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Abstract

This thesis describes a system for tracking and detecting topics in personal

search history. In particular, we developed a time tracking tool that helps

users in analyzing their time and discovering their activity patterns.

The system allows a user to specify interesting topics to monitor with a

keyword description. The system would then keep track of the log and the

time spent on each document and produce a time graph to show how much

time has been spent on each topic to be monitored. The system can also de-

tect new topics and potentially recommend relevant information about them

to the user. This work has been integrated with the UCAIR Toolbar, a client

side agent. Considering limited resources on the client side, we designed an

efficient incremental algorithm for topic tracking and detection. Various

unsupervised learning approaches have been considered to improve the ac-

curacy in categorizing the user log into appropriate categories. Experiments

show that our tool is effective in categorizing the documents into existing

categories and detecting the new useful catgeories. Moreover, the quality of

categorization improves over time as more and more log is available.
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1 Introduction

Due to popularity and widespread use of search engines like Google and

Yahoo, the search patterns of a user raises an opportunity for text mining

to acquire useful knowledge. This information can be used not only to

improve the search accuracy of future queries but also for recommending

information to the user.

There have been a lot of efforts in exploiting user search history. Most

of these efforts make use of past queries and click through information.

However, user may not find all the clicked information to be equally relevant,

i.e., some documents are more useful than others for a given query. But, to

the best of our knowledge none of the existing work takes this into account.

In [13], authors made an attempt on using only those past queries and

their click through information that are most relevant to the given query

by giving weights. But they fail to distinguish between the different clicked

documents for a particular past query. Motivated by the above reasoning,

we developed a mechanism to track time information that user spent on a

clicked document and use this to not only track user interests but also to

detect new user interests and recommend them to the user.

Time is precious. It can’t be saved, replaced, recovered, expanded or

contracted. It is the dimension in which changes take place. In today’s

world, where everyone is running out of time, it will be pleasant to have a

software application that can track the time spent by the user and help him

in not only analyzing but also discovering his activities pattern. For example

- a user might want to know the time he spends in watching movies, football

matches, reading daily news and doing his field work (say computer science).

Moreover, may be he wants to maintain a good ratio of 20:80 between his

leisure and work time. Also, he might be interested in exploring his activities

where he spends his time unconsciously. Keeping this in mind, we developed

a tool that can help user in maintaining a healthy ratio between his work and

leisure time but also help him analyzing and detecting his activity patterns.

In this work, we implemented a Time tracking tool that tracks and de-

tects different categories and their coverage in the search history. To protect

user private data and avoid over-burdening the server, we kept everything on
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the client side and integrated our work with UCAIR (User-centered Adap-

tive Information Retrieval) toolbar, which is a client side agent. We talk

about the whole system in section 5 and discuss its integration with UCAIR

in section 6.

But in order to accomplish the above task, we need to first collect the

personal data. This can be done either explicitly by asking the user, the ac-

tivity in which he is engaged in, from time to time or implicitly by extracting

from the user search log. Explicit inquiry is more precise than implicit, but

its drawback is that the user needs to give input, which involves nontrivial

user efforts. Therefore users are usually reluctant to engage in explicit in-

quiries. Since implicit information is inferred from normal search activities,

there is no burden on the user.

Also, after obtaining the log we need to categorize the data into multiple

topics. The concept of categorization is not new and has many great real

world applications like it allows us to automatically organize news stories by

the events they discuss by finding story boundaries, tracking these stories

and discovering when something new happens. Also, categorization can help

in automatically organizing books, articles, journals, and magazines in the

library. Similarly, it can allow us to re-organize the emails and group them

by topic. Another great application is to help individuals track their time.

Traditionally, one (usually experts in the related domain) assigns to each

document in the collection its class. But it will be nice to have a system

which can classify data automatically. Moreover, idea of designating classes

by experts usually don’t grow, i.e., the number of classes is fixed but the

real system should be able to discover the classes by itself. However, some-

times user may want to set explicitly particular set of classes. Keeping both

aspects in mind, we designed a hybrid system that not only can take input

topics from the user but also discover them from time to time.

Given the problem of classifying the documents into multiple categories,

the trivial approach could have been simply count the number of times the

category words or their synonyms appear in the browsed documents and

calculate the relevance.

