experiment,
it is worth noting that the results obtained are also comparable with those already
existing methods specially designed for this image database. These methods usually
involve a much larger set of descriptors, a feature vector space of larger dimensional-
ity, or maybe a more complex classifier. More about these methods have been already
said in Chapter 5.

Third classification task. This experiment presents how the new fuzzy squareness
measures can be efficiently applied in the task of classifying the leaf images from
the Portugues Leaf dataset [141]. As already mentioned, the database considered
contains a total of 340 leaf images, classified into 30 different plant species. Several
examples of leaf images belonging to this database are given in Fig. 7.10. This
widely studied image database was the object of research of several different authors
aimed to improve the performance of various classification algorithms. In [141] the
authors studied a new shape-based analysis method using the Distance Transform
Network (DTN) which combines both complex network (CN) and Euclidean distance
transform (EDT). Such a designed method has proved to be particularly effective
in the classification of images belonging to this database, giving the efficiency of
85.00% based on the Linear Discriminant Analysis (LDA) classifier, as well as of
77.79% using the Support Vector Machine. In addition, this method also provides
a pretty high relative improvement in accuracy of approximately 13% using LDA
classifier, or 12% for SVM classifier, with respect to the second-highest efficiencies
of nearly 72% and 66% achieved using the complex network (CN) degree algorithm
[9] (as reported in [141]). The authors also listed several results achieved for this
database. Among them are: 72.35% and 63.47% using 34 features obtained from
segment analysis [125] based on LDA and SVM classifier, respectively; 65.75% and
64.41% obtained using 25 curvature descriptors [170] with SVM and LDA classifier,
respectively; 53.52% and 63.82% using multiscale fractal dimension and contour
saliences [37] based on SVM and LDA classifier, respectively, with 50 applied shape
features; etc.

In our experiment, we rely on the approach consisting of several already men-
tioned shape descriptors strengthened by new fuzzy squareness shape measures. Ta-
ble 7.3 presents the achieved classification rates. The initial set of shape features
includes rectangularity and area-based convexity, multi-component shape measures
D(S) and Imcc(S) from [115], hexagonality based elongation introduced in Chapter
5 as well as the ellipticity measure (denoted as £(S) in [160]). The nearest neighbors
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Table 7.3: Efficiencies achieved using the initial shape descriptors along with the new
fuzzy shape measures, performed on the Portuguese Leaves dataset [141]. Results
obtained including the new shape measures are given in bold.

Shape features Rates

6 shape features 63.53%
6 shape features + FS JI(S) 67.65%
6 shape features + J. S?I(S) 68.24%
6 shape features + FS2,(S) 70.29%
6 shape features + ]-"S}I(S) + .FSZ(S) 72.35%
6 shape features + FS}(S) + FSo(S) + FS5(S) | 75.00%
FSHS) 32.06%
FSHS) + FSy(S) 38.82%
FS(S) + FSL(S) 40.59%
FSoS) + FSH(S) 54.71%
FSHS) + FSY(S) + FS(S) 55.88%

classifier provides a leave-one-out validation score of 63.53%. This result can be fur-
ther improved to 67.65%, 68.24% and 70.29% by including separately the first and
second version of FS,(S), as well as the second version of FS f;(S)*, respectively.
Better result of 72.35% was obtained if both versions of fuzzy squareness FS,(S)
have been combined with the initial set of shape features. Further improvement of
75.00% was achieved if the second version of FS;(S) was included into consider-
ation. Such a pretty good classification score, achieved using only nine simple shape
features, also represents a big relative improvement in accuracy of approximately
11.5%, as a result of including our new fuzzy squareness shape measures. As views
in Table 7.3, it can be said that both versions of the new squareness measures are of
particular importance in this classification task, given that they involve mostly inde-
pendent information about shapes. This can be further demonstrated if only the fuzzy
shape measures are used without initial shape descriptors. For example, if only the
first version of FS,(S) is applied then the achieved efficiency is of 32.06%, while
if both first version of FSf;(S) and second version of FS,(S) are added separately
then the accuracy has improved to 40.59% and 54.71%, respectively. Better result
for such a dataset of 55.86% was obtained if only the first version of FS,(S) and
both versions of FS;(S) are combined. It can also be noticed that such results are
competitive to those already mentioned (as listed in [116]) using the feature vectors
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of higher dimensionality. On the other side, our considered approach is based on the
use of several simple and easy to compute shape measures, making it interesting from
the aspect of applicability and simplicity in a variety of shape-based object analysis

tasks.