However, there are various problems with this basic approach. The major

problems with this approach are:

1. Firstly, it is quite sensitive to background words such as HTML tags

and variables.

2. Secondly, it doesn’t handle the case if document cannot be classified

into specified categories.
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3. Thirdly, we have to define the classes manually and there is no mech-

anism to learn new categories automatically.

4. A document may talk about multiple topics and hence can fall in

many categories. Depending on the types (and relative importance)

of words, we have to choose the appropriate category.

5. Finally, the category words are also fixed, i.e., it will not try to learn

and evolve the category words to improve the class model, which is

important in practice.

To improve upon our basic implementation, we followed a more general

approach of building a language model for each category using maximum

likelihood estimate by maximizing the probability of a category given a

document for all documents. However, it turns out that it doesn’t work well

if we have a lot of noise in the data and everything except the space around

the specified classes is the noise in our case.

In stead of learning a discriminative classifier for each document, we

instead consider the generative approach. We model each document as being

generated as a mixture of many topics. Each topic is defined by a language

model. Also, a separate background category is kept to handle noise. In

addition to categorization task, we also look for new categories and label

them. We looked into various approaches to label these new categories [9]

and discuss in details in section 5.

The other major challenge to make this work on the client side is the

limited resources - processor, hard disk, memory, network bandwidth. We

develop techniques which would not over consume any of the available lim-

ited resources. Keeping all this in mind, we developed an online algorithm

that will run EM algorithm only on the new data and store the obtained

results in a smart way, that can be used in the next run. We chose to keep

each execution as on-demand. However, for commercial purposes it will not

be a bad idea to make it run periodically.

The rest of the thesis is organized as follows. Chapter 2 talks about the

related work and the novelity of our problem. In Chapter 3, we formally

defined the problem. In Chapter 4, we briefly discuss about the UCAIR

toolbar. Chapter 5 discusses the time tool architecture and its implementa-

tion in detail. In Chapter 6, we discuss its implementation with the UCAIR

toolbar. Experiments set up and the details about the results can be found

in Chapter 7. Chapter 8 concludes the thesis with a summary and discussion

of future research directions.
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2 Related Work

There are mainly two types of categorization techniques in machine learn-

ing, namely, supervised learning and unsupervised learning. In supervised

learning, one tries to learn a function from the training data. The task is to

predict a class label of any valid input after having looked at the training

examples. On the contrary, unsupervised learning doesn’t have any training

data and hence requires manually setting the label.

Various classifying techniques in supervised learning have been stud-

ied in the past. Neural Network (Multi-layer Perceptron), Support Vector

Machines, k-Nearest Neighbors, Gaussian Mixture Model, Gaussian, Naive

Bayes, Decision Tree and RBF classifiers are some of the example classifiers

for supervised technique. On the unsupervised learning side, we have data

clustering, Expectation-Maximization (EM) algorithm, self-organizing map

as some of the examples.

Although no previous efforts have been made in this direction but one

can relate this work to topic detection and tracking (TDT) in information

retrieval. However, there are a lot of differences between the two which

makes this work quite novel and interesting.

Topic detection and tracking has been studied in the past and is still a

very active topic in information retrieval. The goal of TDT is to identify

event-based topics and monitor them in various news streams. TDT consti-

tutes of three main evaluation tasks - Segmentation, Tracking and Detection.

In segmentation, continuous news stream of data is split into distinct stories

for tracking and detection. In tracking, a system is given some initial seed

stories and asked to track them for further stories on the same topic. In

contrast, detection performs unsupervised clustering on the incoming data

and detects topic without any initial hints or clues. Another evaluation task

is Link Detection, which determines whether two randomly selected stories

are about the same topic or not. However, unlike above, this core task is a

component technology, i.e., it can be used to address each of the other tasks.

The TDT Pilot Study [1] ran from September 1996 through October

1997. This study corpus spans the period from July 1, 1994 to June 30,

1995 and includes nearly 16,000 stories, with about half taken from Reuters

4



newswire and half from CNN broadcast news transcripts. A set of 25 target

events has been defined to support the TDT study effort consisting of both

expected and unexpected events. Similar study was conducted in the year of

1998 [5], which consist of data collected from the first half of 1998 and taken

from 6 sources including two newswires, 2 radio programs and 2 television

programs. There were a total of 57 thousand stories including 630 hours of

audio in this corpus.

There were many participants and they proposed different interesting

methodologies to attack the above tasks. Most of them have relied on

some sort of clustering technique like Single Pass Clustering [1, 17, 7] or

hierarchical group average clustering [17]. Also, Hidden Markov Models

[10], Rocchio [16], k-nearest neighbor [16], Naive Bayes [11], probabilistic

Expectation-Maximization models [2] and Kullback-Leibler divergence [6]

have been used. TDT research has continued open evaluation in TDT1999-

2004.

In [8], authors proposed another approach for TDT that formalizes

temporal expressions and evaluates the relevance of two spatial reference

with respect to an ontology.

The above problem is very similar to ours in a way we also detect and

track a user log but ours is a more difficult problem since we have to track

the topics without any prior training, i.e., unsupervised learning.

In [4], authors developed a client side extension to email clients by group-

ing messages discussing the same topic and automatically labeling them to

summarize the contents by clustering the emails. They used the single link

clustering with a distance measure as tf * idf similarity measure and non-

textual information like sender receiver relationships and behavior measures

such as the percentage of replied emails, contact ranking based on email

volume, past behavior and reply timing to either match it to one of the

existing group or form a new topic.
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3 Problem Formulation

The abstract problem that we are trying to solve is to categorize documents

into existing topic categories and recommend new categories. Let, θ1, θ2, ...θk

be the already known topics, where k is some constant and θk+1, θk+2, ...θm

be the new topics added by the user, where m is some constant and sup-

pose θm+1, θm+2, ...θp be the topics discovered during the current run, where

p ≥ m, m ≥ k, k ≥ 0. Let, θB be the background cluster.

Let, i be the ith theme added by the user, where k < i ≤ m and,

Wi = wi1, wi2, ..., wij (3.1)

be the synonym words and,

W =
m−k⋃

y=1

Wy (3.2)

be the union of all the synonym words of the new topics added during the

current run.

Also, let cluster1, cluster2, ..., clusterp−m be the new clusters correspond-

ing to discovered θm + 1, θm + 2, ..., θp topics and,

W ′

i = w′

i1, w
′

i2, ..., w
′

ij (3.3)

be the generated model words for the ith cluster, where m < i ≤ p and,

Si1 = si11, si12, ...., si1l (3.4)

be the synonym words for the first word of the ith cluster and,

Si =
j⋃

y=1

Siy (3.5)

be the union of all the synonym words of all the words of the ith cluster and,
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S =
p−m⋃

z=1

Sz (3.6)

be the union of all Si for the detected topics

Our goal is then, given a query and a set of documents visited by the

user, we either need to categorize them into existing topics or form a new

category and compute the time spent in each category. Formally,

{(W, S, {Q1, Q2, ..., QN}, {D1, D2, ..., DN})} −→ (θB, θ1, θ2, ..., θk, θk+1, .., θm, θm+1, ..., θp)

(3.7)

where N is the new search log that have been never analysed before.
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4 UCAIR Toolbar

UCAIR1 is a client side agent and is like a Google toolbar2 where user can

submit the query and get the results directly on the browser. The main

difference though between the two is that UCAIR is the client-side agent,

that personalizes the search results and uses it to further improve the future

queries by capturing the query history and the click through information.

The information flow between the user and the search system without (top)

and with (bottom) UCAIR Toolbar is shown in Figure 4.1.

Traditionally, user submits the query on search engine, the query is then

processed at the server side usually based on popularity or relevance and

the results are sent back to the client browser. The major problem with

this system was that it is not adaptive to any particular user and the results

returned by the search engine solely depends on the current context, i.e., for

ambiguous queries like jaguar, everyone receives the same result, which was

definitely not good. To better understand this, consider an example query

“Jaguar” which can be Panthera onca, a Cat, Mac OS 10.2, Jaguar wiki, a

branded Car. Without knowing any other information, search engine could

best return the mixed bag of results from different meaning groups. This

was definitely not optimal. In fact, the situation was even worse for queries

like “Java” where one group dominate all the other less popular meanings.

This problem is often referred to as “one size does not fit all” and is one of

major bottlenecks of most existing search engines [12].