Chapter 8

Concluding remarks and
further research

This chapter concludes the thesis by providing a brief overview of the research and
original contributions presented in the thesis. The original contributions and re-
sults of the thesis can be naturally divided into two groups, according to the applied
methodologies of obtaining scientific results that were followed during the research
performed. All the contributions, as well as their mutual connections and overlaps,
are clearly illustrated and discussed. The first group of research results presented
in the thesis, concretely in Chapters 4 and 6 deals with studying the new methods
for estimating three-dimensional Euclidean distance transform (3D EDT), as well as
the signature of a two-dimensional shape utilizing the information available from the
coverage image representation. In this image representation, the intensity value as-
signed to each image element is proportional to its relative coverage by a continuous
object. We have shown how such image information can be utilized to provide a pre-
cise estimate of the position of the continuous object within an image element. This
sub-element estimate of the object position has been proven to provide an improve-
ment of the aforementioned shape-based image processing techniques. Improvements
achieved include reduced bias and variance, increased rotational and translational in-
variance, along with increased robustness to the presence of noise that is irresistibly
present in the image due to the imperfection of various imaging devices and condi-
tions.

The second group of contributions is presented in Chapters 5 and 7 and relates to
introducing new shape descriptors and associated methods for their numerical evalu-
ation. In this sense, two new original descriptors of shape have been introduced, such
as hexagonality and fuzzy squareness, and presented the methods of their numeri-
cal evaluation that should answer the question to which degree the shape observed

153
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satisfies a property considered. In the thesis, we considered most of the elementary
properties of the descriptors introduced and their corresponding measures from both
a theoretical and empirical standpoint. All the new introduced shape descriptors are
naturally defined and theoretically, i.e., mathematically, well-founded. Such a prop-
erty is highly desirable from the aspect of the application since then their behaviour
can be somewhat understood and anticipated in advance. This latter can also be of
particular benefit in the various shape-based object analysis tasks, where, even before
performing a particular analysis task, it can be predicted how the results obtained will
behave, given that the shape information that has been incorporated by them. In the
sequel, we will summarize the concrete contributions of the thesis, and also present
several directions and potential topics of future research.

In Chapter 4, we have presented two novel methods for estimating 3D Euclidean
distances in the corresponding distance map utilizing the information available in
the voxel coverage image representation. In such an image representation, assigned
coverage values have been observed to estimate the object position within the bound-
ary voxels. We have shown that such an estimated sub-voxel position of the object
boundary can contribute to accuracy improvement of the estimated distances if the
corresponding normal direction of the object boundary is considered appropriately.
Depending on the way how the information about the normal direction is involved
in the distance computation, we come to two new 3D EDT estimation methods. The
statistical evaluation of the proposed methods have been performed as well, compar-
ing them both with the classical binary EDT [18], and the method relying only on
the voxel coverage and object position within the boundary voxel [91]. Experimental
evaluation presented indicate that significant improvement in accuracy and precision
has been achieved if the proposed EDT estimates are applied. One of them, denoted
as VCEDTS3, exceeds the other one, denoted as VCEDT?2, by reducing the errors of
estimates, as well as the range of errors, while both proposed exceed binary EDT
(BEDT) and the voxel coverage based EDT proposed in [91] (VCEDT1), by reduc-
tion the mean absolute error (MAE), as defined in (4.9), up to fourteen times relative
to BEDT, and up to seven times with respect to VCEDT1. Besides, the complexity of
the proposed EDT estimates is similar to other EDT approximations that are based on
the chamfer or vector distance propagation as well. More precisely, their complexity
is optimal, i.e., linear with respect to the number of image elements, providing such
a reasonable approximation of the exact EDT at a reasonable (i.e., optimal) compu-
tational cost. Exploiting all the considerations presented, one of the possible open
topics for future research might be designing and developing the new, or appropriate
adaptation of already existing analysis tools that could have an advantage from the
proposed EDT approximations. This also motivates their further evaluation in vari-
ous image processing applications and tasks performed on the images obtained under
different imaging conditions.

Chapter 5 introduces a new measure for evaluating how much a given shape is
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hexagonal. It can be said that this is the first attempt to define such a measure, given
that, according to the authors’ best knowledge, it is not known yet whether there exist
similar methods for measuring hexagonality of a given shape. Taking into account
that hexagonality can be understood as a new shape descriptor of the object, which
has a clear geometric meaning, it is natural to define hexagonality by adjusting some
general procedures for defining other already known shape descriptors (see, for ex-
ample, [121]). Such a defined hexagonality measure, herein denoted by H 7 (S), has
most of the basic properties expected to be satisfied by all hexagonality measures.
However, we have shown that for such a measure there exists a shape, with the non-
zero area, whose measured hexagonality is equal to O (e.g., the last shape in Fig. 5.6).
Such a property of H s;(S) can be considered to be a weakness, given that, according
to our initial idea, a measure of shape hexagonality should define how much a given
shape differs from a hexagon.

Having in mind all these facts, we have derived in Chapter 5 a new measure of
shape hexagonality, H(S), which has been defined in (5.21). Also, the values of #(S)
have been shown to vary within the interval (0, 1], with the largest possible value of
1 being reached if and only if for a hexagon. We have shown that the new mea-
sure of hexagonality #(S) can also be computed using the corresponding geometric
moments (5.2), which enables an easy and straightforward numerical computation
of H(S). Besides, a new shape hexagonality is invariant concerning the geometrical
transformations of rotation, translation, and scaling. All these desirable properties of
H(S) have been also well-founded and theoretically verified. This latter is of partic-
ular interest in a number of object analysis tasks, given that in these situations the
behaviour of H(S) can be predicted in advance to some extent. The experiments pre-
sented also provide an illustration of the behaviour of a new hexagonality measure as
well as its comparison with the behaviour of H f; ().

A new measure of hexagonality 7{(S) also provides several useful consequences,
which have been theoretically considered, and also illustrated through several exper-
iments. First, a new hexagonality measure provides a new approach to computing
the shape orientation, where the orientation is defined by direction (i.e., angle) which
minimizes the integral in (5.21). Also, we have shown that a new hexagonality mea-
sure provides a new method for measuring shape elongation. The hexagonality based
shape elongation is given as the ratio of the lengths of the longer and shorter semi-
axis of the corresponding fitted hexagon, as given in (5.9). Such a defined elongation
measure, herein denoted as £(S), is invariant to rotation, translation, and scaling
transformations. Also, it achieves the minimum possible value of 1 if and only if the
corresponding fitted hexagon is degenerative (i.e., a square). Beside all these desir-
able properties, an important benefit of our new approach for measuring the shape
orientation and shape elongation is that they can be successfully applied to shapes
for which the standard methods [152], based on the shapes moments, do not provide
a clear result. This is especially noticeable for shapes with more than one axis of
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symmetry, or order of rotational symmetry greater than two. We have shown that our
new measures can deal with such challenges, which can be considered as their very
desirable property. Moreover, this is one of the main reasons why defining a new
hexagonality based method for computing the orientation and elongation of shape
makes sense. Also, we have illustrated that the use of our new methods does not ex-
clude the use of the corresponding standard methods. For example, we have shown
that, for the shapes that are naturally oriented (e.g., symmetric shapes having only
one axis of symmetry, elongated shapes whose orientation is determined by some
axis of their elongation, etc.), our new approach provides orientations that are similar
or closely aligned with the orientations obtained using the standard method. On the
other hand, we have shown that for the shapes with several symmetry axes, or which
are rotationally symmetric of an order greater than two, our new method is compatible
with the standard moment-based method [152], given that the computed orientations
are approximately matched with some of their symmetry axes. This latter is visible
in the case of shape elongation since the standard method does not provide a clear
distinction among the different shapes which are N-fold rotationally symmetric. This
follows from the fact that for such shapes the standard method assigns elongation
equals 1, whereas a new elongation measure &£ (S) assigns different measured elonga-
tions. Such a property of £(S) can be perceived to be an advantage over the standard
elongation measure.