Therefore it was critical to identify different user specific needs and de-

liver personalized results specific to a user. The UCAIR thus added another

layer in between the user and the search engine to collect extra informa-

tion besides the query to put search in context. Specifically, the following

changes had been made with the introduction of UCAIR.

1. The implicit feedback information (query and click through informa-

tion) are captured to personalize and produce better results in am-

biguous queries, which will update the user model. This user model

can then better server the individual user need.
1Downloadable from http://sifaka.cs.uiuc.edu/ir/ucair
2http://toolbar.google.com
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Figure 4.1: UCAIR Architecture

2. When user submits a query, UCAIR tries to expand the original query

in accordance with the users search context, which will better serve

the ambiguous query.

3. Upon receiving the result, UCAIR reorganizes the results as well (by

re-ranking it according to the inferred user need). The goal is to

making the top results most relevant or diversifying the top results to

facilitate potential feedback.

Figure 4.2 shows the original mixed results with pages about Jaguar

cars and Jaguar software. Figure 4.3 shows how UCAIR can re-rank search

results from Google and optimize search results for a user searching in-

formation about the Jaguar car using the query “jaguar”. It shows the

automatically re-ranked results by UCAIR after the user has viewed the 1st

page, which is about Jaguar cars. The new results no longer have pages

about the Jaguar software; instead, three new pages about Jaguar cars have

been pushed up by UCAIR, which were originally ranked down in the results

from Google.

9



Figure 4.2: Search result without context
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Figure 4.3: Reranked search page
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5 System Design

The Time tool consists of four main actions:

1. Add Category - This will store the topic names specified in the search

box in the temporary location that will be read when Time tool runs.

If nothing is specified, it will report an error.

2. View Results - This will display the contents of the result file in the

appropriate tabular form.

3. Reset TimeTool - This will simply delete all the stored Time tool files.

4. Run TimeTool - This is the core action of the system and constitutes

the main algorithm. We will discuss this in detail below.

The system design can be divided into the following phases:

1. System initialization

2. Preparing parameter files

3. Retrieving synonym words

4. Data crawling

5. Indexing

6. Expectation-Maximization Step

7. Setting Labels

8. Processing results

9. Storing statistics

Figure 5.1 shows the system architecture and how the various parts are

inter-connected.
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Figure 5.1: Time tool architecture

5.1 System Initialization

In this step, system gets initialized. If the tool has never been run or it has

been just resetted then it will create and initialize the appropriate system

files. Not only it will create the Other, a background category but also look

for categories being added by the user using the Add category action.

Otherwise, it will look for old statistics and if found, it will dynamically

load them and also look for new categories, if any.

We allow for additional categories to be detected by the system in ad-

dition to being specified by the user but in a limited way. We recommend

one category per four categories specified by the user. This is done to make

the system faster and to avoid interfering with the user routine too much.

However, this feature can be very helpful since it might be able to discover

a category that a user may not be too aware of.

5.2 Setting Parameters

After initializing the system and gathering the data, system initializes and

creates all the parameter files required for indexing and Expectation-Maximization

13



Figure 5.2: Time tool format

step with the appropriate parameters.

5.3 Building Prior

To get the best results with the Expectation-Maximization (EM) algorithm

we need to provide some prior information to the EM algorithm by adding

some similar words to our categories. In order to build such a rich prior

file for the new categories, we retrieve synonym words from multiple online

dictionary websites. The list of synonyms from each of these websites is

then integrated to form a big list of synonym words. Since we don’t have

any prior information about the new category we assign equal probability

to all of these synonym words in the prior file, sum of which is equal to 1.

The EM algorithm, as we will discuss below form multiple clusters equal

to number of categories, and output the result along with high probabil-

ity words for each category. These words come directly from the document,

while generating the words in the document in the E-Step. For better catego-

rization, our algorithm thus uses this information for the existing categories.

For the existing categories, we not only use the synonym words but also

the cluster words from the previous run. As EM algorithm will gain more

confidence in top words, the contribution of synonym words in the prior file

will go less and less. This is like an adaptation. We initially gave some seed

to EM algorithm to categorize documents and then use the EM algorithm

output to further tune our prior file.