A new hexagonality measure 7{(S) can be efficiently and successfully applied, to-
gether with hexagonality H s (S) and new elongation measure £(S), in a wide range
of image processing and computer vision tasks. To illustrate applicability and quality
of the introduced shape measures in such tasks, we have considered several clas-
sification experiments on three well-known image datasets: MPEG-7 CE-1 dataset
[73], Swedish Leaf dataset [151] and Galaxy Zoo database [92].The results achieved
demonstrated the utility and importance of the measures introduced in all the tasks
considered, even though we have used only a few simple image processing tools, a
small number of shape-based measures, and very simple applied classifier. It is worth
mentioning that in some experiments such as those related to MPEG-7 CE-1 and
Swedish Leaf datasets, our focus has been on achieving a higher classification accu-
racy compared to what was achieved so far using the feature vector spaces of similar
dimensionality. Consequently, we have shown that the best scores (i.e., benchmark
results) were achieved if the new shape measures have been included in the set of
the appropriate initially chosen shape descriptors. In these experiments, the rela-
tive improvements by including new shape measures range from approximately 3%
for Swedish Leaf dataset to closely 9% what has been achieved for MPEG-7 CE-1
dataset. Based on this, we have concluded that introduced shape measures are com-
plementary, and they can be used together to increase efficiency in these classification
tasks. Regarding the third discussed image dataset, it should be emphasized that in
this experiment we did not focus on the benchmark result, but we intended to further
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illustrate the quality and benefits of the new shape measures. As such, this experiment
can be understood as a good indicator that the applicability of our new measures in
this classification task makes sense. Besides, although we have not achieved a bench-
mark result, the results obtained are comparable to those in the literature available
from the other authors, which has been mentioned in the chapter as well. It is worth
noting that this is something expected, given that there are no measures that per-
form better than others in all applications. Based on all the observations presented
in Chapter 5, one of the interesting topics for our future research would be related
to suitable generalizations of the new hexagonality measure in diverse image analy-
sis tasks. Such generalizations would allow us to introduce several more new shape
descriptors, which is of particular interest, given that, due to a permanent demand in
various new image processing based tasks, it is necessary to design more and more
different, but also efficient shape analysis tools.

In Chapter 6, we have derived a new estimation method of the centroid distance
signature of two-dimensional shape utilizing coverage information contained in its
discrete representation. Similarly to the case of three-dimensional EDTs given in
Chapter 4, the intensity value assigned now to each pixel is used to estimate the
boundary position of the object within the pixel. Under the assumption that the
boundary of the object is locally linear and intersects the object pixel along the
straight line, the midpoint of the estimated edge has been utilized to define the sig-
nature of a shape. In this chapter, we have presented an iterative procedure which
improves the edge direction estimation, and consequently, the signature estimate in
each iterative step. Performance evaluation has shown the advantages of the pre-
sented estimation method with respect to variance, bias, robustness to noise, as well
as rotational and translational invariance, relative to both signature estimated from
the sharp (i.e., binary) representation of shape, and signature computed as the aver-
age of estimated signatures over all the o-cuts of the corresponding coverage shape
representation [26]. The iterative algorithm presented is simple, easy to understand
and fast to compute, and, if it converges, the convergence is very fast. The experi-
ments presented illustrate as well that the assumption regarding local linearity of the
object boundary is of essential importance in designing the estimation method itself.
In such cases, the algorithm presented converges, and it does it very fast. Finally,
we can conclude that this chapter, similarly as Chapter 4, clearly shows that the in-
formation available in the coverage image representation can provide estimates of
the shape descriptors with increased precision and accuracy. The results presented,
both theoretically and empirically, encourage and motivate further research in the
tasks of extending the applicability of the proposed signature estimation method to
more complex shapes, as well as to the shapes obtained under the various image ac-
quisition conditions. This is pretty important in object analysis tasks (e.g., object
recognition, object classification, object retrieval, etc.) where improved performance
of the proposed signature estimate can be of particular and/or essential importance.
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This remains an open topic for future work.