We chose top 100 words generated by the EM algorithm and discounted

the sum of probabilities of those words, to assign new probability to each of

the synonym words to keep the sum of probabilities equal to 1.

5.4 Data Gathering

UCAIR keeps the log of the user activity in the XML form. XML is the

extensible markup language whose main purpose is to facilitate the sharing

of structured data across different information systems [3].

UCAIR stores the query, start time, and internal ranking for each search.

In addition, UCAIR also keeps a log of clicked time, URL of the page, title of

14



Figure 5.3: Mapping of UCAIR log to Time tool format

the page, summary snippet returned by the Yahoo or Google search engine,

and the return time.

In order to keep our tool generic enough and store only required fields, we

defined a different format to store the click time, return time, URL and title

of the page. Hence, one only needs to write a function which can convert

the log to Time tool accepted format to integrate our tool with any client

side agent. Figure 5.2 shows the format of time tool. Figure 5.3 shows an

example mapping of UCAIR log to our format.

Right now, system converts the whole log in to time tool format each

time and keeps track of the position from where new log begins. It then

parses and extracts the URL. The extracted URL is then downloaded at a

specific location using our function which after opening the page, read it in

a buffer and then save it in a temporary location. It is then later stored in

the special format as required for indexing.

Also, given the start and the return time, time spent on each document

can be easily calculated and associated with each document.
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Figure 5.4: Probabilistic latent semantic analysis

5.5 Indexing

Once the articles are crawled, we build a DocumentManager and Key-

fileIncIndex over the entire text for all the articles using the BuildDocMgr

application of Lemur toolkit [14].

KeyfileIncIndex builds an index assigning term ids, doc ids, tracking

locations of term within documents, and tracking terms within documents.

It expects a DocumentProp to have the total number of terms that were in

a document. Further, it expects that remove of stop words and stemming

(if any) occurs before the term is passed in. If used with an existing index,

it adds new documents incrementally. It stores the records in keyfile B-trees

and provides index API to use the index.

5.6 Expectation-Maximization Step

Expectation-Maximization (EM) algorithm, as shown in figure 5.4, is used

for finding maximum likelihood estimates of parameters in probabilistic

models, where the model depends on unobserved latent variables. EM al-

ternates between performing an expectation (E) step, which computes an

expectation of the likelihood by including the latent variables as if they were

observed, and maximization (M) step, which computes the maximum like-

lihood estimates of the parameters by maximizing the expected likelihood

found on the E step. The parameters found on the M step are then used to

begin another E step, and the process is repeated.

The EM procedure 5.5, then, is:

1. Initialize the distribution parameters
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Figure 5.5: Mathematical formulation of EM algorithm

2. Repeat until convergence:

(a) E-Step: Estimate the expected value of the unknown variables,

given the current parameter estimate, i.e., probability of word in

document d being generated from cluster j (given by p(zd,w = j)

as shown in 5.5)and from background (given by p(zd,w = B) as

shown in 5.5)through the application of Bayes’ rule.

(b) M-Step: Re-estimate the distribution parameters to maximize

the likelihood of the data, given the expected estimates of the

unknown variables. The last two equations in 5.5 refers to M-

step.

This step is the heart of the total system. In this step, we run EM

algorithm on the new data, the result of which will later be integrated with

the previous results.

5.7 Setting Labels

This section is about detecting new categories and as we discussed our tool

recommends categories to the user to help him discover some unknown cat-

egories.

Specifically, in this step we label the new category that has been detected

in EM step. A good label should be

1. understandable to the user,

2. should capture meaning of whole cluster words,

3. distinguish it from other clusters,
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4. should not be too specific, for eg, Music will be preferred over The

Beatles

Instead of simply labeling a category with the top words of the new

cluster found in the previous step, we chose a more exhaustive approach, as

presented in [9], of automatically labeling the new cluster. To label a new

category, we have used the following factors:

1. Probability of the word from the topic word distribution from EM step

should be high.

2. Label should correlate to the new category as much as possible and

should be distinguishable from other categories. For this we calculated

the Kullback-Leibler divergence between the topic word distribution

(cluster words) and the label word distribution (similar words around

label).

3. Generality of the label word by calculating the space of label word

distribution. This is quite intuitive as more specific words will have

much smaller space as compare to generic words.

Considering the above factors in mind, we propose a label score as a

function of above three factors:

labelscore(x) = count ∗ P (x) ∗ α + P (x) + KL ∗ P (x) ∗ ratio (5.1)

Where,

label score(x) = final score of x

count = Similar words around a label word

P(x) = Probability of word in topic word distribution

α = constant value of 0.08

KL = Kullback-Leibler divergence between the topic and the label word

distribution

ratio = constant value of 0.95

We chose the label such that

1. it has the maximum score and,

2. it is non-overlapping with the existing categories label.

Again, prior file will be updated from the synonym and the topic words

for the newly discovered category.
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5.8 Processing Results

In this step, the result file of the Expectation-Maximization step is parsed

and the result of the current run is integrated with the previous results.

The actual time spent on a document may not be equal to
∑

alldocs(return−

clickedtime), because one may click the document and then go to a differ-

ent page in a separate window and start reading that page. To account for

this kind of situation, we decided to switch from linear function to a more

conservative logarithmic function.

For documents where user spends a small amount of time, we know that

log x ' x and for documents where user spends a lot of time x À log x and

as x goes to ∞, log x also goes to ∞. Also, note that taking log wouldn’t

much affect the percentage of time spent in a category. Hence, their relative

percentage will remain the same but now the absolute number can give a

better indication of how important that category is for a user.

5.9 Storing Statistics

In this step, the system stores all the updated results and statistics to a

specific location so that it can be retrieved in the next run.
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6 Integration with UCAIR

Since a user log is very critical and contain personal information we have

integrated our tool with the client side agent UCAIR to account for user

privacy. First, let us try to understand the internals of UCAIR.

Each action on UCAIR toolbar is associated with the command handler

defined in IRBar file and each command handler is assigned a unique number

which is specified in Resource header file. On clicking a menu item on the

toolbar, the corresponding command handler gets activated which calls its

associated function defined in MainWindow header file. The definition of the

corresponding function can be found in MainWindow class. Thus, to add

menu items, we made appropriate changes in the IRBar, Resourse header,

MainWindow header, MainWindow class files.

For simple tasks like resetting the time tool or viewing the results, we

wrote our implementation in the MainWindow class itself with the help of

global functions defined in Global class. For more complicated actions like

adding a category or running the time tool we need to queue our request

which is discussed below.

The UCAIR system works by calling the appropriate system function on

each user action. Now each user action and its corresponding system action

are represented by the class. Instead of simply enumerating user action

and representing system action by functions, this has been done for many

reasons like, adding modularity. However, the main reasons were to be able

to pass the attribute value associated with user actions (like adding a new

category to Time tool or submitting a new query). Also, system actions may

be asynchronous (e.g. while downloading one has to wait for the response)

and internal state needs to be maintained. Because of all the above reasons,

UCAIR implementers chose to represent them with classes.

Both user actions and system actions are subclasses of Action class which

mainly defines the GetName() and Execute functions. In user action class,

we defined GetName function and in our System action we redefined func-

tions like GetName, Execute (from Action superclass). Please refer to Figure

6.1 for the internal structure of UCAIR. UA refers to User Action and SA

refers to System Action in the figure and dotted lines signify Callback class,
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Figure 6.1: UCAIR internal structure

which may or may not be subclassed by system actions classes.

The other thing we updated is DecisionMaker class where we made an en-

try in the constructor, which will link the user and the corresponding system

action through the string names, and we handled the if case in NewAction

function as well (which follows a strategy pattern). Very briefly, this pattern

has been used to be able to select different algorithms at runtime. For more

details please refer to [15].

Finally, we created an instance of new user action class and called re-

spond function of Decision Maker class from our handler function defined

in MainWindow class, which will queue requests and automatically call ex-

ecute function on the corresponding new system action class defined by us.

For other UCAIR specific user and system functions, please refer to [12].

The Time Tool can be downloaded along with UCAIR from the follow-

ing URL: http://sifaka.cs.uiuc.edu/ir/proj/ucair/download.html/

Figure 6.2 shows the new items that are added to the UCAIR toolbar.