Chapter 7 has followed the same line as Chapter 5, but now providing a new
fuzzy squareness measure which defines the degree of how much a fuzzy shape con-
sidered is fuzzy squared. Given that fuzzy squareness can be recognized to be a new
descriptor of the fuzzy object given, having a clear shape interpretation, one of the
possibilities for its definition relates to appropriate dealing with the approach already
discussed in Chapter 5, which was originally presented in [121]. We have shown
that such an introduced fuzzy squareness, herein denoted as 7S y; (S), satisfies most
of the elementary properties that each well-designed measure should satisfy. How-
ever, for such a defined measure there exist shapes, with the non-zero areas, whose
assigned fuzzy squareness is equal to 0. For example, we have presented four such
shapes in Fig. 5.6 to make this property clearer for understanding. Given that such
a property of FS;(S) can be considered to be a disadvantage, we have derived a
new measure of fuzzy squareness, S, (S), which takes the values from (0, 1] and
achieves the maximum value 1 if and only if for a fuzzy square. We have proven that
the new fuzzy squareness measure is additionally invariant to transformations of sim-
ilarity. All such desirable properties of FS,(S) have been theoretically proven and
experimentally verified. Several illustrative experiments illustrating the behaviour of
FS,(S) have been included in the chapter as well.

Effectiveness and usability of the new fuzzy squareness measure FS,(S) have
been demonstrated through various shape analysis and object recognition tasks. For
this purpose, we have limited ourselves to the experiments illustrating the benefits
and quality of the new fuzzy squareness shape measures in the tasks of classifying the
images from three well-known, and in the literature widely studied, image datasets.
Among them there are two already used datasets in Chapter 5 such as MPEG-7 CE-1
dataset [73] and Swedish Leaf dataset [151], but also the new one Portuguese Leaf
dataset [141]. The efficiencies reached have proven that the new fuzzy squareness
measures can be of particular importance in these classification tasks, even if only
a few features have been used with simpler applied machine learning classifier. As
for the experiments performed on MPEG-7 CE-1 dataset, our goal was to provide a
higher efficiency relative to scores achieved to date using the feature vectors of ap-
proximately equal dimensionality. We have shown that the highest efficiency (i.e.,
benchmark result) was achieved if the new squareness shape measures were used to-
gether with the initial, appropriately chosen, shape descriptors. In these experiments,
the relative improvements in efficiency range approximately from 5% to 7%. Follow-
ing the experiments presented, we have concluded that the new shape measures are
compatible, and can be applied together to improve the efficiency in such a classifi-
cation task. Regarding the second and third considered datasets, we have not aimed
at a benchmark result, but to represent the capability of fuzzy squareness measures
to improve the classification efficiency being performed on these datasets. As such,
these experiments are presented to illustrate that our new fuzzy squareness measures
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make sense in such defined classification tasks (e.g., relative improvements in accu-
racy are in the range from approximately 12% to 15.5% if the new fuzzy squareness
measures are added into consideration). Besides, although we have not achieved a
benchmark result, the results obtained are comparable to those reported in the litera-
ture to date provided by the others, and which has also been discussed in the chapter.
This is something that can be expected because, as already mentioned several times,
there is no shape measure superior to the others in all applications. Therefore, one
direction of our further work relates to adopting the approach presented in this chap-
ter to develop several new fuzzy-based shape measures, which can be of particular
importance for shape-based analysis applications. This latter follows from the fact
that, due to the increasing needs in various tasks, it is pretty important to design new
simpler shape-based object analysis tools, aimed to strengthen the already existing
object descriptors that have found their application in diverse image processing and
computer vision tasks.
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Appendix

Appendix

One of the important steps in deriving an efficient EDT algorithm in 3D with sub-
voxel precision in Chapter 4 was to solve the following third-degree algebraic equa-
tion
ax® +bx> +ex+d=0, (1)

over the field of complex numbers C, where a,b,c,d € R,a # 0 and x € C. For such a
task, we have utilized Cardano formula, named after Girolamo Cardano (1501-1576),
which was first published in his book Ars Magna in 1545. Because of its importance,
we herein present its derivation to give the reader the ability to fully understand it.

At first, by multiplying the initial equation (1) by a~!, the following normalized
cubic equation is obtained

X +A% +Bx+C=0, )

b d A
where A= —, B= ¢ and C = —. Further, if the linear substitution y = x + 3 is ap-
a a a
plied to (2), it is reduced to

() o8 a3) e

sy + (B 42 + w AB+C =0 3)
Y 3 )Y\ 27 73 =

which can be written in canonical form
Y +py+q=0, )
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A? 24 AB
where p = B — ER q= > "3 + C. After introducing the substitution

y=u+v, (%)
equation (4) becomes

(u+v)* +p(u+v)+4=0

S+ + Buv+p)(u+v) +¢=0, (6)

where u and v are now the new variables. Given that each variable can be written as a
sum of two variables in infinitely many ways, we can introduce additional condition
that the new variables should satisfy. For example, if we involve the condition 3uv +
p = 0, then the equation (6) becomes

w4V = —q, (7)

providing thus the following system of equations:

v =—q, uv=—§7 (8)
ie.,
3
w3 = —q, u3v3:—<§) . )

However, taking into account that the latter relations represent the sum and prod-
uct of the monomials #3 and v then, according to Vieta’s formulas, there exists a
quadratic equation whose roots are these monomials, i.e.,

2=+ )+ =0, (10)
or, equivalently
2 P\
ZHa- (3 =0, (11)
whereas its corresponding roots are given as follows:
- oot
“ w=m3tya) TG
R R (O -
22 v > > + ) (12)

Following this, the roots of the cubic equation (4) are then determined as
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which is also known as Cardano formula, whereas the expression under the square

root D = (%)2 + (%)3 is called the discriminant of the cubic equation (4). Denoting
with R = —% and Q = %, the Cardano formula (13) can be then written in a more
compact form as follows:

y—\/R+\/R2+Q3+\/R VR + 03 (14)
Given that each third degree polynomial over the field C has at least one real root,

and denoting with u; = {/R+ \/R2+ Q3 and v; = {/ R — \/R2 + Q3 a pair of the real

roots of equations u = Vu? and v = v v3, the sets of all the complex roots for « and v
are given as follows:

27 2r
=i — 5t
u€e{u, mesd' ue 3'},

2r . 2z .
ve{vy, vie3' vie 3} (15)

This further implies that equation (4) has at most nine potential roots, given in the
form y = u+v. However, given that its roots must also satisfy the condition uv = —Q,
the roots of (4) are given as follows:

up+vip
y = Uy+vy = —@—i—%(ul —v) (16)
uzt+vy = —%_l\[(ul_vl)

whereas the roots of (1) are then expressed in the following way:

up+vi —%
x = ——“I;V‘ — 3% + %g(ul —-vi) 17)
—tn b 8 (),
where
VO +R, v ={/R—VO+R?,
and

3ac—b? r dabe— 27a%d — 2b°
N 54a3

As it can be noticed, this latter represents the form of the solution of the initial cubic
equation (1) used in the Algorithm 1 in Chapter 4. Besides, it is worth noting that,
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similarly as for the quadratic equation, the nature of the roots of cubic equation (1)
can be determined in advance, without their solving, observing only the sign of the
associated discriminant D = Q3 +R2. Taking into account these considerations, the

three different cases are possible:
1) for D > 0, one root is real and other two are complex conjugates,
2) for D =0, all the roots are real and at least two are equal, (18)

3) for D <0, all the roots are real and unequal.
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