1. Add Category

2. View Results

3. Run TimeTool

4. Reset TimeTool
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Figure 6.2: Time Tool

Figure 6.3: Success Page on adding a category
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6.1 Add Category

This is the tab to add a category to the existing set of categories. Success

message will be displayed upon successfully entering the category. However,

if user forgot to specify any category in the search box, an error message

saying “Please enter the category” will be displayed. Figure 6.3 shows that

Movie category being added successfully. Figure 6.4 shows the error page,

in case nothing was input.

6.2 View Results

A user can see the graph of his activity at any moment by clicking this menu

item. Figure 6.5 shows how user spends his time in Movies, Sports, Music,

Other. Where, “Other” refers to the background cluster. The number in

front of each category gives the estimate of the time spent in each category

in percentage. New labels, if any, would appear at the end of this table.

6.3 Run TimeTool

Figure 6.6 shows the snapshot of the page showing the progress of each step.

A user can run the time tool in an adhoc way.

6.4 Reset TimeTool

A user may want to delete his past records, and start afresh. Figure 6.7

shows the page that will be displayed on success. All the previous results

and categories will be lost on clicking this. The error dialog box will pop up

if some files were missing or system was already reset.
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Figure 6.4: Error page

Figure 6.5: Result Page
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Figure 6.6: Run Page

Figure 6.7: Reset Page
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7 Evaluation of the System

In this section, we will talk about the Time tool results and discuss them in

detail. To test our tool, we separately measure the performance of our tool

in terms of detection and categorization.

In order to evaluate our tool, we perform a simulated study and randomly

chose some users from AOL log and simulated their queries using UCAIR

toolbar. We then used existing categorization results from Yahoo Directory

to get labels of those URLs. Upon getting a subset of clicked documents for

which we know labels, we ran our Time tool to evaluate the categorization.

In order to see the performance of the tool in subsequent runs, we divided

the log in to two halves and ran twice for each user such that in the first run,

only first part of the log is introduced. Also, we divided the log such that

atleast one URL from each category appears in both halves unless we have

only one URL in a particular category in which case, we placed it randomly.

In each run, we then finally labelled the category with Correct(C), Un-

categorized(U), InCorrect(I) such that:

1. Correct - If the label matches the label of the Yahoo directory. If the

url exist in multiple categories in Yahoo directory, we considered it as

a correct if it was categorized in any one of the catgeory.

2. Uncategorized - If tool unable to clasify it into one of the specified

categories and fail to detect any appropriate category.

3. Incorrect - If the label doesn’t match with the Yahoo directory label.

If the url exist in many categories in Yahoo directory, we considered

it as incorrect if it doesn’t fall into any of the multiple categories.

We also report the detected categories by the time tool. To evaluate

the detection mechanism, we marked the detected categories as ”Useful” or

”Not Useful”. Now, to mark them we again used the Yahoo directory and

marked the detected category as useful if and only if there is atleast one

URL in the log in that category.

In this study, we chose a total of 10 users to evaluate our tool. Table 7.1

shows the number of categories specified and number of categories detected
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User Categories specified Categories detected

1 6 1
2 6 1
3 7 1
4 5 1
5 5 1
6 11 2
7 10 2
8 6 1
9 5 1
10 10 2

Table 7.1: Categories Statistics

User Number of Urls in first run Number of Urls in second run

1 21 8
2 6 17
3 26 10
4 4 10
5 5 1
6 21 10
7 7 27
8 9 5
9 7 22
10 12 60

Table 7.2: URL Statistics

by the tool for each user. In Table 7.2, we have shown the number of URLs

i.e. size of the log in first and second run.

Table 7.3 and Table 7.4 show the categorization results of our study. It

shows the Number of correct, uncatgeorized, incorrect labels for each user.

We also plotted the corresponding graph shown in Figure 7.1. As we can see,

the performance is much better in second run. This was quite expected since

as our tool will process more and more log, it will enable the tool to build

better and better prior, which will inturn assist Expectation-Maximization

algorithm to perform better classification.

Finally, Table 7.5 shows the categories detected by our tool and their

usefulness. As we can see, in most of the cases our tool has detected a

interesting and an useful label and thus can assist users in managing their

time.
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User Performance during first run

1 15 (Correct), 5 (Uncategorized), 1 (Wrong)
2 1 (Correct), 5 (Uncategorized), 0 (Wrong)
3 16 (Correct), 6 (Uncategorized), 4 (Wrong)
4 1 (Correct), 3 (Uncategorized), 0 (Wrong)
5 3 (Correct), 2 (Uncategorized), 0 (Wrong)
6 16 (Correct), 5 (Uncategorized), 0 (Wrong)
7 3 (Correct), 4 (Uncategorized), 2 (Wrong)
8 4 (Correct), 5 (Uncategorized), 0 (Wrong)
9 5 (Correct), 2 (Uncategorized), 0 (Wrong)
10 6 (Correct), 6 (Uncategorized), 0 (Wrong)

Table 7.3: Categorization results

User Performance during second run

1 7 (Correct) , 1 (Uncategorized), 0 (Wrong)
2 10 (Correct) , 6 (Uncategorized), 1 (Wrong)
3 7 (Correct) , 3 (Uncategorized), 0 (Wrong)
4 4 (Correct) , 6 (Uncategorized), 0 (Wrong)
5 1 (Correct) , 0 (Uncategorized), 0 (Wrong)
6 8 (Correct) , 2 (Uncategorized), 0 (Wrong)
7 21 (Correct) , 4 (Uncategorized), 2 (Wrong)
8 2 (Correct) , 2 (Uncategorized), 1 (Wrong)
9 12 (Correct) , 10 (Uncategorized), 0 (Wrong)
10 43 (Correct) , 12 (Uncategorized), 5 (Wrong)

Table 7.4: Categorization results

User Category detected Useful (yes/no)

1 car yes
2 fishing yes
3 drugs yes
4 bedding yes
5 level no
6 information, album no, yes
7 car, furniture yes, yes
8 music yes
9 animal yes
10 city, boat yes, yes

Table 7.5: Detected categories and their usefulness
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Figure 7.1: Performace variation in first and second run
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8 Conclusions and Future

Work

In this chapter, we conclude by summarizing our contributions, identifying

some of the limitations of the present work and pointing out the directions

for future work.

8.1 Contributions

We have developed an online algorithm that not only analyze the time spent

by the user in pre-specified classes but also helps in detecting new categories.

Our work takes advantage of the client side agent UCAIR user log to analyze

the user activities.

The main problem we addressed is to track and detect data with no

training data. In this study we studied various approaches. The approach

taken by us is not limited to this application but can also be used in or-

ganizing stories, emails, library books and soon. Also, this is a very useful

technique to recommend information. To the extent of our knowledge, this

is first effort in this direction. Our tool is scalable, sustainable, automatic,

quite generic, and can be easily integrated with any client side agent.

8.2 Limitations and Future Work

• One of the downside of our work is that we are only using search log to

predict the time spent by the user in each category. However, in reality

the user may not spend all of his time in front of his machine. Thus

we need a mechanism that can keep track of User’s physical activities

as well.

We already see a lot of handheld devices in the market with storage and

GPS capability. If in future, these devices can track the current user

activities and maintain a log of them and transfer them as user come

close to his personal desktop/notebook, then these bigger machines,

which usually have a vast amount of disk space, can manage, and

store the user personal log. And hence both physical and virtual world
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activities can then be combined and used with our tool to obtain more

precise results.

• Our labeling of topic is only one level. However, it will be great if a

tool can sub-categorise the categories itself in a tree like structure, for

eg: If a user spends a total of 40% of his time in Sports activities and

is interested in basketball, football and cricket, it is not clear though

how much time user has spent in each of these games. However, if a

tool can sub-categorize sports category into these three sub-categories,

saying something like, (10% cricket, 10% football, 15% basketball and

5% other games), it will be more informative to the user.

• Right now, results of the time tool are not used back by the UCAIR

toolbar to improve the search accuracy but we think that the results

of the time tool can be very useful in not only recommending articles

to the user but also in improving the search accuracy especially in

the case of ambiguous queries. Consider an example where user types

“Jaguar” and we know from time tool that user spends around 20%

of his time in searching about animals and birds. Then we know that

it is very likely that the user is searching for “Jaguar Cat” as opposed

to the user who spends majority of his time in cars and automobiles,

where he may be looking for luxury car manufacturer.

• The tool fails to classify those documents which doesn’t have any text

information apart from HTML tags, pictures, Javascript code etc.
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